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Abstract

This thesis describes the investigation of a range of iron-based compounds which ex-

hibit a variety of different electronic phases, from magnetoresistance to ferroelectricity.

X-ray diffraction, neutron diffraction, and muon spectroscopy techniques were used to

probe the magnetism to provide an explanation of the microscopic mechanism for the

bulk electronic properties. X-ray diffraction is a set of techniques that probe electronic

ordering in a periodic crystalline system. If the x-ray energy is tuned to an absorption

edge of a magnetically active ion in the compound sensitivity to the magnetic order can

be gained. These x-ray techniques were used to study magnetoresistance in SrFeO3−δ,

revealing an interplay between the structural, charge and magnetic order as the origin.

Neutron diffraction is an established set of techniques that can directly probe the magnetic

order of a crystalline compound. Neutron diffraction was used in conjunction with x-rays

to study the ferroelectric and Ising-like phases in the triangular lattice antiferromagnet

CuFeO2, revealing strong spin-lattice coupling, the coexistence of antiferromagnetic and

ferromagnetic phases and the splitting of the magnetic order in the ferroelectric phase into

two inequivalent orbits with a phase separation between them. Diffraction techniques re-

quire long-range order of the magnetic ground state to be of utility. Muon spectroscopy

is a local probe that can study magnetism in systems where the magnetic order remains

short-ranged. Muon spectroscopy was used to study the spin-freezing phenomena in Fe-

CrAs, and revealed a two stage transition and interaction energies associated with them.

Polarisation analysis was used together with resonant x-ray scattering to obtain quanti-

tative information on the structure of the magnetic helical structure of FeAs, quantifying

the degree of ellipticity to the magnetic helix, and revealing an out-of-plane oscillating

canted structure to the spin helix.
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Chapter 1

Introduction

The study of electronic phenomena in solids is a huge area of condensed matter research,
encompassing a range of effects including superconductivity, magnetoresistance, metal-
insulator transitions, and ferromagnetism. The formation of ordered phases of the struc-
tural, spin, charge and orbital degrees of freedom are often tied to the more macroscopic
bulk effects. How these degrees of freedom couple to one another and to external pa-
rameters like temperature, magnetic field, electric field, and pressure is central to under-
standing these materials. For example the coupling between the charge, spin, orbital, and
lattice degrees of freedom in the perovskite manganites systems leads to metal-insulator
transition and colossal magnetoresistance-type behaviour [3]. Ordering can occur in the
arrangement of the constituent atoms, the alignment of magnetic and electric moments,
the valency of the atoms (charge ordering), the alignment of occupied orbitals (orbital
ordering), as well as more unconventional orderings such as the axial and polar toroidal
moments. The formation of an ordered phase is associated with the breaking of symme-
tries. Landau theory describes phases of matter which can be described by spontaneous
symmetry breaking, and the associated continuous phase transition. There are a few ex-
amples of order in condensed matter which are not described by spontaneous symmetry
breaking but instead are described as a topological order, such as the fractional quantum
hall effect [4] and spin-liquid phases [5]. Topological ordered phases will not be expanded
upon as they are outside the scope of this thesis. Understanding the symmetry of the
phases is important in understanding the material properties. For example, piezoelectric-
ity can only occur in a crystal which have no centre of inversion (non-centrosymmetric).
Of the 32 crystal classes, only 21 are non-centrosymmetric, and of these only 20 permit
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piezoelectricity (for cubic crystal class 432 the piezoelectric charge forms along the 〈110〉
axes cancelling one another out). Further to this for a material to exhibit ferroelectric-
ity, the crystal symmetry has to belong to one of the eight polar classes out of the 21
non-centrosymmetric classes [6].

In a piezoelectric material an elastic deformation induces an electric dipole, and an
electric field induces a elastic deformation. There are a class of materials where magnetic
and electric order parameters are coupled. Where an electric field can induce an magnetic
response and magnetic field can induce an electric response. Materials where ordered
phases are coupled are known as multiferroics, and are simply defined as materials which
have more than one (multi) ferroic or antiferroic order, i.e. ferromagnetism and ferro-
electricity [7]. In particular the class of multiferroics where electric and magnetic order
parameters are coupled are known as magnetoelectrics.

Understanding how order parameters couple to give rise to effects like multiferroicity
and magnetoresistance, is necessary in designing smart materials for device applications.
Geometrically frustrated systems, although may not be suitable for devices directly, pro-
vide the opportunity to study the effects of secondary interactions which is important for
designing smart materials.

In this thesis, both x-ray diffraction, neutron diffraction techniques, and muon spec-
troscopy have been used. Diffraction techniques can be used to elucidate the nature of
periodic structures. Neutrons and x-ray diffraction are complementary techniques, both
are sensitive to the crystal and magnetic structures, but can provide different informa-
tion. Neutrons interact with the nuclei and magnetic moments in the system, whereas
x-rays interact with the electron density directly. Both techniques can be used to study
magnetic periodic structures, but x-rays can also be used to study charge ordering, lattice
distortions and orbital ordering (as well as a whole host of higher order symmetry objects
including magnetic and electric quadrupoles and octopoles and polar and axial toroidal
moments [8]).

When the formation of the electronic phase does not exhibit a periodic structure, as is
the case with a spin glass, a different technique is needed. Muon spectroscopy interacts
with a material implanting in an interstitial site and precessing in local magnetic fields.
Muons are a useful probe in systems where the interactions remain short-range or the
ordered phases does not have periodicity.
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1.1 Order Parameters and Phase transitions

The order parameter indicates the degree of order of a system, with the order parameter
taking the value of zero on the disordered side of the phase transition [9]. For example, for
a ferromagnet the net magnetisation can be used as the order parameter of the transition.
Above the Curie temperature where the magnetism is described by a paramagnetic phase
the net magnetisation is zero. Below the Curie temperature, there is a spontaneous sym-
metry breaking where the magnetic moments align and a net magnetization forms [10].
Although there is some debate on whether the symmetry breaking for the ferromagnetic
phase transition can be classified as “spontaneous” symmetry breaking [11]. The de-
bate stems from the fact the ferromagnetic ground state is an eigenstate of the relevant
continuous symmetry, and as a result does not fit the rigorous definition of spontaneous
symmetry breaking [12]. Antiferromagnetism on the other hand does meet the criteria to
be considered spontaneous symmetry breaking. The magnetisation can no longer be used
for the order parameter for the antiferromagnetic case as it remains zero on both sides of
the phase transition. In the case of an Ising antiferromagnet, the staggered magnetisation
is used as the order parameter. In the case of an antiferromagnet the magnetisation on one
sublattice is equal and opposite to the magnetisation on the other sublattice. The magneti-
sation on a single sublattice is used as the order parameter, as this is zero in the disordered
phase and non-zero in the antiferromagnetic phase.

A transition between the ordered and disordered phases is not gradual over the whole
phase, but sharp, confined to a small temperature region. The region between the ordered
and disordered state is called the critical region. The phase transition at the critical region,
can be described as either first-order or continuous. The order of the phase transition is
given by the lowest differential of the free energy which shows a discontinuity. A first-
order transition has a discontinuous jump in the first derivative of the free energy, whilst
a continuous transition is continuous in the first derivative but will have a discontinuous
jump in either the second, third or fourth et cetera derivative. First-order transitions have
an associated latent heat. Quantities such as volume, magnetisation and entropy which
are proportional to the first derivative, would show a discontinuity if the transition was
first order, but not if the transition was continuous.

In the critical region around a phase transition, a phenomenological model of critical
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exponents can be employed. By defining a dimensionless reduced temperature, t

t =
T − Tc

Tc
(1.1)

where Tc is the phase transition temperature, the transition occurs at t = 1, and the phase
transitions can be compared between systems. The magnetisation in the critical region
can expressed in terms of a critical exponent, β, such that M = (−t)β where t < 1 [13].
For a continuous phase transition, the critical exponent depends on three properties only.
The first is the dimensionality of the system, d, whether the interactions in the system are
one-, two-, or three-dimensional. The second property is the dimensionality of the order
parameter, D. For the simple cases this is the number of dimensions in which the order
parameter varies. For the Ising magnet, D is one, for the XY magnet D is two and for
the Heisenberg magnet D is three. The last property that effects the critical exponent is
whether the forces are short-range or long-range.

