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Abstract 

Plant roots encounter a number of physical stresses in the soil and must be able to 

respond their growth appropriately. One such stress is mechanical impedance, which 

becomes an increasing problem in drying soils as soil strength increases with decreasing 

water content. In addition, the use of larger, heavier farming machinery leads to soil 

compaction, further increasing soil strength. Mechanical impedance has previously been 

shown to reduce root elongation and may have a negative impact on crop yields. It is 

therefore important to understand how root development is affected and growth 

regulated in response to mechanical impedance.  

This thesis investigates the effect of mechanical impedance on root growth of Arabidopsis 

thalina and focuses on the role of the plant hormone ethylene in mediating this response. 

In particular the role of ethylene signalling in mediating root growth via crosstalk with 

auxin is examined. In addition the involvement of other plant hormones such as ABA, 

cytokinin and gibberellin is also briefly investigated. Experiments were carried out using a 

previously developed method whereby seedlings grown on horizontally orientated, 

dialysis membrane covered agar experience sufficient mechanical impedance to induce a 

response.  

Mechanically impeded roots exhibited a characteristic ethylene response, with decreased 

primary root growth, increased diameter and root hair growth occurring closer to the tip. 

Analysis of mutants with altered responses to ethylene and auxin, and the effect of 

inhibitors of ethylene signalling and auxin demonstrated that both correct ethylene 

signalling and auxin transport are required for a mechanical impedance response. 

Confocal microscopy demonstrated that under mechanical impedance, auxin is 

redistributed at the root tip with increases in the expression of the transporters PIN1 and 

PIN2. ABA signalling is not required for a response to mechanical impedance and 

cytokinin responses appear to be reduced.   

 



3 
 

Contents 

Abstract……………………………………………………………………………………...2 

Declaration…………………………………………………………………………………6 

Acknowledgements……………………………………………………………………. 6 

1. Introduction………………………………………………………………………. .7 

1.1 The structure of the Arabidopsis root and its use as a 

 model system …………………………………………………………………………….8 

1.2 Mechanisms of root elongation and the effect of  

mechanical impedance………………………………………………………………..10 

1.3 Effects of mechanical impedance on root morphology  

and physiology……………………………………………………………………………11 

1.3.1 Root thickening………………………………………………………………………...11 

1.3.2 Root hair growth………………………………………………………………………11 

1.3.3 The root cap……………………………………………………………………………..12 

1.4 Hormonal control of root development……………………………………….13 

1.4.1 The ethylene signalling pathway……………………………………………….13 

1.4.2 Ethylene and hormonal crosstalk during root development……….15 

1.4.3 Polaris……………………………………………………………………………………..16 

1.5 The role of ethylene signalling in the response to  

mechanical impedance………………………………………………………………..16 

1.6 Project aims……………………………………………………………………………….18 

2. Materials and Methods………………………………………………………20 

2.1 Plant materials…………………………………………………………………………..20 

2.2 Chemical suppliers……………………………………………………………………..20 

2.3 Seed sterilisation………………………………………………………………………..20 

2.4 Growth conditions……………………………………………………………………...21 

2.5 Preparation of dialysis membranes and plates ……………………………22 

2.6 Analysis of primary root growth………………………………………………….23 

2.7 Analysis of lateral root growth…………………………………………………….23 

2.8 Root imaging using laser scanning confocal microscopy……………….23 

2.8.1 Analysis of confocal images……………………………………………………...24 

2.9 RNA extraction/cDNA synthesis………………………………………………….24 

2.10 PCR………………………………………………………………………………………….26 

2.11 qRT-PCR…………………………………………………………………………………..27 



4 
 

2.12 Statistical Analysis…………………………………………………………………...28 

3. Results………………………………………………………………………………29 

3.1 The effect of mechanical impedance on root growth……………………29 

3.1.1 Mechanical stress treatment………………………………………………………..29 

3.1.2 The effect on primary root growth and morphology……………….........30 

3.1.3 The effect of mechanical impedance on lateral root growth………….31 

3.2 How does mechanical impedance affect mutants with 

     altered responses to ethylene and auxin?...................................................33 

3.2.1 The effect of mechanical impedance on ethylene  

insensitive mutants…………………………………………………………………..33 

3.2.2 The effect of mechanical impedance on ethylene  

sensitive mutants……………………………………………………………………..35 

3.2.3  The effect of mechanical impedance on auxin  

transport mutants…………………………………………………………………….36 

3.3 The effect of chemical and hormone treatment on the 

response of Arabidopsis roots to mechanical impedance………………38 

3.3.1 The effect of Ag+ treatment on the root response to  

mechanical impedance……………………………………………………………..38 

3.3.2 The effect of NPA on the root response to mechanical  

impedance……………………………………………………………………………….40 

3.3.3 The role of ABA in the root response to mechanical  

impedance………………………………………………………………………………..41 

3.4 The effect of mechanical impedance of localisation and 

 expression of auxin responsive genes…………………………………………44 

3.4.1 The effect of mechanical impedance on the localisation 

 and expression of the auxin reporter DR5:Venus………………………44 

3.4.2 The effect of mechanical impedance on PIN1:GFP and 

 PIN2:GFP expression……………………………………………………………….45 

3.5 The effect of mechanical impedance the expression of  

cytokinin and gibberellin responsive genes………………………………….48 

3.5.1 The effect of mechanical impedance on the expression 

of TCS:GFP……………………………………………………………………………….48 

3.5.2 The effect of mechanical impedance on the expression 

of RGA:GFP………………………………………………………………………………49 

3.6 The effect of mechanical impedance on the expression of 

 gene responsive to ethylene, auxin and physical stress………………..51 

4. Discussion…………………………………………………………………………53 

4.1 The response of primary root growth to mechanical  

impedance resembles the response of roots to ethylene………………53 



5 
 

4.2 Mechanical impedance affects lateral root growth……………………….56 

4.3 Ethylene signalling is required for the response to 

 mechanical impedance……………………………………………………………….58 

4.4 Correct auxin transport is required for the response to  

mechanical impedance………………………………………………………………..61 

4.5 The role of other plant hormones………………………………………………..64 

4.5.1 ABA is not required for a mechanical impedance response………..65 

4.5.2 Mechanical impedance appears to alter cytokinin but  

not affect gibberellin signalling…………………………………………………66 

4.6 Gene expression analysis using qRT-PCR showed no 

significant change in the expression of target genes  

under mechanical impedance …………………………………………………….68 

4.7 Further questions and future work……………………………………………..70 

4.7.1 Is ethylene biosynthesis involved in the mechanical  

impedance response?..........................................................................................70 

4.7.2 Does ethylene and auxin signalling induce changes in  

cytoskeletal organisation in mechanically impeded roots?...............71 

4.7.3 How are other plant hormones involved in the response?................72 

4.7.4 How do root respond when mechanical impedance and  

osmotic stress are combined?.........................................................................73 

4.8 Conclusion …………………………………………………………………………………73 

Bibliography……………………………………………………………………………..75 

 

 

 

 

 

 

 

 

 



6 
 

Declaration and statement of copyright  

I declare that the work presented in this thesis is the result of my own work. No 

part of this thesis has previously been submitted for a higher degree.  

The copyright of this thesis rests with the author. No quotation from it should be 

published without the author's prior written consent and information derived from it 

should be acknowledged. 

 

Acknowledgements 

 

Firstly I would like to thank my supervisors Keith and Jen for the opportunity to 

work on this research and for all their help, guidance and advice.  

I would also like to thank the other members of the lab during my master’s for all 

their help in the lab. My thanks go to James, Anna, Flora and Vinny for their 

technical support in the lab and for showing me the ropes, also to Sam and Kat for 

their help while we completed our master’s.   

Finally, thank you to my family for all their support and encouragement of my 

further studies.  

  



7 
 

1. Introduction  

Plant roots are able to respond to a range of environmental cues and rely on 

flexible growth to adapt to any stressful conditions they encounter. Root growth is 

therefore important for maintaining crop yields and root growth traits are of great 

interest to plant breeders (Gewin, 2010). Physical stresses in the soil limit root 

elongation. These include insufficient water or oxygen and mechanical impedance 

(Bengough et al., 2006). As plant roots are required to navigate through barriers in 

the soil, their roots must be able to respond to mechanical impedance. In addition 

there is a strong interaction between soil strength and water content, meaning 

mechanical impedance becomes an increasing problem in drying soils (Whalley et 

al., 2005; Jin et al., 2013). Soils dry as a result of the evapo-transpirational demand 

from the crop canopy, causing soil water content to decrease and strength to 

increase. This effect is exacerbated by increased soil compaction through the use of 

larger and heavier farming machinery (Jin et al., 2013).  

Soil strength is typically measured using penetrometer resistance. This is a 

measure equal to the force needed to push a metal cone through the soil divided by 

the cross sectional area (Bengough et al., 2011). Penetrometer resistance has been 

shown to correlate with root elongation with a penetrometer resistance of 2MPa 

used as an indicator for the soil strength at which mechanical impedance limits 

root growth (Whitmore and Whalley, 2009; Bengough et al., 2011).  Such levels of 

soil strength can occur even in relatively moist soils. Mechanical impedance has 

been shown to limit root growth in soils as wet as -100kPa (Whalley et al., 2005).  

Early studies have also shown that mechanical impedance in the soil environment 

affects leaf growth due to signalling between the root and shoot. In hard soils, leaf 

expansion decreases (Masle and Passioura, 1987; Young et al., 1997). There is 
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therefore an agronomic relevance to understanding the response of roots to 

mechanical impedance, as the effects of soil drying and compaction can result in 

decreased crop yields (Whalley et al., 2008).  

Due to its importance in agriculture, most studies investigating root elongation in 

relation to mechanical stress have focused predominantly on crop species. Early 

studies in particular focused on maize as it is experimentally convenient and an 

important worldwide crop (Bengough et al., 2011). There have been comparatively 

fewer studies that have investigated the response of Arabidopsis thaliana roots to 

mechanical impedance. By studying the response of Arabidopsis roots, more details 

about the molecular basis of root responses to mechanical impedance can be 

determined. 

1.1 The structure of the Arabidopsis root and its use as a model system 

Arabidopsis thaliana is widely used in plant research as the model organism and 

standard reference for plant biology and was originally adopted due to its 

usefulness for genetic experiments. Important features that make Arabidopsis a 

useful experimental system include its small size and short generation time, 

making it easy to grow, as well as its ability to self-pollinate and produce a lot of 

seed (Koornneef and Meinke, 2010). In addition Arabidopsis has a small genome 

and was the first plant genome to be sequenced (Arabidopsis Genome Initiative, 

2000). The root of Arabidopsis has a largely fixed cellular organisation and is 

amenable to experimental manipulation, making it a useful model for studying 

developmental processes such as patterning and hormone responses (Scheres and 

Wolkenfelt, 1998).   
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The Arabidopsis root displays a radial organisation, with concentric rings of cell 

files that are easily recognizable by their morphology (Figure 1). From the outside 

to the inside, these are made up of the epidermis, cortex, endodermis, pericycle 

and finally central vascular tissue (phloem and xylem). At the root tip an additional 

cell layer above the epidermis forms the lateral root cap (Dolan et al., 1993). The 

root tip can be divided into distinct developmental zones displaying different 

cellular behaviours. The root apical meristem (RAM) generates the primary root 

and is the zone of cell division. The RAM is surrounded by a protective cell layer 

made up of the columella and lateral root cap. In the elongation zone the rate of 

division decreases and cells undergo rapid elongation. Finally in the differentiation 

zone elongated cells mature and begin to form root hairs (Dolan et al., 1993).  

Figure 1. Structure of the Arabidopsis primary root tip, taken from (Jaillais and 

Chory, 2010).  

The Arabidopsis root has a highly ordered structure made up of concentric rings of cell 

files (epidermis, cortex, endodermis, pericycle and vasculature). Root tissue is derived 

from stem cells in the apical meristem. Cells divide first in the meristematic zone before 

passing through the transition zone into the elongation zone.  
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Root tissue is derived from stem cells in the RAM, with specific initials giving rise 

to the different cell files. These stem cell initials are arranged adjacently to the 

quiescent centre (QC), a region of four cells with a low frequency of division that is 

essential for the maintenance of undifferentiated initials (Dolan et al., 1993; van 

den Berg et al., 1997). Together they form the stem cell niche. The epidermis, 

cortex, endodermis and stele are derived from initials on the shootward and lateral 

sides of the QC. They undergo a process of division and elongation at the root tip 

before reaching maturation. Repetition of this process forms the basis of primary 

root growth (Petricka et al., 2012).  

1.2 Mechanisms of root elongation and the effect of mechanical impedance 

Roots elongate through a process of cell division and expansion. Active cell division 

occurs in the meristem before passing through the transition zone into the 

elongation zone, where they undergo rapid elongation (Ubeda-Tomas et al., 2012). 

Here the cells expand until they reach a mature cell length.  It is generally believed 

that cell expansion is driven by water influx into the cell generating a turgor 

pressure. Cell turgor pressure therefore generates growth pressure, which is equal 

to the soil pressure that opposes root elongation (Jin et al., 2013).   

