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Abstract 

Experimental investigations of correlated electron systems:                                        

alkali fullerides and sesquioxides 

The work reported in this thesis systematically investigates the structural, 

electronic and/or magnetic properties of fcc AxCs3-xC60 fullerides (A = K and Rb) and of 

sesquioxide Cs4O6 under ambient and non-ambient temperature and pressure conditions, 

employing X-ray and neutron powder diffraction, muon spin relaxation, and SQUID 

magnetometry. 

In the AxCs3-xC60 alkali fullerides, unconventional superconductivity can emerge 

through tuning of intermolecular distances. While conventional BCS-like response is found 

in the underexpanded regime of the electronic phase diagram, significant deviations 

appear in the overexpanded region adjacent to the Mott boundary where strong electron 

correlations are prominent. In this work, the solid-state synthesis of fcc KxCs͵−xC60 

(0.12 ζ x ζ ʹȌ superconducting materials, with intermolecular distances controlled via 

adjusting the K+/Cs+ dopant ratio, is reported. Whilst the structural, electronic and 

magnetic properties of fcc KxCs͵−xC60 are reminiscent of those previously reported for fcc 

RbxCs͵−xC60, i.e. the Mott boundary can be shifted to ambient pressure and the metal-

insulator crossover temperature can be tuned by such chemical pressurisation of Cs3C60, 

cation-specific effects are of importance on the electronic properties of fcc AxCs͵−xC60. This 

work also provides strong evidence for correlated behaviour in the overexpanded regime 

through examining the presence or not of the Hebel-Slichter coherence peak and 

extracting the superconducting gap magnitude.  

Crystallographically, the alkali sesquioxides A4O6 (A = Rb, Cs), at high and low 

temperature, had been reported to adopt a cubic structure which generates a single 

crystallographic position for dioxygen, implying charge disorder: A4(O2(4/3))3. Conversely, 

spectroscopy studies at 5 K found evidence for two localized valence states of dioxygen, 

indicating charge ordering: (A+)4(O2−)2(O2ʹ−). This issue is addressed with the first 

systematic investigation of the temperature- and cooling-protocol-dependent structural 

evolution of Cs4O6, revealing the existence of a valence-ordered state at low temperature 

and also that valence disorder-order transitions can be induced by temperature, pressure 

and X-ray illumination.  
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Chapter 1 Introduction  

 

Correlated electron systems encompass a broad range of materials that show 

extraordinary physical phenomena such as metal-insulator transitions, anomalous 

metallicity, superconductivity and exotic forms of magnetism. Therefore this class 

of materials has aroused a lot of interest in modern condensed matter science. In 

particular, high-temperature unconventional superconductivity in highly 

correlated systems such as the cuprates has been at the centre of attention for 

three decades. The importance of correlated behaviour in producing the 

unconventional superconductivity in overexpanded molecular A3C60 fulleride 

superconductors has been discovered only very recently. Various complex 

transition metal oxides exhibit different forms of magnetic interactions due to the 

correlations among the 3d electrons. In this class of materials, several degrees of 

freedom (spin, charge, lattice, and orbital) are simultaneously active and finely 

compete with each other leading to the emergence of important physical 

phenomena such as high-temperature superconductivity and colossal 

magnetoresistance. In addition to 3d systems, the correlations among 4f electrons 

can also lead to a wide variety of extraordinary physical phenomena such as 

superconductivity, heavy-fermion and mixed-valence behaviour, valence 

fluctuations, and charge disorder/order transitions. Recent experimental and 

theoretical studies conducted on the mixed-valence molecular sesquioxides have 

proposed the importance of electron-electron correlations, and the presence of 

strong coupling between the charge, orbital and spin degrees of freedom in open-

shell p-electron systems as well. 

This chapter will first summarise some key features of molecular and solid 

C60 (section 1.1), superconductivity in intercalated fullerides focusing on the alkali-

metal-doped A3C60 family, and early discoveries through to recent progress 

(section 1.2). Secondly, some key structural and magnetic properties of alkali 

oxides, focusing on the molecular sesquioxides, will be also summarised. Finally, 

an overview of the thesis contents will be presented. 
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1.1 Molecular and crystal structures of C60 

Fullerenes are the third allotropic form of pure carbon after graphite and 

diamond and take the form of hollow spheres, ellipsoids or tubes. The closed-cage 

carbon molecule C60, the highly symmetrical and most stable member of the 

fullerene family, was discovered by Kroto et al. in 1985 by vapourizing a graphite 

target by laser irradiation [1]. Several years later, the discovery of a method for 

producing [2] and purifying [3], [4] significant quantities of bulk mixtures of 

fullerenes, especially the celebrated C60 molecule, has made research into the 

properties of fullerenes and their derivatives possible, and opened new fields of 

fullerene research in chemistry [5] and condensed matter-physics [6]. 

The C60 molecule consists of sixty carbon atoms located at the vertices of a 

truncated icosahedral structure (point group symmetry Ih), forming 32 faces; 

twelve pentagons and twenty hexagons. Whilst all carbon atoms are chemically 

equivalent, the structure contains thirty localised C-C double bonds fusing two 

hexagons (6:6 = 1.391 Å) and sixty C-C single bonds fusing a hexagon and a 

pentagon (6:5 = 1.455 Å) [7]. At room temperature, crystalline C60 adopts a face-

centered cubic (fcc) structure (space group Fm͵̅m) with a lattice constant of 

14.17(1) Å and a nearest neighbour centre-to-centre C60 − C60 distance of 10.0 Å 

[8]. Solid-state 13C NMR [9]–[12], quasi-elastic neutron scattering [13] and muon 

spin resonance studies ȋɊSRȌ [14], [15] have shown that, at room temperature, 

individual C60 molecules rotate rapidly, resulting in time-averaging of the 

truncated icosahedron to a molecular unit with quasi-spherical symmetry. This 

reorientational motion is seen as orientational disorder in X-ray diffraction studies 

at room temperature [8]. However, the NMR spectra at low temperatures revealed 

that large-amplitude reorientations of C60 molecules become rare on the time scale 

of the NMR, which led to the question as to whether or not the C60 molecules order 

orientationally at low temperatures.  

The temperature response of the C60 structure between 5 and 320 K revealed 

that there are 3 distinct regions; phase I  (320 - 260 K), phase II (260 - 90 K) and 

phase III (90 - 5 K). In the phase I region, the C60 molecules rotate freely and nearly 

independently of each other. On cooling through 260 K, a first−order phase 

transition occurs from orientationally-disordered fcc (space group Fm͵̅m)  to an 
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ordered primitive-cubic structure (space group Pa͵̅) [8], [16]. In phase II, there are 

two near-neighbour orientations which differ in the way electron-rich 6:6 bonds of 

one molecule are facing adjacent molecules – this can happen either to 

electron−poor pentagonal faces ȋǮPǯȌ or to electron-rich hexagonal faces ȋǮ(ǯȌ. The ǮPǯ orientation is the one which is energetically favourable and is in the majority 

[17]. However, with further cooling below 90 K, in phase III, the C60 molecules can 

no longer flip between the two orientations leading to an orientational glassy 

phase. The relative ratio of the two orientations remains constant on further 

cooling to 5 K, with the major fraction of ǮPǯ orientation invariant [16]. 

The closed-packed fcc C60 structure contains three interstitial cavities per C60 

that are large enough to accommodate smaller atoms, ions or molecules as 

intercalants [18]. One site has octahedral (Oh) symmetry and a radius of 2.06 Å, 

larger than the size of any alkali ion. The other two cavities are smaller, with a 

radius of 1.12 Å and tetrahedral symmetry (Td). 

The electronic structure of C60 reveals that the lowest unoccupied molecular 

orbital (LUMO) is triply degenerate (t1u symmetry), and the energy gap between 

the five-fold degenerate highest occupied molecular orbital (HOMO) and the LUMO 

is relatively small (~1.9 eV) [19], which makes the C60 molecule a good electron 

acceptor (Figure 1.1). The next unoccupied orbital (LUMO+1) is also triply 

degenerate (t1g) and chemically accessible, with possible anion charges of up to 12 

electrons.  

Pristine C60 solid is a band insulator due to the fully occupied hu and empty 

t1u bands. However, a large variety of conducting compounds have been discovered 

by introducing electrons to the two empty t1u- and/or t1g-derived conduction 

bands, through chemical doping. 
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Figure 1.1 The C60 molecule (left) and its Hückel molecular orbital energy level scheme 
(right); adapted from ref. [20]. 

1.2 Superconductivity in intercalated fullerides 

Metallic behaviour at 300 K was first observed by Haddon et al. in alkali-

metal-doped Rb/C60 and K/C60 films [21]. Shortly afterwards, the first 

superconducting fulleride, K3C60, was discovered with a transition temperature, Tc, 

of 18 K [22], and the superconducting phase was later identified as an fcc-

structured phase [23], [24]. This discovery was then followed by reported 

transition temperatures of 28 K [25] and 30 K for Rb3C60 [23], 31 K for Rb2CsC60 

and 33 K for RbCs2C60 [26]. Ganin et al. reported the emergence of 

superconductivity in Cs3C60 upon the application of hydrostatic pressure [27], [28]. 

Further superconducting compounds containing small alkali metals, e.g. Na2AxC60 

(x ζ ͳ, A = K, Rb, CsȌ [29], [30] and LixCsC60 [31], and ammonia-containing 

compounds, e.g. (NH3)4Na2CsC60 [32], were also reported. The most-studied 

superconducting fullerides are those of the A3C60 family (A = K, Rb, Cs or a 

combination thereof) in which the nominal electron count per C60 molecule 

(molecular valence), n, is three, leading to a half-filled t1u band (t1u 

superconducting fullerides).   

Besides alkali-metal intercalation, the t1u- and t1g-derived bands can be 

accessed by alkaline-earth- and rare-earth-metal intercalation, which can lead to 
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higher molecular valence systems where the t1g−derived band is partially filled. 

Several superconducting fulleride compounds, with 3 < n < 10, were reported; 

A3−xBaxC60 (A = K, Rb, Cs) [33], CaxC60 (x ~ 5) [34], AE4C60 (AE = Ba, Sr) [35], [36], 

A3Ba3C60 (A = K, Rb) [37], [38] and K2Ba4C60 [39]. The synthesis, structure and key 

magnetic and electronic properties of the A3C60 fulleride superconductors, which 

are experimentally investigated in this work, are summarised in the following 

sections. 

1.2.1 A3C60 fullerides 

The intercalated derivatives of fullerene solids (fullerides) exhibit different 

properties depending on the doping level, the nature of the dopant species and the 

way that the doping is employed. The synthetic technique employed in this work is 

exohedral doping, known as intercalation of dopant species into solid C60. In this 

technique, the dopant occupies the interstitial holes in the sublattice which is 

formed by fullerene molecules in the solid crystalline C60. Upon doping, if there is a 

charge transfer between the dopant and the host C60 acceptor molecules, the 

transferred electrons are delocalised over the molecular cage, resulting in the 

formation of C60n− molecular anions. If there is no charge transfer, they form 

clathrate compounds [40]. Intercalation of three alkali atoms donates three 

electrons per C60 to the t1u band which leads to a half-filled t1u band in A3C60 

fullerides and results in metallic behaviour, except for the overexpanded fulleride,  

Cs3C60. Structural studies of the single-phase superconducting A3C60 compounds 

(A = K, Rb or a mixture) have confirmed that they adopt the cryolite-type fcc 

structure in which all Td and Oh cavities are fully occupied by the alkali ions [41].  

The size match between the Oh and Td cavities and the alkali ions is important 

as it affects the structural properties of the A3C60 compounds. For instance, the 

larger Oh cavity (r = 2.06 Å) can be intercalated with large alkali cations such as Cs+ 

(r = 1.67 Å), Rb+ (r = 1.52 Å) and K+ (r = 1.38 Å), with a minor impact on the 

structure. However, the intercalation of larger cations into the Td cavity 

(r = 1.12 Å) induces different structural behaviour, whereby the C603− anions are no 

longer free to rotate and adopt a merohedrally-disordered structure even though 

the structure is still fcc. Merohedrally-disordered C603− anions involve two equally-

populated, randomly distributed molecular orientations which differ by a 90o 
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rotation about any twofold axis [24]. The merohedral disorder was found to be 

present at all accessible temperatures [42]. The merohedral disorder is either a 

dominant or a contributing factor to a number of the observed unique electronic 

properties of these systems. In contrast, when the Td cavities are occupied by 

smaller ions, such as Na+ or Li+ as in Na2CsC60, the C60 ions continue to rotate. Such 

A3C60 fullerides exhibit an analogous structural transition to that of the pristine C60, 

undergoing a transition upon cooling from an orientationally-disordered high-

temperature structure (space group Fm͵̅m) to an ordered primitive low-

temperature cubic structure (Pa͵̅) [43].  

Due to the smaller size of the Td cavity, the lattice expansion (separation 

between C60 molecules) in A3C60 fullerides directly relates to the size of the cation 

intercalated into the Td site rather than the Oh site, and can be varied by 

systematically replacing the alkali dopants with larger alkali metals. Therefore, the 

most expanded member of the A3C60 family is Cs3C60. In contrast to other A3C60 

compounds, Cs3C60 has two distinct polymorphs (Figure 1.2); the so-called A15 

structure based on body-centered-cubic (bcc) packing of orientationally-ordered 

C603- anions [27], and fcc packing, which is isostructural to the less-expanded A3C60 

series (A = K, Rb, Cs or a combination) [28].  

 

Figure 1.2 From left to right, schematic crystal structures of fcc A3C60 and A15 Cs3C60. In 
the fcc structure, only one of the two C60 orientations is depicted for visual clarity, and 
octahedral and tetrahedral cations in the fcc A3C60 are shown in red and blue, respectively. 
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1.2.2 Synthesis of alkali metal fullerides 

Several synthetic routes have been developed to synthesise AxC60 

compounds, with x = 1, 3, 4 and 6 and A = K, Rb and Cs. In the case of smaller alkali 

metals, Na and Li, x can vary between 1 and 11.  They can be prepared by exposing 

solid C60, in the form of polycrystalline films, microcrystalline powder or single 

crystals, to alkali metal vapour, which diffuses into the host at temperatures of 

~100 – 410°C; the reaction temperature varies with the dopant. All the AxC60 

compounds, except Cs3C60, can be prepared with this Ǯdirect reaction methodǯ, 
including the intermetallic mixtures of these alkali metals, AxAǯ3−xC60 [40]. Tanigaki 

and co-workers also used the direct reaction method (at 390°C) to synthesise 

RbCs2C60 [26]. Both alkali metals and AxC60 solids are very air-sensitive; therefore, 

reactions must be undertaken in inert oxygen- and water vapour-free 

atmospheres.  

The saturated A6C60 (A = K, Rb, Cs) compounds can be prepared either with 

stoichiometric reagent amounts or with an excess of alkali metal. In this study, 

both ways were used to synthesise the K6C60 and Cs6C60 compounds which were 

used as precursors for further reactions with C60. The A6C60 compositions can be 

produced by a vapour-transport method, in which a temperature gradient is used 

to transfer the metal vapour to the C60, and any excess unreacted metal is removed 

by reversing the temperature gradient upon cooling [44]. In this study, the vapour-

transport method was employed for the synthesis of single-phase Cs6C60 

compounds, whereas the K6C60 fullerides were synthesised using the direct 

reaction method. Finally, these compounds were used as precursors for the 

synthesis of KxCs3−xC60 compounds (0.12 ζ x ζ 2). 

In addition to the solid-state synthetic protocols, various solution-based 

routes have also been reported for producing alkali-metal fullerides. The first 

easily reproducible solution-based technique was described by Wang and co-

workers for synthesising superconducting alkali metal fullerides from toluene, 

with Tc values of 18 K and 29 K for KxC60 and RbxC60, respectively [45], [46]. Several 

different protocols were then developed for alkali-metal intercalation using 

different solvents, such as liquid ammonia [47], [48], methylamine [49], [50] , THF 

[51], n-propylamine and n-butylamine [52].  
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Synthesis of the most expanded member of the A3C60 family, Cs3C60, and more 

expanded fcc A3C60 fullerides than RbCs2C60 using either conventional direct 

reactions or solution-based methods had failed. The reason for this failure can be 

traced to the thermodynamic instability associated with the introduction of the 

large Cs+ cation (r = 1.67 Å) into the small tetrahedral hole (r = 1.12 Å).  Due to this 

size mismatch, the compounds that are attempted to be synthesised 

disproportionate into CsC60 and Cs4C60 phases. Dahlke et al. synthesised a series of 

fcc-rich compounds AxCs3−xC60, where A is either Rb or K (Ͳ.͵ ζ x ζ ͳȌ, using a liquid 

ammonia route, obtaining a wider range of compositions with higher fcc phase 

fractions than synthesis by solid-vapour reaction had allowed before. However, 

reducing the Rb content of the RbxCs3-xC60 phase to x < 0.32 to increase the 

interfullerene separation led only to smaller fcc phase fractions and to no increase 

in fcc unit cell volume, implying a higher fraction of Rb in the fcc phase than the 

nominal stoichiometry one, with CsC60 and Cs4C60 also forming [53]. 

Kelty and co-workers reported superconductivity at ambient pressure in 

CsxC60 (x = 1.2 – 3) at Tc = 30 K with a low shielding fraction (~1%). They used 

binary alloys of CsMx (M = Hg, Tl, Bi) as dopants due to their lower reactivity than 

pure Cs metal [54]. Several years later, Palstra et al. synthesised nominal Cs3C60 

using a liquid ammonia route, and reported superconductivity at 40 K with 

shielding fraction at the <0.1% level, under hydrostatic pressure of 15 kbar. 

However, the resultant materials were multi-phase and poorly crystalline which 

led to difficulties in the identification of the putative superconducting phases [55]. 

Until 2008, all attempts to synthesise bulk superconducting Cs3C60 were 

unsuccessful, and the identification of the reported superconducting phases 

remained unresolved. 

In 2008, Ganin et al. reported bulk superconductivity in A15 Cs3C60 with a 

shielding fraction of 67% and a maximum Tc = 38 K at ~7 kbar. They employed a 

low-temperature solution-based technique, in which Cs metal or Cs6C60 was 

reacted with C60 in methylamine at −65 °C followed by solvent removal under 

vacuum. The phase fraction of the superconducting A15 phase was reported as 

77.7(6)%, and the remaining minor phases were identified as the fcc polymorph of 

Cs3C60 and bco Cs4C60 [27]. Soon after, fcc Cs3C60 was also isolated in high yields of 
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up to 86%, with bulk superconductivity appearing under hydrostatic pressure 

with a maximum Tc of 35 K (the highest found in the fcc A3C60 family) [28]. More 

recently, McLennan et al. reported a new solvent-based method for the synthesis of 

fcc-rich Cs3C60 , involving THF together with an organometallic salt reducing agent 

[56]. 

1.2.3 BCS theory and its applicability for the A3C60 superconductors 

The classic mechanism of superconductivity, namely, the ǮBCSǯ theory of 
superconductivity, was described by Bardeen, Cooper and Schrieffer in 1957 [57]. 

The essence of the BCS theory is the formation of ǮCooper pairsǯ, which are bound 

pairs of electrons, condensed into an ordered state by interaction with each other, 

and with equal but opposite spin and angular momentum. The theory assumes that 

the only important energy difference between the normal and superconducting 

states arises from the formation and interaction of the Cooper pairs, and that the 

attractive interaction between the electrons is mediated by the phonons. Whilst an 

electron moves through a lattice of cations, it can distort the lattice around it by 

disturbing the motion of the cations; then, the positive ions create a cloud of 

increased positive charge density by crowding in on the electron. This cloud of 

positive charge in turn attracts a second electron resulting in the formation of the 

Cooper pairs, by overcoming the Coulomb repulsion of the first electron.  

The Cooper pairs in a superconductor form a condensed state, act as bosons 

and occupy the same quantum state (the BCS ground state) which is separated by 

an energy gap from the excited states. The lowest quantum state is stable below an energy gap value of ʹΔ ȋΔ = superconducting gap). The gap size of ʹΔ, which is 

opened at the Fermi level, reflects the required energy for breaking up a Cooper 

pair, whereby two single electrons are produced in the lowest possible energy 

state just above the gap. When the Cooper pairs start breaking up at elevated 

temperatures due to the thermal fluctuations, the energy of the collective ground 

state is reduced because of the reduced number of the Cooper pairs, which results 

in a reduced superconducting gap value. Finally, the gap completely vanishes, the 

superconducting state is destroyed at Tc, and the material becomes a normal metal. 

Measurements of the superconducting gap and comparison of its value with that 

predicted by BCS theory are essential for researching whether the 
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superconductivity is driven by the electron-phonon interaction, the effective 

electron-electron attraction via the interaction of electrons with lattice vibrations.   

The C60 molecule has discrete energy levels which are only weakly 

broadened in solid C60, leading to a set of non-overlapping bands with a relatively 

narrow band width W ≃ 0.5 eV due to the relatively large distance between the 

nearest carbons of adjacent molecules (weak C60-C60 interaction) [58], [59]. In 

A3C60, transferred electrons become delocalised due to overlapping of t1u orbitals 

between neighbouring molecules. Since t1u orbitals exhibit mostly pz character, 

they radiate out from the C60 surface, resulting in non-negligible overlapping of t1u 

orbitals.  

C60 has intramolecular vibrations (phonons) with energies up to ωph~0.2 eV. 

In A3C60, only high-frequency phonons with Hg symmetry couple to the t1u 

electrons [58]. It was reported very early that the superconductivity is driven by 

the coupling between these phonons and the t1u electrons [60], whereas the other 

phonon modes, such as librations, C60-C60 vibrations and alkali-C60 vibrations, play 

a minor role in the emergence of the superconductivity. However, it had also been 

argued that an electronic mechanism might drive the superconductivity [61]–[63].  

In systems where the pairing is driven by a phonon-induced attraction, the 

Migdal-Eliashberg theory provides a method in which Tc can be estimated from the 

McMillan equation and formulated as a function of the electron-phonon and 

Coulomb interaction coupling constants, as follows [64]: 

                                 cܶ = ( Ʌୈͳ.Ͷͷ) exp [ −ͳ.ͲͶሺͳ + ɉሻɉ − ሺͳ∗ߤ + Ͳ.͸ʹɉሻ] 
         

Equation 1.1 

 

Here ɉ is the dimensionless electron-phonon coupling constant, Ɋ* is the 

Coulomb pseudopotential (effective Coulomb repulsion strength), and ɅD is the 

Debye temperature defining the characteristic phonon frequency, ɅD = ħωD /kB. 

Estimates of the electron-phonon coupling constant in A3C60, ɉ ≃ 0.5 – 1, were 

found to be in the right range to explain the experimental Tc values with a BCS 

model [65].  

Fleming et al. prepared a series of fcc A3C60 (between K3C60 and Rb2CsC60) 

superconductors and showed that Tc increases monotonically with the lattice 
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parameter. Extended Hückel band-structure calculations revealed that there is a 

monotonic increase in the density of states at the Fermi level, NεȋFȌ, with increasing 

lattice parameter [41]. This increase in NεȋFȌ can be interpreted as resulting from a 

narrowing of the band at the Fermi level due to the weaker overlap between 

nearest-neighbour t1u orbitals. Based on this explanation, the change in Tc with 

interfullerene spacing observed in A3C60 fullerides was inferred using a BCS-type 

weak coupling relation [25]: 

                                        ݇஻ ௖ܶ = ℏ� exp[− ͳܸ �ܰሺிሻ] 
         

Equation 1.2 

Here kB is the Boltzmann constant, ħω is the frequency of the pairing-

mediating excitation, and V describes the extent of coupling between the lattice 

vibrations and the electrons. A wide variety of experimental work, including the 

measurement of the density of states at the Fermi level in K3C60 and Rb3C60[25], 

was found to be in agreement with the BCS−like scaling of Tc with NεȋFȌ. 
Dahlke and co-workers reported that the variation of Tc with fcc lattice 

parameter in the series of overexpanded RbxCs3−xC60 ȋͲ.͵ʹ ζ x ζ 1) compounds 

shows an unexpected behaviour; Tc reaches a maximum at x = 1, then starts to 

decrease with lattice expansion [53]. In 2010, a significant breakthrough was 

achieved by Ganin and co-workers with the bulk synthesis and characterisation of 

the fcc superconducting polymorph of Cs3C60 [28]. In contrast to all other reported 

fcc A3C60 compounds (A = K, Rb, or a combination including Cs), fcc Cs3C60 is a 

magnetic insulator at ambient pressure, becoming superconducting under applied 

pressure. The superconducting Tc initially increases with pressure, reaching a 

Tc(max.) of 35 K (the highest found in the fcc A3C60 family); this discovery then led to 

several intense theoretical debates concerning the applicability of the BCS theory 

and its derivatives for the more expanded members of the fcc A3C60 family. 

Moreover, a non-BCS-like Ǯdomeǯ-shaped scaling of Tc with pressure was also 

reported for the A15 superconducting polymorph of Cs3C60 [28].  

McDonald and co-workers extended the earlier work on RbxCs3−xC60 and 

synthesised high-quality Cs-rich superconducting samples covering the 

compositional range 0 ζ x ζ 0.5 using a solid-state synthetic route. They reported 

that the superconducting Tc initially increases upon applying pressure in each of 
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these systems, reaches a maximum, and then decreases upon further pressurisation, forming Ǯdomeǯ shapes (ǮTc(P) domesǯ), which contrasts sharply 

with the BCS-like monotonic scaling of Tc with pressure [66].  

In a more recent study, a series of high-quality fcc-rich Ǯoverexpandedǯ 
RbxCs3−xC60 samples were prepared with x systematically varied between 2 and 

0.35. Bulk superconductivity was confirmed in all samples. Zadik et al. undertook 

extensive structural and magnetic characterisation of the series at both ambient 

and elevated pressures, and showed that the Tc responds sensitively to applied 

pressure, exhibiting distinct superconductivity Tc(P) domes for all compositions 

except Rb2CsC60, which still shows a non-linear Tc(P) response at low pressure 

(Figure 1.3) [67].  

 

Figure 1.3 The variation of superconducting Tc with pressure for RbxCs3−xC60 (0.35 ζ x ζ ʹȌ. 
The lines through the data are guides to the eye. Datasets are from ref. [67].  

Within the weak-coupling limit of BCS theory, the high-frequency intramolecular phonons ȋωph  ~1000-1600 cm−1) take part in the superconducting 

pairing mechanism [25], [41], [59]. On the other hand, the non-monotonic 

variation of Tc with interfulleride separation could have been explained if the 

electron-phonon coupling strength, V, changes from weak- to strong-coupling with 

increasing interfulleride separation. However, this would have necessitated a 
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switch-over from the involvement of the high to that of the low-frequency intermolecular phonons ȋωph  ~100 cm−1) [68] in the pairing interaction [69] for 

overexpanded systems. This would have then implied that the high- and low- 

frequency phonons would be active in different parts of the electronic phase 

diagram. This is unlikely as the high-frequency phonon modes are always present 

and cannot be active only in one distinct region of the phase diagram, and also 

there is no obvious changes in the crystal and electronic structures [70]. As a 

result, the applicability of the conventional BCS-like explanation of 

superconductivity is questionable for overexpanded A3C60 superconducting 

materials.  

As mentioned previously, measurements of the superconducting gap and 

comparison of the values with predicted ones based on the BCS theory is a 

common way to investigate to what extent the BCS model is applicable for the 

A3C60 superconductors. The BCS theory in the limit of weak coupling predicts that 

the reduced gap ʹΔ/kBTc has a material-independent BCS value of 3.52; larger 

experimental values would indicate strong coupling. Very early measurements of Δ 

for Rb3C60 using STM yielded significantly larger ʹΔ/kBTc values of 5.3 [71] and 5.4 

[72], indicating a broadened BCS-like density of states. More experiments have 

been employed to measure the gap for Rb3C60 and K3C60 superconductors using 

different techniques (such as NMR, ɊSR, optical measurements and 

photoemission), and ʹΔ/kBTc values obtained from those measurements have 

varied substantially, ranging from the BCS value to ~4.2 [58].  

Kiefl et al. studied the temperature dependence of the longitudinal-field 

muon spin-relaxation rate, ͳ ଵܶ⁄ , in the normal and superconducting states of 

Rb3C60, where endohedrally formed muonium (Mu@C60) undergoes spin exchange 

scattering with electronic excitations. They reported that the temperature 

dependence of ͳ ଵܶ⁄  just below Tc fits the theory of Hebel and Slichter describing 

spin relaxation for a BCS-type superconductor. The gap for electronic excitations 

was found to be Δ/kB = 53(4) K, corresponding to ʹΔ/kBTc = 3.6(3) (Tc = 29.4 K), in 

agreement with the prediction of the weak-coupling BCS limit [73].  

MacFarlane and co-workers also performed ɊSR studies of Rb3C60, K3C60 and 

Na2CsC60 superconductors and observed the relaxation of Mu@C60 in 
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longitudinally-applied magnetic fields. In metals, the Korringa mechanism is the 

expected spin-lattice relaxation mechanism in which  ͳ ଵܶ⁄ ܶ  is temperature 

independent. They showed that the temperature dependences of the relaxation 

rates exhibited Korringa behaviour above the Tc, and a small field-dependent Ǯ(ebel-Slichterǯ coherence peak just below Tc (Figure 1.4). The reduced gap values 

were found to be in between 3.2 and 4, which are expected values for the less 

expanded A3C60 fullerides [74].  

 

Figure 1.4 Temperature dependence of the spin-relaxation rate of Mu@C60 in fcc Rb3C60 
(copied from ref. [74]) at a field of 1.5 T. 1/T1 is normalised to the rate in the normal state 
just above Tc. Black solid line through data points is the fit to the Hebel-Slichter function. 
Solid vertical line mark the superconducting Tc.  

Extensive experimental and theoretical investigations have indicated that the 

superconducting pairing in the family of A3C60 fullerides is driven by a phonon-

induced attraction, where electrons are paired in a pair-state of s-wave symmetry 

(observed in e.g. elemental metals), as predicted by the BCS theory [58]. However, 

the region between the well-explored conventional BCS-type superconductors 

(underexpanded A3C60) and the highly-expanded Cs3C60 was not studied in any 

detail until the very recent extensive study of ref. [67] in which this unexplored 

region was investigated with fcc-rich RbxCs3−xC60 (0.35 ζ x ζ 2) materials. It has 

become increasingly clear that the electronic phase diagram of A3C60 fulleride 

superconductors has similar features to those of other unconventional high-

temperature superconductors; in the aforementioned study, the superconducting 
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gap increased with increasing unit cell volume, to values far higher than those 

predicted for the BCS weak-coupling limit [67], in agreement with the results of 

earlier high-pressure NMR studies on fcc and A15 Cs3C60 polymorphs, examining 

the volume dependence of ʹΔ/kBTc [70], [75]. 

1.2.4 Strong electron correlations in A3C60 fullerides 

When two electrons are added to a C60 molecule, they will repel each other 

due to the Coulomb interaction. The magnitude of this on-site Coulomb interaction 

energy, the so-called Hubard U, can be obtained in different ways. U was calculated 

as ≃ 3 eV using density functional theory for a free C60 molecule. Experimentally it 

was found to be ≃ 3.3 eV [6]. For solid C60, this large repulsive Coulomb interaction 

can be strongly screened by the polarisation of the surrounding molecules. 

Measurements of the on-site U in solid C60 (U ≃ 1.6 eV) performed by Lof et al. 

using Auger spectroscopy on a K3C60 film suggested that the ratios of U to the 

bandwidth (W), U/W, for doped C60 are comparable to those of high-Tc cuprates, 

and thus doped C60 should be considered as a highly correlated electron system 

[76].  

The metal-insulator transition in a correlated system is usually discussed in 

terms of the U/W ratio [77]. Electrons in a solid containing ~1 electron per lattice 

site can lead to a Mott insulating state when the Coulomb repulsion U exceeds W 

(the one-particle bandwidth); in the contrasting case where U/W << 1, metallic 

behaviour is expected. When U/W >> 1, the free motion of electrons is prevented 

by the large energy cost of having one site doubly-occupied, and thus electron 

localisation occurs. Therefore, a first-order metal-insulator transition occurs at a 

critical ratio of U/W close to 1.  

U is a molecular property and remains essentially constant across the A3C60 

family, whereas W depends on the interfullerene separation, and therefore 

U/W increases with lattice expansion. Despite the fact that less expanded A3C60 

materials show relatively high values of U/W, they exhibit a metallic behaviour 

rather than the expected Mott-insulating behaviour. This results from the t1u 

orbital degeneracy (the cubic symmetry retains the triple degeneracy of the t1u 

orbitals) which allows additional hopping channels to the neighbouring molecules. 

As a result, the relevant bandwidth for the metal-insulator transition to occur is 
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smaller by a factor equal to the square root of the orbital degeneracy [78]. The 

boundary for the metal-insulator transition (MIT) therefore shifts to much higher 

values of the (U/W) ratio, and the metallic state survives. The frustration inherent 

in the fcc lattice can further stabilise the highly correlated metallic state by raising 

the critical ratio to even higher values, i.e. (U/W)c ≃ 2.3, compared to non-

frustrated topologies such as those based on bcc packing, with (U/W)c ≃ 1.3 [79]. 

In summary, the high critical ratio for the fcc A3C60 compounds results from a 

combination of orbital degeneracy and frustration effects. 

With further band narrowing (increased interfullerene separation), a 

transition to a Mott insulating state due to electron localisation is expected. The 

parent compound Cs3C60 should therefore be close to the Mott transition. 

Following the discovery of bulk superconductivity at 38 K in A15 Cs3C60 [27], 

Takabayashi et al. reported that superconductivity emerges out of a localised 

electron antiferromagnetic Mott-Hubbard insulating state, with TN = 46 K (at 

ambient pressure), with the application of pressure [80]. Soon after, 

superconductivity under moderate pressures (Tc(max.) = 35 K) and Mott-Hubbard 

antiferromagnetic ordering below TN = 2.2 K (at ambient pressure) in fcc Cs3C60 

was reported [28].  

In spite of the structural differences between the two cubic Cs3C60 

polymorphs, Tc scales in a dome-like relationship, independently of structure, in 

proximity to the Mott metal-insulator transition [28]. This result demonstrates 

that the superconductivity of the A15 and fcc Cs3C60 phases is identical in origin 

and  implies that the strong electron-electron interactions responsible for the Mott 

state are likely to control the Mott metal-insulator transitions and also the 

superconducting states in both polymorphs [28], [80], [81]. These features of the 

Cs3C60 polymorphs are characteristic of other high-temperature superconducting 

materials [82]. 

The icosahedral symmetry of the C60 molecule and strong electron-phonon 

coupling between C60 intramolecular phonons and t1u electrons play another 

important role. The high molecular symmetry leads to a high degree of degeneracy 

in the electronic states, the origin of the Jahn-Teller (JT) effect [83]. The JT effect in 

a non-linear molecule with degenerate electronic levels removes this degeneracy 
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by distorting the molecule. A C60 molecule will have 180 total degrees of freedom, 

but the number of vibrational degrees of freedom is 174 ȋ−3 translational and −͵ 
rotational modes). Fortunately for symmetry reasons, only the highly symmetric Ag 

and the five-fold-degenerate Hg phonon modes can couple to the t1u levels. 

However, only the Hg phonon modes can lead to JT distortion; the Ag modes do not 

lift the degeneracy due to their high symmetry [83].  

When a vibration of Hg symmetry is excited, the three-fold degeneracy of the 

t1u level is lifted (the t1u level is no longer degenerate) which makes the C60 

molecules unstable to the JT distortion [58]. The JT coupling of electrons to the Hg 

molecular vibrations near to the Mott transition in C603− can reverse Hund's rule 

and favour a low-spin (S = ͳ ʹ⁄ ) state [84]. Such a scenario has received strong 

support with the discovery of Cs3C60 polymorphs that are Mott insulators at 

ambient conditions, with the C603− ions in a low-spin (S = ͳ ʹ⁄ ) electronic state [28], 

[80], [85]. 

Tunnelling between equivalent distortions can lead to pseudorotation which 

dynamically re-establishes the full icosahedral symmetry this is the dynamic JT 

effect. This dynamical distorted state can therefore lead to a gap in the electronic 

spectrum and a maximally-paired electron configuration without any static lattice 

symmetry breaking [61]. The presence of the dynamic JT effect has been recently 

confirmed in fcc and A15 Cs3C60 using infrared spectroscopy, defining the 

insulating state of both polymorphs as that of magnetic Mott-Jahn-Teller insulators 

[86] (MJTI, Figure 1.5 [67]). However, due to the rapid interconversion rate 

(< 1011 s−1) between different conformations, the temporally- and spatially-

averaged cubic crystal symmetry is still experimentally observed by diffraction, 

although the JT effect locally distorts the molecular C60͵− ions [86].  

A so-called Ǯnew state of matterǯ - the unconventional correlated Jahn-Teller 

metal (JTM) [67] - has recently been reported in highly overexpanded RbxCs3−xC60 

(e.g. x = 0.35, 0.5) that emerges upon compression from the MJTI state (Figure 1.5). 

It survives for a large part of the phase field until it gradually fades away into the 

normal metallic state. It was demonstrated that JT distortions can coexist with 

metallicity: in JTMs, the hopping electrons spent long enough on the molecular C60 

units allowing the molecular JT distortions to be observed by IR spectroscopy, 
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leading to an inhomogeneous co-existence of localized JT active and itinerant 

electrons.  Applying chemical pressure to the parent fcc Cs3C60 phase (through 

substitution of the smaller Rb+ for the Cs+) first transforms the MJTI into the JTM. 

Subsequently, upon further decrease in intermolecular distances, a gradual 

disappearance of the localised features occurs and  a conventional metal is 

encountered in Rb2CsC60 and Rb3C60 (Figure 1.5) − the molecular JT distortion is no 

longer discernible; the degeneracy of the t1u levels and the symmetry of the C60 

units are restored [67].  

 

Figure 1.5 Electronic phase diagram of fcc RbxCs͵−xC60 showing the evolution of Tc as a 
function of V (solid and unfilled triangles signify data collected at ambient and high 
pressures, respectively) and the MJTI-to-JTM crossover temperature, T′ as a function of V 
(XRPD: squares; χȋT): stars; 13C, 87Rb and 133Cs NMR spectroscopy: hexagons with white, 
color and black edges, respectively; IR spectroscopy: diamonds). Within the metallic 
(superconducting) regime, gradient shading from orange to green schematically illustrates 
the JTM to conventional metal (unconventional to weak-coupling BCS conventional 
superconductor) crossover. Dashed lines mark experimental V(T) tracks for selected 
compositions. The lower panel shows the variation in superconducting gap divided by Tc, ʹΔ0/kBTc, with V (from ref. [67]). 
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To conclude, molecular features play an important role in producing the 

unconventional superconductivity forming from JTMs upon cooling in the 

overexpanded regime of the fcc A3C60 fullerides. The boundary with the JTM 

directly affects superconductivity: although the s-wave nature of the 

superconducting gap is retained right across the entire V range extending from a 

conventional metal (Rb3C60) to highly overexpanded RbxCs͵−xC60 (e.g. x = 0.35, 0.5), 

the superconducting gap increases monotonically with increasing interfullerene 

separation to values  far higher than those predicted for the BCS weak-coupling 

limit (ʹΔ/kBTc = 5.6(2) for Rb0.35Cs2.65C60; Figure 1.5 [67]), probed by NMR 

spectroscopy [67], [70] and [75]. As the JT effect fades away at small interfullerene 

separations, the size of the gap returns to the value characteristic for conventional 

BCS superconductors and conventional NεȋFȌ dependence of Tc reappears.  

The recent findings about the electronic properties of A3C60 fullerides close to 

the Mott insulator boundary discussed above are not consistent with the BCS 

phenomenology and imply the importance of electron-electron interactions. Thus 

they confirm the A3C60 fullerides as members of the class of strongly correlated 

superconducting materials. In this work, additional findings will be presented on 

the structural and electronic properties of these systems, providing further 

evidence about the dominance of strong correlations in determining the 

unconventional superconductivity in overexpanded fcc A3C60 fullerides.  

1.3 Molecular alkali oxides 

Solid dioxygen is an intriguing material in which p-electron-derived magnetic 

ordering occurs. It exhibits an AFM transition with TN = 24 K [87], becomes 

metallic at room temperature at pressures above 95 GPa concurrently with the 

onset of a structural transition [88] and shows superconductivity with a Tc of 0.6 K 

at pressures around 100 GPa [89]. Materials containing dioxygen have attracted 

considerable research interest and many structural, optical, and magnetic studies 

of solid oxygen at high pressures have been reported [87], [90], [91]. 

The majority of magnetic materials involve systems incorporating transition 

or rare-earth metal ions with open d− or f− electron shells. However, comparative 

behaviour in p-electron systems is not widely observable and there is a limited 

number of examples of such materials known. In particular, materials containing 
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molecular oxygen in different oxidation states are particularly intriguing and 

typically magnetically active. This is associated with the presence of the doubly 

degenerate LUMO which for dioxygen is occupied by two electrons leading to a 

S = 1 ground state. 

Reduction or oxidation of dioxygen, O2, leads to ionic forms via the 

population or depopulation of the doubly-degenerate antibonding Ɏ* molecular 
orbitals with one or two additional electrons. Figure 1.6 shows the molecular 

orbital diagrams of molecular oxygen and of the superoxide, O2−, and peroxide, 

O22−, anions. The superoxide O2− anion contains a single unpaired spin and is 

therefore paramagnetic (S = 1/2). The O2− anion exists in the presence of low-

valent, non-oxidizable and highly electropositive metal cations. The alkali 

superoxides, AO2, where A = Na, K, Rb and Cs, are the best known examples [92]. 

They are orange-yellow in colour and are rare examples of magnetic materials 

where the magnetism is of p-orbital origin. On the other hand, the O22− anion has 

an even number of electrons, 14, and is thus diamagnetic. In contrast to the alkali 

superoxides, the absence of colour is also a characteristic feature of diamagnetic 

alkali peroxides, A2O2 [92]. 

 

Figure 1.6 Molecular orbital diagrams of diatomic molecular oxygen ions 

Among the alkali oxides, the black-coloured molecular sesquioxides with a 

composition of A2O3 fall into the p-electron mixed-valence systems with dioxygen 

in two different oxidation states. Electroneutrality considerations have led to the 

formulation of sesquioxides as (A+)4(O2−)2(O2ʹ−) (A = Rb and Cs), with three 

molecular anions per formula unit - one closed-shell non-magnetic O22− anion and 

two open-shell magnetic O2− anions [93]–[95].   
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In alkali superoxides (AO2), the relative orientations of the dioxygen anions 

play a crucial role in determining the adopted crystal structure and magnetic 

properties [92], [96]. The interactions between the superoxide units give rise to a 

series of  crystallographic phase transitions on cooling, involving changes of the 

orientation pattern [97] and of the magnetic properties [98]. The structures of the 

different phases of the AO2 compounds are described comprehensively in [92],  

[97] and [99]. The relative alignment of the O2− anions, as well as the state of 

partially-filled antibonding Ɏ* molecular orbitals, yields a rich variety of magnetic 

properties of alkali superoxides. KO2, RbO2, and CsO2 have been reported to be 

antiferromagnetic with TN of 7, 15, and 9 K, respectively [92], [96].  

1.3.1  Conflicting structural and magnetic properties of sesquioxides 

Thermodynamically-stable alkali superoxides and sesquioxides can be 

synthesized using metals with large atomic numbers such as Rb and Cs, as the 

thermodynamic stability of the alkali oxides increases with atomic number [92].  

The so-called sesquioxides Rb4O6 and Cs4O6  were first characterized by X-ray 

powder diffraction by Helms and Klemm in 1939 [93]. Both sesquioxides 

crystallize with the cubic anti-Th3P4 structure (the Pu2C3 structure was unknown 

at that time). In 1991, Jansen et al. performed X-ray diffraction on Rb4O6 single 

crystals and confirmed adoption of the cubic Pu2C3 structure (space group IͶ̅3d ) 

[94]. Elastic and inelastic neutron scattering have also been used to study the 

structure and excitations of Rb4O6 [95]. Neutron diffraction revealed that Rb4O6 is 

also isostructural to cubic Pu2C3. Moreover, it is stable down to 5 K, and no 

reduction of symmetry or ordering of the dioxygen anions takes place. In this 

structure, there is a single crystallographic position for both Rb+ and oxygen. On 

the other hand, vibrational spectroscopy studies of Rb4O6 have revealed the 

existence of distinct O22− and O2− anions. While dioxygen appears 

crystallographically single valent, spectroscopy has provided unambiguous 

evidence for two localized valence states of dioxygen [95], [100]. No 

crystallographic evidence has been found so far for two localized valence states of 

dioxygen in sesquioxides. Due to the single crystallographic position of oxygen in 

the cubic structure, only the presence of equivalent valency-delocalised O2(4/3) 
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anions can be inferred, implying charge disorder and a general formula 

Rb4(O2(4/3))3.  

The mixed-valency in the sesquioxides results in complicated magnetic 

response. Electronic structure calculations using the local spin-density 

approximation proposed half metallic ferromagnetism in Rb4O6 [101]; however, 

experimental investigation of the temperature-dependent magnetization of Rb4O6 

has shown that it is a magnetically-frustrated insulator that exhibits spin-glass-like 

behaviour in a magnetic field. This peculiar behaviour was explained by a random 

charge ordering of the three charged dioxygen molecules in each formula unit 

[102]. Electronic structure calculations have also confirmed the insulating ground 

state with a large number of frustrated non-collinear magnetic configurations in 

Rb4O6. The magnetic order has been reported to be quite exotic, due to the 

existence of non-magnetic peroxide and magnetic superoxide anions that assemble 

in a frustrated antiferromagnetic configuration [103]. Frustrated magnetic 

ordering, which is of geometric origin and caused by the peculiar symmetry of 

A4O6, has also been proposed for Cs4O6 [100]. Magnetic and geometric frustrations 

are found often in d−electron systems, such as the spinel LiV2O4 [104] or the cubic 

vanadates [105]. However, in the case of the A4O6 compounds, the magnetic 

moment is carried by the p electrons of the anionic superoxide. 

Recent experimental work by Arčon et al. has revealed intimate coupling 

between the charge, orbital and spin degrees of freedom in the sesquioxide Cs4O6 

[106]. Two competing phases were discovered in the temperature evolution of the 

electron paramagnetic resonance (EPR) and 133Cs NMR spectra: quenched high-

temperature cubic and low−temperature low-symmetry phases. They reported 

that slow cooling leads to a transition to a low-symmetry orbitally-ordered 

structure; conversely, rapid cooling results in retention of the cubic structure. The 

two competing structures differ in the orientation of O2− anion axes, the ordering of Ɏ* molecular orbitals, and the superexchange interactions through the Cs+ 

bridges. They stated that this orientational ordering of O2 units, which is coupled 

to the orbital ordering, controls both the superexchange interactions through the 

Cs+ bridges and the low-temperature magnetic properties of the two competing 

phases [106]. 
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1.4 Outline of the thesis 

The aim of this work is to systematically investigate the structural, electronic 

and magnetic properties of fcc AxCs3-xC60 fullerides (A = K and Rb) across the 

superconductivity dome and of sesquioxide Cs4O6 under ambient and non-ambient 

temperature and pressure conditions. In Chapter 2, a wide variety of experimental 

characterisation techniques under ambient and non-ambient temperature and 

pressure conditions (X-ray and neutron powder diffraction, muon spin relaxation, 

and SQUID magnetometry) together with their theoretical aspects are outlined. 

Chapter 3 is a comparative study focussing on the series of fcc KxCs͵−xC60 

(0.12 ζ x ζ ʹȌ superconductors which allow us to probe their electronic behaviour 

in a broad range of interfullerene separations extending from close to the Mott 

boundary, over the maximum of the dome and well into the underexpanded 

regime. It describes the evolution of their structural and magnetic properties at 

ambient and at elevated pressures and places them in the general context of our 

understanding of the rapidly-developing rich electronic phase diagram of fulleride 

superconductors. Connection of the two extremes (underexpanded and 

overexpanded regimes), of the electronic phase diagram, is achieved by 

hydrostatic and by Ǯchemicalǯ pressure application through the adjustment of the 

alkali stoichiometry. Interfullerene spacing is also tuned by temperature. Tuning of 

interfullerene spacing allows us to balance the molecular and itinerant character of 

the electrons, leading to the highest known Tc among molecular superconductors. 

Chapter 4 focuses on measurements of the temperature dependence of the 

longitudinal-field muon spin relaxation (LF-SR) rate of endohedrally-formed 

muonium, Mu@C60 in superconducting fullerides. Observation of a ǮHebel-Slichterǯ 
coherence peak in underexpanded Rb3C60 and K3C60 had been taken as clear 

evidence of BCS-type superconductivity in the family of fcc A3C60 fullerides. 

However, the critical region close to the Mott boundary as well as any compositions past the Ǯdomeǯ maximum were not studied before. The work examines systems on either side of the Ǯsuperconductivity domeǯ and attempts to 
extract signatures of the importance of correlated behaviour through the search of 

the existence or not of the Hebel-Slichter coherence peak and the determination of 

the superconducting gap magnitude and its evolution with lattice spacing. 
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Chapter 5 describes the structural properties of the sesquioxide Cs4O6 and 

their evolution with temperature and pressure and under X-ray light illumination. 

It aims to resolve the conflicting reports on the structural properties of this 

material and establish the true crystallographic symmetry of the valence ordered 

state accessible by temperature and pressure. A valence order-disorder transition 

in Cs4O6, accompanied by a symmetry-lowering structural phase transition, is 

triggered under extreme experimental conditions. As the magnetic and molecular 

orderings are strongly coupled to each other, our findings shed new light on the 

magnetic behaviour of this family of materials. 

Finally, Chapter 6 summarises the key results and contributions to 

knowledge arising from the present work, and proposes future directions. 
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Chapter 2 Instrumentation, theory and 

methodology 

 

2.1 Introduction 

 The purpose of this chapter is to outline the experimental techniques and 

analysis methods which have been employed in the investigation of the structural, 

electronic and magnetic properties of the triply-doped fcc fullerides and the 

mixed-valence caesium sesquioxide, Cs4O6. Powder X-ray and neutron diffraction 

as a function of temperature, and of pressure, and muon spin relaxation techniques 

were employed in this extensive investigation. The magnetic properties of the 

samples were investigated using SQUID magnetometry at both ambient and high 

pressures. This chapter will detail the characterisation techniques together with 

relevant theoretical background. The synthetic part of the study will be presented 

in subsequent relevant chapters.  

2.2 Powder Diffraction 

Powder diffraction is the most widely used structural characterisation 

technique in solid state chemistry in situations where only polycrystalline samples 

are available. In 1916, the powder diffraction method using conventional X-ray 

sources was devised by Debye and Scherrer in Germany [107], [108]. The common 

applications of the technique such as phase identification, determination of the 

unit cell dimensions and the analysis of the structural imperfections were well 

established over the next half century. The applications of the technique peaked in 

the 1970s following the introduction of a powerful method for refining crystal 

structures from powder data by Rietveld in 1969 [109].  

The Rietveld method has been extensively used since then to extract 3-

dimensional structural information from 1-dimensional X-ray or neutron powder 

diffraction patterns. Over time, there has been a dramatic increase in diversity in 

the types of powder diffraction experiments being carried out, using X-rays from a 

laboratory generator or from a high-energy storage ring optimised for the 

generation of synchrotron radiation, or using neutrons produced in a reactor or a 
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spallation source. In this work, both X-ray and neutron scattering techniques were 

used. 

2.2.1 Unit cell and crystal symmetry 

The understanding of how atoms and molecules are arranged in space and 

how they form crystalline solids are essential to understand the diffraction 

technique and for the interpretation of the diffraction patterns. The presence of a 

systematic long-range order is a characteristic of a solid in the crystalline state, 

with atoms or molecules periodically arranged in space.  

A crystal is made of repeating structural motifs whose locations are 

represented by points within a crystal lattice. Therefore, the entire crystal 

structure can be represented as a regular periodic array of points, which are 

known as lattice points, generated by translation of the unit cell. A unit cell is an 

imaginary parallelepiped within the crystal lattice, from which a complete crystal 

structure can be built using translational symmetry operations. In three 

dimensions, the unit cell has three sides: a, b and c and three angles between these 

pairs of sides: Ƚ, Ⱦ and γ, which are termed as unit cell dimensions or lattice 

parameters. In crystallography, there are 7 different crystal systems defined by the 

geometry of the unit cells. The 7 crystal systems are: triclinic, monoclinic, 

hexagonal, trigonal, cubic, tetragonal and orthorhombic (Table 2.1). The unit cell 

can be primitive (P) or non-primitive. Whilst the term primitive designates when 

lattice points are only at each corner of the unit cell, non-primitive unit cells 

contain one extra lattice point either at the centre of each face (face centered (F)) 

or at the centre of each of two opposing faces (e.g. C centered) or at the centre of 

the unit cell (body centered (I)). This internal combination creates another 

additional 7 lattice types, resulting in a total of 14 types of lattices which are 

known as Bravais lattices [110].  

In addition to the geometry, the distribution of the atoms in the repeating 

unit and the way that the unit cells build the crystal should be established using 

translational symmetry operations. A symmetry operation is an operation that 

does not make any difference in the appearance of the object operated. In 

crystallography, there are 4 different types of symmetry operations: rotation, 

reflection, inversion and translation. A symmetry element is a geometrical 
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visualization of one or more symmetry operations such as a rotation about an axis, 

a mirror reflection in a plane, an inversion through a point or a translation about a 

vector.  

Table 2.1 The seven crystal systems 

System Axial lengths and angles Number of Bravais lattices 

Cubic a = b = c, Ƚ = Ⱦ = γ = ͻͲ° 3 

Tetragonal a = b  c, Ƚ = Ⱦ = γ = ͻͲ° 2 

Orthorhombic a  b  c, Ƚ = Ⱦ = γ = ͻͲ° 4 

Hexagonal a = b, Ƚ = Ⱦ = ͻͲo, γ = ͳʹͲo 1 

Trigonal a = b = c, Ƚ = Ⱦ = γ < ͳʹͲo,  90o 1 

Monoclinic a  b  c, Ƚ = γ = ͻͲo, Ⱦ  90o 2 

Triclinic a  b  c, Ƚ  Ⱦ  γ 1 

Combination of symmetry elements builds some complex symmetry 

elements. For example, simultaneous rotation/inversion and rotation/translation 

create an inversion axis and a screw axis, respectively. Combination of 

reflection/translation gives a glide plane. The Hermann-Mauguin notation is used 

to represent the symmetry elements in space groups, which are the description of 

given crystal structures and structure types. The characteristic assembly of 

symmetry operations is described by a point group, and in crystallography there 

are 32 crystallographic point groups that, when combined with the 14 Bravais 

lattices, lead to 230 different space groups. Space groups represent all possible 

distributions of atoms or molecules in the lattice to create the whole repeating unit 

cell that builds up the three-dimensional crystal structure through translational 

symmetry. More detailed information can be found in the International tables for 

Crystallography, Volume A [111] that contains lists of the equivalent positions for 

the 230 space groups. 

2.2.2 Diffraction 

Since the illustration of diffraction from crystals is difficult to visualise, Ǯlattice planesǯ which do not exist in real crystals are introduced to the 
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crystallography world. Lattice planes intersect lattice points and they are parallel 

to each other and equally spaced with every lattice point lying on one of the planes. 

The distance between the planes is known as d-spacing. Crystal lattice planes are 

described by Miller indices using three integers h, k, and l. Miller indices divide unit 

cell edges (a, b and c) into h, k, and l equal parts, respectively. If a plane is parallel 

to the b- and c- edge of the unit cell (no intercept on b and c axes), and intercepts 

the a axis at 1, the Miller indices of this plane are (100). The interplanar spacing for 

a particular set of planes, dhkl, of a cubic unit cell with lattice parameter a, can be 

expressed as follows:            ͳሺ݀ℎ௞௟ሻଶ = ሺℎଶ + ݇ଶ +  ݈ଶሻܽଶ  
      Equation 2.1 

 

2.2.3 Reciprocal lattice and Ewald construction 

A Bragg reflection is a radial distribution of the scattered intensity in 

reciprocal space where a diffraction pattern is collected. The concept of the 

reciprocal lattice was introduced by Ewald to present the physics of diffraction by 

a crystal [112]. The imaginary reciprocal lattice consists of points on a regular grid 

and each point is represented with a Miller index which corresponds to planes 

from which we imagine diffraction is occurring in so-called reciprocal space. The 

angular information of the Bragg reflections or spots can be transformed to a 

simple lattice in reciprocal space to relate the Bragg reflections and scattered 

intensity with the planes of the real space (direct) lattice. Each set of direct lattice 

planes is now a point in the reciprocal lattice carrying the same Miller indices as 

the corresponding direct lattice planes and the same symmetry with the direct 

lattice. The reciprocal lattice points are generated from the direct lattice and the 

conversions from one lattice to the other are defined as: 

        a*= b × cV                   b*= c × aV               c*= a × bV  
          Equation 2.2 

with the inverse relationship of these two lattices given by: 

      a = ∗ܸ∗܋ × ∗܊ = ܊                   ∗ܸ∗܉ × ∗܋ = ܋              ∗ܸ∗܊ × ∗܉  
        Equation 2.3 
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where a, b, c are the elementary translations of the direct lattice, and a*, b*, and c* 

are the elementary translations of the reciprocal lattice and defined as vectors. V

and *V are the volumes of the unit cell in the direct and reciprocal lattice, 

respectively [113].  