1.2 Ordered Phases

In condensed matter, a system of fixed charges and permanent currents can be expanded
using a multipole moment approach [8, 14, 15]. Using a multipole moment expansion
approach, a condensed matter system can be broken up into four families of objects,
the axial (magnetic), polar (electric), axial-toroidal, and polar-toroidal moments. The
multipole expansion of the moments leads to a series of objects with monopole, dipole,
quadrupole, octupole and hexadecapole et cetera symmetry. The nomenclature for the
terms in the multipole expansion comes from the greek word for the number 2n. The
existence of a magnetic monopole is still an area of active debate and research. For the
work in this thesis the magnetic monopole does not play a role. The axial-toroidal dipole
can be considered as a ring of electric dipoles, all pointing around the loop in the same
direction, resulting in an axial-toriodal dipole pointing through the loop in a right-handed
screw direction. The polar-toroidal dipole can be considered a ring of magnetic dipoles,
all pointing around the loop in the same direction, with the polar-toroidal dipole pointing
through the loop in a right-handed screw direction. Since a magnetic dipole can be thought
of as a current loop, the polar-toroidal is often referred to as an orbital current. Table 1.1
shows the space-inversion and time reversal properties of these multipole objects (taken
from [8]). The magnetic dipole can be considered a current loop, under time-reversal the
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Multipole Time
Reversal

Space
Inversion

Spherical-tensor
rank

Electric dipole + - 1
Magnetic dipole - + 1
Polar toroidal dipole - - 1
Axial toroidal dipole + + 1
Electric quadrupole + + 2
Magnetic quadrupole - - 2
Polar toroidal quadrupole - + 2
Axial toroidal quadrupole + - 2

Table 1.1: Symmetry of electronic multipoles. Effect of parity operations of time-reversal
and space-inversion of the terms in the electronic multipole expansion, fourth column
shows the spherical-tensor rank of the multipole terms.

current flows backwards changing the direction of the magnetic dipole. The ordering of
these more unusual symmetry objects has been seen in nature with electric quadrupoles
having been detected in LaMnO3 [16], magnetic octupole ordering having been detected
in NpO2, axial-toroidal quadrupoles having been detected in V2O3 [17], and polar-toroidal
dipoles in CuO [18].

There are four principal ferroic orderings in condensed matter, ferroelasticity, ferro-
electricity, ferromagnetism and ferrotoroidicity. Ferroelasticity is the property of a ma-
terial to exhibit a spontaneous strain below a transition temperature. Ferroelectricity is
the property of a material to exhibit a spontaneous electric polarisation below a transition
temperature, through the long-range order of electric dipoles. Ferromagnetism is the prop-
erty of a material to exhibit a spontaneous magnetization below a transition temperature,
through the long-range order of magnetic dipoles. Ferrotoroidicity is the more unusual
property, where a material exhibits a spontaneous long-range order of magnetic toroidal
moments below a transition temperature. These four phases are known as the principal
ferroic orderings due to how they transform under the parity operations of space inversion
and time reversal [19]. Table 1.2 has been reproduced from reference [19], it shows the
four principle ferroics all behave differently under space-inversion and time-reversal.

In addition to the primary ferroic orders, ordering of other electronic degrees of free-
dom can exist in condensed matter systems, such as orbital ordering. The orderings rele-
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PPPPPPPPPTime
Space

Invariant Change

Invariant Ferroelastic Ferroelectric
Change Ferromagnetic Ferrotoroidic

Table 1.2: Time-reversal and space inversion symmetry of principle ferroic orders.

vant to this thesis will be touched upon in the the following subsections.

1.2.1 Charge Order

If the electron density is sufficiently localised on an atomic site, the language of electron
valency can be used to described system. A charge-order transition involves an ordering
in the valency of the metal ion, for example a square lattice of iron ions which could
have a valency of Fe3.5+ at high temperatures in the delocalised phase, could transition to
a checker-board pattern of Fe3+ and Fe4+ ions in the localised phase, which doubles the
unit cell. The charge-order transition is often accompanied by an increase in resistivity, as
conduction electrons are localised onto the atomic sites, consequently charge ordering can
be associated with metal-insulator transitions [20] and colossal magnetoresistance [21].
The charge-ordering opens a band gap splitting the conduction band, localising some of
the conduction electrons into a filled band. The transition temperature associated with
a charge-ordering phenomena is associated with the thermal energy needed to overcome
the small charge-order band gap.

Charge-ordering can form a variety of structures from one dimensional charge stripes
described by a single wavevector, to more complex checker-board and three-dimensional
arrangements described by multiple wavevectors. Charge-order can take commensurate
or incommensurate wavevectors [22]. Charge ordering also does not have to oscillate
between integer values of valency. In the literature incommensurate charge-order is of-
ten referred to as a charge-density wave, although sometimes a distinction is made with
charge-density waves being used to describe the phenomena associated with a charge
modulations with a Fermi surface nesting wavevector which occurs with the Peierls dis-
tortion.
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1.2.2 Magnetic Order

The magnetic moment in a condensed matter system is realised with the orbital and spin
angular momentum associated with the electron density. The magnetic moment for the
majority of cases is quite well approximated by the magnetic dipole. For some metal-
lic systems like iron the magnetic moment is delocalised, and the ferromagnetic ground
state is described by a spin polarised band structure. For transition metal oxides and rare-
earth systems the magnetic moments are far more localised on to atomic sites, and the
picture of a lattice of magnetic dipoles on atomic sites is a useful tool to employ. Mag-
netic dipoles can interact directly through their respective dipolar fields, but this is an
extremely weak effect, and would not cause long-range order above 1 K. The magnetic
moment is quantum mechanical in origin, and magnetic moments can interact through
a quantum mechanical exchange. Through these quantum mechanical exchange interac-
tions long-range magnetic ordering can occur at ambient temperatures. There are several
exchange interactions relevant to the formation of magnetic ground states, from direct
exchange between neighbouring magnetic orbitals, to indirect exchange and anisotropic
interactions. When neighbouring magnetically active ions are far enough apart that there
is insufficient overlap between magnetic orbitals, indirect exchange plays a crucial role in
determining the ground state. Superexchange and double-exchange interactions are medi-
ated via a shared anion, e.g. oxygen. In metallic materials, indirect exchange is mediated
by a spin-polarised conduction band, this is known as itinerant exchange or the RKKY
interaction [23–25]. The spin-orbit coupling can mediate the exchange in a similar role
to the oxygen in superexchange. In this case the exchange is anisotropic, and is known
as the Dzyaloshinsky-Moriya interaction [26, 27]. This anisotropic interaction can lead
to a slight ferromagnetic component to antiferromagnetic ground states and favours spin
canting. It is an important interaction in the field of multiferroics as it can lead to a cou-
pling between the magnetic ground state and electric polarization of the system through
the “Inverse Dzyaloshinsky-Moriya effect” [28].

In addition to the simple ferromagnetic and antiferromagnetic cases, there exists a host
of more complex magnetic ground states. Magnetic structures can be classified as being
collinear or non-collinear and commensurate or incommensurate. If all the magnetic mo-
ments in the structure lie in the same axis, then the structure is collinear. If different mo-
ments in the magnetic structure point along different directions then the magnetic ground
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state is non-collinear. If the repeat of the magnetic structure or magnetic unit cell can be
expressed as an integer multiple of the underlying crystallographic unit cell, the magnetic
ground state is commensurate. If the magnetic unit cell can not be expressed as an integer
multiple of the underlying unit cell the magnetic ground state is incommensurate with the
lattice.

Figure 1.1 shows schematic examples of three complex magnetic structures. Figure
1.1 (a) and (b) shows two non-collinear examples of spin structures. (a) shows a helical
magnetic structure, where the magnetic moments rotate in a plane perpendicular to the
propagation vector. (b) shows a cycloidal magnetic structure where the magnetic moments
rotate in a plane parallel to the propagation vector. Both the helical and cycloidal structure
are chiral, having a choice in the sense of rotation. The structure shown in figure 1.1(c)
is a spin density wave. This is a collinear structure where the magnitude of the moment
varies along the propagation vector.

1.2.3 Structural Order

In addition to the charge and magnetic degrees of freedom, transitions between different
structural phases in the material can also occur. In the simple case a slight rearrangement
in atom position lowers the symmetry of the crystal lattice in the low temperature phase.
In such cases the lower symmetry unit cell description can be used to describe both sides
of the transition, with different atomic positions, whereas the high symmetry unit cell can
only describe the high temperature phase.