Root elongation has been shown to decrease in strong soils in a number of crop 

species. For example increasing soil strength (penetrometer resistance) resulted in 

a decrease in root elongation in peanuts and cotton (Taylor and Ratliff, 1968), 

maize (Bengough and Mullins, 1991), pea (Croser et al., 1999; Iijima and Kato, 

2007) and tobacco (Alameda et al. 2012).  In a study by Croser et al. (1999 and 

2000) roots were subjected to mechanical stress by being grown in compressed 

sand. Under mechanical impedance cell length was reduced and the length of the 

elongation zone shortened.   
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The slower rate of elongation in mechanically impeded roots is therefore likely due 

to a reduced rate of axial cell elongation and production (Croser et al., 2000; Jin et 

al., 2013). Cell wall tension in the axial direction opposes root elongation. In 

response to mechanical impedance tension is increased by the stiffening of cell 

walls in the elongation zone and with a corresponding shortening of the elongation 

zone (Bengough et al., 2006).  

1.3 Effects of mechanical impedance on root morphology and physiology  

1.3.1 Root thickening 

As well as reducing root elongation, mechanical impedance has other impacts on 

root morphology and physiology. It has been widely reported that strong soils 

induce thickening in the root (Clark et al., 2002; Hanbury and Atwell, 2005; Jin et 

al., 2013). Comparisons suggest that root thickening facilitates root penetration in 

hard soils and better maintains root elongation (Bengough et al., 2011). It is 

thought root thickening enables the reduction of axial stress at the tips of roots 

(Hettiaratchi, 1990; Jin et al., 2013). This is consistent with the observation that 

root elongation is insensitive to radial pressure (Kolb et al., 2012) but can be very 

sensitive to axial pressure (Bengough et al., 2012).  

1.3.2 Root hair growth 

Changes in root hair growth also appear to play a role in the root’s response to 

mechanical impedance. Root hairs are likely to be involved in anchorage of the root 

tip to allow expanding tissue to advance into the new soil (Bengough et al., 2011). 

It has been shown that root hairs proliferate closer to the root tip of mechanically 

impeded barley roots (Goss and Russel, 1980). In Arabidopsis it appears that root 

hairs elongate only when cell elongation has ceased (Bengough et al., 2010). 
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Although root hairs do not contribute to pull-out resistance of the root, it was 

hypothesised early that they may contribute to anchorage (Stolzy and Barley, 

1968; Bailey et al., 2002). Root hair growth in Arabidopsis has been shown to be 

affected by mechanical impedance, with root hair growth occurring closer to the 

root tip (Okamoto et al., 2008). 

1.3.3 The root cap 

Peak stress occurs at the point adjacent to the apex of the root cap and the root cap 

plays an important role in determining mechanical action between the root and 

soil (Kirby and Bengough, 2002; Bengough et al., 2006) In maize roots, removing 

the root cap halves elongation rate in compacted soils due to an increase in root 

penetration resistance (Iijima et al., 2003). The intact root cap and associated 

border cells facilitate root elongation by decreasing friction between the root tip 

and the soil (Bengough et al., 2006). The rates of border cell and mucilage 

production are found to increase with increasing mechanical impedance (Iijima et 

al., 2000). Analysis of particle movement along maize roots has shown that 

lubrication by the root cap allows sand particles to move more easily along the 

epidermis of the elongation zone than for mutants with the root cap removed 

(Vollsnes et al, 2010). As the root tip is the area at which peak stress occurs and 

axial pressure has been observed to affect cell elongation more strongly than radial 

pressure, it is possible that the root tip plays a role in sensing mechanical 

impedance. Soil strength may be sensed by the effect of axial pressure on the root 

tip causing to root to adjust the rate of growth accordingly (Jin et al., 2013). 

Control of growth is then likely to be mediated through the control of cell flux and 

elongation.  
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1.4 Hormonal control of root growth and development 

There are a number of plant hormones involved in the regulation of root growth 

and development including auxin, ethylene, cytokinin, abscisic acid, gibberellin and 

brassinosteroids. Plant hormones and their signalling systems interact both 

antagonistically and synergistically to control cell division, growth and 

differentiation (Takatsuka and Umeda, 2014). Hormones form a network with 

their associated target genes, with genes regulating hormone activities and 

hormones regulating gene expression (Moore et al., 2015). The concentration of 

hormones in a cell is the result of a number of factors, including changes in 

biosynthesis and short- or long-range transport and by activation, inactivation and 

degradation (Del Bianco et al., 2013; Moore et al., 2015). For roots to develop 

correctly there must be a specific patterning of responses to hormone signalling 

and gene expression. For example, cellular patterning in the Arabidopsis root 

requires the establishment of an auxin concentration maximum close to the QC 

(Sabatini et al., 1999; Moore et al., 2015). Hormonal crosstalk is also vital for plants 

to able to respond to stress. Under stress, levels of plant hormones are altered in 

order to coordinate a change in development and response to stress (Liu et al., 

2014). For example in response to osmotic stress abscisic acid (ABA) levels 

increase in order to maintain normal growth.  It is therefore important to 

understand how the different plant hormones interact to control root growth and 

what changes may occur in response to stress. 

1.4.1 The ethylene signalling pathway 

Ethylene is a gaseous hormone that regulates a number developmental processes 

including fruit ripening, organ senescence and root growth (Ju and Chang, 2015). It 

also functions as a stress hormone and is induced in response to wounding, 
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flooding, cold and nutrient stress as well as mechanical stimulation (Buer at al., 

2003; Yamamoto et al., 2008; Lin et al., 2009).  

 

 

 

 

The core ethylene signalling pathway is shown in Figure 2. Perception of ethylene 

occurs at the endoplasmic reticulum (ER) membrane, with signal transduction 

leading to a transcription cascade that results in changes in cellular, physiological 

and metabolic responses (Ju and Chang, 2015).  Arabidopsis has five ethylene 

receptors (ETR1, ERS1, ETR2, EIN4, and ERS2) that act as negative regulators of 

the ethylene response (Chang et al., 1993; Hua et al., 1995; Hua et al., 1998; Sakai 

et al., 1998; Hua and Meyerowitz, 1998). In the absence of ethylene, the receptor 

Figure 2. The core ethylene signalling pathway, taken from (Ju and Chang, 2015).  

Ethylene represses activity of the ethylene receptors (ETR1, ERS1, ETR2, EIN4, and 

ERS2) which would otherwise prevent an ethylene response through the negative 

regulator CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1).  EIN2 and EIN3 are positive 

regulators of the ethylene response. Mutant seedling phenotypes in the triple response 

assay are shown. Arrows indicate activation and T-bars repression of the pathway.   
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interacts with and activates CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), a Raf-

like kinase (Kieber et al., 1993). CTR1 is a negative regulator of the ethylene 

response and its activation results in repression of the downstream pathway. 

When ethylene binds to the receptor it represses it’s signalling, preventing the 

activation of CTR1 (Clark et al., 1998; Hua and Meyerowitz, 1998). ETHYLENE 

INSENSITIVE TWO (EIN2), a positive regulator of ethylene signalling, is then free 

to signal to the nucleus (Alonso et al., 1999). Here the transcription factor EIN3 is 

stabilised (An et al., 2010) and initiates a transcription cascade involving 

ETHYLENE RESPONSE FACTOR 1 (ERF1) and other genes to promote the ethylene 

response (Chao et al., 1997; Solano et al., 1998).  

1.4.2 Ethylene and hormonal crosstalk during root development 

One important aspect of root development is the establishment of an auxin 

gradient. Auxin is transported towards the root tip, where is it required for 

meristem maintenance and pattern formation (Van de Poel et al., 2015).  High 

concentrations of auxin in the root inhibit growth and the directional transport of 

auxin relies on the distribution of PIN efflux proteins (Grieneisen et. al., 2007; 

Mironova et al., 2010). Ethylene has been shown to play an important role in the 

maintenance of this auxin gradient and has been shown to mediate root growth 

through both auxin biosynthesis and transport (Ruzicka et al., 2007; Swarup et al., 

2007).   

Other hormones are involved in the control of root growth that also interact with 

ethylene. These include giberellins (GAs), cytokinins (CKs) and abscisic acid (ABA).  

GAs are responsible for degrading DELLA proteins, which inhibit root growth in 

the elongation zone (Daviere and Achard, 2013). The transport of GAs is likely to 

be mediated by ethylene (Shani et al., 2013). CKs have both been shown to regulate 
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ethylene biosynthesis and have inhibitory effects on root growth (Zd’árská et al., 

2013). CKs are also known to interact antagonistically with auxin (Dello Ioio et al., 

2008).   

1.4.3 POLARIS (PLS) 

POLARIS (PLS) is a 36 amino acid peptide that interacts with both auxin and 

ethylene responses (Casson et al., 2002; Chilley et al., 2006; Liu et al., 2013). Its 

expression is strongest at the root tip where it acts as a negative regulator of the 

ethylene response. The pls mutant shows developmental defects including a short 

root with reduced cell elongation (Casson et al., 2002).  PLS expression in 

Arabidopsis is induced by auxin but repressed by ethylene (Casson et al., 2002; 

Chilley et al., 2006). Expression of PLS influences the abundance of the auxin 

transport proteins PIN1 and PIN2, with the pls mutant showing reduced levels of 

both (Liu et al., 2013). In combination with other experimental data it has been 

shown that interactions between PLS and PIN proteins are important for hormonal 

crosstalk. The PLS peptide and PIN1/PIN2 form an interacting network with auxin, 

ethylene and cytokinin (Liu et al., 2013). It is important to understand the function 

of PLS when investigating the role ethylene signalling and hormonal crosstalk in 

response to abiotic stress.  

1.5 The role of ethylene signalling in the response to mechanical impedance  

Previous studies have demonstrated the role of plant hormones in response to 

mechanical stimulation, in particular the role of ethylene and auxin (Masle, 2002; 

Braam, 2005; Okamoto et al., 2008; Yamamoto et al., 2008).  However, the exact 

nature of the signalling mechanism involved remains unknown. Studies have 
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shown that changes in root morphology due to mechanical impedance resemble 

changes in morphology when exposed to ethylene (Masle 2002, Buer et al. 2003).  

Root thigmotropic responses have previously been shown to be regulated by 

ethylene. Hard (1.5% as opposed to 1%) agar plates inclined at an angle provide a 

touch stimulus for Arabidopsis roots. The response seen is a wavy growth pattern 

in roots due to the mechanical stimulus avoidance response (Okada and Shimura, 

1990). Using this method, Buer et al. (2003) demonstrated that ethylene 

modulates this response. Furthermore ethylene suppressed gravity-dependent 

responses such as root-looping. When Arabidopsis is grown in medium consisting 

of a normal layer and a harder layer, the root can show a bending response at the 

lower, harder layer. The bending or non-bending response of roots has been 

shown to depend on ethylene (Yamamoto et al., 2008).   

It has been demonstrated also that ethylene plays a role root growth responses to 

mechanical impedance. In maize seedlings grown in a dense medium, decreased 

root elongation and increased diameter increased was accompanied by increasing 

levels of ethylene production (Sarquis et al. 1991). In tomato seedlings, inhibition 

of ethylene limits root penetration. In seeds germinated in the presence of an 

ethylene inhibitor, roots maintained positive gravitropism, making contact with 

the growth medium, but were unable to penetrate it (Santisree et al., 2011). A 

reduced ethylene perception mutant also showed an inability to penetrate soil. The 

role of ethylene signalling has also been demonstrated in mechanically impeded 

Arabidopsis roots (Okamoto et al., 2008). Roots undergoing mechanical impedance 

showed a phenotype characteristic of an ethylene response similar to what has 

been previously observed in roots growing in hard soils. Roots were shorter, 

increased in diameter, had decreased cell elongation and formed root hairs closer 
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to the root tip. Ethylene insensitive mutants and seedlings grown in the presence 

of inhibitors of ethylene signalling showed a reduced response (Okamoto et al., 

2008).  

It is possible that ethylene signalling mediates the response of roots to mechanical 

stress through coaction with auxin. Auxin has been shown to be involved in the 

response of roots to mechanical impedance in tomato seedlings (Santisree et al., 

2011) and in Arabidopsis (Okamoto et al., 2008). It has previously been 

demonstrated that the effect of ethylene on root growth is mediated through 

regulation auxin biosynthesis and localisation of auxin transporters. It is likely that 

through this mechanism ethylene inhibits cell elongation and promotes cell 

expansion (Ruzicka et al., 2007; Strader et al., 2010). So far the evidence suggests 

that root responses to mechanical impedance are the result of an ethylene 

response mediated through auxin signalling.  

1.6 Project aims  

This project aims to investigate how mechanical stress on roots causes a change in 

root growth and the mechanism by which this occurs. We hypothesise that changes 

in root growth under mechanical stress occurs due to an activation of ethylene 

responses which in turn regulates the effect of auxin.  

In order to investigate the signalling mechanism involved in changes in primary 

root growth, Arabidopsis roots need to undergo constant mechanical impedance. I 

am using a previously developed method that ensures roots undergo constant 

mechanical stimulation (Okamoto et al., 2008). Arabidopsis seedlings are grown on 

dialysis membrane covered plates orientated either vertically or horizontally. 
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When grown horizontally they are mechanically impeded as the roots are unable 

to penetrate the dialysis membrane as they attempt to grow downwards.  

Using this method the response of wild-type Arabidopsis roots to mechanical 

impedance will be characterised (Chapter 3.1.1). In particular, whether they 

respond to mechanical impedance by exhibiting a characteristic ethylene response 

(shorter roots, longer root hairs and root growth closer to the tip).  As well as 

investigating the response of the primary root to mechanical impedance, I will also 

aim to look at the effect on the more overall root architecture, in particular lateral 

root growth (Chapter 3.1.3). It has been previously reported that mechanical 

impedance affects lateral root growth (Goss, 1977; Bingham and Bengough, 2003).  

