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Abstract Boundary layer dynamics are investigated using a 2-D numerical model that solves the
Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - � tur-
bulence closure. The model is validated with highly resolved data of dam break driven swash flows over
gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbu-
lence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical
results show that the mean vorticity responds to flow divergence/convergence at the surface that result
from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence
due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL
thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantane-
ously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal
straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-
induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of
the swash event. These effects have important implications for the BL development. The numerical results
suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant dur-
ing the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under
these conditions.

1. Introduction

The swash zone is commonly identified as the alternating wet/dry interface at the beach face resulting from
the intermittent sequence of inundating/receding wave-driven flows. Thus, it is an active region of morpho-
logical change where sediment exchange between the subaerial and subaqueous beach profile occurs. In
addition, the alongshore component of the sediment motion can be significant under some conditions
[Wang et al., 2002; Austin et al., 2011; Puleo et al., 2014a]. The swash zone is the most accessible, frequently
used region of the nearshore for recreational purposes. Yet our knowledge of the sediment transport proc-
esses that occur in this dynamic region is hampered by the difficulty in fully measuring the transient, depth
and alongshore variant, turbulent flows [e.g., Butt and Russell, 1999; Masselink and Puleo, 2006, among many
others]. In addition, the local mass and momentum transfer at the sediment-water interface of the beach
varies on swash-by-swash and tidal cycle time scales [Li et al., 1997; Turner and Nielsen, 1997]. These varia-
tions lead to infiltration/exfiltration effects and groundwater fluctuations that may be important for sedi-
ment mobility [Turner and Masselink, 1998; Butt et al., 2001; Nielsen et al., 2001]. Thus, determining the
effects of bed sediment characteristics (i.e., permeability and porosity) on boundary layer evolution is an
important step toward improved understanding and predictive capability of swash-zone sediment
transport.

Previous studies have investigated the mean and turbulent flow field during the different phases of an indi-
vidual swash cycle under natural [Puleo et al., 2000; Butt et al., 2004; Aagaard and Hughes, 2006; Rauben-
heimer et al., 2004; Blenkinsopp et al., 2011; Puleo et al., 2014b; Lanckriet et al., 2014] and laboratory [Cowen
et al., 2003; Barnes et al., 2009; O’Donoghue et al., 2010; Sou et al., 2010; Sou and Yeh, 2011; Kikkert et al.,
2012, 2013] conditions. Moreover, recent numerical studies [e.g., Brocchini and Baldock, 2008; Bakhtyar et al.,
2009; Zhu and Dodd, 2013; Torres-Freyermuth et al., 2013] have provided additional information on the
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dynamics in this region, as they allow improved understanding of temporal and spatial variability of flow
properties under different boundary/forcing conditions. From these studies, a general description of the
swash cycle in relation to sediment transport is synthetized as follows. Injection of bore related turbulence
contributes to the cross-shore advection of particles into the swash zone that, together with the local mobi-
lization, are effective in transporting sediment during swash cycle initiation [Butt and Russell, 1999; Puleo
et al., 2000; Petti and Longo, 2001; Jackson et al., 2004; Masselink et al., 2005; Aagaard and Hughes, 2006].
During the remainder of the decelerating uprush motion, the turbulence decays similar to grid turbulence
[Cowen et al., 2003; Sou and Yeh, 2011; Lanckriet and Puleo, 2013] and more homogeneously [Zhang and Liu,
2008] as the flow reaches the maximum inundation limit toward land (e.g., run up distance). Hence, sedi-
ment particles are more likely to settle during the flow reversal phase. Shortly afterward, the flow evolves
from subcritical to supercritical as the favorable pressure gradient becomes increasingly stronger during the
backwash phase [Baldock and Hughes, 2006]. Sediment transport is then dominated by bed-generated tur-
bulence [Longo et al., 2002; Cowen et al., 2003; Zhang and Liu, 2008; Lanckriet and Puleo, 2013] that may also
mobilize sediment as sheet flow [Hughes et al., 2007; Lanckriet et al., 2014]. The relative dominance of the
different flow phases (i.e., uprush versus backwash asymmetry) during a swash cycle largely depends on
the beach face slope and incident wave conditions [Masselink and Puleo, 2006] and is known to have a large
influence controlling the overall morphological response of the beach [Osborne and Rooker, 1999; Blenkin-
sopp et al., 2011; Puleo et al., 2014a; Masselink et al., 2009].

One of the largest limitations in the study of swash-zone sediment transport relates to the challenge of
measuring the bottom boundary layer (BL) structure for the highly unsteady and depth-variant swash
flow conditions. Under such constraints, the numerical approach has been useful to examine/test concep-
tual boundary layer models specifically applied to the swash zone. Previous studies have derived the time
dependent swash BL thickness based on the nonlinear shallow water (NLSW) equations. For instance,
Barnes and Baldock [2010] solved the Prandtl and von Karman’s approach of the momentum integral tur-
bulent flat-plate bottom boundary layer (FPBL) in a Lagrangian reference frame, allowing a quasi-steady
treatment of the flow. Briganti et al. [2011] solved the momentum integral method for the turbulent BL of
Fredsøe and Deigaard [1992] in an Eulerian reference frame. Both studies suggest that the swash BL varies
in the following sequence: (i) immediate initial growth that at times becomes depth-limited around the
tip of the fluid during the uprush; (ii) BL thickness decays as do the velocities and turbulence during flow
reversal; and (iii) progressive BL growth until becoming depth-limited at later stages of backwash while
the BL evolves from laminar to turbulent. A limitation in the aforementioned studies is their reliance on
the assumption that the log law prevails inside the BL. This assumption has been commonly employed in
field studies [e.g., Raubenheimer et al., 2004; Masselink et al., 2005], based on single point or coarse veloc-
ity measurements, leading to consistent estimates of bed shear stresses and friction coefficients. How-
ever, laboratory based studies of swash flows over fixed beds have concluded that the log law does not
predict adequately the leading and trailing edges of the bore front [Barnes et al., 2009], and the near flow
reversal phases [Cox et al., 2001; Archetti and Brocchini, 2002; O’Donoghue et al., 2010; Kikkert et al., 2012].
Thus, the suitability of this assumption under natural settings may be limited to certain flow conditions
[Puleo et al., 2012, 2014a] as confirmed by field measurements of near bed velocity profiles at a high-
resolution (100 Hz at 1 mm vertical spacing).

Earlier works [Nielsen, 1992; Conley and Inman, 1994; Turner and Nielsen, 1997; Turner and Masselink, 1998;
Hughes and Turner, 1999; Butt et al., 2001] related the behavior of the streamlines of the flow with the infil-
tration/exfiltration of water into/from ventilated natural beds. From these and other studies [e.g., Pack-
wood and Peregrine, 1979; Li et al., 2000; Nielsen et al., 2001; Karambas, 2003] it is established that one of
the main effects of the infiltrating/exfiltrating flows relates to the mass and momentum transfer that
result from these motions, affecting the magnitudes of the bed shear stress and the BL thickness. Addi-
tionally, these fluxes are responsible for the suction/injection of turbulence and, consequently, for the
thinning/spreading of the BL [Lohmann et al., 2006; Sparrow et al., 2012; Kikkert et al., 2013; Corvaro et al.,
2014]. The continuity effect [after Baldock and Nielsen, 2010; Kikkert et al., 2013] denotes the modification
of the momentum balance due to losses of water volume in the surface flow that may also indirectly
affect the bed shear stress. Steenhauer et al. [2011] and Kikkert et al. [2013] reported water losses at the
time of maximum run up of up to 45% to 50% for a permeable gravel bed during one dam break driven
swash event. Another important effect related to the infiltration/exfiltration is the alteration of drag forces
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and potential for sediment mobility, as the effective weight of the upper elements of the bed are also
modified. This effect has been addressed as the stabilization/destabilization of the bed [for reviews, see
Baldock et al. [2001] and Horn [2006]). In summary, the mechanisms that affect the BL have been identi-
fied but still, it is difficult to assess which of the aforementioned effects are dominant under varied condi-
tions. Furthermore, most of studies under controlled settings have been performed over impermeable or
fixed beds, implying that the influence of the bed characteristics requires further study.