Other types of structural transitions include Jahn Teller distortions and lattice- mod-
ulations. Jahn Teller distortions occur in materials with a degenerate ground state. The
Jahn Teller distortion is a geometrical distortion which lowers the total energy of the
system [29]. For example an Mn4− ion in an octahedral co-ordination in high-spin config-
uration, has a degenerate ground state. The lower energy t2g has three spin-up electrons,
whereas the higher energy eg state has one spin-up electron out a possible two and is
orbitally degenerate. The system responds with a distortion of the octahedra changing
the ligand bond lengths, splitting this orbital degeneracy. Cooperative Jahn Teller distor-
tions result in a long-range ordered structure where neighbouring octahedra distort along
different axes creating a tiled structure which can double the unit cell [30].

Lattice strain can drive long-range structural modulations, which have an associated
wavevector which can be either commensurate or incommensurate to the lattice. These

8



Introduction Chapter 1.

(a)

(b)

(c)

Figure 1.1: (a) Helical magnetic structure. The magnetic moments rotate in a plane
perpendicular to the propagation vector. (b) Cycloidal magnetic structure. The magnetic
moments rotate in a plane parallel to the propagation axis. (c) Spin density wave. The
magnet moments all point along the same axis but vary in magnitude.

modulations can be a small effect, leading to a description of the crystal using the original
unit cell with an additional modulation wavevector.

1.3 Magnetic Propagation Vector

The magnetic structure can be expressed using a magnetic unit cell in a similar way as
the underlying atomic structure is described by a crystal unit cell. This method may
suffice for ferromagnetism and simple antiferromagnets but for extended structures the
magnetic unit cell could contain 1000’s of atoms, and is a cumbersome description of the
magnetism. A more concise description of the magnetism uses the crystal unit cell and
a propagation vector which describes how magnetic moments on the ith atom in adjacent
unit cells relate to one another. This method expresses the magnetism in terms of Fourier
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components of the periodicity of the crystallographic unit cell.

The magnetic moment on the ith atom in the unit cell, Ψi is described using the basis
vectors of the unit cell. If the magnetism has a propagation vector, τ expressed in the
basis of the reciprocal unit cell, the moment distribution for the ith atom across the crystal
can be described using:

mi =
∑
τ

Ψτi e−2πiτ·R (1.2)

where R describes the translation vectors between unit cells of the crystal. More complex
magnetic ground states may require more than one propagation vector to fully describe
the magnetic structure. For this reason the description of the moment distribution in-
cludes a sum over multiple propagation vectors. The operation of the symmetry of the
space group of the crystal structure on the propagation vector can generate a star of in-
equivalent propagation vectors. This can lead to four different types of multi-τ structures.
The multi-domain structure, where the system breaks into domains where the magnetism
is described by a single τ. The system has two propagation vectors τ and −τ. A true
multi-τ structure where a single magnetic domain is described by different arms of the
propagation vector star. Finally a magnetic structure by a propagation vector τ and its
harmonics.

Three different scenarios arise from equation 1.2. The simplest case where Ψ is real
and τ takes values such that e−2πiτ·R is also real. In this case the magnitude of the moment
is constant and only the direction of the moment changes. The second case where Ψ is
real, but τ takes values such that e−2πiτ·R is complex. In this case, the structure is defined by
both τ and −τ propagation vector. This results in the magnitude of the moment changing
with translation through the crystal and leads to a sine modulated spin density wave.
Finally, the third case where both Ψ is complex and τ takes values such that e−2πiτ·R is
complex. In this case a whole range of helical and cycloidal structures can be described.

The symmetry of the space group is important in determining the magnetic structure.
The symmetry elements of the space group which leave the propagation vector unchanged
are called the little group. Depending on the symmetry of the little, the situation can arise
where equivalent sites in the crystal structure become inequivalent in the magnetic struc-
ture forming different orbits of the magnetic structure with an phase difference between
them. The symmery of the little group can lead to counter intuitive situations as in the
case for LaMnO3. “Normally” a τ = 0 structure refers to a ferromagnetic case, as the
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propagation vector is zero. For LaMnO3 the symmetry of the little group requires the
τ = 0 structure to be antiferromagnetic between planes in the c-direction [31].

1.4 Plan of Thesis
This thesis is divided up into six chapters, an experimental techniques, four research chap-
ters and finally a conclusions chapter. The theory of x-ray and neutron diffraction and
muon spectroscopy are expanded upon in the experimental techniques chapter. The mag-
netism of a number of different iron-based compounds have been studied in this thesis.
Iron is the oldest known magnetic material, but can show a wealth of different electronic
phenomena when arranged in different compounds, including superconductivity in the
iron pnictides, spin glasses, multiferroicity, magnetoresistance. In this thesis four differ-
ent iron-based materials have been studied: (i) a vacancy-ordered transition metal oxide,
SrFeO3−δ showing large magnetoresistance: (ii) a rhombohedral triangular lattice mul-
tiferroic, CuFeO2, which has an usual Ising-like ground state: (iii) a frustrated kagomé
lattice system, FeCrAs, with both iron and chromium moments, and finally, (iv) an iron
pnictide, FeAs which shows a helical structure. In each research chapter the above mate-
rials are introduced in further detail, an overview of the experimental detail and results,
discussions and conclusions are drawn.
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Experimental Techniques

2.1 X-ray Scattering

X-ray scattering is a general term describing a whole host of techniques which probe
a system using x-ray radiation. X-rays, defined most generally, are an electromagnetic
(EM) wave of energies in the range of 100 eV to 100 keV. In condensed matter, x-rays
can be further defined, as originating as an emission from a core electron transition. Two
additional types of radiation that are often categorised as x-rays, are bremsstrahlung and
synchrotron radiation, these both originate from a change in velocity of electrons, and are
used to generate a source of x-rays for experiments.

2.1.1 X-ray formalism

An x-ray is a transverse electromagnetic wave [32], made up of oscillating electric field
and magnetic field, which are orthogonal to each other and to the direction of propaga-
tion. To describe the radiation field, we need to use the electric and magnetic fields E, B
described by Maxwell’s equations in terms of the scalar and vector field potentials.

B = ∇ × A (2.1)

E = −∇Φ −

(
1
c

)
∂A
∂t

(2.2)

Choosing a gauge in such a way to cause the scalar potential to vanish, and the vector
potential A to be divergence free ∇ · A = 0. The vector potential is expanded in terms of
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χ

ψ
ε1

ε2
V2

V1

Figure 2.1: Polarisation ellipse of elliptically polarised beam. For linearly polarised x-ray
beam χ = 0.

plane waves, with a wavevector k and polarisation mode λ = 1, 2.

A(r, t) =
∑
k,λ

√
hc2

V0ωk

[
ε̂λak,λe

i(k·r−ωkt) + ε̂∗λa
†

k,λe
−i(k·r−ωkt)

]
(2.3)

The vector ε̂λ describes the polarisation unit vector of the associated mode λ, and a and
a† are the annihilation and creation vectors of a photon with quantum numbers (k, λ). V0 is
the volume of quantisation andωk is the frequency of the photon with a wavevector k. The
x-ray, being a transverse wave, is polarised orthogonally to the direction of propagation,
i.e. k · ε̂λ(k) = 0. The polarisation state of the x-ray can be defined by two orthogonal
vectors, ε̂1, and ε̂2, both orthogonal to the wavevector k. Using ε̂1, and ε̂2 as a basis the
polarisation can be expressed as a Jones vector [33], V =

(
V1
V2

)
. The Jones vector can be

complex, as is the case with circular polarisation. The polarisation vectors fall onto an
ellipse, in a plane perpendicular to k, known as the polarisation ellipse, shown in figure
2.1.

An alternate way of defining the polarisation of an EM wave is using Poincaré-Stokes
parameters, P1, P2, and P3. The Poincaré-Stokes parameters can be related to both the
Jones vector and the polarisation ellipse. P1 and P2 define the degree of linear polarisa-

tion, Plin =

√
P2

1 + P2
2, and have even parity, whilst P3 the degree of circular polarisation,

and has odd parity. P1,2,3 can be related to χ and ψ of the polarisation ellipse using the
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relations below.