Secondly the role of plant hormones in the response of roots to mechanical 

impedance will be investigated. The main focus will be on the role of ethylene and 

its effect on auxin; however the role of other plant hormones such as ABA, 

cytokinins and giberellins will also be briefly looked at (Chapters 3.3.3, 3.5.1 and 

3.5.2).  Chemical inhibitors and analysis of mutant responses will be used to 

investigate the role of ethylene and auxin in regulating the mechanical impedance 

response (Chapters 3.2 and 3.3). Hormonal responses will also be investigated by 

looking for changes in the expression and localisation of fluorescently labelled 

reporter proteins (Chapter 3.4 and 3.6). Finally gene expression analysis using 

quantitative real time (qRT)-PCR will also be used to investigate the role of plant 

hormones in regulating root growth under mechanical impedance (Chapter 3.6)  
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2. Materials and Methods 

2.1 Plant Materials 

Wildtype Arabidopsis thaliana seeds were obtained from laboratory stocks of 

Columbia (Col-0) or C24 ecotypes originally from the Lehle seeds (Texas, US).  The 

auxin resistant mutant aux1 (Pickett et al. 1990), auxin transport mutant eir1 

(Roman et al. 1995), ethylene insensitive etr1 and ein2, and ethylene 

overproduction mutant eto1 (Guzman and Ecker, 1990) were obtained from 

laboratory stocks. The polaris (pls) mutant was previously generated by promoter 

trapping in a C24 background (Topping et al. 1994; Topping and Lindsey 1997).  

DR5::VENUS (Heisler et al. 2005) lines used for fluorescent imaging of auxin 

distribution were obtained from the Nottingham Arabidopsis Stock Centre (NASC) 

as was TCS::GFP (Müller and Sheen, 2008). ProPIN1::PIN1::GFP (Benkova et al. 

2003) and proPIN2::PIN2::GFP (Xu and Scheres, 2005) were obtained courtesy of 

Ben Scheres (Wageningen University).  RGA::GFP (Silverstone et al. 2001) was 

obtained courtesy of Ari Sadanandom (Durham University).  

2.2 Chemical Suppliers 

All materials and reagents were obtained from Sigma Aldrich unless otherwise 

stated. 

2.3 Seed Sterilisation 

Seed sterilisation was carried out under sterile conditions within a laminar flow 

hood. Seeds were sterilised in Eppendorf tubes first with 70% (v/v) ethanol for 

30s then for 12 minutes in commercial bleach diluted to a 20% solution with 

water.   After removal of the bleach solution seeds were washed with sterile 
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deionised water at least five times. Seeds were stored  in deionised water at 4oC for 

at least five days before being germinated and used for experiments. 

2.4 Growth Conditions  

Agar media was made up to contain 2.2 g/l of Murashige Skoog basal salt mixture, 

10 g/l sucrose and 5g/l agar. The pH of the media solution was adjusted to pH 5.7 

using a 0.1M KOH solution before the addition of agar. Media was autoclaved  for 

20 min at 120oC. Seeds were first placed on round Petri plates of half strength 

Murashige Skoog (MS) nutrient agar media, sealed with Micropore tape and 

maintained in a growth room (22oC, 18 hour photoperiod) as described previously 

(Casson et al. 2002).  

The growing system used to provide continuous mechanical stimulation to roots 

has been adapted from a previously described method (Okamoto et al. 2008). 

Three days after germination, seedlings were transferred onto square plates 

(100x100x20mm, STARSTEDT) containing ½ MS nutrient agar media covered with 

a dialysis membrane (Dialysis tubing cellulose membrane; molecular weight cut off 

14,000; flat width 76mm; Sigma-Aldrich) and the plates were sealed with 

Micropore tape. Seedlings were grown on dialysis membrane plates orientated 

either vertically (control) or horizontally (mechanically impeded) for 4 days (22oC, 

18 hour photoperiod).  

Chemicals and hormones such as ABA, Fluridone, AgS2O3 and NPA were filter 

sterilised and added to agar media as it cooled and before placement of the  

sterilised dialysis membrane. Stock solutions of 10mM were prepared according to 

Table 1 and stored for up to one month.  
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Table 1. Chemical and hormone stock solution preparation 

2.5 Preparation of dialysis membranes and plates 

Dialysis tubing (Dialysis tubing cellulose membrane; molecular weight cut off 

14,000; flat width 76mm; Sigma-Aldrich) was cut into flat square (10cmx10cm) 

sections and rinsed with deionised water. Membranes were then treated in a 

solution of 1mM EDTA at 60oC for 20 min to remove trace metals.  Membranes 

were rinsed for a second time in deionised water and stored in deionised water 

within glass bottles. Before use membranes were autoclaved for 20 min at 120oC.   

Plates were prepared by first pouring liquid agar media into square plates 

(100x100x20mm, STARSTEDT) and allowing to set. Autoclaved dialysis 

Chemical/Hormone Stock solution preparation 

ABA (Abscisic acid)  22.6 mg of ABA was dissolved in 10ml of 

Methanol and filter sterilised.  

Stored at -20oC 

Fluridone (C19H14F3NO) 32.9 mg of Fluridone was dissolved in 

10ml of Methanol and filter sterilised. 

Stored at -20oC  

NPA  (N-1-Naphthylphthalamic acid; 

Greyhound Chromatography and Allied 

Chemicals) 

29.1 g of NPA was dissolved in 10ml of 

DMSO and stored at -20oC. 

Silver Thiosulphate (AgS2O3) 

 

Silver Nitrate solution (5ml at 3.4 mg/ml) 

was added dropwise to a Sodium 

Thiosulphate solution (5ml at 12.7 

mg/ml) to give 10mM silver ion solution 

and stored at 4oC.  
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membranes were then placed flat on top of the set agar within the plate. Dialysis 

membranes were handled using forceps sterilised with 95% (v/v) ethanol to avoid 

contamination. Once dialysis membranes were in place seedlings were transferred 

on to the plates and placed directly onto the membrane surface.   

2.6 Analysis of primary root growth 

After 4 days of growth on the dialysis membrane, all plates were photographed 

alongside a ruler for scale (model; Epson 1680 pro flathead scanner) and primary 

root length was measured. Root tips were photographed using a Leica 

stereomicroscope and distance from the root tip to the start of root hair growth 

measured.  Each growth assay was repeated at least three times with at least 15 

individuals per treatment. All image analysis was carried out using ImageJ.  

2.7 Analysis of lateral root growth 

Seedlings were photographed at 9 days old alongside a ruler for scale. Images were 

analysed using the image analysis programme Smart Root (Lobet et al., 2011; 

available at http://www.uclouvain.be/en-smartroot). Primary and lateral root 

lengths and number of lateral roots were recorded for each seedling.  

2.8 Root imaging using laser scanning confocal microscopy 

Distribution and expression of Auxin and PIN proteins was investigated using the 

DR5::VENUS, proPIN1::PIN1::GFP and proPIN2::PIN2::GFP reporter lines. In addition 

the reporter line RGA::GFP and synthetic reporter TCS::GFP were used to investigate 

the possible role of cytokinin and gibberellin.  

Individual 7 day old seedlings were stained with propidium iodide by transferring 

the seedling to a solution of propidium iodide (0.5 µg/ml) and treating for 1 min 
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30s. Seedlings were then washed in sterile deionised water for the same time and 

the root tip removed and mounted in deionised water on the slide. Root tips were 

imaged using a Leica SP5 laser scanning confocal microscope (www.leica-

microsystems.com). For different reporter lines, microscope settings were set to 

optimise image quality but were consistent between individuals of the same 

reporter line. Sequential scans were used and detection spectra were chosen to 

minimise crossover between fluorophores. YFP and propidium iodide were excited 

using the 514 nm band of the argon laser and GFP with the 488 band of the argon 

laser.  

2.8.1 Analysis of confocal images 

Images obtained were processed first using LAS AF LITE software (v2.63 build 

8173http://www.leica-microsystems.com/products/microscope-software/life-

sciences/las-af-advanced-fluorescence/).  ImageJ was then used to analyse images 

and fluorescence was measured using the “colour histogram” tool. For each 

treatment images from at least six different individuals were analysed.  

2.9 RNA extraction/Dnase/ cDNA synthesis 

Whole roots of 7 day old seedlings were removed using a razor blade and frozen in 

liquid nitrogen. At least 30mg of tissue was then ground whilst frozen and used for 

RNA extraction. RNA was extracted using a Sigma Spectrum Plant Total RNA kit 

(Sigma Aldrich). An on-column DNA digest was performed using an On-Column 

DNase I Digest Set (Sigma Aldrich). Total RNA concentration was then measured 

using a Nanodrop ND1000 Spectrophotometer (ThermoFisher Scientific, Hemel 

Hempstead, UK).  
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For cDNA synthesis, RNA solutions were concentrated to above 300 ng/µl. 3 μg of 

RNA in a 20 μl solution was used for cDNA synthesis. Reaction mixes were made 

up and incubated according to Table 2 and used the Superscript III First-Strand 

Synthesis System (Invitrogen Ltd, Paisley, UK). 

 

 

After cDNA synthesis 1 µl of RNase H was added and the sample incubated for 20 

mins at 37oC to remove the RNA template. cDNA solutions were then diluted 1 in 4 

and stored at -20oC until required for PCR.  

 

 

 

RNA mix x1 reaction Incubation 

RNA 3 µg in 10µl sdH20  

OligodT20 (50µm) 1 µl  

dNTPs (10mM) 1 µl  

Total 12 µl 65oC for 5 minutes 

cDNA synthesis mix x1 reaction Incubation 

10x RT BUFFER 2 µl  

50 mM MgCL2 2 µl  

0.1 DTT 2 µl  

RNase OUT 1 µl  

Superscript III 1 µl  

Incubated RNA mix 12 µl  

Total 20 µl 50oC for 50 mins 

85oC for 5 mins 

Table 2. Reaction mixes and incubation times used by the Superscript III first 

strand synthesis system for cDNA synthesis 
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2.10 PCR  

The products of cDNA synthesis were tested using a standard PCR amplification of 

ACT2 (primer sets Table 6). A standard PCR was also used to test primer sets to be 

used in qRT-PCR. Each PCR reaction was set up with the following mixes (Table 3) 

and PCR cycling conditions (Table 4) according to the standard MyTAQ DNA 

polymerase protocol (Bioline).  

 

 

 

 

 

 

 

 

 

 

 

 

PCR products were tested using gel electrophoresis.  Gels were made by dissolving 

agarose in TAE buffer and ethidium bromide added before pouring. A 2.5 µl sample 

was loaded with 2.5 µl of 5x loading buffer. Each gel also had a separate well 

PCR mix X1 reaction 

5x MyTAQ Reaction Buffer 10 µl 

cDNA template 1 µl 

Forward Primer (20µM) 1 µl 

Forward Primer (20µM) 1 µl 

MyTaq DNA Polymerase 1 µl 

Water (sterile ddH20) 36 µl 

Step Temperature Time Cycles 

Initial 

Denaturation 

95oC 1min 1 

Denaturation 95oC 15s  

35 
Annealing 55oC 15s 

Extension 72oC 10s 

Table 3. PCR reaction set-up  

 

 

Table 4. PCR cycling conditions. PCR performed using an Applied G-Storm 

GS1 PCR machine 
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containing 5 µl Hyperladder for fragment size determination. Gels were imaged 

using a BioRad Gel-Doc 1000. 

2.11 qRT-PCR 

Quantitative real-time polymerase chain reactions (qRT-PCR) were carried out 

using a SYBR Green JumpStart Taq Readymix (Sigma-Aldrich) on a Rotorgene Q 

(Qiagen). The reaction mix for each run was made up according to Table 5 and 

using the primer sets in Table 6. 

Samples from three biological replicates were amplified in each case and each 

reaction was set up in triplicate for technical repetition. Gene expression was 

calculated from the average of the three technical repeats relative to the 

amplification of a reference gene (AT5G15710) using the Rotorgene Q series 

software v1.7 to perform a comparative quantitation. The relative concentration of 

each sample is calculated as Amplification^(Calibrator takeoff – Sample takeoff).  The 

reference gene AT5G15710 was chosen due to its relative stability under physical 

stress conditions (Czechowski et al., 2005). Reference gene stability was tested by 

comparing expression levels between all sampled of treatment and control. 

Amplification specificity was checked using melt curve analysis.  

qPCR mix x1 reaction 

Forward Primer (20 µM) 0.25 µl 

Reverse Primer (20 µM) 0.25 µl 

cDNA 0.5 µl 

2X SYBR JumpStart Readymix 10 µl 

sterile dH20 9 µl 

Total 20 µl 

Table 5. qPCR reaction mix set up 
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Target gene Primer Sequences 5’-3’ 

ACT2 GGATCGGTGGTTCCATTCTTGC 

AGAGTTTGTCACACACAAGTGCA 

AT5G15710 CTCTTTCGCCTCTTGGTTTG 

TCCTTCCCACGAGAAACAAT 

ERF1 GGTATTAGGGTTTGGCTCGG 

CCGAAAGCGACTCTTGAACT 

PIN1 TCGTTGCTTCTTATGCCGTT 

AGAAGAGTTATGGGCAACGC 

PIN2 AATGCTGGTTGCTTTGCCTG 

CCTTTGGGTCGTATCGCCTT 

ARR5 TGTCCTGATTCTTTCGGCTT  

ACCCATCTTTGTCACTCTTGA  

DREB2B CCCATCAGAGCCAAGACCAA 

GGACCATTGCCTCAGAACTC 

RD29B GGGGAAAGGACATGGTGAGG 

GGTTTACCACCGAGCCAAGA 

Table 6. Primer sets used for qPCR 

2.1 Statistical Analysis 

All statistical analysis was carried out using either IBM SPSS Statistics 22.0 or on 

Microsoft Excel 2010. 
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3. Results 

 

3.1 The effect of mechanical impedance on root growth 

3.1.1 Mechanical stress treatment 

To examine the effects of mechanical impedance on root growth, seedlings were 

grown on agar plates covered with a dialysis membrane placed either vertically or 

horizontally (Okamoto et al. 2008). Growing seedlings in the horizontal plane 

provides continuous mechanical stimulation as root tips touch the dialysis 

membrane while attempting to bend downwards. The presence of the dialysis 

membrane also prevents roots from growing into the agar media and forming coil 

structures. When seedlings are grown in the vertical plane, they grow down the 

surface of the membrane without contacting any physical barrier, and they do not 

experience mechanical impedance.  