The Ewald sphere concept is a convenient way to demonstrate the diffraction 

from reciprocal space. If a sphere is drawn around a crystal with a radius of 1/ ɉ and positioned in such a way that Braggǯs law ȋsection 2.2.4) is satisfied, diffraction 

occurs whenever a reciprocal lattice point touches the surface of the Ewald sphere. 

Figure 2.1 demonstrates the Ewald sphere where O is the origin of the reciprocal 

space and P is a reciprocal lattice point (h, k, l), and OP = d* is the reciprocal lattice 

vector which is perpendicular to the direct lattice plane and inversely proportional 

to d via the following relationship: d* = 1/dhkl. The reciprocal lattice vector d* has 

to be equal to the scattering vector h to satisfy Braggǯs law and so for diffraction to 
occur: |ℎ| = ݏ| − |଴ݏ =  ͳ ݀⁄ , where S0 and S signify the directions of propagation of 

the incident and scattered beam, respectively. 

 

Figure 2.1 Two-dimensional representation of the Ewald sphere construction. 

The orientation of the crystal reorients the reciprocal lattice which results in 

bringing different reciprocal lattice points on to the Ewald sphere surface. An ideal 
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polycrystalline sample contains individual crystallites which should orientate in all 

possible directions with equal probability. Therefore, all reciprocal lattice points 

become smeared out onto spherical shells that are centered at the origin of 

reciprocal space.  These spherical shells intersect the surface of the Ewald sphere 

in circles. The circular intersections of these smeared reciprocal lattice points with 

the Ewald sphere in three dimensions generates co-axial cones, the so-called 

Debye-Scherrer cones [114]. 

The Debye-Scherrer cones appear as rings in the case of using a two 

dimensional detector, such as film or image plate, which is positioned 

perpendicular to the incident beam. The intensity around these rings is isotropic in 

an ideal powder, and thus the intensity of the rings will be uniform. If it is a grainy 

non-ideal powder, the ring intensity will not be uniform giving arbitrary intensities 

for the reflections in a one-dimensional cut (Bragg-Brentano geometry) through 

the rings.  To remove granularity effects, the powder samples are generally rotated 

during the measurement. The diameter of the Ewald sphere, ʹ/ɉ, determines the lowest d-spacing 

reflections accessible in the experiment. The number of detectable reflections can 

be increased by decreasing the wavelength of the incident beam. In the case of an 

energy-dispersive experiment such as time-of-flight neutron powder diffraction, with no fixed wavelength but continuous distribution of wavelengths from ɉmin to ɉmax, all Debye-Scherrer cones can be detected [114]. 

2.2.4 Bragg’s law 

We can treat the lattice planes as mirrors which are periodically repeated, 

oriented to the incident beam at a specific angle and which reflect the incident 

beam. W. L. Bragg introduced a simple explanation of beam diffraction from a 

crystal; the incident beam is diffracted only at certain angles which are known as Bragg angles, Ʌ, where constructive interference occurs and Braggǯs law is 
satisfied. Figure 2.2 schematically demonstrates Braggǯs law for reflection of 
incident waves from two lattice planes.  
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Figure 2.2 Schematic representation of the Bragg equation with reflection of two incident 
waves from two lattice planes belonging to the family of lattice planes with indices h, k, l. d 
is the interplanar spacing. S0 and S signify the directions of propagation of the incident and 
scattered beam by the family of planes, respectively. 

The difference in path between the scattered waves at B and D equals 

AB+BC=2dsinɅ. Braggǯs law states that the constructive interference occurs when 
the path difference is an integral multiple (n) of the wavelength (ɉ); ݊ 2 = ߣd sin Ʌ. 
The following expressions can be shown to relate the Ewald construction which satisfies the Braggǯs law whilst diffraction takes place: 

|ℎ|  = ݏ|  − |଴ݏ =  ͳ݀  =  ʹ sin Ʌߣ  
          Equation 2.4 

      

and                                                                                                                                                                     |ܳ| =  Ͷ � sin Ʌߣ =  ʹ�݀
 

             Equation 2.5 

 

The vector ܳ is the momentum transfer on scattering and differs from the 

scattering vector ℎ, by a factor of 2Ɏ [114]. Powder diffraction data consists of a set 

of intensity values and is measured at a set of ܳ values which is stated as 2Ʌ 

settings. They can also be collected with fixed 2Ʌ whilst varying wavelength e.g. in 

time-of-flight neutron diffraction. The Bragg angle depends on dhkl and the 

wavelength of the incident beam. X-rays and neutrons are widely used radiation 

sources in diffraction studies as their wavelength can be tuned to values similar to 

those of atomic distances (approximately 1 Å).  

2.2.5 X-ray diffraction 

In X-ray diffraction measurements, the incident X-rays are scattered by 

electrons in orbitals surrounding the atomic nucleus. A single electron scatters as a 
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point source. The scattering amplitude of an atom is proportional to the total 

number of core electrons in the atom. The scattering ability of different atoms as a 

function of sin Ʌ/  is defined by the X-ray scattering factor f0 [113]. The scattering ߣ

amplitude from the unit cell is termed as the structure factor, Fhkl. The amplitude, 

|Fhkl|, is proportional to the square root of scattered intensity, I(hkl) as expressed 

by the following relation [115]: 

               |Fhkl|2 = sI(hkl)                  Equation 2.6 

where s is a variable that is dependent on the sample and experimental setup, and 

can be expressed as follows:       ݏ =  ቆܫ௢ߣଷܫௌͺ�ݎ ቇ ீܭ ோܭ ℎܸ௖ଶܬ  ௣ܮ
                                    
Equation 2.7 

I0 = the intensity of the incident beam,  

= the wavelength of the beam,  

Is = the height of the detector slit,  

r = the distance between the sample and detector,  

Jh = the multiplicity for reflection (hkl),  

Vc = the unit cell volume,  

Lp = the combination of the Lorentz and polarisation factors for the diffractometer 

geometry,  

KR = (e2/mec2)2 where e and me are the charge and mass of an electron and c the 

speed of light,  

KG = (1/8) for X-ray Bragg-Brentano geometry (where the sample mount is tilted by an angle Ʌ while the detector rotates by ʹɅ) and KG = V/4 for X-ray Debye-

Scherrer geometry (also known as transmission geometry where the sample 

rotates on an axis to minimise the effect of preferred orientation while the detector 

moves by 2Ʌ), where  is the linear absorption coefficient of the sample and V is 

the volume of the sample irradiated by the beam.  

The structure factor can be defined as a Fourier series by summing over all atoms 

in the crystal structure as follows [115]: 

୦୩୪ܨ                                                       = Σ୧ ௜݂  ݁ଶπ୧ሺ୦௫i + ୩௬i + ୪௭iሻ                                                       Equation 2.8 
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where ௜݂  is the X-ray scattering factor (or form factor) of atom-i,  xi, yi and zi are the 

fractional coordinates of atom-i in the unit cell and h, k and l are the Miller indices. 

The X-ray scattering factor, f can be given by the sum of f0 + fǯ + ifǯǯ where fǯ and fǯǯ 
are the real and imaginary components, respectively, of the anomalous scattering 

factor which depend on both atom type and the wavelength of the radiation 

source, and f0 is the normal atomic scattering factor of the atom which is a function 

of sin Ʌ/ ɉ [113]. 

In a real material, the atoms are not fixed within the crystal lattice but are in 

an oscillation about their average positions that depends on temperature.  There 

will be an additional weakening of the scattering power of the atoms by the so-

called Debye-Waller factor due to the thermal displacements of the atoms [114]. 

This Debye-Waller factor is angle-dependent and affects the high angle reflections 

substantially. The scattering amplitude decreases monotonically at higher 

diffraction angles at temperatures T > 0 K. These effects can be accounted for using 

the Debye-Waller equation [115]: 

where f is the scattering factor under experimental conditions, f0 is the scattering 

factor at 0 K, and B, the Debye-Waller factor, is defined as B = ͺɎ2ۃu2ۃ .ۄu2ۄ signifies 

the mean square displacement of the atom from its equilibrium position. These 

displacements can be either isotropic or anisotropic. The anisotropic 

displacements are not the same in all directions giving an ellipsoidal distribution 

about their equilibrium position, with a ͵ x ͵ symmetric matrix: Ⱦ11, Ⱦ22, Ⱦ33, Ⱦ12, Ⱦ13 and Ⱦ23. 

The number of electrons present in the atom determines the scattering 

power. Larger atoms that contain larger number of electrons give better scattering 

than that which have a small number of electrons; hence it is difficult to determine 

the atomic coordinates of those atoms with small atomic numbers, such as 

hydrogen, by this technique. While Equation 2.9 is expressed for an individual 

atom, it can be expanded to include all the atomic scattering factors for individual 

atoms in a unit cell containing n atoms and their Debye-Waller factors as follows 

[114]: 

                                   ݂ = ଴݂ ݁(−� ���మθλమ )
                      

                         Equation 2.9 
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= ℎ௞௟ܨ          ∑ ௜݂௡௜=ଵ ݌ݔ݁ ௜ܤ−] ௦௜௡మ θఒమ ] + ௜ݔሺℎ݅�ʹ]݌ݔ݁ + ௜ݕ݇   ௜ ሻ]          Equation 2.10ݖ݈ 

where Bi is the Debye-Waller factor which accounts for the thermal motion of 

atom-i.  

2.2.6 Neutron diffraction 

Unlike X-rays, neutrons are predominantly scattered by the nuclei of atoms 

via the strong force. Since neutrons are spin-ͳ ʹ⁄  particles, for nuclei with spin, 

there is also an electromagnetic interaction between the neutron and the nucleus. 

The magnitude of this interaction depends on the spin state of the nucleus [116].  

Whilst the X-ray scattering power of an atom is proportional to the total 

number of electrons, in the case of neutron diffraction, since the scattering process 

involves the interaction between the neutron and the atomic nucleus, the 

scattering power only depends on the nucleus itself. Therefore, neutron diffraction 

is the technique of choice to study light elements such as hydrogen, oxygen or 

lithium especially in the presence of heavier ones. Neutrons also interact with 

unpaired electrons via their spin and magnetic moments, which allows studying of 

magnetic order in a material.  

When neutrons are concerned, the angular-independent term Ǯscattering 
length, bǯ is used rather than the angular-dependent form factor, f [114]. The 

scattering length measures the strength of the neutron–nucleus interaction. If a 

nucleus-j has a spin or different isotopes, b takes different values for different 

species. The mean value ௝ܾ  for element j is called the coherent scattering length 

which is expressed in femtometers (1 fm = 10−15 m) [113]. The coherent scattering 

length is independent of the Bragg angle and the corresponding factors remain 

constant for any Bragg reflection. The area of each nucleus seen by a neutron is 

represented by the coherent cross section  �௖ , and can be expressed as follows 

[117]:                             �௖ = Ͷ�( ௝ܾ)ଶ
   Equation 2.11 

The sum of the corresponding macroscopic coherent �௖ , incoherent �௜ , and 

absorption �௔ cross sections gives the total cross section per unit volume with a 

unit of cm−1. The neighbouring elements in the periodic table as well as isotopes 
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can have different scattering lengths and in some cases negative coherent 

scattering lengths are observed such as for Li, Ti and Mn, signifying that the 

neutron is subjected to an attractive potential of the nucleus rather than a 

repulsive potential. The best known form factors for X-rays and scattering lengths 

for neutrons of all chemical elements are listed for common isotopes and their 

naturally occurring mixtures (neutrons) and for neutral atoms and common ions 

(X-rays) in the International tables for Crystallography, Volume C [118]. 

There are two types of neutron diffraction methods based on determination 

either of wavelength using the Bragg condition for a single-crystal monochromator 

(constant wavelength neutron diffraction), or of velocity, measuring the time a 

neutron takes to travel a known distance (time-of-flight neutron diffraction) which 

differ according to the choice of the neutron source [114].  

The monochromatic neutron diffraction technique is commonly used at a 

nuclear reactor source where a beam of neutrons with a constant wavelength is 

selected by a monochromator and directed toward a crystalline material. On the 

other hand, at a pulsed neutron source, a pulsed beam of neutrons with a wide 

spectrum of energies is directed toward a sample. Diffracted neutrons are 

recorded by sets of detector banks positioned at different fixed scattering angles. 

The energy and hence the wavelength of the diffracted neutrons is determined by 

recording the flight time at which each diffracted neutron arrives at the detector. 

In this work, the time-of-flight (tof) technique has been used for the neutron 

diffraction studies.  

For the tof technique, the Bragg equation must be combined with the de 

Broglie relationship to extract the interplanar d-spacing values. The wavelength of 

a neutron is related to its momentum through the de Broglie relationship, which is expressed as ɉ = h/mʋ where h is Planckǯs constant, m is the neutron mass and ʋ is 

the neutron velocity defined as ʋ = L/t, where L is the total flight path in metres 

and t is the time-of-flight measured in microseconds. The following relation is 

obtained between the time-of-flight and the d-spacing by combining the de Broglie 

and Bragg equations: 
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ݐ                   = Ʌℎ݊݅ݏ݀ܮ݉ʹ   
             Equation 2.12 

 

The integrated intensity of a Bragg reflection in a tof neutron diffraction can be 

described as follows [119]: 

ℎ௞௟ܫ  = ସߣሻߣሻ�ሺߣ௢ሺܫܿ ௦ܸ ܣℎ௞௟ሺߣሻ × ℎ௞௟|ଶܨ| ሻ݆ߣℎ௞௟ሺܧ  Ʌ∆ɅͶݏ݋ܿ ௖ܸଶ݊݅ݏଶɅ 
        Equation 2.13 

where ܿ is a normalising constant which is proportional to counting time, ܫ௢ሺߣሻ 

represents the incident neutron flux at wavelength ߣ, �ሺߣሻ symbolizes the detector 

efficiency at wavelength ܣ ,ߣℎ௞௟ሺߣሻ is the attenuation coefficient for reflection hkl, ܧℎ௞௟ሺߣሻ represents the extinction coefficient for reflection hkl, ௦ܸ and ௖ܸ are the 

sample and unit cell volume, respectively, ݆ represents the reflection multiplicity, ܨℎ௞௟  is the structure factor, and ∆Ʌ is the angular width of the detector. 

2.2.7 Radiation sources 

X-rays, a type of electromagnetic radiation, have wavelengths from ~0.1 to 

~100 Å, between those of ɣ-radiation and ultraviolet rays. The most commonly 

used X-ray wavelength range in crystallography is ~0.1 - 5 Å (corresponding to 

~125 – 2.5 keV), wavelengths of the same order of magnitude as the shortest 

interatomic distances observed in both organic and inorganic materials [116]. 

X-rays are generated using two different types of source. The first type, 

where X-rays are generated by bombarding a metal plate with high energy 

electrons, is termed a conventional X-ray tube. In X-ray tubes, a filament is heated 

to produce high energy electrons which are accelerated in a vacuum by a high 

electric field towards a metal target. After bombarding the metal plate, core 

electrons of the metal are excited to higher energy orbitals, and the energy of the 

relaxation of electrons is emitted as X-rays.  

Two types of X-rays are emitted in this process: a continuous range of 

wavelengths knows as white (Bremsstrahlung) radiation, and characteristic 

radiation. White radiation is always emitted due to the collisions of the accelerated 

electrons with the core electrons of the metal atom. Characteristic radiation is 

obtained when the energy of the accelerated electrons is higher than a certain 

threshold value and it shows characteristic peaks. The energy of these 
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characteristic peaks depends on the metal target. After the collision, electrons from 

one of the inner electron shells of the metal atom are ejected. The ejected electrons 

are then replaced by electrons from a higher energy level which emit the energy 

difference of the two levels as X-rays with characteristic wavelengths. If the 

electrons fall into the K shell (n=1), the emitted X-rays are defined as K-radiation 

and are labelled KȽ or KȾ. Two transitions occur in the case of copper. One is a 

transition from 2p to 1s which produces radiation labelled as KȽͳ = 1.5406 Å and 

KȽʹ = 1.5443 Å due to the splitting of the 2p orbitals in copper. The second one is a 

transition from 3p to 1s, labelled as KȾ = 1.3922 Å. Monochromators are used to 

filter out the undesired X-ray wavelength [113], [116]. 

The second type of X-ray source is generated at synchrotron radiation 

facilities where the electromagnetic radiation is emitted by charged particles in 

circular orbits tuneable to a wide range of wavelengths (103 - 10−1 Å). Today, so-

called third generation synchrotron radiation facilities are in operation. Their 

brilliance (the measure of the quality of the source) exceeds the conventional X-ray 

sources by nearly ten orders of magnitude. In this study, third generation 

synchrotron sources were used for the X-ray diffraction experiments. Basic 

fundamentals of each of the different synchrotron facilities will be addressed 

separately in a different section.  

Neutrons are uncharged subatomic spin-ͳ ʹ⁄  particles with mass 1,839 times 

that of an electron, and as previously mentioned they are produced either from 

nuclear reactor sources (e.g. the Institute Laue Langevin, ILL) or pulsed 

(spallation) neutron sources (e.g. ISIS Rutherford Appleton Laboratory). At a 

nuclear reactor, neutrons are produced by the fission of 235U nuclei. The average 

energy of the generated neutrons in a reactor after each fission event is 

approximately 190 MeV which causes the neutrons to be very fast. Since only slow 

neutrons can be captured by a 235U nucleus the generated fast neutrons must be 

slowed down by a moderator to increase their capture probability in reactors. 

During the moderation process, the fast neutrons are slowed down and they gain a 

wavelength suitable for neutron diffraction experiments. The neutrons after the 

moderation process, named thermal neutrons, have a kinetic energy of about 

0.025 eV. Nuclear reactors produce continuous neutron beams with a wide range 
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of neutron wavelengths. Therefore, a produced neutron beam must be 

monochromated to narrow the range of neutron wavelengths for most of neutron 

diffraction experiments. This results in loss of flux from the source which is one of 

the biggest disadvantages of the reactor-based neutron sources. This problem is 

resolved in the new generation of highly intense pulsed (spallation) neutron 

sources. 

In a pulsed (accelerator-based) neutron source, bunches of protons are 

accelerated to high energies in a particle accelerator and then each bunch of 

protons is released as a pulse to bombard a heavy metal target such as uranium, 

tantalum or tungsten, where spallation occurs. High energy neutrons are produced 

after the collision of each proton with the nuclei in the target. High energy 

neutrons are then slowed down by a moderator. At the end of the process a pulsed 

neutron flux is generated, which is an ideal source for the tof neutron diffraction 

technique as there is no need to use a monochromator for this technique. As a 

result the loss of the flux is removed [113], [116], [117]. The final flux obtained for 

the tof diffraction experiments is ~102 times higher, with shorter wavelength 

neutrons, than that produced in a reactor source, even though the raw flux 

produced by a reactor is higher than a pulsed neutron source. This allows the 

spallation source diffractometers to measure very small d-spacings without reaching the ǮsinɅ limitǯ. The smallest d-spacing with constant wavelength 

diffractometers is limited to dmin = ɉ/ʹ, assuming that the detector can be 

positioned at 2Ʌ = 180°.  

2.3 Powder Diffraction Data Analysis 

2.3.1 The Rietveld method 

All collected X-ray and neutron powder diffraction data were analysed using 

the Rietveld refinement technique, which was first devised for the analysis of 

neutron diffraction data at fixed wavelength by Hugo Rietveld [109], then extended 

later for conventional X-ray and synchrotron X-ray diffraction data. 

In the Rietveld method, an initially proposed starting structural model is 

fitted to the X-ray or neutron powder diffraction data. It is a least squares 

algorithm-based technique to optimise the fit between the observed data points 
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and a calculated diffraction pattern by adjusting parameters of the model and 

instrument, which is used for the data collection. This method is used for a variety 

of purposes including refining crystal structures, determining the crystallite sizes 

in samples, calculating the amount of disorder and quantitatively determining the 

percentages of different phases in samples [120], [121]. 

The Rietveld refinement technique was performed in this work using a set of 

programs known as General Structure Analysis System (GSAS) which is written in 

the FORTRAN language. Since it is difficult to view various options and the refined 

parameters, a graphical user interface (GUI) was used. EXPGUI is a GUI to GSAS and 

provides many useful utilities for viewing fits and refinement results, and applying 

different profile functions (depending on factors such as the features of the beam 

and the diffractometer) [122]. 

2.3.2 Peak intensity calculation 

The Rietveld technique uses the entire diffraction pattern rather than 

separating it into a set of integrated intensities for each of the Bragg reflections. 

The reflection contributions are corrected for all geometric and sample dependent 

factors and the calculated intensity, yc, at position 2Ʌi in the diffraction pattern can 

be described as: 

௖ሺʹɅ௜ሻݕ         = ௕ሺʹɅ௜ሻݕ  + ݏ  ∑ ݆௞௞  ሺܲܮሻܣܣ௦ ௞ܲ|ܨ௞|ଶ�௞ሺʹɅ௜ − ʹɅ௞ሻ   Equation 2.14 

 

where yb is the background intensity, s is a scale factor, jk is the multiplicity factor, 

LP are the Lorentz and polarisation factors, A is the attenuation coefficient, As is an 

asymmetry correction factor, Pk is the preferred orientation correction, Fk is the 

structure factor and �௞ሺʹɅ௜ − ʹɅ௞ሻ is a reference to the peak shape profile 

function [120]. 

A residual function (M), is generated to fulfil the principle of the Rietveld 

refinement to minimise the difference between the calculated and observed 

diffraction pattern intensities. During the refinement, the residual function is 

minimised by adjusting the calculated pattern as follows [123]: 
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ܯ                         =  ∑ ��௜ଶݓ  ሺݕ௢ሺʹɅ௜ሻ −  ௖ሺʹɅ௜ሻሻଶݕ

 

             Equation 2.15 

 

where yo(2Ʌi) is the observed intensity at position 2Ʌi, and wi is a statistical 

weighting function which is expressed as: 

௜ݓ                        =  ͳݕ௢௧ሺʹɅ௜ ሻ 
        Equation 2.16 

where yot(2Ʌi) is the total intensity measured which is the sum of the observed 

intensity, yo(2Ʌi), and the background intensity, yb(2Ʌi), at position 2Ʌi. 

2.3.3 Peak shape determination 

The shape of the observed peaks depends on the measured sample (domain 

size, defects, and stress/strain) and the settings of the instrument (the radiation 

source, geometry and slit sizes), which change as a function of 2Ʌ. This complex 

dependence requires a complex peak shape function rather than using a simple 

Gaussian profile, and thus several functions are employed to model the peak shape 

over the whole range of diffraction angles for which data were collected [123]–
[126]. 

In the case of using a constant wavelength X-ray beam, a complex function is 

applied to model the peak shape known as the pseudo-Voigt which is a 

combination by addition of Gaussian and Lorentzian functions [126]. The relation 

between the Gaussian and Lorentzian functions and the pseudo-Voigt function, �௞ሺʹɅ௜ − ʹɅ௞ሻ (2Ʌk is the calculated position of the Bragg peak) can be expressed 

with the following relation [124], [125]:           �௞ሺʹɅ௜ − ʹɅ௞ሻ = Ʉ ∙ ,ሺʹɅܮ ௅ሻܪ + ሺͳ − Ʉሻ. ,ሺʹɅܩ  ሻ                                       Equation 2.17ீܪ

 

ሺʹɅሻܩ              = ீܪʹ  [݈݊�ʹ ]భమ ݌ݔ݁ ቆ−Ͷ݈݊ʹீܪଶ ሺʹɅ − ʹɅ஻ሻଶቇ 
                             

                   Equation 2.18 

 

ሺʹɅሻܮ                = ௅ܪ�ʹ  ቆͳ + Ͷ(√ʹ − ͳ)ܪ௅ଶ ሺʹ� − ʹɅ஻ሻଶቇ−ଵ
 

                         

                   Equation 2.19 
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 where Ʉ is the mixing parameter defining the ratio of the peak shape between a Gaussian ȋwhere Ʉ = ͲȌ and a Lorentzian ȋwhere Ʉ = ͳȌ function, ʹɅ is the scattering angle, and ʹɅB is the Bragg angle. HG and HL represent the full width at 

half of the maximum peak height (FWHM) of the Gaussian and Lorentzian peaks, 

which show angular dependences and can be expressed as [126]: 

ீܪ                 =  [ܷ tanଶ Ʌ + ܸ tan Ʌ + ܹ + �coୱమ θ]భమ                      
                   Equation 2.20 

௅ܪ                 = ܺ tan Ʌ + �coୱ θ                                                 Equation 2.21 

 

where U, V, W and P are Gaussian, and  X and Y are Lorentzian peak shape 

parameters which should be treated as adjustable variables in the refinement.  

In this work, the analysis of the CW X-ray diffraction patterns was carried out using Ǯprofile function ͵ in GSASǯ which includes both Gaussian and Lorentzian 
peak shape parameters (GU, GV, GW, GP, LX and LY) and some other parameters 

related with the diffractometer and sample used for the data collection. Low angle 

peak asymmetry (arising from axial divergence) can be modelled in GSAS by 

adjusting or refining the profile terms; in CW profile function 3, these are S/L and 

H/L where L is the diffractometer radius, H and S are the sample and detectors 

heights, respectively [127]. Ideally, these two terms should be fixed for a specific 

diffractometer; however, they can be refined if low angle peaks are present.  

Another profile term included in profile function 3 is transparency, trns, 

which describes the X-ray penetration depth into a flat plate sample in Bragg-

Brentano (reflection) geometry. However, since all my samples were measured in 

a Debye-Scherrer ȋtransmissionȌ geometry, the Ǯtrnsǯ term was not refined during 
the analysis and kept at zero. In addition to those, two more parameters can be 

included for an accurate determination of the peak shape function; an anisotropy 

coefficient, stec, to define the Lorentzian broadening of the peaks, and strain 

broadening effects, ptec [127]. These two peak shape broadening terms were not needed to be refined and kept at zero. Apart from those, another term, Ǯshftǯ, can be 
included in the analysis to describe vertical displacement of a flat plate sample in 

Bragg-Brentano geometry. )nstead of the Ǯshftǯ option, a different term can be used 
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for the both geometries which is known as the ǮZEROǯ term which describes any 
shift (error) in the absolute 2Ʌ = 0 position for the data and is measured in units of 

centidegrees. 

In order to fit the peak shape of the tof neutron diffraction patterns, 

diffractometer constants to calculate the time-of-flight positions of the Bragg 

reflections must be known. There are three diffractometer constants, DIFC, DIFA 

and ZERO, which are determined by fitting the data collected from a standard 

sample during the calibration process and are given in an instrument parameter 

file. DIFC describes the relation between the total flight path, L, d-spacing and 

scattering angle, 2Ʌ, of a detector. It should be kept in mind that DIFC varies from 

one detector bank to another due to the different scattering angles of detector 

banks. In general, DIFC is not refined and remains fixed, however in situations 

where both low and high resolution histograms obtained from different detector 

banks are present, DIFC can be refined. DIFA is sample-dependent and used to 

introduce small corrections to the expected time-of-flight of a reflection to allow 

peaks to shift due to absorption in the sample. ZERO is only instrument-dependent, 

thus it should not be refined and accounts for small differences between the 

various timing signals in the ISIS accelerator and the instrument data acquisition 

system [128]. 

The peak shape of the tof neutron diffraction pattern is modelled using the 

pseudo-Voigt function. The FWHM values of which are expressed in GSAS 

differently from those of the CW X-ray profile functions. The widths of the 

reflections using the Gaussian (Equation 2.22) and Lorentzian (Equation 2.23) 

parts of the pseudo-Voigt function can be modelled as:                      �ଶ = �଴ଶ +  �ଵଶ݀ଶ + �ଶଶ݀ସ   Equation 2.22 

 

                                 � =  �଴ +  �ଵ݀ +  �ଶ݀ଶ +  ሺ �ଵୣ݀ +  �ଶୣ݀ଶሻ cos ∅                                  Equation 2.23 

where �଴, �ଵ, and �ଶ  are Gaussian and �଴, �ଵand �ଶ are Lorentzian peak profile 

parameters. The equations above show that the width of a reflection is 

proportional to its d-spacing. However, in some cases where anisotropic line 

broadening is present, this profile function might not provide a satisfactory fit for 
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the peak shape. In such cases other profile functions provided in GSAS should be 

considered. Further information can be found in the GSAS manual [127]. 

2.3.4 Background determination 

The background scattering originates from various sources depending on the 

material studied (amorphous and disordered phases, fluoresced X-rays, thermal 

diffuse scattering caused by lattice thermal vibrations, scattering of X-rays from 

air) and on the instrument itself (detector noise, misalignment of the incident and 

divergence slits, thickness and material of the sample holder). In this work, due to 

the air sensitivity of samples, glass capillaries were used as sample holders, and 

hence a contribution to the background from the amorphous glass is observed.  

There are two ways to deal with the background contribution. It can be either 

estimated by selecting a number of baseline points away from the Bragg peaks in 

the pattern and then applying a linear interpolation between these points or it can 

be modelled by an empirical or semiempirical function which contains several 

refinable background coefficients. Since the background contribution arises from 

several different factors and appears differently from one diffraction pattern to 

another, GSAS provides eight different functions for modelling different types of 

background contributions [127]. 

Fitting of the background and the refinement of the background coefficients 

should be performed properly because there is always a strong correlation 

between the determination of the background and other parameters such as 

Debye-Waller displacement factors, peak shape and zero-point error. Therefore, in 

the early stage of the refinement procedure only a linear interpolation should be 

applied between the selected points without refining the background coefficients 

and then the unit cell parameters, peak shape and profile parameters can be 

refined. Once a reasonable starting model has been obtained, the background 

coefficients, Debye-Waller displacement factors and zero error can be refined, 

otherwise the refinement procedure results in a wrong starting model with 

incorrect parameters which can hinder the convergence process. 



 

44 
 

2.3.5 Reliability of Rietveld refinement 

In Rietveld analysis, the least squares algorithm minimizes the differences 

between the observed and calculated diffraction profiles. In GSAS, the agreement 

between the two different profiles is quantified by the R-factors listed in the .LST 

file which is written and updated after each cycle of the refinements. The most 

straightforward discrepancy term is the weighted profile R-factor, Rwp which is 

defined as follows [120]:  

ܴ௪௣ଶ =  [∑ ௢ሺʹɅ௜ሻݕ|௜ݓ − ��௖ሺʹɅ௜ሻ|ଶଶݕ ∑ ��௜ଶݓ ௢ሺʹɅ௜ሻ|ଶݕ| ] 
      Equation 2.24 

where yo(2Ʌi) and yc(2Ʌi) are the observed and calculated intensity at position 2Ʌi, 

and wi is a statistical weighting function. 

If the calculated model is the best possible model that can ever be obtained for a 

given set of data, the best possible Rwp value can be obtained which is termed as 

the expected R-factor. The Rexp reflects the statistical quality of the data and the 

number of variables used in the refinement, and described as: 

ܴ�௫௣ଶ =  ቆ ܰ − ܲ + ∑ܥ �௜ଶθݓ  ௢ሺʹɅ௜ሻ|ଶቇݕ|
              Equation 2.25 

where N is the number of observations, P is the number of parameters refined, and 

C is the number of constraints applied to the model.  Another related statistical term is the agreement χ2 factor, which can be calculated 

using the following equation [129]: 

                               ߯ଶ = ቆ ܴ௪௣ܴ�௫௣ቇଶ =  ∑ ௢ሺʹɅ௜ሻݕ| − ��௖ሺʹɅ௜ሻ|ଶଶݕ ሺܰ − ܲ + ሻܥ  
               Equation 2.26 

)f the calculated model is ideal and the standard uncertainties are correct, χ2 approaches ͳ. A value of χ2 < 1 generally indicates that there are more parameters 

in the model than justifiable by the quality of the data [129]. Thereby for the accuracy of the refinement model the χ2 should be monitored during the 

refinement procedure. 
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2.3.6 Modelling volume compression and thermal expansion  

Volume Compression 

Unit cell parameters vary systematically with temperature and pressure, and 

a number of approaches have been developed to parameterize these changes 

which relate to volume compression and thermal expansion. The study of the 

temperature and pressure response of materials presented in this work, with 

Rietveld analysis, enabled changes in unit cell volume to be extracted. Thus, the 

changes in electronic and magnetic properties were parameterized as a function of 

temperature or pressure obtained through other techniques in terms of the unit 

cell volume. 

When pressure, P, is applied on a volume, V, the work done, W, is given by the 

expression W = P ΔV, resulting in negative ΔV in all materials under compression. 

The magnitude of these changes is directly related to interatomic forces, and hence 

an analysis of structural changes with pressure might reveal much about these 

interatomic forces [130].  

The bulk modulus, K, is an important parameter, used to describe the 

stiffness of a solid, which relates the change of volume with P. The variation of the 

volume of a solid with pressure, at constant temperature can be described as 

follows: 

ܭ = − ܸδܲδܸ  
Equation 2.27 

 

Measured EoS are usually parameterized in terms of the values of the bulk 

modulus, and its pressure derivatives, evaluated at zero pressure [131]. These 

zero-pressure moduli are normally denoted by a subscript ǮͲǯ such as K0 or Kǯ0. ǮEquations of stateǯ ȋEoSȌ can be used to define the elastic relationship of 
volume to intensive variables, and hence enables the compressibility behaviour of 

solids to be described. Different assumptions can be made about how K changes 

with P, or how V varies with P. Unlike Ǯideal gases,ǯ there is no absolute 
thermodynamic basis for specifying the correct form of the EoS of solids. 

Commonly used EoS are established on various assumptions; however the validity 

of these can only be evaluated by considering whether the EoS can be successfully 
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applied to the experimental data. In this work, the Murnaghan and Birch-

Murnaghan EoS were employed to extract the compressibility behaviour of the 

studied materials from the isothermal P-V data sets. 

The Murnaghan EoS is based on the supposition that K varies linearly with 

pressure (K = K0 + Kǯ0P). Integration yields the following equation at constant 

temperature [132]: 

                 ܲ = ଴′ܭ଴ܭ [( ଴ܸܸ)௄′బ − ͳ] 
     Equation 2.28 

 

where V0 is the volume at Ǯzero-pressureǯ and K′0 is the pressure derivative of K0. 

The Murnaghan EoS yields correct values of the room pressure bulk modulus for 

compressions up to about 10% (i.e. V/V0 > 0.9), and has the advantage of algebraic 

simplicity. 

The Birch-Murnaghan EoS is a finite strain EoS and assumes that the strain 

energy of a compressed solid can be described as a Taylor series in the Eulerian 

finite strain, fE, defined as follows [133]:  

            ୉݂ = ሺ ଴ܸ/ܸሻమయ − ͳʹ  
Equation 2.29 

 

The third-order Birch-Murnaghan EoS was employed using the following 

expression: 

           ܲ = ଴ܭ͵ ୉݂ሺͳ + ʹ ୉݂ሻ5మ [ͳ + ͵ʹ ሺܭ′଴ − Ͷሻ ୉݂] 
   Equation 2.30  

Thermal expansion 

The addition of heat to an ionic crystal increases the energy of the crystal, 

principally in the form of lattice vibrations or phonons. If ionic bonds are treated 

as classical harmonic oscillators, the principal calculated effect of temperature is 

just increased vibration amplitude, resulting in breakage of bonds at high 

temperature due to extreme amplitudes. However, in real crystals, the purely 

harmonic model of atomic vibrations is not adequate to explain many properties of 

crystals. The equilibrium bond length does not change in the harmonic model, 

which leads to zero thermal expansion. Ideally, anharmonic vibration terms should 
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be employed in any analysis of the effect of temperature on crystal structure as its 

consequences include thermal expansion, and hence the change in equilibrium 

bond distance with temperature [130].  

To interpolate the variations of lattice parameters over a temperature range, 

a method described by Sayetat and co-workers, which combines the early 

methodology of the Debye model for specific heat and the Grüneisen theory of the 

thermal expansion of solids, is used. Using this method, any eventual thermal 

anomalies, which may arise due to a phase transition or valency 

ordering/disordering can be shown, and phonon contributions from the thermal 

expansion curves of the lattice parameters can be extracted [134]. In this work, 

these curves were investigated using X-ray and neutron powder diffraction 

techniques over a temperature range.  

According to Grüneisenǯs empirical law, thermal expansion coefficient, Ƚ, is 

described by the following relation: � =  � ܭܸ�ܥ
 

Equation 2.31 
 

where � is the anharmonic Grüneisen parameter which describes the effect that 

changing the volume of a crystal lattice, V, has on its vibrational characteristics.  K 

symbolises the isothermal compressibility and CV defines the specific heat at 

constant volume, which is expressed as: ܥ� = ୪a୲�ܥ +  ∑ ௜୧�ܥ  Equation 2.32 
 

where ܥ�୪a୲  describes the phonon contribution to the specific heat and ܥ�௜  

symbolises the additional contributions e.g. magnetic and electronic. Thus, using 

this model, once the modelled phonon contributions are subtracted, extra 

contributions to the thermal expansion can be extracted [134]. Gr“neisenǯs 
empirical law states that when the phonons are the only contribution to the 

specific heat at constant volume, the thermal expansion of the crystal volume can 

be written as follows: 

               ܸ ≃ ଴ܸ ቌͳ + � ܭ ∫ ୪a୲்ܸ�ܥ
଴ dܶቍ 

 
Equation 2.33 

where V0 is the crystal volume at 0 K. 
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The Debye model is a method developed by Peter Debye in 1912 to estimate 

the phonon contribution to the specific heat in a solid (specific heat and thermal 

expansion are correlated data) [135]. Debyeǯs model describes the variation of CVlat 

with temperature, T as follows: 

୪a୲�ܥ                           = ሺδ/δܶሻ [ͻ݇Bܰܶݎሺܶ/Ʌୈሻଷ ∫ ଷ݁xݔ − ͳ �/θDݔ݀ 
଴ ] 

     Equation 2.34 

where N is the number of primitive cells in the crystal, and r is the number of 

atoms in the polyatomic basis [134]. In the Debye approximation, � can be defined 

as follows:            � = − (δ ln ωୈδ ln ܸ ) 
Equation 2.35 
 where ωD is the Debye frequency, defining the maximum frequency of the crystal lattice vibrations of the crystal ȋωD ∝ ɋs/a, ɋs is the sound velocity, a is the crystal 

lattice constant), related to the characteristic Debye temperature, Ʌୈ, as follows:                                Ʌୈ = ℏωୈ݇B  
                Equation 2.36 

 

kB and ħ are the Boltzmann and reduced Planck constants, respectively [134]. 

A combination of Equations 2.33 and 2.34 provides the simplest theoretical 

description of the lattice thermal expansion:                         ܸ ≃ ଴ܸ + Vܶφܫ (Ʌୈܶ) 
     Equation 2.37 
 

where IV = 3kBrKγ, and φ  is the Thacherǯs approximate function of ȋɅD/T). The coefficients of the function φ, expanded to the fourth power in T, are given in 

Sayetat et al [134]. Equation 2.37 is used to fit the experimental temperature 

dependence of the crystal volume with least-squares refinement of the ɅD, γ, and 
V0. 

 
2.4 μSR Spectroscopy ɊSR stands for muon spin Ǯrotationǯ, or Ǯrelaxationǯ, or Ǯresonanceǯ, depending 
on how the method is being used, or simply muon spin research, and has been 

extensively used to probe a wide range of phenomena in condensed matter and 

molecular science such as magnetic ordering, superconductivity and defects in 
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semiconductors [136]–[139]. Basically, ɊSR monitors the time evolution of the spin 
polarisation of implanted positive, spin-polarised muons into a sample of interest 

by detection of positrons emitted after the asymmetric decay of muons. A brief 

summary of the properties, production, implantation and decay of muons is 

included in this section.  

2.4.1 Muon production, implantation and decay 

A muon is an unstable elementary particle produced by the decay of pions; it 

decays to a positron, e+ and two neutrinos, and has a life time of 2.2 µs [136]. While both charge states of muons exist, in the ɊSR technique mostly positive muons, Ɋ+, 

are employed. The positive muon can be treated as a light proton with a mass one 

ninth that of the proton and a spin of 1⁄2. The success of the ɊSR technique relies 
on two circumstances: the intrinsic polarisation of the muons during their 

production from pions: π+  → Ɋ+ + ѵஜ  and the anisotropy of the positron emission 

in their subsequent decay to positrons and neutrinos: Ɋ+ → е+  + ѵе +   ѵஜ [136]. 

Positive pions, π+ (lifetime 26 ns) are generated when a graphite target is 

bombarded with high energy proton beams. Muons are also present in cosmic rays 

but with lower intensities.  

The lifetime of muons is long enough to be collected and delivered to the 

muon instruments where they are implanted in the samples. Since muons are 

charged particles, they are collected and delivered to beamlines by dipole and 

quadrupole magnets [35]. In this work, the ISIS pulsed muon source, which serves four ɊSR instruments with excellent data rates for time-resolved ɊSR studies, was 
used.  

The high spin polarisation of the muon beam is provided by the beamline 

magnets which are tuned to select muons of a particular momentum to make their 

spins almost fully aligned along the beam direction. Even during the implantation, 

the polarisation of the muon beam is preserved close to 100% regardless of 

sample temperature or applied magnetic fields, which differs from typical 

magnetic resonance experiments that depend on the temperature and magnetic 

field, and the initial spin polarisation of the latter is not as high as that of the ɊSR 
technique [140].  
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As mentioned above, muons decay to positrons and neutrinos. These 

positrons are emitted preferentially in the direction of the muon spin at the 

moment of decay. As a result, the observation of decay positrons (asymmetric 

decay of muons) enables the direction of the spin to be monitored and displayed as 

a function of time following implantation inside the sample. In other words we 

detect the decay positrons, not muons themselves, which stop and decay inside the 

samples of interest. Once the muons have been implanted inside any material (in 

solid, liquid or gas form), since the muons are very sensitive to their magnetic 

environment thanks to their magnetic moments, a magnetic interaction arises 

between the muon spins and local magnetic fields. This magnetic interaction is the primary source of information in ɊSR and renders the muons an excellent probe of 
frustrated or weakly-magnetic systems [141]–[144].  

2.4.2 μ+ in matter 

The implanted muons that have very high energy are slowed down to 

thermal energies on the nanosecond timescale while the initial polarisation is mostly preserved. The way that Ɋ+ interacts with its surroundings depends on the 

physical state and chemical properties of the material in which the muons are 

implanted. In certain materials during the slowing down process, a fraction of the 

muons can pick up an electron to form muonium, Mu ȋɊ+ e−) that can be treated as 

a light isotope of hydrogen, as the mass of Mu is one ninth that of hydrogen and the 

chemical properties are similar to that of hydrogen. Muonium atoms can exist in 

three different states; a free (vacuum) muonium atomic state, muonium-containing 

free radicals (RMu·) in which muonium reacts with organic molecules due to its 

unpaired electron, leading to paramagnetic states, and finally a diamagnetic state 

where there is no interaction [138], [145]–[147]. While ɊSR is applied for the 

characterisation of a large variety of materials using different instruments and 

techniques, in this section, only the technique for the measurement of muon spin relaxation ǮT1ǯ in A3C60 fullerides in longitudinal fields is included, being the experimental ɊSR technique employed in this work. 
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2.4.3 Longitudinal Field Muon Spin Relaxation 

Longitudinal Field Muon Spin Relaxation (LF-µSR) involves the application of 

an external magnetic field parallel to the initial direction of the muon spin 

polarisation, and the measurements of the time evolution of the muon polarisation 

along its original direction. Since the applied field is longitudinal in the absence of 

competing local fields within the samples, the muons are implanted in a stationary 

spin state and their initial polarisation preserved. The time evolution of the 

polarisation is known as relaxation function [136].  

When muons are implanted in A3C60 fullerides, a muonium atom is trapped 

inside the C60 cage, denoted as Mu@C60 [148]. The spin exchange interactions with 

electronic excitations open a relaxation pathway for the muon spin in Mu@C60 

[73]. The muon spin relaxation of the endohedrally-formed muonium in A3C60 

fullerides shows up in longitudinal fields. The LF-µSR studies were performed 

using a high field muon spectrometer (HiFi) which is designed for measurements 

in longitudinal fields up to 5 Tesla. At HiFi, only 10-20% of muons form muonium 

inside the C60 cage, others implant elsewhere exohedrally in the structure [74]. A 

typical instrumental setup for the LF-µSR studies is depicted in Figure 2.3. The 

same setup can be also used for experiments in the absence of an external field, 

known as Zero Field Muon Spin Relaxation (ZF-µSR). The polarized muon beam 

goes through the hole in the backward positron detector then stops in the sample. 

The asymmetric decay of muons gives different counts at the forward and 

backward counters. If there is a relaxation of the muon spin polarisation, the 

counting rate of the two detectors will change with time. Conversely, in the 

absence of any relaxation, the ratio between the forward and backward detectors 

stays constant and does not change with time.  
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Figure 2.3 Schematic diagram of a LF-µSR set up, copied from ref. [149]. 

When a free muonium atom which is a two-spin-1⁄2 system like hydrogen is 

formed in its 1s ground state, the muon spin interacts with that of the single bound 

electron leading to a large isotropic hyperfine interaction (also known as Fermi or 

contact interaction) between the muon and single bound electron which results in 

a multitude of spin states. For an isotropic muonium in its electronic ground state, 

the hyperfine spin Hamiltonian can be expressed as [74], [150]:                       � ℎ⁄ = �� ܵ� · + ܤ  �ఓ ఓܵ · + ܤ ఓܣ  ܵ� · ఓܵ   Equation 2.38 

 

where ��  and �ఓ  are the gyromagnetic ratios (the ratio of its magnetic dipole 

moment to its angular momentum) of the electron and muon, ܣఓ is the isotropic 

hyperfine coupling constant (hfcc) of Mu (ܣఓ  = 4.46 GHz and ܣு  = 1.42 GHz) which 

is proportional to the unpaired spin density at the nucleus, ܵ� and ఓܵ are the 

electron and muon spins and B is the applied magnetic induction. This Hamiltonian 

provides the field dependence of the hyperfine energy levels which is shown in a 

Breit-Rabi diagram in Figure 2.4 [74]. 
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Figure 2.4 A representative Breit-Rabi diagram to show the field dependence of the 
hyperfine energy levels of an isotropic two-spin-1⁄2 muonium atom (adapted from [74]). 

As seen in the Breit-Rabi diagram, the electronic ground state of muonium splits 

into four different energy levels. The possible observable transitions in high fields 

are (1⁄2, 1⁄2) → (1⁄2, −1⁄2) designated as ѵ12 and ȋ−1⁄2, −1⁄2) → ȋ−1⁄2, 1⁄2) designated 

as ѵ34, and at low fields they are expressed as ѵ12 and ѵ23. Due to the spin exchange 

of the muonium atom, the behaviour of the T1 muon spin relaxation rate is 

separated into two zones at the point where the rate of spin exchange events (ѵSE) 

is equal to ѵ24 (2-4 muonium hyperfine frequency). If ѵ24 << ѵSE, which defines the 

fast region, the relaxation rate is almost field-independent. Conversely, in the slow 

region where ѵ24 >> ѵSE, it is field-dependent. The relaxation rate in the slow region 

can be expressed as [74]: 

      ଵܶ−ଵ ≈ ௌாݒఓଶܣ  ఓଶܣ]ʹ  + ሺሺ�� + �ఓሻܤሻଶ]       Equation 2.39  

 

The origin of this relaxation lies in the field dependence of the spin eigenstates of 

Mu, as detailed in ref. [151]. These transitions between different energy levels, 

with repeated rapid electron spin-exchange scattering, involve a random flip of the 
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muonium electron spin (Figure 2.5). This random switch in the local field and muonium lead to relaxation of the muonǯs spin.  

 

Figure 2.5 Spin exchange of a muonium atom with subsequent evolution due to muon-
electron hyperfine interaction. QP stands for quasi particle at the Fermi surface with initial 
momentum k, and e is the magnetically scattered energy from the local moment; adapted 
from [74]. 

For detailed information, the reader is referred to the books of Schenck [152] and 

Yaouanc [139], the review articles of Cox [136], [138] and Patterson [150], and the 

PhD thesis of MacFarlane [153]. 

2.5 Radiation Facilities 

2.5.1 European Synchrotron Radiation Facility (ESRF) 

The European Synchrotron Radiation Facility (ESRF) is a third-generation X-

ray light source located in Grenoble, France. The ESRF accelerator complex 

consists of a linear accelerator (LINAC), a booster and storage ring. Electrons are 

produced using an electron gun and then transferred into the LINAC and are 

accelerated to ~200 MeV by pulsed electric fields. Accelerated electrons by pulsed 

electric fields are then injected into the booster where electrons are accelerated 

using radio frequency waves until electrons reach kinetic energy of ~6 GeV. 

Finally, an injection system transfers them from the booster ring to the storage 

ring of 844 m where the electrons circle close to the speed of light [116].  
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The storage ring consists of 32 straight and 32 curved sections equipped with 

bending magnets and insertion devices. The bending magnets are used to bend the 

electrons into a non-linear trajectory around the circumference of the storage ring. 

This results in an emission of a spray of X-rays (fan-shaped). Furthermore, the 

magnets keep the electrons circulating in their ideal orbit and group them into 

bunches, which provide a maximum current of 200 mA for a beam lifetime of ~50 

hours [154]. A general schematic illustration of a synchrotron storage ring is 

shown in Figure 2.6. 

Insertion devices are made up of periodic arrays of small magnets and 

consist of two different types, wigglers and undulators, placed in the straight 

sections of the storage ring to create characteristic X-rays for different beamlines. 

Insertion devices deliver the X-ray beams to the beamlines located around the 

storage ring [116], [154]. For this project, X-ray powder diffraction data collection 

at ambient pressures was carried out at beamline ID31. 

 

Figure 2.6 Schematic diagram of the ESRF accelerator complex (copied from [116]). 

ID31 - High-resolution X-ray powder diffraction 

Beamline ID31 was designed for high-resolution powder diffraction studies 

with very high energy resolution and fast data acquisition times. It was closed in 



 

56 
 

December 2013 and an upgraded version of the whole setup was transferred to 

beamline ID22. 

The highly collimated beam from the undulator source was directed towards 

a cryogenically-cooled Si (111) double-crystal monochromator before hitting the 

sample. The diffractometer arm of ID31 was equipped with nine Si (111) crystal 

analysers and nine detectors (channels separated by ~2°). The 9 detectors moved 

simultaneously and produced 9 high-resolution diffraction patterns as a function of ʹɅ in parallel which then can be summed in different combinations, using the program Ǯid͵ͳsumǯ [155], [156]. The offsets between the channels were calibrated 

accurately after a new wavelength was selected. The calibration was carried out 

using a highly crystalline Si standard. ID31 operated in the energy range 5 – 60 keV 

and hence provided a broad range of wavelengths varying from 2.48 to 0.21 Å. 

Furthermore, ID31 was well optimised for capillary samples with a high speed 

capillary spinner (1200 rpm) to minimise preferred orientation effects and 

provides a robotic sample changer (with capacity for 50 capillaries) compatible 

with cryostream and hot-air blower [157]. Since all my samples are air-sensitive 

they were measured in capillaries (flat plate mode is also available at ID31). 

2.5.2 SPring-8 Synchrotron Radiation Facility 

The Spring-ͺ synchrotron radiation facility is located in (yōgo Prefecture, 
Japan. The name "SPring-8" is derived from "Super Photon ring-8 GeVǯ. The 
Spring-8 accelerator complex has 4 components: a 1 GeV linac, an 8-GeV booster 

synchrotron, an 8-GeV storage ring and a 1.5-GeV NewSUBARU storage ring. While 

the 8 GeV storage ring is used for the generation of brilliant X-rays, NewSUBARU is 

facilitated for the usage of short-pulse soft X-rays. The maximum energy of the 

generated beam is 8 GeV (cf. 6 GeV at ESRF). The procedure to produce X-ray 

radiation is similar to that of the ESRF. The storage ring is also composed of 

bending magnets and insertion devices with the same purposes as explained in 

section 2.5.1. In this study, variable temperature X-ray diffraction experiments at 

ambient and high pressure were performed at beamlines BL44B2 and BL10XU of 

SPring-8, respectively. 
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BL44B2 High-resolution X-ray powder diffraction 

Beamline BL44B2 is designed for high-resolution powder diffraction studies 

and operates in the energy range 10 – 35 keV. X-rays are monochromated with a Si 

(111) double-crystal monochromator; thereafter they are focused with a Pt-coated 

bent cylinder type mirror to the sample to be measured. A hybrid detector system 

is installed on beamline BL44B2 which is equipped with a high-resolution Debye-

Scherrer camera. The hybrid detector system consists of a conventional detector, 

an off-line imaging plate (IP) which allows high d-resolution measurements, and a 

CCD detector allowing angle-resolution measurements [158]. In this study, we 

used the imaging plate for variable temperature XRPD experiments. Using a mask 

with a 10 mm width slit, twenty data could be collected on one IP which covers an 

angular range between 2° and 75° with a 0.01° interval. The XRPD data collected 

on an IP are then scanned to retrieve the profiles digitally using the local programmes Ǯimage readerǯ and Ǯipv͵ʹ.exeǯ which are provided on BL44B2 

beamline computers. The sample temperature can be ranged between 100 and 

1000 K by using a low- and high-temperature N2 open-flow system.  

BL10XU - High pressure research 

BL10XU is a specially designed beamline for high-pressure X-ray diffraction 

studies using a diamond anvil cell (DAC). A DAC is a widely used device to generate 

extreme pressures by static compression and is composed of two opposing 

diamond anvils [159]. Pressure inside the DAC is monitored using a reference 

material whose behaviour is known under pressure. At BL10XU the pressure is 

determined using the calibrated ruby fluorescence line shift with pressure. Since 

the laser induced ruby fluorescence R1 line shifts with pressure, the calibrated 

pressure dependence of the wavelength of the R1 line allows us to determine the 

pressure [160]. The sample is placed in a chamber created between the perfectly 

parallel culet faces of the two opposing diamond anvils and a gasket that is a thin 

sheet of material with a tiny hole where the culets are facing each other, used to 

encapsulate the sample. The gasket can be made of Kapton, Cu, Be or stainless 

steel.  

Since a hydrostatic pressure is desired for high pressure experiments, a 

pressure-transmitting medium is needed inside the sample chamber together with 
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the sample and the ruby. In the absence of a pressure-transmitting medium, the 

conditions are non-hydrostatic implying some unquantifiable deviations from the 

true structure metrics and also leading to broadening of the Bragg peaks. He gas 

was used as the pressure medium for data collection at BL10XU.  

High pressure studies require high X-ray energies due to the high absorption 

of the diamond windows of the DAC, limited angular range available for X-ray 

diffraction and the very small sample size. The collimated beam is 

monochromatised using a Si (111) double crystal and the monochromatic X-rays 

have a kinetic energy of 14 – 58 keV. X-ray refractive lens system has been used as 

focusing optics which increases the intensity of X-rays about 10 times. A flat image 

plate (IP) detector (Rigaku R-AXIS IV++, 300×300 mm2 area, 0.100 mm pixel size) 

has been used in this work to record images of the Debye-Scherrer rings, 

accompanied with a goniometer for the DAC, an ionisation chamber to monitor the 

beam intensity, four blade slits to adjust the spot size, attenuators, a beam stopper 

and a microscope to monitor the position of the DAC.  The recorded data on the 

imaging plate were then converted into one-dimensional intensity as a function of 

diffraction angle by azimuthal integration, using the program WinPIP [161]. 

Integration of two-dimensional powder X-ray diffraction data collected at 

beamline BL10XU 

The software WinPIP has been used to process the collected data by 

converting them into tables of scattered intensities vs. scattering angle ʹɅ [161]. If 

an IP detector is aligned perpendicular to the Debye-Scherrer conesǯ axes, the 
diffracted intensity appears as a series of concentric rings termed as Debye-

Scherrer rings, on the detection plane (section 2.2.3). If the sample is an ideal 

powder, the intensity on each ring should be uniform. However, in practice, the 

small sample volume in the DAC causes real powder rings to be spotty or 

discontinuous which results in a fundamental problem with data quality from high 

pressure experiments. Therefore, the intensity as a function of ring radius is most 

reliably extracted by averaging over numerous radial scans taken over larger 

uniform, unbroken segments of the Debye-Scherrer rings. The recorded data on 

the detection plane are integrated along circles around the centre of the Debye-

Scherrer rings, with radii ranging from zero to the IP detector border.  