In this paper, experimental data sets, consisting of dam-break-driven flows over impermeable [Kikkert et al.,
2012] and permeable [Kikkert et al., 2013] fixed beds, are used to validate a numerical model for its use inside
the swash zone. We further investigate the effects of bed characteristics on swash zone boundary layer
dynamics by quantifying the differences in the mean and turbulence flow fields. The paper is organized as fol-
lows. Section 2 provides a brief description of the dam break experiment data used for the numerical valida-
tion. The description of the numerical model, setup of simulated cases, and model calibration are presented
in section 3. The results from the model-data comparisons are presented in section 4. The model validation is
followed by a comparative analysis between the impermeable and permeable cases with special attention in
the near bed flow properties. The results from the numerical investigation are provided within section 5.
Then, the discussion (section 6) focuses on different approaches for the determination of swash zone BL
related quantities. Finally, the main outcomes of the present study are summarized in section 7.

2. Experimental Layout

The data sets used for the model validation correspond to the laboratory experiments conducted by Kikkert
et al. [2012, 2013] and hence only a general overview is here provided. The experimental setup consists of a
wave flume facility with dimensions of 20 m long, 0.9 m high, and 0.45 m wide. A mass of water 0.6 m deep
(hd), 1 m long, and 0.45 m wide is confined at one end of the flume by a movable gate. The gate is designed
to be raised at high speed, releasing the confined mass of water onto a flat horizontal section (4.2 m long).
The initial still water level above the flat horizontal section is 0.062 m deep (ho). A 1:10 sloping beach
extends from 4.2 to 10.8 m from the gate. Thus, an individual swash event is generated by raising the divid-
ing gate between the reservoir and the flat section. A plunging breaker is then produced that evolves into a
�0.25 m high bore. The bore propagates across the flat section until it reaches the beach slope and initiates
the swash motion.

The beach is composed of gravel or sand with median (d50) grain sizes of 8.4 mm and 1.5 mm, respectively.
For the impermeable tests the sediment particles were glued to a plywood sheet. For the permeable tests
the beach was composed of sediment throughout its entire depth and the top 30 mm of sediment were
cemented with a dilute water-cement mixture [Steenhauer et al., 2011; Kikkert et al., 2013] so they remain
fixed. The present study focuses on the coarse grain condition only (d50 5 8.4 mm) since the flow inside the
porous media is expected to be stronger, the infiltration/exfiltration effects more evident, and the effects of
the air entrapment below the wetting front are very small [Steenhauer et al., 2012a,b].

Cross-correlation particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques were
used by Kikkert et al. [2012, 2013] in order to measure the vertical profile of the bed-parallel (ux) and bed-
orthogonal (ux) velocity and instantaneous water depths at 6 cross-shore locations. Ensemble-averaged
quantities and turbulence measurements were obtained after repeating identical conditions over 50 tests
for PIV/LIF measurements and 10 times for the shoreline motion LIF measurements. For a more detailed
description on the experimental techniques and the quality control of the data refer to the original work by
Kikkert et al. [2012, 2013].

3. Numerical Model

3.1. Mathematical Formulation
The depth- and phase-resolving numerical model COBRAS [Lin and Liu, 1998a,b] has been validated for a
wide variety of coastal applications, including the study of wave-structure interaction with porous elements
[e.g., Hsu et al., 2002; Lara et al., 2006a,b; Losada et al., 2008], and swash-zone hydrodynamics [i.e., Zhang
and Liu, 2008; Torres-Freyermuth et al., 2013]. The model solves the 2-D Volume-Averaged Reynolds-
Averaged Navier-Stokes (VARANS) equations given by Hsu et al. [2002],
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where the Reynolds decomposition denotes the separation of mean ( ) and fluctuating (0) components, t is the
time, xi is the bed-parallel (i515x) and bed-orthogonal (i525z) coordinate, gi is the gravitational component,
ui is the fluid velocity in direction xi, q is the fluid density, p is pressure, and sij is the shear stress of the mean

flow. The Reynolds stresses qðu0i u0j Þ are approximated by means of a k-� closure model [Nakayama and Kuwa-

hara, 1999; Hsu et al., 2002]. The turbulent kinetic energy (TKE) is estimated as k 5
u0i u0i

2 and the TKE dissipation as

�5 m @u0i
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, where m 5 1 3 10–6 m2 s–1 is the kinematic viscosity of the water. The Reynolds stress tensor and

the strain rate of the mean flow are related with a nonlinear anisotropic eddy viscosity model [Shih et al., 1996;

Lin and Liu, 1998b]. For the porous media, CA 5 cp
12/
/ is the added mass coefficient after van Gent [1994],

cp 5 0.34 is a nondimensional parameter [also referred to as virtual added mass coefficient in Corvaro et al.

[2010], and the magnitude of the mean component of the velocity is expressed as jui j5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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. Corvaro

et al. [2010] have pointed out the role that a variable CA can have in the near bed hydrodynamics. However, for

simplicity a constant CA value is adopted here. The effective porosity is defined as / 5 Vf
V , where V denotes the

total averaging volume, Vf is the portion of V that is occupied by the fluid. The hi denote the Darcy’s volume

averaging operator and hif the intrinsic averaging operator, both related by hai5 /haif for a quantity a as,
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haif 5 1
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Vf

a dV: (4)

The last two terms in equation (2) include two coefficients related to the linear and nonlinear drag forces of
the flow at the fluid-solid interface, a and b (respectively). They appear after applying a modified For-
chheimer closure model for unsteady conditions [Liu et al., 1999] in order to solve the inter facial momen-
tum transfer terms. Both coefficients need to be determined numerically as they rely heavily on the flow
and porous media characteristics to be modeled (see section 3.2). In the clear-fluid region, i.e., / 5 1 and
CA 5 0, the VARANS equations become identical to the typical RANS equations. The volume of fluid (VOF)
method of Hirt and Nichols [1981] is used to track the free surface and the finite difference two-step projec-
tion method [Chorin, 1969] is adopted to solve the governing equations. Lin and Liu [1998a,b] provide a full
description of the COBRAS model and additional works by Liu et al. [1999] and Hsu et al. [2002] elaborate on
the implementation of the porous media and related physics. Hence, interested readers are referred to the
aforementioned studies for detailed information.

3.2. Numerical Implementation and Model Calibration
The numerical setup follows the the experimental layout as described in section 2 (Figure 1a). The coordi-
nate system has its origin at the intersection of the still water and the bed slope. The spatial coordinates are
defined in a bed-parallel (x) and bed-orthogonal (z) reference system, with positive x increasing upslope
(onshore) and z increasing above the bed. The release of the dam break is produced by gravity at t 5 0 s
and hence, the gate motion is not modeled.

The computational grid is irregular with a refined subzone around the fluid-porous interface (Figures 1b and
1c) along the surf-to-swash transition until the landward end of the beach face (from x 5 23.41 m until
x 5 4.01 m and from z 5 20.05 m until z 5 0.25 m). The minimum grid cell dimensions in this finer region are
Dx 5 Dz 5 0.003 m. Thus, 174 vertical grid cells resolve the fluid-porous interface corresponding to the first
0.25 m of water above the bed. The entire computational domain is composed of 863,604 cells. The simulation
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time is set at 12.1 s based on the duration of the laboratory experiments. The computation times for a single
simulation range from approximately 4–18 h for the impermeable and permeable cases, respectively, using an
Intel Xeon 2.53 GHz (6GB RAM) computer.