Root growth of seedlings grown vertically in the presence and absence of a dialysis 

membrane was compared. This was to ensure that the presence of a dialysis 

membrane did not have a detrimental effect on root growth under normal 

conditions. Seedlings were germinated and transferred to the membrane system 

after 3 days. They were then grown for 4 days in the presence or absence of a 

dialysis membrane and root growth and morphology was determined. It was found 

that growing seedlings in the presence of a dialysis membrane does not appear to 

have a detrimental effect on root growth compared with growing seedlings on just 

agar media (Figure 3). This suggests that sufficient nutrients and water are 

available to seedlings even in the presence of the dialysis membrane.  
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3.1.2 The effect of mechanical impedance on primary root growth and morphology 

The root growth of vertically orientated and horizontally orientated (mechanically 

impeded) wildtype (Col0) Arabidopsis seedlings was compared.  Wildtype 

seedlings grown horizontally in the presence of a dialysis membrane showed 

altered root growth and morphology compared to vertically grown seedlings. Root 

length was significantly reduced in horizontally grown seedlings (t-test, p <0.001; 

Figure 4A) compared to vertically grown seedlings. In addition initiation of root 

hair growth was closer to the root tip (t-test, P<0.001; Figure 4B), an indicator of 

meristem degradation with differentiation occurring closer to the root tip (Rost 

and Baum, 1988; Sanchez-Calderon et al., 2005; Shishkova et al., 2008). 

Mechanically impeded roots showed an increase in diameter of 10% from a mean 

thickness of 138 ± 2.23 (SE) µm in vertically grown seedlings to 154 ± 3.23 (SE) 

µm in horizontally grown seedlings (t-test, p <0.001).  The growth of these 

mechanically impeded roots was characteristic of an ethylene response (Le et al., 

Figure 3. The effect of the presence of a dialysis membrane on wildtype (Col0) 

Arabidopsis root growth. (A) The effect of a dialysis membrane on primary root 

length of vertically grown 7d old seedlings. Error bars show mean +/- SE (n = 32)  
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Figure 4. The effect of mechanical impedance on wildtype (Col0) Arabidopsis  root 

growth. A,B Effect of mechanical impedance on (A) primary root length (t-test, p < 

0.001) and (B) root hair growth (t-test, p < 0.001)of 7d old seedlings. Error bars show 

mean +/- SE (n = 60). C, Roots of 7d old seedlings grown on dialysis membrane. Scale 

bar indicates 0.5 mm.  

 

2001; Okamoto et al., 2008), with shorter roots, longer root hairs and root hair 

growth closer to the tip (Figure 4).  

 

 

 

 

 

 

 

 

 

 

3.1.3 The effect of mechanical impedance on lateral root growth 

Previous studies have shown that mechanical impedance may also have an effect 

on root architecture. Studies on wheat and barley have shown that lateral root 

growth is affected when roots are mechanically impeded (Goss, 1977; Bingham 

and Bengough, 2003).  In mechanically impeded barley, lateral root length has 

been shown to increase and the overall density of lateral roots is greater (Goss, 
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1977). However, lateral root growth has also been reported to decrease in strong 

soils, although to a lesser extent than the primary root (Bingham and Bengough, 

2003). Therefore we examined whether mechanical impedance has an effect on 

root architecture of Arabidopsis.  

 

To investigate whether mechanical impedance may affect lateral root growth, 9 

day old seedlings were imaged and the number and length of lateral roots 

Figure 5. The effect of mechanical impedance on lateral root growth of  wildtype 

(Col0) Arabidopsis seedlings. A-C, The effect of mechanical impedance on (A) 

primary root length (t-test, p < 0.001) , (B) number of lateral roots (t-test, p = 2.06) and 

(C) lateral root length (t-test, p < 0.001) of 9 day old seedlings. D, The average number 

of lateral roots of different lengths of 9 day old seedlings grown vertically or 

horizontally in the presence of a dialysis membrane. All error bars show mean +/- SE 

(n = 18) 
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recorded (Figure 5). Again primary root length was significantly shorter in 

horizontally grown seedlings compared to vertically grown ones (Student’s t-test, 

P<0.001). Although the number of lateral roots did not differ between treatments 

(Figure 5B), horizontally grown seedlings had significantly longer lateral roots (t-

test, P<0.001; Figure 5C). On average, vertically grown seedlings have a higher 

number of shorter (between 0-2mm) lateral roots while horizontally grown 

seedlings appear to have a higher number of longer roots (Figure 5D).  

 

3.2 How does mechanical impedance affect mutants with altered responses 

to ethylene and auxin?  

3.2.1 The effect of mechanical impedance on ethylene insensitive mutants  

Previous studies have shown that ethylene signalling plays a role in the response 

of roots to mechanical stimulation (Sarquis et al., 1991; Yamamoto et al., 2008; 

Okamoto et al., 2008). Thigmotropic responses such as root bending and the wavy 

growth pattern have been shown to be ethylene dependent (Buer et al., 2003; 

Yamamoto et al., 2008). Studies focusing on the response of roots to mechanical 

impedance have also demonstrated the possible role of ethylene signalling in both 

maize (Sarquis et al., 1991) and Arabidopsis (Okamoto et al., 2008). Furthermore, 

the response of mechanically impeded roots resembles the response to ethylene 

treatment (Le et al., 2001; Okamoto et al., 2008). Based on these findings it is likely 

that ethylene signalling is involved in the root’s response to mechanical 

impedance. 

In order to investigate the role of ethylene signalling in the response of roots to 

mechanical impedance, the response of mutants insensitive to ethylene was 

analysed. Two different mutants were used, etr1 (ethylene resistant 1, a gain of 
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function ethylene receptor mutant) and ein2 (ethylene insensitive 2, an ethylene 

signalling mutant).  

 

 

 

 

The same experimental procedure used to examine the response of wildtype 

seedlings to mechanical impedance was used to investigate the mutant response. 

Seedlings were germinated and transferred to the membrane system after 3 days 

and grown for 4 days in the presence or absence of a dialysis membrane. At 7 days 

root growth and morphology was determined.  Both etr1 and ein2 showed an 

altered response under mechanical impedance compared to the wildtype (Figure 

6). Primary root length was not reduced when the mutant seedlings were 

Figure 6. The effect of mechanical impedance on the root growth of ethylene 

resistant Arabidopsis mutants. A,B Effect of mechanical impedance on (A) primary 

root length (ANOVA, p < 0.001) and (B) root hair growth (ANOVA, p < 0.001) of 7d old 

seedlings. Error bars show mean +/- SE (Col0 n = 60, ein2 n = 52, etr1 n = 36). Data was 

collected from a minimum of three replicates with repeats occurring on separate days. 

Data includes wildtype trend for comparison with mutant response. C, Roots of 7d old 

seedlings grown on dialysis membrane. Scale bar indicates 0.5mm.  
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mechanically impeded and in the case of ein2 increased (Figure 6A). Seedlings 

genotype was found to have a significant effect on root length (ANOVA, P<0.001) 

with a strong interaction between plate orientation and genotype (ANOVA, 

P<0.001).  

In addition, ein2 and etr1 did not show any of the other characteristic ethylene 

response traits observed in the wildtype under mechanical impedance, such as 

longer root hairs and root hair growth closer to the tip (Le et al., 2001; Okamoto et 

al., 2008; Figure 6 B,C). As with root length, plate orientation and genotype were 

found to have an interaction effect on the distance of root hair growth from the 

root tip (ANOVA, P<0.001). These results suggest that ethylene signalling is 

required for the response of roots to mechanical impedance.  

3.2.2 The effect of mechanical impedance on ethylene sensitive mutants  

The response to mechanical impedance of mutants with enhanced ethylene 

biosynthesis or signalling responses was also investigated. Two ethylene mutants 

were used, eto1, an ethylene overproduction mutant (Guzman and Ecker, 1990), 

and polaris (pls), an ethylene signalling mutant (Chilley et al., 2006). The response 

of the wildtype ecotype C24 was also investigated as it is the wildtype background 

for the pls mutant 

Both eto1 and pls seedlings showed a similar response to the wildtype ecotypes 

under mechanical impedance, with reduced root length and increased root hair 

growth closer to the tip (Figure 7). In the case of eto1, horizontally grown seedlings 

exhibited a more pronounced response than the wildtype. For example the 

difference in root length between vertically and horizontally grown seedlings was 

greater for the eto1 mutant than for the wildtype (Figure 7A).  
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The reduced response of the ethylene insensitive mutants under mechanical 

impedance, together with the enhanced response of the eto1 mutant compared 

with the wildtype, suggest that ethylene signalling plays an essential role in 

regulating root development in response to mechanical impedance.  

3.2.3 The effect of mechanical impedance on auxin transport mutants 

The reduced response of ethylene insensitive mutants to mechanical impedance 

supports the role of ethylene signalling in the response of roots to mechanical 

impedance. Ethylene has been shown to control root growth through the 

regulation of auxin biosynthesis and transport (Ruzicka et al. 2007, Strader et al. 

2010). To investigate whether this is true for the response to mechanical 

Figure 7. The effect of mechanical impedance on the root growth of ethylene 

sensitive Arabidopsis mutants. A,B Effect of mechanical impedance on (A) primary 

root length  and (B) root hair growth of 7d old seedlings. Error bars show mean +/- SE 

(Col0 n = 60, eto1 n = 43, C24 n = 44, pls n = 43). Data was collected from a minimum of 

three replicates with repeats occurring on separate days. Data includes wildtype trend 

for comparison with mutant response. C, Roots of 7d old seedlings grown on dialysis 

membrane. Scale bar indicates 0.5mm. 
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impedance, two auxin transport mutants were investigated. The response of aux1, 

an auxin influx mutant, and eir1 (pin2), an auxin efflux mutant, under mechanical 

impedance were investigated.  

 

 

 

Horizontally grown aux1 and eir1 did not exhibit the characteristic mechanical 

response phenotype observed in the roots of wildtype seedlings. Primary root 

length of aux1 and eir1 was not reduced in response to mechanical impedance, 

with aux1 showing an increase in length and eir1 showing no difference in length 

when compared with the vertical control (Figure 8A). Root hair growth in 

mechanically impeded aux1 and eir1 also appeared to be unaffected by mechanical 

impedance. When mechanically impeded, neither of the mutants showed the 

Figure 8. the effect of mechanical impedance on the root growth of auxin 

transport Arabidopsis mutants. A,B Effect of mechanical impedance on (A) primary 

root length (ANOVA, p < 0.001) and (B) root hair growth (ANOVA, p < 0.001) of 7d old 

seedlings. Error bars show mean +/- SE (Col0 n = 60, aux1 n = 59, eir1 n = 43). Data 

was collected from a minimum of three replicates with repeats occurring on separate 

days. Data includes wildtype trend for comparison with mutant response.  C, Roots of 

7d old seedlings grown on dialysis membrane. Scale bar indicates 0.5mm 
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enhanced growth of root hairs seen in the response of the wildtype (Figure 8 B,C) 

Genotype was found to have a strong effect on root length (ANOVA, P<0.001) with 

a strong interaction between genotype and plate orientation (ANOVA, P<0.001), 

indicating an altered response of the auxin mutants to mechanical impedance. In 

addition, the distance of root hair growth from the root tip was also significantly 

affected by genotype (ANOVA, P=0.001) with an interaction between genotype and 

plate orientation (ANOVA, P<0.001). Neither aux1 nor eir1 showed a decrease in 

the distance between the root tip and root hair growth (Figure 8B).     

The reduced response of aux1 and eir1 to mechanical impedance does indicate that 

auxin signalling and transport are involved in the root response to mechanical 

impedance. It is possible therefore that ethylene mediates the response of roots to 

mechanical impedance through auxin signalling.  

 

3.3 The effect of chemical and hormone treatments on the response of 

Arabidopsis roots to mechanical impedance.  

Analysis of the root growth response of various ethylene and auxin insensitive 

mutants suggests that ethylene signalling coupled with auxin transport is involved 

in the root response to mechanical impedance. To further investigate this, the 

effects of chemical inhibitors of ethylene signalling and auxin transport on root 

growth in response to mechanical impedance were studied.  

3.3.1 The effect of Ag+ treatment on the root response to mechanical impedance 

To confirm the role of ethylene signalling, a Silver Thiosulphate solution (AgS2O3) 

was added to the agar media before seedlings were transferred onto the dialysis 

membrane plates. Silver ions inhibit ethylene responses in plants by occupying the 
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copper binding site of the ethylene receptor complex (Beyer, 1976; Binder et al., 

2007).  