 

59 
 

To extract data of intensity vs. effective radius, the x0 and y0 coordinates to 

define the position of the centre of the Debye-Scherrer rings on the image, and two 

further parameters, the tilt plane rotation angle and the tilt angle to define the 

shape and orientation of the integration ellipses, must be known before the 

integration. To convert these data into data of intensity vs. 2Ʌ, the X-ray 

wavelength and the sample-to-detector distance must also be known which is 

determined by calibration with an external standard.  

Some areas of the IP recording might include shadows cast on the detection 

area from diffracted radiation hitting the beam stopper, or the DAC, or 

overexposed spots. Therefore, these areas must be excluded before the data 

integration using masking tools provided within the WinPIP software without 

changing the image itself. There might be also some contributions from the 

crystalline diamond anvils and the ruby pressure calibration standard. If these 

contributions are non-overlapping and identifiable, they are generally masked 

prior to integration. Finally, the integrated data is ready to be analysed using e.g. 

the Rietveld method. 

2.5.3 ISIS Rutherford Appleton Laboratory 

The ISIS facility is a pulsed neutron and muon source located at the 

Rutherford Appleton Laboratory (RAL) in Oxfordshire, UK. The ISIS accelerator 

consists of an ion source, a Radio Frequency Quadrupole (RFQ) accelerator, a 

linear accelerator (linac) and a synchrotron. The ion source is the start point of the 

proton accelerator where H− ions are produced. H− ions are then transferred into 

the RFQ accelerator which focuses, accelerates and bunches the ions. The 

accelerated ions are then directed to the linac for further acceleration to 70 MeV 

with high intensity radio-frequency ȋRFȌ fields.  Finally, ʹͲͲ Ɋs long and ʹʹ mA (− 

pulses are transferred to the synchrotron for the final acceleration. The 

synchrotron is equipped with ten dipole bending magnets and quadrupole 

magnets which bend and focus the beam to travel in a circular ring of 163 m 

circumference. Once the H− pulses enter into the synchrotron, the electrons of the 

ions are separated using an aluminium oxide stripping foil to collect sufficient 

protons which are accelerated by radio-frequency electric fields [162].  
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The whole acceleration process is repeated 50 times per second and the 

beam makes 10,000 circles in the ring during the acceleration, and finally a mean current of ʹͲͲ ɊA is delivered to the target stations and muon target.  While Target 

Station – 1 (TS1) and Target Station – 2 (TS2), which include different type of 

instruments using characteristic neutrons, produce neutrons by bombarding a 

tungsten target with high energy protons by the spallation process, muons are 

produced by bombarding a thin graphite target with high energy protons [163]. In 

this work two different instruments were used: the General materials powder 

diffraction (GEM) diffractometer at TS1 and the high field muon spectrometer 

(HiFi) at the muon target. 

General materials powder diffraction diffractometer 

GEM is a new generation pulsed source diffractometer designed for the tof 

neutron diffraction technique. The basic principles of the tof technique were given 

in section 2.2.6. The GEM diffractometer has an incident flight path of L = 17 

metres and a scattered flight path which varies from 1 metre to 2.9 metres. The 

special feature of the GEM diffractometer arises from the specially designed banks 

of detectors which cover a wide range of scattering angles from 1.1° to 169.3° with 

high resolution [59]. The position of the banks of detectors and the scattering 

angle range of each bank are shown in Figure 2.7. All the detectors are crossed-

fiber ZnS/6Li scintillation type detectors. The resolution of the detector banks in the ʹɅ direction is determined by the ͷ mm width of the ZnS/6Li scintillation 

elements which minimises the angular contribution to the resolution [163], [164].   



 

61 
 

 

Figure 2.7 A schematic diagram of detector banks from 1 to 7 of the GEM detector array. 
Copied from [164]. 

The software MANTID, developed for the analysis and visualization of 

scientific data, was used for this work to process, visualise and/or analyse the 

neutron diffraction data [165], [166]. MANTID is provided at ISIS beamline 

computers for experimenters. Since the neutron diffraction data in this work was 

analysed by Rietveld method, MANTID was only used to monitor the data 

collection during the experiment and to sum the continuously collected tof 

diffraction patterns into appropriate groups, depending on the statistics of the data 

and applied external perturbations such as temperature and pressure.  

High field muon spectrometer 

The high field muon spectrometer (HiFi) at ISIS is designed for 

measurements in longitudinal fields of up to 5 Tesla. A 5T superconducting split-

pair magnet is used. The ɊSR measurements in high magnetic fields require a 

homogeneous field over the sample volume, thus the magnetic axis has to be well-

aligned with the beam direction and any possible stray field must be eliminated. In 

addition to the 5T superconducting magnet there are other magnets; z-axis coils 

that create fields used for the field switching (auxiliary field) up to 400 G, and x- 

and y-axis coils which create transverse fields of up to 200 G for the compensation 

of the stray field and calibrations. Apart from the importance of the magnetic field, 

the design of the detectors must be established carefully. The Forward (F) and 



 

62 
 

Backward (B) detectors should be as close as possible to the sample and cover the 

largest possible area around the sample to maximise the amount of detected 

positrons. The HiFi spectrometer can be equipped with a dilution fridge, 4He and 

flow cryostats, a CCR and a reflector furnace to provide users with as many sample 

environment as possible [165], [167]. In this work, the WiMDA program suite was 

used to analyse muon depolarisation spectra [168].  

2.6 Magnetism 

Magnetism is a property of matter, used to describe the way that materials 

behave in the presence of an external magnetic field. Magnetic moments of an 

electron arise from two different sources. One originates from its orbital motion 

around the nucleus and the other one originates from electron spin. These two 

rotations result in the generation of a small magnetic field by creating a small 

current loop and having magnetic moments along the axis of rotation. If the 

cancellation of electronic moments is incomplete, the atom has a net magnetic 

moment which can exhibit paramagnetic, antiferromagnetic or ferromagnetic 

ordering. On the other hand, if there is a complete cancellation of both orbital and 

spin magnetic moments, this leads to diamagnetism.  

The externally applied magnetic field or magnetic field strength is designated 

by H and the magnitude of the internal field strength (also known as magnetic 

induction or magnetic flux density) within a substance which is subjected to an H 

field is denoted by B. The magnetic flux density can be expressed as: 

                                 B = Ɋ0 (H+M)                                     Equation 2.40 

where Ɋ0 is the permeability of a vacuum through which the applied field H passes 

and B is measured, and M is the volume magnetisation (magnetic moment per unit 

volume) which is proportional to H and can be represented as:                                        

                                                                           M = χH               Equation 2.41 where χ is the volume magnetic susceptibility indicating the degree of 

magnetisation in response to an applied field, H. Since Equation 2.41 is given in the 

SI system, in which M and H are measured in the same unit Amperes/meter (A/m), χ is dimensionless. The susceptibility can be also defined as mass magnetic 
susceptibility or molar magnetic susceptibility (referring to the number of moles in 
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the material) with the units of emu g−1 Oe−1 and emu mol−1 Oe−1, respectively in the 

cgs-emu system. The most widely performed magnetic measurements are the 

magnetisation as a function of temperature, M(T) and/or the magnetisation as a 

function of applied field strength, M(H). In the case of M(H) measurements, the 

field is changed to suggested values while the temperature is fixed [169]. 

2.6.1 Diamagnetism 

Diamagnetism is a very weak type of non-permanent magnetism, induced by 

changing the motion of core electrons due to an applied magnetic field. The 

considerably small magnitude of the induced magnetic moments (in the direction 

opposite to that of the applied magnetic field) causes a weak contribution to the 

response of a material to the external magnetic field. Diamagnetic materials have a 

relative magnetic permeability, Ɋr, that is less than or equal to 1, and hence this 

yields a magnetic susceptibility less than or equal to 0, because the magnetic 

susceptibility (which is both temperature- and field-independent) and the relative 

permeability (which is a measure of the degree of being magnetised) are related as follows: χ = Ɋr − 1.  An M(H) plot for diamagnetism should be linear and reversible 

but with a negative slope. 

 Whilst the magnetic contribution of diamagnetism is vastly outweighed by 

other effects such as paramagnetism, this contribution is very large in 

superconductors, leading to perfect diamagnetism as long as the superconducting 

state is kept. While diamagnets repel the external magnetic flux lines, paramagnets 

pull the lines into the material.  

2.6.2 Paramagnetism 

Paramagnetism, known to be the simplest form of magnetisation, arises when 

the magnetic moments of a material preferentially align along the direction of the 

external magnetic field. This results in the enhancement of the relative 

permeability, and therefore positive magnetic susceptibility is observed with 

paramagnetic materials. A typical paramagnetic material shows a linear M(H) 

behaviour at constant temperature, which is reversible, following the same curve 

upon reducing the field as when increasing it.  This paramagnetic behaviour, where 

atoms with unpaired electrons are present (Curie-type paramagnetism), can be 
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described with the following equation, indicating that the susceptibility of a 

paramagnetic material is inversely proportional to the temperature: 

                          χሺܶሻ = ܥܶ
 

   Equation 2.42 

 

where C is the material-specific Curie constant which is proportional to the square of the sampleǯs effective magnetic moment. Figure 2.8 shows a schematic plot of ͳ/χ against T, with a straight line through the origin. The Curie constant can be 

determined from its slope.  

 
 

Figure 2.8 Schematic plot of ͳ/χ vs T for a Curie-type paramagnetic material. 

 

2.6.3 Ferromagnetism and Antiferromagnetism 

Ferromagnetic materials have permanent magnetic moments with very large 

magnetisations even in the absence of an external magnetic field due to strong 

interaction between the magnetic moments of adjacent atoms or molecules, which 

can result in the formation of long-range magnetic ordering below a certain 

temperature. They show a non-linear M(H) curve which is not reversible (i.e. 

magnetic hysteresis is found). Antiferromagnets also display long-range magnetic 

ordering, but have magnetic moments ordered such that adjacent moments are 

aligned anti-parallel with one another. 

The magnetic behaviour of this type of magnetism can be described by the 

Curie-Weiss law, which defines the temperature dependence of the susceptibility 



 

65 
 

for systems with ferromagnetic and antiferromagnetic interactions above the 

magnetic ordering temperature:                          

         χሺܶሻ = ܶܥ − Θ 
Equation 2.43 

 

where Θ is the material-specific Weiss temperature and can be obtained from the 

x-axis intercept of a plot of ͳ/χ against T (Figure 2.9Ȍ. )f Θ is positive, the magnetic 

moments are aligned parallel with one another, and the material is ferromagnetic 

below the Curie temperature, TC (Figure 2.9, Θ > ͲȌ. On the other hand, if Θ is 

negative anti-ferromagnetic interactions occur and the magnetic moments are 

aligned anti-parallel with one another below the Néel temperature, TN (Figure 2.9, Θ < 0).  

 

Figure 2.9 Schematic plot of ͳ/χ vs T for various magnetic systems. 

A schematic χ(T) plot for different types of magnetism is shown in Figure 2.10: The 

alignments of the magnetic moments are destroyed above the Curie (TC) or Néel 

(TN) temperature, thus the material becomes paramagnetic.  
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Figure 2.10 A Schematic plot of χ vs T for different types of magnetic behavior. 

2.6.4 Superconductivity 

The phenomenon of superconductivity has been known since 1911, with the 

discovery of superconductivity in mercury. Superconductors are materials which 

show no resistance to the flow of electricity and exhibit perfect diamagnetism by 

the repulsion of the interior magnetic field, known as the so-called Meissner effect 

which states that inside a superconductor in the superconducting state, magnetic 

flux density is zero. The direct-current (dc) electrical resistance of a superconductor drops abruptly to zero when it is cooled below its Ǯcritical temperatureǯ, Tc, which is material-dependent.  

Superconductors are classified into two different types: type-I and type-II, 

depending on their behaviour within an applied magnetic field. Most elemental 

superconductors and some alloy superconductors display type-I behaviour: the 

negative magnetisation increases linearly with field up to a critical field, Hc, below 

which the penetration of magnetic lines of flux into the material is prevented by 

the surface current of the material. The magnetisation falls abruptly to zero with 

further increase in field, as the superconducting state is completely destroyed, and 

the normal state appears. 

In the case of a type-II superconductor, rather than a sharp transition, an 

initial transition on exceeding a small field, Hc1 (the lower critical field) is observed 

from bulk superconductivity to a mixed state where superconductive and 
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insulating or metallic phases coexist (Figure 2.11). On increasing the field further 

to an upper critical field Hc2, the magnetisation decreases with constant slope until 

the field is increased to the Hc2, where superconductivity is destroyed completely 

and the normal state appears [169], [170].  

 

Figure 2.11 Magnetic behavior as a function of field for type-I and type-II superconductors; 
adapted from [169]. 

2.6.5 SQUID magnetometer 

In this work, magnetic properties of samples over a temperature range 

between 1.8 and 300 K and over a range of applied magnetic fields up to 5 Tesla 

were studied using the Magnetic Property Measurement System (MPMS XL). The 

heart of the MPMS is the Superconducting Quantum Interference Device (SQUID) 

which is a very sensitive magnetometer used to measure extremely small magnetic 

fields, magnetic moments and subtle changes within the material. All data were 

collected using direct-current (dc) magnetometry. 

The SQUID does not measure the magnetisation directly from the sample; 

instead, its sensors detect variations in the SQUID output voltage which is 

proportional to the magnetic moment of the sample. During the measurements, the 

sample moves in a series of discrete steps through some superconducting 

detection coils which are connected to the SQUID input coil with superconducting 

wires, allowing the current from the detection coils to inductively couple to the 

SQUID sensor [169]. 

While the sample moves through these coils, the magnetic moment of the 

sample induces an electric current in the detection coils (Figure 2.12). A closed 
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superconducting loop is generated by the detection coils, superconducting wires, 

and SQUID input coil, and consequently any change of magnetic flux in the 

detection coils will cause a change in the persistent current in the detection circuit, 

which is proportional to the change in magnetic flux. 

Since the SQUID can function as a highly linear current-to-voltage convertor, 

the changes of the current in the detection coils produce corresponding changes in 

the SQUID output voltage which are proportional to the magnetic moment of the 

sample. The detected output voltage as a function of position gives a highly 

accurate measurement of the magnetic moment resulting from the sample [169] as 

soon as the sample is well-centered in the detection coil. Calibration of the system 

is required from time to time for accurate measurements of the voltage changes. 

The system can be accurately calibrated using a small piece of material with a 

known mass and magnetic susceptibility such as a small sphere of nickel.  

 

 

Figure 2.12 Schematic configuration of the superconducting detection coil: a single piece 
of superconducting wire wound in a set of three coils configured as a second-order 
(second derivative) gradiometer [169].  

The sample chamber is, surrounded by the superconducting detection coils, 

kept at a low pressure with static helium gas.  The sample is attached to the end of 

a rigid straight sample rod using Kapton tape, which is non-magnetic and resistant 

to low temperatures. Before lowering the sample into the sample space, the user 
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must ensure that the sample will not disengage from the rod during the 

measurements.  

Furthermore, the sample space has to be free from moisture or air, if not the 

user must warm the SQUID magnetometer to room temperature and then perform 

a rigorous pumping procedure. Thereby, it is essential to perform the pumping 

procedure after each insertion/removal process of the sample rod into/from the 

sample space for the evacuation of air and moisture.  

It should be also noted that after long measurements at high magnetic fields, 

there may be a remnant magnetic field present even after zeroing the field for 

subsequent low field measurements. This remnant field can be reset using a 

degaussing procedure which oscillates the magnetic field from a positive magnetic 

field to a negative magnetic field and gradually reduces the amplitude of 

oscillation. After the degaussing procedure, the superconducting magnet can be 

also reset. 

The Sample Handling System controls the vertical motion of the rod during 

data acquisition. Since the sample rod moves vertically, the longitudinal (direction 

of the movement through the coil) moment (reported in emu) of the sample is 

extracted from the integration of the area under the voltage vs. position plot. For 

the results contained in this work, the iterative regression method was used to 

analyse the SQUID output signal which is available in the software MPMS 

MultiVuTM. The measured longitudinal moment was converted to magnetisation 

using the following equation: 

= ܯ                                                                    Ɋ/n             Equation 2.44 

where Ɋ  is the longitudinal moment (emu) and n is the number of moles of 

measured sample.  

2.6.6 Ambient pressure magnetic measurements 

The superconducting transition temperature (Tc) was obtained by low-field 

magnetisation measurements as a function of temperature at ambient pressures. 

Knowing that the superconducting state can be defined by its ability to expel the 

interior magnetic field, Tc can be determined as the temperature where the 

diamagnetic response is suppressed and paramagnetic behaviour appears in the 
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normal state. In measurements conducted in this work two types of dc 

magnetisation measurements were performed: field-cooled (FC) and zero-field-

cooled (ZFC). In the case of the ZFC protocol, the sample was cooled down in zero 

applied magnetic field and the longitudinal moment was measured on warming. At 

temperatures above Tc the sample does not show diamagnetism anymore. For the 

FC protocol, the sample was cooled in a weak magnetic field and then the 

longitudinal moment was again measured on warming. Since magnetic flux inside 

the sample above Tc is trapped by the shielding currents on the surface during 

cooling, the sample will expel the flux less compared to the ZFC protocol, and 

hence the magnitude of the FC diamagnetic susceptibility will be reduced 

compared to the ZFC susceptibility. In other words, while the ZFC curve shows the 

flux exclusion, FC curve shows the flux expulsion. As a result, the temperature 

where the ZFC and FC curves deviate can be defined as the onset Tc of the 

superconducting material. This hysteresis of the diamagnetic susceptibility below 

Tc, the so-called Meissner effect, is definitive proof of superconductivity. The 

shielding fraction (SF) of samples was calculated from the ZFC magnetisation data 

using the following expression: 

        S� =  ͶɎɏ∆Ɋ݉ܪ  × ͳͲͲ % 
Equation 2.45 

where ɏ is the density of the sample (g cm−3), H is the applied external field (Oe), m 

is the mass of the measured sample (g) and ∆Ɋ is the change in the longitudinal 

moment from the paramagnetic to the superconducting state. 

High-field magnetisation measurements were also performed in order to 

investigate the magnetic susceptibility behaviour in the normal state. All samples 

measured at ambient pressure in this work were sealed inside thin-walled 5 mm-

diameter high-purity Suprasil® quartz ampoules (due to their air-sensitivity), and 

attached to a sample rod using a plastic straw and Kapton tape.  

2.6.7 High pressure magnetic measurements 

High pressure magnetic measurements were carried out under applied 

pressures of up to ͳͲ kbar using an ǮeasyLab Mcell ͳͲǯ, a cylindrical hydrostatic 
pressure cell based on a single walled-design [171]. The high pressure cell is 
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composed of many components and correct assembly is imperative for successful 

measurements. The cell body should be clean from dust or remaining debris from 

previous measurements and the cell components must be correctly and tightly 

packed. Figure 2.13 schematically shows the entire setup of the high pressure cell. 

A perfect assembly of the cell is required for accurate measurements as well 

as for the consistency of the background measurements with the actual 

measurement, and hence good care must be taken of the cell components. The minimum position of the upper locking nut ǮZminǯ, should be measured on a 
regular basis by inserting a ceramic piston cap into the upper part of the HP cell, 

fully screwing the upper locking nut, and then measuring the distance between the 

top of the cell body and the top of the upper locking nut using a Vernier calliper. ǮZminǯ should never be exceeded, to avoid damage to the piston cap. Before 

anything is loaded in the PTFE sample capsule, the user should make sure that the 

PTFE capsule goes right through the cell and the pistons and caps should be 

checked under the microscope to ensure that they are not cracked or defective 

[171]. 

 

Figure 2.13 (a) easyLab Mcell 10 General Assembly drawing; (b) schematic diagram of the 
PTFE sample capsule; (c) cell body mounted on the MPMS high pressure sample rod [171]. 

A small coil of Sn wire (~5 mm long piece of 0.25 mm diameter) used as a 

manometer is placed inside the PTFE capsule before loading anything as the 

temperature dependence of the superconducting transition temperature of Sn at 
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different pressures is known accurately. The Sn superconducting Tc decreases with 

increasing pressure, according to the following function [171].  ܲ = ሺͷ.ͲͶͳͶͺͻ × [ cܶሺͲሻ − cܶሺܲሻ]ଶሻ + ሺͳ͹.ͺͳʹͺ͹ × [ cܶሺͲሻ − cܶሺܲሻ]ሻ  Equation 2.46 

 

where P is the pressure in kbar, and Tc is in units of K. The estimated error in 

pressure determination is ~0.2-0.3 kbar.  

Once the Sn wire has been inserted, the required amount of sample is loaded 

into the PTFE capsule inside an argon-filled glovebox. Typically 20-30 mg of 

sample should be sufficient for A3C60 superconductors. Finally, pressure 

transmitting oil (Daphne oil) is dispensed into the PTFE cell using a syringe and 

dispenser to obtain hydrostatic pressures (see Figure 2.13 (b) for the assembly). 

The user must ensure that there are no air bubbles at this stage inside the PTFE 

capsule. The PTFE capsule is then closed using a PTFE plug. 

Once the PTFE capsule has been prepared properly, it is positioned in the cell 

body. The cell is closed by tightening the upper locking nut, and then the height 

from the main body of the cell to the top of the upper locking nut is measured 

using a Vernier calliper. This value is then recorded onto the loading sheet which is 

created to inspect whether or not the cell is overtightened at subsequent 

pressurisations and compare the values with that of previous measurements as 

overtightening can permanently damage the high pressure cell. Finally, the 

assembled cell is ready to be pressurised with the hydraulic press (Mpress) ram. 

The cell is pressurised by pushing a tungsten carbide piston onto the ceramic 

pistons. In turn, the volume of the PTFE capsule, in which the sample and Sn wire 

are surrounded by the pressure transmitting medium, is reduced and hence the 

pressure increases. 

Since there will be background contributions from the cell, a background 

measurement is carried out with no sample in the PTFE capsule but with the 

presence of the pressure medium. The background measurements are performed 

with ZFC and FC protocols over the exact temperature range of the forthcoming 

actual measurements and precisely in the same field. These raw data are then 

subtracted from the actual measurements using the Automated Background 

Subtraction (ABS) feature. Background measurements were collected using PTFE 
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capsules of two different lengths, to best emulate the background contribution of 

the cell at low and high pressures. 

Furthermore, in order to centre the position of the cell inside the detection 

coils, a ferromagnetic nickel sphere is first centered because it can be difficult to 

centre the sample inside the cell under weak fields. Then the length of the rod with 

the attached high pressure cell can be accurately measured. In this way the sample height with small adjustments using the SQU)Dǯs software can be defined more 
precisely. 
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Chapter 3 Structural and magnetic studies of fcc-

structured KxCs͵−xC60 ȋͲ.ͳʹ ≤ x ≤ ʹȌ materials 

 

3.1 Introduction  

The previously reported studies on the discovery of superconductivity in fcc A3C60 

(A = K, Rb, Cs or a combination thereof), focusing on their novel structural and 

electronic features were summarised in section 1.2.4.  

Martin McDonald and colleagues had pioneered the use of the liquid 

ammonia synthetic route to synthesise and characterise high-quality 

superconducting fcc RbxCs͵−xC60 materials at the highest known lattice expansion 

covering the compositional range of 0 ζ x ζ 0.5 [66]. They showed that high-quality 

overexpanded RbxCs͵−xC60 materials could be synthetically accessed and displayed 

an anomalous trend in Tc(V). This work was subsequently extended by Zadik and 

co-workers who probed in detail the nature of the magnetic and electronic 

properties of these materials. This was achieved by the preparation of high quality 

fcc-rich overexpanded RbxCs3−xC60 samples using a solid-state synthetic route 

(overcoming various issues of the liquid ammonia route such as low shielding 

fractions and inadequate stoichiometry control) and with x systematically varied 

between 0.25 and 2. Bulk superconductivity was observed for all fcc-rich 

RbxCs3−xC60 (0.25 ζ x ζ 2) samples. An important feature of this work was that the 

Mott insulator-metal transition was shifted to ambient pressure via the application 

of chemical pressure through substitution of Cs+ in Cs3C60 by the smaller Rb+ 

cation. The study led to the construction of the global bandwidth-controlled 

electronic phase diagram in fullerides, extending from the strongly correlated 

antiferromagnetic Mott-Jahn-Teller insulator (MJTI) Cs3C60 at large interfullerene 

separations to a conventional metal Rb3C60 as the unit cell volume, V, becomes 

significantly smaller [28], [67]. 

3.1.1 Purpose of present study 

The Mott insulator-to-metal transition in Cs3C60 has been previously 

traversed through application of both hydrostatic and chemical pressure, which 
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reduce interfullerene separation [28], [67], [80]. By means of chemical pressure, 

the interfullerene spacing is controlled by the cation distribution at the fcc 

tetrahedral interstitial sites. Structural and magnetic characterisation of 

RbxCs͵−xC60 (0.25 ζ x ζ 2) verified that the chemical pressure effect on the 

electronic properties of the most expanded fcc Cs3C60 is comparable to that by 

application of hydrostatic pressure. Indeed, it was reported that pressurizing 

Rb3C60 can reduce the lattice parameter to that of K3C60 and lead to approximately 

the same Tc for both materials, suggesting that alkali ions themselves only act to 

alter the unit cell dimensions [41]. However, in Rb3C60 both tetrahedral and 

octahedral interstitial sites are entirely occupied by Rb+, while in fcc AxCs͵−xC60, the 

tetrahedral sites are occupied by both A+ and Cs+ (except x = 3, 2 and 0) cations in a 

disordered fashion. The disorder in size might influence the magnetic and 

structural properties of compositions. Indeed, some deviation in the variation of Tc 

with fcc unit cell volume was reported when comparing physical and chemical (i.e. 

K substitution) means of reducing the Rb3C60 lattice parameter [172]. However, 

this cation specific effects have not been addressed in any detail. 

This study aimed to shift the Mott insulator-metal transition to ambient 

pressure via the application of chemical pressure through substitution of Cs+ in 

Cs3C60 by the smaller K+ cation. A wide compositional range of fcc KxCs͵−xC60 

compositions are synthesised using solid-state synthetic routes. Compositions 

range from underexpanded K2CsC60 through to overexpanded systems close to the 

Mott-metal insulator boundary. Samples are targeted to have high fcc phase 

fractions, good stoichiometry control and be highly crystalline, becoming bulk 

superconductors with high shielding fractions at low temperature.  This study 

investigates the structural and electronic properties of fcc KxCs͵−xC60. Special 

attention is paid to the comparison with fcc RbxCs͵−xC60 to investigate cation 

specific effects on the electronic properties of fcc AxCs͵−xC60. 

Temperature- and pressure-dependent high-resolution synchrotron X-ray 

powder diffraction studies were undertaken to finely explore the structural 

evolution of these materials. Combination of structural and magnetic property 

results using different techniques allowed comparison of the response of the 

properties to the application of hydrostatic and chemical pressure.  
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3.2 Experimental methods 

All samples in this study were synthesised by the candidate, with the exception of 

two samples (nominal composition, KCs2C60 and K0.25Cs2.75C60), prepared by 

project student V. Wong using the same preparative route. For nominal 

stoichiometries KxCs3-xC60 (x = 0.12, 0.25, 0.35, 0.5, 0.75, 1 and 2), samples from the 

same batch were used in all measurements described in this chapter. 

3.2.1 Preparation of the precursors, K6C60 and Cs6C60 and of the KxCs3-xC60 

(0.12 ≤ x ≤ ʹȌ series by solid state routes 

Due to the extreme air and moisture sensitivity of all samples synthesised in 

this work, all sample manipulations were carried out within the inert atmosphere 

of an argon-filled glove box (MBraun MB 200B) with low O2/H2O levels (H2O < 0.3 

p.p.m., O2 < 0.1 p.p.m.). All apparatus used for the synthesis inside the glove box 

was thoroughly dried in an oven at ~85°C and pumped in the external chamber of 

the glove box three times (with the first pumping time of no less than 15 minutes) 

before being transferred inside. 

Prior to synthesis, as-purchased pristine C60 (MER corporation, 99.9%) was 

purified by sublimation: 500-600 mg of C60 were ground with a mortar and pestle, 

loaded to the bottom of a 12 mm-diameter quartz ampoule with a separating 

striction using a funnel and then degassed for 3-4 hours in a dynamic vacuum of 

10−4-10−5 mbar. Sublimation was undertaken using a tube furnace by ramping 

(10°C/min) from ambient temperature to 550°C and dwelling there for 16 hrs 

under dynamic vacuum. Once sublimation was complete, the furnace was removed, 

the ampoule was sealed with a Youngǯs tap and adaptor with Swagelok connector 
and transferred to the glove box. The sublimed material above the striction of the 

ampoule was then removed using a long spatula and stored in the glove box after 

grinding for later use. 

For the synthesis of the K6C60 and Cs6C60 precursors, reaction mixtures of K ȋηͻͻ.ͻͷ% Aldrich/Acros, used as suppliedȌ and sublimed C60 were placed in a 5-

mm diameter open tantalum cell in stoichiometric quantities. The open tantalum 

cell was then placed in a 12-mm diameter Pyrex glass ampoule, closed with a high-

vacuum Swagelok fitting with J. Young tap, and removed from the glove box. The 
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ampoule was evacuated to ~1×10−4 mbar using a high-vacuum glass manifold 

setup with a Leybold vacuum PT70B turbo pump for 20 minutes, filled with a small 

He gas pressure (typically 350-450 mbar) and sealed. Thereafter, the sealed 

ampoule was placed vertically in a muffle furnace and heated to 250°C with a rate 

of 5°C/min, followed by 17 hrs annealing and cooling to room temperature (RT) 

with the same rate as heating. Inside the glove box, the product was ground, 

pelletized, and this time loaded into a tantalum cell with tightened screw ends 

which was then placed in a 15-mm Pyrex glass ampoule. After evacuation and 

sealing under He, the product was annealed for further period of 48+48 hrs at 

300°C with one intermediate grinding.  

For the synthesis of phase-pure Cs6C60, a vapour transport method was 

employed, with a ~2.2 excess amount of Cs. Sublimed C60 was first loaded into the 

bottom of a 12-mm diameter Pyrex ampoule with a striction, using a funnel. The 

excess Cs was loaded in a 7-mm diameter Pyrex capsule which was lowered in the 

glass ampoule down to where the striction is. After evacuation and sealing under 

He (~400 mbar), the sealed ampoule was placed in a 3-zone horizontal tube 

furnace in order to create a temperature gradient between Cs and C60 for vapour 

transport. The ǮCs zoneǯ was ramped to 350°C from RT (2°C/min) followed by 

dwelling for 3 days. At the same time, the ǮC60 zoneǯ was ramped to ͵͵Ͳ°C 
(2°C/min), to allow vapour transport from the ǮCs zoneǯ to ǮC60 zoneǯ. Once the 

annealing was complete, the temperature gradient was reversed before allowing 

the sample to cool down to room temperature, in order to condense away any un-

intercalated Cs from the newly formed Cs6C60. The reaction mixture was then 

removed from the reaction vessel inside the glove box, ground, pelletized and 

placed in a tantalum cell with tightened screw ends which was then evacuated and 

sealed under He, and annealed at 350°C for another 3 days to improve the 

crystallinity.  

The quality of all the products obtained after each intermediate grindings 

was checked by laboratory powder X-ray diffraction (XRPD). After confirmation 

that the precursors are phase-pure, they were stored in the glove box for later use. 

Several batches of precursors were synthesised to meet the required quantities for 

the synthesis of KxCs3-xC60 materials. 
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KxCs3-xC60 can be prepared by a direct synthetic route, where stoichiometric 

quantities of K, Cs and C60 are mixed and annealed to afford KxCs3−xC60 directly. The 

alternative synthetic route, which was used in the present study was to employ as 

starting materials the appropriate A6C60 (A = K, Cs) precursors. The advantage here 

over the direct synthesis method is that the A6C60 compounds are free-flowing 

powders allowing accurate weighing of the reactant quantities and therefore 

better stoichiometry control of the target compositions, especially when small 

amounts of the individual reactants are needed.  

Stoichiometric quantities of phase-pure free-flowing powders of K6C60, Cs6C60 

and sublimed C60 were mixed and ground thoroughly with a mortar and pestle; 

thereafter the ground mixture was pelletized using a 7-mm diameter pellet die set 

and placed in a tantalum cell with tightened screw ends. The following 

stoichiometric equation describes the ideal reaction, with an example shown for 

x = 0.75. 

                                  
௫6 K6C60 + 

ଷ−௫6  Cs6C60 + 
ଵଶ C60  KxCs3-xC60           Equation 3.1 

                                  
ଵ8K6C60 + 

ଷ8Cs6C60 + 
ଵଶC60  K0.75Cs2.25C60 

          Equation 3.2 

The tantalum cell was then placed in a 15-mm diameter Pyrex glass ampoule, 

closed with a high-vacuum Swagelok fitting with J. Young tap, and removed from 

the glove box. The ampoules were evacuated to ~1×10−4 mbar using the same 

high-vacuum glass manifold setup for 20 minutes, filled with a small He gas 

pressure (typically 350-400 mbar) and sealed. Finally, the sample was placed 

vertically in a muffle furnace and was annealed with the following procedure: 

ramp at 5°C/min from RT to 200°C, dwell for 3 hrs, ramp to 300°C, dwell for 18 

hrs, ramp to 350 °C, dwell for 5 days, ramp at 5°C/min to RT. Inside the glove box, 

the sample (free-flowing black powder) was ground with a mortar and pestle, 

pelletized, and loaded back into the same tantalum cell which was then placed in a 

glass ampoule, followed by evacuation and sealing under He gas as before; 

thereafter the sealed glass ampoule was placed in a muffle furnace for further 

annealing at 430°C (ramp at 5°C/min from RT) for 5 days. The sample was 

annealed for 15-20 days, with 3 intermediate grindings and pelletisations as before 

to improve crystallinity.  
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Laboratory powder X-ray diffraction  

Prior to synchrotron XRPD studies and SQUID measurements, the quality of 

all intermediate and final stage polycrystalline products was routinely checked by 

laboratory XRPD using a Bruker D8 ADVANCE with DAVINCI design powder X-ray 

diffractometer, configured with a Debye-Scherrer geometry and a copper source 

CuKȽͳ = 1.5406 Å (see section 2.2.7 for details). Ambient temperature laboratory 

XRPD profiles of the two representative final stage precursors, K6C60 and Cs6C60, 

and of the nominal ǮK0.75Cs2.25C60ǯ collected after each annealing stage are shown in 

Figure 3.1 and Figure 3.2, respectively. Polycrystalline products were filled in Ͳ.ͷ−mm diameter glass capillaries, sealed under Ar atmosphere, and their XRPD profiles shown in the figures recorded over a ʹɅ angular range of ͷ-50°, with a step 

size of 0.04°, and a scan rate of 0.5°/min. Sample purity and approximate 

compositions were established by preliminary Rietveld analysis of the laboratory 

XRPD data. This verified that the precursors were phase-pure and crystallised with 

a bcc structure (space group Im͵̅). Figure 3.2 visually confirms that the majority 

phase is fcc and the crystallinity of the polycrystalline products of nominal composition ǮK0.75Cs2.25C60ǯ improves after each intermediate annealing. Rietveld 

fits to synchrotron XRPD data collected at ambient temperature for phase-pure 

K6C60 and Cs6C60, and for nominal-composition K0.75Cs2.25C60 are shown in 

Figure 3.3, and in Appendix I in Figure A2, respectively. 
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Figure 3.1 Representative laboratory X-ray powder diffraction profiles of phase-pure K6C60 

(upper panel) and Cs6C60 (lower panel) at ambient temperature collected with a step size 
of 0.04°, and a scan rate of Ͳ.ͷ°/min ȋɉ = 1.5406 Å). Black ticks mark the reflection 
positions of K6C60 and Cs6C60 with a body-centered-cubic structure (Im͵̅).  
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Figure 3.2 Laboratory X-ray powder diffraction profiles at different stages of the 
preparative procedure of nominal-composition ǮK0.75Cs2.25C60ǯ: from bottom-to-top data 
were collected after the first stage of annealing at 350°C for 5 days (bottom), after the 
second stage of annealing at 430°C for 5 days (middle) and finally after the final stage of annealing at Ͷ͵Ͳ°C for ͷ days ȋtopȌ at ambient temperature ȋɉ = 1.5406 Å), with a step size 
of 0.04°, and a scan rate of 0.5°/min.  Red and black ticks mark the reflection positions of 
co-existing fcc (Fm ͵̅ m) and body-centered-orthorhombic ( ݉݉݉ܫ ) Cs4C60 phases, 
respectively. 

3.3 Synchrotron X-ray powder diffraction studies of KxCs3-xC60 

(0.12 ≤ x ≤ 2) 

In the following sections, structural characterisation with high-resolution 

synchrotron XRPD, employing Rietveld analysis, is described for the fcc KxCs3−xC60 

series under ambient conditions, variable temperature and elevated pressures.  

3.3.1 Experimental procedures 

Ambient pressure high-resolution synchrotron XRPD data were collected at 

ambient temperature and as a function of temperature between 300 and 10 K with 

the diffractometer on beamline ID31 at the ESRF for samples of nominal 

composition KxCs3−xC60 (0.12 ζ x ζ ʹ), K6C60 and Cs6C60. The overall setup of the 

instrument and experimental procedures were outlined in Section 2.4.1. Samples 
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to be measured were filled in 0.5-mm diameter glass capillaries and sealed under 

~300 mbar He. Typically two continuous scans over an angular range of ʹɅ = 2-30° 

were collected at each temperature, with typically 2-3 extra scans over a range of ʹɅ = 15-30° collected at the lowest and highest temperatures in order to improve 

the statistics and allow more precise determination of structural parameters. Data 

were binned with a step size of 0.002° or 0.003° in ʹɅ depending on the 

crystallinity of the sample. X-ray wavelengths of ɉ ~ Ͳ.Ͷ Å were used for data 

collections, with one exception: ɉ = 0.354197 Å was used for samples with nominal 

K-content of x = 2 and 1, for data collection at 300 K. Synchrotron XRPD data for 

sample with nominal K-content of x = 1 between 112 and 300 K were collected on 

beamline BL44B2 at the SPring-8 facility. The overall setup of the instrument and 

experimental procedures were outlined in Section 2.4.2. The sample was filled in a 

0.3-mm diameter capillary and sealed under ~350 mbar pressure of He. Data were 

collected with a 5 minute exposure time and a step size of 0.002°, with ɉ = 0.81887 Å. 

High-resolution synchrotron XRPD data were also collected as a function of 

pressure at 7 K for samples of nominal composition KxCs3-xC60 with x = 0.25, 0.75, 

and 1, typically at pressures between 0.2 and 10 GPa, with wavelengths of ɉ = 0.41261 Å for x = 0.25 and ɉ = 0.41238 Å for x = 0.75 and 1, on beamline 

BL10XU, SPring-8, Japan. The overall setup of the beamline, experimental and 2D 

image integration details were described in Section 2.5.2. Data were binned with 

step size of 0.01° in ʹɅ. The powdered samples were loaded in a helium-gas-driven 

membrane diamond anvil cell (MDAC), which was equipped with stainless steel 

gasket with a hole ͳͲͲ Ɋm deep and ʹͲͲ Ɋm in diameter. The MDAC diamond culet diameters were ͷͲͲ Ɋm. Helium gas in the MDAC was used as a pressure medium. 

The applied pressure was increased by controlling the He gas pressure to the 

membrane of the MDAC and was measured with the ruby fluorescence method. 

Images were collected using a flat image plate detector with 2 min exposure time.  

3.3.2 Structural results at ambient temperature  

The refinement procedure for Rietveld analysis of the synchrotron XRPD data 

collected under ambient pressure was as follows: a pseudo-Voigt profile function 

was used (continuous wavelength profile function Ǯ͵Ǯ within GSASȌ; profile shape 
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coefficients GU, GV, GW, LX, LY and Lij (i, j = 1-3) were allowed to refine for the 

majority crystallographic phases included in the analysis; low-angle peak 

asymmetry from axial divergence was modelled with coefficients S/L = 0.001, 

H/L = 0.0005 [173]; a Chebyschev polynomial function (~20 terms) was used to fit 

the background; the anomalous contributions to the X-ray form factors of all 

atoms, fǯ and fǯǯ corrections to f, were calculated using the program DISPANO  for 

input into GSAS [174]; and a cylindrical absorption correction, given as Ɋr ɉ⁄  in 

GSAS [127],  was applied for each sample. Consecutive cycles of improving profile 

shape coefficients in steps with intermediate refinements of zero point correction 

and background function were applied as well. 

Precursors K6C60 and Cs6C60 

Representetive Rietveld refinements of the synchrotron XRPD data collected 

for K6C60 and Cs6C60 at room temperature are presented in Figure 3.3. These 

confirm that the K6C60 and Cs6C60 samples are phase-pure, crystallise with a body-

centered-cubic structure (space group Im͵̅, and lattice constants, a = 11.3775(2) Å 

and a = 11.7887(2) Å, respectively). The literature lattice constants are as 11.39 Å 

[175] and 11.79 Å [176], respectively. Fractional atomic coordinates of K6C60 and 

Cs6C60 were adopted from [175] and [176] and were not refined. Only lattice 

parameters and isotropic thermal displacement parameters were refined together 

instrumental and profile parameters.  
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Figure 3.3 Rietveld fits to synchrotron XRPD data collected at ambient temperature for 
phase-pure K6C60 (upper panel) and Cs6C60 (lower panel) ȋɉ = 0.40006 Å, step size = 
0.002°). Red circles, blue line and green line represent the observed, calculated and 
difference profiles, respectively. Black ticks mark the reflection positions of K6C60 and 
Cs6C60 (Im͵̅). Both insets display expanded regions of the respective diffraction profiles. 
The weighted-profile and expected R-factors are Rwp = 4.43% and Rexp = 4.18% (K6C60) and 
Rwp = 4.43% and Rexp = 3.58% (Cs6C60). 
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KxCs3-xC60 (Ͷ.ͷ͸ ≤ x ≤ ͸) materials 

We now turn to the description of the model employed for the Rietveld 

analysis of the synchrotron XRPD data collected under ambient conditions for the 

series of KxCs3-xC60 samples. Only x = 2 was successfully synthesised as single fcc 

phase; all other compositions contained additional minority components. Three 

crystallographic phases were included in the refinement: a majority fcc phase, and 

minority Cs4C60 and CsC60 phases. XRPD profiles of samples with nominal 

composition KxCs3-xC60 ȋͲ.ͳʹ ζ x ζ ʹȌ under ambient conditions are shown in 

Figure 3.4. 

 

Figure 3.4 High-resolution XRPD profiles collected at ambient temperature for nominal 
KxCs3-xC60 (0.12 ζ x ζ ʹȌ samples. 

For the majority fcc phase, the space group Fm͵̅m (merohedrally disordered 

fcc model) was employed. As the Oh cavity (r = 2.06 Å) is significantly larger than 

the Td (r = 1.12 Å) one, we expect that larger Cs+ (r = 1.67 Å) ions would 

preferentially reside in the Oh site, while the smaller K+ (r = 1.38 Å) would 

preferentially occupy the Td cavity. A recent investigation tested different XRPD 

models of cation distribution in fcc RbxCs3-xC60 materials [66] and concluded that 

the Oh cavity is entirely occupied by Cs+ and the Td one is occupied by a disordered 
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Rb+/Cs+ mixture. Zadik et al. have also used the same cation distribution model for 

their extensive XRPD data analysis of RbxCs3-xC60 materials [67], with one 

exception: for Rb2CsC60, full occupancy of the Td and Oh cavities by Rb and Cs, 

respectively, was assumed in accordance with complementary 133Cs and 87Rb NMR 

experiments [177].  

In the present work, the same cation disordered model was employed in 

accordance with these investigations. The Oh site was modelled as entirely 

occupied by Cs+ while the Td site as occupied by a disordered K+/Cs+ mixture. The 

total occupancy of the Td site was fixed to 1.0 and the relative ratio of the two 

cations was allowed to refine. For K2CsC60, the Td and Oh cavities were occupied by 

K and Cs, respectively. The validity of this approach has been confirmed by 133Cs 

and 39K NMR measurements on the same samples undertaken by our 

collaborators. NMR spectra of selected AxCs3-xC60 (a = K or Rb) compounds are 

presented in Appendix III Figure A7 and A8.  

The fractional atomic coordinates for each crystallographic phase present 

were not allowed to refine. They were rescaled as the temperature varied to the 

refined lattice metrics thereby retaining the molecular shape unaltered. For the fcc 

phase, the fractional coordinates used were those obtained originally in Rb3C60 

(with C60 C-C bond distances of 1.42 Å) [175]. The Cs4C60 phase was modelled as 

body-centered-orthorhombic (bco) [28] (space group ݉݉݉ܫ) [178], and an 

orthorhombic [179] ܲ݉݉݊ model was employed for the minority CsC60 phase. 

Thermal displacements of all atoms in the fcc phase were modelled as isotropic 

and allowed to refine under the condition that Uiso of the three inequivalent C 

atoms and Uiso of the K+ and Cs+ ions residing in the tetrahedral site were 

constrained to be equal to each other, respectively. Thermal displacements of Cs 

atoms in the bco phase were refined if the weight fraction of the phase was 

significant (>30%). The fcc phase structural parameters obtained from the 

refinements and two representative Rietveld fits to the XRPD data for samples 

with nominal K-content of x = 0.5 and 1 are shown in Table 3.1 and Figure 3.5, 

respectively.  
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Table 3.1 Refined structural parameters for fcc-structured KxCs3-xC60 samples with nominal 
K-content of x = 0.5 and 1 (refined K-content of x = 0.64(1) and 1.28(1), respectively), from 
Rietveld analysis of synchrotron XRPD data collected at 300 K, with wavelengths of 
0.39984 Å and 0.354197 Å, respectively. Site multiplicities are listed in column M. Values 
in parentheses are estimated errors from the least-squares fitting. The weighted-profile 
and expected R-factors are Rwp = 3.04% and Rexp = 2.21% (x = 0.5), and Rwp = 3.88% and 
Rexp = 2.82% (x = 1), respectively. The lattice constants are: a =14.6061(2) Å (x = 0.5) and 
14.4611(1) Å (x = 1). The fractions of the co-existing phases for x = 0.5 are: fcc = 
71.21(7)%, Cs4C60 = 19.4(2)% and CsC60 = 9.2(3)%, and for x = 1 are fcc = 83.34(4)% and 
Cs4C60 = 16.69(9)%. 

x = 0.5 x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.319(5) 1.28(2) 

Cs(1) 0.25 0.25 0.25 8 0.681(5) 1.28(2) 

Cs(2) 0.5 0.5 0.5 4 1.0 5.43(4) 

C(1) 0 0.04867 0.23605 96 0.5 0.53(4) 

C(2) 0.20604 0.07869 0.09715 192 0.5 0.53(4) 

C(3) 0.17583 0.15727 0.04867 192 0.5 0.53(4) 

x = 1 x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.641(3) 1.11(2) 

Cs(1) 0.25 0.25 0.25 8 0.359(3) 1.11(2) 

Cs(2) 0.5 0.5 0.5 4 1.0 2.21(9) 

C(1) 0 0.04916 0.23842 96 0.5 0.79(3) 

C(2) 0.20812 0.07947 0.09812 192 0.5 0.79(3) 

C(3) 0.17759 0.15885 0.04916 192 0.5 0.79(3) 
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Figure 3.5 Rietveld fits to synchrotron XRPD data collected at 300 K, for fcc-rich nominal 
K0.5Cs2.5C60 (upper panel, Rwp = 3.04% and Rexp = 2.21%, ɉ = Ͳ.͵ͻͻͺͶ ÅȌ, and KCs2C60 (lower 
panel, Rwp = 3.88% and Rexp = 2.82%, ɉ = Ͳ.͵ͷͶͳͻ͹ ÅȌ, phases. Red circles, blue lines and 
green lines represent the observed, calculated and difference profiles, respectively. Ticks 
mark the reflection positions, from top-to-bottom, of co-existing fcc (red ticks), body-
centered-orthorhombic (bco) and CsC60 (observable in x = 0.5 only) phases. Both insets 
display expanded regions of the respective diffraction profiles; observed Bragg peaks are 
labelled by their (hkl) Miller indices.  

Fractional site occupancy studies at 300 K 

Refinement of the K+/Cs+ occupancy of the tetrahedral interstitial sites of the 

fcc structure revealed a deviation of the refined K-content from its nominal value. 

The reason can be traced to the incompatibility of the large Cs+ cation size 

(r = 1.67 Å) with the size of the small tetrahedral hole (r = 1.12 Å) leading to a 
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tendency for reduced occupation of this site. Furthermore, because of the size 

mismatch between Cs+ and K+ cations, samples with nominal x<0.5 K-content show 

a greater tendency to disproportionate to the thermodynamically stable Cs4C60 and 

CsC60 phases. The effect of size mismatch between the intercalants and the Td site 

was previously experienced in the synthesis of AxCs3−xC60, where A = Rb or K 

(0.3 ζ x ζ ͳȌ [53], using a liquid ammonia route. It was found that attempts to 

increase the Cs content in RbxCs3−xC60 resulted in the absence of a concomitant 

increase in the unit cell size. This implied that beyond a certain limiting value, it 

was not possible to approach any closer the Cs-pure phase boundary. In the 

present study, even though there were clear discrepancies between nominal and 

actual values of the K content in the fcc phase, a systematic decrease of the unit cell 

volume was successfully observed with increasing x (Figure 3.7). 

For the investigation of the stoichiometry of the fcc KxCs3-xC60 phases, a series 

of test refinements of the high-statistics XRPD datasets was undertaken. As XRPD 

data were not collected at low temperatures for all samples, for consistency, the 

investigation was undertaken on datasets collected at 300 K. As a start, a test on 

the K0.75Cs2.25C60 dataset was undertaken. Three different models were employed 

in the investigation: (I) the relative ratio of K:Cs in the Td site (NTd) and Uiso of all 

atoms in the fcc phase were allowed to refine (the total occupancy of the Td site 

was fixed at 1.0), (II) NTd was fixed at the nominal stoichiometry, 

K:Cs = 0.375:0.625 and Uiso was fixed at values obtained from (I), and finally (III) 

NTd was fixed at the nominal stoichiometry and all Uiso values were refined. Once 

the applicability of this strategy was confirmed, it was applied to all compositions 

in the series of samples.  

Table 3.2 summarizes the resulting structural parameters of the models 

employed for nominal K0.75Cs2.25C60. In the case of model (III), the thermal 

displacements of the carbon atoms refined to negative values, and those of the K 

and Cs atoms in the Td site showed a pronounced increase. Model (I) gives the best 

fit to the data with reduced χ2 and physically meaningful thermal displacements. 

To confirm that refined occupancy results in the best fit, we have examined the 

variation in the resulting χ2 and Biso by manually changing the relative ratio of K:Cs 

in the Td site between the nominal and refined stoichiometry values for nominal 
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K0.75Cs2.25C60. Resulting refined parameters are presented in Figure 3.6. Reduced χ2 

goes to a minimum when the K+ occupancy at Td site is equal to the refined 

occupancy value of 0.435, then gradually increases with increasing occupancy. The 

variation of the fcc lattice constant, a with K+ occupancy (between the refined and 

nominal occupancy values) at Td site was also examined for the nominal 

K0.75Cs2.25C60 and found no variation within error in a. This investigation was 

applied to all compositions in the series of samples, and the same trend was 

obtained for each sample. Uiso of all atoms in the fcc phase and the profile shape 

coefficients were kept fixed at values obtained from model (I), only the relative 

ratio of K:Cs distributed in the Td site was manually changed for each test 

refinement.   

Table 3.2 Refined structural parameters for fcc-structured phase with nominal 
composition K0.75Cs2.25C60 for models (I), (II) and (III), from Rietveld analysis of 
synchrotron XRPD data collected at 300 K. Site multiplicities and fractional occupancies 
are listed in columns M and N, respectively. Values in parentheses are estimated errors 
from the least-squares fitting. 
 

 

          
K0.75Cs2.25C60 

Model (I) χ2=1.87, Rwp =3.6% 
K0.87(1)Cs2.13(1)C60 

 Model (II) χ2=2.14, Rwp=3.8%  
K0.75Cs2.25C60 

 Model (III) χ2=1.97, Rwp=3.7%  
K0.75Cs2.25C60 

Atom 
M N Biso (Å2)  N Biso (Å2)  N Biso (Å2) 

K (Td) 8 0.435(6) 1.09(1)  0.375 1.09(1)  0.375 1.56(3) 

Cs (Td) 8 0.565(6) 1.09(1)  0.625 1.09(1)  0.625 1.56(3) 

Cs (Oh) 4 1.0 4.49(4)  1.0 4.49(4)  1.0 4.39(5) 

C(1) 96 0.5 0.57(3)  0.5 0.57(3)  0.5 0.04(4) 

C(2) 192 0.5 0.57(3)  0.5 0.57(3)  0.5 0.04(4) 

C(3) 192 0.5 0.57(3)  0.5 0.57(3)  0.5 0.04(4) 
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Figure 3.6 (a): Variation of χ2 with K+ occupancy of the Td site and with Biso for carbon 
(black), for atoms in the Td site (dark green), and for Cs in the Oh site (dark pink). The solid 
lines are guides to the eye, and the dashed lines depict the minimum value of χ2. 
(b): Evolution of Biso of all atoms in fcc nominal K0.75Cs2.25C60 phase with K+ occupancy in 
the Td site, with the same colour code used in (a). The solid line through the data points is 
a linear fit. Presented parameters obtained from Rietveld refinement to synchrotron XRPD 
data collected at 300 K for nominal K0.75Cs2.25C60.  

The final evolution of χ2 with K content for all samples studied confirmed that χ2 takes its minimum value when the K content is fixed at the refined value (Figure 

3.7). The refined K content for each sample was found to correlate well with the fcc 

lattice parameter, a, at ambient temperature: Vegardǯs law is obeyed and a varies 

linearly with refined K content, xK (Figure 3.7), with a slope of 

da/dxK = −Ͳ.ʹ͵Ͷȋ͵Ȍ Å. Although xK is always larger than the nominal value for each 

sample, the variation of a with xK confirms that control of the fcc lattice dimensions 

was successfully achieved. Zadik et al. have found smaller deviation of the refined 

xRb from the nominal Rbx values. a was found to vary linearly with refined xRb, with 

smaller rate of da/dxRb = −0.151(3) Å [67]. The refined fcc lattice parameters are 

tabulated together with the refined fcc phase fractions and K-content in Table 3.3. 

From now on, instead of nominal x, the refined xK values will be used to label the 

samples. 
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Figure 3.7 (a): Variation of χ2 with K-content, xK, for each sample in the series of KxCs3-xC60; 
solid lines are guides to the eye, red circles represent the refined xK for each sample at 
which χ2 reduces to its minimum. (b): Variation of the ambient temperature fcc lattice 
constant of KxCs3-xC60 (0 ζ x ζ 2) with refined xK, from analysis of synchrotron XRPD data at 
300 K. The x = 0 lattice constant is from ref.[28]; the solid line is a linear fit, yielding a 
value of da/dxK = −Ͳ.ʹ͵Ͷ(3) Å.  

Table 3.3 The fcc lattice parameter and refined K-content for fcc KxCs3−xC60 samples at 
300 K. Values in parentheses are statistical errors from the least-squares fitting. 

 
Nominal x Refined xK X-ray ɉ ȋÅȌ afcc (Å) fcc phase (wt.%) Rwp ; Rexp(%) 

 0.12 0.22(1) 0.39999 14.7011(2) 31.5(2) 4.90 ; 3.40 

 0.25 0.35(1) 0.39999 14.6736(2) 53.0(2) 5.34 ; 4.47 

 0.35 0.53(1) 0.39984 14.6262(5) 54.0(2) 4.11 ; 2.96 

 0.5 0.64(1) 0.39984 14.6061(2) 71.21(7) 3.04 ; 2.21 

 0.75 0.87(1) 0.39984 14.5576(2) 85.18(7) 3.55 ; 2.60 

 1 1.28(1) 0.35419 14.4611(1) 83.34(4) 3.88 ; 2.82 

 1.5 1.626(4) 0.39996   14.37345(8) 94.05(1) 4.55 ; 3.41 

 2 2 0.35419   14.28571(7) 100  3.76 ; 2.74 

The fcc phase structural parameters obtained from the refinements and Rietveld 

fits to the 300 K XRPD data for KxCs3-xC60 samples with K-content of xK = 0.22(1) 

and 0.53(1); 0.87(1); 1.626(4) and 2; and finally 0.35(1) are presented in 

Appendix I in Tables and Figures A1; A2; A3; and A4, respectively. 
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Table 3.4 The co-existing phase fractions for fcc-structured KxCs͵−xC60 samples at 300 K. 
Values in parentheses are statistical errors from the least-squares fitting. 

xK fcc phase (wt. %) Cs4C60 (wt. %) CsC60 (wt. %) 

0.22(1) 31.5(2) 52.69(7) 14.9(2) 

0.35(1) 53.0(2) 40.9(2) 5.7(3) 

0.53(1) 54.0(2) 29.9(2) 16.1(3) 

0.64(1) 71.21(7) 19.4(2) 9.2(3) 

0.87(1) 85.18(7) 14.8(1) - 

1.28(1) 83.34(4) 16.69(9) - 

1.626(4) 94.05(1) 5.95(7) - 

2 100 - - 

Cation size variance in the fcc tetrahedral sites 

Attfield et al. have reported that the superconducting Tc is highly sensitive to 

cation disorder in the series of (Lͳ−xMx)2CuO4 superconductors, in which L3+ (La 

and Nd) and M2+ (Ca, Sr and Ba) cations are randomly distributed amongst the Ǯtype Aǯ lattice sites. )n the same study they showed that Tc decreases linearly with 

increasing A-site disorder across the full range of samples with the same doping 

level and mean A-site radius [180]. This type of particular response of 

superconducting Tc to the cation disorder may be also present for the fcc AxCs3−xC60 

superconducting fullerides as a greater size mismatch between the substituted 

cations occupying the tetrahedral sites naturally leads to a greater cation disorder.  