The mean flow is described by the zero stress condition and a zero gradient condition for both k and � [Lin
and Liu, 1998b] at the free surface boundary. For the impermeable case, the logarithmic law for ux is pre-
scribed at the bottom and it extends until the first grid point above the bed, while uz is zero at bed. Both ux

and uz at higher grid points in the water column are solved numerically [Lin and Liu, 1998a; Torres-Freyer-
muth et al., 2013]. The bed-parallel velocity at half the first grid point above bed (uab=2) is then used to
determine the friction velocity, u?, as,

u?5
juab=2

ln
30zab=2

Ks

� � ; (5)

where zab=2 is the z distance from the bed to the middle of the overlying first grid cell, j 5 0.4 is the von Kar-
man constant, and Ks is the equivalent roughness height. The kinematic viscosity and turbulent eddy viscos-
ity, mk, are used to determine the shear stress given by,

sxz5q m1mkð Þ @ux

@z
1
@uz

@x

� �
: (6)

There are different expressions to determine the value of Ks that range from d65 to 5.1d84 (for an overview
refer to Sleath [1984] and Puleo and Holland [2001]). In the present study, Ks 5 1.2d50 is selected by optimizing
the model skill for the instantaneous water depth evolution (h), the depth-averaged bed-parallel velocity (Ux),
near bed (z 5 0.010 m) k, and shoreline motion (S). The instantaneous shoreline, is defined as the most land-
ward location where water intersects the second grid node (i.e., z 5 0.006 m), whereas the measured shoreline
refers to the LIF readings extracted at z 5 0.005 m. No interpolation techniques between grid cells are
employed for the predicted shoreline. Hence, the related differences in the estimation of S are accepted and
included in the skill analysis. The model skill value is defined as [Willmott et al., 1985],

hskill512

Xtend
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2

Xtend

tini

jhpred;t2hmeas;tini:end j1 jhmeas;t2hmeas;tini:end j
	 
2

2
66664

3
77775; (7)

for a predicted (hpred) and measured (hmeas) quantity, over the time period from the first measurement (tini)
to the last (tend). The model skill ranges from 0 (complete disagreement) to 1 (perfect agreement) and it is

Figure 1. (a) Numerical set up in bed-parallel and bed-orthogonal coordinates, and initial conditions for the liquid phase. hd is the water
depth inside the reservoir and ho outside the reservoir. The initial still water level of the subsurface flow inside the porous bed is also
defined by ho. (b) Grid cell length variation in the bed-orthogonal direction z. (c) Grid cell length variation in the bed-parallel direction x.
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chosen as it is nondimensional, posing advantages for assess-
ment across variables with different units [Liu et al., 2009].
Table 1 contains the different values of Ks tested and the cor-
responding model scores obtained after averaging the indi-
vidual model skill values for the swash zone locations where
experimental measurements are available.

The first calibration step refers to the determination of an
optimal value for the total porosity in the context of the
numerical formulation, as the model is highly sensitive to
such parameter. Steenhauer et al. [2011] reported values of
2.5 3 10–8 m s–1 and 0.3 for the intrinsic permeability (kp)
and / respectively, which hold for the gravel material used
by Kikkert et al. [2012, 2013]. However, in this study a value of

/ 5 0.2 yielded a better agreement with respect to measured data. The second calibration step of the
model in the presence of the permeable bed requires the determination of a and b coefficients in equation
(2). Some guidance in the prospective values of a and b exists in the literature [e.g., Liu et al., 1999; Hsu
et al., 2002; Lara et al., 2006a, 2008]. However, most of the previous studies were focused on wave-structure
interactions with porous elements in the range of 0.01–0.5 m. Therefore, here the selection of appropriate
values is based on the model skill as defined by equation (7). Table 2 synthetizes the number of simulations
performed and the range of the values in which a and b were systematically varied for each tested porosity.
The resulting model skill values are reported after averaging the individual model skill values at the PIV/LIF
swash zone measurement locations.

4. Model-Data Comparison

Torres-Freyermuth et al. [2013] validated the numerical model with the data set of O’Donoghue et al. [2010],
consisting of dam break-driven swash over impermeable beds. In the present study, the model is further
validated with the ensemble-averaged data of Kikkert et al. [2012, 2013], including the permeability of the
bed. An additional measure to evaluate the model performance is obtained using the root-mean-squared
error (RMSE), given by

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXtend

tini

hmeas;t2hpred;t
	 
2

n

vuuuut
; (8)

where n is the total number of time steps between tini and tend.

Table 3 presents the RMSE for the water depth, depth-average velocity, and near bed turbulent kinetic
energy at the different swash locations. The predicted and measured instantaneous shoreline position are
in good agreement (see Figure 2). The computed RMSE values are 0.16 m and 0.14 m for the impermeable
and permeable cases, corresponding to differences of 1.59 % and 2.04 % with respect to data. Thus, the
numerical model is able to reproduce the overall shoreline motion for both types of beaches. The numerical
model predict the decrease in the run up distance and the slower retreat of the shoreline motion, that
results in a more asymmetric swash event for the permeable beach. For both cases, there is a slight tempo-
ral lag of 0.2 s during the initial uprush motion, between 1.8 s and 3 s, that is partly related to the gate
motion that was not incorporated in the numerical model. Another possible source of error may be due to
the air phase that is not resolved by the numerical model. Under the adopted scheme, the air bubbles are

Table 1. Simulated Impermeable Tests, Ks Values
Used, and Averaged Model Skill Values of Water
Depth Evolution (hskill), Depth-Averaged Bed-
Parallel Velocity (uxskill ), Near Bed Turbulent Kinetic
Energy (kskill), and Shoreline Motion (Sskill)

Test Ks (m) hskill uxskill kskill Sskill

1 0.5d50 0.85 0.98 0.79 0.95
2 0.8d50 0.85 0.99 0.77 0.97
3 1.0d50 0.86 0.99 0.76 0.97
4 1.2d50 0.91 0.97 0.74 0.99
5 1.6d50 0.87 0.99 0.73 0.97
6 2.0d50 0.90 0.98 0.71 0.98
7 2.4d50 0.93 0.97 0.70 0.98
8 3.0d50 0.97 0.92 0.69 0.99

Table 2. Summary of Simulated Permeable Tests, a and b Values, and Resulting Averaged Model Skill Values

Tests / A b hskill uxskill kskill Sskill

35 0.3 200–1 1.1–0.2 0.85–0.88 0.93–0.97 0.49–0.66 0.95–0.97
20 0.2 200–10 1.1–0.2 0.81–0.91 0.79–0.97 0.34–0.64 0.90–0.99
1 0.2 10 0.1 0.96 0.98 0.64 0.99
6 0.1 200–50 0.2–0.1 0.73–0.78 0.67–0.77 0.39–0.43 0.86–0.92
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expelled into the bore tip and larger TKE may be induced [Lin and Liu, 1998b]. Thus, the small-scale details
of the turbulent uprush bore front between the experimental and simulated swash flows are not likely to
be equivalent. The run up distances are well-predicted, with maximum differences of 0.05 m and 0.04 m for
the impermeable and permeable case, respectively. Moreover, the temporal lag by the time of the initial
shoreline retreat is less than 0.1 s and 0.2 s for each corresponding case. At the end of the backwash phase
(i.e., t � 9 s), a residual film of water, one grid point deep, remains attached to the bed in both cases.
Antuono et al. [2011] concluded that the use a quadratic type frictional law (e.g., Chezy frictional terms) in
NSWE-type computations implies that the only possible analytic solution for the shoreline motion is nonre-
ceding. Moreover, the residual water layer has been reported in previous studies of swash-zone hydrody-
namics based on RANS models [e.g., Mory et al., 2011; Desombre et al., 2013] and its appearance is not
clearly understood. Therefore, further investigation should be devoted in RANS numerical models in order
to be able to clarify this issue. However, a negligible effect in swash zone dynamics is observed consistent
with previous studies [e.g., Antuono et al., 2011].