 

Seedlings grown in the presence of 1 µM and 10 µM Ag+ showed reduced root 

growth compared to the control with ethylene treatment having a significant effect 

on root length (ANOVA, P<0.001) The difference in root length between 

horizontally and vertically grown seedlings was reduced in the presence of Ag+, 

particularly in the presence of 10 µM Ag+ (Figure 9A). Overall horizontally grown 

seedlings exposed to Ag+ showed a less pronounced mechanical impedance 

phenotype response compared to the control. When mechanically impeded, root 

hairs of Ag+ treated seedlings were shorter and growth was initiated further from 

the root tip than untreated seedlings (Figure 9B).  

Figure 9. The effect of Ag+ on the response of wildtype Arabidopsis to 

mechanical impedance. A, Primary root length of 7 day old seedlings grown 

vertically or horizontally in the presence of a dialysis membrane (ANOVA, p < 0.001). 

Error bars show mean +/- SE (n = 75). Data was collected from three replicates with 

repeats occurring on separate days.. B, Roots of Arabidopsis grown in the presence of 

a dialysis membrane. Scale bar indicates 0.5mm. 
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3.3.2 The effect of NPA on the root response to mechanical impedance 

Ethylene is thought to mediate the response of roots in part at least through 

changes in auxin transport (Ruzicka et al., 2007; Swarup et al., 2007). Investigating 

the response of auxin transport mutants demonstrated the role of auxin transport 

in the root response to ethylene signalling, with mutants showing a reduced 

response under mechanical impedance (Figure 8). To further confirm this, the 

effect of a chemical inhibitor of auxin transport on the response of roots to 

mechanical impedance was also investigated. Arabidopsis seedlings were exposed 

to NPA (1-N-Naphthylphthalamic acid), a chemical inhibitor of auxin efflux (Fujitu 

and Syono, 1996).   

 

 

 

 

 

 

 

 

Seedlings exposed to 0.25 µM and 2.5 µM NPA had shorter roots than the control 

and showed a reduced response to mechanical impedance (Figure 10). The effect 

of NPA treatment on root growth is significant (ANOVA, P<0.001) with a strong 

interaction between NPA treatment and plate orientation (ANOVA, P<0.001).  

Figure 10. The effect of NPA on the response of wildtype Arabidopsis to 

mechanical impedance. A, Primary root length of 7 day old seedlings grown vertically 

or horizontally in the presence of a dialysis membrane (ANOVA, p < 0.001). Error bars 

show mean +/- SE (n = 64). Data was collected from three replicates with repeats 

occurring on separate days. B, Roots of Arabidopsis grown in the presence of a dialysis 

membrane. Scale bar indicates 0.5mm 

https://en.wikipedia.org/w/index.php?title=1-N-Naphthylphthalamic_acid&action=edit&redlink=1
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For example, when exposed to even small amounts of NPA (0.25 µM), horizontally 

grown seedlings exhibited no change in root length compared to vertically grown 

seedlings (Figure 10A).  

Taken together, the reduced response of Arabidopsis roots to mechanical 

impedance when exposed to Ag+ and NPA further confirms the role of ethylene 

signalling and auxin transport.  

3.3.3 The role of ABA in the root response to mechanical impedance  

Previous studies have detected a potential role for ABA in the response of roots to 

mechanical impedance in soils. ABA concentration in xylem sap has been shown to 

increase in plants whose roots are subject to mechanical impedance (Hartung et al. 

1994, Hurley and Rowarth. 1999). However it is unclear whether this is due to 

mechanical stress or a lower water potential. For example root xylem ABA 

concentration has been shown to correlate better with root water potential than 

with soil strength (Dodd et al. 2010). The dialysis membrane system used in the 

current work separates the effects of mechanical impedance and osmotic stress, by 

only inducing mechanical impedance without changing the osmotic potential. 

Therefore we examined the effect of both inhibiting ABA and adding ABA on the 

root response to mechanical impedance.  

To investigate whether ABA signalling is involved in the root response to 

mechanical impedance, seedlings were treated with Fluridone, an inhibitor of 

abscisic acid biosynthesis (Moore and Smith, 1984). Fluridone was added to the 

agar media before seedlings were transferred onto the dialysis membrane plates to 

determine the effect on the roots of vertically and horizontally grown seedlings.  
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Seedlings treated with 100nM fluridone had shorter roots but showed the same 

response under mechanical impedance as seedlings as untreated seedlings. While 

both ABA treatment (ANOVA, P<0.001) and plate orientation (ANOVA, P<0.001) 

had a significant effect on root length there was no interaction between the two 

(ANOVA, P = 0.171). Horizontally grown seedlings had shorter roots than vertically 

grown seedlings, even under fluridone treatment and still exhibited characteristics 

of the ethylene response (Figure 11 A,B). This suggests that ABA is not required for 

the root response to mechanical impedance.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The effect of Fluridone and ABA treatment on the response of wildtype 

Arabidopsis to mechanical impedance. A,C Primary root length of 7 day old seedlings  

treated with (A) Fluridone or (C) ABA (ANOVA, p < 0.001) grown vertically or 

horizontally in the presence of a dialysis membrane.  Error bars show mean +/- SE 

(Fluridone n = 40, ABA n = 41). Data was collected from three replicates with repeats 

occurring on separate days.  B,D Roots of Fluridone (B) or ABA (D) treated Arabidopsis 

grown in the presence of a dialysis membrane. Scale bar indicates 0.5mm 
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To further examine the effects of ABA on the root response to mechanical 

impedance, seedlings were exposed to ABA added to the agar media.  Seedlings 

were grown on either a relatively low concentration (0.1 µM) or larger 

concentration (10 µM) of ABA. Small concentrations (0.1 µM) stimulate root 

growth, whereas larger concentrations inhibit it (Ghassemian et al., 2000).  

Seedlings treated with ABA showed a different response to mechanical impedance 

depending on the concentration (Figure 11 C,D). ABA treatment significantly 

affected root length (ANOVA, P<0.001) with a strong interaction between ABA 

treatment and plate orientation (ANOVA, P<0.001). Seedlings treated with 0.1 µM 

ABA exhibited a reduced response to mechanical impedance. When mechanically 

impeded, root length did not differ between mechanically impeded and vertically 

grown seedlings treated with 0.1 µM of ABA.  The root length of mechanically 

impeded seedlings treated with 0.1 µM ABA was greater than mechanically 

impeded, untreated seedlings (Figure 11C). In addition, root hair growth of 

seedlings treated with 0.1 µM ABA did not differ between the vertically and 

horizontally grown seedlings, with mechanically impeded roots showing no 

increase in root hair growth (Figure 11D).  In contrast seedlings treated with 10 

µM ABA exhibited a similar response to untreated seedlings, where root length 

decreased in horizontally grown seedlings (Figure 11C). Overall root length in both 

vertically and horizontally orientated seedlings was shorter when treated with 10 

µM ABA than when untreated. Seedlings treated with 10 µM exhibited the same 

increase in root hair growth when mechanically impeded as the untreated control 

(Figure 11D). This suggests that roots still responded to mechanical impedance 

when treated with 10 µM of ABA. Taken together these results suggest that ABA 

signalling is not essential in the root response to mechanical impedance. However 

very small amounts of ABA can nullify the response.  
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3.4 The effect of mechanical impedance on the localisation and expression of 

auxin responsive genes.  

The reduced response of auxin transport mutants aux1 and eir1 to mechanical 

impedance demonstrates the role of auxin signalling in the root’s response to 

mechanical impedance (Figure 8). This is further supported by evidence that NPA, 

an inhibitor of auxin transport, can also prevent a root response to mechanical 

impedance (Figure 10). Auxin inhibits root growth and its directional movement is 

determined by the distribution of PIN proteins (Wiśniewska et al. 2006). Therefore 

it would be expected that the expression and localisation of auxin at the root tip 

may change in roots that are mechanically impeded. In addition, the expression of 

PIN proteins involved in the transport of auxin might also be expected to change.  

Confocal fluorescence microscopy was used to reporter lines containing 

fluorescent auxin reporters and PIN:GFP fusion proteins to examine both hormone 

distribution patterns and hormone regulated gene expression.  

3.4.1 The effect of mechanical impedance on the localisation of the auxin reporter 

DR5:Venus 

To analyse the hormone distribution pattern of auxin at the root tip under 

mechanical impedance, seedlings expressing the auxin reporter DR5:Venus 

(Heisler et al. 2005) were imaged using confocal laser scanning microscopy.   

Horizontally grown roots showed a change in the localisation and relative 

fluorescence of the DR5:Venus reporter (Figure 12). Vertically grown seedlings 

exhibited DR5:Venus expression in quiescent centre, columella and stele whereas 

horizontally grown seedlings showed DR5:Venus located in the lateral root cap and 

epidermis (Figure 12A). In horizontally grown seedlings, relative fluorescence 
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Figure 12. The effect of mechanical impedance on DR5:Venus distribution. A, Laser 

scanning confocal image of Arabidopsis root expressing DR5:Venus. Green: DR5:Venus, 

Red: propidium iodide stain. Scale bar indicates 50 µm. B-C, Relative expression of 

DR5:Venus in the (B) collumella (t test, p = 0.05) and (C) lateral root cap (t-test, p = 

0.001)  of Arabidopsis roots. Error bars show the mean +/- SE. Seedlings were grown in 

the presence of a dialysis membrane and imaged at 7 days old.  Representative of 6  

images per treatment.  

decreased in the columella cells (t-test, P=0.05) and increased in the lateral root 

cap (t-test, P=0.001).  This suggests a redistribution of auxin to the lateral root cap 

under mechanical impedance associated with the reduced root length observed in 

horizontally grown seedlings.  

 

 

 

 

 

 

3.4.2 The effect of mechanical impedance on PIN:GFP and PIN2:GFP expression 

Under mechanical impedance, DR5:Venus is redistributed, with an increased signal 

in the lateral root cap. As PIN proteins are responsible for the directional 

movement of auxin (Wis´niewska et al., 2006), the expression of fluorescently 
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tagged PIN proteins was also analysed. Changes in PIN protein levels have been 

linked to changes in PIN gene expression (Casson et al., 2009). The expression of 

two PIN proteins were investigated, PIN1 which is located in vascular tissue and 

PIN2, which is located in cortical, epidermal and lateral root cap cells (Figure 13 

and 14).  

PIN1:GFP was observed at the root tip in the vascular tissue of both vertically and 

horizontally grown seedlings (Figure 13A). PIN2:GFP was observed mainly in the 

epidermis and lateral root cap (Figure 14A). Although statistically insignificant, a 

small trend increase in the relative fluorescence of PIN1:GFP (Figure 13, t-test, 

P=0.286) and PIN2:GFP (Figure 14, t-test, P=0.085) was consistently observed in 

horizontally grown roots.  

 

 

Figure 13. The effect of mechanical impedance on PIN1:GFP expression. A, Laser 

scanning confocal image of Arabidopsis root expressing PIN1:GFP. Green: PIN1:GFP Red: 

propidium iodide stain. Scale bar indicates 50 µm. B Relative expression of PIN1:GFP in 

the root tip of 7d old Arabidopsis seedlings (t- test, p = 0.286). Error bars show the mean 

+/- SE. Seedlings were grown in the presence of a dialysis membrane and imaged at 7 

days old. Representative of 6 images per treatment. 
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Figure 14. The effect of mechanical impedance on PIN2:GFP expression. A, Laser 

scanning confocal image of Arabidopsis root expressing PIN1:GFP. Green: PIN1:GFP Red: 

propidium iodide stain. Scale bar indicates 50 µm. B Relative expression of PIN1:GFP in the 

root tip of 7d old Arabidopsis seedlings (t-test, p = 0.085). Error bars show the mean +/- SE 

Seedlings were grown in the presence of a dialysis membrane and imaged at 7 days old. 

Representative of 6 images per treatment. 

 

Overall, confocal imaging has shown that auxin distribution changes in roots 

responding to mechanical impedance. DR5:Venus expression indicated that auxin 

increases in the lateral root cap (Figure 12). This is consistent with the observation 

that mechanically impeded roots show reduced growth, as auxin inhibits growth in 

roots. Analysis of fluorescently tagged PIN protein expression revealed that both 

PIN1 and PIN2 show a subtle increase (Figure 13 and 14.) It is likely that this 

increase in expression leads to the redistribution of auxin. In conclusion, confocal 

analysis of auxin responsive genes further demonstrated the role of auxin 

signalling in facilitating the root response to mechanical impedance.  
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3.5 The effect of mechanical impedance on the expression of cytokinin and 

gibberellin responsive genes.  

As well as ethylene and auxin, other plant hormones are involved in the regulation 

and development of roots, including cytokinins and giberellins. Cytokinins interact 

antagonistically with auxin, which is important for maintaining root meristem size 

and the position of the transition zone (Dello Ioio et al., 2008). Auxin has also been 

shown to downregulate cytokinin biosynthesis (Nordström et al., 2004). 

Gibberellins are also involved in many aspects of plant development including root 

growth. For example, gibberellins have been shown to increase the stability of 

PIN1, PIN2 and PIN3 (Willige et al., 2011) and gibberellin biosynthesis is linked to 

PIN1 mediated transport of auxin (Saini et al. 2013). As both cytokinins and 

giberellins are involved in regulation of root development, they may be involved in 

the root’s response to mechanical impedance. Therefore, expression of cytokinin 

and gibberellin responsive genes under mechanical impedance was investigated 

using confocal microscopy.  

3.5.1 The effect of mechanical impedance on expression of TCS:GFP 

In order to examine the possible effect of mechanical impedance on cytokinin 

signalling, seedlings expressing the synthetic reporter TCS:GFP were imaged using 

confocal microscopy. TCS:GFP is a fluorescently tagged synthetic reporter of the 

cytokinin response (Müller and Sheen, 2008).  