P1 = cos 2ψ cos 2χ (2.4)

P2 = sin 2ψ cos 2χ (2.5)

P3 = sin 2χ (2.6)

The advantage of using the Poincaré-Stokes parameters over Jones vectors becomes
apparent when the x-ray beam is composed of an ensemble of independent waves. Such a
beam may be partially polarised. The Jones vector formalism cannot describe a partially
polarised beam. In order to describe such a polarisation state, the x-ray beam can be
described by a density matrix [34–38]. The density matrix is a 2 × 2 matrix in the basis
of the polarisation vectors ε̂1, and ε̂2, where for each element the average taken over the
ensemble of waves [33] is given by;

ρ = 〈VV†〉 =

 〈V1V†1 〉 〈V1V†2 〉

〈V2V†1 〉 〈V2V†2 〉

 =
I
2

(I + σ · P) (2.7)

The advantages of the Poincaré-Stokes parameters should now become apparent. The
density matrix ρ is a Hermitian, and consequently can be expressed in the orthonormal ba-
sis of the identity, I and the Pauli spin matrices σ = (σ1, σ2, σ3)(where σ1 =

( 1 0
0 −1

)
, σ2 =( 0 1

1 0
)
, and σ3 =

( 0 i
−i 0

)
). By definition the Poincaré-Stokes parameters, P =

(
P1, P2, P3

)
and intensity, I are the coefficients when the density matrix, ρ is expressed in Pauli spin
matrices basis.

ρ =
I
2

 1 0
0 1

 + P1

 1 0
0 −1

 + P2

 0 1
1 0

 + P3

 0 i

−i −0


ρ =

I
2

 1 + P1 P2 + iP3

P2 − iP3 1 − P1

 (2.8)

The Poincaré-Stokes parameters, P1, P2, and P3, I can thus be extracted for an x-ray
beam from the density matrix, ρ using the trace function, which simply sums the diagonal
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elements of a square matrix.

I =tr(ρ) (2.9)

Pi =
1
I

tr(σi · ρ) (2.10)

2.1.2 Jones Matrices

Using the density matrix description of the polarisation state of the x-ray beam defined
in section 2.1.1, the effects of a scattering process on the polarisation of the beam can be
described by a Jones matrix. For a scattering process, M, which could be a diffraction
from a sample, a polarisation analyser, or a phase plate, a 2 × 2 Jones matrix can be
constructed [39–42].

M =

 〈ε̂′1|M|ε̂1〉 〈ε̂′1|M|ε̂2〉
〈ε̂′2|M|ε̂1〉 〈ε̂

′
2|M|ε̂2〉

 (2.11)

In the nomenclature of a scattering process, distinctions are needed between the incident
x-ray and the scattered x-ray. In this thesis if the notation where A represents the property
A of the incident x-ray, then A′ would represent the same property A of the scattered x-ray,
i.e. k and k′ represent the wavevector of the incident and scattered beam respectively.

Jones matrices transform the Jones vector of the incident beam, V into the corre-
sponding Jones vector for the scattered beam,V′, such that V′ = M · V. The Jones matrix
representation of the scattering process can be used with the density matrix formalism, ρ,
by simply multiplying the density matrix that represents the incident beam, ρ by the Jones
matrix, M and the adjoint of Jones matrix M†.

ρ′ = M · ρ ·M† (2.12)

For the case where the x-ray beam undergoes multiple scattering events, such as
diffraction from a sample and subsequently an analyser crystal, the process in equation
2.12 can be applied multiple times.

ρ′ = . . .
(
M2 ·

(
M1 · ρ ·M

†

1

)
·M†

2

)
. . . =

(
. . . M2 · M1

)
· ρ ·

(
. . . M2 · M1

)† (2.13)

By being able to describe a scattering process as a Jones matrix, will enable predictions
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of its polarisation dependence, using Poincaré-Stokes parameters and density matrices.

2.1.3 Interaction of X-rays with Matter

The theory of electrodynamics sets out to explain the interactions of electromagnetic
waves with matter. In the context of an x-ray interacting with matter, we approximate
matter to be composed of moving electrons interacting with one another and with a set of
static nuclei. The Hamiltonian of the total system can be written as the Hamiltonian of the
free electromagnetic wave, the Hamiltonian describing the electronic system, and interac-
tion terms between the two. Using the description of the x-ray, using the vector potential
in equation 2.3, which is linear in annihilation and creation vectors, the Hamiltonian of
the radiation can be written as the quantum harmonic oscillator.

Hrad =
∑
k,λ

~ωk(a†(k, λ)a(k, λ) +
1
2

) (2.14)

Using this description for the Hamiltonian of the radiation, the Hamiltonian for a system
of electrons in an electromagnetic field, taking the non-relativistic limit, can be expressed
in terms of the vector potential, A(ri) [43, 44]. The non-relativistic limit can be taken as
the typical x-ray is of order 10 keV, whist the electron rest mass energy is 511 keV.

H =
1

2m

N∑
i=1

(pi −
e
c

A(ri))
2 +

N,N∑
j>i

V(|ri − r j|) −
e~

2mc

N∑
i=1

si ·
[
∇ × A(ri)

]
(2.15)

−
e~

2m2c2

N∑
i=1

si ·

[
E(ri) ×

(
pi −

e
c

A(ri)
)]

+Hrad

Where e, and m are the electrons charge and mass, ~ is the reduced Planck’s constant.
The first term is the modification of the kinetic energy in the presence of a field, where
pi −

e
cA(ri) is the canonical momentum. The second term is the Coulomb interaction

between electron. The third term is the interaction of the electrons spin si with the B field
of the x-ray, i.e. B = ∇ × (A). The fourth term is the spin-orbit interaction, and arises
from the interaction of the electrons spin, si with the magnetic field created by the electron
moving through the E field from the nucleus and the x-ray. The spin-orbit term can be
expanded, in the usual way using Maxwell’s equation E(ri) = −∇φ − 1

c
∂A(ri)
∂t , where φ is
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the electrostatic potential from the electrons and A is the vector potential of the x-ray.

H = . . .
e~

2m2c2

N∑
i=1

si ·

[
−∇φ × pi +

e
c
∇φ × A(ri) −

1
c
∂A(ri)
∂t

× pi

+
e

c2

∂A(ri)
∂t

× A(ri)
]
. . . (2.16)

As shown earlier in equation 2.3, the vector potential is linear in the photon annihila-
tion and creation operators, a and a†. Scattering requires both the annihilation and creation
of a photon, subsequently only those terms squared in A(ri) under first-order perturbation
theory, and linear in A(ri) under second-order perturbation theory cause scattering. The
spin-orbit term, equation 2.16, is already of order (v/c)2, allowing the second-order pertur-
bation terms to be neglected, as these will be insignificant [45]. Only the first and fourth
term will contribute to the x-ray scattering.

The terms in the Hamiltonian, H can be collected together and written as a sum of
the Hamiltonian of the electron system, the Hamiltonian of the radiation field and the
Hamiltonian of the interaction,H = Hel +Hrad +Hint.

Hel =
1

2m

N∑
i=1

p2
i +

N,N∑
j>i

V(|ri − r j|) +
e~

2m2c2

N∑
i=1

si ·
[
∇φ × pi

]
(2.17)

Hint =
e2

2mc2

N∑
i=1

[
A(ri)

]2
−

e
2mc

N∑
i=1

[
pi · A(ri) + A(ri) · pi

]
−

e~
2mc

N∑
i=1

si ·
[
∇ × A(ri)

]
−

e2~

2m2c4

N∑
i=1

si ·

[
∂A(ri)
∂t

× A(ri)
]

(2.18)

Hint =H1 +H2 +H3 +H4

Scattering processes can be described as transitions between eigenstates of Hel and
Hrad, driven by a perturbation Hint. Under this description A(ri) can be considered an
operator in terms of annihilation and creation operators. There are four terms in the
interaction Hamiltonian, two quadratic in A and two linear in A. For the first and fourth
terms, which are quadratic in A, scattering is described by first-order perturbation theory
and cause non-resonant scattering. The second and third terms, which are linear in A,
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scattering is described by second-order perturbation theory and causes resonant scattering.