Cation disorder in the fcc tetrahedral interstitial sites was quantified by the 

variance in the distribution of the Td site cation radii to investigate the effect of 

cation disorder on superconducting Tc. Attfield et al. studied several compositions 

in the series of (Lͳ−xMx)2CuO4 superconductors and prepared the compositions 

with the same total doping level and mean A-site radius <rA>, and quantified the 

cation disorder at the A-site by the cation size variance, σ2, of A-site cation radii, 

and expressed as  σଶ = ݎۃ஺ଶݎۃ − ۄ஺ۄଶ [180]. In the same study, they reported that the 

superconducting temperature, Tc, should increase quadratically with <rA> for 

superconductors containing a single CuO2 layer, but only if there was no disorder, 
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and confirmed that the Tc is very sensitive to σ2. Similar studies were undertaken 

on (Lnͳ−xMx)MnO3 perovskites (Ln = rare earth, A = alkaline earth) and found that 

electronic and magnetic properties of these compounds are highly sensitive to the 

size disorder which results from the size mismatch between the substituted 

cations occupying the A-site [181]. Investigations into the effects of cation size 

disorder, which was again quantified by σ2, on the electronic and magnetic 

properties of rare-earth cobaltates and manganates found that they can be 

rendered ferromagnetic and metallic from non-magnetic insulators by decreasing σ2 while keeping <rA> constant [182], [183].  

When we apply this expression for the series of KxCs3-xC60 samples, where the 

Td sites are randomly occupied by a disordered K+/Cs+ mixture (except x = 2) but 

with a fixed total occupancy of 1.0, the expression of the cation size variance at the 

Td site, �௥��ଶ , can be written as follows: 

�௥��ଶ =  ∑ ஺ݔ ஺ଶݎ − ଶ Equation 3.3ۄ஺ݎۃ
 

where ݔ஺   is the refined occupancy of the cation at the Td site, with total occupancy 

at the Td site is fixed at 1: ∑ ஺ݔ = ͳ,  ݎ஺ is the ionic radius (rK+= 1.38 and 

rCs+ = 1.67 Å) and ݎۃ஺ۄ is the average ionic radius at the Td site. Two representative 

calculation of �௥��ଶ for the cation-disorder free K2CsC60 and cation-disordered 

K0.87Cs2.13C60 samples can be written as follows: �௥��ଶ =  [ሺͳ × ͳ.͵ͺଶሻ + ሺͲ × ͳ.͸͹ଶሻ] − [ሺͳ × ͳ.͵ͺሻ + ሺͲ × ͳ.͸͹ሻ]ଶ = Ͳ �ଶ �௥��ଶ =  [ሺͲ.Ͷ͵ͷ × ͳ.͵ͺଶሻ + ሺͲ.ͷ͸ͷ × ͳ.͸͹ଶሻ] − [ሺͲ.Ͷ͵ͷ × ͳ.͵ͺሻ + ሺͲ.ͷ͸ͷ × ͳ.͸͹ሻ]ଶ 

         = Ͳ.Ͳʹͳሺʹሻ �ଶ 

where the relative cation occupancy ratio at the Td sites for K2CsC60 and 

K0.87Cs2.13C60 are xK+: xCs+ = 1:0 and xK+: xCs+ = 0.435(6):0.565(6), respectively. The 

same study was then undertaken for the series of fcc RbxCs3−xC60 samples to 

compare the cation size variance in the case of K+ and Rb+ (rRb+= 1.52 Å) 

substitution. The refined cation occupancies at the tetrahedral sites in this family 

were taken from ref. [67] (Table 3.5).  
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Table 3.5 Nominal and refined Rb-content for fcc-rich RbxCs3−xC60 samples [67]. 

Nominal xRb Refined xRb 

0.25 0.22(1) 

0.35 0.33(2) 

0.5 0.426(8) 

0.75 0.73(1) 

1 1.02(1) 

1.5 1.64(1) 

2 2 

While the calculations of the average ionic radius and the cation size variance at 

the Td site were carried out using the refined Rb-content, the nominal xRb values 

were used to label the RbxCs͵−xC60 samples. The evolution of ݎۃ஺ۄ for fcc AxCs3−xC60 

compositions (A is either K or Rb) with refined xA at the Td site is presented in 

Figure 3.8, and the variation of the cation size variance with refined xA at the Td site 

and with fcc lattice constant, a, is given in Figure 3.9. Due to the smaller ionic 

radius of K, ݎۃ஺ۄ decreases at a significantly greater rate (dݎۃ஺ۄ/dxA = −Ͳ.ͳͶͷ Å and −Ͳ.Ͳ͹ͷ Å, for xK and xRb, respectively) compared to that in the Rb-substituted 

system. 
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Figure 3.8 The variation of average tetrahedral site cation radius ݎۃ஺ۄ with xA for fcc 
AxCs3−xC60 compositions where A is either K or Rb. Data for fcc RbxCs3−xC60 are from ref 
[67]. Statistical errors on ݎۃ஺ۄ are calculated using the statistical errors of the refined site 
occupancies of K+, Rb+ and Cs+ cations from Rietveld analysis. 

The calculated variance, σ2 gradually increases by replacing Cs+ with K+ or 

Rb+ at the Td interstitial sites of fcc Cs3C60, reaches a maximum, (σ2)max, for the 

optimally expanded K0.87Cs2.13C60 (a = 14.5576(2) Å) and RbCs2C60 (refined 

xRb= 1.02(1), a = 14.60211(5) Å). Beyond this point, with further increasing the 

amount of A+ at the Td site, σ2 decreases with increasing xA+, producing a Ǯdomeǯ 
shaped scaling of cation size variance with xA+ and a. Whilst a dome-shaped scaling 

is observed for both fulleride families, at the same fcc lattice constant of ~14.60 Å, σ2 for K1.28Cs1.72C60 is 1.8(2) x 10−2 Å2   and 0.6(1) x 10−2 Å2 for nominal RbCs2C60. 

This reflects the smaller cation size disorder in the case of substitution by Rb+. A Ǯdomeǯ-shaped scaling of Tc with fcc unit cell constant, Tc(a), in RbxCs3−xC60 system 

was observed [67], with nominal RbCs2C60 showing the maximum superconducting 

Tc at 32.9 K. The variation of Tc with σ2 and a in both fulleride families will be 

discussed in sections 3.4.2 and 3.4.5. 
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Figure 3.9 Variation of cation size variance at the Td site with refined A+ content and with 
fcc lattice constant of AxCs3−xC60 where A+ is either K+ (red circles) or Rb+ (open squares, 
from ref. [67]); data for x = 0 from ref. [28]. Solid lines through the data points in left panel 
are calculated using Equation 3.3 and in right panel are guides to the eye. Statistical errors 
on σ2 are estimated using the statistical errors on refined site occupancies of K+, Rb+ and 
Cs+ cations from Rietveld analysis. Statistical errors on lattice parameters are smaller than 
data point size. 

3.3.3 Structural results at low temperatures 

Rietveld analysis was undertaken for the high-resolution synchrotron XRPD 

data collected for KxCs͵−xC60 compositions with K-content of x = 0.35, 0.64, 0.87 and 

1.28. All XRPD datasets except that of x = 1.28 were collected typically between 10 

and 300 K, on beamline ID31, ESRF. Datasets for fcc K1.28Cs0.72C60 were collected 

between 112 and 300 K on beamline BL44, SPring-8. As at ambient temperature, 

the same refinement model was employed. The fcc interstitial K+/Cs+ distribution 

was fixed to values found at ambient temperature. The relative phase fractions 

were also fixed to values refined from the 300 K datasets. The fcc phase structural 

parameters obtained from the refinements and two representative Rietveld fits to 

the XRPD data for samples with K-content of x = 0.64 and 0.87 are shown in Table 

3.6 and Figure 3.10, respectively, and of x = 0.35 (Table and Figure A4) and 1.28 

(Table and Figure A5) are presented in Appendix I. 
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Table 3.6 Refined structural parameters for fcc-structured KxCs3-xC60 samples with K-
content of x = 0.64 and 0.87 from Rietveld analysis of synchrotron XRPD data collected at 
10 K with wavelength of 0.39984 Å. Site multiplicities are listed in column M. Values in 
parentheses are estimated errors from the least-squares fitting. The weighted-profile and 
expected R-factors for xK = 0.64 and 0.87 are: Rwp = 3.38%, Rexp = 2.54%, and Rwp = 3.62%, 
Rexp = 2.89%, respectively. The lattice constants of xK = 0.64 and 0.87 compositions at 10 K 
are 14.5040(1) Å and 14.4584(1) Å, respectively.  Co-existing phase fractions fixed to 
values refined from the 300 K datasets: for xK = 0.64 fcc, Cs4C60, and CsC60 phase fractions 
are 71.21%, 19.4%, and 9.2%, respectively. For xK = 0.87 phase fractions of co-existing fcc 
and Cs4C60 at 300 K are 85.18% and 14.8%, respectively. 

x = 0.64 x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.319 0.40(1) 

Cs(1) 0.25 0.25 0.25 8 0.681 0.40(1) 

Cs(2) 0.5 0.5 0.5 4 1.0 0.84(1) 

C(1) 0 0.049014 0.237715 96 0.5 0.22(2) 

C(2) 0.207491 0.079238 0.097830 192 0.5 0.22(2) 

C(3) 0.177068 0.158377 0.049014 192 0.5 0.22(2) 

x = 0.87 x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.435 0.59(1) 

Cs 0.5 0.5 0.5 4 0.565 0.59(1) 

Cs(2) 0.5 0.5 0.5 4 1.0 1.11(1) 

C(1) 0 0.045305 0.241300 96 0.5 0.33(2) 

C(2) 0.209783 0.082731 0.094550 192 0.5 0.33(2) 

C(3) 0.181221 0.157584 0.050230 192 0.5 0.33(2) 

The temperature evolution of the fcc unit cell parameter for x = 0.35, 0.64, 

0.87 and 1.28 (Figure 3.12), investigated with Rietveld analysis, has revealed that 

besides the shifts in peak positions due to the volume contraction upon cooling, no 

changes in relative peak width and intensities (Figure 3.11), and no phase 

transition to a structure with different crystal symmetry are apparent. However, 

for x = 0.35, 0.64 and 0.87, the variation of lattice metrics with temperature 
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appears non-monotonic. Upon cooling, an anomalous rapid shrinkage of the unit 

cell size is seen at a certain temperature. The onset temperature of this lattice 

decrease increases with decreasing unit cell size, through increasing K+ content, 

and the transition extends over a broader temperature range. On the other hand, 

no anomalies are seen in unit cell volumes of fcc K1.28Cs1.72C60 and Cs3C60 [28] on 

cooling and typical thermal contraction upon cooling to low temperature is 

observed over the experimental temperature range. 

 

Figure 3.10 Rietveld fits to synchrotron XRPD data collected at 10 K for fcc-structured 
KxCs3-xC60 samples with K-content of x = 0.64 (upper panel) and x = 0.87 (lower panel) with ɉ = 0.39984 Å. Red circles, blue lines and green lines represent the observed, calculated 
and difference profiles, respectively. Ticks mark the reflection positions, from top-to-
bottom, of co-existing fcc (red ticks), body-centered-orthorhombic (bco) and CsC60 
(observable in x = 0.64 only) phases. Both insets display expanded regions of the 
respective diffraction profiles at high Bragg angles. 

To investigate whether or not the space group ݉ܨ͵̅݉ is preserved to low 

temperatures or phase co-existence is present, we examined the temperature 
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evolution of the full-width-at-half-maximum (FWHM) for two relatively intense 

isolated fcc Bragg peaks: (311) and (220), from x = 0.35 and 0.64 which yield the 

most pronounced rapid shrinkage of the unit cell size on cooling. If any such issues 

were present, some peak broadening across the temperatures where the 

anomalies are seen would have been anticipated; however, there is little variation 

of the peak widths over the experimental temperature range and no changes at any 

specific temperatures are evident (Figure 3.11). In accordance with this, it can be 

concluded that it is an isosymmetric collapse of the unit cell volume as there is no 

symmetry-lowering transition and the space group ݉ܨ͵̅݉ is preserved to low 

temperatures.  

 

Figure 3.11 The temperature evolution of the full-width-at-half-maximum (FWHM) of the 
(311) (circles) and 220 (squares) Bragg peaks of fcc-structured KxCs͵−xC60 samples with x = 
0.35 and 0.64.  

The temperature dependence of the unit cell volume, V(T) (Figure 3.12) was 

modelled using a Debye-Grüneisen model and employing Equation 2.37 to fit the 

V(T) data above the anomaly onsets for the x = 0.35, 0.64 and 0.87 compositions 

(Section 2.3.6) [134]. The Debye temperature, ΘD, of each sample was fixed to that 

obtained for fcc Cs3C60 (ΘD = 218 K [28]). Comparable behaviour was observed for 

the V(T) response in fcc RbxCs͵−xC60 (0.25 ζ x ζ 1.5) [67] which also shows distinct 

anomalies at well-defined temperatures (Figure 3.12).  
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Figure 3.12 The temperature evolution of volume, V, occupied per C603- anion for fcc-
structured KxCs͵−xC60 samples with xK = 0.35, 0.64, 0.87 and 1.28, for fcc-structured 
RbxCs͵−xC60 samples with xRb  = 0.25, 0.75, 1.5 and 2 [67], and for Cs3C60 [28]. Arrows mark 
the onset temperatures of the change in lattice response, denoted Tǯ, where present. The 
solid lines through the data are Debye-Grüneisen fits for T > Tǯ (or over all T for x = 0, xK = 
1.28 and xRb = 2). The dotted lines through the data at T < Tǯ are guides to the eye. Inset: Temperature dependence of the normalised volume change, ΔV/VTǯ for xK = 0.35, 0.64 and 
0.87. Statistical errors in V per C603- from Rietveld analysis are smaller than the data point 
size. 

This isosymmetric collapse in unit cell volume was attributed to a metal-to-

insulator (MI) crossover, evidenced by both the temperature dependence of the 

magnetic susceptibility and of the 1/13T1T (13C spin-lattice relaxation rates divided 

by temperature) data [67]. It is consistent with a lower unit cell size for the 

metallic phase compared with the insulating phase, ΔVMI= VM − VI < Ͳ − according to 
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the virial theorem, a transition from localised to itinerant behaviour lowers the 

volume [184], [185]. In a similar way, we also attribute the collapse in unit cell 

volume on cooling to the occurrence of an insulator-to-metal crossover. This is also 

corroborated by SQUID magnetometry data discussed later in section 3.4.4. The 

Mott insulator-to-metal transition is of first order and ends at a critical point in the 

volume-temperature electronic phase diagram [186]. The absence of a phase co-

existence in the XRPD (and complementary NMR) data implies that all samples in 

the present study lie above the critical temperature for the MIT. 

The inset in Figure 3.12 shows the temperature dependence of the normalised volume change, ΔV/VTǯ, for x = Ͳ.͵ͷ, Ͳ.͸Ͷ and Ͳ.ͺ͹, where ΔV is the 

difference between volume per C60͵− derived from the Debye-Grüneisen fits 

extrapolated below the onset temperatures of the change in lattice response, Tǯ 

and that extracted from Rietveld analysis at given experimental temperatures 

below Tǯ. VTǯ is the volume per C60͵− at Tǯ. ΔV/VTǯ  approaches the same value of 

~0.4% for overexpanded x = 0.35 and 0.64, but the isosymmetric transition 

becomes smeared out at x = 0.87, and only a value of ~0.17% is reached at 10 K. 

Derived parameters from the Debye-Grüneisen fits to the V(T) data of both 

fcc KxCs3-xC60 and RbxCs3−xC60 families  and the variation of Tǯ with volume, V, 

occupied per C603- at Tǯ are summarised in Table 3.7 and Figure 3.13, respectively. 

Tǯ values of xK = 0.35, 0.64 and 0.87 are in excellent agreement with those found for 

fcc RbxCs3−xC60. The V(T) data for the full temperature range were included for 

K1.28Cs1.72C60 which shows no anomaly over the full temperature range; however, 

lack of low-temperature data points necessitated the use of a fixed value of ΘD –this 

was fixed to 152 K which is the value for metallic Rb2CsC60 [67] (Figure 3.12).  
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Table 3.7 Summary of resulting parameters from the Debye-Grüneisen fits to the V(T) data 
of fcc KxCs3−xC60, of fcc RbxCs3−xC60 [67], and of fcc Cs3C60 [28]. Tǯ is the insulator-to-metal 
crossover temperature, defined as the first point of deviation, on cooling, between V from 
experiment and V calculated for the high-temperature insulating phase. The symbols Ǯ*ǯ and Ǯ**ǯ label the data from [28] and  [67], respectively (in italics). 

xA T range (K) V0 (Å3) ΘD (K) IV (Å3 K-1) Tǯ(K) V/C60͵−at Tǯ (Å3) 

x = 0* 30 – 295 3161.4(7) 218 0.246(7) - - 

xRb = 0.25** 50 - 300 3131.8(3) 218 0.240(3) 50 783.126(8) 

xK = 0.35 100 - 300 3106.2(3) 218 0.239(2) 100 778.82(6) 

xRb = 0.75** 160 – 300 3085.5(1) 218 0.235(7) 150 776.16(1) 

xK = 0.64 210 – 300 3063.9(7) 218 0.231(4) 190 772.65(3) 

xK = 0.87 265 – 300 3031.4(6) 218 0.238(1) 235 767.39(3) 

xRb = 1.5** 280 – 516 3003.3(5) 218 0.2388(8) 260 762.01(5) 

xK = 1.28 110 – 300 2973.8(2) 152 0.216(2) - - 

xRb = 2** 10 – 570 2962.0(3) 152(6) 0.2293(9) - - 

 

Figure 3.13 Variation of the metal-to-insulator crossover temperature (Tǯ) (from XRPD 
data) with volume, V, occupied per C60͵− at Tǯ, for various fcc KxCs3-xC60 and RbxCs3-xC60 
samples. Data for RbxCs3-xC60 compounds are from ref. [67]. The solid line through the data 
points is guide to the eye. 
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3.3.4 Summary of structural results at ambient pressure 

The investigation of XRPD data collected under ambient conditions for fcc-

structured KxCs3-xC60 has revealed that the unit cell size of fcc Cs3C60 was 

successfully chemically pressurised through substitution of the smaller K+ for the 

Cs+ cation. V decreases linearly with increasing x down to the literature value 

reported for fcc K2CsC60 [30], [41], indicative of good fcc phase stoichiometry 

control. Temperature evolution of the unite cell size for selected compounds to low 

temperatures shows that while the insulating x = 0 analogue exhibits a typical 

thermal contraction behaviour, decreasing the unit cell volume leads to well-

defined volume changes upon cooling at well-defined temperatures. Moreover, the 

onset temperature of volume change increases with increasing x with no evidence 

for any lattice symmetry change upon cooling. Therefore, the transition was 

concluded to be isosymmetric in nature. 

3.3.5 Structural results at high pressure at 7 K 

In this section, Rietveld analysis results of high-resolution synchrotron XRPD 

data collected for fcc-structured KxCs3−xC60 samples with K-content of x = 0.35, 0.87 

and 1.28 at 7 K will be presented. In this section, the same structural model was 

employed to that used in the ambient pressure data analysis. There were, however, 

certain differences in the Rietveld model used: isotropic thermal displacement 

parameters of carbon, which were constrained to take the same value, were only 

allowed to refine at the lowest pressure (typically ~0.3 GPa) and then fixed at all 

other pressures. The fcc phase K+/Cs+ occupancies were fixed to those values 

found at 300 K (section 3.3.2) and were kept fixed at all other pressures. No 

absorption correction was employed, in contrast to the ambient pressure data 

analysis. The pressure evolution of the XRPD profiles for fcc-rich K0.87Cs2.13C60 and 

K1.28Cs1.72C60 is presented in Figure 3.14, and Rietveld fits to the XRPD data for the 

two compositions at low and high pressure are shown in Figure 3.15 and Figure 

3.16. The corresponding structural parameters for the majority fcc phase for 

K0.87Cs2.13C60, obtained from Rietveld refinement are listed in Table 3.8, and for 

x = 0.35 (Table and Figure A6) and 1.28 (Table A7) are presented in Appendix II 

together with the Rietveld fits (for x = 0.35) to the XRPD data. 
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Figure 3.14 Pressure evolution of synchrotron XRPD profiles, collected at 7 K, for fcc-rich 
K0.87Cs2.13C60 (upper panel) and K1.28Cs1.72C60 ȋlower panelȌ, with ɉ = 0.41238 Å. Intensities 
are normalized to the most intense peak and offset for clarity. 
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Figure 3.15 Rietveld fits to high-pressure synchrotron XRPD data collected at 7 K for fcc-
rich K0.87Cs2.13C60 at 0.3 GPa (upper panel) and 9.8 GPa (lower panel), with ɉ = 0.41238 Å . 
Red circles, blue lines and green lines represent the observed, calculated and difference 
profiles. Ticks mark the reflection positions of co-existing fcc (red ticks) and body-
centered-orthorhombic (bco) phases. The insets display expanded regions of the 
respective diffraction profiles at low and high Bragg angles, respectively. The fitted 
background contribution has been subtracted for clarity.  
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Figure 3.16 Rietveld fits to high-pressure synchrotron XRPD data collected at 7 K for fcc-
rich K1.28Cs1.72C60 at 0.3 GPa (upper panel) and 9.8 GPa (lower panel), with ɉ = 0.41238 Å . 
Red circles, blue lines and green lines represent the observed, calculated and difference 
profiles. Ticks mark the reflection positions of co-existing fcc (red ticks) and body-
centered-orthorhombic (bco) phases. The insets display expanded regions of the 
respective diffraction profiles at low and high Bragg angles, respectively. The fitted 
background contribution has been subtracted for clarity. 
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Table 3.8 Structural parameters for the majority fcc phase of K0.87Cs2.13C60 extracted from 
Rietveld analysis of synchrotron XRPD data collected at ͹ K at Ͳ.͵ and ͻ.ͺ GPa ȋɉ = 0.41238 
Å). The fractional site occupancies, N of the tetrahedral site were fixed to values obtained 
from the analysis of 300 K high statistics data, as described earlier (Table 3.3). Values in 
parentheses are statistical errors from Rietveld refinement. The weighted-profile and 
expected R-factors are: Rwp = 0.56% and Rexp = 0.39% (at 0.3 GPa), and Rwp = 0.67% and 
Rexp = 0.38% (at 9.8 GPa). Refined fcc and bco phase fractions at 0.3 GPa are 84.02(5)% and 
16.3(2)%, respectively. 

K0.87Cs2.13C60, a7K, 0.3 GPa = 14.4468(1) Å, fcc phase fraction: 84.02(5)% 

P = 0.3 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.435 0.92(3) 

Cs(1) 0.25 0.25 0.25 0.565 0.92(3) 

Cs(2) 0.5 0.5 0.5 1.0 1.42(4) 

C(1) 0 0.04921 0.23866 0.5 0.44(4) 

C(2) 0.20831 0.07955 0.09822 0.5 0.44(4) 

C(3) 0.17777 0.15900 0.04920 0.5 0.44(4) 

K0.87Cs2.13C60, a7K, 9.8 GPa = 13.5821(3) Å 

P = 9.8 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.435 0.92 

Cs(1) 0.25 0.25 0.25 0.565 0.92 

Cs(2) 0.5 0.5 0.5 1.0 1.42 

C(1) 0 0.05234 0.25385 0.5 0.44 

C(2) 0.22158 0.08462 0.10448 0.5 0.44 

C(3) 0.18909 0.16913 0.05234 0.5 0.44 

 

The compressibility behaviour of the three compositions was investigated using 

the pressure dependence of the fcc unit cell volume data, V(P), extracted from 

Rietveld analysis, followed by modelling the V(P) data for each composition with 

the Murnaghan EoS (Equation 2.28). The V(P) trends for each sample together with 

a least-squares fit to the Murnaghan EoS are presented in Figure 3.17 and the 

derived EoS fit parameters are tabulated in Table 3.9. 
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Figure 3.17 Pressure evolution of fcc unit cell volume at 7 K for KxCs3−xC60; xK = 0.35, 0.87 
and 1.28. Data for fcc Cs3C60 at 15 K (dashed line through squares) from ref. [28] and for 
Rb2CsC60 at 7 K (dashed line through squares) from ref. [67] are also presented for 
comparison. The lines through the data points show results from least-squares fits to 
second-order Murnaghan EoS. Statistical errors in V from Rietveld analysis are smaller 
than the data point size. 

Table 3.9 Derived parameters from the Murnaghan EoS fits to the 7 K V(P) data for fcc 
KxCs3−xC60 (xK = 0.35, 0.87, 1.28), for fcc Rb2CsC60 [67], and for fcc Cs3C60 [28]. The literature data are labelled with the symbol Ǯ*ǯ ȋin italicsȌ. Statistical errors from the least-
squares fits are in parentheses. 

xA K0 (GPa) Kǯ0 к = ݀lnܸ/dܲ (GPa−ͳ) V0 (Å3) 

x = 0* 13.7(3) 13.0(3) 0.073(2) 3163.6 

xK = 0.35 19.0(1) 9.00(1) 0.0526(3) 3120(1) 

xK = 0.87 17.9(2) 8.94(9) 0.0559(6) 3057(1) 

xK = 1.28 18.7(6) 8.6(2) 0.053(2) 3008(3) 

xRb = 2* 20.9(3) 8.8(2) 0.0479(7) 2961.9 
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The present results are consistent with those from previously reported 

studies on the compressibility of fcc A3C60 (A = K, Rb, Cs) [28], [67], [187], [188], i.e. 

an average volume compressibility of 0.041(3) GPa−1 for K3C60 and Rb3C60 [187]. 

The values of K0, Kǯ0 found here experimentally are typical for fcc A3C60; K0 = 14(1) 

GPa, Kǯ0 =10.0(3) reported for Rb3C60 obtained from Murnaghan EoS at ambient 

temperature [188]. In conclusion, our V(P) data presently available reveals that the 

series of fcc-structured KxCs3−xC60 materials shows a smooth compressibility 

behaviour over the experimental pressure range (P < 11 GPa) with no evidence for 

any change in crystal symmetry. 

3.4 Magnetic properties of KxCs3−xC60 (0.12 ≤ x ≤ ʹȌ 

In the following sections, the investigation of the magnetic properties of fcc 

KxCs3−xC60 (0.12 ζ x ζ ʹȌ using the Magnetic Property Measurement System (MPMS 

XL) Superconducting Quantum Interference Device (SQUID) magnetometer will be 

presented. The overall setup of the SQUID and experimental procedures for 

different type of SQUID magnetisation measurements were outlined in Section 

2.6.5.  

3.4.1 Experimental methods 

SQUID magnetisation measurements at ambient pressure were carried out 

on ~20-25 mg powder samples, loaded in thin-walled 5 mm-diameter Suprasil® 

quartz ampoules for SQUID measurements of air sensitive materials, evacuated to 

~1×10−4 mbar using a glass high-vacuum manifold setup with a Leybold vacuum 

PT70B turbo pump for 20 minutes, filled with a small He gas pressure (typically 

~400 mbar) and sealed.  

Three different types of data collection were performed at ambient pressure 

for magnetic characterisation. The superconducting properties were investigated 

by low-field (10-20 Oe) magnetisation measurements as a function of temperature 

under both zero-field-cooled (ZFC) and field-cooled (FC) protocols. Temperature 

dependence of the magnetisation was investigated between 1.8 and 300 K under 

FC protocol at 3 and at 5 T. Finally, magnetisation measurements were undertaken 

at 295 and 5 K as a function of applied field between 0 and 5 T. 
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High-pressure SQUID magnetisation measurements were also carried out on 

~20-25 mg samples of fcc KxCs3−xC60 (0.35 ζ x ζ ʹȌ as a function of temperature 
using an EasyLab MCell 10 high-pressure cell. The details about the assembly of 

the high-pressure cell and experimental setup are provided in Section 2.6.7. Data 

were collected at temperatures between 1.8 and 40 K, under magnetic fields of 20 

Oe using a ZFC protocol, at pressures between ~0.3-10.5 kbar.  

3.4.2 Ambient pressure, low-field magnetisation measurements 

The temperature dependence of magnetisation, M(T), for all KxCs3−xC60 

(0.12 ζ x ζ 2) samples, collected under a ZFC protocol, is shown in Figure 3.18. 

Figure 3.19 shows M(T) data for selected samples collected under both ZFC and FC 

protocols. 
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Figure 3.18 Temperature dependence of the ZFC magnetisation, M, of fcc KxCs3-xC60 
(0.22 ζ x ζ ʹȌ, divided by the applied magnetic field (20 Oe for x = 0.35 and 1.28, 10 Oe for 
other samples). Right panels display expanded regions of the respective M(T) data around 
the temperatures where diamagnetic shielding starts; more expanded (x ζ 0.87) and less 
expanded (1.28 ζ x ζ 2) samples are shown in different panels for clarity.  

Superconductivity is observed in the series of KxCs3-xC60 (0.22 ζ x ζ ʹȌ 

samples with onset superconducting transition temperatures Tc ranging from 22.8 

to 30.6 K. The shielding fraction and superconducting Tc vary with K-content. The 

M(T) data for K2CsC60  shows a very tiny kink at ~19 K which might correspond to 

superconducting Tc for  K3C60, albeit no Bragg reflections from K3C60 phase could be 

detected with synchrotron XRPD data. Shielding fractions were estimated from the 

ZFC data using Equation 2.45 (Table 3.10). The small magnitude of the FC 

magnetisation signal indicates that pinning in the samples is extremely strong, 

with little magnetic field expulsion. Tc values of fcc-structured KxCs3−xC60 both at 

ambient and high pressures were derived from the first derivatives of ZFC and FC 

datasets with respect to temperature (Figure 3.20). The first points of deviations 

were chosen to represent Tc for each sample. These are tabulated in Table 3.10 

together with the estimated shielding fractions and fcc phase fractions (extracted 

from Rietveld analysis). Estimated shielding fractions in the series of KxCs3-xC60 

samples range from 10% (for x = 0.35) to 52% (for x = 2). Dahlke et al. synthesised 

a series of fcc-rich KxCs3-xC60 and RbxCs3-xC60 samples using a liquid ammonia 

solution technique and reported shielding fractions of 30-50% (0.64 ζ xK ζ 0.97) 

and 25-60% (0.32 ζ xRb ζ 1) from ZFC magnetisation measurements [53]. Zadik et 
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al. reported estimated shielding fractions of 32-91%  in the series of RbxCs3-xC60 

(0.35 ζ x ζ 2) samples [67]. 

 

Figure 3.19 Temperature dependence of the magnetisation, M, under both ZFC and FC 
protocols, divided by the applied magnetic field (20 Oe for x = 0.35 and 1.28, 10 Oe for 
x = 0.87 and 0.64) for the series of compounds, KxCs3−xC60 ȋͲ.͵ͷ ζ x ζ ͳ.28). Insets show 
expanded regions of the respective M(T) data near the superconducting Tc. 
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Figure 3.20 Temperature evolution of the first derivative of ZFC magnetisation dataset 
with respect to temperature for KxCs3−xC60. The dashed line represents the Tc line at which 
the open black edged circles signify the corresponding Tc values for each sample (see 
Table 3.9 for details). 

Table 3.10 Superconducting Tc and estimated shielding fractions (SF) at ambient pressure 
for KxCs3−xC60 (0.22 ζ x ζ 2) samples. Applied magnetic field is 20 Oe for x = 0.35 and 1.28 
and 10 Oe for other samples. 

Refined 

xK 

Tc (K) SF (%) fcc phase 

(wt.%) 

 Refined   

xK 

Tc (K) SF 

(%) 

fcc phase 

(wt.%) 

0.22(1) 26.5 16 31.5(2)  0.87(1) 30.9 40 85.18(7) 

0.35(1) 28.8 10 53.0(2)  1.28(1) 29.7 33 83.27(4) 

0.53(1) 30.2 13 54.0(2)  1.626(4) 26.3 44 94.05(1) 

0.64(1) 30.5 17 71.21(7)  2 22.8 52 100 

 

In contrast to the monotonic response of superconducting Tc to the volume 

contraction observed in the underexpanded A3C60 superconductors, the variation 

of Tc with refined xK, Tc(xK), (Figure 3.21) and with unit cell volume Tc(V), is 

reminiscent of the pressure-induced Tc(V) behaviour in both superconducting 

Cs3C60 polymorphs [28] and of the Tc(V) and Tc(xRb) behaviour in fcc-rich 

RbxCs3−xC60 (0.25 ζ x ζ 2) [67] (Figure 3.22Ȍ displaying a Ǯdomeǯ shaped scaling of 
Tc with xK and V.  
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Figure 3.21 Variation of superconducting Tc with refined K-content, xK, for KxCs3−xC60 
(0.22 ζ x ζ 2). The solid line is guide to the eye. 

Unit cell volume for the series of KxCs͵−xC60 samples at Tc has been estimated 

through extrapolation of the volume determined from Rietveld analysis of datasets 

collected at low temperature. However, as low-temperature XRPD datasets were 

only available for xK = 0.35, 0.64, 0.87 and 1.28, V at T = Tc for the remaining 

compositions of xK = 0.22, 0.53, 1.63 and 2 was estimated using the parameters 

obtained from the Debye-Grüneisen fits (Equation 2.37) to the available V(T) data. 

As seen in Figure 3.22, the variation of Tc for fcc KxCs͵−xC60 mimics the Tc(V) and 

Tc(x) behaviour of RbxCs͵−xC60 and fcc Cs3C60, forming distinct dome shapes; 

however, there is a significant suppression of Tc at a given V in the K-series  despite 

the comparable unit cell volumes to those of the Rb-doped analogues and fcc 

Cs3C60. This can be tentatively attributed to the greater cation disorder in the fcc 

tetrahedral interstitial sites of the series of KxCs3−xC60 samples than that of the 

RbxCs͵−xC60 family. Attfield et al. reported that the superconducting Tc decreases 

linearly with increasing A-site disorder, quantified by σ2, in three different A2CuO4 

series, with fixed mean A-site radius <rA>, and general formula of 

(LaͲ.ͻʹͷ−fNdfSrͲ.Ͳ͹ͷ−g−hCagBah)2CuO4 [180].  
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Figure 3.22 Variation of superconducting Tc with volume, V, occupied per C60͵− anion at 
T = Tc for KxCs͵−xC60 ȋͲ.ʹʹȋͳȌ ζ x ζ ʹȌ, for RbxCs͵−xC60 ȋͲ.ʹʹȋͳȌ ζ x ζ 2) [67] at ambient 
pressure and for fcc Cs3C60 at low temperature and under pressure [28].  Volumes per C60͵− 
for KxCs͵−xC60 at Tc are estimated by extrapolation of the volumes determined from low-
temperature structural data (Section 3.3.3). The inset shows the dependence of 
superconducting Tc on xK (red circles) and xRb (open squares). Solid lines are guides to the 
eye.  

For fcc AxCs͵−xC60, A is either K or Rb. σ2 in the fcc tetrahedral interstitial sites 

gradually increases with xA within the compositional range where superconducting 

Tc also increases with xA. However, once reaching a maximum in σ2, (σ2)max, with 

further increasing xA, σ2 rapidly decreases together with Tc, exhibiting a dome 

shaped scaling. Although a dome shaped scaling of σ2, with xA and fcc lattice 

constant is found in both families, (σ2)max in the RbxCs͵−xC60 family is significantly 

(~3.2 times) smaller than that in KxCs͵−xC60 (Section 3.3.2). (σ2)max  in the two 

families corresponds to K0.87Cs1.13C60 with a Tc of 30.9 K and RbCs2C60 with a Tc of 

32.9 K, which are the maximum superconducting Tc, (Tc)max, found at ambient 

pressure, as seen in Table 3.11.  
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Table 3.11 Calculated cation size variance for the tetrahedral interstices of fcc AxCs͵−xC60 
where A is either K or Rb, together with superconducting Tc and volume/C60 at T = Tc for 
each sample. Data for RbxCs͵−xC60 are from ref. [67]. Statistical errors in parentheses are 
calculated using the estimated errors on refined fractional occupancies of K+, Rb+ and Cs+ 
cations in the tetrahedral sites of fcc AxCs͵−xC60 from Rietveld analysis. For the x = 2 
compositions, full occupancy of the tetrahedral and octahedral sites by K or Rb and Cs 
were assumed in accordance with the results of the complementary NMR studies. The symbol Ǯ*ǯ depicts the maximum values of cation size variance and Tc (in italics). 

xK                    

 

σ௥��ଶ  

(Å2) 

Tc (K) 

 

V/C603- 

(Å3) 

 xRb 

nominal; refined  

σ௥��ଶ  

(Å2) 

Tc (K) 

 

V/C603- 

 (Å3) 

0 0 0 -  0; 0 0 0 - 

0.22(1) 0.008(2) 26.5 780.9  0.25; 0.22(1) 0.002(2) 25.9 782.5 

0.35(1) 0.012(2) 28.8 776.3  0.35; 0.33(2) 0.003(2) 26.9 779.1 

0.53(1) 0.016(2) 30.2 768.6  0.5; 0.426(8) 0.004(2) 29.4 774.3 

0.64(1) 0.018(2) 30.5 765.7  0.75; 0.73(1) 0.005(2) 31.6 768.3 

0.87(1)* 0.021(2) 30.9 757.9  1; 1.02(1)* 0.006(1) 32.9 762.5 

1.28 (1) 0.019(1) 29.7 742.5  1.5; 1.64(1) 0.004(1) 32.8 749.9 

1.626(4) 0.013(1) 26.3 728.9  2; 2 0 31.8 741.0 

2 0 22.8 715.6      

Compositions of fcc KxCs3−xC60 and RbxCs3−xC60 with approximately the same 

fcc unit cell volume show different Tc. This behaviour might indicate that previous 

assumptions about the identical effect of chemical [41] and physical pressure [187] 

on the variation of Tc in fcc AxCs3-xC60 superconductors is not valid for our work 

where the tetrahedral sites are occupied by a disordered mixture of K+/Cs+ (or 

Rb+/Cs+[67]). A study on Rb3C60 reported that applying physical pressure to Rb3C60 

reduces the lattice parameter to that of K3C60 and leads to approximately the same 

Tc for both materials [41]. In contrast, a later study reported some deviation in the 

variation of Tc with fcc unit cell volume when comparing physical and chemical (i.e. 

K substitution) means of reducing the Rb3C60 lattice parameter [172]. In 

accordance with combined results of this work and the study reported by Zadik et 

al., we tentatively propose that the effect of Ǯchemicalǯ and Ǯphysicalǯ pressure on Tc 

differs in cases where a chemically-induced cation disorder is present (i.e. K, Rb, Cs 

substitution). This topic will be discussed further in section 3.5. 
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3.4.3 Ambient pressure, field-dependent magnetisation measurements 

In order to determine the lower critical field, Hc1, the field-dependent 

magnetisation, M(H), has been measured at 5 K for the most expanded fcc-rich 

composition, K0.53Cs2.47C60, at applied fields between 0-2000 Oe. Hc1 was estimated 

as the field at which a deviation from linear M(H) behaviour is seen. Detailed 

information about alternative types of measurement methods employed for the 

estimation of Hc1 can be found in a review study reported by Buntar and Weber 

[189].  

Not many studies on the measurements of Hc1 in overexpanded fcc AxCs͵−xC60 

systems have been undertaken besides that by Zadik et al. [67]. Estimations of Hc1 

(0 K) are as follows: 55-81 Oe for RbCs2C60 [190], 75 Oe for Rb0.32Cs2.68C60 [53], 120 

Oe [191] for Rb3C60 and 132 Oe for K3C60 [192]. Zadik et al. estimated Hc1 (5 K) for 

two fcc-rich Rb0.35Cs2.65C60 and Rb2CsC60 samples as 100-120 Oe and 120-140 Oe, 

respectively[67]. The temperature dependence of Hc1 can be formulated as: 

Hc1(T) = Hc1 (0 K) [1 − (T/Tc)2] [191] which allows to estimate Hc1 (0 K). Figure 3.23 

shows the M(H) curve for K0.35Cs2.65C60 at 5 K together with a least squares linear 

fit to M(H), at low fields between 0-160 Oe. The first deviation from linearity upon 

increasing the applied field is seen between 120-140 Oe, corresponds to an 

estimated value of 123-144 Oe for Hc1 (0 K). To highlight the onset of deviation, ΔM = Mcalculated – Mexp was also plotted as a function of applied field (Figure 3.24). 

Mcalculated is the magnetisation at each applied field calculated from the resulting 

linear fit parameters and Mexp is the measured magnetisation.  
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Figure 3.23 The field-dependence of magnetisation, M(H), at 5 K for K0.35Cs2.65C60 (fcc 
phase fraction 52.7(2)%). Dotted line is guide to the eye and the solid line through the 
data points is a linear fit to M(H) at low fields (0-160 Oe).  

 

Figure 3.24 The variation of ΔM with applied field, H, at 5 K, for K0.35Cs2.65C60 where ΔM = Mcalculated − Mexp, and Mcalculated is the magnetisation at each applied field calculated 
from the resulting linear fit parameters and Mexp is the measured magnetisation. Solid line 
(cyan) through data points is guide to the eye, and the horizontal gray line highlights the 
non-linearity below Hc1. 
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Our results are in excellent consistency with those reported for overexpanded fcc-

rich Rb0.35Cs2.65C60 (100-120 Oe [67]) and Rb2CsC60 (120-140 Oe [67]. It should be 

noted that the fcc phase fraction of K0.35Cs2.65C60 is 52.7(2)% (the remaining 

comprising coexisting CsC60 and Cs4C60) and no corrections for demagnatisation 

were applied, which might lead to deviation from the true lower critical field.  

3.4.4 Ambient pressure, high-field magnetic susceptibility measurements 

Magnetic measurements were performed under FC protocol both at 5 and 3 T 

to subtract out any ferromagnetic impurity contribution (χFM). Experimentally, 

ferromagnetic impurity contributions saturate at applied fields below 3 T, and 5 T 

was the highest available magnetic field for our instrument; therefore these fields 

were selected for the measurements. The χȋT) data were obtained from the 

difference of magnetisation values obtained at 5 and 3 T, and are hereafter termed χ(5T  3T). The core diamagnetic susceptibilities, χcore, of pristine C60 (2.43×10−4 

emu mol−1) [193], K+ and Cs+ (14.9×10−6 and 35.0×10−6 emu mol−1, respectively) 

[194] were also subtracted [χ(5T  3T)  χcore]. The temperature dependence of the 

magnetic susceptibility, χȋT) for KxCs3-xC60 (0.22 ζ x ζ 0.87) samples is shown in 

Figure 3.25. 

 

Figure 3.25 Temperature dependence of the magnetic susceptibility, χȋT), of KxCs3−xC60 
samples. 
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The χȋT) data for the most expanded x = 0.22 sample display a well-defined 

cusp on cooling, and in contrast to the higher temperature behaviour, below a 

certain temperature, χ gradually decreases with temperature. By increasing x up to 

0.53, we find that the cusps broaden significantly while at the same time the 

maximum temperature at the cusp, Tǯ also increases. The maxima of cusps for 

x = 0.22 and 0.35 occur at 68 and 97 K, respectively. This particular behaviour of χȋT) is reminiscent of the V(T) trends; the onset temperature of the lattice changes 

increases and the transition becomes smeared out as K-content increases; these 

lattice changes were attributed to insulator-to-metal transitions (section 3.3.3). 

For x = 0.35, the lattice change was observed at ~100 K which coincides with the Tǯ 
value of 97 K. However, x = 0.53, 0.64 and 0.87 do not display a cusp but do not 

exhibit a temperature-independent Pauli susceptibility term either; χ starts 

deviating from linearity on heating above ~126 K, ~150 K and ~180 K, 

respectively with increasing x. This behaviour is consistent with the V(T) trends of 

x = 0.64 and 0.87 samples as the lattice transformations of these samples were also 

found to extend over a broader temperature range and not as prominent as that 

for x = 0.35. 

The Curie-Weiss law function was fitted to the linear region of the inverse 

susceptibility, [1/χ(5T  3T)  χcore], by least-squares fitting: 

߯ሺͷT − ͵Tሻ −  ߯co୰ୣ = ܶܥ −  Θ 
Equation 3.4 

where C represents the Curie constant, T is the temperature, and Θ is the Weiss 
temperature. The refined parameters from the Curie-Weiss fits and two 

representative Curie-Weiss fits for xK = 0.22 and 0.53 are presented in Table 3.12 

and Figure 3.26, respectively. Due to small temperature range available for fitting 

in the linear high temperature region of the x = 0.87 sample, the Weiss 

temperature was fixed to that found for x = 0.64. The magnetic moments presented 

in Table 3.12, Ɋeff, were calculated as follows: Ɋୣ୤୤ =  ɊB√ͺܥ Equation 3.5 where ɊB is the Bohr magneton. 
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Table 3.12 Resulting parameters from Curie-Weiss fits to KxCs3−xC60 (0.22 ζ x ζ 0.87) 
susceptibility data in the high temperature region. The Weiss temperature for x = 0.87 was 
fixed to that found for x = 0.64. 

Refined xK T range (K) C (emu K mol-1) Ɋeff ȋɊB/C603-) Θ ȋKȌ 

          0.22(1) 

0.35(1) 

90-250 

150-250 

0.191(2) 

0.197(2) 

1.236(6) 

1.255(6) 

220(3) 

215 (4) 

0.53(1) 200-300 0.183(3) 1.209(9) 158(6) 

0.64(1) 210-300 0.400(5) 1.79(1) 257(6) 

0.87(1) 230-300 0.4284(4) 1.8513(9) 257 

 

Figure 3.26 The temperature dependence of the inverse magnetic susceptibility, χ−1(T), for 
xK = 0.22 and 0.53. Solid lines through data points show fits of the Curie-Weiss law 
function to the linear regions (90 < T < 250 K and 200 < T < 300 K for xK = 0.22 and 0.53, respectivelyȌ of the χ−1(T) data. 

Fits of the high temperature linear regions of the inverse susceptibility yielded large negative Weiss temperatures approximately between −158 K and −250 K and effective magnetic moments per C603− ~1.2 ɊB for samples displaying 

cusps, and ~1.8 ɊB for less expanded x = 0.64 and 0.87 samples. For insulating fcc 

Cs3C60 and A15 Cs3C60 effective magnetic moments were estimated as 1.614(4)ɊB 

[28] and 1.32(1)ɊB [80] which are comparable to our results found for KxCs3−xC60 
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samples, indicating a S = ½ localized electron ground state with antiferromagnetic 

correlations in fcc KxCs3−xC60 (0.22 ζ x ζ 0.87) samples. Zadik et al. also reported Ɋeff ~1.6-ͳ.ͺ ɊB and negative Weiss temperatures between −95 and −ͳ͸Ͳ K for fcc-

rich overexpanded RbxCs3−xC60 (0.25 ζ x ζ ͳȌ samples. However, their results are 

more consistent with the high temperature χȋT) behaviour of fcc Cs3C60; they found 

a striking overlap in the high temperature region of fcc Cs3C60 and fcc RbxCs3−xC60 ȋͲ.ʹͷ ζ x ζ ͳȌ samples, underlining the similarity between those materials. This can 

be tentatively attributed to the better sample quality with much higher fcc phase 

fraction compared to that of expanded KxCs͵−xC60 materials. As a test, a refinable 

temperature-independent term, χ0, was also included in the Curie-Weiss fits using 

the following form: ߯ሺͷT − ͵Tሻ −  ߯core = Θ −ܶܥ + ߯Ͳ to account for any temperature-

independent contributions to the magnetic susceptibility from minor impurity 

phases, (e.g. non-magnetic insulators Cs4C60 and CsC60). However, refinement of χ0 

did not yield physically meaningful values and led to relatively large errors in C and Θ. Therefore, χ0 was set to zero in the final Curie-Weiss fits.  

In a Jahn-Teller distorted C603− molecule, in contrast to (undǯs rules, the 
ground state maximizes double occupancy of energy levels, and hence favours low-

spin (S = ½) rather than high-spin (S = 3/2) ground state. The C603− anions in 

antiferromagnetic Mott insulating NH3K3C60 were also found in a low-spin state 

and their high-spin state were found approximately 100 meV higher in energy 

[195]; in agreement with the previous assumptions of the energy between the low-

spin ground state and the lowest high-spin excited state which was expected to be 

of the order of 0.1 eV [196], [197]. This low-spin state characterises the overexpanded fullerides as ǮMott-Jahn-Tellerǯ insulators ȋMJT)Ȍ which are Mott 
insulators whose sites are in a JT stabilized low-spin state ȋinverted (undǯs rule 
coupling) [198], like fcc Cs3C60. Therefore, the insulating state of the overexpanded 

KxCs3−xC60 (0.22 ζ x ζ 0.87) samples at high temperatures may also be described as 

MJTI, with medium-strength JT coupling, low-spin ground state and strong 

antiferromagnetic correlations; this was also encountered in the overexpanded 

RbxCs3−xC60 ȋͲ.͵ͷ ζ x ζ ͳȌ samples in insulating regime by Zadik et al [67].  

We now turn to the temperature dependence of the magnetic susceptibility, χȋT) for K1.63Cs1.37C60 (fcc phase fraction 94.05(1)%) and phase-pure K2CsC60 
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samples. The χ data were corrected as χ(5T  3T)  χcore, as was employed for the 

more expanded samples. The χȋT) data (Figure 3.27) reveal that upon further 

lattice contraction for x η 1, χȋT) comprises a single nearly temperature-

independent Pauli spin susceptibility term, χP, in the experimental temperature 

range, consistent with a metallic ground state from which superconductivity emerges on cooling. The observed significant decrease in χ at high temperatures 
for x = 0.87 is no longer visible for x = 1.63 and 2 samples; however a small 

increase in χP is observed upon cooling in both compositions. 

 

Figure 3.27 Temperature dependence of the magnetic susceptibility, χȋT), of fcc-rich 
K1.63Cs1.37C60 and K2CsC60 samples. The scale and range of both axes have been fixed, for 
comparative purposes, to those of the plot displaying analogous data for overexpanded 
KxCs3−xC60 (Figure 3.25). 

Previous SQUID magnetic susceptibility measurements of K3C60 and Rb3C60 

discussed the reason for observing this small increase in the χP with decreasing 

temperature. This was attributed to the influence of ferro-like magnetic 

susceptibilities that remain even after correction by subtracting of values collected 

at different magnetic fields; such small ferromagnetic contributions would be 

enhanced at low temperatures [199]. On the other hand, in the same study of ref. 

[199], χȋT) for K3C60 and Rb3C60 obtained from EPR spectroscopy decreases with 

decreasing temperature. This was explained by the reduction of the NεF values due 

to the thermal contraction upon decreasing temperature as for free non-
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interacting electrons in a paramagnetic metal, in the absence of enhancement 

through spin fluctuations, χP is directly related to the Ǯbareǯ density of states at the 

Fermi level, NεF as follows: χP = 2ɊBଶ NεF. Indeed, Bukhart et al. have calculated a 

decrease of 6 and 8% for Rb3C60 and K3C60, respectively, due to thermal contraction 

upon cooling from ambient temperature to Tc [200]. However, in our susceptibility 

data no decrease is observed in χ upon cooing, indicating the decrease in NεF was 

dominated by the effect of the ferro-like magnetic susceptibilities. The absence of 

ferro-like behaviour in EPR data was ascribed to strong electron spin-spin 

correlations of ferro spins, resulting in very short relaxation times which could not 

be observed in EPR, leading to enhancement of the effect of thermal contraction 

[199]. Field-dependent magnetisation measurements of these two underexpanded 

samples were performed at 295 K to extract the susceptibility from a least-squares 

fit of the linear, high field region of the M(H) data where the ferromagnetic 

impurity contribution is fully saturated. Extracted Pauli susceptibility in the 

metallic regime was used for an estimation of NεF for these samples. 

 

Figure 3.28 The field-dependence of magnetisation at 295 K for K2CsC60 (22 mg) and 
K1.63Cs1.37C60 (24 mg). The solid line through data points are least-squares fits over the field range ͳ T ζ H ζ 5 T, using the function M = χH + M(0 Oe). The refined parameters for x = 2 are: χ = 0.216(1)×10−3 emu mol−1 ȋprior to correction for χcore) and M(0 Oe) = 7.36(3) 
emu mol−1, and for  x = ͳ.͸͵ are: χ = 0.270(3)×10−3 emu mol−1 ȋprior to correction for χcore) 
and M(0 Oe) = 9.73(7) emu mol−1. 



 

126 
 

The values of χcore are 0.308×10−3 and 0.315×10−3 emu mol−1, for x = 2 and 

x = 1.63, respectively, and the subtracted value of χ295 K – χcore from M(H) 

measurements for these samples are found as 0.53×10−3 and 0.59×10−3 emu mol−1, 

respectively. Using the χP = 2ɊBଶ NεF relation, NεF(295 K) for K2CsC60 is ~8.2 states 

eV−1 C60−1 and for K1.63Cs1.37C60 is ~9.1 states eV−1 C60−1 which are in excellent 

agreement with those estimated from theoretical calculations of NεF for K3C60, 

Rb3C60 [201] and fcc Cs3C60 under pressure (~4 kbar) [79]: 7.2, 8.1 and ~10 states 

eV-1 C60-1, respectively. Typically, theoretical estimates of NεF for A3C60 fullerides 

give values between ~7 and 10 eV−1 C60−1. However, NεF values estimated for K3C60 

(14 eV−1 C60−1) and Rb3C60 (19 eV−1 C60−1) [202] from magnetic susceptibility 

measurements at ambient temperature are considerably higher in magnitude than 

the present results in this study. 

3.4.5 High pressure, low-field magnetisation measurements 

In this section, investigation of the superconducting response of fcc-

structured KxCs3−xC60 (0.35 ζ x ζ 2) samples to both chemical and external 

hydrostatic pressure is discussed. Magnetisation measurements as a function of 

temperature, M(T), have been performed under ZFC protocol with applied 

pressure up to ~10.3 kbar. Figure 3.29 collects the M(T) data for KxCs3−xC60 

(0.35 ζ x ζ 2) samples. The variation of superconducting Tc and estimated shielding 

fraction with pressure are presented in Figure 3.30 and Figure 3.31, respectively. 

The M(T) data for K2CsC60  again show a very tiny kink at ~19 K at pressures up to 

4 kbar, consistent with that observed at ambient pressure, corresponding to 

superconducting Tc for K3C60; however, this is suppressed at higher pressures. 

For the most expanded fcc-rich sample, K0.35Cs2.65C60, Tc initially increases 

with increasing pressure, with a large positive initial pressure coefficient of 

(dTc/dP)P=0 = +1.5(2) K kbar−1; however, this rate of increase rapidly decreases 

with increasing K-content. It approaches zero for x = 0.87, which displays the 

maximum Tc at ambient pressure in this series of samples. It finally becomes 

negative over the full pressure range for the x = 1.28 and 2 samples, which exhibit a strongly negative pressure dependence ȋ−Ͳ.ͺͺȋͳȌ and −Ͳ.ͻͻȋ͵Ȍ K kbar−1, 

respectively), comparable to those reported for K3C60 ȋ−Ͳ.͹ͺ K kbar−1) [203] and 

Rb3C60 ȋ−0.97 K kbar−1) [191]. Non-linear pressure dependence of Tc, Tc(P), of 
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more expanded 0.35 ζ x ζ 0.87 samples produces superconductivity Tc(P) domes; 

the behaviour is reminiscent of that observed for both fcc and A15 Cs3C60 [28], and 

fcc-rich series of RbxCs3−xC60 (0.35 ζ x ζ ʹȌ samples [67] (Figure 3.32).  