TCS:GFP expression was primarily localised in the columella of the root tip in both 

vertical and horizontally grown seedling (Figure 15A). Horizontally grown 

seedlings showed a significant decrease the relative fluorescence of TCS:GFP 

http://www.plantcell.org/content/22/9/2956.full#ref-26
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Figure 15. The effect of mechanical impedance on TCS:GFP expression. A, Laser 

scanning confocal image of Arabidopsis root expressing TCS:GFP. Green: TCS:GFP Red: 

propidium iodide stain. Scale bar indicates 50 µm. B Relative expression of TCS:GFP in 

collumella cells of the root tip of 7d old Arabidopsis seedlings (t-test, p = 0.003). Error 

bars show the mean +/- SE Seedlings were grown in the presence of a dialysis membrane 

and imaged at 7 days old. Representative of 8 vertical treatment and 6 horizontal 

treatment images. 

compared to vertical seedlings (Figure 15B; t-test, P=0.003). This indicated that 

cytokinin signalling was reduced in roots responding to mechanical impedance.  

 

 

 

 

 

 

 

 

3.5.2 The effect of mechanical impedance on expression of RGA:GFP 

In order to examine the effect of mechanical impedance on gibberellin signalling, 

seedlings expressing RGA:GFP (Silverstone et al. 2001) were imaged using a 

confocal microscope. RGA is a DELLA protein involved in inhibition of growth, such 

as inhibiting growth in the root elongation zone (Daviere and Achard, 2013). RGA 

is degraded in response to gibberellic acid (GA), therefore a decrease in RGA:GFP 

florescence would indicate an increased response to GA (Silverstone et al., 2001). 
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RGA:GFP was weakly expressed in the root tip, predominantly in the root cap and 

epidermis (Figure 16A). There was no observable difference in the relative 

florescence of RGA:GFP in horizontally grown seedlings compared to vertically 

grown ones (Figure 16B) This suggests that GA signalling is not involved in the 

root’s response to mechanical impedance.  

Analysis of the expression of cytokinin- and gibberellin-responsive genes through 

confocal microscopy has shown whether these hormones are involved in the root’s 

response to mechanical impedance. Horizontally grown roots showed a decrease 

in fluorescence of the synthetic reporter TSC:GFP. This suggests cytokinin 

Figure 16. The effect of mechanical impedance on RGA:GFP expression. A, Laser 

scanning confocal image of Arabidopsis root expressing RGA:GFP. Green: TCS:GFP Red: 

propidium iodide stain. Scale bar indicates 50 µm. B, Relative expression of TCS:GFP in 

collumella cells of the root tip of 7d old Arabidopsis seedlings . Error bars show the mean 

+/- SE Seedlings were grown in the presence of a dialysis membrane and imaged at 7 days 

old. Representative of 6 vertical treatment and-8 horizontal treatment images.  
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signalling may be repressed during the mechanical impedance response. 

Gibberellin signalling however, does not appear to be affected, as the relative 

fluorescence of RGA:GFP did not significantly change. It appears that the root 

response to mechanical impedance may alter, or may be mediated by, effects of 

plant hormones in addition to auxin and ethylene.   

 

3.6 The effect of mechanical impedance on the expression of genes 

responsive to ethylene, auxin and physical stress.  

In order to further understand the how mechanical impedance affects gene 

expression in root tissue, qRT-PCR was used to quantify changes in gene 

expression. A variety of genes were investigated including those responsive to 

ethylene and auxin, as well as those that are known to change expression under 

physical stress.  Firstly, to further investigate the role of ethylene signalling, the 

expression of ETHYLENE RESPONSE FACTOR 1 (ERF1), a transcription factor 

involved in the ethylene signalling cascade (Solano et al., 1998), was quantified. To 

investigate auxin signalling, the expression of genes encoding the auxin efflux 

carriers PIN1 and PIN2 was quantified. The expression of ARR5, a cytokinin 

responsive gene, was also investigated to further determine the effect of 

mechanical impedance on cytokinin signalling. In addition DREB2B and RD29B 

expression was also investigated, as these genes have previously been shown to be 

responsive to other abiotic stresses, in particular osmotic stress. Expression of the 

target genes was calculated relative to the amplification of a reference gene 

(AT5G15710).  
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The results from qRT-PCR analysis of the expression of the genes of interest are 

shown in Figure 17. ERF1 did not appear to show any significant change in relative 

expression between vertically and horizontally grown seedlings (Figure 17A), as 

did ARR5 (Figure 17C). Although not statistically significant (Figure 17B; t-test, p = 

0.64 and p = 0.73 PIN1 and PIN2 respectively) PIN1 and PIN2 both showed a small 

increase in relative expression under mechanical impedance. DREB2B showed no 

change in relative expression in horizontally grown seeds whereas RD29B showed 

an increase, however this was statistically insignificant (Figure 17D; t-test, p 

=0.17). These results suggest that the genes tested did not display any change in 

mRNA levels under mechanical impedance.  

Figure 17. The effect of mechanical impedance on the expression of genes 

responsive to auxin, ethylene and abiotic stress.  Quantitative real-time PCR analysis 

of the expression of ERF1 (A), ARR5 (B), PIN1 and PIN2, (C) DREB2B and RD29B (D).  

Relative expression of the genes of interest were calculated relative to the expression of 

a reference gene (AT5G15710). Error bars show the mean +/- SE for the relative 

expression of three separate experiments.  
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4. Discussion 

4.1 The response of primary root growth to mechanical impedance 

resembles the response of roots to ethylene  

When grown horizontally in the presence of a dialysis membrane, Arabidopsis 

roots experience mechanical impedance to their growth. When mechanically 

impeded, Arabidopsis roots show a change in root growth and morphology that 

resembles an ethylene response. Mechanically impeded roots are shorter, exhibit a 

small increase in diameter and root hair growth is closer to the tip (Figure 4). This 

result corresponds to previous reports of the nature of the root’s response to 

mechanical impedance in a number of species including maize (Sarquis et al., 

1991) and Arabidopsis (Okamoto et al., 2008).   

A decrease in root elongation is a well-documented, characteristic response to 

mechanical impedance (Okamoto et al., 2008; Jin et al., 2013). This is likely due to a 

decrease in cell elongation, with cell length reported to be shorter in mechanically 

impeded roots (Croser et al., 2000; Okamoto et al., 2008). A decrease in root 

elongation is observed in roots treated with exogenous ethylene (Kays et al., 1974; 

Sarquis at al., 1991) and ethylene is known to have an inhibitory effect on cell 

elongation in the root elongation zone (Le et al., 2001).  

Root thickening and radial swelling of cells is another characteristic widely 

reported in mechanically impeded roots (Clark et al. 2002; Jin et al., 2013). In the 

results described in this thesis only a small increase in root thickening of about 

10% was observed, although previous studies have reported a greater increase in 

radial expansion of roots. Okamoto et al. (2008) observed an increase of around 

30% in mechanically impeded Arabidopsis, however root diameter was measured 
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when seedlings were four days old as opposed to seven. This could indicate that 

change in root diameter is more pronounced at earlier stages of root development. 

Root thickening has also been reported in a number of crop species including 

maize, rice and barley (Sarquis et al., 1991; Clark et al., 2002; Haling et al., 2013). 

This response is thought to facilitate root elongation through strong soils by 

reducing axial stress at the root tip (Bengough et al.; 2011). It is likely that species 

differences can account for differences in the amount of thickening. It may also be 

likely that greater levels of mechanical resistance are needed to induce radial 

expansion than were present in the current experimental system.   

Radial swelling of cortical cells has been shown to accompany reduced cell 

elongation in mechanically impeded roots (Croser et al., 2000). Ethylene has 

previously been shown to facilitate radial swelling of cells through affecting 

microtubule orientation (Le et al., 2004). It is likely therefore that re-orientation of 

microtubules is required for root thickening in mechanically impeded roots. As 

well as in crease in cell diameter, an increase in the number of cortical cell layers 

has been observed in impeded barley (Wilson et al., 1977) and pea (Croser et al., 

1999) roots. Further investigation is needed into how mechanical impedance and 

ethylene signalling result in the radial swelling of roots. It needs to be determined 

whether an increased number of cortical cell layers also contributes to root 

thickening in response to mechanical impedance.  

Root hair growth is altered in mechanically impeded roots. It was found in this 

thesis that mechanically impeded roots show elongated root hairs and root hair 

growth closer to the tip (Figure 4). A change in root hair growth is another 

previously reported characteristic of roots responding to mechanical impedance 

(Goss and Russel, 1980; Okamoto et al., 2008). Application of exogenous ethylene 
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has a similar effect of root hair growth, with the induction of ectopic root hairs (Le 

et al., 2001). Ethylene is known to stimulate root hair development (Tanimoto et 

al., 1995) and facilitate cell elongation in root hairs (Pitts et al., 1998). An increase 

in root hair growth has been hypothesised to contribute to anchorage of the 

primary root (Bengough et al., 2011). Evidence exists that root hairs offer an 

advantage for root penetration into high strength soil layers.  For barley, it has 

been shown that genotypes that possess root hairs are more successful at growing 

through high strength soil than genotypes with no root hair growth (Haling et al., 

2013). The increased growth of root hairs further indicates the strong role of 

ethylene in the root response to mechanical impedance. It is also likely that 

increased root hair growth offers an advantage to roots growing in strong soils 

(Bengough et al., 2011; Lynch and Wojciechowski, 2015).   

Root hair growth relatively close to the root tip is an indication that differentiation 

is occurring closer to the root tip either as a result of decreased meristem activity 

or the shortening of the elongation zone (Rost and Baum, 1988; Sanchez-Calderon 

et al., 2005; Shishkova et al., 2008). It is unclear however whether mechanical 

impedance affects both cell elongation (shorter elongation zone) and cell division 

(shorter root apical meristem). Okamoto et al. (2008) reported a shortening of the 

elongation zone in Arabidopsis roots impeded by a membrane. However meristem 

length and number of cells was unchanged in impeded roots. This suggests that cell 

division in unaffected by mechanical impedance. In contrast, Croser et al. (1999) 

reported that both cell elongation and cell division was affected in impeded pea 

roots. As well as a shorter elongation zone, mechanically impeded roots had a 

longer cell doubling time and fewer cells undergoing mitosis. It has also been 

shown that mechanically impeded maize roots show a disturbed cell pattern in the 

root apical meristem (Potocka et al. 2011).  
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Ethylene has been shown to control cell division in the quiescent centre (QC) and 

is involved in the control of root apical meristem size and cell number (Van de 

Poel., 2015). Increased ethylene levels result in increased numbers of QC cells, 

resulting in extra columellar layers (Ortega-Martninez et al., 2007). Further study 

with Arabidopsis is needed to determine whether a similar effect is observed in 

mechanically impeded roots. Ethylene has also recently been shown to inhibit cell 

proliferation in the root apical meristem, causing a reduction in meristem size 

(Street et al., 2015). It is clear that mechanical impedance results in the reduction 

in the size of the root elongation zone (Croser et al., 1999; Okamoto et al., 2008), 

resulting in cell differentiation, and therefore root hair growth, occurring closer to 

the root meristem. However, it is unclear what the effect of mechanical impedance 

is on cell division and the root apical meristem. Meristem activity in impeded roots 

should be investigated in future studies, for example through examining the 

activity of CYCB1;2:GUS, a marker for cell division (Bulankova et al., 2013).  

4.2 Mechanical impedance affects lateral root growth  

Mechanical impedance affects not just primary root growth, but overall root 

architecture. Although primary root growth was reduced in mechanically impeded 

roots, the number of lateral roots did not change (Figure 5 A,B). Therefore the 

density of lateral roots is greater in mechanically impeded roots. In addition, the 

laterals of mechanically impeded roots were on average longer than the laterals of 

unimpeded roots (Figure 5 C,D). Previous studies have observed compensatory 

growth of lateral roots in response to mechanical impedance of the primary root 

axis. In barley, lateral roots grew longer when primary root growth was 

mechanically impeded (Goss, 1977). Although the number of laterals decreased in 

mechanically impeded roots, their density was reported to double. This resulted in 
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an overall reduction in the distance between laterals and an increase in length. 

Goss (1977) also reported that changes in lateral root growth could result in the 

total dry weight of the root system being unaffected by mechanical impedance. 

However increased lateral root length was only observed when pore size of the 

growth medium was large enough to allow lateral root growth. At smaller pore 

sizes growth of lateral roots was also impeded. Bingham and Bengough (2003) 

observed such a decrease in lateral root length in impeded roots. However lateral 

root growth was shown to be inhibited to a lesser extent than primary roots and 

the overall ratio of lateral root length: primary root length increased.  

The increase in lateral root growth and density of lateral roots could be due to an 

increase in curvature of the primary root in response to a barrier. An increase in 

lateral root emergence occurs on the convex side on curving roots (Fortin et al., 

1989; Smet et al., 2007). Mechanically inducing roots to bend results in lateral root 

formation and this can be independent of a gravitropic response (Richter et al., 

2009). It is possible therefore that curvature in root growth caused by the 

presence of the dialysis membrane in the horizontal treatment may contribute to 

the observed changes in lateral root growth.  