2.1.4 Scattering Cross-sections

The scattering cross-section is defined as the number of transitions per unit time, into pho-
ton states with energy between ~ω′ and ~ω′ + dE, with a wavevector k′, into a solid angle
dΩ, divided by the number of incident photons per unit time and area [46]. The scattering
cross-section is the modulus-squared of the scattering length, where the scattering length
is the expected value of the scattering operator.

d2σ

dEdΩ
= | f |2 =

W n(E)
c

V0

=
V2

0ω
2

8π3~c4 W (2.19)

Where W is the transition probability, n(E) is the photon density of states in quantisation
volume V0, and is equal to n(E) =

V0ω
2

8π3~c3 . The transition probability, W can be calcu-
lated using Fermi’s Golden Rule of time dependent perturbation theory. For first-order
perturbation the transition rate is given by

W =
2π
~

∣∣∣∣〈 f |Hpert|i〉
∣∣∣∣2δ(Ei − E f ) (2.20)

and for second-order perturbation the transition rate is given by

W =
2π
~

∣∣∣∣∣∣∑
n

〈 f |Hpert|n〉〈n|Hpert|i〉

Ei − En

∣∣∣∣∣∣2δ(Ei − E f ) (2.21)

whereHpert is the perturbation part of the Hamiltonian. The states | f 〉 and |i〉 are the final
and initial states of the whole system, both photon and electrons. The initial and final
states can be written as |i〉 = |α; (k, λ)〉 and | f 〉 = |β; (k′, λ′)〉, where |α〉 and |β〉 are eigen-
states of the unperturbed Hamiltonian Hel and describe the assemblage of electrons, and
|k, λ〉 and |k′, λ′〉 are eigenstates of the radiation field describing photons with wavevec-
tors k and k′ and polarisation λ and λ′. The δ function ensures that energy is conserved,
with Ei = Eα + ~ω and E f = Eβ + ~ω′.

2.1.5 Thomson Scattering

The first and fourth terms, H1, H4 in the interaction Hamiltonian, Hint are non-resonant
scattering processes. The first term, H1 gives rise to elastic Thomson scattering of an
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electromagnetic wave from a charged particle. The fourth term, H4 leads to an elastic
non-resonant magnetic scattering [34, 35]. Non-resonant magnetic scattering is a pow-
erful experimental tool, and provides a direct method of distinguishing spin and orbital
magnetic moments for long-range magnetic structures [34]. However non-resonant mag-
netic scattering was not used in this thesis, and will not be discussed, but for further
derivations see [34] and [45]. For the first term, H1 of the interaction Hamiltonian Hint

the transition probability is given by

W =
2π
~

∣∣∣∣〈β; (k′, λ′)|
e2

2mc2

N∑
i=1

[
A(ri)

]2
|α; (k, λ)〉

∣∣∣∣2δ(Ei − E f ) (2.22)

where A(r, t) =
∑
k,λ

√
hc2

V0ωk

[
ε̂λak,λe

i(k·r−ωkt) + ε̂∗λa
†

k,λe
−i(k·r−ωkt)

]
The term A(ri) is a sum over the all the photon modes with quantum numbers k and
polarisation state λ. For scattering, this is a sum over the incident |k, λ〉 and final state
|k′, λ′〉. This leads to four terms in the expression for A(ri), but as scattering requires the
annihilation of the incident photon, ak,λ and the creation of scattered photon, a†k′,λ′ , only
two terms contribute to scattering (the other terms would describe the process in reverse).

Ak,λ,k′,λ′(r) =

√
hc2

V0ωk
ε̂λak,λe

i(k·r−ωkt) +

√
hc2

V0ωk′
ε̂∗
λ′

a†k′,λ′e
−i(k′·r−ωk′ t) (2.23)

We can simplify the derivation of [A(r)]2 by realising only terms with one annihilation
operator, ak,λ and one creation vector a†k′,λ′ will contribute to the scattering, the remaining
terms will be zero. If the scattering is restricted to being completely elastic so ωk = ωk′ ,
and using the commutation relation a†i a j = a ja

†

i , the transition rate can be simplified to

W =
2π
~

∣∣∣∣∣∣∣
〈
β; (k′, λ′)

∣∣∣∣∣∣∣ e2

2mc2

N∑
i=1

hc2

V0ωk
ε̂∗
λ′
· ε̂λe

i(k−k′)·ri2 a†k′,λ′ak,λ

∣∣∣∣∣∣∣α; (k, λ)
〉∣∣∣∣∣∣∣

2

δ(Ei − E f )

(2.24)

The operator a†k′,λ′ak,λ acts on the photon part of the combined state and annihilates
the incident photon and creates the scattered photon, and returns unity for a single photon
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scattering. As the scattering is elastic, the final state of the electron system, |β〉 is the same
as the incident state, |α〉, i.e. for elastic scattering |α〉 ≡ |β〉.

W =
2π
~

e4

4m2c4

4π2~2c4

V2
0ω

2
k

4
∣∣∣ε̂∗
λ′
· ε̂λ

∣∣∣2 ∣∣∣∣∣∣∣
〈
α

∣∣∣∣∣∣∣
N∑

i=1

ei(k−k′)·ri

∣∣∣∣∣∣∣α
〉∣∣∣∣∣∣∣

2

δ(Ei − E f ) (2.25)

Using the transition probability the scattering cross-section can be found using equation
2.2.1.

d2σ

dEdΩ
=

e4

m2c4

∣∣∣ε̂∗
λ′
· ε̂λ

∣∣∣2 ∣∣∣F(k − k′)
∣∣∣2 δ(Ei − E f ) (2.26)

where the structure factor, F(k − k′) is defined as

F(k − k′) =

〈
α

∣∣∣∣∣∣∣
N∑

i=1

ei(k−k)·ri

∣∣∣∣∣∣∣α
〉

(2.27)

If the electronic state |α〉 is described by an antisymmetric wavefunction,
ψ(r1, r2, . . . , rN), the electron density, ρ(r) can be described as the integral with respect to
dri of the wavefunction squared, |ψ|2

ρ(r) = N
∫

dr2

∫
dr3 . . .

∫
drN

∣∣∣ψ(r, r2, r2, . . . rN)
∣∣∣2 (2.28)

Consequently the structure factor can be written as a function of the electron density.

F(k − k′) =
〈
ψ(r1, . . . , rN))

∣∣∣ei(k−k)·r1 . . . + ei(k−k)·rN
∣∣∣ψ(r1, . . . , rN))

〉
= N

∫
drei(k−k′)·r

∫
dr2

∫
dr3 . . .

∫
drN

∣∣∣ψ(r, r2, r3, . . . rN)
∣∣∣2

=

∫
drei(k−k′)·rρ(r) (2.29)

The x-ray scattering structure factor is simply the Fourier transform of the electron density
of the system. Experimentally x-ray scattering is used as a tool to uncover the electron
density of a system by measuring the structure factor. The scattering cross-section is
related to the square of the structure factor, meaning the phase information is lost in the
measurement. This is known as the phase problem [47].
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2.1.6 Scattering from a Periodic Electron Density

The above derivation for Thomson scattering holds for any electron density which can
be described by an antisymmetric wavefunction, whether this is a molecule or the theo-
reticians Jellium. All the electronic phenomena studied in this thesis occur in crystalline
materials where the electron density has a periodic structure. A periodic electron density
can be described using a regular lattice of points and the electron density ρi of the repeat-
ing motif at each lattice point. The electron density of the entire structure, ρ(r) can be
described using the family of vectors Ru1,u2,u3

= u1a1 + u2a2 + u3a3, where a1, a2, a3 are
the lattice vectors, with a1 · a2 × a3 the volume of lattice cell, and u1, u2, u3 are integers.