Instantaneous h comparisons at the measurement locations (Figure 3, top) show a reasonable agreement,
denoted by RMSE values, that on average represent less than 13% of the maximum measured values (hmax).
In general, the asymmetric nature of the h evolution is reproduced by the numerical model, with rapid h
increments during uprush, and longer duration for the backwash h reductions. Moreover, the predicted h
asymmetry decreases in the landward direction. Some model over-prediction exists around flow reversal
when hmax occurs. Nonetheless, the largest differences in h at x 5 2.37 m (Figure 3c, top) are 0.009 m and
0.005 m for the impermeable and permeable cases, respectively. These differences span 1–3 grid points
only. The most noticeable feature is the h lag during bore arrival at the landward-most location for the per-

meable case (Figure 3d, top).
This temporal lag suggests a
slight over-prediction in water
loss at the fluid-porous interface
since more fluid is required to
saturate the subsurface as the
bore travels along the sloping
beach. This loss could be com-
pensated by altering the values
used for the fluid-porous inter-
face. However, both the a and b
coefficients were calibrated (sec-
tion 3.2) for improving the over-
all model performance rather
than solely the water depth
estimation.

The model-data comparison of
the depth-averaged velocity (i.e.,
Ux) at the evaluated locations

Table 3. Maximum Measured Magnitudes (max) and Model Root-Mean-Squared Errors (RMSE) for the Water Depth Evolution (h),
Depth-Averaged Bed-Parallel Velocity (Ux), and Near Bed Turbulent Kinetic Energy (k) at Each Swash Location (x)

x (m) hmax (m) hRMSE (m) Uxmax (m2 s–1) UxRMSE (m2 s–1) kmax (m2 s–2) kRMSE (m2 s–2)

Impermeable
0.072 0.172 0.017 1.526 0.106 0.071 0.009
0.772 0.119 0.011 2.157 0.081 0.060 0.014
1.567 0.089 0.009 2.057 0.072 0.505 0.021
2.377 0.060 0.007 1.611 0.077 0.318 0.014
3.177 0.038 0.008 1.001 0.142 0.271 0.010
Permeable
0.072 0.172 0.010 1.585 0.080 0.055 0.008
0.772 0.128 0.007 1.980 0.070 0.119 0.010
1.567 0.069 0.009 1.845 0.126 0.203 0.007
2.377 0.033 0.008 1.479 0.206 0.372 0.041
3.177

Figure 2. Shoreline motion time series for the measured-impermeable (open black circles),
measured-permeable (open gray circles), predicted-impermeable (red dashed line), and
predicted-permeable (blue dashed line) gravel beaches.
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(Figure 3, bottom) yields RMSE values ranging from 0.07 to 0.14 ms–1 and from 0.07 to 0.21 ms–1 for the
impermeable and permeable cases (see Table 3), respectively. These values represent an overall difference
range from 3.5 to 14% for both cases, highlighting the close agreement between predictions and measure-
ments. Again, the model predicts accurately the asymmetry between the (larger) uprush and backwash
bed-parallel velocities across the swash zone. The higher predicted velocities (Ux � 1.5 ms–1) occur during
the initial uprush when the incident bore crosses a particular fixed position with large momentum flux gra-
dients and high air bubble content. Thus, it is anticipated that for any given instance during the uprush
phase, the magnitude of Ux is always larger for the permeable case than for the impermeable case for both
predicted and measured data. The numerical model successfully predicts the reduction in Ux across the
swash zone locations due to the increased water loss in the landward direction. The largest deviations for
the model occur at the seaward location in the late backwash phase when the flow reaches maximum off-
shore velocity (e.g., see Figure 3a, bottom). This may be related to limitations in the boundary condition as
the bottom roughness is kept constant [Torres-Freyermuth et al., 2013]. Another related drawback is
observed during the late backwash phase (i.e., t � 8 s) at the landwardmost locations (e.g., Figures 3a and
3b, bottom) as the residual flow from exfiltration is hindered. Nonetheless, limitations are not evident at
landward locations (Figures 3b–3e, bottom), where the model and measured bed-parallel velocities are in
good agreement.

In Figure 4, the model is compared against time series of the TKE at 0.009 m above the bed. The model pre-
dictions are consistent for both cases, with a slight TKE reduction in the permeable case related to the suc-
tion of turbulence into the bed. This effect is enhanced in the landward direction for both measured and
predicted TKE values. The numerical model also successfully captures the cumulative effect of the backwash
phase reduction [Kikkert et al., 2013]. As a general overview, the differences between reported kRMSE and
kmax result in 9.4 % and 9.8 % for the (corresponding) impermeable and permeable cases after being aver-
aged across all the swash locations.

On the other hand, the numerical model is qualitatively tested for simulating near bed dynamics induced
by nonbreaking waves propagating over a porous bed. Corvaro et al. [2014] investigated the influence of in/
out flows on nearbed vortical patterns, TKE structure, and fluctuations around the mean flow velocity due

Figure 3. (top) Water depth and (bottom) depth-averaged bed-parallel velocity time series for the measured-impermeable (open black circles), measured-permeable (open gray circles),
predicted-impermeable (red line), and predicted-permeable (blue line) gravel beaches at: (a) x 5 0.072 m, (b) 0.772 m, (c) 1.567 m, (d) 2.37 m, and (e) 3.177 m swash zone measurement
locations.
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to coherent structures around the porous bed interface under the action of nonbreaking waves. Following
the study by Corvaro et al. [2014], the VARANS model is implemented with similar boundary (d50 5 0.036 m;
/ 5 0.29) and forcing (H5 0.10 m and T5 2 s) conditions. Figure 5 shows the bed-parallel (ux) and bed-
orthogonal (uz) velocity components at two different near bed elevations, along one wave length (Figure
5a). Consistent with Corvaro et al. [2014] observations (Figures 5a1–5c1), the numerical model predicts fluc-
tuations (Figures 5b2–5c2) around the mean flow driven by local pressure gradients under such oscillatory
flow conditions. These fluctuations are described in Corvaro et al. [2014] as standing vortices that induce
large scale modulations around the mean flow velocity while they propagate from one interstitial space to
the next one in the local direction of the flow. This is supported by the range of the fluctuations around ux

and uz that are phase dependent and more dominant at the top of the porous elements that characterize
the bed interface (Figure 5c). The numerical results suggest that the VARANS model is able to reproduce
the generation, physical length and evolution of the macro vortices, and related modulations in the near
bed velocity signals. Furthermore, the qualitative agreement with Corvaro et al. [2014] observations also
comprises the spatial gradients of near bed vorticity and local Reynolds shear stress (not shown).