 

Figure 3.29 Temperature dependence of magnetisation, M(T), (20 Oe, ZFC protocol) for fcc 
KxCs3−xC60 ȋͲ.͵ͷ ζ x ζ 2), at selected pressures. The insets show expanded regions of the 
respective data near superconducting Tc. 
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Figure 3.30 The variation of superconducting Tc with pressure for fcc-structured KxCs3-xC60 
(0.35 ζ x ζ ʹȌ, from magnetisation measurements with applied fields of 20 Oe and under 
ZFC protocols. The solid lines through data points are guides to the eye except those 
through the data points of x = 1.28 and 2; they represent linear fit results, yielding 
dTc/dP = −Ͳ.ͺͺȋͳȌ K kbar−1 and −Ͳ.ͻͻȋ͵Ȍ K kbar−1, respectively.  

 

Figure 3.31 Pressure evolution of shielding fraction at 4 K, estimated from ZFC 
measurements under 20 Oe applied field for KxCs3−xC60 (0.35 ζ x ζ 2). The solid lines are 
guides to the eye.  
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The variation of the superconducting Tc of KxCs͵−xC60 ȋͲ.͵ͷ ζ x ζ ʹȌ with unit 
cell volume, V, at low temperature was extracted using the combination of 7 K V(P) 

compressibility data described in section 3.3.5 and the Tc(P) data (Figure 3.30). V 

at a particular P was estimated from the Murnaghan EoS fits. However, as the low-

temperature V(P) compressibility data were only available for xK = 0.35, 0.87 and 

1.28, V of the remaining xK = 0.53, 0.64 and 2 compositions at a particular P was 

estimated from Murnaghan EoS (Equation 2.28) using derived parameters from 

the Murnaghan EoS fits to the 7 K V(P) data for xK = 0.35, 0.87, 1.28, respectively. 

Extracted Tc(V) trends for each sample are presented in Figure 3.32. 

 

Figure 3.32 The variation of superconducting Tc with volume, V, occupied per C60͵− anion at 
low temperature for fcc KxCs͵−xC60 ȋͲ.͵ͷ ζ x ζ ʹȌ, and for fcc Cs3C60 ([28]), presented with 
black dashed line. Solid lines through xK data points are guides to the eye. The inset shows 
expanded view of Tc(VȌ data for samples which show a Ǯdomeǯ shaped Tc(V) scaling. Dotted 
lines in red colour depict the volume range where individual superconductivity domes 
peak. 

Application of hydrostatic pressure to fcc Cs3C60 and overexpanded KxCs3−xC60 

samples (x = 0.35, 0.53, 0.64) has yielded similar Tc(V) trends; however, there is a 

striking observation on the response of Tc to the K-content. The maximum Tc, 

Tc(max), for each composition of the KxCs3−xC60 series is significantly smaller than the 
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Tc(max) of 35 K for fcc Cs3C60, even if the Tc(max) of individual xK samples has been 

observed around the same value of V (Table 3.13).  

3.4.6 Summary of magnetic measurement results at ambient and high 

pressures 

Superconductivity in fcc structured KxCs3-xC60 (0.22 ζ x ζ 2) samples has been 

confirmed by low-field magnetisation measurements at ambient pressure. The 

chemical pressure has been found to have a non-monotonic effect on 

superconducting Tc, producing a dome-shaped scaling of Tc with K-content; Tc 

initially increases with K content from 26.5 K in K0.22Cs2.78C60 to 30.9 K in 

K0.87Cs2.13C60 then decreases to 22.8 K in underexpanded K2CsC60, analogous to the 

response of fcc Cs3C60 upon the application of hydrostatic pressure [28].  

The dTc(dP) trends of KxCs3-xC60 (0.35 ζ x ζ 2) have been studied by low-field 

magnetisation measurements at high pressure. While underexpanded x = 1.28 and 

2 samples display large negative dTc/(dP), more expanded samples 

(0.35 ζ x ζ 0.87) show a dome-shaped scaling of Tc with pressure. Temperature-

dependent high field magnetic susceptibility measurements have shown that the 

most expanded x = 0.22 and 0.35 samples display well-defined cusps in χȋT), which 

are attributed to insulator-to-metal crossover. Underexpanded x = 1.63 and 2 

samples show a temperature-independent χȋT) behaviour, implying Pauli metallic 

behaviour over the experimental temperature range, with an estimated NεF of ~9.1 

and 8.2 states eV−1 C60−1, respectively, in their metallic regime. Remaining x = 0.53, 

0.64 and 0.87 samples display neither a temperature-independent Pauli 

susceptibility term nor distinct cusps but show a deviation from their linear χȋT) 

behaviour at high temperatures. This behaviour coincides well with that observed 

in the V(T) trends of x = 0.64 and 0.87, in which the lattice anomaly has been found 

to extend over a broad temperature range. 

Finally, experimentally obtained critical temperatures of the KxCs3-xC60 

system (magnetic characterisation: Tmax from χȋT) and superconducting Tc, 

structural characterisation: Tǯ (XRPD)) have been combined and included in a 

global electronic phase diagram of A3C60 fullerides (Figure 3.33). The series of 

KxCs͵−xC60 compositions tracks the superconductivity Ǯdomeǯ of the A3C60 
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superconductors, extending from close to the Mott boundary, over the maximum of 

the dome and well into the underexpanded regime. K2CsC60 connects the 

merohedrally disordered underexpanded fcc A3C60 (space group Fm ͵̅ m) 

superconductors to orientationally ordered primitive cubic superconducting 

fullerides Na2AC60 (A = Rb, Cs). 

 

Figure 3.33 Global electronic phase diagram for A3C60, showing the evolution of Tc as a 
function of volume, V, occupied per C60͵− anion and the MJTI-to-JTM crossover 
temperature, T′ as a function of V (XRPD: squares; χȋT): stars). Open triangles, squares and 
stars are for the fcc RbxCs͵−xC60 system (0.35 ζ x ζ 2) [67]. Open hexagons correspond to 
the ambient pressure Tc of simple cubic fullerides with Pa͵̅ symmetry [28]. ǮMJTǯ 
abbreviates Mott-Jahn-Teller. Within the metallic (superconducting) regime, gradient 
shading from orange to green schematically illustrates the JTM to conventional metal 
crossover. Gray, blue and cyan dashed lines mark experimental V(T) tracks for KxCs3-xC60 
compositions with K-content of xK = 1.28, 0.87 and 0.35, respectively.  

The insulating and superconducting states of overexpanded fcc A3C60 fullerides are connected by an anomalous metallic state, labelled as ǮJT metalǯ, where both 
localized JT-active and itinerant electrons coexist, as revealed by IR and NMR 

spectroscopy studies of RbxCs͵−xC60 [67]. Unconventional superconductivity in 

overexpanded A3C60 fullerides emerges from the JTMs upon cooling, while 

conventional superconductivity is encountered when the JT effect fades away at 

small interfullerene separations [67]. These results signify the importance of 
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molecular electronic structure in producing the unconventional superconductivity 

in fcc A3C60 fullerides. The findings in the present work are in excellent agreement 

with those of ref. [67] and confirm the remarkable difference in electronic 

response between fullerides close to and far away from the Mott insulator 

boundary. They are not consistent with the BCS phenomenology implying the 

importance of strong electron-electron interactions.  

3.5 Discussion 

An interesting characteristic of Mott insulators is that an external stimulus 

such as physical or chemical pressure may provoke Mott insulator-to-metal 

transitions via the enhancement of the bandwidth, W; this is one of the clear 

manifestations of strong electron correlations in condensed matter. For instance, 

the low-spin Mott-insulating phase was transformed to the neighbouring metallic 

phase in fcc Cs3C60 upon pressurisation, followed by a transition to a 

superconducting state on cooling which reveals that this class of material belongs 

to the correlated electron systems [28].  

The significance of the discovery of a MJTI-to-metal transition in molecular 

superconductors, without symmetry breaking, has been recently amplified by the 

experimentally [67] and theoretically [204] produced electronic phase diagram of 

fcc RbxCs͵−xC60 materials in which conventional phonon-mediated 

superconductivity and unconventional Mott physics meet, leading to a rich 

electronic phase diagram as a function of volume per C60͵−; this is strikingly similar 

to that of cuprates where high temperature superconductivity emerges from a Mott insulating state, with a Ǯdomeǯ shaped scaling of the Tc, via doping insulating 

CuO2 layers with holes (doping control).  

A pressure-induced Mott insulator-to-metal transition was also reported in 

organic 2D Ɉ-(BEDT-TTF)2X based materials where BEDT-TTF is 

bis(ethylenedithio)tetrathiafulvalene and X stands for various anions. This organic 

superconducting family exhibits similar behaviour to high-Tc copper oxides. Whilst 

the Mott transition is induced by hydrostatic pressure in this organic family, it is 

induced by carrier doping in the high-Tc cuprates, but in both cases 

superconductivity emerges in the marginal metallic phase near the 
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antiferromagnetic insulating state [205]. As tuning parameter to control the 

bandwidth, the use of hydrostatic pressure and temperature is more preferable 

rather than alloying techniques as it allows the fine alteration of experimental 

conditions and eliminates any effect from impurities which could influence the 

transition. 

In this study, the MJTI Cs3C60 was first subjected to chemical pressure via K 

substitution to control W. This led to the destruction of the MJTI state and the 

emergence of a metallic phase upon cooling  without symmetry breaking, 

reminiscent of the cooling-induced insulator-to-metal transitions observed in the 

fcc RbxCs3-xC60 analogues [67]. There are however certain differences between the 

two cation-substituted systems due to the greater size mismatch between the 

substituted cations. The alkali atoms have been hitherto considered to act as rigid 

spectators only to expand the lattice and cation specific effect on the electronic 

properties of the fcc A3C60 compounds have not been addressed in any detail. The 

differences between various systems have been attributed solely to the volume 

dependence of the density-of-states at the Fermi level, NεȋFȌ.  
Here we recall that in rare-earth manganates of the type (Ln1−xAx)MnO3 

(Ln = rare earth, A = alkaline earth) are key examples of cooling-induced insulator-

to-metal transition, in which the effect of size mismatch between the doped cations 

on the magnetic properties can be clearly exemplified [182], [206]. The effect of 

size mismatch in rare-earth manganates, with a general formula of 

LaͲ.͹−xLnXBa0.3MnO3 (Ln = Pr, Nd, Gd or Dy) was investigated by Kundu et al [182]. 

They quantified the effect of doped cation size through calculation of cation size 

variance, σ2, which range from 0.001 to 0.030 Å2, and have revealed that when σ2 is 

close to 0.020 Å2, an insulator-to-metal transition occurs on cooling, with 

transition temperature decreasing with increasing σ2, while keeping <rA> constant.  

In this study, the effect of doped cation size has been visualised by the 

variation of superconducting Tc with volume per C603− for individual K- and Rb-

substituted fcc-structured AxCs3-xC60 materials (Figure 3.34). The Tc response of 

individual xK and xRb samples, where x ζ 1, is similar to that of x = 0, displaying a 

dome-shaped dependence of Tc on interfullerene separation. However, whilst the 

maximum Tc for each composition of the RbxCs3−xC60 ȋͲ.͵ͷ ζ x ζ ͳȌ system is 
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slightly smaller than the Tc(max.) of 35 K for fcc Cs3C60, it becomes significantly 

smaller for fcc KxCs3−xC60 (0.35 ζ x ζ Ͳ.ͺ͹Ȍ, even if the Tc(max) of individual xK and xRb 

samples has been observed around the same value of V.  

 

Figure 3.34 The variation of superconducting Tc with volume, V, occupied per C60͵− anion 
at low temperature for fcc KxCs͵−xC60 ȋͲ.͵ͷ ζ x ζ ʹȌ, for fcc RbxCs͵−xC60 ȋͲ.͵ͷ ζ x ζ ʹȌ ȋ[67]) 
(presented as gray solid lines) and for fcc Cs3C60[28] (presented as a black dashed line). 
Solid lines through xK data points are guides to the eye. The inset shows expanded view of 
Tc (V per C60͵−) data for samples which show a Ǯdomeǯ shaped scaling. 

The variation of the Tc(max) with cation size variance in the fcc Td sites for the 

compositional ranges where the Tc(max) in a superconducting dome can be 

ascertained for both KxCs3-xC60 and RbxCs3-xC60 systems is presented in Figure 3.35 

and listed in Table 3.13. Tc(max)  decreases by ~4 K, with an increase of σ2 by 

0.021 Å2, from fcc Cs3C60 to the least expanded sample of KxCs3-xC60 that produces a 

superconductivity dome (xK = 0.87), but it only decreases by ~1.8 K, with an 

increase of σ2 by 0.006 Å2, for the RbxCs3-xC60 system. In fcc Cs3C60, it has been 

assumed that there are no tetrahedral cation vacancies (σ2 = 0 Å2), which results in 

an homogenous distribution of 8 Cs+ cations in the tetrahedral sites that surround 

C603− anions; however by substitution of smaller K+ or Rb+ cations, C603− anions will 

be surrounded by tetrahedral interstitial sites which are occupied by a disordered 
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mixture of K+/ Cs+ or Rb+/Cs. Greater size mismatch between Cs+ and K+ cations in 

the Td site has yielded a bigger detrimental effect on Tc(max) (Figure 3.35). 

Table 3.13 List of cation size variance in the fcc tetrahedral interstitial sites of KxCs3−xC60 
(0.35 ζ x ζ 0.87) and RbxCs3−xC60 ȋͲ.͵ͷ ζ x ζ ͳȌ which are the compositional ranges where 
the maximum Tc in a superconducting Ǯdomeǯ can be ascertained in Figure 3.32 for both 
superconducting families, together with volume, V, per C603− where Tc(max) for each 
composition is observed. 

xK σ୰�dଶ (Å2) Tc(max) 

(K) 

Vmax 
(Å3) 

 xRb                        
nominal; refined 

σ௥��ଶ  (Å2) Tc(max) 

(K) 
Vmax 

(Å3) 

0 0 35 760  0; 0 0 35 760 

0.35(1) 0.012(2) 32.8 756  0.35;0.33(2) 0.003(2) 34.3 756 

0.53(1) 0.016(2) 31.6 756  0.5; 0.426(8) 0.004(2) 33.9 758 

0.64(1) 0.018(2) 31.2 754  0.75; 0.73(1) 0.005 (2) 33.3 756 

0.87(1) 0.021(2) 30.9 764  1; 1.02(1) 0.006(1) 33.2 756 

 

Figure 3.35 Variation of the maximum Tc, Tc(max),  extracted from the Tc(V) trends of fcc 
KxCs͵−xC60 (0.35 ζ x ζ 0.87), of fcc RbxCs͵−xC60 ȋͲ.͵ͷ ζ x ζ ͳȌ ȋ[67]) and of fcc Cs3C60([28]) 
with cation size variance in the fcc tetrahedral interstitial sites. Statistical errors on cation 
size variance were estimated using the refined site occupancy of cations from Rietveld 
refinements. The solid lines through data points for the K- and Rb- substituted systems are 
linear fits, yielding dσ୰�dଶ /dTc(max) = −201(5) K/Å2 and −306(18) K/Å2, respectively. 
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The Tc(max) decreases quasi-linearly with increasing cation size variance. This 

scaling is similar to that found for the series of A2CuO4 superconductors, prepared 

with fixed mean A-site radius <rA>, and general formula of 

(LaͲ.ͻʹͷ−fNdfSrͲ.Ͳ͹ͷ−g−hCagBah)2CuO4 [181]. These results indicate that in addition to 

the fcc unit cell volume, the superconducting Tc is very sensitive to lattice strains, 

and hence the influence of the substituted cations on the electronic properties 

cannot be neglected, consistent with previously reported studies of the cation size 

disorder effect on the structural and magnetic properties of non-fulleride materials 

[180], [182], [183].  

3.6 Conclusion 

In this study, using a solid-state synthetic route, fcc-structured KxCs3-xC60 ȋͲ.ʹʹ ζ x ζ ʹȌ samples have been synthesised. Structural and magnetic 
characterisations of these samples have been undertaken under variable 

temperature and pressure. All samples have been found to be fcc-rich (except the 

most expanded x = 0.22) and to exhibit superconducting transition at critical 

temperatures varying between 22.8 and 30.9 K, with a dome-shaped scaling of Tc 

with x and with unit cell volume. This contrasts with the well-established 

conventional NεȋFȌ dependence of Tc in the less expanded fcc A3C60 systems.  

Combination of high pressure structural and magnetization data allowed us 

to track the dependence of Tc with unit cell volume, V, at low temperature. The fcc-

structured KxCs3-xC60 compositions follow the universal superconductivity Ǯdomeǯ 
of the A3C60 fullerides. Resulting dependence of Tc on V in KxCs3-xC60 system has 

been compared to that of RbxCs͵−xC60 and found that doped cations themselves do 

not only act to expand the lattice but also influence the molecular electronic 

properties via the size mismatch between the Cs+ and A+ cations. In the 

overexpanded regime of the KxCs͵−xC60 (0.22 ζ x ζ 0.87) system, insulator-to-metal 

crossover driven by temperature- and substitution-induced volume contraction 

effects has been experimentally observed at ambient pressure, evidenced by a unit 

cell volume collapse and by a cusp in the magnetic susceptibility; however, the 

susceptibility cusps and correlated lattice collapses are not as clear as those 

observed in the overexpanded RbxCs3-xC60 ȋͲ.ʹͷ ζ x ζ ͳȌ materials. The onset 
insulator-to-metal crossover temperatures, Tǯ well above superconducting Tc for 
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samples xK = 0.35, 0.64 and 0.87, evidenced by T-dependent structural XRPD data 

and for samples xK = 0.22 and 0.35, evidenced by T-dependent magnetic 

susceptibility data, similar to that of overexpanded RbxCs3-xC60 materials in 

character, follow the same Mott insulator-metal boundary on the global fcc A3C60 

electronic phase diagram [67]. Tǯ has been tuned ȋbandwidth controlȌ through 
application of chemical pressure via adjusting the K+/Cs+ dopant ratio. The present 

results of this study have revealed that, even though fcc-structured KxCs3−xC60 and 

RbxCs3−xC60 materials exhibit comparable structural and electronic properties, 

cation specific effects are also of importance and should be taken into account in 

the description of the electronic properties of AxCs3−xC60 fullerides. 
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Chapter 4 LF-µSR studies of Rb2CsC60 and 

Rb0.5Cs2.5C60  

 

4.1 Introduction  

For many years, observation of a Hebel-Slichter coherence peak in 

underexpanded Rb3C60, K3C60 and Na2CsC60 by Longitudinal Field Muon Spin 

Relaxation (LF-µSR) measurements [74] and its absence in unconventional 

superconductors such as the high-Tc oxides [207], [208], had been taken as clear 

evidence of electron-phonon driven BCS-type superconductivity in fcc A3C60 

fullerides. According to BCS theory, the attractive interaction between electrons in 

the superconducting state needed to overcome the Coulomb repulsion is mediated 

by phonons; conversely, strong enough repulsion tends to localize the electrons on 

atomic sites, leading to a Mott insulator (MI) in which strong electron correlations 

are responsible for the suppression of the metallic state. The experimental 

observation of a MI phase next to the superconducting phase in Cs3C60 has changed 

the perspective that superconductivity in A3C60 fullerides is driven only by 

electron-phonon coupling as the same strong correlations responsible for the Mott 

state are likely to influence also the superconducting state. The relevance of strong 

electron-electron interactions in the expanded A3C60 fullerides has become 

apparent upon the discovery that the superconducting state borders a strongly 

correlated antiferromagnetic MI state and on approaching the MI boundary the 

superconducting Tc shows a Ǯdomeǯ-shaped dependence on interfullerene 

separation [28], [67], reminiscent of the phase diagrams of many unconventional 

superconductors.  

Furthermore, the importance of cooperation between the electron 

correlations and the electron-phonon interactions to reach high-Tc s-wave 

superconductivity in overexpanded A3C60 superconductors has become 

increasingly clear upon the discovery of the molecular electronic structure control 

of superconductivity in this system [67], [204]. Following the experimental 

discovery that the two extremes (conventional and unconventional 

superconducting states) of the electronic phase diagram of the fcc A3C60 fullerides 
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are connected by ǮJahn-Tellerǯ metals ȋJTMȌ where localized electrons on the 

fullerene molecules coexist with metallicity [67], a quantitative theoretical 

description of the superconducting mechanism in A3C60 system  has been very 

recently reported by Nomura et al [204]. Their theoretical study has revealed that 

the s-wave superconductivity is driven from unusual multiorbital interactions that 

are caused by Jahn-Teller phonons, and strong electronic correlations arising from a subtle competition between (undǯs coupling and Jahn-Teller phonons play a 

crucial role, leading to an important difference from conventional phonon-driven 

superconductivity [204]. 

4.1.1 Purpose of present study 

In metals, the Korringa mechanism is the expected spin-lattice relaxation 

mechanism in which  ͳ ଵܶ⁄ ܶ  (ͳ ଵܶ⁄  being the nuclear spin-relaxation rate) is 

temperature independent, and nuclear relaxation arises primarily from energy 

exchanges with electrons at the top of the Fermi distribution. Therefore, the 

relaxation rate in normal metals and superconductors are expected to be 

significantly different [209].  

The Hebel-Slichter coherence peak is seen as an enhancement of temperature 

dependence of ͳ ଵܶ⁄ ܶ on cooling just below Tc and is explained by the divergent 

density of states at the superconducting gap edges in BCS theory [209], [210]. 

Following the initial observation of the peak in Rb3C60 by LF-ɊSR [73], NMR and 

further LF-ɊSR measurements of other fullerides (e.g. Rb3C60, K3C60, Na2CsC60 and 

Rb2CsC60) confirmed the presence of the coherence peak but with a smaller 

magnitude than expected and a strong field-induced suppression [74], [210].  

At the time, due to there being insufficient amount of high quality fcc-rich 

A3C60 superconducting fullerides, with ambient pressure unit cell volumes spanning the Ǯdomeǯ region of the Tc(V) phase diagram (see Figure 1.5) and 

approaching the Mott-insulator-metal boundary, temperature response of ͳ ଵܶ⁄ ܶ 

of these systems remained unresolved. Recent synthetic efforts, using solid-state 

synthesis protocols, on the optimization of highly expanded fcc-rich A3C60 

fullerides spanning the superconductivity dome at ambient pressures in the 

RbxCs3-xC60 solid solution series have resulted in the availability of very large 
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masses of high quality samples (>1 g, an order of magnitude larger than previously 

available for these challenging materials). Large batch samples of fcc-rich 

RbxCs3−xC60 (x = 2 and 0.5) materials used in this study were synthesised in our 

laboratory by Dr. Ruth Zadik, according to a previously reported protocol [67] and 

were well-characterized by members of Prassides laboratory (Raman 

measurements by Dr. Ruth Zadik, SQUID magnetization measurements by Dr. Ross 

Colman, and X-ray powder diffraction by the candidate). 

This study aimed to extract signatures of the importance of correlated 

behaviour in superconducting fcc-rich Rb2CsC60 and Rb0.5Cs2.5C60 fullerides with 

measurements of the temperature dependence of the LF-ɊSR rate of endohedrally-

formed muonium (Mu@C60; see section 2.3.3 for details). With this aim, we have 

searched for the existence of the Hebel-Slichter coherence peak for both 

compositions and extracted the superconducting gap magnitude from the low-

temperature activated behaviour of ͳ ଵܶ⁄  in the superconducting state.  
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4.2 Experimental procedures 

LF-ɊSR experiments were performed using the HiFi spectrometer at ISIS, UK. 

The overall setup of the spectrometer was summarised in Section 2.4.3. Due to the 

extreme air- and moisture-sensitivity of the samples, all sample manipulations 

were carried out within the inert atmosphere of a helium glove box (H2O < 0.1 ppm 

and O2 ~4 ppm). Samples (~1.1 g of each) were first placed in a silver sheet 

(thickness: 0.05 mm) which was then carefully folded and sealed within an air-

tight flat plate aluminium sample holder (Figure 4.1), with screw-able titanium 

upper closing ring and closing sheet (thickness: 0.05 mm).  

Samples inside the air-tight sample holder were placed in a helium-flow 

cryostat for temperature dependent measurements. Cooling from ambient 

temperature to 50 K, well above the superconducting Tc of the compounds, were 

undertaken under a small field (~100 G) perpendicular ȋtransverse field, ǮTFǯȌ to 

the initial muon polarisation. Once temperature stabilisation was achieved, TF 

measurements were carried out to determine the detector calibration factor. Once 

the data collection had been completed at small fields, a longitudinal field of 2.5 T 

was applied for the LF-ɊSR experiments undertaken on warming from 10 to 50 K, 

at a rate of ~90 million events per hour (Mev hr−1). All muon relaxation spectra 

were analysed using the WiMDA programme suite [168].  

 

Figure 4.1 Air-tight aluminium sample holder with sample inside a folded Ag packet.  
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4.2.1 Determination of the detector calibration factor, α 

Before analysing the muon data, it is essential to determine the detector calibration factor, Ƚ which is dependent on detector efficiencies and sample, and 
has to be determined for each individual experiment. This has been typically 

undertaken by applying TF to the initial muon polarisation which then rotates 

about the applied field, pointing first towards the forward detector and then 

towards the backward detector such that the signal oscillates symmetrically about the time axis. )n this study, Ƚ of the individual experiments of Rb2CsC60 and 

Rb0.5Cs2.5C60 compounds were determined for forward and backward detector 

pairing by analysis of the TF data collected under fields of 90 and 100 G, and at 

temperatures of 50 K and 35 K, respectively. At HiFi spectrometer there are 64 detectors, and the Ǯgroupingǯ window within the software WiMDA allows to group 

all data in detectors 1 to 32 (a group of detectors referred to forward, F) and in 

detectors 33 to 64 (a group of detectors referred to backward, B) together.  

4.2.2 Other correction parameters included in the analysis )n addition to the Ƚ correction, the grouping window within WiMDA provides 

several correction parameters such as deadtime correction, background correction, 

binning type, t0, tgood offset, and bunch factor. Since ISIS produces a pulsed muon 

beam, a deadtime calibration has to be recorded. After a positron has been counted 

by a detector, there is a small interval before it is able to detect another count. 

Especially at high data collection rates, there is a high probability that a positron 

will arrive within this interval and not be recorded. At HiFi, a silver sample is used 

to determine deadtime values for each detector and they are recorded into a 

deadtime data file which is stored in the NeXus file internally. Ǯauto loadǯ option, 
being the option in this work, in WiMDA allows this internally stored deadtime 

correction data to be employed in the analysis [211]. 

When the middle of the muon pulse has reached the sample, the timing for 

the muon response in the sample starts; however, the good data region is not 

obtained until the entire muon pulse arrives at the sample. This time is known as 

tgood. The time at which the centre of the pulse reaches the sample is defined as t0. 

The difference between tgood and t0 is defined as the tgood offset. t0 and tgood offset are 
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loaded from the NeXus file having been already determined locally [211]. Non-

muon-related continuous background signal such as cosmic rays, electronic noise 

can be subtracted from the total positron count. WiMDA provides several options for background correction; the Ǯautoǯ option, being the option in this work, corrects 

for the background count by fitting the data to a muon decay plus background and 

then subtracting the background signal [212].  

Series of time values for positron events are grouped in amounts of time that 

are a fixed length of time, referring to Ǯbinsǯ. The Ǯfixedǯ option was selected for 

binning type for the analysis in this work. While the binning type is fixed during the 

analysis, bunch factor can be varied by averaging several values from different 

adjacent bins. The bunching creates a time average by increasing the bunch factor 

to specify the length of time that the average is to be taken over. Large bunch 

factors reduce the statistical errors which makes easier to visually check the 

quality of fitting. If the relaxation is rapid, smaller bunch factor should be used 

[212]. In this work, bunch factor of 1 was used for the analysis of the LF-ɊSR data.  

4.2.3 Analysis  

After summarising correction parameters under grouping window, we now 

turn to Ǯanalyseǯ window which contains the fitting functions and parameters such 
as group to fit, time range, asymmetry, and relaxation components. Group to fit allows different groups to be selected and fitted. ǮFB asymǯ and ǮF, Bǯ options under 

group to fit were selected for the current LF-ɊSR and TF-ɊSR ȋfor Ƚ determinationȌ data analysis, respectively. ǮFB asymǯ fits the plots of the forward/backward asymmetry and ǮF, Bǯ displays and fits the counts detected by the forward and 

backward channels [212]. Time range of 0-ͳͲ Ɋs was used for fittings of the LF-ɊSR 

data. Asymmetry parameter is the product of an initial asymmetry, baseline 

asymmetry and relaxing asymmetry. The initial asymmetry refers to the total 

asymmetry at time = Ͳ, the baseline asymmetry modifies the Ƚ value to allow 
accurate balancing of the forward and backward detector sets in a 

forward/backward grouping.  Once the baseline asymmetry is determined, it 

should be fixed during fitting of the LF datasets. Relaxing asymmetry is the 

difference between the initial and baseline asymmetries; Ainitial − Abaseline = Arelaxing. 

Due to there being such constraint, not all the asymmetries can be allowed to vary 
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simultaneously; therefore, which asymmetry parameter will be dependent on the 

other fitted asymmetry parameter should be selected using the dependent 

asymmetry box in the analyse window [212]. For the analysis of the current LF-ɊSR 

data, the initial asymmetry was selected as the dependent asymmetry.  

The analysis window in WiMDA allows ɊSR data to be fitted with up to six 

relaxation components. Each relaxation component is a product of an Ǯoscillationǯ and a Ǯrelaxationǯ term, and standard oscillation and relaxation functions are 
provided in WiMDA [212]. As summarised previously in Section 2.3.3, the LF-ɊSR 

technique involves measuring the time dependence of the muon decay asymmetry. 

In this study, the time dependence of the asymmetry, A(t), was fitted using a model 

with one component and exponential relaxation, using the following single 

Lorentzian relaxation function allowing the ͳ ଵܶ⁄  longitudinal muon spin relaxation 

rate to be extracted [213]: 

ሻݐሺܣ                                                    = ௥�௟௔௫݁ሺ−஛௧ሻܣ  + ௕௔௦�௟௜௡�              Equation 4.1 where ɉ represents the ͳܣ  ଵܶ⁄  muon spin relaxation rate in MHz at time t. Oscillation 

function was not applied in the current analysis.  

The following procedure was applied for the extraction of the ͳ ଵܶ⁄   from the LF- ɊSR 

datasets: 

1. The time dependence of the muon decay asymmetry at each temperature was 

fitted allowing all three variables (Arelaxing, Abaseline, and ɉȌ in the relaxation function 

to vary independently and simultaneously. 

2. The baseline was defined using the high temperature data where Abaseline 

exhibits almost temperature-independent behaviour and the relaxation is fast. 

3. The time dependence of the muon decay asymmetry at each temperature was 

fitted with a fixed-baseline while refining Arelaxing and ɉ; thereafter the magnitude 

of the relaxing component was defined using the low-temperature data where 

Arelaxing was assumed to be temperature-independent and the relaxation is slow. 

4. Finally, the baseline and relaxing component were fixed to that obtained at 

[2] and [͵], and only ɉ was allowed to refine.  
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4.3 Rb2CsC60   

The quality of Rb2CsC60 was checked by laboratory X-ray powder diffraction 

at ambient temperature (Figure 4.2). After confirmation that the sample is phase-

pure and the fcc lattice parameter, a = 14.4440(2) Å,  is in agreement with the 

previously reported value (a = 14.45169(9) Å [67]), temperature dependent 

magnetisation measurements, M(T), were performed under both ZFC and FC 

protocols at applied fields of 10 Oe and 2.5 T to define the superconducting Tc.  

 

Figure 4.2 Rietveld fit to laboratory XRPD data collected for phase-pure Rb2CsC60 at 
ambient temperature (ɉ = 1.5406 Å, Rwp = 3.02% and Rexp = 1.88%). Red circles, blue lines 
and green lines represent the observed, calculated and difference profiles, respectively. 
Red ticks mark the reflection positions of fcc phase.  

Figure 4.3 shows the corresponding ZFC and FC M(T) data. The inset in 

Figure 4.3 (b) demonstrates that Tc varies little with increasing the applied field to 

the range of values employed in the LF-SR measurements. The difference 

between the first deviation points of the two ZFC datasets is ~0.5 K or less. Here Tc 

is defined as 32.5 and 32 K at fields of 10 Oe and 2.5 T, respectively. Shielding 

fraction is estimated as 95% at a field of 10 Oe. As a longitudinal field of 2.5 T was 

applied for the LF-ɊSR experiments, Tc of 32 K is used in the subsequent treatment 

and analysis of the datasets. 
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Figure 4.3 Temperature dependence of the ZFC and FC magnetisation, M(T), of fcc 
Rb2CsC60 measured at fields of (a): 10 Oe (solid stars: ZFC M(T), open stars: FC M(T)), and 
of (b): 25000 Oe (solid circles: ZFC M(T), open circles: FC M(T)). Insets in (a) and (b) show 
the temperature evolution of the first derivatives of the ZFC and FC magnetisation, and of 
the ZFC magnetisation datasets (measured at fields of 10 Oe: solid stars, and of 25000 Oe: 
solid circles) with respect to temperature, respectively. Lines through data points are 
guides to the eye. Dotted black edged circle in (b) depicts the difference between the first 
deviation points of the two ZFC datasets. 

4.3.1 Determination of α 

Prior to analysis of the LF-ɊSR datasets, the TF-90 G data were analysed to determine the detector calibration factor, Ƚ; this was undertaken by fitting the 
counts detected by the forwards and backwards channels via selecting the ǮF, Bǯ 

option under group to fit. The time evolution of the muon spin polarisation, PɊȋt) 

(Figure 4.4) can be described by the following function: 

                      ఓܲሺݐሻ ∝ ଶሻ cݐሺ−ଵଶ �ଶ݌ݔ݁  osሺ�ఓݐ + ߮ఓሻ     Equation 4.2 (ere σ measures the width of the local field distribution at the muon site and �ఓ =  �ఓܤఓ is the muon precession frequency and ߮ఓ its phase, and �ఓis the muon 

gyromagnetic ratio.  The fits yielded an Ƚ value of ͳ.ͳͻͻʹȋͻȌ and Arelaxing = 18.87(6)%. The average 

count between the two forward and backward channels ȋǮNOǯ in WiMDAȌ and the 

background count for the forward (BG(F)) and backward (BG(B)) channels were refined to ʹ͸Ͷʹ͵ȋͳͲȌ, Ͳ.ͲͳͶȋ͸͸Ȍ, and −Ͳ.ͳͶͶȋ͸͸Ȍ, respectively. The Ƚ correction of 
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1.1992(9) was employed in the analysis of the LF datasets. Once the parameter Ƚ 
had been determined, analysis of the LF runs was started following the analysis 

procedure given in Section 4.2.3. 

 

Figure 4.4 Time dependence of the counts detected by the forward and backward 
channels, from TF-90 measurements of Rb2CsC60 at 50 K, together with final fits 
represented with pink and green solid lines for the forward and backward channels, 
respectively. 
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4.3.2 LF-μSR data analysis 

Step 1: The time dependence of the asymmetry was fitted allowing Abaseline, Arelaxing, 

and ɉ to vary independently and simultaneously with increasing temperature.  

 

Figure 4.5 From top-to-bottom: temperature dependence of the refined Abaseline, Arelaxing, 
and spin-relaxation rate of Mu@C60 divided by temperature, (T1T)−1,  in fcc Rb2CsC60 in a 
longitudinal applied field of 2.5 T. The inset in top panel displays an expanded region of 
the respective plot; pink and blue lines represent the 
average Abaseline, <Abaseline>, values of 28.28(5)% and 28.27(5)%, respectively. Dashed line in 
bottom panel signifies the superconducting Tc of 32 K for Rb2CsC60. 
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Step 2: Abaseline was defined using the high temperature data, where relaxation is fast, 

assuming Abaseline is temperature-independent. 

As seen in Figure 4.5, Abaseline at high temperatures between 20 and 50 K, 

where the relaxation is high, is quite robust, exhibits almost temperature-

independent behaviour. Therefore, an average of Abaseline, <Abaseline>, could be taken 

over different temperature ranges to fix the Abaseline at an appropriate average value 

for fitting the time dependence of the asymmetry, A(t), while refining the Arelaxing 

and spin-relaxation rate, ͳ ଵܶ⁄ . <Abaseline> in the temperature ranges of 

25 K ζ T ζ 50 K,  30 K ζ T ζ 50 K and 40 K ζ T ζ 50 K were found as 28.28(5), 

28.27(5) and 28.27(2)%, respectively.  

When all the three variables were allowed to refine simultaneously, even 

though resulting temperature dependence of the relaxation rate (T1T)−1 exhibits 

almost temperature-independent behaviour in the normal state between 50 K and 

the superconducting Tc of 32 K, data points are significantly scattered at this point 

(Figure 4.4). Fixing Abaseline should minimise this scatter leading to a smoother 

temperature dependence of (T1T)−1; therefore for the next step of the analysis, the 

Abaseline was fixed at 28.27%, assuming Abaseline is temperature-independent, and 

only the Arelaxing and ͳ ଵܶ⁄  were allowed to refine.  

The asymmetric decay of muons gives different counts at the forward and 

backward counters. Figure 4.6 shows the fit results of the time dependence of 

asymmetric decay of muons at selected temperatures while refining all the three 

variables in the relaxation function (Equation 4.1). At low temperatures below 

22 K, there is a very slow relaxation of the muon spin compared to the relaxation at 

high temperature; the change in the counting rate of the F and B detectors with 

time is relatively small in magnitude. Especially at 10 K, the ratio between the F 

and B counters stays almost constant and does not change much with time. 

Conversely, there is a significant change in the counting rate of the F and B 

detectors at 22 and 50 K implying a fast relaxation of the muon spin. A(t) data also 

verifies that there is only one relaxation component and no sign from a sample 

and/or sample holder dependent residual relaxation. If there was more than one 

relaxing component, a peculiar deviation in the A(t) data would have been 

expected, displaying different relaxation behaviour differing with rate. 
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Figure 4.6 The time dependence of the muon decay asymmetry, A(t), measured by LF-ɊSR 
in fcc Rb2CsC60 at a field of 2.5 T at selected temperatures. A(t) were fitted using the 
Lorentzian relaxation function (Equation 4.1) in which Abaseline, Arelaxing and ɉ are 
simultaneously refined ; solid lines show the fit results at selected temperatures. LF-ɊSR 
spectra were bunched with a factor of 1, and the fits were performed in the time range of 
0-ͳͲ Ɋs; however only Ͳ-ͷ Ɋs region is shown for visual clarity. 

 

Step 3: The time dependence of the muon decay asymmetry was fitted with a fixed-

baseline value of 28.27% with refined Arelaxing  and ͳ ଵܶ⁄ ; thereafter the magnitude of 

the relaxing component was defined using the low-temperature data where Arelaxing 

was assumed to be temperature-independent. 

The plot of (T1T)−1 vs T  is now less scattered all over the experimental 

temperature range compared to the case where all the three variables were 

allowed to refine, as seen in Figure 4.7 (b). Temperature dependence of the 

extracted Arelaxing is also less scattered varying between ~4.2% and 4.8% (Figure 

4.7 (a)), compared to the top panel of Figure 4.6. So far, we only fixed the baseline 

asymmetry which in turn improved the scattered behaviour of the (T1T)−1 vs T plot.  
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Figure 4.7 (a): Temperature dependence of the Arelaxing and (b): of the spin-relaxation rate 
of Mu@C60 divided by temperature, (T1T)−1,  in fcc Rb2CsC60 in a longitudinal applied field 
of 2.5 T. Data are obtained from the fits using Lorentzian relaxation function in which 
Abaseline, Arelaxing, ɉ are refined; represented with red circles and Abaseline fixed,  Arelaxing and ɉ 
are refined; represented with blue circles. Dashed black line signifies the superconducting 
Tc of 32 K for Rb2CsC60. 

We should now define a value to fix the Arelaxing together with Abaseline in the 

relaxation function; this was undertaken by taking several average values of 

Arelaxing over different temperature ranges between 10 and 50 K (see Table 4.1 for 

details). When Abaseline is already fixed, it is expected that the lowest temperature 

point (Arelaxing at 10 K = 4.71(2)%), which yields the lowest relaxation rate, will give 

the most accurate value of Arelaxing as this essentially defines Ainitial, and is most 

easily defined when the change in the counting rate of the F and B detectors with 

time is relatively small in magnitude, in other words, when the spectra is flattest, 

such that the 10 K spectra shown in Figure 4.6. 
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Table 4.1 Average values of Arelaxing taken over different temperatures ranges. 

Temperature (K) Arelaxing (%) ͳͲ ζ T ζ ͳͷ 4.71(2) ͳͲ ζ T ζ ʹͲ 4.70(3) ͳͲ ζ T ζ ʹͷ 4.67(3) ͳͲ ζ T ζ ͷͲ 4.57(12) 

29 minimum Arelaxing = 4.30 

The time dependence of the muon decay asymmetry that were fitted at selected 

temperatures with Abaseline fixed at 28.27% and with various fixed Arelaxing values as 

tabulated in Table 4.1 is shown in Figure 4.8(a). 

 

Figure 4.8 (a): The time dependence of the muon decay asymmetry, A(t), measured by LF-ɊSR in fcc Rb2CsC60 at a field of 2.5 T at selected temperatures; from top-to bottom: 10, 15, 
22 and 50 K. A(t) data were fitted using the Lorentzian relaxation function in which Abaseline 

was fixed at 28.27%,  Arelaxing  were fixed at values of 4.70, 4.67, 4.57 and 4.30%; resulting 
fits are presented with black, red, green, and purple solid lines, respectively. Dark blue 
solid line is the fit in which Arelaxing is refined together with ɉ. ȋbȌ is the expanded view of 
(a); for visual clarity only 10 and 50 K spectra are shown together with fits. LF-ɊSR spectra 
were bunched with a factor of 1, and the fits were performed in the time range of 0-ͳͲ Ɋs. 

The minimum Arelaxing value of 4.30%, visually, did not result in a good fit 

between 0 and ͵ Ɋs at low temperatures; however, the other Arelaxings led to similar 

trend (Figure 4.8(b)Ȍ. At low temperatures ȋζ 22 K), the larger Arelaxings definitely 

fit the A(t) data better. At high temperatures, the differences in the chosen Arelaxing 
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did not make a significant difference to the visual quality of the fit. Extracted 

relaxation rate from various fittings led to following (T1T)−1 vs T plot in Figure 4.9.  

Whilst the change in the magnitude of Arelaxing clearly changes the extracted 

relaxation rate, the general trends are still present; a small enhancement of 

temperature dependence of ͳ ଵܶ⁄ ܶ on cooling just below Tc is clearly observed. 

Also, the small level of scatter is still apparent consistent between the various 

fittings. Clearly it is important to choose the most appropriate Arelaxing for 

extraction of the superconducting gap magnitude from the low-temperature 

activated behaviour of ͳ ଵܶ⁄  in the superconducting state and determining 

coherence peak damping. Fixed Arelaxing of 4.70% led to the most consistently low 

value of χ2. The temperature dependent Arelaxing also resulted in consistently low 

value of χ2 compared to others but there is not a significant enough improvement 

over the fixed values. 

 

Figure 4.9 Left panel: Temperature dependence of the spin-relaxation rates of Mu@C60 

divided by temperature, (T1T)−1, in fcc Rb2CsC60 in a longitudinal applied field of 2.5 T. 
Black, red, green and purple circles represent the data extracted from the fits using 
Lorentzian relaxation function in which Abaseline fixed at 28.27% and Arelaxing fixed at values 
of 4.70, 4.67, 4.57 and 4.30%, respectively. Dark blue circles represent the data extracted 
from the fits in which Arelaxing is refined together with ɉ. Dashed line signifies the 
superconducting Tc of 32 K for Rb2CsC60. Right panel: Variation of the goodness of the fits, χ2, with temperature for various fixed Arelaxings. 

Figure 4.10 shows the plot of (T1T)N/ T1T vs T where spin-relaxation rate was 

normalised to the rate in the normal state just above the superconducting Tc, for 

various fixed Arelaxings. The normal state relaxation rate was determined at 33.4 K 
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as 0.0366(5) MHz K−1. When the (T1T)−1 spin-relaxation rate was normalised to 

just above the Tc, a small Hebel-Slichter coherence peak appeared almost identical 

size and shape for various Arelaxings (Figure 4.10).  

 

Figure 4.10 Temperature dependence of the spin-relaxation rates of Mu@C60 in fcc 
Rb2CsC60 in a longitudinal applied field of 2.5 T, extracted for various fixed Arelaxings. (T1T)−1 

is normalised to the rate in the normal state; divided by the rate of 0.0366 MHz K−1. 

We have already verified that Arelaxing of 4.70% led to the most consistently 

low value of χ2 amongst other Arelaxings and altering Arelaxing clearly changed the 

extracted relaxation rate; however the general trends are present with an 

enhancement of temperature dependence of ͳ ଵܶ⁄ ܶ on cooling just below the 

superconducting Tc of 32 K. For further comparison between various Arelaxings, we 

have estimated the superconducting gap magnitude ʹΔ/kBTc (see Section 1.2.3 for 

details) from the low-temperature activated behaviour of ͳ ଵܶ⁄  for various Arelaxings. )n the superconducting state, the superconducting gap ȋactivated energyȌ, Δ, could 
be estimated from Arrhenius law; ͳ ଵܶ⁄ ∝ expሺ−∆/݇஻ܶሻ. While Arrhenius law 

accounts for the majority of the low-temperature dependence, it is not the 

complete dependence; a perfect Arrhenius behaviour is only seen if the density of states is gapped, Δ, and this Δ gives rise to Arrhenius law. Figure 4.11 shows the 

plot of ln(ͳ ଵܶ⁄ ) vs 1/T for various Arelaxings together with linear fits to the low-

temperature data in the temperature range 10 K < T < 24 K. The gradient of the 

linear fits gives the ratio of −Δ/kB and in turn the relevant dimensionless parameter ʹΔ/kBTc (Table 4.2).  
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Figure 4.11 ln(ͳ ଵܶ⁄ ) vs 1/T plot for various Arelaxings. Lines through data points are linear 
fits to the low-temperature data in the temperature range 0.042 K < T−1 < 0.1 K, yielding values of −Δ/kB = 69(1), 73(1), 81(1), 81(2) and 69(1) for various Arelaxings.  
 

Table 4.2 Estimated ʹΔ/kBTc for various Arelaxings. 

Arelaxing (%) −Δ/kB ʹΔ/kBTc 

4.70 69(1) 4.31(6) 

4.67 73(1) 4.56(6) 

4.57 81(1) 5.06(6) 

4.30 81(2) 5.1(1) 

T-dependent 69(1) 4.31(6) 

Estimated ʹΔ/kBTc values for various Arelaxings from the  ͳ ଵܶ⁄ ∝ expሺ−∆/݇஻ܶሻ 

variation for 0.042 K < T−1 < 0.1 K signify that values of ʹΔ/kBTc for any Arelaxing 

values are significantly larger than the value of ʹΔ/kBTc = 3.52 expected in the 

weak-coupling limit of BCS theory. While Arelaxing of 4.70% and T-dependent Arelaxing 

led to the identical estimation of ʹΔ/kBTc, smaller Arelaxings resulted in very large 

values. With the knowledge that fixing Arelaxing at 4.70% led to the best fits of the 

time dependence of the muon decay asymmetry over the experimental 

temperature range and resulted in ʹΔ/kBTc = 4.31(6) which is in excellent 
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agreement with 4.31(9) reported for fcc Rb2CsC60, determined from the 

temperature dependence of the 87Rb spin-lattice relaxation rate [67], from now on, 

only ͳ ଵܶ⁄  extracted from the fits with fixed Arelaxing at 4.70% will be used for 

extraction of ʹΔ/kBTc and for the final determination of the coherence peak for 

Rb2CsC60. Final Arrhenius plot of ͳ ଵܶ⁄  (Arelaxing = 4.70%) is shown in Figure 4.12, 

displaying  ͳ ଵܶ⁄ ∝ expሺ−∆/݇஻ܶሻ variation for 1.35 < Tc/T < 3.17, and the final fits 

to the LF spectra at selected temperatures with fixed Abaseline at 28.27% and Arelaxing 

at 4.70% are shown in Figure 4.13. 

 

Figure 4.12 Arrhenius plot for the spin-relaxation rate of Mu@C60 in fcc Rb2CsC60 in a 
longitudinal field of 2.5 T. Solid line through data points is fit to the equation, ͳ ଵܶ⁄ ∝expሺ−∆/݇஻ܶሻ, in the low-temperature region, 1.35 < Tc/T < 3.17.  
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Figure 4.13 The time dependence of the muon decay asymmetry, A(t), measured by LF-ɊSR in fcc Rb2CsC60 at a field of 2.5 T at selected temperatures. A(t) data were fitted using 
the Lorentzian relaxation function in which Abaseline and Arelaxing were fixed at 28.27% and 
4.70%, respectively; resulting fits are presented with solid lines. For visual quality, LF-ɊSR 
spectra were bunched with a factor of 4, and only 0-ͷ Ɋs region is shown.    
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4.4 Rb0.5Cs2.5C60     

Laboratory XRPD profile was collected at ambient temperature to reveal the 

quality of Rb0.5Cs2.5C60. Rietveld fit to the XRPD data is shown in Figure 4.14. Three 

crystallographic phases were included in the refinement: a majority fcc phase, and 

minority Cs4C60 and CsC60 phases. The weight fractions of these phases were found 

as 77.3(1)%, 16.2(2)% and 6.5(3)%, respectively. The refined fcc lattice constant is 

a = 14.6583(5) Å, consistent with previously reported value at ambient 

temperature: a = 14.6549(2) Å [67]. 

 

Figure 4.14 Rietveld fit to laboratory XRPD data collected at ambient temperature, for fcc-
rich Rb0.5Cs2.5C60 ȋɉ = 0.7093 Å, Rwp = 7.48% and Rexp = 4.64%). Red circles, blue lines and 
green lines represent the observed, calculated and difference profiles, respectively. Ticks 
mark the reflection positions, from top-to-bottom, of co-existing fcc (red ticks), Cs4C60 and 
CsC60 phases.  

Prior to magnetisation measurements of the fcc-rich Rb0.5Cs2.5C60 at a field of 

2.5 T, M(T) data were first collected at an applied field of 10 Oe under both ZFC and 

FC protocols. The temperature onset of the downturn in the ZFC magnetisation 

measured at a field of 2.5 T is consistent with that measured at 10 Oe, as for 

Rb2CsC60. As seen in the inset of Figure 4.15 (b), the difference between the first 

points of deviations of the two ZFC datasets is ~0.2 K or less. The superconducting 

Tc of this sample is defined as 30.4 K at an applied field of 2.5 T. Shielding fraction 

at a field of 10 Oe is estimated as 63%. 
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Figure 4.15 Temperature dependence of the ZFC and FC magnetisation, M(T), of fcc 
Rb0.5Cs2.5C60 measured at fields of (a): 10 Oe (solid squares: ZFC M(T), open squares: FC 
M(T)), and of (b): 25000 Oe (solid circles: ZFC M(T), open circles: FC M(T)). Insets in (a) 
and (b) show the temperature evolution of the first derivatives of the ZFC and FC 
magnetisation, and of the ZFC magnetisation datasets (measured at fields of 10 Oe: solid 
squares, and of 25000 Oe: solid circles) with respect to temperature, respectively. Lines 
through data points are guides to the eye. Dotted black edged circle in (b) depicts the 
difference between the first deviation points of the two ZFC datasets. 

4.4.1 Determination of α 

The detector calibration factor, Ƚ, was determined using the same method as 

employed for Rb2CsC60 described in Section 4.3.1. Prior to LF runs, TF-100 G 

spectra were measured at 35 K. The final fits to the symmetrically oscillated counts 

about the time axis detected by the F-B channels yielded an Ƚ value of 1.117(1) and 

Arelaxing = 17.69(7)%, which are comparable to that found from TF-90 G 

measurements of Rb2CsC60. The Ƚ value of 1.117(1) was employed in the analysis 

of LF-ɊSR datasets, using the same analysis procedure as employed for Rb2CsC60 

(see section 4.2.3 for details).  

4.4.2 LF-μSR data analysis 

Firstly, the time dependence of the asymmetry was fitted allowing Abaseline, 

Arelaxing, and ɉ (T1−1) to vary independently and simultaneously with increasing 

temperature. Temperature variation of the refined Abaseline is shown in Figure 

4.16 (a). At high temperatures between 20  and 50 K, Abaseline exhibits almost 
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temperature-independent behaviour; <Abaseline> in the temperature ranges of 

20 K ζ T ζ 50 K, 26 K ζ T ζ 35 K and 30 K ζ T ζ 50 K were found as 31.39(5), 

31.39(7) and 31.41(4)%, respectively.  

For the second step of the analysis, A(t) data were fitted with fixed Abaseline at 

31.39% allowing Arelaxing and T1−1 to vary simultaneously. Temperature evolution of 

the refined Arelaxing and T1−1 (blue circles) are shown in Figure 4.16 (b) and (c) 

respectively. Refined Arelaxings are now significantly less scattered and exhibit 

almost temperature-independent behaviour at temperatures below 25 K. 

However, temperature dependence of the relaxation rate (T1T)−1 above the 

superconducting Tc in the normal state, where Korringa behaviour is expected, is 

still scattered; fixing Arelaxing reduced this scattering. <Arelaxing> in the temperature 

ranges of 5 K ζ T ζ 15 K, 5 K ζ T ζ 20 K and 5 K ζ T ζ 40 K were found as 2.42(3), 

2.39(6) and 2.29(11)%, respectively. Finally, A(t) data were fitted with fixed 

Abaseline at 31.39% and Arelaxing at 2.39%, and only T1−1 was allowed to refine. Final 

temperature variation of the (T1T)−1 is shown in Figure 4.16 (c)  (pink circles).  
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Figure 4.16 (a) Temperature dependence of the Abaseline; inset displays an expanded region 
of the respective plot; blue, red and pink solid lines represent <Abaseline> values of 31.39(5), 
31.39(7) and 31.41(4)%, respectively. (b) and (c) display the temperature variation of the 
Arelaxing and spin-relaxation rate of Mu@C60 divided by temperature, (T1T)−1, in Rb0.5Cs2.5C60 

in a longitudinal applied field of 2.5 T: Data are obtained from the fits using Lorentzian 
relaxation function in which Abaseline , Arelaxing, ɉ are refined ȋred circlesȌ; Arelaxing and ɉ refined 
(blue circlesȌ, and finally only ɉ is refined ȋpink circlesȌ. )nset in ȋbȌ displays an expanded 
region of the respective plot; black, green and orange solid lines signify the <Arelaxing> 
values of 2.42(3), 2.39(6) and 2.29(11)%, respectively. Dashed line in (c) signifies the 
superconducting Tc of 30.4 K for Rb0.5Cs2.5C60. 
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The magnitude of the scattering is now considerably reduced, displaying 

almost temperature-independent behaviour within error in the normal state. The 

final fits to the LF spectra at selected temperatures with fixed Abaseline at 31.39% 

and Arelaxing at 2.39% are shown in Figure 4.17. At low temperatures below 20 K, 

relaxation is very slow compared to the relaxation at high temperature and the 

change in the counting rate of the F and B detectors with time is relatively small in 

magnitude. The major change in the counting rate of the F and B detectors at high 

temperatures above 20 K is apparent implying a fast relaxation of the muon spin. 

 

Figure 4.17 The time dependence of the muon decay asymmetry, A(t), measured by LF-ɊSR in fcc Rb0.5Cs2.5C60 at a field of 2.5 T at selected temperatures. A(t) data were fitted 
using the Lorentzian relaxation function in which Abaseline and Arelaxing were fixed at 31.39% 
and 2.39%, respectively; resulting fits are presented with solid lines. For visual quality, LF-ɊSR spectra were bunched with a factor of ͷ, and only Ͳ-ͷ Ɋs region is shown.   

Temperature dependence of the spin-relaxation rate of Mu@C60 in 

Rb0.5Cs2.5C60 did not display an enhancement on cooling below the 

superconducting Tc  such that seen in the (T1T)−1 vs T plot given for Rb2CsC60 in 

Figure 4.9. For an accurate comparison of the temperature evolution of (T1T)−1 in 

Rb0.5Cs2.5C60 and Rb2CsC60, (T1T)−1 for Rb0.5Cs2.5C60 was normalised to the rate in 

the normal state just above the Tc of 30.4 K, as was done for Rb2CsC60. The normal 

state relaxation rate, (T1T)N, was determined as 0.057 MHz K−1 which is the 
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average value of (T1T)−1, <(T1T)−1>, over temperature ranges of 29.2 K ζ T ζ 31.2 K 

and 30.2 K ζ T ζ 35.2 K where <(T1T)−1> were found as  0.057(1) MHz K−1 and 

0.057(2) MHz K−1, respectively. 