ρ(r) =
∑

u1,u2,u3

ρi(r − Ru1,u2,u3
) (2.30)

The structure factor then becomes

F(k − k′) =
∑

u1,u2,u3

ei(k−k′)·Ru1 ,u2 ,u3

∫
drei(k−k′)·(r−Ru1 ,u2 ,u3

)
ρi(r − Ru1,u2,u3

) (2.31)

The integral is the Fourier transform of the electron density in a single unit cell defined
by the vectors a1, a2, and a3. The sum over all the unit cells, on the left of the integral
sign introduces interesting physics. As the term Ru1,u2,u3

describes points equally spaced
apart, the phase factors ei(k−k′)·Ru1 ,u2 ,u3 cancel out, and the sum,

∑
u1,u2,u3

ei(k−k′)·Ru1 ,u2 ,u3 is only

non-zero when (k−k′) ·Ru1,u2,u3
= 2πn, where n is an integer. When (k−k′) ·Ru1,u2,u3

= 2πn

the phase factors add in unity. The sum can be replaced by a δ((k − k′) − G) function,
where G is defined G · Ru1,u2,u3

= 2πn. The Fourier transform of a periodic lattice in
position-space is a periodic lattice in momentum-space, often called the reciprocal lattice.
The momentum-space can be expressed in terms of a basis, b1, b2, and b3 where they
relate to the lattice vectors a1, a2, a3.

b1 = 2π
a2 × a3

a1 · a2 × c3
; b2 = 2π

a3 × a1

a2 · a3 × a1
; b3 = 2π

a1 × a2

a3 · a1 × a2
(2.32)

By defining a basis for the momentum-space as above, the lattice and wavevector basis
obey this relation ai · b j = 2πδi, j. If G = hb1 + kb2 + lb2 and R = u1a1 + u2a2 + u3a3,
then G · R = 2π(hu1 + ku2 + lu3). Given that the scattering cross-section only predicts
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intensity when G · R = 2πn, where n is an integer, and u1, u2, u3 are also integers,
hu1 + ku2 + lu3 = n for any value of u1, u2, u3 which limits h, k, l to integers. This can be
written more concisely in the form of Laue’s equation.

a1 · (k − k′) = 2πh; a2 · (k − k′) = 2πk; a3 · (k − k′) = 2πl {h, k, l} ∈ Z (2.33)

Laue’s equations state that the scattering cross-section is only non-zero when the vector
for the change in wavevector of the photon, k − k′ is the same as a momentum-lattice
vector, Ghkl of the reciprocal lattice of the periodic electron density. The structure factor
in equation 2.31 can be simplified further by approximating the repeating electron density
ρi as a collection of atoms each with number of electrons. The integral can be replace by
a sum over every atom in the unit cell and a sum over every electron on the atom. The
index m sums over the atoms and the index n over the electrons for that atom type.

∑
m

ei(k−k′)·rm

∑
n

ei(k−k′)·rn

∫
drei(k−k′)·(r−Ru1 ,u2 ,u3

−rm−rn)
ρm,n(r − Ru1,u2,u3

− rm − rn) (2.34)

The sum of the integrals for the electrons of a specific atom are known as the atomic
form-factor and is given the symbol f (k − k′) and are tabulated in [48] for most elements
and valencies. The structure factor can be approximated as

F(k − k′) =
(2π)3N

V
δ((k − k′) −G)

∑
m

ei(k−k′)·rm fm(k − k′) (2.35)

The scattering cross-section from a periodic electron potential restricts scattering to spe-
cific k− k′ wavevectors given by Laue’s equations in 2.33 . This type of scattering is also
know as diffraction, and the spots of scattering intensity are known as reflections, which
are indexed using the integers h, k, l, also known as Miller indices.

2.1.7 Scattering Geometry

For a periodic electron density the scattering occurs at well defined wavevectors. The
incident wavevector k and scattered wavevector k′ define the scattering plane. k − k′

is the scattering vector, and lies in the scattering plane. The vectors k − k′ and k + k′

are orthogonal and can be used to create unit vectors for the scattering plane. Figure 2.2
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Û2

Û1

Û3

k ̂ k′̂
επ̂ εσ̂ ε′̂σ

ε′̂π

θ θ

Figure 2.2: Scattering Geometry

shows the scattering geometry, Û1 = k+k′

|k+k′|
, Û3 = k−k′

|k−k′|
and Û2 = Û3 × Û1. Both k, and k′

form an angle θ with Û1. Starting from Laue’s equation k − k′ = G, it is easy to solve for
θ, resulting in Bragg’s Law.

λ = 2

 2π∣∣∣Gh,k,l

∣∣∣
 sin θ (2.36)

Where 2π
|Gh,k,l|

is the d-spacing for the equivalent set of lattice plane corresponding to the re-
ciprocal space vector h, k, l. It is convenient to define the orthogonal polarisation vectors,
ε̂1, ε̂2, and ε̂′1, ε̂′2 with respect to the scattering plane, with λ = 1 out of plane and λ = 2
lying in the scattering plane. This results in ε̂1 = ε̂′1 = −Û2, and ε̂2 = sin θ Û1 − cos θ Û3,
ε̂′2 = − sin θ Û1 − cos θ Û3. Using this basis, the nomenclature adopted in the litera-
ture [45, 49], λ = 1 channel is called σ, and λ = 2 channel is called the π.

Thomson scattering was shown to have a polarisation dependence of ε̂′ · ε̂, which can
be expressed as the following Jones matrix.

MThom =

 ε̂′σ · ε̂σ ε̂′σ · ε̂π
ε̂′π · ε̂σ ε̂′π · ε̂π

 =

 1 0
0 cos 2θ

 (2.37)

2.1.8 Resonant X-ray Scattering

The second, H2 and third terms, H3 from the perturbation Hamiltonian are only linear
in annihilation and creation operators. Consequently scattering only occurs as a second-
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order perturbation effect.

Hint = −
e

2mc

N∑
i=1

[
pi · A(ri) + A(ri) · pi

]
−

e~
2mc

N∑
i=1

si ·
[
∇ × A(ri)

]
Despite the fact that onlyH3 includes a spin term si,H3 is an order of ~ smaller thanH2

and can be neglected near a resonance. A scattering process requires the annihilation of
the incident photon and the creation of the scattered photon. By restricting the perturba-
tion to only those terms which include a†k′,λ′ and ak,λ, the scattering length can be written
as

f ∝
∑

n

〈
α; (k′, λ′)

∣∣∣∣∣∣∣
N∑
i

ε̂∗
λ′
· pie

−ik′·ri

∣∣∣∣∣∣∣ n
〉 〈

n

∣∣∣∣∣∣∣
N∑
i

ε̂λ · pie
ik·ri

∣∣∣∣∣∣∣α; (k, λ)
〉

Eα − En + ~ωk +
iΓn
2

(2.38)

The above elastic resonant scattering process describes the absorption of the incident
photon, which excites a core electron from the ground state |α〉 into an empty intermediate
state, |n〉. The electron then decays from the intermediate state |n〉 back down to the ground
state |α〉 by the emission of a photon with wavevector k′ and polarisation λ′. A small
imaginary term has been added to the denominator of the above equation. This has been
added to stop unphysical divergence of the scattering cross-section when Eα−En+~ωk = 0
and arises because the intermediary states, |n〉 are not stationary, but have a finite lifetime
[46]. Since, for a core electron k · r � 1, it is admissible to expand the eik·ri as a series of
rapidly decreasing terms.

eik·ri ∼ 1 + ik · ri −
(k · ri)

2

2
. . . (2.39)

The above expansion is referred to as multipole order, and the individual terms as named
after the Greek number for 2n where n is the position in the expansion starting with n = 1.
The three terms shown above are the dipole (1), quadrupole (ik ·ri) and octupole (− (k·ri)

2

2 ).
By neglecting the spin-orbit contribution to the Hamiltonian of the electron system Hel,
the momentum operator pi can be replaced by −im

~

[
ri,Hel

]
. By taking the expansion of

eik·ri to the quadrupole term, rearranging the expressions using the commutation rules
to act Hel on the states 〈n| and |α〉, and using the vector identity (A × B) · (C × D) ≡
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(A · C) (B · D) − (A · D) (B · C) the scattering operator can be simplified to three terms.

〈
n

∣∣∣∣∣∣∣
N∑
i

ε̂λ · pie
ik·ri

∣∣∣∣∣∣∣α
〉

=
−im
~

〈
n

∣∣∣∣∣∣∣
N∑
i

ε̂λ ·
[
ri,Hel

] (
1 + ik · ri . . .