Overall it appears that lateral root growth is likely to increase in mechanically 

impeded roots, if their growth is not itself severely impeded, perhaps to 

compensate for the stunted growth of the primary root (Goss, 1977). Such an 

increase in lateral root growth was observed in mechanically impeded roots 

(Figure 5C). Lateral root growth is initially agravitropic, with gravitropism being 

acquired slowly after emergence (Guyomarch et al., 2012). It is possible that in the 

horizontally grown seedlings, the initially agravitropic lateral roots did not attempt 

to grow down into the membrane and therefore did not perceive a barrier. 
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Therefore their growth was initially unimpeded, allowing for the compensatory 

growth of lateral roots in response to mechanical impedance of the primary root. It 

is possible that lateral roots may enhance anchorage and soil exploration, 

providing an advantage in strong soils (Goss, 1977; Richter et al., 2009).  

Mechanical impedance has a number of effects on root growth using the 

membrane system described in this thesis. Primary roots are shorter and exhibit 

characteristics of an ethylene response (Figure 4). However, more work is needed 

to determine how mechanical impedance affects cell elongation and division in the 

root tip. Ethylene is known to have an inhibitory effect on cell elongation (Le et a., 

2001), at least in part through effects on auxin distribution and accumulation to 

growth-inhibitory levels in the elongation zone (Swarup et al., 2007; Ruzicka et al., 

2007). In addition, previous studies have shown that cell elongation and length of 

the elongation zone is inhibited under mechanical impedance (Croser et al., 2000; 

Okamoto et al., 2008). However the effect on cell division and the apical meristem 

is still unclear.  Lateral root growth is also affected but appears to be less sensitive 

than primary root growth to mechanical impedance. Lateral roots of mechanically 

impeded seedlings were longer than the vertical control (Figure 5C) However, 

changes in the root architecture of Arabidopsis needs to be examined over a longer 

period of time to see whether the enhanced growth of lateral roots is sustained in 

older seedlings.  

4.3 Ethylene signalling is required for the response to mechanical 

impedance. 

We examined the physiological response of Arabidopsis mutants that are 

insensitive to ethylene. When mechanically impeded, the roots of etr1 and ein2 did 

not exhibit the characteristic response seen in the wildtype (Figure 6). Most 
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notably there was no reduction in root length between vertically and horizontally 

grown mutant seedlings that characterises the wildtype response, with ein2 roots 

in fact increasing in length under mechanical impedance.  In addition, wildtype 

Arabidopsis grown in the presence of silver ions also exhibited a reduced response 

to mechanical impedance. Silver ions occupy the copper binding sites of the 

ethylene receptor ETR1, inhibiting ethylene signalling (Beyer, 1976; Binder et al., 

2007).  When treated with silver thiosulphate, there was a smaller difference in 

root length between the vertical and horizontal treatments (Figure 9A). The 

observed physiological response to mechanical impedance of etr1, ein2 and silver-

treated wildtype seedlings demonstrates the requirement of an intact ethylene 

signalling system and further demonstrates the role of ethylene in the root’s 

response to mechanical impedance. These results confirm previous reports that 

ethylene signalling mutants and Ag+ treatment of wildtype seedlings results in 

inhibition of the response to mechanical impedance (Okamoto et al., 2008).  

Further evidence for the role of ethylene comes from the response of the ethylene 

overproduction mutant eto1 to mechanical impedance. Mechanically impeded eto1 

mutants showed an exaggerated response compared to the wildtype, with an even 

greater reduction in root length and increase in root hair growth (Figure 7). In 

addition the response of the pls (polaris) mutant was investigated. The POLARIS 

(PLS) peptide acts as a negative regulator of ethylene signalling (Chilley et al., 

2006). Therefore under mechanical impedance it would be expected that the pls 

mutant should show a response similar to or greater than the wildtype, as the 

negative regulation of ethylene signalling is inhibited.  Mechanically impeded pls 

mutant seedlings responded similarly to the wildtype, exhibiting an ethylene 

response (Figure 7).  Additional experiments could be performed to examine 
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whether PLS expression is altered under mechanical impedance, as ethylene 

downregulates PLS expression (Chilley et al., 2006).  

The evidence presented in this thesis and elsewhere suggests that ethylene 

signalling is involved in the root’s response to mechanical impedance. The 

decrease in root growth is likely due to the inhibitory effect of ethylene on cell 

elongation (Okamoto et al., 2008; Strader et al., 2010). Although the role of 

ethylene signalling has been confirmed, the role ethylene biosynthesis remains 

unclear. Sarquis et al. (1991) reported that a strong correlation between 

mechanical impedance and ethylene production, with an increase in ethylene 

production preceding the observed morphological changes of the root. In addition 

mechanically impeded roots accumulated 1-aminocyclopropane-1-carboxylic acid 

(ACC), a precursor to ethylene, and ACC synthase activity increased (Sarquis et al., 

1992). However in mechanically impeded Arabidopsis no increase in ethylene 

accumulation was observed (Okamoto et al., 2008). Okamoto et al. (2008) also 

argue that if changes in ethylene biosynthesis are required, the eto1 mutant could 

be expected not to respond to mechanical impedance, as it already produces high 

levels of ethylene.  That the eto1 mutant does exhibit a response to mechanical 

impedance could be evidence that ethylene biosynthesis plays a minor role. 

Further investigation is needed to determine the role of ethylene biosynthesis in 

the response to mechanical impedance and whether it plays a more minor role 

than ethylene signalling. It should be noted that the time course over which 

ethylene production was measured differs greatly between studies. While Sarquis 

et al. (1991) investigated ethylene production over a period of eight hours, 

Okamoto et al. (2008) measured total ethylene accumulated over three days.  It 

could be possible that ethylene biosynthesis plays a greater role in the early 
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response of roots to mechanical impedance. A time course of ethylene production 

in mechanically impeded Arabidopsis could be used to determine whether ethylene 

production increases after initial stimulation by mechanical impedance.  

4.4 Correct auxin transport is required for the response to mechanical 

impedance. 

Ethylene signalling plays an important role in the response of roots to mechanical 

impedance. This shown by the physiological response of mechanically impeded 

roots resembling an ethylene response (Figure 4) and the reduced response 

observed in ethylene signalling mutants (Figure 6). Ethylene is thought to regulate 

root growth through cross talk with auxin (Stepanova et al., 2007; Swarup et al., 

2007; Ruzicka et al., 2007).  We therefore also investigated the role of auxin in the 

response to mechanical impedance.  

The auxin transport mutants aux1 and eir1 did show reduced root growth when 

mechanically impeded with aux1 mutants actually showing enhanced root growth 

(Figure 8A). In addition they did not exhibit any of the characteristics of an 

ethylene response seen in the wildtype, such as root hair growth closer to the tip 

(Figure 8 B,C). When wildtype seedlings were grow in the presence of 1-N-

naphthylphthalamic acid (NPA), an inhibitor of auxin efflux, they also exhibited a 

reduced response to mechanical impedance (Figure 10). These results strongly 

suggest that auxin transport is required for the response of roots to mechanical 

impedance. This corresponds with the findings of Okamoto et al. (2008) who 

reported that the aux1 mutant was insensitive to mechanical impedance.  

As auxin transport is required for the response to mechanical impedance it would 

be expected that auxin synthesis and distribution should alter in roots responding 

https://en.wikipedia.org/w/index.php?title=1-N-Naphthylphthalamic_acid&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=1-N-Naphthylphthalamic_acid&action=edit&redlink=1
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to mechanical impedance. In mechanically impeded roots, DR5:Venus accumulates 

in the lateral root cap (Figure 12). Previous studies using GUS expression analysis 

have shown auxin distribution to be altered, with a spreading of DR5:GUS 

expression from the root tip towards the outer cells of the meristem (Okamoto et 

al. 2008).  In addition, both PIN1:GFP and PIN2:GFP showed increased an increase 

in fluorescence (Figures 13 and 14).  As changes in PIN protein levels have been 

show to correlate with changes in gene expression (Casson et al., 2009), it can be 

assumed this is due to increases in the level of PIN1 and PIN2 gene expression. 

These results suggest that that the inhibition of root growth in response to 

mechanical impedance by ethylene requires changes in auxin transport and 

signalling. 

These results fit with previous observations that ethylene controls root growth 

through interaction with auxin (Stepanova et al., 2007; Swarup et al., 2007; 

Ruzicka et al., 2007). The reduction of root growth by ethylene requires correct 

functioning of auxin biosynthesis, transport and signalling. It has also been shown 

that under exogenous application of ethylene or treatment with ACC, auxin is 

redistributed towards the root meristem and elongation zone (Swarup et al., 2007; 

Ruzicka et al., 2007). The ethylene-induced response of auxin therefore occurs in 

specific regions of the root tip and this requires specific delivery of auxin to these 

regions (Ruzicka et al., 2007). The transport of auxin from the root tip to the 

meristem and elongation zone requires basipetal transport of auxin via AUX1 and 

PIN2.  Auxin transport mutants aux1 and eir1 show a reduced response to 

treatment by exogenous ethylene or ACC (Stepanova et al. 2007). In addition the 

ectopic expression of DR5 under ACC treatment in not observed in these mutants 

(Ruzicka et al., 2007). This corresponds with our observation that aux1 and eir1 

show a reduced response to mechanical impedance. Although ethylene signalling is 
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unimpaired in these mutants, their growth remains unaltered under mechanical 

impedance as auxin transport is impaired. Therefore the basipetal transport of 

auxin is required for the root’s response to mechanical impedance.  

Ethylene has also been shown to modulate auxin responses through expression of 

transport proteins. The expression of PIN1 and PIN2 are both upregulated by 

ethylene (Ruzicka et al. 2007). It is likely that ethylene has this stimulatory effect 

on the expression of auxin transporters when roots respond to mechanical 

impedance. The expression of both PIN1 and PIN2 exhibited a small increase in 

roots responding to mechanical impedance (Figures 11 and 12). However more 

work is needed to determine to what extent the capacity of auxin transport is 

regulated by ethylene under mechanical impedance. For example the expression of 

AUX1 has been shown to increase under ethylene treatment (Ruzicka et al., 2007). 

The directional movement of auxin depends also on the polar localisation of PIN 

proteins (Wis´niewska et al., 2006). It should be investigated whether mechanical 

impedance affects the polar localisation of PIN proteins. It is possible that PIN 

protein localisation is altered at the subcellular level to allow for the altered 

directional transport of auxin under mechanical impedance.  

As well as controlling root growth through auxin transport, ethylene has been 

shown to stimulate local auxin biosynthesis at the root apex (Swarup et al., 2007; 

Ruzicka et al., 2007). Okamoto et al. (2008) reported increased expression of 

ANTHRANILATE SYNTHASE(AS)-α and AS-β, along with increased levels of IAA in 

mechanically impeded roots. The AS enzyme catalyses the rate limiting step of Trp 

biosynthesis, a precursor of IAA (indole-3-acetic acid), a common active form of 

auxin. The transcription of both subunits has been shown to be regulated by 

ethylene (Stepanova et al., 2005). 
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Further investigation is needed to determine the extent to which auxin 

biosynthesis is induced, and the role it plays, in mechanically impeded roots.  

Overall the evidence suggests that both ethylene and auxin have key roles in the 

root’s response to mechanical impedance. Both ethylene signalling and auxin 

transport are required for roots to respond to mechanical impedance, as shown by 

the altered response of ethylene signalling (etr1 and ein2) and auxin transport 

(aux1 and eir1) mutants. The response of roots to mechanical impedance results in 

the basipetal transport of auxin from the root tip towards the outer cells of the 

meristem and elongation zone. It is likely that the reduction in root growth is a 

result of ethylene controlling root growth through auxin transport. Our results fit 

with previous models of ethylene action on root growth through coaction with 

auxin (Ruzicka et al., 2007).  

4.5 The role of other plant hormones 

Our results show that the plant hormone ethylene signalling through coaction with 

auxin is required for a response to mechanical impedance in roots. However, it is 

likely that other plant hormones may be involved in the response to mechanical 

impedance. Previous literature has focused predominantly on the role of ethylene 

in the response to mechanical impedance, and more work is needed to determine 

how other hormones are involved. For example abscisic acid (ABA), cytokinins 

(CKs) and gibberellins (GAs) all interact with the ethylene signalling pathway, 

mostly acting upstream of ethylene, to control root growth (Van de Poel et al., 

2015). The role of these hormones in the response to mechanical impedance was 

therefore also investigated.  
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4.5.1 ABA signalling is not required for a mechanical impedance response  

ABA interacts with ethylene to control root development and is involved in the 

response of roots to abiotic stress. ABA acts upstream of ethylene having a dual 

role on ethylene biosynthesis (Van de Poel et al., 2015). ABA can have an inhibitory 

effect on root growth mediated through ethylene signalling (Ghassemian et al., 

2000; Thole et al., 2014) and increasing biosynthesis (Luo et al., 2014). However 

ethylene and ABA also show an antagonistic action. ABA can have an inhibitory 

effect on ethylene production (Li et al., 2011; Ludwikow et al., 2014) and ethylene 

in turn can limit ABA synthesis (Cheng et al., 2009).  ABA is involved in the 

response of roots to osmotic stress, a feature that accompanies mechanical 

impedance in drying soils. Under moderate osmotic stress ABA maintains root 

growth and limits ethylene production (Xu et al., 2013). There are few studies 

examining the role of ABA to the response of mechanical impedance. Increased 

levels of ABA have been reported in roots responding to mechanical impedance 

(Hartung et al., 1994; Hurley and Rowarth, 1999). However it has been suggested 

that changes in ABA concentration are better correlated with water potential than 

soil strength (Dodd et al., 2010).  