While a small Hebel-Slichter coherence peak was clearly observed in 

Rb2CsC60 as an enhancement of (T1T)N/T1T below Tc, we suggest that there might 

be a suppression of the enhancement in Rb0.5Cs2.5C60 (Figure 4.18). In addition, ʹΔ/kBTc value for Rb0.5Cs2.5C60 from the  ͳ ଵܶ⁄ ∝ expሺ−∆/݇஻ܶሻ  variation for 

1.29 < Tc/T < 2.76 is estimated as 4.53(9) which is larger than that was estimated 

for Rb2CsC60; ʹΔ/kBTc = 4.31(6). Figure 4.19 displays an overplot of the Arrhenius 

plots for ͳ ଵܶ⁄  of Mu@C60 in Rb0.5Cs2.5C60 and Rb2CsC60 together with fits to the 

Arrhenius law function. 

 

Figure 4.18 Temperature dependence of the spin-relaxation rate of Mu@C60 in fcc 
Rb2CsC60 (left panel) and Rb0.5Cs2.5C60 (right panel); (T1T)−1 in Rb2CsC60 and Rb0.5Cs2.5C60 are 
normalised to the rate of 0.037 at 33.4 K and to the average normal state rate of 0.057 
MHz K−1, respectively. 
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Figure 4.19 Arrhenius plots for the spin-relaxation rate of Mu@C60 in fcc Rb0.5Cs2.5C60 and 
Rb2CsC60 in a longitudinal applied field of 2.5 T. Solid lines through the data points of 
Rb2CsC60 and Rb0.5Cs2.5C60 are fits to the equation, ͳ ଵܶ⁄ ∝ expሺ−∆/݇஻ܶ) variation for 
1.35 < Tc/T < 3.17 and 1.29 < Tc/T < 2.76, respectively. 
 

4.5 Discussion 

The Hebel-Slichter (HS) coherence peak in the family of A3C60 fullerides has 

been previously observed in underexpanded K3C60, Rb3C60, Na2CsC60 [73], [74] and 

Rb2CsC60 [210] fullerides which are far from the MIT boundary and the effect of the 

JT active electrons in those is absent [67]. For many years, the existence of the HS 

peak and the isotropic Δ ȋs-wave) in K3C60 and Rb3C60, with ʹΔ/kBTc value in 

agreement with the prediction of the weak-coupling BCS limit, have been regarded 

as a result of electron-phonon driven BCS-type superconductivity in the weak-

coupling limit in the family of fcc A3C60 fullerides. However, the relevance of strong 

electron-electron interactions in the overexpanded A3C60 fullerides results in the 

failure of the applicability of the BCS formalism (see section 1.2.4 for details).  

At the time when the strength of the magnetic field was not known to be an 

important parameter for the HS peak, Tycko et al. used a magnetic field of 9 T for 

measurements of 13C spin-lattice relaxation rate (1/13T1 ) in K3C60 and Rb3C60 

fullerides. Their 1/13T1 vs T data displayed a monotonic drop-off in 1/13T1T as 
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temperature is lowered below Tc [214]. This is an unusual behaviour for 

conventional BCS-type superconductors as the absence of the HS peak could imply 

remarkable strong coupling effects, quantified by electron-phonon constant ɉ: 
sufficiently strong coupling could smear out the HS peak entirely. Several reported 

mechanisms could explain the reduced peak magnitude, such as temperature 

dependent pair-breaking [215] through e.g. inelastic-scattering from phonons 

[216], [217], gap anisotropy [218], quasi-particle lifetime broadening [219], or the 

effects of Coulomb interaction between conduction electrons [220]. Strong-

coupling calculations of Akis et al. based on numerical solutions of the Eliashberg 

equations as a function of superconducting coupling strength, ɉ, indicated that as 

the coupling strength is increased, the HS peak is speedily suppressed and is finally 

completely smeared out; therefore, observation of an enhancement in 1/T1  may 

not always imply conventional BCS-type superconductivity, and its absence is not 

limited to the high-Tc oxide superconductors [217].  

Soon after the report of Tycko et al. [214], Kiefl et al. performed ɊSR 
experiments on Rb3C60 at a magnetic field of 1.5 T and they clearly observed the 

coherence peak (Figure 4.20, left panel) [73]. Shortly afterwards, Stenger et al. 

reported magnetic field suppression of the HS peak in Rb2CsC60; while the HS peak 

was clearly observable as an enhancement of 1/13T1 on cooling below Tc for fields 

of 3  and 1.5 T, it was almost completely suppressed at fields greater than 

approximately 7 T [210].  

In the present study, given the available data analysis, we suggest that the HS 

coherence peak may be suppressed in Rb0.5Cs0.5C60 at a magnetic field of 2.5 T 

(Figure 4.20, right panel). Nonetheless, this has to be confirmed by modelling the 

temperature dependence of ͳ ଵܶܶ⁄  using the Hebel-Slichter theory formulation. In 

accordance with the field dependent 13C NMR measurements of Rb2CsC60 [210], it 

is quite unlikely that this is a field-dependent suppression as the suppression of 

the HS peak in Rb2CsC60 takes place at fields ~5 T which is significantly greater 

than our experimental magnetic field of 2.5 T. Furthermore, a small enhancement 

in 1/T1T  on cooling below the superconducting Tc of Rb2CsC60 could be taken as 

evidence that the field of 2.5 T is relatively small in magnitude to eliminate the 

usual BCS 1/T1T  enhancement below Tc.  
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Figure 4.20 Temperature dependence of the spin-relaxation rate of Mu@C60 in fcc Rb3C60 
[73]  and Rb0.5Cs2.5C60, in magnetic fields of 1.5 and 2.5 T, respectively. 1/T1 are normalised 
to the rates in the normal state just above Tc. Black solid line through data points is the fit 
to the Hebel-Slichter function. Solid vertical lines mark the superconducting Tc. 

Kiefl et al. reported ʹΔ/kBTc = 3.6(3) in Rb3C60, in agreement with the 

prediction of the weak-coupling BCS limit, from the measurements of the muon 

spin-relaxation rate at a field of 1.5 T. They fitted the temperature dependence of ͳ ଵܶܶ⁄  to the Hebel-Slichter function with a broadened BCS density of states [73]. 

MacFarlane et al. have also found that ʹΔ/kBTc in K3C60 and Rb3C60 lie between  3.2 

and 4, using the same method via fitting ͳ ଵܶܶ⁄  vs T data to the Hebel-Slichter 

function [74]. Temperature dependence of the relaxation rates in conventional 

underexpanded Rb3C60 and K3C60 fullerides clearly showed Korringa behaviour in 

the normal state above the superconducting Tc and a small strongly field-

dependent HS coherence peak just below the superconducting Tc [73], [221]. 

Optical reflectivity measurements on phase-pure K3C60 and Rb3C60 led to 3.6 and 

2.98 for ʹΔ/kBTc [222], respectively, which are consistent with the BCS weak-

coupling limit; however, the HS coherence peak in ͳ ଵܶ⁄  which is a characteristic 

feature of the conventional superconductors [209], was not observed. In contrast, 

early measurements of Δ in Rb3C60 by tunnelling spectroscopy using a scanning 

tunnelling microscope gave significantly large gap corresponding to ʹΔ/kBTc = 5.2 

which had been taken as evidence for strong coupling in Rb3C60 [71].  

In sharp contrast to the non-monotonic scaling of superconducting Tc with 

pressure in MJTI Cs3C60, a comprehensive NMR study of fcc Cs3C60 has revealed 

that, upon pressurization, ʹΔ/kBTc  decreases monotonically from 5.3(2) (at 1.7 
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kbar) to BCS weak-coupling value of 3.52 at 7.8 kbar [70]. However, application of 

hydrostatic pressure in fcc Cs3C60 leads to a Ǯdomeǯ-shaped dependence of Tc: Tc 

initially increases (Tc = 25.6 K at ~ͳ.͵ kbar), reaches a maximum of 35 K at ~͹ kbar, and then starts decreasing at higher pressures [28]. In ref. [70], ʹΔ/kBTc was estimated from the 1/13T1∝ expሺ−∆/݇஻ܶሻ variation for 1.25 < Tc/T 

(1/13T1 being the 13C spin-lattice relaxation rate) [70]. However, no enhancement 

of 1/13T1 just below Tc that would mark the presence of the Hebel-Slichter 

coherence peak was observed within the overall experimental pressure range [70]. 

NMR results on the A15 Cs3C60 polymorph also showed a comparable volume 

dependence of the superconducting gap: ʹΔ/kBTc increases regularly with lattice 

expansion upon approaching the Mott transition, implying a lattice-independent 

superconductivity mechanism in both A15 and fcc Cs3C60 polymorphs [75]. 

Zadik et al. performed 13C, 133Cs, and 87Rb NMR experiments for 

measurements of spin-lattice relaxation rate, ͳ ଵܶ⁄ , in fcc RbxCs3−xC60 (0.35 ζ x ζ 3) 

materials [67], and reported ʹΔ/kBTc = 3.6(1) in underexpanded conventional 

metal Rb3C60. In agreement with earlier work [70], they found that ʹΔ/kBTc 

increases upon lattice expansion to 4.31(9) for Rb2CsC60, to 4.9(1) for optimally 

expanded RbCs2C60 and then further to 5.6(2) for overexpanded Rb0.35Cs2.65C60.  

In the present study, in agreement with previous work [67] and [70], we 

found that the superconducting gap does not correlate with Tc in the overexpanded 

regime: the gap increases monotonically with interfullerene separation as the Mott boundary is approached, in contrast to the Ǯdomeǯ-shaped scaling of Tc with V. ʹΔ/kBTc obtained from the ͳ ଵܶ⁄  muon spin-relaxation rate increases with 

increasing V, reaching 4.53(9) for overexpanded superconductor Rb0.5Cs2.5C60 

emerging from JTM upon cooling (see Figure 1.5 for details) [67]. Figure 4.21 

illustrates the evolution of ʹΔ/kBTc and Tc as a function of V at low temperature for 

fcc A3C60 fullerides.  
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Figure 4.21 (a): The volume per C603-, V, dependence of the superconducting gap divided 
by Tc, ʹΔ/kBTc, at low temperature, obtained from the ͳ ଵܶ⁄  spin-relaxation rate of 
Mu@C60; represented with solid symbols (data for K3C60 and Rb3C60 are from ref. [74] and 
[73]), and from the 87Rb spin-lattice relaxation rate data, 1/87T1 represented with open 
circle; from ref. [67]), in the superconducting state. The solid line is a guide to the eye and 
the dashed line marks the gap value ʹΔ/kBTc = 3.52. (b): Evolution of Tc as a function of V 
at low temperature for fcc RbxCs3-xC60 (0 ζ x ζ 3) fullerides; black circles from ref. [28] and 
the other data points are from ref. [67]. 

In overexpanded fcc Rb0.5Cs2.5C60, both suppression of the HS peak and the 

gap magnitude higher than the BCS weak-coupling value of 3.52 could be taken as 

evidence for a remarkable increase in the coupling strength as the system 

approaches the metal/superconductor–Mott insulator boundary. The weak-

coupling limit of BCS theory requires the involvement of high-frequency 

intramolecular phonons (ωph = ~1000-1600 cm−1) in the superconducting pairing 

mechanism [25], [41], [59]. On the other hand, in principle, the superconducting 

gap values far higher than predicted for the BCS weak-coupling limit could be 

obtained for strong electron-phonon coupling but this requires the involvement of 

the low-frequency intermolecular phonons ȋωph = ~100 cm−1) [68] in the pairing 

interaction [69]. This in turn necessities the occurrence of a switch-over from the 

involvement of the high to that of the low-frequency intermolecular phonons and 
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that the high- and low- frequency phonons would be active in different parts of the 

A3C60 electronic phase diagram. However, this seems not applicable due to the 

regular presence of the high-frequency phonon modes and there being no obvious 

changes in the crystal and electronic structures [70]. As a result, conventional BCS-

like explanation for the pairing mechanism in the overexpanded A3C60 

superconducting materials cannot be valid. 

Zadik et al. reported that unconventional superconductivity in overexpanded 

RbxCs3-xC60 (0.35 ζ x ζ 1) compositions emerges from the JT metallic state on 

cooling where dynamically JT distorted C603- ions coexist with itinerant electrons 

[67] (see Section 1.2.4 and Figure 1.5 for details). However, the localised features 

gradually fade away with decreasing interfullerene separation; the molecular JT 

distortion is no longer apparent and a conventional metal, from which 

conventional superconductivity emerges upon cooling,  is encountered in Rb2CsC60 

[67]. Hypothetically assuming, local heterogeneities in JTMs could broaden the 

singularity in the BCS density of states and thus reduce the amplitude of the HS 

peak, although the s-wave nature of the superconducting gap is retained right 

across the entire V range in the family of fcc A3C60 superconductors. 

Dynamical mean-field theory (DMFT) solutions of Capone et al. confirmed 

that superconductivity in a Hubbard model of fullerides, in which all important 

electron correlations occur within the molecular site, shares many of the 

properties that are attributed to high-Tc cuprates (i.e. emergence of 

superconductivity from the antiferromagnetic Mott insulating phase, Ǯdomeǯ-like 

scaling of Tc), besides s-wave symmetry rather than d-wave in fcc A3C60 fullerides 

[81]. In fact, both high-Tc s-wave superconductivity and a regular increase in ʹΔ/kBTc with increasing V upon approaching the MI boundary in the family of A3C60 

fullerides differ from the strongly correlated high-Tc cuprates where pairing of 

electrons takes place in a d-wave symmetry with superconducting gap values in 

the strong coupling regime [81], [223]. In high-Tc cuprates and also in pnictides in 

the underdoped regime, which is closer to the antiferromagnetic phase (AFM), the 

superconducting gap and Tc correlate. Initially, the gap size increases with 

increasing doping level and reaches a maximum, varying in a similar manner to Tc. 

Beyond this point, for greater doping levels, the gap size and Tc remain invariant 
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[224], [225]. However, NMR results on the A15 [75] and fcc Cs3C60 polymorphs 

[70], and the results in the present study indicate that, in the overexpanded 

regime, the superconducting gap does not correlate with Tc. This contrasting 

variation of Δ and Tc from the underdoped cuprates and pnictides which are in 

proximity to the AFM state can provide important clues for the understanding of 

the interplay between antiferromagnetic fluctuations and superconductivity in 

those. 

Although, in the present work, a suppression of the HS coherence peak and 

large coupling strength have been revealed in Rb0.5Cs2.5C60, more realistic models 

rather than using a simple Arrhenius law must be employed for a precise 

estimation of Δ - such models are discussed in refs. [73] and [221] in detail. For 

instance, the temperature dependence of ͳ ଵܶܶ⁄  can be modelled using the Hebel-

Slichter theory formulation with a broadened BCS density of states. Our results are 

expected to stimulate the development of improved theoretical descriptions of the 

A3C60 system, and further advancing our understanding of the origins and 

mechanism of superconductivity in other strongly-correlated high-

Tc superconductors.  

4.6 Conclusion 

In conclusion, we have observed the spin-relaxation of Mu@C60 in 

underexpanded Rb2CsC60 and overexpanded Rb0.5Cs2.5C60 compounds in which the 

temperature dependence of the relaxation rates exhibits Korringa behaviour above 

Tc and strong activated behaviour in the superconducting state. A small HS 

coherence peak was observed as an enhancement of the temperature dependence 

of  ͳ ଵܶ⁄ ܶ on cooling just below Tc in Rb2CsC60 in which superconductivity emerges 

from a conventional metallic state (JT effect is absent [67]) upon cooling. On the 

other hand, for Rb0.5Cs2.5C60, the available data suggested that the coherence peak 

might be suppressed, implying strong coupling effects in the overexpanded A3C60 

fullerides in which the molecular JT distortions continue to survive yielding 

unconventional metallic behaviour (i.e. JTM) in proximity to the MIT boundary 

[67]. The temperature dependence of the ͳ ଵܶ⁄ ܶ in both compounds followed an 

activated behaviour with an s-wave superconducting gap, Δ, as described by the 

Arrhenius law. The superconducting gap was estimated from the low-temperature 



 

171 
 

behaviour of the ͳ ଵܶ⁄ : underexpanded Rb2CsC60 and overexpanded Rb0.5Cs2.5C60 

displayed significantly large ratios of superconducting gaps to Tc, ʹΔ/kBTc, 

as 4.31(6)and 4.78(7), respectively, increasing with interfullerene separation [67], 

[70], [75] in contrast to the Ǯdomeǯ-shaped dependence of Tc [67]. Although the s-

wave symmetry is preserved, the coupling strength increases to anomalously large 

values, with ʹΔ/kBTc ratio approaching 5, for overexpanded superconductor 

emerging from JTMs upon cooling. This behaviour set the A3C60 fullerides out as a 

remarkable class of strongly-correlated superconductors in which the boundary 

with the JTM directly affects superconductivity [67]. While the s-wave 

superconductors emerging from the underexpanded conventional metals display 

the HS coherence peak and ʹΔ/kBTc values characteristic of weak-coupling BCS 

superconductors, the ones forming from a strongly-correlated antiferromagnetic 

Mott-Jahn-Teller insulator Cs3C60 display ʹΔ/kBTc ratio characteristic of 

unconventional non-BSC type high-Tc superconductors. These results indicate that 

the absence of the HS peak is not limited to high-Tc d-wave unconventional 

superconductors and a material can exhibit s-wave superconducting phase with 

high-Tc , which profits from strong correlations.  
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Chapter 5 Valence order - disorder transitions in 

alkali sesquioxide Cs4O6 

 

5.1 Introduction  

The previously reported studies on the structural and magnetic properties of 

the alkali sesquioxides, A4O6 (A = Rb, Cs) and their conflicting properties were 

summarised in section 1.3.1. One main controversial issue has arisen, due to the 

differing results of the crystallographic and spectroscopic studies. X-ray diffraction 

and elastic neutron scattering studies have hitherto revealed that A4O6 is 

isostructural to cubic Pu2C3 with the space group IͶ̅3d, where all oxygen atoms are 

located on one and the same Wyckoff position, and no reduction of symmetry or 

ordering of the differently-sized indistinguishable dioxygen anions takes place 

down to 5 K [93]–[95]. Controversially, spectroscopy has provided unambiguous 

evidence for two localized valence states of dioxygen [95], [100]. However, no 

experimental crystallographic evidence had hitherto been found for the presence 

of two localized valence states of dioxygen in sesquioxides.  Arčon et al. have reported large differences in the temperature evolution of 

the electron paramagnetic resonance (EPR) and 133Cs NMR spectra of Cs4O6 

measured under different cooling protocols, indicating that the electronic 

properties of Cs4O6 depend on the cooling protocol employed. As a result they 

proposed that the adopted structure might differ depending on the thermal 

treatment [106]. However, the temperature evolution of the structure was 

unknown. As the magnetic and molecular orderings are strongly coupled to one 

other, the theoretical calculations and experimental studies undertaken so far have 

led to conflicting results. For instance, electronic structure calculations using the 

local spin-density approximation have proposed half-metallic ferromagnetism in 

Rb4O6 [101], while experimental studies have proposed that it is a magnetically-

frustrated insulator [102]. Such a frustrated state was also supported by the 

magnetisation measurements of Cs4O6 [100]. 

The present study aimed to investigate the structural properties of Cs4O6 and 

resolve the conflicting electronic properties reported in the literature. For a 
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detailed structural investigation, first, the temperature response of Cs4O6 was 

studied with high-resolution neutron powder diffraction at ambient pressure. With 

the knowledge that the electronic properties are depended on the cooling protocol 

applied, different cooling procedures were followed for the study of the 

temperature response of the structure of Cs4O6. Once access to the adopted 

structures at low temperatures was achieved, high-resolution synchrotron X-ray 

diffraction investigations were undertaken, at variable temperatures and upon 

applying hydrostatic pressure.  

All the different batches of Cs4O6 used in this study were synthesised by A. 

Sans according to a previously reported protocol [100] by a solid-state reaction of 

CsO2 and Cs2O in a molar ratio of 4:1, in a glass tube sealed under argon, annealing 

at 473 K for 24 hrs. Annealing was repeated with intermediate grindings. As 

sesquioxides are extremely air- and moisture-sensitive, all reactions were carried 

out under an inert atmosphere. Samples of Cs4O6 used in this study were found to 

contain a small fraction of superoxide, CsO2, impurity phase, clearly evident in the 

diffraction profiles shown in the following sections.  

5.2 Temperature-induced valence order-disorder transitions 

In the following sections, structural characterisation with neutron time-of-flight 

(tof) powder diffraction, employing Rietveld analysis, is described for the 

sesquioxide Cs4O6, under both ambient conditions and at variable temperatures. 

Firstly, a summary of experimental procedures is provided. 

5.2.1 Experimental procedures 

Neutron tof powder diffraction experiments were carried out using the GEM 

tof diffractometer at ISIS, UK. The overall setup of the GEM diffractometer was 

outlined in Section 2.5.3. Due to the extreme air- and moisture-sensitivity of Cs4O6, 

all sample manipulations were carried out within the inert atmosphere of an argon 

glove-box (H2O and O2 < 0.1 ppm). A 1 g sample of Cs4O6 was held within a tightly 

sealed (indium-seal) 6 mm-diameter vanadium sample can. The height of the 

sample in the can was ~20 mm. A vanadium can is used as the sample holder as V 

has a very low coherent scattering length, b = −Ͳ.͵ͺ fm, leading to no significant 

Bragg reflections from the thin walls of the container, resulting in a flat 
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background. The same sample in the same vanadium can was used for all neutron 

tof powder diffraction data collections presented in this section. Temperature 

control was achieved using a helium continuous flow cryostat in the temperature 

range of 1.5 – 320 K. Due to the strong thermal hysteretic effects in the structural 

properties, the cooling and measurement protocols were closely monitored. 

The main strategy of the data collection was to measure discrete tof 

diffraction patterns continuously whilst warming or cooling. The continuous 

collections were saved in 5-minute intervals, which corresponded to a temperature change, ΔT ≈ 1 K and to ≈ͳʹ.ͷ ɊAmp of proton current. These discrete 

patterns were then summed in appropriate blocks. For instance, 10-minute blocks 

correspond to ΔT ≈ 2 K and give high enough statistics to confidently refine 

structural parameters, whilst achieving good resolution. All collected tof 

diffraction datasets presented in this chapter were summed in 10-minute blocks ȋΔT ≈ 2 K). In addition to the continuous data collection, sets of high-statistics data 

at selected temperatures, such as 1.8, 10 and 320 K were obtained in order to 

search for the presence of magnetic scattering, as well as to allow higher-quality 

structural determination through Rietveld analysis.  

Processing of the tof powder diffraction raw data and the absorption 

corrections were undertaken using the software MANTID [166]. Once the datasets 

were processed and summed into the desired blocks, Rietveld analysis was 

undertaken on the processed neutron tof diffraction datasets using the GSAS 

software suite.  

5.2.2 Cs4O6 at 320 K 

A high-statistics neutron tof diffraction pattern (≈͵ͷͳ.ʹ ɊAmpȌ was collected 

at 320 K for a detailed structural characterisation of the high-temperature phase of 

Cs4O6. Rietveld analysis of the data was undertaken, employing the previously-

reported Pu2C3 structure [93] with a cubic space group, IͶ̅3d (no: 220)  where all 

oxygen atoms are located on the same Wyckoff position 24d [95] to model the 

majority phase.  

A description of the refinement method now follows. An alternative form of 

the Ikeda-Carpenter profile function was used (tof profile function Ǯ2ǯ in GSAS) to 
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model the peak shape. Only the profile shape coefficients sig−ͳ, sig−ʹ, gam−ͳ and gam−ʹ of the function Ǯʹǯ were allowed to refine, but only if the refinement could 

converge. This function with the same refined profile shape coefficients has been 

employed for all neutron tof diffraction datasets analysed in this chapter. A 

Chebyschev polynomial function was used to model the background (background 

function Ǯ1ǯ in GSAS), with different number of terms ranging from 12 to 24 for 

different banks of detectors. While banks 2, 3, 4, 5 and 6, at solid angles of 17.98°, 

34.96°, 63.62°, 91.3° and 154.3°, respectively, were included in the analysis, bank-1 

was excluded as it did not have a sufficient number of Bragg peaks. The same 

banks of detectors were included for all Rietveld analysis of the datasets collected 

at variable temperatures. 

Whilst the diffractometer constant DIFC and ZERO were fixed as given in the 

instrument parameter file, DIFA for all banks, except backscattering bank-6, was 

refined periodically, but only if the refinement could converge. It was assumed that 

the diffractometer constants of bank-6 are best determined by the GEM calibration 

and do not need to be refined, but are fixed as given in the instrument parameter 

file. This method employed for the diffractometer constants was used for all 

Rietveld analysis of the neutron tof datasets collected at variable temperatures. 

For high-statistics datasets, the caesium and oxygen thermal displacement 

parameters were modelled as isotropic and anisotropic, respectively, and refined 

freely; however, for low-statistics (≈ͳʹ.ͷ ɊAmp) datasets, thermal displacements 

were modelled as only isotropic and refined freely. Fractional atomic coordinates 

in major crystallographic phases included in the model were always allowed to 

refine freely without introducing any restraints. The lattice parameters of all 

crystallographic phases included in the model were always refined as well. 

Refined structural parameters of cubic Cs4O6 are given in Table 5.1. The 

lattice constant and unit cell volume are: a = 9.8678(7) Å and V = 960.9(2) Å3, 

respectively, in agreement with the previously-reported  lattice parameter at 

300 K: a = 9.84583(11) Å [100]. The occupancies of the Cs and O(1) were kept 

fixed at 1. Even if the occupancies were allowed to refine freely, they converged to 

1.023(5) and 0.991(4) for Cs and O(1), respectively. To ensure the consistency of 

the refinement procedure at different temperatures, the occupancies were not 
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refined and were fixed at 1 for all refinement models that were employed for the 

analysis of all datasets. Refinement of the oxygen coordinates gave an O–O bond 

length of 1.271(3) Å, considerably lower than those in Rb4O6 (1.317(9) Å at 300 K 

[94] and 1.363(1) Å at 5 K [95]), superoxide O2− (1.34(3) Å) [226] and peroxide 

O2ʹ− (1.541(6) Å) [227] units. However, it is longer than that in caesium 

superoxide, CsO2 (1.187 Å [228] and 1.189 Å [97]).  

Figure 5.1 shows the adopted cubic structure of Cs4O6 at 320 K, in which the 

thermal displacements of the atoms are also illustrated. The largest amplitudes 

(U22) of the anisotropic thermal displacement factors of adjacent oxygen atoms are 

in a direction perpendicular to the O–O bonds and orient orthogonally to each 

other. Such an anomaly in the orientations of the thermal displacements of the 

oxygen atoms has been previously revealed in Rb4O6 by single crystal X-ray 

diffraction data collected at 295 and 213 K [94], and at 100 K [229] and by neutron 

powder diffraction data collected at 5 K [95]. This unphysical thermal motion 

might indicate that the assumed structural model corresponds to an average 

structure and at low temperatures the alignment of the oxygen dumbbells may tilt 

away from their original symmetry-defined orientations. This tilting might lead to 

a different crystal structure where oxygen species are disordered over different 

crystallographic sites.  

Table 5.1 Refined structural parameters of cubic Cs4O6 (IͶ̅3d) at 320 K from Rietveld 
analysis of the neutron tof diffraction data. Estimated errors in the last digits are given in 
parentheses. The total weighted-profile and expected R-factors are Rwp = 2.17% and Rexp = 
2.69%, respectively. The fractions of the co-existing Cs4O6 and CsO2 phases are 95.09(2)% 
and 4.9(3)%, respectively. 

Atom Wyckoff site x/a y/b z/c 

Cs 16c 0.94626(11) 0.94626(11) 0.94626(11) 

O(1) 24d 0.56061(16) 0 0.75 

 Debye-Waller (thermal) displacement factors (Å2) 

 Uiso U11 U22 U33 U12 U13 U23 

Cs 0.0531(8) - - - - - - 

O(1) - 0.0629(17) 0.1255(18) 0.0457(14) 0 0 0.0092(11) 
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Figure 5.1 Cubic IͶ̅3d Cs4O6 structure at 320 K. Cs+ and O(4/3)− ions are depicted in yellow 
and green, respectively. The oxygen dumbbells are oriented parallel to the 
crystallographic axes. Thermal displacement ellipsoids of the caesium and oxygen atoms 
are drawn at the 90% probability level. 

The single crystallographic position of oxygen reflects the presence of 

symmetry-equivalent valency-delocalised (O–O)(4/3) dumbbells (Figure 5.1), 

implying charge disorder with a general formula Cs4(O2(4/3))3. The final Rietveld 

fits to the 320 K Cs4O6 neutron tof diffraction data collected at different banks of 

detectors are shown in Figure 5.2. The observed data were satisfactorily modelled 

by including caesium superoxide, CsO2 as a second crystallographic phase. 

Although CsO2 has been reported to adopt a tetragonal structure (space group 

I4/mmm) at room temperature [12], we found that its contribution at 320 K 

(Figure 5.3) is best modelled by its high-temperature cubic phase (fraction: 4.9(3) 

wt.%; space group Fm͵̅m). In the literature, CsO2 was reported to be cubic at 473 K 

[11]. The fractional atomic coordinates and thermal displacement parameters of 

CsO2 were kept fixed to literature values [228] but its lattice parameters were 

allowed to refine; this applies to all other Rietveld analysis in which the CsO2 

impurity phase was included in the model. The contribution of CsO2 can be clearly 

seen in Figure 5.3, where only the Rietveld refinement of the diffraction pattern 

collected at bank-4 is shown over a restricted Q range.  
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Figure 5.2 Final observed (red circles) and calculated (blue solid lines) tof neutron 
diffraction patterns at 320 K. Green lines represent the difference profiles. Data from 
bottom-to-top represent the following GEM detector banks (listed with their solid angles): 
bank-2 at 17.98°, bank-3 at 34.96°, bank-4 at 63.62°, bank-5 at 91.3° and bank-6 at 154.4°, 
respectively. The red and black tick marks show the reflection positions of the cubic Cs4O6 
and 4.9(3)% impurity CsO2 phase. Vanadium peaks from the sample holder at 2.9 Å−1 in all 
banks and a spurious contribution from the cryostat at 5.1 Å−1 in the 154.3° bank were 
excluded from the fitting. The total weighted-profile and expected R-factors are Rwp = 
2.17% and Rexp = 2.69%, respectively. 
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Figure 5.3 Final observed (red circles) and calculated (blue solid line) neutron tof 
diffraction patterns collected at bank-4 at 320 K. Red and black tick marks show the 
reflection positions of Cs4O6 and impurity CsO2, respectively. The fractions of the co-
existing Cs4O6 and CsO2 phases are 95.09(2)% and 4.9(3)%, respectively. The inset 
displays an expanded region in Q and clearly shows the reflections of the CsO2 phase; 
observed Bragg peaks are labelled by their (hkl) Miller indices with the same colours as 
the tickmarks. The weighted-profile and expected R-factors for bank-4 are Rwp = 2.46% 
and Rexp = 3.04%, respectively. 

The refined lattice constant and unit cell volume of CsO2 at 320 K were found 

to be a = 6.5870(7) Å and V = 285.80(9) Å3, consistent with previously reported 

values at 473 K: a = 6.62(1) Å and V = 290.12 Å3 [228]. In addition to the reflections 

arising from the sample, some contributions from the vanadium can and cryostat 

were also observed. We were able to identify the origin of the spurious peaks, 

thanks to data collection on the empty cryostat and the vanadium can. These extra 

peaks were excluded from the Rietveld analysis. Once the crystal structure of Cs4O6 

at 320 K was confirmed to be cubic, as reported previously in the literature, we 

employed two different cooling protocols, rapid cooling and ultra-slow cooling, to 

investigate the low temperature structure. 

5.2.3 Rapid cooling of Cs4O6   

Rapid cooling of the sample was achieved via direct deep-quenching from 

320 K into a bath of liquid nitrogen (77 K). To ensure reproducibility, the sample 
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was first warmed to 320 K in a tube furnace and allowed to equilibrate there for 30 

minutes before cooling. After equilibration at 320 K, the sample was quenched into 

the liquid nitrogen bath and left there for 5 minutes for temperature equilibration. 

The sample was then transferred into the pre-cooled cryostat at 77 K. A helium-

filled bag was used during quenching and transferring to prevent the condensation 

of moisture onto the sample or stick. The steps of the quenching procedure are 

illustrated in Figure 5.4.  

 

Figure 5.4 Schematic view of the rapid cooling experiment via direct deep-quenching. 

Once the sample was transferred into the cryostat, cooling was immediately 

initiated directly to 10 K. After temperature equilibration at 10 K, a high-statistics dataset was collected for ʹ hrs ȋ≈͵ͲͲ ɊAmpȌ. The sample was then cooled down to 
1.8 K, where another long 2-hr scan was recorded in order to search for the 

existence of magnetic scattering as a cusp in the low-temperature magnetic 

susceptibility was observed below 8 K with separation between zero-field-cooled 

and field-cooled measurement protocols, possibly implying long-range 

antiferromagnetic order [100], [102]. 

Low-temperature structure of Cs4O6 after rapid cooling 

Rietveld analysis of the high-statistics tof neutron diffraction data collected at 

10 and 1.8 K after rapid cooling was undertaken. The analysis revealed that the 

cubic structure of Cs4O6 survived through the rapid deep-quench cooling and the 
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system remained valency-disordered. The observation of a single symmetry-

distinct oxygen species is consistent with two possible scenarios: either valency-

delocalisation or valency-localisation accompanied by random static disorder.  

The same space group, IͶ̅3d was employed to model the majority Cs4O6 

phase. A small fraction (4.3(7) wt.%) of the impurity CsO2 phase (space group 

Fm͵̅m) was again detected at low temperature. A general description of the 

analysis of the tof datasets was summarised in section 5.2.2. There were, however, 

certain differences in the Rietveld model used: the background was modelled using 

two different functions. A series of test refinements was performed employing 

different background functions for different banks of detectors. After qualitative 

and quantitative (by comparison of χ2 and Rwp) examination of the test 

refinements, a Chebyschev polynomial function ȋfunction Ǯͳǯ in GSAS) was chosen for banks ʹ and ͸, and function ǮͶǯ ȋin GSASȌ, which is designed to account for 
background contributions that increase with Q, was employed for banks 3, 4 and 5. 

The backgrounds of all banks were allowed to refine.  

Figure 5.5 compares the final fits to the high-statistics data collected at 10 K 

after rapid cooling and at 320 K before cooling. No symmetry change is apparent. 

Table 5.2 summarizes the refined parameters from the Rietveld analysis of the 

datasets collected at 1.8, 10 and 320 K. An intramolecular O–O bond length of 

1.3076(19) Å is derived at 10 K, shorter than that reported in Rb4O6 at 5 K 

(1.363(1) Å) [95]. The observation of an apparent increase in bond length on 

cooling (cf. 1.271(3) Å at 320 K), where thermal motion of the molecule is 

significantly reduced, suggests that the high-temperature refined bond length is 

artificially contracted due to the large librational motion of the oxygen dumbbells. 

Librational molecular motion provides a plausible explanation for unusually short 

bond lengths at high temperatures. Large librational motion of the diatomic 

molecule has been previously found to result in the observation [95] of an 

artificially contracted O2 bond in diffraction studies [230]. The large amplitude 

librations of oxygen dumbbells in cubic Cs4O6 have been observed by EPR 

experiments, and it was revealed that librations freeze out on cooling on the EPR 

time scale [106]. Furthermore, the large anisotropic thermal displacements at high 

temperature might contribute to this artificial contraction as well. The thermal 
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displacements of oxygen at low temperatures again show anisotropy, with a shape 

similar to the high temperature case, albeit expectedly smaller, suggesting a 

significant reduction in librational motion. 

 

Figure 5.5 Calculated (blue lines) and observed (red circles) neutron tof powder 
diffraction patterns from bank-4 at 10 K after rapid cooling (upper pattern) and at 320 K 
before cooling (lower pattern). Red and black tickmarks show the cubic Cs4O6 and CsO2 
reflection positions, respectively. Panel (b) displays expanded regions of the respective 
diffraction profiles in (a); observed Bragg peaks are labelled by their (hkl) Miller indices. 
Asterisks represent the reflection positions of CsO2 at 320 K, which is not detectable at 
bank-4 at 10 K. The refined fractions of the co-existing Cs4O6 and CsO2 phases are 
95.09(2)% and 4.9(3)% at 320 K, and 95.72(2)% and 4.3(7) % at 10 K, respectively. The 
total weighted-profile and expected R-factors are Rwp = 2.17% and Rexp = 2.69% (at 320 K), 
Rwp = 2.85% and Rexp = 2.08% (at 10 K), respectively. 

To search for the presence of magnetic scattering appearing below 10 K, 

diffraction patterns collected at 1.8 and 10 K were overplotted (Figure 5.6). There 

are signs neither of magnetic Bragg diffraction peaks developing nor of a 

significant change in the diffuse scattering. The diffraction patterns collected at 

banks 1 and 2 which give access to the lowest Bragg reflection positions were 

carefully examined, and only reflections from the cubic structure of unchanged 

relative intensity were found to be present.  
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Figure 5.6 Observed neutron tof diffraction patterns collected at bank-1 (lower pattern) 
and bank-2 (upper pattern) at 10 K (red circles) and 1.8 K (blue circles). Green squares 
represent the difference profiles between the 10 and 1.8 K datasets.  
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Table 5.2 Refined structural parameters for the cubic Cs4O6 phase from the Rietveld fits to 
tof neutron diffraction data collected at 1.8 and 10 K after rapid cooling and at 320 K 
before cooling. Values in parentheses are estimated errors from the least-squares fitting. 
The fractions of the co-existing Cs4O6 and CsO2 phases are 95.09(2)% and 4.9(3)% at 320 
K, and 95.72(2)% and 4.3(7)% at 10 K, respectively; the relative phase fractions at 1.8 K 
were fixed to the values obtained at 10 K 

           Temperature 1.8 K 10 K 320 K 

            Space group IͶ̅3d IͶ̅3d IͶ̅3d 

            a (Å) 9.75752(19) 9.7576(2) 9.8678(7) 

            V (Å3) 929.01(6) 929.03(5) 960.9(2) 

 

Cs 

x/a  0.94639(6) 0.94633(7) 0.94626(11) 

Uiso (Å2) 0.0207(3) 0.0208(3) 0.0531(8) 

 

 

 

O(1) 

x/a 

y/b 

z/c 

0.55804(11) 

0 

0.75 

0.55808(11) 

0 

0.75 

0.56061(16) 

0 

0.75 

U11 

U22   (Å2) 

U33 

0.0341(7) 

0.0659(8) 

0.0094(5) 

0.0329(8) 

0.0650(9) 

0.0088(6) 

0.0629(17) 

0.1255(18) 

0.0457(14) 

U12, U13, U23 (Å2) 0, 0, 0.0045(5) 0, 0, 0.0037(6) 0, 0, 0.0092(11) 

O—O  (Å) 1.3061(18) 1.3076(19) 1.271(3) 

Rwp (%) 2.33 2.85 2.17 

Rexp (%) 1.68 2.08 2.69 

Temperature response of rapidly-cooled Cs4O6 on warming 

Once the high-statistics datasets at 1.8 and 10 K had been collected after 

rapid cooling, a continuous data collection procedure was initiated whilst warming 

towards 320 K at a rate of 8.8 K h−1. No significant changes in the pattern were 

observed on warming up to 170 K other than a continuous peak shifting due to 

lattice expansion. However, on warming above 170 K, a new set of diffraction 
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peaks emerged signifying the appearance of a new phase. The new reflections grew 

in intensity, at the expense of those of the cubic phase, up to ~220 K (Figure 5.7).  

 

Figure 5.7 Temperature response of the diffraction pattern of Cs4O6 in the vicinity of the 
cubic (310) Bragg reflection on warming at a rate of 8.8 K h−1 after rapid cooling to base 
temperature. Only the bank-4 data are shown in the plot. The new peaks, which appear at 
~1.86, 2.13 and 2.15 Å−1 above 170 K are labelled with asterisks.  

Unexpectedly, heating past 220 K led to a reduction in intensity of the new 

peaks with recovery of intensity of the cubic phase reflections. At 320 K, this 

intermediate-temperature phase almost entirely disappears, with only the cubic 

phase surviving. The new peaks that appear above 170 K can be indexed to a 

tetragonal cell with space group IͶ̅2d (no. 122). Our tof powder neutron diffraction 

studies can now address the fundamental questions related to the mixed valence 

behaviour of Cs4O6. Rietveld analysis of all diffraction profiles collected on 

warming was then undertaken. The phase which emerges above 170 K was best 

modelled using a tetragonal unit cell (space group IͶ̅2d) in which the orientation of 

the oxygen dumbbells originally pointing along the cubic a and b crystallographic 

axes changes drastically. Therefore 2/3 of the dioxygen units are now found to be 



 

186 
 

directed at an angle to the tetragonal c axis.  The remaining 1/3 of dioxygen units 

are still oriented parallel to the c axis (Figure 5.8).  

 

Figure 5.8 Cubic (space group IͶ̅3d, displayed with an origin shift of (-1/2,-1/4,-1/8) for 
clarity) and tetragonal (space group IͶ̅2d) structures of Cs4O6. In the cubic structure, all 
oxygen dumbbells (green) are symmetry equivalent and oriented parallel to the three 
crystallographic axes. In the tetragonal structure, there are two distinct Wyckoff sites 
where peroxide, O2ʹ− (red) and superoxide, O2− anions (blue) reside: the O2− anions in the 
tetragonal phase are reoriented to align along the c-axis. Caesium ions are shown in yellow 
in both structures. Note the tilted orientation of the O2− anions in the tetragonal structure, 
away from the crystallographic c axis. 

The reorientation of the molecular units and their near-alignment along c 

results in elongation of the c axis and contraction of the ab basal plane dimensions. 

In IͶ̅2d, splitting of the oxygens into two different crystallographically sites with 

occupancy ratio of 2:1 allows the distinction between O2− and O22− anions. Indeed, 

two clearly different sets of bond distances emerge from the refinements at 

1.48(2) Å (8c site) and 1.27(2) Å (16e site) (at 200 K). This is consistent with the 

occurrence of charge ordering, and the molecular formula of the compound can be 

written as (Cs+)4(O2−)2(O22−). The observed bond distances are in good agreement 

with those known from the literature, namely 1.541(6) Å in O22−[227], and 1.34(3) 

Å in O2− [226].  

Given the very large number of datasets collected and processed on warming, 

i.e. 198, sequential Rietveld refinements were performed to finely probe the 

structural evolution of Cs4O6 on warming. Nevertheless, in order to confirm the 

reliability of the results of the sequential refinements, single dataset refinements 
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were also undertaken at selected temperatures. The analysed datasets were 

divided into two parts: part-I (1.8 K ζ T < 170 K) and part-II: (170 K ζ T ζ 320 K). 

The part-I datasets were modelled with a two-phase model incorporating the cubic 

Cs4O6 (space group IͶ̅3d) majority phase and the CsO2 (space group Fm͵̅m) 

impurity phase. Sequential refinements of part-I were initiated with the dataset 

collected at 1.8 K. The crucial stage in sequential refinement procedures is to 

obtain the best possible refinement model to start with, with the most appropriate 

profile shape coefficients and background functions with reasonable number of 

terms for different banks. 

The profile shape coefficients and diffractometer constants of the starting 

refinement of part-I were obtained from the analysis of the high-statistics data 

collected at 10 K after rapid cooling. The background was modelled differently 

from that of the high-statistics ͳͲ K data ȋ≈ ͵ͲͲ ɊAmpȌ analysis due to the low-statistics ȋ≈ 12.5 ɊAmpȌ of the subsequent datasets. A series of test refinements 
was undertaken in order to test modelling of the background and eventually 

background function 4 was employed for all banks except for bank-6, whose background was modelled using a Chebyschev polynomial function ȋfunction Ǯͳǯ in 
GSAS). Both functions were allowed to refine. The lattice parameters, fractional 

atomic coordinates, and profile shape coefficients for the major phase and the 

phase fractions of both phases were refined. The caesium and oxygen thermal 

displacement parameters in the major phase were modelled as isotropic and 

refined freely, although the oxygen thermal displacements were modelled as 

anisotropic in analysis of the high-statistics datasets. Solely for reasons of low data 

statistics, oxygen thermal displacements in the major phase were modelled as 

isotropic for all sequential Rietveld refinement procedures. All sequential 

refinements reported in this chapter were performed on datasets summed in 10 minute blocks ȋΔT ≈ ʹ KȌ, corresponding to ≈ ͳʹ.ͷ ɊAmps of proton current.  
Once a stable refinement had been obtained and the reliability of the model 

had been quantitatively verified (Rwp = 5.5% and Rexp = 5.97%), sequential 

refinements of the part-I datasets were undertaken using this model as a starting 

refinement (on data collected at 1.8 K). During the run of sequential refinements of 

part-I, the lattice parameters, fractional atomic coordinates and thermal 
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displacement parameters for the cubic Cs4O6 phase were refined. The phase 

fraction of the impurity CsO2 phase was fixed to 4.3 wt.% that was found at 10 K. 

The profile shape coefficients of all phases included in the model were always fixed 

during the run of sequential refinements to those obtained from the starting 

refinement.  

We now turn to part-II. The starting refinement of part-II datasets was 

performed on the data collected at 170 K. The refinement procedure described for 

the analysis of the part-I data was employed but with certain differences in the 

model. Three crystallographic phases were now included: cubic and tetragonal 

Cs4O6 (majority phases), and an impurity CsO2 phase. After obtaining a stable 

starting refinement, the run of sequential refinements was started in which the 

lattice parameters, phase fractions, fractional atomic coordinates and thermal 

displacement parameters for the cubic and tetragonal Cs4O6 phase were refined. 

The phase fraction of the impurity CsO2 phase was again fixed to 3.9 wt%. 

Finally, the structural evolution of rapidly-cooled Cs4O6 was investigated by 

sequential Rietveld analysis between 1.8 and 320 K on warming. Initial visual 

examination of the temperature evolution of the bank-4 tof diffraction profiles is 

shown in Figure 5.9 to highlight the significant changes on warming after rapid 

cooling. Once the sample reached 320 K, it was held there for 2 hours to allow full 

recovery of cubic Cs4O6; eventually, the tetragonal Cs4O6 phase entirely 

transformed, leaving only the cubic structure together with the impurity phase. 

Apart from the complex phase conversion between the cubic and tetragonal phases 

and the d-spacing shift of the Bragg peaks due to the thermal contraction, no other 

structural anomalies were evident.  

The temperature dependence of the phase fractions obtained from the 

Rietveld analysis is shown in Figure 5.10. Between 170 and 200 K, the tetragonal 

phase fraction rose at the expense of that of the cubic phase. At 200 K, a maximum 

tetragonal phase fraction of 72.0(4) wt.% was observed, before conversion back to 

the cubic phase on further heating was initiated. The tetragonal-to-cubic 

conversion then almost entirely stops as is apparent from the plateau observed in 

the temperature range of 270 – 300 K.  
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Figure 5.9 Neutron tof powder diffraction patterns at selected temperatures collected at 
bank-4 on warming. Red and blue tickmarks represent the reflection positions of cubic 
and tetragonal Cs4O6, respectively. 

On approaching 320 K, the rate of tetragonal-to-cubic conversion again 

rapidly increased, leading to fast reduction of the intensity of the tetragonal phase 

peaks. A complete tetragonal-to-cubic transformation was finally achieved after 

holding the sample at 320 K for 2 hours. A detailed examination of the refined 

structural parameters of the cubic and tetragonal phases was undertaken for the 

rapid cooling state; these results will be presented together with those from the 

ultra-slow cooling experiment in section 5.2.5. 
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Figure 5.10 Evolution of the phase fractions on warming after rapid cooling. Red, blue and 
green circles represent the cubic Cs4O6, tetragonal Cs4O6 and impurity CsO2 phases, 
respectively. Open circles denote the result obtained after holding the sample at 320 K for 
2 hrs. 

5.2.4 Ultra-slow cooling protocol of Cs4O6  

With the knowledge that slow cooling of Cs4O6 leads to a transition to a low-

symmetry structure, the sample was then very slowly cooled from 320 to 50 K at a 

rate of 1.68 K h−1, to investigate the effects of thermal history and in an attempt to 

isolate this newly-observed structure at low temperatures. Once the sample had 

reached 50 K, it was held there for 4 days. While the sample was at 50 K in the 

cryostat, it was inserted into the GEM diffractometer, and then an initial diffraction 

pattern was collected to check whether or not the sample survived during this 

ultra-slow cooling treatment, which took 11 days in total. After the slow cooling, 

inspection of the initial diffraction pattern revealed a significantly different result 

compared to rapid cooling. The tetragonal Cs4O6 phase is now clearly evident at 

50 K together with some untransformed cubic Cs4O6. Once the sample quality was 

confirmed, it was then cooled down to 10 K at a rate of 0.44 K min−1 and a high-

statistics dataset (≈ ͵ͷͳ.͸ ɊAmpsȌ was collected . Following this, the sample was 
further cooled to 1.8 K. 
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Low temperature structure of Cs4O6 after ultra-slow cooling 

Rietveld analysis of the high-statistics data collected at 10 K after ultra-slow 

cooling was first undertaken. Three crystallographic phases were included in the 

model as necessitated by visual inspection: cubic and tetragonal Cs4O6 (major 

phases) and minority CsO2 (space group Fm͵̅m) phase. The background was again 

modelled using two different functions: a Chebyschev polynomial function for 

banks 2, 3, 5 and 6, and function 4 for bank-4. (See sections 5.2.2 and 5.2.3 for the 

refinement method).  

The 10 K thermal displacement parameters of the oxygen atoms in the 

tetragonal phase and its structure are presented in Table 5.3 and Figure 5.11, 

respectively. The unphysical orientations of the tensor elements are once again 

present with a shape similar to that of cubic Cs4O6 (Figure 5.1). Especially, the 

thermal ellipsoids on the oxygen atoms located at the 16e Wyckoff site (O2− ions) 

are significantly flattened compared to those of the oxygen atoms at the 8c site 

(O22− ions). 

Concurrently with our work, single crystal X-ray diffraction studies of the 

rubidium analogue, Rb4O6  have also identified an isostructural tetragonal phase at 

100 K and revealed a pronounced anisotropic thermal motion of the oxygen atoms 

generated by the space group IͶ̅2d [229]. Due to these seemingly unphysical 

thermal displacements, the possibility of a further symmetry reduction to the IͶ̅ 

space group was discussed. In IͶ̅, a further splitting of the atomic positions is 

allowed, while the O2− ions are still tilted with respect to the c axis, as for IͶ̅2d. 

Nonetheless, refinement of the tetragonal structure in IͶ̅ still showed strong 

anisotropic thermal displacements of the oxygen atoms in the directions 

perpendicular to the O–O bonds, but with smaller amplitudes than in the IͶ̅2d case. 

In the present study, any attempts to refine the structure using our neutron tof 

powder diffraction data in this lower symmetry tetragonal space group were 

unsuccessful. Whilst given the quality of the data, we cannot entirely rule out the 

possibility that the true space group is IͶ̅, we find no evidence of breaking the 

(00l : l = 4n) reflection condition of the IͶ̅2d space group. 
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Table 5.3 Oxygen thermal displacement parameters in tetragonal Cs4O6 after ultra-slow 
cooling to 10 K. The fractions of the co-existing cubic and tetragonal Cs4O6 and CsO2 phases 
are 23.2(2)%, 72.7(1)% and 4.1(2)%, respectively (Rwp = 3%, Rexp = 2.29%). 

 

Figure 5.11 Tetragonal IͶ̅2d Cs4O6 structure at 10 K. Cs+, O22− and O2− ions are represented 
with yellow, red and blue colour, respectively. Thermal displacement ellipsoids of the 
caesium and oxygen atoms are drawn at the 90% probability level.  

Refined temperature- and cooling-protocol-dependent structural parameters 

of the cubic and tetragonal phases and Rietveld fits to the 10 K data collected after 

rapid and ultra-slow cooling are presented in Table 5.4 and Figure 5.12, 

respectively. Refinement of the fractional coordinates of the oxygen atoms in the 

tetragonal phase at 10 K gave intramolecular bond lengths OȋͳȌ−O(1): 1.528(6) Å 

for O2ʹ− and OȋʹȌ−O(2): 1.345(4) Å for O2−, which are in excellent agreement with 

values previously reported for O2ʹ− (1.541(6) Å, [227]) and for O2− (1.34(3) Å, 

[226]).  

 

Uiso (Å2) O(1) - Wyckoff site 8c O(2) - Wyckoff site 16e 

U11, U22, U33 0.0115(13), 0.0051(16), 0.0147(16) 0.0453(16), 0.0111(15), 0.0166(11) 

U12 U13 U23 0.0123(14), 0, 0 0.0048(13), -0.0064(14), 0.0058(12) 
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Table 5.4 Temperature- and cooling-protocol-dependent structural parameters for Cs4O6. 
In the tetragonal phaseͶ̅, the O2− anions are reoriented to align with the c-axis. 

Temperature 320 K 10 K after rapid cooling 10 K after slow cooling 

Symmetry Cubic Cubic Cubic Tetragonal 

Space group IͶ̅3d IͶ̅3d IͶ̅3d IͶ̅2d 

a (Å) 9.8678(7) 9.7576(2) 9.7382(2) 9.1587(2) 

c (Å) - - - 10.8656(5) 

V (Å3) 960.9(2) 929.03(5) 923.51(6) 911.43(5) 

Cs 

Wyckoff site 16c 16c 16c 16e 

x/a 0.94626(11) 0.94639(6) 0.9460(2) 0.30341(18) 

y/b - - - 0.0555(2) 

z/c - - - 0.04741(18) 

Uiso (Å2) 0.0531(8) 0.0207(3) 0.0241(12) 0.0071(4) 

O(1) 

Wyckoff site 24d 24d 24d 8c 

x/a 0.56061(16) 0.55804(11) 0.5590(5) 0 

y/b 0 0 0 0 

z/c 0.75 0.75 0.75 0.0703(3) 

O(1)—O(1) (Å) 1.271(3) 1.3076(19) 1.3069(10) 1.528(6) 

O(2) 

Wyckoff site - - - 16e 

x/a - - - 0.3776(3) 

y/b - - - 0.7705(2) 

z/c - - - 0.18441(18) 

O(2)—O(2) (Å) - - - 1.345(4) 
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Figure 5.12 Final observed (red circles) and calculated (blue solid lines) tof neutron 
diffraction profiles at 10 K after rapid cooling (upper panel) and at 10 K after ultra-slow 
cooling (lower panel). Only the data collected from bank-4 are shown. Green lines 
represent the difference profiles. The red and blue tick marks show reflection positions of 
cubic and tetragonal Cs4O6, respectively. Contributions from the vanadium sample holder 
at Q = 2.85 - 2.95 Å−1 are excluded from the analysis. Both insets display expanded regions 
of the respective diffraction profiles. Reflection positions of CsO2 are not detectable at 
bank-4 at 10 K. 

Temperature response of ultra-slow cooled Cs4O6 on warming and cooling 

We now turn to the structural response of Cs4O6 whilst warming to 320 K at a 

rate of 8.8 K h−1 from the ultra-slow cooled state. Again, a complex structural 

behaviour was seen on warming above 170 K (Figure 5.13) comparable to that of 

the rapidly-cooled state to heating (Figure 5.7).  



 

195 
 

 

Figure 5.13 Temperature response of the diffraction pattern of Cs4O6 in the vicinity of the 
cubic (310) Bragg reflection on warming to 320 K at a rate of 8.8 K h−1 after ultra-slow 
cooling to low temperature. Only the bank-4 data are shown in the plot. All observed peaks 
are labelled with their corresponding Miller indices (red: cubic, blue: tetragonal).  

Initially, the relative fractions of the tetragonal and cubic Cs4O6 phases 

remained unchanged on warming to 170 K. Between 170 and 200 K, the weight 

fraction of the cubic phase started to decrease. On further heating, conversion back 

to the cubic phase was re-eastablished at the expense of the tetragonal phase. 

Finally, at 320 K, the tetragonal-to-cubic conversion was almost entirely complete. 

Once the sample had reached 320 K, it was held there for 2 hours to achieve 

complete conversion back to the cubic phase. Once full conversion back was 

confirmed, the sample was cooled down to 140 K at a rate of 12 K h−1. Solely for 

reasons of time restriction, no cooling below 140 K was possible. We found that 

cubic Cs4O6 is robust down to 200 K. However, below this temperature, new peaks 

consistent with the emergence of the tetragonal phase appear (Figure 5.14). 
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Figure 5.14 Temperature response of the diffraction pattern of Cs4O6 in the vicinity of the 
cubic (310) Bragg reflection on cooling at a rate of 12 K h−1 from 320 K. Only the bank-4 
data are shown in the plot. All observed peaks are labelled with their corresponding Miller 
indices (red: cubic, blue: tetragonal). 