)∣∣∣∣∣∣∣α
〉

〈
n

∣∣∣∣∣∣∣
N∑
i

ε̂λ · pie
ik·ri

∣∣∣∣∣∣∣α
〉

=
im
~

[
En − Eα

] 〈
n

∣∣∣∣∣∣∣
N∑
i

ε̂λ · ri

∣∣∣∣∣∣∣α
〉

−
m
2~

[
En − Eα

] 〈
n

∣∣∣∣∣∣∣
N∑
i

(
ε̂λ · ri

) (
ki · ri

)∣∣∣∣∣∣∣α
〉

+
i
2

k × ε̂λ

〈
n

∣∣∣∣∣∣∣
N∑
i

(
ri × pi

)∣∣∣∣∣∣∣α
〉

(2.40)

The first term is the electric dipole operator, E1, and the scattering is induced by a photon
with total angular momentum of +1. The selection rules for an electric dipole transition
require ∆l = ±1. For an excitation at the K absorption edge, a 1s core electron will be
excited into the next empty p band above the Fermi energy, i.e. for iron, the 4p band. For
an excitation at the LIII edge, a 2p core electron would be excited into the next empty s

or d band, i.e. for iron, the 3d band. The second term is the electric quadrupole operator,
E2, and the scattering is induced by a photon with a total angular momentum of +2. The
selection rules for an electric quadrupole transition require ∆l = 0,±2. For an excitation
at the K edge, a 1s electron would be excited into an empty s or d band. For a LIII edge
transition, a 2p core electron would be excited into an empty p or f band. The third term
in equation 2.40 is the orbital angular momentum operator or magnetic dipole operator,
M1. The resonant transitions being studied in this thesis all involve a transition of a core
electron to an empty valence state above the Fermi energy. As the angular momentum
operator M1 only acts on the angular part of the wavefunction, and the core and valence
states have orthogonal radial parts, the magnetic-dipole matrix elements vanish for the
x-ray energy range.

The resonant scattering at the x-ray energies the scattering operator can be written
as a sum of E1 and E2 terms as the M1 term can be neglected. The scattering length
from equation 2.38 which has both an excitation and decay transition, can be written
as a sum of dipole and quadrupole terms, E1E1 + E1E2 + E2E1 + E2E2 . . . In order
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for the cross terms to exist, the state |n〉 has to be a mix of even- and odd-parity states,
which requires inversion symmetry to be broken, the resonating atom must sit on a non-
centrosymmetric site [50]. It should be noted at this point that if more terms were included
from the expansion of eik·ri , then electric octupole, E3, electric hexadecapole, E4 and
magnetic quadrupole operators would drop out. For this thesis, only E1E1 and E2E2
type transitions were observed so derivations of higher-order terms will not be shown.

If the electrons system vectors ri, pi and polarisation vectors ε are expressed in terms
of spherical components, Rm, and spherical harmonics Yl,m the polarisation factor can
be separated from the sum over |n〉. Hannon et al. show the derivation for the E1E1 and
E2E2 scattering terms in [51]. The E1E1 term can be written as three terms with different
polarisation factors.

fE1E1 ∝ −
3

4π|k − k′|
[(
ε̂∗
λ′
· ε̂λ

) [
Fe

1,1 + Fe
1,−1

]
−

∑
i

i
2

(
ε̂∗
λ′
× ε̂λ

)
· ẑi

[
Fe

1,1 − Fe
1,−1

]
+

∑
i

(
ε̂∗
λ′
· ẑi

) (
ε̂λ · ẑi

) [
2Fe

1,0 − Fe
1,1 − Fe

1,−1

] (2.41)

where the unit vector ẑi is the axis of quantization of angular momentum for the ith ion,
for a magnetic ion this can be interpreted as the magnetic moment direction. Fe

1,m are
resonant structure strengths and are dependent on the material and the wavelength of the
x-ray. The superscript e and subscript 1 represents the electric dipole nature of transition.
They are defined as

Fe
1,m = me

∑
n

[
En − Eα

]3

~3ωk

∣∣∣∣〈n
∣∣∣Rm

∣∣∣α〉∣∣∣∣2
Eα − En + ~ωk + iΓn

2

(2.42)

The first term in the scattering length does not depend on the magnetic moment and is
proportional to Fe

1,1 + Fe
1,−1 and is always present. The second term provides sensitivity to

the magnetism as it is proportional to the difference of Fe
1,1 and Fe

1,−1, which only arises
in the presence of a magnetic preference for one sense of rotation around the quantization
axis [46, 51]. The third term is non-vanishing for any anisotropic system which includes
magnetism but could also occur due to crystal anisotropy [46, 51]. Both the magnetic
terms include a sensitivity to moment direction in the polarisation factors. The Jones
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matrices for the E1E1 scattering can be constructed using the scattering geometry, Û1,
Û2 and Û3 shown in figure 2.2. The Jones matrices are shown in Hill et al. [49], but are
straight-forward to calculate from equation 2.41.

fE1E1 =F(0)

 1 0
0 cos 2θ


− iF(1)

 0 z1 cos θ + z3 sin θ
z3 sin θ − z1 cos θ −z2 sin 2θ


+ F(2)

 z2
2 −z2(z1 sin θ − z3cosθ)

z2(z1 sin θ + z3cosθ) − cos2 θ(z2
1 tan2 θ + z2

3)

 (2.43)

The constants Fn are simply shorthand for the coefficients in front of the three terms in
equation 2.41, z1, z2 and z3 are the components of the anisotropy axis ẑi projected onto
the basis of Û1, Û2 and Û3. The principle result to draw is the cross polarisation channel,
σ−π′ and π−σ′ are non-zero for magnetic scattering. In addition for the purely magnetic
term, the σ − σ channel is zero, meaning a tell-tale sign for magnetic scattering is if
incident light is σ polarised, then scattered light is entirely π polarised.

Similar arguments can be made for E2E2 scattering, which generates thirteen sepa-
rate terms. Of these thirteen terms, one is independent on ẑi, two are linear in ẑi, five
have quadratic dependence in ẑi, three cubic and one quartic. The Jones matrices for all
thirteen terms are shown in [49], the linear terms which are sensitive to the magnetism are
reproduced below.

fE2E2 = i
[(

k′ · k
) (
ε̂∗
λ′
× ε̂λ

)
· ẑi +

(
ε̂∗
λ′
· ε̂λ

) (
k′ × k

)
· ẑi

] [
Fe

2,2 − Fe
2,−2

]
(2.44)

where Fe
2,2 and Fe

2,−2 are resonant structure strengths for the electric quadrupole transition.

Fe
2,m =

me

~3c2

∑
n

[
En − Eα

]3 ωk

∣∣∣∣∣〈n
∣∣∣∣∣ √ 4π

5 R2Y2
m(θ, φ)

∣∣∣∣∣α〉∣∣∣∣∣2
Eα − En + ~ωk + iΓn

2

(2.45)

fE2E2 = i cos 2θ
[
Fe

2,2 − Fe
2,−2

]  z2 tan 2θ −z1 cos θ − z3 sin θ
z1 cos θ − z3 sin θ 2z2sin2θ

 (2.46)
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For a periodic system the Thomson scattering was shown to be restricted to specific values
of k where the k − k′ = Ghkl. By describing the magnetism in the system in terms
of Fourier components of the crystallographic unit cell, eiτ·ri where τ is the magnetic
wavevector, the sum over all the lattice points becomes

∑
u1,u2,u3

ei(k−k′±nτ)·R where n is an

integer and relates to the order of ẑ in the scattering operator. The resonant scattering
condition can be expressed as (k−k′)±nτ = Ghkl, causing scattering to occur at positions
k − k′ = hb1 + kb2 + lb3 ± nτ.

2.1.9 X-ray Polarisation Analysis

The magnetic scattering for both E1E1 and E2E2 transitions have characteristic polarisa-
tion dependences. The polarisation of the scattered beam is also dependent on the moment
direction ẑi. This magnetic moment can be complex as in the case of a non-collinear or-
dering. In order to investigate the origin of the scattering, the polarisation dependence
can be measured. In order to measure the polarisation state of the scattered beam, Thom-
son scattering can be used. Thomson scattering is non-resonant, intense and has a simple
polarisation dependence that only depends on the scattering angle θ. By selecting an anal-
yser crystal which has a Bragg peak which scatters at θ = 45◦ at the energy of interest,
the polarisation dependence of the analyser simply becomes

MThom =

 1 0
0 cos 2θp

 =

 1 0
0 0

 (2.47)

If π polarised light is incident on the analyser there is no scattering. By combining this
analyser crystal with a rotation, ηp around k′ from the sample, as shown in figure 2.3, the
polarisation state can be found, as the intensity of the scattering is maximised when the
angle ηp aligns with the polarisation of the beam. This rotation is known as both an ηp

scan and a Stokes scan in the literature.

The change of coordinate system associated with rotating the analyser crystal by an
angle, ηp around the incoming x-ray beam, can be expressed as a 2 × 2 rotation matrix.