We examined how ABA was involved in the response to mechanical impedance 

through chemical inhibition of ABA synthesis by fluridone and application of 

exogenous ABA. Our results show that ABA signalling is not required for a 

response to mechanical impedance.  Disrupting ABA with fluridone did not affect 

the response (Figure 11 A,B). Although roots were shorter in both the control and 

treatment, the overall response to mechanical impedance remained. In addition, 

high exogenous concentrations of ABA, although reducing overall root length, did 

not result in preventing a response to mechanical impedance. The observed 
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increase in ABA observed in Hartung et al. (1994) and Hurley and Rowarth (1999) 

could perhaps be linked to reduced water content in drying soils. It is also possible 

that although ABA concentrations increase in xylem tissue, this does not affect 

growth at the root tip. ABA might perhaps act instead as a root to shoot signal, as 

plant hormones can also act as a signal of an altered soil environment to the shoot 

(Jin et al., 2013).  

In contrast to high exogenous ABA, low levels of exogenous ABA can nullify the 

response, maintaining root growth under mechanical impedance (Figure 11 C,D). It 

has previously been shown that low levels of ABA enhance root elongation, 

however this was shown to be independent of ethylene signalling (Ghassemian et 

al., 2000). ABA is also known to enhance root elongation under moderate osmotic 

stress (Xu et al., 2013). This result demonstrates that ABA can prevent ethylene 

from reducing root growth and nullify the ethylene response. More work is needed 

to further demonstrate whether ABA is involved in the root response to 

mechanical impedance, such as expression analysis of ABA responsive genes. It 

should also be investigated whether ABA might still play a role in the response of 

other parts of the plant, such as shoot growth, to mechanical impedance.   

4.5.2 Mechanical impedance appears to alter cytokinin signalling but not affect 

giberellin signalling. 

Cytokinins (CKs) and gibberellins (GAs) both interact with ethylene to control root 

growth and, like ABA, this is often upstream of ethylene (Van de Poel., 2015). For 

example, CKs can induce ethylene biosynthesis to inhibit root growth (Zd’árská et 

al., 2013). CKs are also known to interact with antagonistically with auxin, an 

interaction that has strong implications for root development, such as meristem 

size (Dello Ioio et al., 2008). GAs too have been shown control aspects of auxin 
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signalling, for example increasing the stability of PIN1, PIN2 and PIN3 (Willige et 

al. 2011). Both CK and GA signalling is influenced in plants responding to abiotic 

stress. CKs are known to have both positive and negative effects on stress 

tolerance. CK levels tend to decrease overall under prolonged periods of moderate 

stress although high levels may be maintained under severe stress (Zwack and 

Rashotte, 2015). In general, it also appears that GA signalling is suppressed under 

abiotic stress (Colebrook et al., 2014).  As both ethylene and auxin interact with GA 

and CK to control root growth it is likely that CK and GA signalling is affected in 

roots responding to mechanical impedance. However their role in the mechanical 

impedance response is unclear.  

Firstly our results suggest that CK is negatively regulated under mechanical 

impedance. Expression of TSC:GFP, a synthetic reporter of CK, was significantly 

decreased in mechanically impeded roots (Figure 15). This could be due to the 

increased levels of auxin, as auxin acts antagonistically with CK, downregulating 

CK biosynthesis (Nordström et al., 2004). This also corresponds with the observed 

trend that CK levels tend to decrease under prolonged moderate stress. However a 

decrease in CK under moderate stress is thought to be necessary to maintain root 

elongation (Zwack and Rashotte, 2015).   

The expression of RGA:GFP did not differ between control and mechanically 

impeded seedlings (Figure 16). GA induces the degradation of DELLA proteins, 

preventing their inhibition of root growth (Daviere and Achard, 2013). That there 

is no change in RGA:GFP expression suggests that GA degradation of DELLA 

proteins does occur at the root tip under mechanical impedance.   Ethylene is 

known to inhibit root growth via DELLA proteins and delays the GA-mediated 

degradation of DELLAS (Achard et al., 2003). The maintenance of RGA:GFP 

http://www.plantcell.org/content/22/9/2956.full#ref-26
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expression could indicate that ethylene is preventing GA-mediated degradation. 

However, the overall fluorescence of RGA:GFP was low meaning that changes in 

DELLA protein levels  may not be detected. Expression of RGA:GFP was only 

examined at the root tip and will need to be examined in other parts of the root, 

particularly the elongation zone, in order to determine their role in the mechanical 

impedance response.  

Further study is needed to determine how both CKs and GAs interact with auxin 

and ethylene and how they are involved in the mechanical impedance response.  

4.6 Gene expression analysis using qRT-PCR showed no significant change in   

the expression of target genes under mechanical impedance.  

As well as the analysis of fluorescently tagged reporter lines, gene expression 

under mechanical impedance was examined using quantitative reverse 

transcription (qRT)-PCR. We investigated the effect of mechanical impedance on 

the expression of a of genes involved in the response to ethylene and auxin as well 

as other those responsive to other hormones  such as cytokinin (CK) and ABA.  

As ethylene and auxin appear to be involved in the mechanical impedance 

response, the expression genes involved in ethylene signalling and auxin transport 

were investigated. To further investigate the role of ethylene signalling expression 

of ETHYLENE RESPONSE FACTOR 1 (EFR1) was investigated. ERF1 is a 

transcription factor involved in the ethylene signalling cascade and acting 

downstream of EIN2. Considering the apparent role of ethylene signalling in the 

mechanical impedance response it would be expected that expression of ERF1 

might increase in mechanically impeded roots. However our results showed no 

change in the expression of ERF1 between horizontally grown mechanically 
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impeded roots and the vertical control (Figure 17A).  This is inconsistent with 

previous reports that the expression of ERF1 was over five times greater in 

mechanically impeded roots (Okamoto et al., 2008). It also does not fit with our 

observations that ethylene signalling is required for the response to mechanical 

impedance.  

The expression of the auxin efflux transporters PIN1 and PIN2 was also 

investigated and in both cases showed a small but statistically insignificant 

increase (Figure 17C). This is consistent with the observed increase in expression 

of PIN1:GFP and PIN2:GFP (Figures 11 and 12). Ethylene has previously been 

shown to upregulate expression of PIN proteins. Seedlings treated with ACC show 

enhanced expression of PIN1 and PIN2 (Ruzicka et al., 2007).  

Other genes investigated included the CK-responsive ARR5 and drought responsive 

DREB2B and RD29B.  ARR5 is a transcription repressor that is induced in response 

to CK (Brandstatter and Kieber, 1998).  Our results suggest that ARR5 expression is 

unchanged in response to mechanical impedance (Figure 17B). However, as we 

observed a decrease in expression of the CK reporter TCS:GFP (Figure 15) it might 

be expected that the expression of ARR5 should decrease also. ARR5 has been 

shown to be negatively regulated by ethylene signalling in response to cold stress 

(Shi et al., 2012). Therefore an increase in ethylene signalling in response to 

mechanical impedance might be expected to induce a decrease in ARR5 expression. 

Similarly RD29B and DREB2B are both induced in response to abiotic stress, 

notably water deprivation. RD29B expression is regulated by ABA whereas 

DREB2B is involved in ABA-independent signalling in response to stress. Chemical 

inhibition of ABA biosynthesis demonstrated that ABA is not required for a 

response to mechanical impedance (Figure 11 A,B). However expression of RD29B 
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appeared to increase in mechanically impeded roots, although the increase was not 

significantly different. In addition there was no significant change in expression of 

DREB2B in mechanically impeded roots (Figure 17D).  

It is  possible that qRT-PCR is not sensitive enough to detect small changes in gene 

expression that occur only at the tip. As whole root tissue was used for RNA 

extraction, it may be that specific and localised changes are not detected. Ruzicka 

et al. (2007) found observed increases in PIN2 and AUX1 expression under 

ethylene treatment observed using imaging techniques could not be confirmed 

using qRT-PCR, even though only root tissue from the last 2 mm of the root tip was 

used. They suggest that the effect of ethylene on transcript levels of auxin 

transporters may be weak and may not be detected by qRT-PCR. Therefore, in the 

case of PIN1 and PIN2, changes in expression might not be detected at statistically 

significant levels. Future work should continue to examine changes in gene 

expression under mechanical impedance, particularly in relation to hormone 

signalling and abiotic stress. Expression should be examined in seedlings of 

different ages and exposed to mechanical impedance for different lengths of time 

to understand how these factors may affect changes in gene expression in response 

to mechanical impedance.  

4.7 Further questions and future work 

4.7.1 Is ethylene biosynthesis involved in the mechanical impedance response? 

Our research has confirmed that ethylene signalling is involved in the response of 

roots to mechanical impedance, however the role of ethylene biosynthesis has not 

been confirmed. So far the evidence for whether ethylene biosynthesis increases in 

mechanically impeded roots is conflicting. Early studies on maize report increases 



71 
 

in ethylene production and ACC synthase activity in mechanically impeded roots 

(Sarquis et al., 1991, 1992). However in Arabidopsis no change in ethylene 

production was found between mechanically impeded and control roots (Okamoto 

et al., 2008). It is possible that the response to mechanical impedance is due 

primarily to changes in ethylene signalling components rather than biosynthetic 

components. Further investigation is needed to determine whether ethylene 

biosynthesis alters in mechanically impeded roots.  This can be achieved through 

measuring the ethylene production of mechanically impeded seedlings using 

methods such as gas chromatography. Ethylene production should be measured 

across a series of time points to determine whether it plays a role in primarily in 

the early response to mechanical impedance.  It could also be investigated whether 

1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene, is 

accumulated under mechanical impedance. In addition it should be examined 

whether changes in expression of genes involved in ethylene biosynthesis, such as 

ACC synthase and ACC oxidase, occurs in response the mechanical impedance.  

4.7.2 Does ethylene and auxin signalling induce changes in cytoskeletal 

organisation in mechanically impeded roots?  

Cytoskeletal organisation is an important factor in determining plant growth. 

Microtubule orientation has been linked to cellulose microfibril orientation, which 

in turn affects the orientation of cell growth (Baskin et al, 2001). It has previously 

been shown that ethylene promotes radial expansion of cells through the 

reorientation of microtubules (Roberts et al., 1985; Le et al., 2004). In mechanically 

impeded maize roots, microfibril orientation of cortical cells has been shown to 

change (Veen, 1982). It is therefore likely that microtubule organisation could 

differ in the cells of mechanically impeded roots. Future work should examine to 
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what extent microtubule organisation is disrupted and whether this is localised to 

specific tissues. It should also be investigated whether changes in the cytoskeleton 

of mechanically impeded roots relies on ethylene and auxin signalling. Microtubule 

organisation can be visualised using fluorescence microscopy in plant expressing 

MICROTUBULE ASSOCIATED PROTEIN 4 (MAP4):GFP. By treating seedlings with 

inhibitors of ethylene and auxin signalling, it can be determined whether these 

hormones are involved in changes to microtubule organisation in mechanically 

impeded roots.  

4.7.3 How are other plant hormones involved in the mechanical impedance 

response?  

It is clear from these results and previous reports that ethylene and auxin crosstalk 

is a key component in regulating root growth in response to mechanical 

impedance. The roles of other plant hormones however are less well known. We 

have made initial investigations into the role of other hormones, for example 

demonstrating that ABA signalling is not required for a response to mechanical 

impedance (Figure 11 A,B) and that cytokinin may be downregulated (Figure 15). 

Further investigation is needed to confirm whether ABA is required and to 

understand how crosstalk with other plant hormones mediates the response to 

mechanical impedance. This can be achieved through examining the response of 

ABA insensitive mutants, such as abi1 and ani2. to mechanical impedance. In 

addition, the expression of ABA responsive genes under mechanical impedance 

should be examined. It could also be determined whether changes in auxin 

distribution occur in mechanically impeded roots when ABA signalling is inhibited.  
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4.7.4 How do roots respond when mechanical impedance and osmotic stress is 

combined? 

As mechanical impedance is often a feature of drying soils, plant roots are likely to 

experience and respond to both mechanical impedance and osmotic stress 

(Whalley et al., 2005). Studies have now been conducted that examine the 

response of roots and the role of plant hormones to osmotic stress and mechanical 

impedance separately. Future work should now be conducted to look at how plants 

respond to the combination of mechanical impedance and osmotic stress. Agar 

plates infused with polyethylene glycol (PEG) to lower the water potential can be 

used to investigate the response of Arabidopsis to osmotic stress (Verslues et al., 

2006). The use of PEG infused plates could be combined with dialysis membranes 

to produce a response to both osmotic stress and mechanical impedance. In this 

way the response of Arabidopsis to both stresses could be investigated.  

4.8 Conclusions 

Using a method previously described in Okamoto et al. (2008), we have been able 

to subject Arabidopsis roots to mechanical impedance and investigate the root 

response and the role of ethylene signalling. In response to mechanical impedance 

Arabidopsis roots exhibit reduced growth along with other characteristics of an 

ethylene response. These include thicker roots, longer root hairs and root hair 

growth closer to the tip. Lateral root growth may also be affected, with lateral 

roots growing longer if not severely impeded themselves.  
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Ethylene signalling plays a major role in the root response to mechanical 

impedance, as shown by analysis of mutant responses and chemical inhibitors of 

ethylene signalling. Auxin transport is also required for a response and the 

expression and distribution of auxin responsive genes is altered in mechanically 

impeded roots. Our results suggest that ethylene signalling controls root growth in 

mechanically impeded roots through altering the transport of auxin (Figure 19). 

This fits with previous studies on how ethylene controls root growth, which 

demonstrated that ethylene controls root growth through crosstalk with auxin 

(Ruzicka et al., 2007).  

 

 

 

Figure 18.  The effect of mechanical impedance on root growth and the role of 

ethylene signalling. 
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