Sequential Rietveld analysis of the datasets collected on warming and cooling 

was undertaken. The starting refinement of the datasets collected on warming was 

performed for the 1.8 K data. The structural model employed was comparable to 

that used for the 10 K data after ultra-slow cooling with certain differences: both 

caesium and oxygen thermal displacement parameters in the major phases were 

modelled as isotropic, solely for reasons of data quality. While the phase fractions 

and profile shape coefficients for the major phases were allowed to refine if the 

refinement could converge, they were fixed for the impurity CsO2 phase to those 

obtained from the analysis of the high-statistics data collected at 10 K. Once a 

stable refinement had been obtained, sequential refinements on warming were 

initiated using this starting refinement. During the run of sequential refinements, 

the lattice parameters, background, fractional coordinates, phase fractions and 

thermal displacement parameters of the major phases were refined. The profile 
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shape coefficients and scale factor of the impurity phase were kept fixed as 

obtained in the starting refinement.  

The run of sequential refinements of datasets collected on cooling was 

started with the dataset collected at 320 K. Since the tetragonal phase emerged on 

cooling below 200 K, in the temperature range between 320 K and 200 K, two 

crystallographic phases (cubic Cs4O6 and the impurity CsO2 phase) were included 

in the model. The tetragonal phase was then also included for datasets collected 

below 200 K. A Chebyschev polynomial function was used to model the 

background for all banks of detectors. This time there was no need of including function ǮͶǯ ȋin GSASȌ as the background contributions did not increase with Q, 

displaying a little varying contribution over the experimental Q range.  During the 

run of sequential refinements, the same parameters were refined as with the 

datasets collected on warming. 

5.2.5 Structural results at ambient pressure  

Here we discuss the results of the ambient-pressure neutron tof diffraction 

investigations of Cs4O6 in more detail. We especially focus on the complex 

structural evolution as revealed by the temperature response of structural parameters such as unit cell volume, torsion angles, O−O bond lengths and thermal 
displacement parameters.  

The temperature dependence of the unit cell volume, V(T), of cubic and 

tetragonal Cs4O6 (Figure 5.15) was modelled using a Debye-Grüneisen model such 

as that proposed by Sayetat et al. (described in Section 2.3.6) [134]. The function in 

Equation 2.37 was used to fit the V(T) data. This Debye-Grüneisen model describes 

well the V(T) data of the cubic structure over the whole temperature range. The 

tetragonal unit cell, however, shows a distinct deviation from the expected 

behaviour above ~250 K; therefore only the V(T) data of the tetragonal structure 

collected at temperatures below the volume anomaly were included in the fit. 

Derived parameters from the Debye-Grüneisen fits are shown in Table 5.5. The Debye temperature, ΘD, found for the tetragonal structure is lower than that of 

cubic Cs4O6 while the thermal expansivities are essentially identical. 
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Table 5.5 Resulting parameters from the Debye-Grüneisen fits to the V(T) data of. 
Statistical errors given in parentheses are from least-squares fitting.  

Symmetry Fitted T  range (K) V0 (Å3) ΘD (K) IV (Å3 K-1) 

Cubic 3 - 320 929.67(6) 270(4) 0.1399(8) 

Tetragonal 2 - 250 911.55(6) 183(4) 0.1440(9) 

Due to the elongation of the c axis and contraction of the ab basal plane 

dimensions, the cubic-to-tetragonal phase transition should be accompanied by a 

drastic collapse in the unit cell size. Indeed, a 1.894(8)% contraction at 10 K is 

observed experimentally. At 10 K, the unit cell volumes of the cubic and tetragonal 

phases are 929.03(5) Å3 and 911.43(5) Å3.  

 

Figure 5.15 Thermal expansivity of cubic (red) and tetragonal (blue) Cs4O6, extracted from 
data collected on warming from rapid-cooled and ultra-slow-cooled states, respectively. 
The gaps between the data points are due to data collection interruption due to beam loss. 
The inset shows an expanded view of the low-temperature region. Solid lines through data 
points display the results of Debye-Grüneisen fits. 

The anisotropic thermal expansivity of the tetragonal phase is highlighted in 

Figure 5.16, which shows the temperature dependence of the lattice parameters, 

with an evident expansion of the tetragonal a lattice parameter and a contraction 

along c. The anomalous behaviour above ~250 K is again clearly apparent. The 
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anomaly in the expansivity, concomitant with a reduction in the tetragonal-to-

cubic phase conversion rate above 250 K, is evidence for a change in the tetragonal 

structure. 

 

Figure 5.16 (a): Evolution of the lattice parameters of cubic and tetragonal Cs4O6 with 
temperature, extracted from data collected on warming from rapid-cooled and ultra-slow-
cooled states, respectively. (b): Temperature dependence of the tetragonal distortion, c/a. 
The gaps between the data points are due to data collection interruption due to beam loss. 

We now examine the evolution of the phase fractions after different cooling 

protocols were applied (Figure 5.17). Initially, the relative tetragonal and cubic 

phase fractions remained virtually unchanged on warming up to 170 K from the 

rapid- and ultra-slow-cooled states. A fast reduction in the intensity of the Bragg 

reflections of the cubic phase was then seen between 170 and 200 K. At ~201 K, 

maximum weight fractions of the tetragonal phase of 72.0(4) and 82.5(4) wt.% 

were observed for the rapid and ultra-slow cooling protocols, respectively. On 

further heating, the tetragonal phase started to convert back to cubic; however, 

this conversion showed non-monotonic behaviour for both cooling protocols. 

Between 270 and 300 K, the fractions of both the tetragonal and cubic phases 

remained invariant, then on approaching 320 K, the conversion rapidly increased, 

leading to a fast reduction of the tetragonal phase fraction (decreasing to 19.1(4) 

and 24.0(4) wt.% at 320 K for the ultra-slow and rapid cooling protocols, 
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respectively). Finally, a complete conversion back to the cubic phase was achieved 

by holding the sample at 320 K for 2 hours. 

 

Figure 5.17 From top to bottom: temperature evolution of the phase fractions of cubic 
(red) and tetragonal (blue) Cs4O6 and impurity CsO2 (green) on heating after rapid and 
ultra-slow cooling, and on cooling from high temperature. 

The cubic Cs4O6 phase was stable on cooling from 320 to 200 K, where the 

maximum tetragonal phase fractions were observed on heating. Between 200 and 

150 K, the cubic-to-tetragonal conversion occurred, but below 150 K, this 

conversion did not continue anymore; it appears that the phase fractions of the 

two phases no longer change on cooling below 140 K. These observations: phase-

coexistence over a broad temperature range and large thermal hysteresis in the 
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course of a characteristic sluggish cubic-to-tetragonal phase transformation are 

consistent with a first-order transition between the two phases. 

Since the transition from cubic to tetragonal structure is a result of the 

charge ordering and the two phases differ in the orientation of the O2− ions, the 

reasons behind the puzzling observations described so far could be related to the 

dependence of the orientation of the O2− ions on temperature. We now therefore 

examine the temperature dependence of the torsion (dihedral) angles defined by 

four atoms; two atoms from the O2− molecules (2/3 of the oxygen dumbbells) and 

two from the O22− molecules (1/3 of the oxygen dumbbells)  in the tetragonal IͶ̅2d 

cell. Since the O22− molecules are oriented parallel to the c−axis, the temperature 

response of the O2− − O22− torsion angles reflects the change in the tilting of the O2− 

anions from the crystallographic c axis. Figure 5.18 shows the tetragonal Cs4O6 

crystal structure at 10 K, together with a representative view of the torsion angles 

of the O2− units. However, the reduced intensity of the Bragg reflections of the 

tetragonal phase on warming above 200 K makes definitive analysis of the 

temperature-dependent structural details difficult.  

There are two distinct torsion angles between the O2− and O22− anions and the 

temperature response of the two angles were found to be identical. As seen in 

Figure 5.18, the torsion angles between the O2− and O22− anions are 14.62(3)° and 

13.88(3)° at 10 K. The O2− anions exhibit varying degrees of reorientational 

behaviour on warming above 150 K, where the complex competition in stability of 

the cubic and tetragonal phases appears (Figure 5.19). In the case of the rapid-

cooled state, at temperatures between 170 and 200 K, where the tetragonal phase 

fraction increases rapidly, the tilt angle between the two oxygen dumbbells also 

increases rapidly. On further heating above 260 K, where a plateau in the plot of 

wt.% vs. T exists, the tilt angles start decreasing after reaching a maximum of 

18.35(5)° at 254 K; finally, the tilting decreases significantly to 9.55(13)° at 317 K, 

concomitant with the fast reduction in the phase fraction of the tetragonal Cs4O6.  
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Figure 5.18 Tetragonal (IͶ̅2d) Cs4O6 structure with the unit cell shown in red. Structural 
parameters to build the unit cell were taken from the results of the Rietveld analysis of the 
tof neutron diffraction data at 10 K after ultra-slow cooling. O22− and O2− are shown in red 
and blue, respectively. The O22− anions orient along the c-axis but with a tilt off the axis. 
Representative views of the torsion angles between the O22− and O2− anions are shown in 
turquoise. 

Similar anomalies in the torsion angles on heating were observed in the case 

of the ultra-slow-cooled state; at temperatures above 200 K, a systematic 

pronounced change was seen. At 269 K, the torsion angle reached 17.09(5)°, then 

decreased to 13.89(10)° at 304 K. On cooling, the torsion angles increased rapidly 

as soon as the tetragonal phase started growing in intensity from 200 to 150 K. 

When the tilting between the oxygen dumbbells decreased, O2− anions tended to 

orient parallel to the crystallographic c axis. Certainly, the transformation between 

the high-temperature cubic and low-temperature tetragonal phases involves large 

amplitude reorientations of the oxygen dumbbells and is non-monotonic. For 

instance, the variation in the degree of mobility of the O2− anions with temperature 

is more pronounced for the rapid-cooled state compared to the ultra-slow-cooled 

state. 
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Figure 5.19 From top to bottom: temperature evolution of the phase fraction of the 
tetragonal Cs4O6 phase (left axis) and of the torsion angles between the O22− and O2− anions 
(right axis) on warming after rapid cooling and ultra-slow cooling, and on cooling, 
respectively. Estimated errors are smaller than the data points. 

The variation of the intramolecular O−O bond lengths and isotropic thermal 
displacements of oxygen and caesium in the tetragonal and cubic Cs4O6 phases 

with temperature was also investigated. The resulting refined bond lengths 

confirm the existence of different oxygen species with different charges over the 

experimental temperature range. The temperature responses of the two sets of 

bond lengths at the 16e (occupied by O2−) and 8c (occupied by O22−) Wyckoff sites 

in the tetragonal IͶ̅2d unit cell, and that of the one distinct bond length at the 24d 

Wyckoff site in the cubic IͶ̅3d unit cell, are shown in panels (a): and (b) of Figure 

5.20, respectively. The O−O bond length for the O22− anion (depicted in red) shows 

a small increase above 250 K, which coincides with an increase in the Uiso of 
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oxygen in the O22− anion for the ultra-slow-cooled state (Figure 5.20. (c)). 

However, the low intensity of the Bragg reflections of the tetragonal phase on 

warming above 250 K and the relatively large estimated errors in bond lengths 

make ultimate interpretation of the resulting structural details tricky. On the other 

hand, the anomaly seen in the tetragonal a and c lattice parameters above 250 K 

(Figure 5.16) could be correlated with this increase in the O22− bond length.  

The shortening of the superoxide bond length above 200 K could be 

attributed to the increase in the thermal and librational motion and does not 

necessarily mean a true change in bond length, considering the relatively large 

estimated errors in bond length at high temperatures. Whilst thermal 

displacements of the O2− and caesium in tetragonal Cs4O6 grew consistently on 

warming and became more pronounced above 200 K (Figure 5.20 . (c), (e)), which 

could be tentatively related to the pronounced increase in the torsion angles, 

thermal displacements of O22− exhibited an almost linear temperature response. 

We now turn to the variation in the O−O bond length and thermal 

displacements in cubic Cs4O6 with temperature. The bond length remained 

virtually unchanged up to 170 K (Figure 5.20(b)); however, at ~200 K, where the 

cubic phase fraction reached its minimum, there was a steep decrease in the bond 

length, which coincides with an anomaly seen in the variation of the Cs thermal 

displacements as well (Figure 5.20 and (f)). As it is apparent from Figure 5.20, 

there are significant correlations between the positional and the thermal 

parameters. 
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Figure 5.20 (a): Temperature response of the O−O bond lengths in tetragonal, and (b): in 
cubic Cs4O6. (c): Temperature response of Uiso for oxygen in tetragonal, and (d): in cubic 
Cs4O6. (e): Temperature response of Uiso for caesium in tetragonal, and (f): in cubic Cs4O6. 
Symbol and colour code: Solid and open symbols represent the data collected on warming 
after ultra-slow and rapid cooling, respectively. The red, blue, green and dark yellow 
colours represent the data for O22−, O2−, ȋO−OȌ(4/3) and Cs, respectively.  
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5.2.6 Discussion  

A phase transition can be driven by many parameters, i.e. temperature, 

pressure, X-ray illumination, chemical composition, magnetic or electric field. Here 

in this section we used temperature as the driving force of the cubic-to-tetragonal 

phase transition. According to the kinetic classification of phase transitions, there 

are two distinct types: rapid or non-quenchable, and sluggish or quenchable transitions. Rapid transitions are fast and Ǯinstantlyǯ reversible. Conversely, 
sluggish phase transitions are sufficiently slow that the high temperature (or high pressureȌ phase can be Ǯquenchedǯ or preserved as a metastable state at ambient 
conditions, and are not instantly reversible [231]. These transitions generally show 

large hysteresis caused by slow kinetics. From a structural point of view, phase 

transitions are divided into two main groups: displacive and reconstructive 

transitions. Displacive phase transitions are fast and barrierless; on the other 

hand, reconstructive ones are sluggish and slow due to some intermediate 

transitional changes [231], [232].  

The cubic-to-tetragonal phase transition in Cs4O6 is extremely sluggish, the 

reverse transition is slow, there is phase co-existence and the transition is 

characterised by large hysteresis; therefore, the transition could be classified as 

first-order structural phase transition. It is a reconstructive transition as the 

volumes of the two phases are different at any given temperature and there are atomic rearrangements − ʹ/͵ of the dioxygen units reorient to lie nearly along the 

c-axis. Buergersǯ definition of reconstructive phase transitions is: Ǯstructures are so 

different that the only way a transformation can be effected is by disintegrating one 

structure into small units and constructing a new edifice from the unitsǯ [233]. Such 

transitions are of first-order and expressed as sluggish as the material should 

traverse the intermediate state of a higher energy [232]. Indeed, the examination 

of the temperature response of the structure of Cs4O6 at ambient pressure implies 

the occurrence of intermediate changes.  

In the present case, the only way to build up a tetragonal IͶ̅2d cell is the 

rearrangement of the oxygen dumbbells, otherwise no valence ordering is 

observed. Apparently, during the rearrangement of the oxygen dumbbells, the 

crystal is most likely broken into fragments, passing through the intermediate 
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state of a higher energy; therefore, this tetragonal-to-cubic conversion has showed 

a non-monotonic behaviour with changes in temperature, accompanied by 

different conversion rates upon warming above 170 K. The intermediate changes 

occurring in Cs4O6 due to the first-order nature of the cooperative phase transition 

have led to a competition between the electronic states of Cs4O6 upon warming 

above 170 K. These states shuttle between a higher and the most energetic state 

(Figure 5.21 (c) and (d)), leading to a slow highly hysteretic tetragonal-to-cubic 

phase transition. Almost all different types of phase transition mechanisms assume 

a cooperative structural rearrangement, and this cooperative interaction between 

the two phases creates an energy barrier. Once the thermal energy is close enough 

to the crossover energy between the metastable cubic and tetragonal phases, this 

barrier in the potential energy gradually disappears and eventually the high-

temperature cubic phase returns to its ground state at 320 K.    

 

Figure 5.21 Schematic free-energy curves and arrows depict the direction of the 
temperature-induced transformation between the two metastable phases of Cs4O6. 

These anomalies coincide well with those temperatures at which the temperature dependence of the molar magnetic susceptibility, χm(T), of Cs4O6 

measured on warming after rapid cooling displayed some pronounced anomalies 

(i.e. between 200 and 250 K and at 320 K) [106]. Moreover, whilst between 350 
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and ʹͲͲ K, the χm-1(T) followed a Curie-Weiss behaviour, below ʹͲͲ K, the χm-1(T) 

deviated from linearity [106]. We have also found that 200 K is a critical 

temperature; the low-temperature tetragonal phase exists as a superheated phase 

and reaches its maximum weight fraction − 72.0(4) and 82.5(4) wt.% for the rapid 

and ultra-slow cooling protocols, respectively. 

Examination of the torsion angles between the O2− and O22− anions allowed us 

to track the evolution of the orientations of the O2− anions with temperature. We 

have found a non-monotonic response at temperatures between 200 and 300 K, 

(Figure 5.19) coinciding well with those temperatures at which some anomalies 

are observed in the temperature responses of the phase fractions (Figure 5.17) and 

of the magnetic susceptibility, as reported in ref. [106]. Because magnetic exchange 

interactions sensitively depend on molecular geometry, the orientation of the 

magnetically active O2− anions should sensitively affect the magnetism too.  

5.2.7 Summary of temperature-induced valence disorder-order transition 

The experimental data have shown that Cs4O6 at 320 K is isostructural to 

Rb4O6, crystallising in a disordered structure with cubic space group IͶ̅3d. This 

high-temperature valence-disordered cubic structure transforms to a tetragonal 

structure (space group IͶ̅2d) by ultra-slow-cooling to liquid helium temperatures. 

This symmetry-lowering structural transition is accompanied by a valency 

transition. In tetragonal IͶ̅2d unit cell, splitting of the oxygen atoms leads to the 

differentiation between the O2− and O2ʹ− anions and hence to valence ordering. On 

the other hand, rapid cooling via deep quenching suppressed the emergence of the 

low temperature phase with the cubic phase surviving down to liquid helium 

temperatures, reveals that the high-temperature cubic phase is quenchable. 

The evolution of the diffraction profiles with temperature has revealed the 

occurrence of extremely sluggish cubic-to-tetragonal phase transitions in Cs4O6. 

First-order nature of the transition between the two phases has been confirmed by 

phase-coexistence and large thermal hysteresis in the course of the sluggish 

reconstructive-type conversion. Because the two competing structures differ in the 

orientations of the dioxygen groups and that orientational ordering of the O2− units 

is coupled to the charge ordering, reorientational behaviour of the O2− anions could 
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play a role in driving the observed sluggish phase transition. Apparently, due to the 

anomalously large thermal displacement parameters of the O2− anions, which are 

tilted with respect to the tetragonal c axis, large amplitude reorientations of the 

O2− anions are evident above 170 K. The examination of the temperature variation 

of the torsion angles and phase fractions has demonstrated that there might be a 

correlation between the orientational ordering of the O2− anions and valence 

order-disorder phase transition.  

The temperature evolution of the lattice parameters and unit cell volume of 

the two phases has revealed that the cubic phase has a larger volume than the 

tetragonal phase which anisotropically expands while transforming back to the 

cubic symmetry on heating. 
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5.3 Temperature- and X-ray illumination-induced valence order-

disorder transitions  

In the following sections, structural characterisation with synchrotron XRPD, 

employing Rietveld analysis, is described for Cs4O6 at room temperature and at 

10 K. Firstly, a summary of experimental procedures is provided.  

5.3.1 Experimental procedures 

High-resolution synchrotron XRPD data were collected with the 

multidetector diffractometer on beamline ID31 at the ESRF. The overall setup was 

outlined in Section 2.5.1. A different batch of the sample from that used for the 

neutron tof diffraction studies was used for the XRPD data collections. The sample 

was sealed under ~300 mbar He in 6 different 0.5-mm diameter special glass 

capillaries for experiments at ambient and variable temperature. Different 

capillaries of the same sample were used for data collection at different 

temperatures after applying different cooling protocols. 

An X-ray wavelength of ɉ = 0.39996(4) Å (E = 31 keV) was used, and the 

horizontal beamwidth was set to ~1 mm to minimise the area of each capillary 

exposed to the X-ray beam. The position of the capillary was moved horizontally by 

~2 mm for each collected dataset to minimise sample changes due to X-ray 

illumination. During the translation of the capillary, the radiation shutter was kept 

closed, to monitor the exposure time for each scan. Different numbers of scans 

were collected, over different angular ranges of ʹɅ and with the detector arm 
moving at 10°/min, depending on the data collection temperature, the applied 

cooling protocol and the degree of X-ray illumination-induced changes. Datasets 

were binned with a step size of 0.002° in ʹɅ. In the following sections, information 

on the experimental methods that were employed at different temperatures and 

cooling protocols are given, together with the structural results. 

5.3.2 Cs4O6 at ambient temperature 

Fourteen scans from 14 different positions of the same capillary were collected over an angular range of ʹɅ = Ͳ−ʹͲ° at ambient temperature, with a ʹ 
minute exposure time for each scan (with the detector arm moving at 10°/min), 
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using a capillary designated as number 6. These fourteen XRPD profiles of Cs4O6 

are shown in Figure 5.22. 

 

Figure 5.22 XRPD profiles of Cs4O6 collected from fourteen different positions of the same 
capillary at ambient temperature. Each single profile was collected with a 2 minute 
illumination time. Intensities are offset for clarity. The red, black and green tickmarks 
represent the cubic Cs4O6, cubic CsO2 and tetragonal CsO2 phases, respectively. The inset 
shows an expanded view focusing on the cubic (310) Bragg peak (ɉ = 0.39996(4) Å).  

Visual examination of the XRPD profiles of Cs4O6 at ambient temperature 

confirms that the majority phase can be indexed by a cubic space group, IͶ̅3d. Two 

impurity phases were also detected: cubic CsO2 (space group Fm͵̅m) and 

tetragonal CsO2 (space group I4/mmm). The inset in Figure 5.22 focusing on the 

cubic (310) peak demonstrates that even though the position of the capillary was 

moved horizontally by ~2 mm for each collected profile, X-ray illumination-

induced changes are still occuring. Therefore, to extract details in smaller time 

intervals, for the first profile which was illuminated by X-ray light for 120 s, the 

nine sub-profiles collected by the nine individual detectors (D0 to D8) of the 

diffractometer were examined (Figure 5.23). Due to sensitivity issues with 

detector 5, this was excluded in the subsequent treatment and analysis of the data.  
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Figure 5.23 XRPD profiles of Cs4O6 collected by each individual detector (from bottom to 
top: D8, 7, 6, 5, 4, 3, 2, 1 and 0, respectively) at the same position of capillary at ambient 
temperature. Intensities are offset for clarity. The red, black and green tickmarks 
represent the cubic Cs4O6, cubic CsO2 and tetragonal CsO2 phases, respectively. The 
asterisk labels the pattern collected at D5 that was subsequently excluded from further 
analysis. Insets show the evolution of the cubic (310) Bragg peak (ɉ = 0.39996(4) Å) with 
X-ray illumination time.  

The insets in Figure 5.23 focusing on the cubic (310) peak demonstrate that 

the valence disordered phase of Cs4O6 is extremely sensitive to illumination by X-

rays, as it is evident from peak broadening and shifts to lower angles. For a 

quantitative examination, the full-width-at-half-maximum (FWHM) and d-spacing 

of the cubic (310) reflection from each profile were extracted in the angular range 

between 7.32° and 7.38°. The angular region of ʹɅ ζ 7.38° was fully covered by 

detectors D7 to D0 (Table 5.6). As the detector arm moves 1°/6 s and the angular 

difference of detectors are 2°, the angular region: ʹɅ ζ 7.38° was illuminated for 

92 s over the whole experiment. 
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Table 5.6 ʹɅ positions of individual detectors at a given time within a ͳʹͲ s illumination 
time of a single scan.  

                                            Time (s) 0 12 24 36 48 60 72 84 96 108 120 

ʹɅȋ°Ȍ 

D0 -8 -6 -4 -2 0 2 4 6 8 10 12 
D1 -6 -4 -2 0 2 4 6 8 10 12 14 
D2 -4 -2 0 2 4 6 8 10 12 14 16 
D3 -2 0 2 4 6 8 10 12 14 16 18 
D4 0 2 4 6 8 10 12 14 16 18 20 
D5 2 4 6 8 10 12 14 16 18 20 22 
D6 4 6 8 10 12 14 16 18 20 22 24 
D7 6 8 10 12 14 16 18 20 22 24 26 
D8 8 10 12 14 16 18 20 22 24 26 28 

Even a brief 92 s illumination by X-ray light leads to significant broadening and 

shift of the cubic (310) peak (Figure 5.24).  

 

Figure 5.24 Left panel: The variation of the full-width-at-half-maximum (FWHM) for the 
(310) reflection of cubic Cs4O6 with X-ray illumination time. Right panel: Evolution with 
increasing X-ray illumination time of the lattice constant of cubic Cs4O6.  

Although the structure remains cubic upon increasing illumination time, the Bragg 

reflections of the cubic phase broaden and shift to lower angles (lattice expansion). 

The observed peak broadening can occur in the presence of a distribution of lattice 

parameters: this in turn corresponds to the presence of inhomogeneous strain. 

Absorption of X-ray photons can produce photo-excited domains of different sizes 

embedded in the already existing parent cubic phase. This process can occur 

locally and give rise to inhomogeneous strain, and can be thought of as a phase 

segregation process through the formation of photo-converted domains with a 
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local structure different from that of the average bulk cubic structure. The 

observed lattice expansion in early times of illumination could be tentatively 

attributed to thermal effects induced by the X-ray light. 

5.3.3 Rapid cooling of Cs4O6 

Rapid cooling of the sample (capillary number 4) was achieved by 

introducing the capillary in a continuous-flow He cryostat directly at 100 K. This 

was followed by cooling to 10 K within 30 min. The procedure for the collection of 

XRPD profiles is given in Table 5.7. Due to experimental issues associated with 

data collection for scans 2, 3, 8, 9 and 10, corresponding data were not included in 

the following analysis. 

Table 5.7 Data collection procedure for the sample rapidly cooled to 10 K (capillary no: 4). 

scan # Angular range (°) Position (POS) Exposure time 

1 0-10 POS-1 60 s per scan 

4 to 7 0-10 POS-1 60 s per scan 

11 to 12 5-25 POS-2 120 s per scan 

13 to 14 5-25 POS-3 120 s per scan 

Visual examination of the XRPD profiles collected at POS-1, POS-2 and POS-3 after 

rapid cooling to 10 K revealed that the high-symmetry cubic Cs4O6 is retained, and 

no reflections of any impurity phase are present (Figure 5.25). The inset in Figure 

5.25 shows the evolution of the cubic (310) peak with X-ray illumination time and 

demonstrates that the cubic phase is still sensitive to the X-ray light at 10 K, as 

peak broadenings and shifts to lower angles are still present. For scans collected at 

POS-1, the angular range of ʹɅ ζ 7.46 was covered by detectors 7, 6, 5, 4 and 3, 

and for scans collected at POS-2 and POS-3, this angular region was covered by 

detectors 4, 3, 2, 1 and 0. Therefore cumulative illumination times for this angular 

region are 297 s at POS-1, and 183 s at POS-2 and POS-3, respectively. 
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Figure 5.25 XRPD profiles collected at different positions of the capillary: POS-1, POS-2 
and POS-3 (see table Table 5.7 for details) after rapid cooling to 10 K. Red tickmarks 
represent the reflection positions of cubic Cs4O6 (ɉ = 0.39996(4) Å). Inset shows the 
evolution of the (310) reflection of cubic Cs4O6 with X-ray illumination at POS-1, POS-2 and 
POS-3. Intensities are offset for clarity. 

We have also examined the individual profiles collected with each individual 

detector for scans 1, 4, 5, 6 and 7. For a 60 s exposure time, 6 sub-profiles, which 

were collected with detectors D8, 7, 6, 5, 4 and 3 are shown in Figure 5.26. Indeed, 

X-ray illumination-induced effects were clearly apparent at 10 K but the observed 

changes in the profiles - peak broadening and shifts to lower angles – were not as 

pronounced as at room temperature (Figure 5.27). Examination of the FWHM 

values and the lattice parameters of the cubic phase both at room temperature and 

at 10 K after fast cooling reveals that the effect of the X-ray beam is significantly 

reduced at low temperatures.  
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Figure 5.26 XRPD profiles of Cs4O6 collected at POS-1 with individual detectors after rapid 
cooling to 10 K. Profiles from bottom to top for each set of scans are collected with 
detectors 8, 7, 6, 5, 4 and 3, respectively. Inset shows the evolution of the (310) reflection 
of cubic Cs4O6 with X-ray illumination time over an angular range of ʹɅ ζ 7.46°. Red 
tickmarks represent the reflection positions of cubic Cs4O6 (ɉ = 0.39996(4) Å). Intensities 
are offset for clarity. 

 

Figure 5.27 Left panel: Variation of the FWHM of the (310) reflection of cubic Cs4O6 with X-
ray illumination time at room temperature (red circles) and at 10 K after rapid cooling 
(black circles). Right panel: Time evolution of the lattice constant of cubic Cs4O6 at room 
temperature (red circles) and at 10 K after fast cooling (black circles).  
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5.3.4 Slow cooling of Cs4O6 

Slow cooling of the Cs4O6 sample (capillary number 2) was achieved by initial 

cooling to 180 K, followed by a 4-h dwelling period at this temperature in order to 

maximize the cubic-to-tetragonal structural transformation. This was then 

followed by cooling to 10 K within a 30-min period. A partial transformation from 

cubic to tetragonal Cs4O6 was observed after this procedure, as expected. To search 

for the existence of X-ray illumination-induced changes on the tetragonal phase, 

eight scans were collected at each of three different positions of the capillary, POS-

1, POS-2 and POS-3 (~2 mm distance between each POS), over an angular range of ʹɅ = ͷ−ʹͲ°, with a ͻͲ s illumination time for each scan. The data collection 

protocol is summarized in Table 5.8.  

Table 5.8 Data collection procedure for the sample slowly cooled to 10 K (capillary no: 2).  

scan # Angular range (°) Position (POS) Illumination time (s) 

12 to 19 5-20 POS-1 90 s per scan 

21 to 28 5-20 POS-2 90 s per scan 

29 to 36 5-20 POS-3 90 s per scan 

In order to improve the statistics of datasets collected with individual detectors, 

scans collected at different positions (POS-1, 2 and 3) along the capillary at the 

same illumination time were summed together (Table 5.9). 

Table 5.9 Summing details of different scans collected at different positions along the 
Cs4O6 capillary at 10 K after slow cooling.  

Sum of scan comment 

12, 21, 29 1st set of scans at each POS, designated as scan A 

13, 22, 30 2nd set of scans at each POS, designated as scan B 

14, 23, 31 3rd set of scans at each POS, designated as scan C 

15, 24, 32 4th set of scans at each POS, designated as scan D 

The time evolution of the XRPD profiles (Figure 5.28) collected after slow 

cooling to 10 K was investigated by examining the individual profiles collected 

with each detector of the triply-summed scans (summing details given in Table 

5.9). An immediate feature of the datasets collected at 10 K with increasing 

exposure time is that X-ray illumination leads to an extremely fast transformation 

from tetragonal to cubic Cs4O6.  
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Figure 5.28 Time evolution of XRPD profiles collected after slow cooling to 10 K. Red, blue 
and green tickmarks represent the reflection positions of cubic and tetragonal Cs4O6, and 
the impurity tetragonal CsO2 phase, respectively (ɉ = 0.39996(4) Å). Individual profiles are 
offset for clarity. The five XRPD profiles from bottom to top in the four set of scans are 
collected with D4, D3, D2, D1 and D0, respectively. 

Rietveld analysis of the diffraction profiles was then undertaken. Only the 

first 4 scans collected from different positions of the capillary were included in the 

analysis as the following XRPD profiles were only indexed with cubic Cs4O6 and 

impurity CsO2, and also due to the significant broadenings and shifts of the cubic 

Bragg peaks, Rietveld refinements could not proceed smoothly. The angular region: ʹɅ = ͷ°−ͻ°, where the most intense tetragonal peaks appear ȋFigure 5.28), 

was included in the refinements. This region is fully covered by detectors 0, 1, 2, 3, 

and 4 (Table 5.10). 

Table 5.10 ʹɅ positions of individual detectors in the angular range of ʹɅ = ͷ°−ͻ°, with 
corresponding illumination times. 

                                 Time (s) 0 6 12 18 24 30 36 42 48 54 60 66 72 

ʹɅ(°) 

D0 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

D1 -1 0 1 2 3 4 5 6 7 8 9 10 11 

D2 1 2 3 4 5 6 7 8 9 10 11 12 13 

D3 3 4 5 6 7 8 9 10 11 2 13 14 15 

D4 5 6 7 8 9 10 11 12 13 14 15 16 17 



 

219 
 

Table 5.11 X-ray illumination time ranges for individual scans and profiles collected by 
individual detectors (i.e. D4-profile) over an angular range of ʹɅ = ͷ°−ͻ° at 10 K after slow 
cooling. The scans were collected from different positions of the capillary. 

 t (s) for scan A t (s) for scan B t (s) for scan C t (s) for scan D 

D4-profile 0-24 90-114 180-204 270-294 

D3-profile 12-36 102-126 192-216 282-306 

D2-profile 24-48 114-138 204-228 294-318 

D1-profile 36-60 126-150 216-240 306-330 

D0-profile 48-72 138-162 228-252 318-342 

We now move to the details of Rietveld analysis. Three crystallographic 

phases were included in the model: cubic (space group IͶ̅3d) and tetragonal (space 

group IͶ̅2d) Cs4O6 as major phases and a minority tetragonal CsO2 (I4/mmm) 

phase. A pseudo-Voigt profile function was used (continuous wavelength profile function Ǯ͵Ǯ in GSASȌ; profile shape coefficients GU, GV, GW, LX and LY were allowed 

to refine for the major phases.  Low-angle peak asymmetry from axial divergence 

was modelled with coefficients S/L = 0.00154, H/L = 0.00077 [173]. A Chebyschev 

polynomial function (~20 terms) was used to fit the background. Consecutive 

cycles of improving profile shape coefficients with intermediate refinements of 

zero point and background were applied. The lattice parameters and scale factors 

of the crystallographic phases were also refined. The anomalous contributions to 

the X-ray form factors of oxygen (in e/atom): fǯ = −Ͳ.ͲͲʹ, fǯǯ = 0.002 and of caesium: 

fǯ = −ͳ.ͻʹͳ, fǯǯ = 0.758 were included [174]. A cylindrical absorption correction, Ɋr ɉ⁄ = ͳ.Ͳʹͷ, was applied ȋlinear absorption correction, Ɋ = 16.44 cm−1). 

Thermal displacement parameters for all atoms in the majority phases were 

modelled as isotropic and refined. As X-rays do not allow accurate refinement of 

the positions for light elements, the O−O bond lengths were restrained at the 
following values: O−O = 1.31 Å for cubic Cs4O6, and Oͳ−Oͳ = 1.53 Å (indicating the 

bond distance in O2ʹ−) and Oʹ−Oʹ = 1.35 Å (indicating the bond distance in O2−) for 

tetragonal Cs4O6, as determined by the neutron tof diffraction studies at 10 K after 

rapid cooling and ultra-slow cooling, respectively. The fractional atomic 

coordinates of caesium and oxygen were allowed to refine using a 0.005 tolerance 

and a weight of 10 on the bond length restraints. The occupancies of the Cs and O 

in both major phases were kept at 1. Representative Rietveld fits of the 10 K XRPD 
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data collected within X-ray illumination times of 0-24 s, 138-162 s and 318-342 s 

and corresponding structural parameters obtained from the Rietveld analysis are 

shown in Figure 5.29 and Table 5.12, respectively. 

 

Figure 5.29 Rietveld refinements of the synchrotron XRPD data of Cs4O6 collected at 10 K 
after slow cooling (ɉ = 0.39996(4) Å). Red circles, blue lines and green lines represent the 
observed, calculated and difference profiles, respectively. From bottom to top data were 
collected within X-ray illumination times of 0-24 s, 138-162 s and 318-342 s, respectively. 
The red, blue and green tickmarks show the reflection positions of the cubic and 
tetragonal Cs4O6 and the impurity CsO2 phases, respectively. 
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Table 5.12 Refined structural parameters for the cubic and tetragonal Cs4O6 phases from 
the Rietveld fits to XRPD data collected at 10 K after slow cooling and within X-ray 
illumination times of 0-24 s (Rwp = 19.2%, Rexp = 17.6%), 138-162 s (Rwp = 20.5%, Rexp = 
18.3%) and 318-342 s (Rwp = 22.8%, Rexp = 18.8%). Values in parentheses are estimated 
errors from the least-squares fitting. Fractions of co-existing impurity CsO2 (Fm͵̅m) phase 
within X-ray illumination times of 0-24 s, 138-162 s and 318-342 s are found as 12.3(2), 
12.7(2) and 11.6(3)%, respectively.  

Time (s) 0-24  138-162 318-342 

Symmetry         
Space group          
(wt. %) 

Cubic     
IͶ̅3d 

(16.7(2))  

Tetragonal           
IͶ̅2d 

(71.83(2))  

Cubic     
IͶ̅3d 

(20.6(2)) 

Tetragonal  
IͶ̅2d 

(62.9(2))  

Cubic               
IͶ̅3d      

(88.55(7))  

a (Å) 9.7451(1) 9.2002(6) 9.7456(1) 9.631 (1) 9.7591(1) 

c (Å) - 10.828(1) - 9.967(3) - 

V (Å3) 925.45(4) 916.5(1) 927.03(4) 925.5(2) 929.46(3) 

Cs 

Wyckoff site 16c 16e 16c 16e 16c 

x/a 0.9460(4) 0.302(1) 0.9457(6) 0.296(1) 0.9469(2) 

y/b - 0.051(1) - 0.053(1) - 

z/c - 0.046(1) - 0.040(2) - 

Uiso (Å2) 0.025(3) 0.049(2) 0.025 0.031(3) 0.042(1) 

O(1) 

Wyckoff site 24d 8c 24d 8c 24d 

x/a 0.55778(9) 0 0.55779(9) 0 0.55788(9) 

y/b 0 0 0 0 0 

z/c 0.75 0.06972(8) 0.75 0.07442(9) 0.75 

O(2) 

Wyckoff site - 16e - 16e - 

x/a - 0.359(9) - 0.333(6) - 

y/b - 0.76(1) - 0.73(1) - 

z/c - 0.187(1) - 0.190(3) - 

After slow-cooling to 10 K, Cs4O6 had partially transformed to the tetragonal 

phase: at this temperature within 0-24 s exposure to X-ray light, the weight 

fractions of the cubic and tetragonal Cs4O6 phases and of the CsO2 impurity were 

16.7(2), 71.83(2) and 12.3(2)%, respectively. The response of the majority 

tetragonal Cs4O6 phase to continued X-ray illumination is very pronounced. The tetragonal Bragg peaks disappear after ~ͷ min of illumination − within an X-ray 

illumination time range of  318-342 s, the phase fractions of the co-existing cubic 

Cs4O6 and impurity CsO2 are 88.55(7) and 11.6(3)%, respectively.  
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Examination of Figure 5.30 and Figure 5.31 reveals that there are three 

regimes in the structural response of tetragonal Cs4O6 to X-ray illumination. As 

seen in Figure 5.31 (a), the tetragonal-to-cubic transformation-time curve adopts a characteristic ǮS-shapeǯ. The first regime manifests itself in the incubation time 

period, t0. During t0, within a ~2 min of illumination, all diffraction peaks 

associated with the valence-ordered tetragonal phase continuously broaden and 

anisotropically shift evidencing the occurrence of an anisotropic expansion (Figure 

5.31 (c). In contrast, the Bragg reflections of the minority cubic phase are barely 

affected during this period. These broadenings and shifts could be attributed to the 

formation of photoexcited valence-disordered domains whose size rapidly grows 

with X-ray illumination time; however, in this incubation period, there are no 

indications of the occurrence of a structural transformation involving the bulk of 

the sample. These X-ray induced effects happening within t0 can be described as a 

process of phase segregation through the formation of local valence-disordered 

domains within the tetragonal phase with a local structure different from that of 

the average tetragonal structure. 

Following this incubation period, in the intermediate regime, the percolation 

threshold is reached, the fraction and size of the photo-converted valence-

disordered domains increase rapidly at the expense of the valence-ordered phase 

leading to a first-order phase transformation to the bulk cubic phase through the 

rearrangements of the dioxygen units. In this regime, therefore, the fraction of the 

cubic phase grows rapidly with time. All these changes are clearly reflected in the 

time evolution of the diffraction profiles (Figure 5.28 and Figure 5.30): the Bragg 

reflections of the tetragonal phase begin to merge with those of the cubic and 

hence diminish in intensity very rapidly while those of the cubic phase grow.  

 



 

223 
 

 

Figure 5.30 Evolution of the tetragonal (202), (103), (220), (301) and (310) Bragg peaks 
(labelled by their (hkl) Miller indices, blue tickmarks) of Cs4O6 with X-ray illumination 
time collected at 10 K after slow cooling. Red tickmarks depict the cubic (220) and (310) 
Bragg peaks. Diffraction profiles in blue, dark pink and red colour represent the initial 
regime within the incubation time period where strong peak broadenings are observed, 
the intermediate regime where the percolation threshold is reached and a phase 
transformation to the bulk cubic phase sets in, and the final regime where the bulk 
transformation is essentially complete. 

Toward the end of the transformation, the conversion rate is slow and eventually 

the bulk transformation is essentially complete within an additional ~3 min of X-

ray illumination, leaving only cubic Cs4O6 together with the impurity CsO2 (phase 

fractions within an illumination time of 270-294 s are 88.27(7) and 11.7(2)%, 

respectively). Upon increasing X-ray illumination time, the tetragonal structure 

expands (Figure 5.31 (b)) anisotropically with the tetragonal a lattice constant 

increase accompanied by a decrease in c (Figure 5.31 (c), (d)). 
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Figure 5.31 Time evolution of the structural parameters extracted from Rietveld analysis 
of XRPD data collected at 10 K after slow cooling: (a) phase fractions, (b) unit cell volumes 
and (c) lattice constants of the cubic (red circles) and tetragonal Cs4O6 (blue circles) 
phases, and (d) tetragonal distortion, c/a, in tetragonal Cs4O6. Green circles represent the 
impurity CsO2 phase. Solid lines are guides to the eye.  

In the course of this, in the cubic phase, aside from rapid growth in intensity 

of the diffraction peaks, very small peak shifts to lower angles are observed. This 

small lattice expansion was also observed at room temperature and at 10 K after 

rapid cooling, and attributed to structural rearrangement effects caused by the X-

ray light: this was found to be accompanied by pronounced peak broadenings 

signifying the development of significant structural inhomogeneities. In sharp 

contrast, this time, pronounced broadenings of the cubic peaks are not observed. 

Figure 5.32 shows the time evolution of the isolated cubic (321) Bragg peak. In the 

presence of the tetragonal phase (majority phase), the cubic peaks are hardly 

affected by the X-ray light as essentially there is no change in the peak linewidths 

with illumination time within error (Figure 5.33) consistent with a photo-induced 

phase transition in the bulk.  
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Figure 5.32 Evolution of the cubic (321) Bragg peak of Cs4O6 with X-ray illumination time 
at 10 K after slow cooling.  

 

Figure 5.33 The variation of the full-width-at-half-maximum (FWHM) for the (321) 
reflection of cubic Cs4O6 with X-ray illumination time at 10 K after slow cooling. 

5.3.5 Discussion 

Illumination of matter by light can induce electronic excitations thanks to the 

existence of photo-excited atomic or molecular units, and lead to photo-induced 

transitions via some cooperative structural rearrangements. Photo-converted new 

structures can exhibit different electronic and/or magnetic properties [234], [235]. 

For instance, inter-valence electron transfer in mixed-valence metal cyanides (i.e. 

Prussian blue analogues) [236]–[239] and spin transitions in Fe-based spin 

crossover complexes [240] can be induced reversibly through illumination by 

visible, UV or X-ray light. We recall some key examples of X-ray light-induced 

transitions: in one of the mixed valence Prussian blue analogues, 

Rb1.8Co4[Fe(CN)6]3.3·13H2O, metal-to-metal charge transfer was induced by X-ray 
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light at low temperatures mediated by a phase transformation [241]. Such a 

sensitivity to X-ray light with an interconversion between the ground and excited 

states, accompanied by a variety of internal charge-transfer processes and spin 

transitions through phase transformations was also reported in cubic mixed 

valence Rb0.7MnII1.15[FeIII(CN)6]·2H2O [239]. In another member of the cubic mixed 

valence Prussian blue analogue CsFeII[CrIII(CN)6], an abrupt isosymmetric phase 

transition through FeII spin transitions from the high spin to the low spin 

configuration was also triggered by X-ray light illumination [240]. All the materials 

summarized above contain electronically-active d-electrons, which have been 

widely studied and are typically well understood. However, experimental 

investigations of effects of X-ray light illumination on p-electron-based structural, 

electronic and magnetic properties are much rarer. This is mostly due to the 

limited number of examples of such materials. In this study, we have 

experimentally investigated X-ray light-induced structural changes of the p-

electron mixed valence system Cs4O6 and reported an abrupt X-ray light-induced 

structural transition from tetragonal to cubic Cs4O6, accompanied by charge 

transition. 

Interestingly, the process of this X-ray illumination induced valence order-

disorder transition in the Cs4O6 analogue is reminiscent of that reported for the 

Prussian blue analogues, Rb0.7MnII1.15[FeIII(CN)6]·2H2O [239] and CsFeII[CrIII(CN)6] 

[240]. In tetragonal Cs4O6 and these two cubic Prussian blue analogues, during the 

incubation time period, pronounced broadenings and shifts of the diffraction peaks 

were observed even though the associated phase conserves its structure as it is 

upon illumination. These X-ray induced effects before the bulk transition takes 

place, as in the present study, were attributed to a phase segregation process 

through the formation of photo-converted units [239], [240]. In Cs4O6 and in these 

Prussian blue analogues, a cooperative first-order phase transformation has been 

abruptly triggered as soon as the percolation threshold was exceeded and the 

phase transformations were accompanied by charge and/or spin transitions. These 

X-ray light-induced transitions in the Prussian blue analogues resulted in large 

lattice contraction: this was attributed to strong coupling between the spin and 

lattice degrees of freedom (strong electron–phonon coupling). Previous theoretical 

and experimental investigations of Rb4O6 and Cs4O6 analogues [100], [103], [106] 
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have proposed the importance of electron-electron correlations, and the presence 

of strong coupling between the charge, orbital and spin degrees of freedom in this 

open-shell p-electron systems which are proposed to be magnetically-frustrated 

insulators and to behave like other correlated 3d- or 4f-electron systems. As the 

magnetic properties of the temperature- and photo-induced tetragonal and cubic 

phases have not been probed in the present diffraction experiments, we can only 

propose that there could be a coupling between the charge and lattice degrees of 

freedom in this molecular solid. 

5.3.6 Summary of temperature- and X-ray illumination-induced valence 

disorder-order transition  

Our X-ray diffraction studies at ambient pressure have revealed 

that manipulation of the sesquioxide Cs4O6 by X-ray light can induce significant 

structural changes. At room temperature, while the structure remains cubic, X-ray 

illumination has led to broadenings and shifts of the cubic Bragg peaks but no 

structural transformation was observed in the bulk. The high-temperature cubic 

phase partially survives at 10 K upon quenching, while slow cooling to 10 K has 

resulted in the appearance of the tetragonal phase as the major component.  

Tetragonal Cs4O6 is extremely sensitive to X-ray radiation at 10 K: after a ~5 min of 

exposure of the slowly cooled sample to the X-ray beam has resulted in the reverse 

tetragonal-to-cubic transformation.  

This transformation develops in time through two processes. The first 

process manifests itself within a ~2 min of incubation time with a progressive 

increase in the width of the tetragonal Bragg peaks and an anisotropic change in 

the tetragonal unit cell dimensions. The second process manifests itself in the intermediate region of the ǮS-shapedǯ transformation-time curve with a first-order 

phase transformation to the valence-disordered cubic phase. In this region, the 

transformation occurs in the bulk, the Bragg reflections of the cubic phase grow in 

intensity at the full expense of those of the tetragonal phase with an additional ~3 

min of exposure. 
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5.4 Pressure-induced valence order-disorder transitions  

In the following sections, the structural characterisation of Cs4O6 under high 

pressure at both room temperature and 13.4 K is described.  

5.4.1 Experimental procedures 

High-pressure synchrotron XRPD measurements were undertaken at 13.4 K 

and at room temperature with the diffractometer on beamline BL10XU, SPring-8, 

Japan.  The overall setup of the beamline, experimental and 2D image integration 

details were provided in Section 2.5.2. The powdered sample was loaded in a 

helium-gas-driven membrane diamond anvil cell (MDAC), which was equipped 

with a stainless steel gasket and placed in a closed-cycle-helium refrigerator. All 

sample manipulations were carried out within the inert atmosphere of an argon 

glove-box (H2O and O2 < 0.1 ppm). The diameter of the diamond culet was ͷͲͲ Ɋm, 
and the powdered sample was introduced in a hole made in the stainless steel 

gasket of ͳͲͲ Ɋm depth and ʹͲͲ Ɋm in diameter. (elium gas in the MDAC was used 
as a pressure medium. The applied pressure was increased by controlling the He 

gas pressure at the membrane of the MDAC, and was measured with the ruby 

fluorescence method. The diffraction patterns were collected using a 

monochromatic X-ray beam with a slit size of 50 and ʹͲ Ɋm for the data collection 

at room and low temperature, respectively, with a wavelength of ɉ = 0.41325(5) Å. 

Images were collected using a flat image plate detector. The beam spot size for the 

data collection was 20 Ɋm and the illumination time was limited to 5 s, due to 

beam sensitivity.  

With the knowledge that the Cs4O6 sample is extremely sensitive to the X-ray 

beam, data collection at each pressure was undertaken both at a fresh position and 

at a consecutively exposed position of the sample, in order to inspect any possible 

X-ray illumination-induced structural changes. The distance between each fresh 

position was approximately 20 Ɋm.  

5.4.2 High-pressure room temperature diffraction experiments 

High-pressure synchrotron X-ray powder diffraction data were collected at 

room temperature at pressures between 0.5 and 9.9 GPa. While 4 datasets were 

collected at the same position of the sample on increasing pressure up to 1.7 GPa, 
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the MDAC was moved by ~20 Ɋm upon further change in pressure. Six datasets 

were thus collected at fresh positions. The pressure evolution of the XRPD profiles 

is shown in Figure 5.34. 

 

Figure 5.34 The evolution of synchrotron XRPD profiles with pressure at room 
temperature (ɉ = 0.41325(5) Å). The profiles are offset and the background contribution is 
subtracted for clarity. Red, blue and black tickmarks represent the reflection positions of 
the cubic and tetragonal Cs4O6 and impurity CsO2 phases, respectively. The 3 dotted lines 
from left to right mark the positions of the tetragonal (112), cubic (211) and tetragonal 
(211) Bragg peaks. 

Inspection of the XRPD profiles confirms that the patterns can be indexed 

with a cubic cell (IͶ̅3d) up to a pressure of 1 GPa. The presence of an impurity 

cubic superoxide CsO2 (space group Fm͵̅m) phase is also confirmed. Further 

pressurisation led to the emergence of the tetragonal phase (space group IͶ̅2d). 

Visual examination of the profiles revealed that, at pressures between 1 and 4 GPa, 

the tetragonal phase grew in intensity, reaching a maximum fraction at ~4 GPa 

that did not increase upon further pressurisation to 9.9 GPa. The cubic-to-

tetragonal conversion is almost complete as it is evident from the very weak 

intensity of the remaining cubic (211) peak, discernible as a shoulder of the 

tetragonal (211) Bragg reflection (Figure 5.34, red dotted line). 
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5.4.3 High-pressure low temperature diffraction experiments 

Slow cooling of the sample was achieved by initially cooling to 180 K in the 

cryostat and dwelling there for 4 hours, to maximize the cubic-to-tetragonal 

structural transition. This was then followed by cooling to 13.4 K within 30 min. To 

examine the effects of both X-ray illumination and pressure on the structure, XRPD 

data were collected at both fresh positions and a consecutively exposed position 

(POS-1) on pressurising between 0.6 and 11.7 GPa. Figure 5.35 demonstrates the 

difference in the pressure evolution of the diffraction profiles collected at fresh 

positions and at POS-1.  

 

Figure 5.35 Pressure evolution of the synchrotron X-ray powder diffraction data collected 
at 13.4 K. Right panels are expanded views of the left panels. Diffraction profiles in black 
and red colour represent the profiles collected at fresh positions and at a continuously 
exposed position (POS-1), respectively. Red and blue dotted lines depict the reflection 
positions of the cubic and tetragonal Cs4O6 phases, respectively. Selected observed Bragg 
peaks are labelled by their (hkl) Miller indices with the same tickmark colours.  

The data collected at POS-1 show that the temperature-induced cubic-to-

tetragonal transition was reversed by X-ray illumination at pressures between 0.6 

and 1.2 GPa, as evidenced from an increase in the intensity of the Bragg reflections 
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of the cubic phase. However on further pressurization, the X-ray-induced 

structural changes were partially suppressed by the applied pressure, resulting in 

a cubic-to-tetragonal transition. It is evident that X-ray illumination retards the 

transition from cubic to tetragonal structure, as seen in Figure 5.35: the XRPD data 

collected at fresh positions at each pressure (shown in black colour) are 

characterized by more intense Bragg reflections of the tetragonal phase than those 

collected at POS-1 (in red colour).  

5.4.4 Structural results and compressibility behaviour at high pressures 

Rietveld analysis was undertaken of the synchrotron XRPD data (fresh 

sample positions) collected at room temperature and 13.4 K upon pressurisation. 

The structural model employed was identical to that used to model the ambient 

pressure XRPD data given in section 5.3.4. The low-angle peak asymmetry from 

axial divergence was modelled here with coefficients S/L = 0.001 and H/L = 0.0005 

[173]. Fitting of the background was achieved using a 15-term Chebyschev 

polynomial function. Consecutive cycles of improving profile shape coefficients in 

steps with intermediate refinements of zero point and background function were 

employed. The lattice parameters and scale factors of all three crystallographic 

phases present were refined up to ~3 GPa. However, significant pressure-induced 

peak broadening resulted in an almost complete loss of the intensity of the CsO2 

impurity peaks above ~3 GPa and the CsO2 phase was thereafter excluded from the 

refinements. Thermal displacement factors were modelled as isotropic, were only 

refined at the lowest pressure and were fixed to these values at all elevated 

pressures. The anomalous contributions to the X-ray form factors of oxygen 

(fǯ = −Ͳ.ͲͲͳ, fǯǯ = 0.002 e/atom) and of caesium (fǯ = −ͳ.ͺͳͲ, fǯǯ = 0.793 e/atom) 

were included. No absorption correction was used. Representative observed, 

calculated and difference diffraction profiles from Rietveld analysis at selected 

pressures are shown in Figure 5.36. Derived structural parameters at the lowest 

and highest pressure at room temperature and at 13.4 K are summarised in Table 

5.13 and Table 5.14. 
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Figure 5.36 Rietveld refinements of high-pressure synchrotron X-ray powder diffraction data 
collected at room temperature (a) and at 13.4 K (b). Red circles, blue lines and green lines 
represent the observed, calculated and difference profiles, respectively. Red, blue and black 
tickmarks represent the reflection positions of the cubic and tetragonal Cs4O6, and impurity CsO2 
phases, respectively. The fitted background contribution has been subtracted for clarity.  
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Table 5.13 Refined structural parameters for the cubic and tetragonal Cs4O6 phases from 
the Rietveld fits to XRPD data collected at room temperature at 0.5 GPa (Rwp = 4.0%, Rexp = 
0.8%) and at 9.9 GPa (Rwp =4.0%, Rexp = 0.9%). Values in parentheses are estimated errors 
from the least-squares fitting. Fraction of the impurity CsO2 (Fm͵̅m) phase at 0.5 GPa is 
4.6(4)%. CsO2 phase is excluded from the refinements due to an almost complete loss of 
the intensity of Bragg peaks above ~3 GPa. Due to the small phase fraction of the cubic 
Cs4O6 phase above ~4 GPa, the lattice parameters and atomic fractional coordinates were 
not refined, and kept fixed to values found at 3.8 GPa at all elevated previous as given in 
the table for 9.9 GPa. 