5. Results

The model-data comparisons suggest that the VARANS k-� numerical scheme is capable of simulating the
transient nature of near bed properties from dam break driven flows [e.g., Kikkert et al., 2012, 2013] and the
fundamental properties characterizing suction/injection events under oscillatory flow [e.g., Corvaro et al.,
2014]. Therefore, the numerical model is further employed to investigate the influence of beach permeabil-
ity and porosity on BL dynamics inside the swash zone. Normalized space and time coordinates are adopted
in an effort to allow comparisons between cases and between locations across the area of interest. The time
dimension is normalized as,

t05
t2ta

D
; (9)

where D 5 tf 2ta is the event duration at any bed-parallel location inside the swash zone, defined by the
instances during which the second grid cell above the bed (at z 5 0.006 m) becomes initially wet due to the
bore arrival (ta), and when it becomes dry at the end of the backwash phase (tf), and hence t0 ranges from 0

Figure 4. Near bed (z 5 0.009 m) turbulent kinetic energy time series for the (left) impermeable and (right) permeable gravel beaches. Measured-impermeable (black open squares),
measured-permeable (gray open squares), predicted-impermeable (red dashed line), and predicted-permeable (blue dashed line) time series are shown at (a) x 5 0.072 m, (b) 0.772 m, (c)
1.567 m, (d) 2.37 m, and (e) 3.177 m, swash zone locations.
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to 1. Then, each bed-parallel location is defined in terms of the maximum run up distance (L) as x05 x
L. The

normalization in space is also enforced in the bed-orthogonal direction relative to the maximum water
depth (hmax) at each normalized bed-parallel location x0 as,

z05
z

hmax
(10)

5.1. Flow Velocity Structure
The time stack of the bed-parallel velocity ux at z 5 0.009 m above the bed for the entire swash event is
shown in Figure 6a for both cases. The asymmetry of the swash event for the permeable case (Figure 6a,
right) is more pronounced owing to the larger uprush and smaller backwash ux velocities with respect to
the impermeable case. At the most landward locations (x0> 0.75) the active region of infiltration is high-
lighted as the sudden transition from high positive to near zero ux magnitudes. Moreover, the backwash
duration is reduced in the landward direction until this phase is nonexistent at locations x0> 0.8 as previ-
ously suggested by Steenhauer et al. [2012a]. The ux vertical distribution at the four x0 locations (indicated
by the black dashed lines in Figure 6a) is provided in Figures 6b–6e. Higher landward-directed (positive)
velocities (ux � 1 ms–1) result during the initial uprush phase (t0> 0.2), that distribute from middle to maxi-
mum depths (z0 � 0.4), for both cases and roughly at all locations. The uprush phase differences between
permeable and impermeable cases relate to the near bed ux structure in which the infiltration dominates
over boundary layer development (Figures 6a–6d) [Kikkert et al., 2013]. Higher near bed ux values and more
depth-uniformity in the ux structure is found for the permeable case and in the landward direction (e.g., Fig-
ures 6c–6e). Thus, the thinning of the BL is dominant during uprush. Another relevant difference refers to
the relative backwash phase duration and ux backwash magnitudes. The permeable case has lower
seaward-directed ux magnitudes due to the reduced run up distance (e.g., Figure 2) that decreases the mass
and momentum of the backwash flow. As a consequence, the near bed ux structure is also more depth uni-
form during late backwash. In addition, the infiltration of water clearly enhances an uprush phase lead and
subsequent decrease in the backwash duration. For instance, at the most landward location (x05 0.76, Fig-
ure 6e) the flow reversal occurs at t05 0.41 and t05 0.62 for the impermeable and permeable cases respec-
tively (implying an uprush phase lead of t05 0.21).

5.2. Turbulence Balance
The spatial gradients of the turbulence field for both cases are provided in Figure 7a by means of the near
bed turbulent kinetic energy evolution. Maximum values of TKE exceeding 0.08 m–2 s–2 are found during

Figure 5. Dimensional mean velocity components over a one wave spatial length (Plots 1: Corvaro et al. [2014]; Plots 2: VARANS model). (a) Spatial wave length of the free-surface elevation g
and (b, c) mean velocity dimensional components, ux (in red) and uz (in light blue), at two different elevations (b: z � 0.01 m; c: z � 0.001 m) above the top layer of the porous bed elements.
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the initial uprush phase, followed by turbulence decay during the late uprush and flow reversal, and bed-
related turbulence during the backwash phase. In general, more energy transfer from the mean flow to the
turbulence flow field is enhanced for the impermeable case given the larger TKE values during all phases.
The infiltration of TKE is visible at landward locations (similar to Figure 6a), and diminished turbulence levels
inside the surface flow during the backwash phase at middle to landward locations (x0> 0.4). The numerical
model allows a close inspection of the turbulence field in order to evaluate the induced variations of each
of the terms contained in the TKE balance due to the surface-subsurface exchange. The RANS k transport
equation is expressed as
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where Sij5
1
2

@u0i
@xj

1
@u0j
@xi

� �
is the fluctuating strain rate tensor, mt5Cl

k2

� is the eddy viscosity, Cl is a coefficient
that depends on the local strain rate [Hsu et al., 2002], and rk51. The local time rate of change of TKE (I) is
given by the advection of the mean flow (II), diffusive transport by the pressure and turbulent fluctuations
(III), TKE production (IV), and dissipation (V) [Pope, 2000; Sou et al., 2010].

The TKE advection (II) is active during the initial uprush phase (t0 � 0.3) at the landward location (Figure 7b)
and its contribution is weakened at the middle swash zone location (Figure 7c) for both impermeable and
permeable cases. During the late backwash phase (t0 � 0.7), this term is again important (after flow reversal
TKE decay) for the impermeable case while it remains almost inactive for the permeable case. The diffusive
transport TKE term refers to the local TKE spreading through the water column. Hence, this term indicates
local TKE transfer from the surface to the subsurface flow (negative-signed) or subsurface to surface TKE
transfer (positive-signed) when it is evaluated near a ventilated bed. Figures 7b-III and 7c-III indicate that
the net TKE transfer after the bore arrival (0.05 � t0 � 0.7) is followed by a sudden shift in sign toward the
subsurface (i.e., suction of TKE) at both swash zone locations.

Figure 6. (a) Time stack of ux at z 50.009 m across the swash zone for the impermeable and permeable case. Black dashed lines indicate x05 0.04, 0.21, 0.48, and 0.76 locations corre-
sponding to Figures 6b–6e. (b–e) Time stacks of ux structure at fixed selected x0 locations in normalized time t0 and bed-orthogonal z0 frame of reference for the (top) impermeable and
(bottom) permeable case.
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The surface to the subsurface TKE transfer reduces during the remaining uprush phase as the porous bed
saturates. During the backwash and at the landward location (Figure 7c-III), the TKE transfer shift is from
negative to positive, implying the spreading of TKE in the surface flow related to the exfiltration. In contrast,
this term is positive during the majority of instances of high TKE for the impermeable case. The dominant
TKE production (IV) and dissipation (V) terms relate the local turbulence generation due to friction forces
into the TKE budget (e.g., shear stresses) and the sink of TKE in the form of internal energy. The terms are
roughly in balance at both locations for the impermeable case. The increase in TKE production during the
backwash phase suggests that there is sufficient time to develop a BL that counteracts the TKE dissipation.
Hence, some TKE remains available for downslope advection in the backwash as indicated in the corre-
sponding panel of term II.

The TKE production/dissipation balance for the permeable case is remarkably different. The uprush peak TKE
production and TKE dissipation values of the permeable case with respect to the impermeable case are 3.2
and 2.2 times larger respectively at the seaward location (Figures 7b-IV and 7b-V). At the landward location
(Figures 7c-IV and 7c-V), the corresponding values are 1.57 and 1.7 times larger for the permeable case. The
same relative difference between cases during the backwash phase at the seaward location yields values that
are 1.31 and 1.68 times lower for the permeable case. At the landward location the relative difference is 8.0
times lower (in TKE production), and 3.1 times lower (in TKE dissipation) for the permeable with respect to the
impermeable case. These relative differences point out the influence of added/reduced shear and consequent
TKE generation due to infiltrating/exfiltrating flows during the uprush/backwash phases. An important feature
that results from the comparison is that the peaks in TKE production occur at the time of bore arrival during
uprush, and at the time of maximum BL growth at the end of the backwash phase for the impermeable case.
The corresponding peaks for the permeable case occur at the time of maximum infiltration during uprush,
and by the time just before the exfiltration of water becomes dominant in the BL development.

5.3. Bed Shear Stress
The time stack of sxz at the impermeable/permeable bed are shown in Figure 8a. The results for the imper-
meable case are in general accordance with previous descriptions with maximum values related to the

Figure 7. (a) Time stack of TKE at z 5 0.009 m across the swash zone for the (left) impermeable and (right) permeable cases. Black dashed lines indicate x05 0.04, and 0.48 locations cor-
responding to panels b and c. Evolution of the individual terms as expressed in the TKE balance (equation (11)) at z05 0.1 for the impermeable (black symbols) and permeable (gray sym-
bols) case: TKE convection (II), TKE diffusive transport (III); TKE production (IV), and TKE dissipation (V).
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leading uprush flow [Barnes et al., 2009] and decreasing values during the remaining uprush. During the
backwash phase, sxz increases as the flow gains momentum and peaks before the end of the event. Indeed,
the uprush sxz values are higher than during backwash but decrease to zero more rapidly while nonzero
backwash sxz are present for a longer portion of the swash event [O’Donoghue et al., 2010; Kikkert et al.,
2012; Torres-Freyermuth et al., 2013]. The spatial average ratio of uprush to backwash sxz magnitudes across
the entire swash zone is 3.8 for the peak bed shear stress and 1.6 for the mean values, consistent with the
direct measurements of Barnes et al. [2009]. The spatial gradients of sxz is considerably different in the pres-
ence of bed ventilation. For the permeable case, the occurrence of maximum uprush sxz occurs at instances
just after bore arrival and after sufficient time has passed to saturate the bed. The water at the leading edge
is progressively affected by infiltration as the bore front propagates over the bed (thinning effect). Hence,
the maximum sxz occurs at seaward swash zone locations (x0< 0.2) where the bore front is less influenced
by infiltration. At landward swash zone locations (x0> 0.4), the infiltration of water becomes dominant and
the sxz time history results in a sudden drop highlighting a region of low negative sxz where the infiltration
mainly takes place (see Figures 8b–8e also). The sxz becomes positive again after the bed has reached satu-
ration. The spatial sxz distribution during backwash is similar to the impermeable case but with lower overall
magnitudes. For this case, the spatial average ratio of uprush to backwash values across the entire swash
zone are 3.7 for maximum sxz and 2.6 for the mean sxz. Moreover, the peak uprush and backwash sxz magni-
tudes result in 80.8 N m–2 and 12.7 N m–2, which compare to 77.8 N m–2 and 16.9 N m–2 for the imperme-
able case.

5.4. Mean Vorticity and Boundary Layer Thickness
Sou and Yeh [2011] investigated the ensemble-averaged vorticity field under plunging breakers in the surf
and swash zones using PIV measurements. Their study validated the vorticity as an effective property to
evaluate mechanisms that result from the combined action of pressure gradients, body forces at the water
surface, and drag forces at the water-bed interface. Here the mean vorticity (x) distribution is employed to

Figure 8. (a) Time stack of bed shear stress across the swash zone for the impermeable and permeable case. Black dashed lines indicate
x05 0.04, 0.21, 0.48, and 0.76 locations corresponding to Figures 8b–8e. (b–e) Evolution of sxz at fixed selected x0 locations in normalized
time t0 and bed-orthogonal z0 frame of reference for the (top) impermeable and (bottom) permeable case.
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further evaluate the mean flow field variations due to the presence of the viscous and the free surface
layers. The mean vorticity is estimated as,

x5
@uz

@x
2
@ux

@z
(12)

Figure 9 shows time stacks of the x field at different cross-slope locations (x05 0.04, 0.21, 0.48, 0.76) as a
function of normalized depth z0. Positive x values correspond to counter clock wise (CCW) rotation, whereas
negative x corresponds to clock wise (CW) rotation. During the uprush motion, the x is CCW at the surface
and strongly CW at the bed denoting opposite forces acting on both boundaries. The direct comparison
between the impermeable (Figure 9, top) and permeable (Figure 9, bottom) case reveals the different prop-
erties of the uprush flow. For instance, the horizontal straining induces CCW x near the surface that tends
to decrease toward land for the impermeable case, whereas it increases for the permeable case (see Figure
9d). Near the bed, the CW x increases in magnitude in the landward direction for both impermeable and
permeable cases during uprush. Conversely, strong bed-related CCW x results from the zero shear condi-
tion (for the impermeable case), and momentum transfer during backwash. The first zero up-crossing of the
bed-orthogonal x profile from the bed level to the free surface at each t0 is used as a proxy to quantify the
time variant BL thickness (dBx from here on) as shown in 9a-d. The history of dBx shows that the BL is able
to grow with less influence of surface induced forces for the permeable relative to the impermeable case.
The backwash CCW x is increasingly dominant in the landward direction and is more dominant for the
impermeable case as it has more time to develop a BL.

From Figures 9a–9d, it is apparent that identifying the BL during the initial uprush is difficult due to bore-
driven processes. The dBx develops instantaneously with the arrival of the bore and fluctuates underneath
the water surface during the remaining uprush phase, suggesting that the BL is also modulated by the
instabilities of the flow at the surface. The instabilities of the flow may be related to the horizontal strain
after the bore arrival and subsequent small scale features such as the passage of the minibore [Zhang and
Liu, 2008] that introduce additional CCW x at the surface. Notably, dBx predicts that the BL becomes depth
limited only before flow reversal for both cases, and in most swash zone locations (as in Figures 9c and 9d).
At the most landward location and for the impermeable case (i.e., x05 0.76), dBx is essentially depth limited
for most of the uprush phase as the flow instabilities are progressively less and the flow propagates more
homogeneous.

In contrast, for the permeable case the additional CCW vorticity at the surface is progressively more domi-
nant in the landward direction. In addition, the suction of CW vorticity near the bed due to infiltration pre-
vents the dBx to become depth limited (e.g., Figure 9d). The backwash phase allows a detailed inspection of
the BL as its entire evolution is captured and is mainly bed-driven. The dBx grows freely with what appears

Figure 9. Time stack of x structure in normalized t0 and z0 frame of reference at (a) x05 0.04, (b) 0.21, (c) 0.48, and (d) 0.76 locations, for the (top) impermeable and (bottom) permeable
case. The evolution of the BL thickness dBx (gray dotted line) is estimated by the first up-crossing of x. The time of flow reversal (dashed white line) is shown also.
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to be a minimal impact from surface processes during the early backwash motion. Thus, the fact that the
initial dBx evolution during the backwash behaves quasi-linear is highlighted and further analyzed.

5.5. Boundary Layer Growth Across the Swash Zone
Figure 10 shows the typical evolution of the dBx at x05 0.38 as predicted by the zero up-crossing of x, and
it is used to exemplify the approach. Three distinctive instants during the backwash dBx evolution at each
fixed x0 are identified in order to estimate the range over which the BL quasi-linear growth occurs: (i) the
minimum dBx after flow reversal (dini) when the BL starts developing, (ii) the maximum dBx after dini where
the growth fits a linear trend in a least square sense (dlg), and (iii) the late backwash, during which dBx

becomes depth-limited (ddl).

These temporal bounds are determined in the following steps: (1) dini is easily identifiable by the minimum
value of dBx from the time of flow reversal to 2/3 of the backwash phase duration. (2) We subtract dBx from
the water depth (h0) in the period between dini and the end of the backwash. A shorter time window is
defined by the instances (toward the end of the backwash) when the subtraction corresponds to values
that are less than 0.05. Then, ddl is defined as the first time step (in the corresponding time window) when
the third derivative of the subtraction is equal to zero (i.e., @3

@t03 h02dBx½ �50). This implies that at least 3 con-
secutive time steps in the dBx time history are equal to or slightly smaller (Dz0 < 0:05) than h0, and have the
same temporal variation as h0. (3) A linear fit between dini and ddl is computed. If the correlation coefficient
r2 between dBx and the linear fit is less than 0.95 (with a 95% confidence level), the fit is rejected and a new
fit is performed between dini and dBx one time step before ddl. This step is repeated in an iterative process
until a value of r2 � 0.95 is obtained which defines dlg. Hence, the slope of the fit denotes the quasi-linear
temporal growth of dBx as a function of time during the initial backwash phase. (4) Steps 1–3 are evaluated
at every x0 to obtain the initial backwash BL growth distribution across the swash zone (Figure 11). We note
that the analysis is performed in the original temporal and depth coordinates (before normalizing) to obtain
real estimates of BL growth rates. The x0 normalized convention is retained since it is not used in the BL
growth estimation, and as it allows the spatial comparison between cases.