Pressure (GPa) 0.5 9.9  

Symmetry, Space group               
(wt. %) 

Cubic, IͶ̅3d     
(95.402(6))  

Cubic, IͶ̅3d 
(6.6(2)) 

Tetragonal, IͶ̅2d 
(93.360(3)) 

a (Å) 9.8102(3) 9.4750 8.4847(4) 

c (Å) - - 10.2717(2) 

V (Å3) 944.13(7) 850.6 739.42(8) 

Cs Wyckoff site 16c 16c 16e 

x/a 0.9413(2) 0.9579 0.3115(3) 

y/b - - 0.0658(4) 

z/c - - 0.0402(3) 

Uiso (Å2) 0.056(2) 0.056 0.029 

O(1) Wyckoff site 24d 24d 8c 

x/a 0.5577(4) 0.5539 0 

y/b 0 0 0 

z/c 0.75 0.75 0.0745(4) 

O(2) Wyckoff site -  - 16e 

x/a -  - 0.371(2) 

y/b -  - 0.789(2) 

z/c -  - 0.183(1) 
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Table 5.14 Refined structural parameters for the cubic and tetragonal Cs4O6 phases from 
the Rietveld fits to XRPD data collected at 13.4 K at 0.6 GPa (Rwp = 1.3%, Rexp = 2.1%) and 
11.7 GPa (Rwp = 2.5%, Rexp = 1.5%). Values in parentheses are estimated errors from the 
least-squares fitting. Fraction of co-existing impurity CsO2 (Fm͵̅m) phase at 0.6 GPa is 
6.6(4)%. Atomic fractional coordinates of the tetragonal Cs4O6 phase were only refined for 
P ζ ͵.͸ GPa, above that they were fixed to values found at ͵.͸ GPa as given in the table for 
11.7 GPa. 

Pressure (GPa) 0.6 11.7 

Symmetry, Space 
group, (wt. %)                  

Cubic, IͶ̅3d 
(51.098(8))  

Tetragonal, IͶ̅2d 
(42.29(2)) 

Cubic, IͶ̅3d 
(28.8(3)) 

Tetragonal, 
IͶ̅2d (71.23(1)) 

a (Å) 9.69782(8) 9.077(1) 8.982(1) 8.3283(8) 

c (Å) - 10.791(2) - 10.230(1) 

V (Å3) 912.06(2) 889.1(3) 724.7(3) 709.5(2) 

Cs Wyckoff site 16c 16e 16c 16e 

x/a 0.9446(1) 0.3039(4) 0.9407(9) 0.3093 

y/b - 0.0488(6) - 0.0657 

z/c - 0.0506(3) - 0.0409 

Uiso (Å2) 0.029(3) 0.026(2) 0.029 0.026 

O(1) Wyckoff site 24d 8c 24d 8c 

x/a 0.55746(5) - 0.5523(1) - 

y/b - - 0 - 

z/c 0.75 0.07142(4) 0.75 0.07214 

O(2) Wyckoff site - 16e - 16e 

x/a - 0.419(3) - 0.424 

y/b - 0.748(3) - 0.763 

z/c - 0.18773(8) - 0.188 

The evolution of the phase fractions with pressure at both temperatures is 

given in Figure 5.37. At room temperature, the structural conversion from cubic to 

tetragonal Cs4O6 starts at 1 GPa and is complete at ~4 GPa, with only ~4% of the 

cubic phase remaining. On the other hand, the pressure dependence of the phase 

fractions at 13.4 K shows that the pressure-induced cubic-to-tetragonal transition 

occurs gradually between 0.6 and ~4 GPa but at a much reduced rate. The weight 

fractions of the cubic and tetragonal phases at 13.4 K and 0.6 GPa were 51.098(8) 

and 42.29(2)%, respectively, finally reaching 73.259(9)% at 7.4 GPa for the 
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tetragonal phase. Whilst almost a complete conversion was achieved at room 

temperature, at low temperature, only ~24% of the cubic phase converted into the 

tetragonal structure. On further pressurisation at 13.4 K, the weight fractions of 

the two phases remained the same (~73%) up to the highest pressure of the 

present experiments. 

 

Figure 5.37 Evolution of the cubic and tetragonal Cs4O6 phase fractions with pressure at 
room temperature (left panel) and at 13.4 K (right panel). Red and blue circles represent 
the cubic and tetragonal phases, respectively. The XRPD datasets were collected at fresh 
positions at each pressure. Solid lines are guides to the eye. The impurity CsO2 phase is 
excluded from the refinements due to an almost complete loss of the intensity of Bragg 
peaks above ~3 GPa; therefore the extracted relative weight fractions of the cubic and 
tetragonal Cs4O6 phases below 3 GPa were rounded to 100. 

Figure 5.38 shows the pressure evolution of the unit cell volumes of the cubic and 

tetragonal Cs4O6, V, together with the results of least-squares fits to the third-order 

Birch-Murnaghan EoS (Equation 2.30). The resulting refined EoS parameters are 

given in Table 5.15.  
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Figure 5.38 Pressure evolution of the unit cell volumes of tetragonal (blue) Cs4O6 at room 
temperature (open blue circles) and at 13.4 K (filled blue circles), and of cubic (red) Cs4O6 

at 13.4 K (filled red circles), together with least-squares fits to the third-order Birch-
Murnaghan EoS (see Table 5.15 for details). Triangles are the unit cell volumes at 300 K 
(open triangles) and at 10 K (solid triangles), taken from the ambient-pressure neutron tof 
powder diffraction studies. Inset shows the pressure evolution of the unit cell volume of 
cubic Cs4O6 at room temperature; the solid line through the data points is a linear fit, 
yielding a value of dV/dP = −͵͹ȋͳȌ Å3 GPa−1 and V0 = 957(2) Å3. 

The volume compressibilities of the cubic and tetragonal phases extracted 

from the Birch-Murnaghan EoS fits to the 13.4 K V(P) data are essentially identical 

within error к = Ͳ.Ͳͷ͵ሺͶሻ and к = Ͳ.Ͳ͸͵ሺͶሻ ��a−ଵ, respectively (Table 5.15). The 

unit cell volumes of the tetragonal phase at room temperature and of the cubic 

phase at 13.4 K show the same response up to the highest pressure of the present 

experiments. Due to the very weak intensity of the cubic (211) peak (discernible as 

a shoulder; Figure 5.34, red dotted line) above ~4 GPa, the unit cell volume of the 

cubic phase could not be extracted from the Rietveld analysis of the XRPD data 

above 4 GPa; therefore, only low-P volume compressibility is extracted at room 

temperature (Figure 5.38, insetȌ. Linear fit to the ǮCubic, V(PȌǯ data, for P < 3, has 

yielded linear average compressibility of 0.038(1) GPa−1. 
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Table 5.15 Details of the third-order Birch-Murnaghan EoS fits to the 13.4 K and room 
temperature V(P) data for cubic and tetragonal Cs4O6. Numbers in parentheses for the K0 

and K0ǯ indicate statistical errors from the least-squares-fitting.  

  K0 (GPa) K0ǯ к = dlnܸ/dܲ (GPa−1) V0  (Å3) 

13.4 K 
Cubic, V(P) 19(2) 7.1(6) 0.053(4) 940(4) 

Tetragonal, V(P) 16(1) 9.7(6) 0.063(4) 913(3) 

RT Tetragonal, V(P) 17(3) 7(1) 0.06(1) 949(7) 

The pressure dependence of the lattice parameters of the tetragonal and cubic 

Cs4O6 phases together with the corresponding EoS fits and results of the EoS fits 

are shown in Figure 5.39 (a) and Table 5.16, respectively.  

 

Figure 5.39 (a): Pressure evolution of the lattice parameters of cubic and tetragonal Cs4O6 

at room temperature (open circles) and at 13.4 K (filled circles). The solid and dashed 
lines through the data points show results from least-squares fits to the modified Birch–
Murnaghan equation for axial compression. For the lattice parameters, the values of Kx and 
Kxǯ are those obtained by fitting to the cubes of the lattice parameters. The zero-pressure 
data points, a0, presented with squares kept at these values in the least-squares-fitting (for 
details see text). Inset shows the variation of the lattice parameter of cubic Cs4O6 at room 
temperature; solid line through the data points is a linear fit, yielding a value of da/dP = −Ͳ.ͳʹ͵ȋʹȌ Å GPa−1 (b): Pressure dependence of the tetragonal distortion, c/a at room 
temperature (open circles) and at 13.4 K (filled circles). The lines through the data points 
are guides to the eye. 
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To determine the axial compressibilities, Kx and Kxǯ ȋx = a, c), a parameterised 

form of the Birch-Murnaghan EoS was used: the individual axes are cubed and fitted as volumes. The value of ǮKxǯ obtained from fitting the lattice parameters in 
this way is related to the zero-pressure axial compressibility by к௫  = ͳ/͵ܭx [242]. 

The zero-pressure data point, a0, of the cubic phase at 13.4 K was derived from the 

Birch-Murnaghan fit to the 13.4 K V(P) data (a0, 13.4K = 9.80(1) Å) and at room 

temperature it was derived from the linear fit to the V(P) data (a0,RT = 9.854(8) Å). 

a0s for the tetragonal phase were extracted using the derived c0 and V0 from the 

EoS; a0,13.4K = 9.19(2) Å, a0,RT = 9.36(3) Å. All a0s for the tetragonal and cubic phases 

were kept fixed at these values in the least-squares-fittings (Table 5.16), only c0 

and axial compressibility parameters were refined, as refinement of the a0 did not 

result in physically meaningful values. 

Table 5.16 Details of the third-order Birch-Murnaghan EoS (modified for axial 
compression) fits to the cubes of the lattice parameters of cubic and tetragonal Cs4O6 at 
room temperature and 13.4 K. Numbers in parentheses for c0, Kx and Kxǯ (x = a, c) indicate 
statistical errors from the least-squares-fitting. For the fixed values of a0 see text above. 

  Kx (GPa) Kxǯ к = ͳ/͵ܭx (GPa−1) a0  (Å) c0 (Å) 

13.4 K cubic, a 19.06(6) 7.0(4) 0.0175(6) 9.80 - 

tetragonal, a 9.7(3) 11.2(5) 0.034(1) 9.19 - 

tetragonal, c 54(3) 3.2(5) 0.0062(3) - 10.817(8) 

RT tetragonal, a 12(1) 7.1(9) 0.028(2) 9.36 - 

tetragonal, c 41(1) 4.9(8) 0.0081(6) - 10.84(1) 

The anisotropic compressibility of the tetragonal structure is quantitatively 

confirmed by the refined EoS parameters and by inspection of Figure 5.39 (b) at 

both 13.4 K and room temperature: the tetragonal phase is least compressible 

along the c axis along which the peroxide anions lie at a small tilt, with ܭ௖ being 

54(3) GPa (at 13.4 K), and most compressible in the ab plane (ܭ௔ = ͻ.͹ሺ͵ሻ GPa at 

13.4 K). The interlayer compressibility к௖ = Ͳ.ͲͲ͸ʹሺ͵ሻ ��a−ଵ is ~5.5 times smaller 

than к௔, consistent with an increasing tetragonal distortion upon pressurization. 

Our data has revealed that the pressure response of the c axis at room temperature 
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and at 13.4 K is essentially the same, with no obvious contraction in the length of 

the c axis by lowering the temperature. The temperature-induced volume 

contraction of the tetragonal structure is thus a result of the contraction of the a 

axis. The corresponding value of к௔ of the cubic phase straddles those of the 

tetragonal phase consistent with the disordered nature of the oxygen dumbbells. 

5.4.5 Discussion 

In addition to external perturbations such as temperature and X-ray light, 

pressure is also an important thermodynamic parameter that can completely 

redistribute electronic densities and change the nature of the chemical bonds via 

changing the free energy of materials, which exceed those of the strongest 

chemical bonds present at ambient pressure (>10 eV), leading to profound changes 

in materials [243].  

A theoretical study of the pressure response of mixed-valent Rb4O6, which is 

isostructural to Cs4O6 at room temperature, has predicted an unexpected sequence 

of phase transitions between strongly correlated antiferromagnetic insulator, 

ferromagnetic insulator, moderately correlated ferromagnetic half-metal and 

finally itinerant nonmagnetic metal; it also stated that the external pressure 

reportedly destroys the charge-ordered insulating state by enabling the valence 

fluctuations between non-magnetic peroxide and magnetic superoxide molecules, 

and that at high pressures (~75 GPa), the system approaches the insulator-metal 

transition [244]. However, these results are virtually conflicting, as the 

experimental studies have not found such long-range magnetic ordering, but 

suggested magnetic correlations in the low-temperature range due to 2p electrons 

of the superoxide anions [100], [106]. To our knowledge, no experimental high-

pressure XRPD studies of alkali sesquioxides have hitherto been reported. Our 

high-pressure XRPD studies have clearly demonstrated that external pressure 

drives a nearly complete phase transformation from cubic to tetragonal Cs4O6. 

5.4.6 Summary of pressure-induced valence disorder-order transition  

The pressure response of the structural properties of the valence-disordered 

sesquioxide Cs4O6 has revealed that, at room temperature, there is an almost 

complete valence disorder-to-order transition at pressures between 1 and 4 GPa. 
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On further pressurisation up to 10 GPa, no additional transformation occurs. A 

temperature-induced cubic-to-tetragonal structural transition was again observed 

by cooling the sample slowly to 13.4 K. Pressurisation at 13.4 K resulted in an 

increase in the intensities of the Bragg reflections of the tetragonal phase. 

However, no complete valence-ordering was induced by pressure at 13.4 K with 

only ~24% of the cubic phase converted to tetragonal in sharp contrast to the 

situation encountered at room temperature. The compressibility behaviour of the 

cubic and tetragonal Cs4O6 solids at 13.4 K and at room temperature has revealed 

that the tetragonal Cs4O6 is slightly more compressible than the cubic. The 

anisotropic compressibility of the tetragonal structure was confirmed by the 

refined EoS parameters: it is least compressible along the c axis, along which the 

peroxide anions lie, and more compressible in the ab plane.  

5.5 Conclusion 

In conclusion, we have presented a comprehensive study of the temperature, 

X-ray light and pressure response of the structure of Cs4O6 using neutron tof and X-

ray powder diffraction. Our temperature-dependent datasets collected at ambient 

pressure have revealed that Cs4O6 adopts two distinct crystal structures, i.e. high-

temperature cubic (space group IͶ̅3d) and low-temperature tetragonal (space 

group IͶ̅2d) phases, depending on the cooling protocol employed, and that valence 

ordering takes place in the tetragonal lattice, where splitting of the oxygens into 

two crystallographically-separate sites with a ratio of 2:1 is allowed. Our study is 

the first experimental crystallographic evidence for the presence of two localized 

valence states of dioxygen in sesquioxides. The detailed analysis of the 

temperature- and cooling-protocol-dependent neutron tof powder diffraction 

datasets collected on warming has shown that a cooperative first-order phase 

transformation between the cubic and tetragonal phases is triggered, and this 

transformation process is very sluggish, slow and highly hysteretic due to some 

intermediate transitional changes occurring in the course of the reorientations of 

the dioxygen units. 

We have also discovered that whilst a partial valence localisation can be 

achieved in Cs4O6 by slow cooling to 10 K, at this temperature, X-ray light has 
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reversed this and led to a complete phase transformation from tetragonal to cubic 

structure resulting in a complete valence delocalisation in the bulk within a ~5 min 

of X-ray illumination. Finally, an almost complete pressure-induced valence 

disorder-to-order transition was observed at ambient temperature at pressures 

between 1 and 4 GPa. Pressurisation at low temperature has also induced partial 

transformation from cubic to tetragonal phase: ~24% of the cubic phase converted 

to tetragonal at 13.4 K. The compressibility behaviour of the two phases has 

revealed that the valence localisation does not lead to a big discrepancy in the 

compressibility of Cs4O6. 
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Chapter 6  Summary, conclusions and future 

directions 

 

6.1 Results of work presented in this thesis 

One of the directions taken in this work was to gain further understanding on 

the structural and electronic properties of fcc A3C60 superconductors with 

compositions KxCs3−xC60 and RbxCs3−xC60, extending from close to the strongly 

correlated Mott-Jahn-Teller insulator (MJTI) Cs3C60 to the conventional BCS-type 

superconducting fullerides (underexpanded regime) (Chapters 3 and 4). The other 

key aim of this work was to resolve the ambiguous reports on the structural 

properties of the mixed valency molecular oxide, Cs4O6 and ascertain the true 

crystallographic symmetry of the valence ordered state under non-ambient 

conditions employing high-resolution neutron tof and X-ray powder diffraction 

techniques (Chapter 5). 

Chapter 3 focused on the structural and magnetic properties of the fcc-

structured KxCs3−xC60 fullerides with particular attention to the comparison with 

the fcc RbxCs͵−xC60 analogues to investigate cation specific effects on the electronic 

properties of fcc AxCs͵−xC60 system. Compositions with refined K-content, xK, varied 

between 0.22 and 2, were synthesized covering the key region of the electronic 

phase diagram between that of the underexpanded A3C60 superconductors and 

highly-expanded MJTI fcc Cs3C60. This regime had been previously accessed by 

physical pressurization of Cs3C60 [28] before the recent access at ambient pressure 

via the application of chemical pressure through substitution of Cs+ in Cs3C60 by the 

smaller Rb+ cation [67]. In this work, instead of Rb+, smaller K+ has been used to 

chemically pressurise fcc Cs3C60.  

Ambient pressure high-resolution synchrotron XRPD studies of the family of 

KxCs3−xC60 at 300 K have revealed that although both the size mismatch between 

the doped K+ and the Td site, and the incompatibility of the large Cs+ cation size 

with the size of the Td site have led to a significant deviation of the refined K-

content from its nominal value, a systematic increase of the fcc unit cell volume has 

been verified with decreasing x, obeying Vegardǯs law.  
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Low-field magnetisation measurements at ambient pressures have demonstrated a Ǯdomeǯ shaped scaling of Tc with x in this system, in agreement 

with earlier study [67]: Tc initially increases, reaches a maximum with optimally 

expanded composition, following the conventional BCS-like scaling of Tc with NεȋF), 

and then starts decreasing at large intermolecular distances on approaching the 

Mott boundary. Combination of high pressure structural and magnetization data 

has allowed us to track the Tc dependence on C60 packing density (Tc(V)) in fcc 

KxCs͵−xC60 at low temperature. Although the Tc(V) follows the universal 

superconductivity dome, a significant decrease has been observed in the maximum 

Tc with increasing x; this has been attributed to the cation size disorder arising 

from the size mismatch between the substituted cations occupying the tetrahedral 

sites. Cation disorder has been quantified by the cation size variance at the Td site 

and it has been shown that the cation specific detrimental effects should not be 

ignored in the description of the electronic properties of the A3C60 

superconductors, i.e. smaller ionic radius of K+ yields a bigger detrimental effect on 

Tc compared to that of Rb+ due to the greater size mismatch between the cations 

occupying the Td site.  

In contrast to the monotonic thermal contraction of Cs3C60 and 

underexpanded A3C60 (e.g. A = K, Rb) analogues, the compositions in proximity to 

the Mott insulator-metal boundary, i.e. xK = 0.35, 0.64 and 0.87, displayed a 

characteristic isostructural volume collapse upon cooling at certain temperatures 

above the superconducting Tc. In addition, these compositions, including xK = 0.22, 

did not exhibit a temperature-independent Pauli susceptibility term, χ, revealed by 

magnetic susceptibility measurements. Instead, the overexpanded xK = 0.22 and 

0.35 displayed distinct cusps with maxima at certain temperatures. The maximum 

of the cusp for x = 0.35 coincides closely with that at which the volume collapse 

was observed. Compositions with K-content of xK = 0.53, 0.64 and 0.87 did not 

show cusps as clear as the more expanded ones, but they did not exhibit a smooth 

Pauli metallic behaviour either. Conversely, underexpanded compositions far from 

the Mott insulator-metal boundary showed a Pauli metallic behaviour. Both 

characterisation techniques have revealed that on approaching the underexpanded 

regime of the phase diagram from the Mott insulator-metal boundary through 

decreasing intermolecular distances (increasing xK), the onset temperature of the 
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volume collapses and of the maxima of the cusps increases and becomes 

significantly broadened over a wider temperature range. Finally, smooth thermal 

contraction and nearly temperature-independent Pauli metallic behaviour are 

restored in the underexpanded regime, consistent with a metallic ground state 

from which conventional superconductivity emerges on cooling. Furthermore, at 

high temperatures, overexpanded and optimally expanded KxCs3−xC60 compositions 

(0.22 ζ x ζ 0.87) follow the Curie-Weiss law with negative Weiss temperatures. 

These compositions have effective magnetic moments per C603− (~1.2 – 1.6 ɊB) 

comparable to those in MJTI Cs3C60 and in overexpanded RbxCs3−xC60 compounds 

[28], [67], implying that they also adopt S = ½ localized electron ground state with 

antiferromagnetic correlations. However, below the cusps, the magnetic 

susceptibility of those is temperature-dependent, indicating an unconventional 

paramagnetic metallic state. These anomalies emerging as volume collapses and 

cusps in fcc KxCs3−xC60 (0.22 ζ x ζ 0.87) compositions have been taken as evidence 

of isostructural crossover from Mott insulating to metallic state at ambient 

pressure and at temperatures well-above superconducting Tc.  

These results have shown that, although, Tc and Mott insulator-to-metal 

crossover temperatures, Tǯ of fcc AxCs3-xC60 materials could be tuned via bandwidth 

control through application of chemical pressure by adjusting the A+/Cs+ dopant 

ratio (A+= K+ or Rb+), cation specific effects (i.e. cation disorder) play a crucial role 

in the electronic properties of those, besides altering the unit cell dimensions. Even 

though the global trend of the variation of critical temperatures (Tǯ and Tc) with fcc 

unit cell volume is essentially identical in both series of fcc KxCs3−xC60 and 

RbxCs3−xC60, greater cation disorder in the K-substituted system induces grater 

unfavourable effects on critical temperatures. 

Availability of very large masses of high quality fcc-structured 

underexpanded Rb2CsC60 and overexpanded Rb0.5Cs2.5C60 superconductors has 

allowed us to investigate the Hebel-Slichter (HS) coherence peak suppression 

across the superconductivity dome and to estimate the superconducting gap 

magnitude upon approaching the MI boundary (Chapter 4). While the HS peak has 

been observed in underexpanded Rb2CsC60 as a small enhancement of the muon 

spin-relaxation rate below Tc, it may be suppressed at large interfullerene 
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separation in Rb0.5Cs2.5C60, which has been already defined as an unconventional 

superconductor forming from the strongly correlated metallic regime (Jahn-Teller 

metal) [67]. Moreover, although s-wave symmetry is retained, an anomalously 

large coupling strength has been found in Rb0.5Cs2.5C60 with ratio of 

superconducting gap to Tc, ʹΔ/kBTc approaching 5. This implies that the strong 

cooperation between the electron correlations and the electron-phonon 

interactions, as in MJTI Cs3C60 [86], influences the superconducting state and is 

responsible for the high-Tc s-wave superconductivity in the family of 

overexpanded fcc A3C60 superconductors [67], [204]. Our results have also 

revealed that ʹΔ/kBTc increases to 4.53(9)(for Rb0.5Cs2.5C60) upon approaching the 

MI boundary where effects of the JTM are maximal [67], in agreement with earlier 

studies [67], [70], [75]. This trend contrasts with the Ǯdomeǯ shaped scaling of Tc 

with interfullerene separation. These findings could stimulate further 

experimental and theoretical studies with extended numerical solutions to gain 

further understanding of the size and symmetry of the superconducting gap in the 

unconventional superconducting state which forms from a strongly correlated 

metallic regime.  

In Chapter 5, we reported the first experimental crystallographic evidence for 

the presence of two localized valence states of dioxygen in the sesquioxide Cs4O6. 

Our comprehensive study of the structure of Cs4O6 at both ambient and low 

temperatures using neutron tof and X-ray powder diffraction techniques has 

revealed that Cs4O6 adopts two distinct crystal structures, i.e. high-temperature 

valence-disordered cubic and low-temperature valence-ordered tetragonal phases, 

and all the extreme external perturbations used in this study have induced valence 

order-disorder transitions in Cs4O6. 

At ambient temperature, Cs4O6 adopts a high-symmetry cubic cell (space 

group IͶ̅3d) in which all oxygen atoms reside on the same Wyckoff position: this in 

turn creates symmetry-equivalent valency-delocalised (O–O)(4/3) dumbbells. 

However, ultra-slow cooling has led to a symmetry-lowering structural transition. 

This low-temperature phase crystallises with a tetragonal cell (space group IͶ̅2d) 

where splitting of the oxygen atoms into two crystallographically-distinct sites is 

allowed. This splitting leads to the differentiation between the paramagnetic O2− 
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and diamagnetic O22− anions, evident from the two clearly different sets of bond 

distances. This results in valency ordering, and the molecular formula of the 

compound is writen as (Cs+)4(O2−)2(O22−). These two structures differ in the 

orientations of the O2 molecules: in the valence-ordered Cs4O6, the O2ʹ− anions are 

oriented parallel to the a and b axes but O2− anions are directed at an angle to the 

tetragonal c axis. In the cubic phase, all (O–O)(4/3) anions are oriented parallel to 

the crystallographic axes. On the other hand, rapid cooling has led to the molecular 

orientation of the (O–O)(4/3) anions to quench on their original positions 

generated by the IͶ̅3d symmetry. 

Neutron tof powder diffraction datasets collected on warming after rapid- 

and ultra-slow-cooling have revealed fascinating structural responses. These non-

trivial responses of the cubic and tetragonal phases to temperature are most likely 

due to the cooperative structural rearrangements happening during the slow 

reorientations of the dioxygen units. This cooperative interaction condenses either 

cubic or tetragonal structures, generating large thermal hysteresis. Our 

experimental data have demonstrated that the high-temperature cubic and the 

low-temperature tetragonal Cs4O6 coexist as quenched and superheated phases at 

low and high temperatures, respectively. All these observations in the course of the 

sluggish reconstructive-type conversion confirm that this valence disorder-to-

order transition is of first order. 

We have also found that Cs4O6 is extremely sensitive to X-ray illumination at 

ambient temperature and at 10 K. At room temperature, illumination of cubic 

Cs4O6 by X-ray light has resulted in pronounced peak broadenings and shifts to 

lower angles but no structural transformation has occurred in the bulk. These 

observations signify the growth of significant structural inhomogeneities and the 

presence of structural rearrangement effects induced by the X-ray light. After slow 

cooling to 10 K, cubic-to-tetragonal transformation occurred: fractions of the 

coexisting cubic, tetragonal and impurity CsO2 phases after a 12(12) s illumination 

time were found as 16.7(2), 71.83(2) and 12.3(2)%, respectively. At this 

temperature, a ~5 min of exposure of the slowly cooled Cs4O6 to the X-ray beam 

has resulted in the reverse tetragonal-to-cubic transformation. This 

transformation develops in time through two distinct steps. The first one manifests 



 

247 
 

itself within a ~2 min of incubation time with a progressive increase in the width 

of the tetragonal Bragg peaks and an anisotropic change in the tetragonal unit cell 

dimensions. The second process manifests itself in the intermediate region with a 

first-order phase transformation to the valence-disordered cubic phase. In this 

region, the transformation occurs in the bulk, the Bragg reflections of the cubic 

phase grow in intensity at the full expense of those of the tetragonal phase with an 

additional ~3 min of exposure. This photo-induced phase transition in the bulk has 

been confirmed by the observation that the cubic peaks are not broadened in the 

course of the transformation, contrasting with the observed effects of X-ray light 

on the cubic phase encountered at room temperature. 

Moreover, at ambient temperature, pressurisation of Cs4O6 up to 4 GPa has 

led to an almost complete cubic-to-tetragonal structural transformation. The 

pressure response after slow cooling to 13.4 K has been also studied. We found 

that application of pressure increases the weight fraction of the tetragonal phase 

which was induced by slow cooling; however, in sharp contrast to the situation 

encountered at room temperature, only ~24% of the cubic phase converted to 

tetragonal at 13.4 K. 

Magnetic and molecular orderings are typically strongly coupled to each 

other, and there are significant correlations between the adopted structure and the 

magnetic properties. Therefore, it is a fundamental requirement to establish the 

temperature evolution of the two competing phases of Cs4O6 for a reliable 

magnetic characterization. These results could therefore motivate further 

theoretical calculations and experimental studies by other techniques to gain an 

advance understanding of the magnetic behaviour of this family of materials. 
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6.2 Future directions 

The present work conducted on fcc A3C60 fullerides has offered a 

comprehensive understanding of the rich electronic phase diagram of fulleride 

superconductors. To structurally further characterise the crossover between the 

insulator and the metal, aside from X-ray powder diffraction technique, studies by 

complementary techniques, such as combined X-ray and neutron powder 

diffraction (NPD), maximum entropy method (MEM), pair distribution function 

(PDF) analysis and X-ray absorption fine structure (EXAFS) measurements could 

be undertaken.  

Since the Mott insulator-to-metal transition (MIT) is of first order, a phase co-

existence is expected; however, in the structural XRPD investigations of fcc 

AxCs͵−xC60 (A = K or Rb) with temperature reported in this thesis and in ref. [67], 

no anomalous structural changes that would imply a phase co-existence were 

observed at the insulator-to-metal crossover. Because carbon has a weak X-ray 

scattering power, in the course of the XRPD data analysis, the fractional 

coordinates of the C atoms in the fcc phase were not allowed to refine. They were 

only rescaled as the temperature varied to the refined lattice metrics and thus the 

molecular shape remained unaltered. NPD data analysis allows the refinement of 

the C atom fractional coordinates, allowing appropriate altering of the molecular 

shape of the C60 units and hence to elucidate any subtle structural changes 

happening at the MIT.  

MEM analysis would allow us to track any changes in electron distribution at 

the MIT in overexpanded fcc AxCs͵−xC60 by determination of three-dimensional 

electron densities from high-resolution XRPD and NPD data. PDF analysis of high-

statistics XRPD data with high Q would also facilitate to characterise the local 

structural changes at the MIT. Strong preferential site occupation of substituted 

cations, i.e. the octahedral site is entirely occupied by Cs+ and the tetrahedral one is 

occupied by a disordered A+/Cs+ mixture, allows a separate structural analysis of 

the tetrahedral and octahedral sites through EXAFS measurements at the alkali 

ions K, Rb, and Cs, and thus allows a quantitative investigation of cation specific 

effects on the critical temperatures. 
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Aside from the investigation of cation specific effects on the electronic 

properties of fcc AxCs͵−xC60 fullerides, the effects of tetrahedral alkali-metal 

vacancies could be probed as well. For instance, in Sm2.75C60 and Yb2.75C60, 

tetrahedral rare-earth metal vacancies exhibit long-range ordered arrangement, 

generating superstructure [245], [246]. Such structural response to cation-vacancy 

could be encountered in fcc AxCs͵−xC60 fullerides, altering the electronic properties 

of this system. For example, starting conceptually from fcc K2CsC60 (or Rb2CsC60), 

K+ (or Rb+) can be increasingly substituted non-stoichiometrically by a smaller 

cation, i.e. Ba2+, with such a general formula: [ ]x/2Bax/2K1-x)2CsC60, [ ] representing 

vacant tetrahedral sites. Vacancy ratios with simple fractions might generate 

cation-vacancy ordering in fcc A3C60 fullerides. 

The availability of very large masses of high quality overexpanded fcc 

RbxCs͵−xC60 samples with Rb-content x = 2 and 0.5 allowed us to investigate strong 

correlations in proximity to the Mott boundary by measurements of the 

temperature dependence of the longitudinal-field muon spin relaxation (LF-SR) 

rate of endohedrally-formed muonium. These samples cover the either side of the 

superconductivity dome; however, the analysis of the temperature dependence of 

the LF-SR data of the optimally-expanded RbCs2C60 could not be undertaken 

because of time limitations. For an ultimate investigation, it is essential to search 

for the existence or not of a Hebel-Slichter (HS) coherence peak and to determine 

the superconducting gap magnitude of this composition and of overexpanded 

Rb0.35Cs2.65C60. In the present work we employed Arrhenius law for the estimation 

of Δ and the temperature dependence of ͳ ଵܶܶ⁄  has not been modelled. Here more 

realistic models can be employed, e.g. the Hebel-Slichter theory formulation with a 

broadened BCS density of states. 

In addition of the temperature-dependent LF-SR studies, field-dependent 

measurements could be undertaken to determine the critical field of the 

suppression of HS coherence peak in this system, as high fields are known to 

suppress the HS peak. Spin-lattice relaxation rate, 1/T1 can be also extracted 

through NMR studies using smaller masses of samples but this requires 

significantly higher magnetic fields than the LF-SR technique, resulting in the 

suppression of the HS peak.  
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Moving to the sesquioxide Cs4O6, there are many different types of 

techniques that could provide complementary information on the structural and 

magnetic properties of this molecular system. In the course of the XRPD study of 

Cs4O6, we found that X-ray light illumination leads to significant structural changes 

but we did not investigate these effects in any detail as the primary aim of the 

structural studies was the accurate identification of its structure. To obtain fine 

details about the interconversion, time-resolved X-ray diffraction could be used for 

simultaneous complete structural determination, X-ray absorption spectroscopy 

(XAS) for metal valence states determination, high-resolution angle-resolved 

photoemission spectroscopy (ARPES) for valence-band structure determination, 

and EXAFS to explore temperature dependent local displacements. 

Since the transformation between the cubic and tetragonal phases involves 

large amplitude reorientations of the oxygen dumbbells, a study of molecular 

motion of dioxygen units might be needed. Inelastic neutron scattering could be an 

option to study the molecular motion and dynamics in this system. This technique 

could also provide some quantitative information on the magnetic properties. 

MEM analysis could be also undertaken to probe any changes in electron 

distribution at critical temperatures where two molecular metastable phases 

shows complex conversion in between.  

In addition, though high-pressure XRPD investigations of Cs4O6 were 

undertaken, it is necessary to examine the structural changes with high-pressure 

NPD studies at ambient temperature to eliminate X-ray light induced changes and 

to isolate the tetragonal phase at room temperature. Furthermore, to determine 

the thermodynamic properties of the cubic and tetragonal phases with the aim of a 

quantitative investigation of the mechanism of sluggish phase transition between 

cubic and tetragonal Cs4O6, specific heat and differential scanning calorimetry 

(DSC) measurements could be employed.  

From magnetic characterization perspective, temperature- and time-

dependent magnetisation experiments should be undertaken, employing the 

cooling protocols that applied in the present study. The emergence of the low-

temperature tetragonal phase is essential for an accurate determination of the 

magnetic behavior of this phase; therefore ultra-slow cooling must be employed. 
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Aside from magnetisation experiment, ɊSR measurements could be undertaken for 
a detailed search of the existence or not of magnetic ordering. As typical magnetic 

resonance experiments is dependent on the temperature and magnetic field, and 

the initial spin polarisation is not as high as that of the ɊSR technique, ɊSR 
technique can lead to quantitatively more accurate results.  

Finally, similar structural and magnetic characterisation techniques should 

be undertaken for the sesquioxide Rb4O6 to search whether they exhibit 

comparable properties with Cs4O6 and to resolve the contradictory reports on the 

structural and magnetic properties of Rb4O6. 
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A. Appendix  

High-resolution synchrotron X-ray powder diffraction data were collected for fcc-

structured KxCs3−xC60 compositions under variable temperature and pressure 

conditions, as described in detail in Chapter 3. Due to space limitations, only 

representative data were included in Chapter 3, and thus further data for the 

remaining compositions will be presented in this Appendix. 

I. Ambient-pressure synchrotron X-ray powder diffraction  

The observed, calculated and difference profiles and the derived structural 

parameters for fcc-structured KxCs3-xC60 compositions obtained from the Rietveld 

analysis of synchrotron XRPD data are presented in the following figures and 

tables, as summarised in table below. Analogous data at 300 K for samples with K-

content of xK = 0.64(1) and xK = 1.28(1) (Table 3.1 and Figure 3.5), and at 10 K for 

compositions with K-content of xK = 0.64(1) and xK = 0.87(1) (Table 3.5 and 

Figure 3.10) were provided in section 3.3.2 and section 3.3.3, respectively. 

Figure Table K-content, xK 
XRPD data collection 

temperature 

Figure A.1 Table A.1 
0.22(1) 

0.53(1) 
300 K 

Figure A.2    Table A.2 0.87(1) 300 K 

Figure A.3 Table A.3 
1.626(4) 

2 
300 K 

  Figure A.4 Table A.4 0.35(1) 
40 K 

300 K 

Figure A.5     Table A.5 1.28(1) 
100 K 

300 K 

The description of the models employed for the Rietveld analysis of the ambient-

pressure XRPD data collected at 300 K and at low-temperature was provided in 

section 3.3.2 and 3.3.3, respectively. 
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Figure A.1 Rietveld fits to synchrotron XRPD data collected at 300 K for fcc-structured 
KxCs3−xC60 samples with K-content of xK = 0.22(1) (upper panel, ɉ = 0.39999 Å), and of 
xK = 0.53(1) (lower panel, ɉ = Ͳ.͵ͻͻͺͶ Å). Red circles, blue lines and green lines represent 
the observed, calculated and difference profiles. Ticks mark the reflection positions, from 
top-to-bottom, of co-existing fcc (red ticks), body-centered-orthorhombic (bco) and CsC60 
phases. Both insets display expanded regions of the respective diffraction profiles; 
observed Bragg peaks are labelled by their (hkl) Miller indices.  
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Table A.1 Refined structural parameters for fcc-structured KxCs3−xC60 samples with K-
content of xK = 0.22(1) and 0.53(1), from Rietveld analysis of synchrotron XRPD data 
collected at 300 K, with wavelengths of 0.39999 Å and 0.39984 Å, respectively (see Table 
3.3 for details). Site multiplicities are listed in column M. Values in parentheses are 
estimated errors from the least-squares fitting. As detailed in section 3.3.2, the C−C bond 
lengths of the C60 units were kept fixed at 1.42 Å. The fractional cation occupancies, N of 
the tetrahedral interstitial site were refined (for details see the sub-section of Chapter 3 titled as ǮFractional site occupancy studies at 300 Kǯ). The weighted-profile and expected R-
factors are Rwp = 4.9% and Rexp = 3.4% (xK = 0.22(1)), and Rwp = 4.11% and Rexp = 2.96% 
(xK = 0.53(1)), respectively. The lattice constants for xK =  0.22(1) and 0.53(1) are 
14.7011(2) Å and 14.6262(5) Å, respectively. The co-existing phase fractions for 
xK = 0.22(1) are fcc = 31.5(2)%, Cs4C60 = 52.69(7)% and CsC60 = 14.9(2)%, and for 
xK = 0.53(1) are fcc = 54.0(2)%, Cs4C60 = 29.9(2)% and CsC60 = 16.1(3)%. 

xK =0.22(1) x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.109(6) 1.28(2) 

Cs(1) 0.25 0.25 0.25 8 0.891(6) 1.28(2) 

Cs(2) 0.5 0.5 0.5 4 1.0 5.82(4) 

C(1) 0 0.048357 0.234528 96 0.5 0.29(5) 

C(2) 0.204709 0.078176 0.096518 192 0.5 0.29(5) 

C(3) 0.174695 0.156254 0.048357 192 0.5 0.29(5) 

xK =0.53(1) x/a y/b z/c M N Biso (Å2) 

K 
0.25 0.25 0.25 8 0.263(6) 1.17(3) 

Cs(1) 0.25 0.25 0.25 8 0.737(6) 1.17(3) 

Cs(2) 0.5 0.5 0.5 4 1.0 5.60(4) 

C(1) 0 0.048605 0.235729 96 0.5 0.71(4) 

C(2) 0.205758 0.078576 0.097013 192 0.5 0.71(4) 

C(3) 0.175589 0.157054 0.048605 192 0.5 0.71(4) 
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Figure A.2 Rietveld fits to synchrotron XRPD data collected at 300 K for fcc-structured 
KxCs3-xC60 composition with K-content of xK = 0.87(1) (ɉ = 0.39984 Å). Red circles, blue 
lines and green lines represent the observed, calculated and difference profiles. Ticks 
mark the reflection positions of co-existing fcc (red ticks), and body-centered-
orthorhombic (bco) phases. Both insets display expanded regions of the respective 
diffraction profiles; observed Bragg peaks are labelled by their (hkl) Miller indices. 

Table A.2 Refined structural parameters for fcc-structured KxCs3−xC60 sample with K-
content of xK = 0.87(1) from Rietveld analysis of synchrotron XRPD data collected at 300 K, 
with wavelength of 0.39984 Å. Site multiplicities are listed in column M. Values in 
parentheses are estimated errors from the least-squares fitting. The weighted-profile and 
expected R-factors are Rwp = 3.55% and Rexp = 2.60%, respectively. The fcc lattice constant 
is 14.5576(2) Å. The fractions of the co-existing fcc and Cs4C60 phases are 85.18(7)% and 
14.8(1)%, respectively. 

xK =0.87(1) x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.435(6) 1.09(3) 

Cs(1) 0.25 0.25 0.25 8 0.565(6) 1.09(3) 

Cs(2) 0.5 0.5 0.5 4 1.0 4.59(5) 

C(1) 0 0.048834 0.236840 96 0.5 0.57(5) 

C(2) 0.206727 0.078947 0.097470 192 0.5 0.57(5) 

C(3) 0.176417 0.157794 0.048834 192 0.5 0.57(5) 
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Figure A.3 Rietveld fits to synchrotron XRPD data collected at 300 K for fcc-structured 
KxCs3−xC60 samples with refined K-content of xK = 1.626(4) (upper panel, ɉ = 0.39996 Å) 
and with nominal K-content of x = 2 (refined xK = 1.996(6)) (lower panel, ɉ = 0.35419 Å). 
Red circles, blue lines and green lines represent the observed, calculated and difference 
profiles. Ticks mark the reflection positions of co-existing fcc (red ticks), and body-
centered-orthorhombic (bco) (black ticks, only observable in xK = 1.626(4)) phases. Both 
insets display expanded regions of the respective diffraction profiles; observed Bragg 
peaks are labelled by their (hkl) Miller indices. 
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Table A.3 Refined structural parameters for fcc-structured KxCs3−xC60 samples with K-
content of xK = 1.626(4) and with nominal K-content of xK = 2 (refined to xK = 1.996(6), 
single fcc phase), from Rietveld analysis of synchrotron XRPD data collected at 300 K, with 
wavelengths of 0.39996 Å and 0.35419 Å, respectively. Site multiplicities are listed in 
column M. Values in parentheses are estimated errors from the least-squares fitting. The 
R-factors are: Rwp = 4.55% and Rexp = 3.41% (xK = 1.626(4)), and Rwp = 3.76% and 
Rexp = 2.74% (xK = 2). The lattice constants for xK = 1.626(4) and x = 2 are 
14.37345(8) Å and 14.28571(7) Å, respectively. The fractions of the co-existing fcc and 
Cs4C60 phases for xK = 1.626(4) are 94.05(1)% and 5.95(7)%, respectively.  

xK = 1.626(4) x/a y/b z/c Site N Biso (Å2) 

K 0.25 0.25 0.25 8 0.813(3) 1.19(2) 

Cs(1) 0.25 0.25 0.25 8 0.187(3) 1.19(2) 

Cs(2) 0.5 0.5 0.5 4 1.0 3.31(1) 

C(1) 0 0.049460 0.239874 96 0.5 0.46(5) 

C(2) 0.209376 0.079958 0.098719 192 0.5 0.46(2) 

C(3) 0.178677 0.159816 0.049460 192 0.5 0.46(2) 

xK = 2 x/a y/b z/c M N Biso (Å2) 

K 
0.25 0.25 0.25 8 1.0 0.99(1) 

Cs 0.5 0.5 0.5 4 1.0 2.85(1) 

C(1) 0 0.049763 0.241348 96 0.5 0.37(1) 

C(2) 0.210662 0.080449 0.099325 192 0.5 0.37(1) 

C(3) 0.179774 0.160797 0.049763 192 0.5 0.37(1) 
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Figure A.4 Rietveld fits to synchrotron XRPD data collected at 40 K (upper panel) and 
300 K (lower panel) for fcc-structured KxCs3−xC60 sample with K-content of xK = 0.35 
(ɉ = 0.39999 Å). Red circles, blue lines and green lines represent the observed, calculated 
and difference profiles. Ticks mark the reflection positions, from top-to-bottom, of co-
existing fcc (red ticks), body-centered-orthorhombic (bco) and CsC60 phases. Both insets 
display expanded regions of the respective diffraction profiles; observed Bragg peaks are 
labelled by their (hkl) Miller indices. Two broad peaks arising from the cryostat were 
visible at low angles (<4°), and these regions were excluded from the fitting.   
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Table A.4 Refined structural parameters for fcc-structured KxCs3−xC60 sample with K-
content of xK = 0.35 from Rietveld analysis of synchrotron XRPD data collected at 40 K and 
300 K, with wavelength of 0.39999 Å. Site multiplicities are listed in column M. The 
fractional site occupancies, N of the tetrahedral site were fixed to values obtained from the 
analysis of 300 K high statistics data. Values in parentheses are estimated errors from the 
least-squares fitting. The R-factors are Rwp = 5.41% and Rexp = 3.52% at 40 K, and 
Rwp = 5.34% and Rexp = 4.47% at 300 K. The lattice constants are 14.5762(3) Å at 40 K and 
14.6736(2) Å at 300 K. The fractions of the co-existing fcc, Cs4C60, and CsC60 phases at 300 
K are 53.0(2)%, 40.9(2)%, and 5.7(3), respectively: the relative phase fractions at 40 K 
were fixed to these values. 

T = 40 K x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.176 0.72(3) 

Cs(1) 0.25 0.25 0.25 8 0.824 0.72(3) 

Cs(2) 0.5 0.5 0.5 4 1.0 1.45(5) 

C(1) 0 0.048772 0.236537 96 0.5 0.03(6) 

C(2) 0.206463 0.078846 0.097345 192 0.5 0.03(6) 

C(3) 0.176191 0.157592 0.048772 192 0.5 0.03(6) 

T = 300 K x/a y/b z/c M N Biso (Å2) 

K 
0.25 0.25 0.25 8 0.176(7) 1.36(2) 

Cs(1) 0.25 0.25 0.25 8 0.824(7) 1.36(2) 

Cs(2) 0.5 0.5 0.5 4 1.0 5.44(7) 

C(1) 0 0.048448 0.234968 96 0.5 0.34(6) 

C(2) 0.205093 0.078323 0.096699 192 0.5 0.34(6) 

C(3) 0.175022 0.156547 0.048448 

 

192 0.5 0.34(6) 
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Figure A.5 Rietveld fits to synchrotron XRPD data collected at 300 K (upper panel) and 
112 K (lower panel) on beamline BL44B2 for fcc-structured KxCs3−xC60 sample with K-
content of xK = 1.28 (ɉ = 0.81887 Å). Red circles, blue lines and green lines represent the 
observed, calculated and difference profiles. Red and black ticks mark the reflection 
positions of co-existing fcc and body-centered-orthorhombic (bco) phases. Both insets 
display expanded regions of the respective diffraction profiles; observed Bragg peaks are 
labelled by their (hkl) Miller indices.  
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Table A.5 Refined structural parameters for fcc-structured KxCs3−xC60 sample with K-
content of xK = 1.28 from Rietveld analysis of synchrotron XRPD data collected at 112 and 
300 K, with wavelength of 0.81887 Å, on beamline BL44B2. Site multiplicities are listed in 
column M. The fractional site occupancies, N of the tetrahedral site were fixed to values 
obtained from the analysis of 300 K high statistics data collected on beamline ID31 with ɉ = 0.354197 Å. The fcc phase structural parameters obtained from the refinements and 
Rietveld fits to the XRPD data collected on beamline ID31 were shown in Table 3.1 and 
Figure 3.5, respectively. Values in parentheses are estimated errors from the least-squares 
fitting. The R-factors are Rwp = 3.9% and Rexp = 2.6% at 112 K, and Rwp = 3.3% and 
Rexp = 1.2% at 300 K. The lattice constants are 14.4006(3) Å at 112 K and 14.4614(1) Å at 
300 K. The fractions of the co-existing fcc and Cs4C60 phases at 300 K are 81.74(3)% and 
18.3(1), respectively: the relative phase fractions at 112 K were fixed to these values 
(Relative phase fractions from the analysis of 300 K ID31 data were found as:  fcc = 
83.34(4)% and Cs4C60 = 16.69(9)%). 

T = 112 K x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.641 0.26(1) 

Cs(1) 0.25 0.25 0.25 8 0.359 0.26(1) 

Cs(2) 0.5 0.5 0.5 4 1.0 1.89(1) 

C(1) 0 0.049366 0.239422 96 0.5 0.18(2) 

C(2) 0.208981 0.079807 0.098533 192 0.5 0.18(2) 

C(3) 0.178340 0.159515 0.049366 192 0.5 0.18(2) 

T = 300 K x/a y/b z/c M N Biso (Å2) 

K 0.25 0.25 0.25 8 0.641 1.17(1) 

Cs(1) 0.25 0.25 0.25 8 0.359 1.17(1) 

Cs(2) 0.5 0.5 0.5 4 1.0 4.12(2) 

C(1) 0 0.049159 0.238416 96 0.5 0.78(2) 

C(2) 0.208103 0.079472 0.098118 192 0.5 0.78(2) 

C(3) 0.177590 0.158844 0.049159 192 0.5 0.78(2) 

II. High-pressure synchrotron X-ray powder diffraction at 7 K 

Rietveld fits to the XRPD data for fcc-rich K0.87Cs2.13C60 and K1.28Cs1.72C60 (Figures 

3.15 and 3.16) at low and high pressure, and the corresponding structural 
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parameters of fcc-structured K0.87Cs2.13C60 (Table 3.6) were presented in section 

3.3.5. Here the observed, calculated and difference profiles and the derived 

structural parameters for fcc K0.35Cs2.65C60 obtained from the Rietveld analysis of 

synchrotron XRPD data are presented in Figure A.6 and Table A.6. Refined 

structural parameters of fcc-structured K1.28Cs1.72C60 are presented in Table A.7. 

 

Figure A.6 Rietveld fits to high-pressure synchrotron XRPD data collected at 7 K for fcc 
K0.35Cs2.65C60 at 0.6 GPa (upper panel) and 6.2 GPa (lower panel), with ɉ = 0.41260 Å. Red 
circles, blue lines and green lines represent the observed, calculated and difference 
profiles. Ticks mark the reflection positions, from top-to-bottom, of co-existing fcc (red 
ticks), body-centered-orthorhombic (bco) and CsC60 phases. Inset displays an expanded 
region of the respective diffraction profile. The fitted background contribution has been 
subtracted for clarity. 

 

Table A.6 Refined structural parameters for fcc-structured K0.35Cs2.65C60 from Rietveld 
analysis of synchrotron XRPD data collected at 7 K at 0.6 and 6.2 GPa ȋɉ = 0.41260 Å). 
Values in parentheses are statistical errors from Rietveld refinement. The R-factors are 
Rwp = 0.45% and Rexp = 0.45% (at 0.6 GPa), and Rwp = 0.78% and Rexp = 0.44% (at 6.2 GPa). 
The lattice constants are 14.4742(4) Å at 0.6 GPa and 13.800(1) Å at 6.2 GPa. The fractions 
of the co-existing phases at 0.6 GPa are fcc = 54.3(1)%, Cs4C60 = 35.0(2)% and 
CsC60 = 10.7(4)%: the relative phase fractions were fixed to these values at all other 
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pressures. The fractional cation occupancies, N of the tetrahedral interstitial site were 
fixed to values refined from the 300 K ambient pressure data for the same sample, as 
described in section 3.3.5. Thermal displacement parameters were fixed to values refined 
from the 40 K ambient pressure data for the same sample, as with the data quality 
available these could not be meaningfully refined together with the profile shape 
parameters necessary to describe the pressure-induced peak broadening (the effect of 
pressure on isotropic thermal displacement parameters should be relatively small [1]). 

K0.35Cs2.65C60, a7K, 0.6 GPa = 14.4742(4) Å, fcc phase fraction: 54.3(1)% 

P = 0.6 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.435 0.72 

Cs(1) 0.25 0.25 0.25 0.565 0.72 

Cs(2) 0.5 0.5 0.5 1.0 1.45 

C(1) 0 0.049115 0.238205 0.5 0.03 

C(2) 0.207919 0.079402 0.098032 0.5 0.03 

C(3) 0.177433 0.158703 0.049115 0.5 0.03 

K0.35Cs2.65C60, a7K, 6.2 GPa = 13.800(1) Å 

P = 6.2 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.435 0.72 

Cs(1) 0.25 0.25 0.25 0.565 0.72 

Cs(2) 0.5 0.5 0.5 1.0 1.45 

C(1) 0 0.051515 0.249842 0.5 0.03 

C(2) 0.218076 0.083281 0.102821 0.5 0.03 

C(3) 0.186102 0.166457 0.051515 0.5 0.03 

 

[1] R. M. Hazen, R. T. Downs, and C. T. Prewitt, ǲPrinciples of comparative crystal chemistry,ǳ in 
High-Temperature and High-Pressure Crystal Chemistry, vol. 41, Mineralogical Society of America, 
2000, pp. 1–33. 

Table A.7 Structural parameters for the majority fcc phase of K1.28Cs1.72C60 extracted from 
Rietveld analysis of synchrotron XRPD data collected at 7 K at 0.3 and 9.8 GPa ȋɉ = 0.41238 Å). The fractional site occupancies, N of the tetrahedral site were fixed to 
values obtained from the analysis of 300 K high statistics data, as described earlier (Table 
3.3). Values in parentheses are statistical errors from Rietveld refinement. The R-factors 
are: Rwp = 0.42% and Rexp = 0.39% (at 0.3 GPa), and Rwp = 0.44% and Rexp = 0.41% (at 9.8 
GPa). Refined fcc and bco phase fractions at 0.3 GPa are 82.739(3)% and 17.26(1)%, 
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respectively. The thermal displacement parameters of the C atoms could not refine to 
physically meaningful values, so were fixed to values of appropriate magnitude and of the 
tetrahedral and octahedral interstitial sites were only refined at 0.3 GPa and kept fixed to 
those values found at all other pressures. 

K1.28Cs1.72C60, a7K, 0.3 GPa = 14.3491(1) Å, fcc phase fraction: 82.739(3)%   

P = 0.3 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.64 0.52(3) 

Cs(1) 0.25 0.25 0.25 0.36 0.52(3) 

Cs(2) 0.5 0.5 0.5 1.0 0.93(3) 

C(1) 0 0.04954 0.24028 0.5 0.13 

C(2) 0.20973 0.08009 0.09889 0.5 0.13 

C(3) 0.17898 0.16009 0.04954 0.5 0.13 

K1.28Cs1.72C60, a7K, 9.8 GPa = 13.5299(3) Å 

P = 9.8 GPa x/a y/b z/c N Biso (Å2) 

K 0.25 0.25 0.25 0.64 0.52 

Cs(1) 0.25 0.25 0.25 0.36 0.52 

Cs(2) 0.5 0.5 0.5 1.0 0.93 

C(1) 0 0.05254 0.25483 0.5 0.13 

C(2) 0.22243 0.08494 0.10487 0.5 0.13 

C(3) 0.18981 0.16978 0.05254 0.5 0.13 
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III. 133Cs and 39K NMR spectra of AxCs3-xC60 compounds  

The 133Cs NMR spectra of selected AxCs3-xC60 samples at 300 K, by our 

collaborators, are shown in Figure A7.  

 

Figure A.7 The 133Cs NMR spectra of K0.53Cs2.47C60, K0.64Cs2.37C60 and Rb0.35Cs2.65C60 at 300 K presented with red, purple and gray lines, respectively. O, T and Tǯ represent the 
octahedral and tetrahedral fcc interstitial site peaks, respectively. Whilst overexpanded 
Rb0.35Cs2.65C60 shows a very clear splitting of the tetrahedral sites, Tǯ peak is almost 
invisible for samples of xK = 0.53 and 0.64, showing only a broad hump on the T line, 
consistent with the previous NMR results of K3C60. This behaviour can be ascribed to an 
increased distortion in the KxCs͵−xC60 system compared to the RbxCs3-xC60 due to the greater 
cation size variance at the tetrahedral sites.  
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The 39K NMR measurements were also performed on selected KxCs3-xC60 

compounds at 300 K, including K3C60; in addition, the temperature dependence of 

39K line-shape for K2CsC60 was investigated at temperatures between 100 and 

300 K (Figure A8).  

 

Figure A.8 a) The 39K NMR spectra of KxCs3-xC60 samples at 300 K. b) Temperature 
dependence of 39K NMR spectrum of K2CsC60. O, T and Tǯ represent the octahedral and 
tetrahedral fcc interstitial site peaks, respectively. For K3C60, only O and T lines are 
apparent at 300 K, consistent with previous NMR measurements [247], and no O and Tǯ 
lines are apparent for any of KxCs3-xC60 samples, indicating K+ cations only reside in the 
tetrahedral sites, and the octahedral site is fully occupied only by Cs. Temperature 
dependence of the 39K line-shape for K2CsC60 reveals that, the Tǯ line is clearly resolved 
below 200 K on the NMR timescale where molecular rotational motion freezes as well. In 
the complementary 39K NMR spectra of K3C60, only an asymmetric broadening of the T line could be detected at low temperatures without really seeing a resolved Tǯ line [247], [248]. 
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