The instances corresponding to dini, dlg, and ddl across the swash zone are depicted in Figure 11. The spatial
trend for dini shows that the initial backwash BL growth occurs progressively at later times in the landward
direction for both cases. Consequently, the time span between dini and ddl is shortened at each sequential
location in the landward direction and further emphasized for the permeable case (previously addressed as
the uprush phase lead in Figure 6). At x0> 0.84 locations for the permeable case, the aforementioned analy-
sis is hampered by the fact that the backwash phase is almost nonexistent. Figure 11 indicates that the time

Figure 10. BL thickness dBx (gray dotted line) and water depth h (black line) evolution in normalized t0 and normalized depth z0 . The
results are shown for the (left) impermeable/(right) permeable corresponding cases, and at x05 0.38 location. The relative instance of ini-
tial BL development dini, BL quasilinear growth limit dlg, and of depth limited growth ddl are highlighted.
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span of quasi-linear BL growth (between dini and ddl) in the landward direction is progressively longer for
the impermeable case, while the corresponding time span is shortened for the permeable case. Thus, the
infiltration of water still occurs during the initial backwash at 0.78< x0< 0.84 and the quasi-linear dBx

growth period is noticeably reduced. A rough estimate of the relative period of quasi-linear dBx growth
with respect to the total backwash duration, results in a minimum 5% (at x05 0.68) and maximum of 28%
(at x05 0) for the impermeable case. The corresponding range is from 2% (at the landward end) to 32% (at
the seaward limit) of the total backwash duration for the permeable case. In summary, bed ventilation
enhances the quasi-linear BL growth at the seaward and middle swash zone locations where the subsurface
is expected to be saturated by the time of flow reversal. At landward locations, the infiltration of water still
occurs during the initial backwash and the dBx growth deviates rapidly from a quasi-linear rate of growth.

6. Discussion

6.1. Suitability of Mean Vorticity as a Proxy for BL Thickness
In the present study, the BL thickness is determined by the zero up-crossing of x. The validity of this
assumption in relation to existing BL theory commonly applied to swash flows is addressed further. The spa-
tial gradients of x during an instance in the uprush (t 5 4.9 s), and in the backwash phase (t 5 6.2 s) are pre-
sented in Figure 12. For clarity, the frame of reference has been set to real (not rotated) coordinates (i.e., X
and Z). The infiltration of CW and CCW x during the corresponding uprush and backwash flows is success-
fully captured by the VARANS model, providing evidence of x sinking into the bed. Some differences in
relation to previous studies result from the fact that most descriptions are for oscillatory flow without wave
breaking [e.g., Corvaro et al., 2014], or mainly focused on surf zone hydrodynamics [e.g., Lin and Liu, 1998b].

In the surf zone, x maintains the same rotational direction as the overturning flow just below the free surface
[Lin and Liu, 1998b]. Inside the swash zone, the bore front propagates initially over a dry bed and x is more
influenced by bed-related shear rather than surface properties. However, there are sub regions of alternating
CCW and CW x near the surface indicating divergence/convergence patterns. Sou and Yeh [2011] also
described advected CCW x at the surface inside the swash zone during the uprush phase which was related to
wave-swash interactions in the inner surf zone. Here in the absence of wave-swash interactions, it is shown
that local mechanisms are able to generate similar divergence/convergence patterns. The momentum gra-
dients that result from accelerating/decelerating portions of the flow lead to the formation of the flow diver-
gence/convergence envelopes below the moving surface. These mechanisms at the surface, together with the

Figure 11. Relative instances of initial backwash dBx development dini (black squares), BL quasilinear growth limit dlg (dash-dotted line)
and of depth BL limited growth ddl (black diamonds) in normalized t0 at all x0 swash locations, for the (left) impermeable/(right) permeable
cases. The period of quasi-linear BL is given by the time span from dini to dlg during the backwash phase.
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transfer of bed shear stress and sinking/injection of TKE due to infiltration/exfiltration, control the x evolution
inside the swash zone as the flow is shallow. Hence, they have an important role in modulating the BL growth.

The suitability of the dBx approach is investigated by alternatively estimating the BL thickness from the ux

structure and the log law approach for comparison. The BL thickness from the log law approach (dBlog ) is
obtained as the highest location in the z0 direction where the fit between the logarithmic model and the ux

profile has a correlation coefficient (r2) equal to or exceeding 0.95 [e.g., Torres-Freyermuth et al., 2013]. The
comparisons are presented in Figure 13 for the X 5 0.04 swash zone location, where the ux profiles at both
beaches have smaller overall differences between each other. The BL thickness evolution is qualitatively simi-
lar using the two different methods, showing rapid uprush growth, decay around flow reversal, and backwash
growth until limited by depth (consistent with Barnes and Baldock [2010] and Briganti et al. [2011]). However,
some important differences are seen between the two approaches. The dBlog is almost depth-limited at all rel-
ative instances of the uprush phase (from t05 0.08 to 0.32), whereas dBx is not predicted to be depth limited
at any relative instance in any of the cases. The difference between methods is related to the horizontal strain-
ing of the flow that may induce a log type ux structure which is not due to bed related shear stress [Torres-
Freyermuth et al., 2013]. For both cases, the dBlog around flow reversal (i.e., t05 0.36) is under-predicted with

Figure 12. Mean vorticity x distribution for the (left) impermeable and (right) permeable case in (real) Xand Z spatial coordinates, during (a) t 5 4.9, and (b) t 5 6.2.

Figure 13. Bed-parallel velocity ux profiles (black dots) at 1/25 fractions of the normalized t0 swash cycle at x05 0.04 location, for the
impermeable and permeable case. The BL thickness is determined by the normalized depth z0 at which a logarithmic distribution fits the
ux profile dBlog (gray solid line), and alternatively by the first zero up-crossing of mean vorticity dBx (black open squares). The results are
presented in a normalized z0 scale relative to the maximum water depth experienced during the entire swash cycle at that relative x0

location.
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respect to dBx, when the later predicts a maximum thickness just before the flow reversal. As expected, the
logarithmic law fit is unable to represent the ux with opposing directions near the bed and at the surface [e.g.,
O’Donoghue et al., 2010]. It is also shown that during the late backwash phase (t0 � 0.68), the BL becomes
depth limited at prior instances with the use of dBlog , suggesting a faster BL growth. Hence, the use of dBlog

may lead to over/under predictions of the BL thickness during uprush/backwash. Another constraint of the
dBlog approach is that it partly relies on the cutoff r2 value used for its calculation.

6.2. Bed Shear Stress and Log Law
Bed shear stress estimates are discussed as a key quantity modulating the formation and progression of the
BL. The bed shear stress based on the log law velocity structure as reported by Kikkert et al. [2012, 2013]
and as obtained by the model with equation (6) are compared in Figure 14 (in normalized coordinates for
consistency). The corresponding bed shear stress estimates differ mostly at the seaward most location
where there is available data (i.e., x05 0.02), with maximum observed differences of 6 N m–2 for the imper-
meable, and of 17 N m–2 for the permeable case. It is pointed out that the bed shear stress around bore
arrival and late backwash phase in Kikkert et al. [2012, 2013] are not reported due to quality control and
unsuitability of the log law during flow reversal (opposite directions of the flow). O’Donoghue et al. [2010]
reported differences of O(1) between direct measurements [Barnes et al., 2009] and log law derived bed
shear stress, corresponding to the backwash phase. Meanwhile, Torres-Freyermuth et al. [2013] showed a
better agreement to the Barnes et al. [2009] data during both, uprush and backwash phases, using the same
numerical model and bed shear stress equation as the present study. Here in consistency, the maximum dif-
ferences between the aforementioned approaches are found during the initial instants of the backwash
phase. However, the observed differences with respect to data are noticeably reduced if the log law (as in
O’Donoghue et al. [2010] and Kikkert et al. [2013]) is applied to the ux structure from the model output
(dashed dotted line in Figure 14). In this manner, it is demonstrated that the differences relate more to the
method for estimating sxz rather than disparities in the ux structure. Note that the bed shear stress magni-
tudes during bore arrival, flow reversal and end of the backwash phase are kept in Figure 14 to further illus-
trate the deviations of the log law with respect to equation (6).

6.3. Quasi-Linear BL Growth During Initial Backwash
An outcome of the analysis provided in section 5.5 is the estimation of the spatial distribution of the
quasi-linear BL growth rate (DdBx

Dt ) during the initial backwash phase. The growth rate between dini and dlg

at each fixed swash zone location is shown in Figure 15. The analysis shows that the initial backwash DdBx
Dt

is reduced at locations where the porous bed media has reached saturation, away from exfiltration and
infiltration effects. For instance, at the seaward to middle swash zone locations (0.1 � x< 0.45) the flow

Figure 14. Time series of shear stress reported by Kikkert et al. [2012, 2013] (gray open squares), from the numerical output (black dots)
using equation (6), and as predicted by the log law fit to the model predicted ux structure (dash dotted line). The results are shown in the
coordinate system adopted at: (a) x05 0.02 and (b) x05 0.19 for (left) the impermeable, and at (c) x05 0.02 and (d) x05 0.027 for (right) the
permeable case. The selection of the x0 reported locations is restricted to the existence of available measured data.
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above the permeable bed possesses less momentum (reduced velocities, see Figures 3 and 6) and it is sat-
urated by the time of the backwash phase (Figure 6a). Hence, the BL rate of growth is reduced for the
permeable with respect to the impermeable case which in contrast, exhibits a faster backwash BL rate of
growth. The most distinctive aspect is captured at middle to landward swash zone locations, where the
backwash phase still exists for the permeable case (i.e., 0.45 � x< 0.84). At the middle swash zone loca-
tions (i.e., 0.45 � x< 0.65), the initial backwash phase occurs with simultaneous infiltration of water mass
into the bed leading to larger bed shear stress under decreasing flow depths. Hence, the continuity effect
[Baldock and Nielsen, 2010] is increasingly dominant [Kikkert et al., 2013] and the BL develops more rapidly
for the permeable case. At the most landward swash zone locations (i.e., 0.65 � x< 0.84) the continuity
effect is dominant, and the BL is largely modified during the initial instances of the backwash phase. The
initial backwash DdBx

Dt increases from 0.06 m s–1 (at x 5 0.65) to 0.19 m s–1 (at x 5 0.75), suggesting that the
backwash BL becomes depth limited in very short periods of time. Additional assessment in the analysis is
gained by applying fundamental turbulent flat plate BL theory (FPBL) commonly used to determine the
BL evolution of swash zone flows [e.g., Barnes and Baldock, 2010]. Figure 15 shows the backwash DdBx

Dt as
predicted by the Prandtl and von Karman’s FPBL momentum integral approach based on the 1/7 power
velocity distribution law [Schlichting and Gersten, 2000]. As a general outcome, the FPBL theory predicts
the spatial distribution of DdBx

Dt within a factor of 2 at the seaward end of the swash zone. However, at the
middle and landward swash zone portions of the flow, the DdBx

Dt is not well-predicted; especially for the
permeable bed with the dominant effects of infiltration. Hence, the applicability of the FPBL approach in
the swash zone should be used with care when the flow presents sudden accelerations and significant
infiltration, such as in natural coarse grained beaches.

7. Conclusion

A study of BL dynamics inside the swash zone for impermeable and permeable beds is performed using a
2-D VARANS numerical model. The numerical model is tested with dam break driven swash zone data [Kik-
kert et al., 2012, 2013], showing good agreement given the model skills obtained. The main limitations refer
to the permeable case as the air-induced pressure build-up inside the porous media is not accounted for in
the model. However, typical computed relative errors are in the order of 2% for shoreline motion, 13% for
instantaneous water depth, 14% for depth-averaged bed-parallel velocity and 10% for near bed turbulence.
Hence, the numerical model is further employed to investigate the spatial gradients of flow properties at
different phases and effects due to infiltration/exfiltration. The main dissimilarities of the surface flows
between the permeable and impermeable beach are caused by a decrease in run up distance (�1.1 m),
reduction in the surface water volume (�33%), and consequent reduction in momentum (differences in
backwash velocities larger than 0.6 m s21).

Figure 15. BL rate of growth at the initial backwash phase for the impermeable (black triangles) and permeable (gray triangles) case in
normalized t0 at all x0 swash locations. The BL rate of growth as predicted by FPBL theory for a turbulent flow over a rough flat plate is also
shown for each, impermeable (black dashed line) and permeable case (gray dashed line).
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The mean vorticity responds to momentum gradients that result from accelerating/decelerating portions of
the flow below the moving surface, transfer of bed shear stress and sinking/injection of TKE due to
infiltration/exfiltration. Hence, the zero up-crossing (from bed to surface) of vorticity in the swash zone leads
to the quantification of the BL thickness. The BL develops instantaneously with the bore arrival. Shortly after-
ward, the BL is not depth limited but its thickness fluctuates and responds to surface instabilities of the flow
that result from mini scale processes (i.e., minibore and horizontal straining). The BL reaches the free surface
only before the flow reverses direction. Thus during uprush, the BL is modulated by the following
mechanisms:

1. the infiltration of water that results in the progressive thinning of the bore front which is enhanced in
the landward direction until the maximum run up distance.

2. the sinking of turbulence, identified by a shift in sign of the TKE diffusive transport term after the bore
arrives at any particular swash zone location.

3. the magnitudes of maximum bed shear stress that occur during bore arrival which are larger for the per-
meable case near the initial shoreline.

4. the drop of bed shear stress to small values values after the bore arrival and until the bed saturates at
landward locations.

The backwash phase allows a detailed inspection of the BL as it grows with less influence of surface induced
forces. Hence, its initial growth is essentially quasi-linear before it becomes depth limited. During backwash,
the following aspects in relation to the porous media are highlighted:

1. the phase duration is progressively reduced until it is nonexistent at the landward end of the swash
excursion [as suggested by Steenhauer et al., 2012a].

2. the TKE diffusive transport term in the surface flow shifts in sign due to exfiltration.
3. the TKE production and TKE dissipation are reduced after exfiltration takes place.
4. the time span of quasi-linear BL growth is slightly enhanced at the seaward locations where the subsur-

face is expected to be saturated by the time of flow reversal. FPBL theory predicts a BL rate of growth
that is consistent within a factor of 2.

5. the BL growth deviates rapidly from a quasi-linear trend at the landward swash zone locations where
infiltration still occurs. Under these constraints, the BL rate of growth is not well-predicted by FPBL
theory.

A final outcome of the present study is given by the uprush to backwash ratios of absolute bed shear stress
across the swash zone. For peak quantities, the aforementioned ratios are similar between the impermeable
and permeable cases and in agreement with the direct measurements of Barnes et al. [2009]. The direct effect
of infiltration/exfiltration is then reflected in the mean bed shear stress quantities, where the ratio is 60%
higher for the permeable case in proportion to the impermeable case. Nevertheless for the tested conditions,
the analysis suggests that the infiltration and exfiltration dominates over boundary layer development.
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