Rη =

 cos ηp sin ηp

− sin ηp cos ηp

 (2.48)
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k′̂

ε′̂′σ

ε′̂π

θ

θ ηpε′̂σ

k′̂′

Figure 2.3: Polarisation Analyser geometry

The basis of the density matrix of the x-ray beam being examined, ρ′ is transformed by
multiplying by Rη and its inverse R−1

η .

ρ′ = Rηρ
′R−1

η (2.49)

The intensity from the polarisation analyser can calculated using Jones Calculus rules
from section 2.1.2.

I′′ =
I′0
2

tr
(
MThom · Rη · ρ

′
· R−1

η ·M
†

Thom

)
(2.50)

As the analyser may not be perfect for the exact energy of interest (scattering may be
offset from θp = 45◦), the intensity is calculated including the θp term.

I′′ =
I0

2

1 +
2 cos2 2θp

1 − cos2 2θp

+ P′1 cos 2η + P′2 sin 2η

 (2.51)

This equation is known as the Stokes equation, and links the rotation angle of the polari-
sation analyser to the Poincaré-Stokes parameters of the beam being examined. When
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the analyser matches the incident energy perfectly, such that the scattering occurs at
θp = 45◦, the intensity of a Stokes scan described in equation 2.51 simplifies to I′′ =
I0
2

(
1 + P′1 cos 2η + P′2 sin 2η

)
. The Stokes equation reveals that only P1 and P2 parameters

can be extracted, and that it is not possible to distinguish between circular polarisation
and a partly unpolarised beam. When the analyser scatters at θp = 45◦ a diffraction mea-
surement carried out at ηp = 0 is said to be looking in the σ′ polarisation channel, when
ηp = 90 is said to be in the π′ polarisation channel. When θp is away from 45◦ this is no

longer true, as spillover intensity remains from the
2 cos2 2θp

1−cos2 2θp
term.

The polarisation analyser provides a way to experimentally investigate the origin of
the resonant scattering. There are two main types of experiments which use the polari-
sation analyser. The first involves looking in a specific polarisation channel, i.e. σ − π′,
and rotating the sample around the scattering vector. This is known as an azimuthal
scan, and is often given the notation ψ. By rotating the sample around Û3, the condi-
tion for scattering remains unchanged, (i.e. Ghkl is still surface normal) but the scattering
plane bisects the sample along a different crystallographic axis. This makes use of the
fact that for magnetic resonant scattering the different polarisation channels are depen-
dent on different components of ẑ. In the experimental basis, Û1, Û2, Û3, the compo-
nents of the moment z1 and z2 can be replaced z′1 = z1 cos (ψ − φ) − z2 sin (ψ − φ) and
z′1 = z1 cos (ψ − φ) − z2 sin (ψ − φ). The zero position(φ) of the azimuth is arbitrary and is
defined on a per experiment basis. By rotating the azimuth, the intensity of the scattered
beam changes depending on proportion of moment in and out of the scattering plane, and
along the scattering vector. If the moments in the sample all point along the scattering
vector then no azimuthal dependence is expected. Since I ∝ | f |2, for scattering linear in ẑ,
the azimuthal dependence will be a function of sin2 ψ, cos2 ψ, sinψ, cosψ and a constant,
depending on the scattering operator and magnetic moment structure.

The other experiment that can be performed is a Full Linear Polarisation Analysis
(FLPA). This involves a rotation of the incident polarisation, which is also given the sym-
bol ψ, from the definition of the polarisation ellipse, in section 2.1.1. The polarisation of
an x-ray generated by a synchrotron, can be controlled using either the undulator directly
in the case of soft x-ray energies, or with the use of a phase plate setup for hard x-ray
energies. Once calibrated both these setups allow the production of a polarised x-ray ei-
ther circularly polarised or linearly polarised at any angle with respect to the experimental

30



Experimental Techniques Chapter 2.

geometry.

At each incident linear polarisation angle, a Stokes rotation of the analyser is per-
formed to extract the Poincaré-Stoke Parameters of the scattered beam. The Stokes rota-
tion involves collecting a reciprocal space scan or θp scan for each ηp position, and then
fitting the resulting integrated intensity using the Stokes equation in 2.51 to extract P′1 and
P′2. An FLPA measurement shows how P′1 and P′2 varies for the incident polarisation. A
FLPA is more complicated to model than an azimuth, as it involves using Jones matrix
calculus for each incident polarisation.

FLPA and Azimuthal measurements can be used together to solve the magnetic struc-
ture of a material. FLPA has the advantage, that once the scattering condition is found,
the sample remains fixed as the measurement is performed by undulator and polarisation
analyser. Azimuthal measurements require the sample to be rotated which experimen-
tally is more difficult due to constraints from the cryostat, and can also be effected by
anisotropic absorption due to sample shape.

2.2 Neutron Scattering

Neutrons scattering is an established probe for looking at atomic scale in condensed mat-
ter systems. The neutron is a charge neutral particle, and can penetrate deeply into matter,
giving information about the bulk properties. A neutron with a wavevector k, has an
energy given from its de Broglie wavelength as

E =
~2k2

2m
=

(
2.08 meVÅ2

)
k2 (2.52)

where m is the mass of neutron [52]. Cold neutrons with a wavevector of a few Å−1

have an energy of a few meV. Alternatively the wavelength can be expressed in terms
of energy, λ = 9.04E−

1
2 Å, where E is measured in meV. A neutron of 25 meV has a

wavelength, λ = 1.81Å. In condensed matter systems the energy associated with lattice
vibrations and spin excitations is of the order of meV, making neutrons an ideal probe to
use. The wavelength is also similar to the atomic spacing in condensed matter systems.
Neutrons also have a magnetic moment of −1.91µN , where µN is the nuclear magneton.
This makes neutrons a ideal probe to investigate magnetic materials [53].
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2.2.1 Neutron Interaction with Matter

Due to the neutrons charge neutrality they do not interact with the charge of the electron
density. Instead neutrons interact with the atomic nuclei through the strong nuclear force.
Using a similar approach to x-rays a Hamiltonian can be written describing the neutron’s
interaction with a sample.

H = H0 +
p2

2m
+ V (r) (2.53)

H0 is the Hamiltonian describing the unperturbed sample, p2

2m is the kinetic energy of
the neutron and V(r) is the interaction energy between the neutron and sample. The
interaction term can be split up into two terms, V (r) = Vnuclear(r)+Vmagnetic (r). The nuclear
term is between the neutron and the atomic nuclei in the system, whilst the magnetic
term is between the neutron and the magnetic moment from the unpaired electrons in the
system. The scattering cross-section given in equation for x-rays, is correct for neutrons,
with the density of states for the neutrons in a solid angle dΩ being

n (E) =
V0

8π3

mk f

~2 dΩ (2.54)

Combining the density of states with the incident flux, I0 = v/V0 =
~ki
V0m and Fermi golden

rule, the scattering cross-section can be written as

d2σ

dEdΩ
=

(
V0m

2π~2

)2 k f

ki

∣∣∣∣〈(k′, σ′) ; Ψβ |V (r)| (k, σ) ; Ψα

〉∣∣∣∣2 δ(Ei − E f ) (2.55)

where the incident neutron is described by wavevector k and spin σ and the scattered
neutron by k′ and σ′ [54]. The eigenstates of the unperturbed sample, H0 are given
by |Ψ〉, and the initial and final energies, Ei and E f are given as Eα +

p2

2m and Eβ +
p′2

2m

respectively. Assuming the neutron beam can be described by plane waves, then the
states of the incident and scattered neutrons can be written as the wavefunctions

Φk =
1√
V0

eik·r
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and
Φk′ =

1√
V0

eik′·r

The initial state |Ψα〉 of the sample is unknown and in general there will be a range of
accessible initial states. The same can be said for the final states, |Ψβ〉. Without some
form of discrimination all the final states will be observed. The scattering cross-section
can be written as a sum over all the accessible initial states weighted by a probability
factor pα and all the final states.

d2σ

dEdΩ
=

(
V0m

2π~2

)2 k′

k

∑
α

∑
β

pα
∣∣∣∣〈(k′, σ′) ; Ψβ |V (r)| (k, σ) ; Ψα

〉∣∣∣∣2 δ(Ei − E f ) (2.56)

Further discussion will be limited to elastic scattering of an unpolarised neutron beam
from both the nuclear and magnetic interactions. Assuming elastic scattering, the state of
the sample remains unchanged so |Ψβ〉 = |Ψα〉, and

∣∣∣k′∣∣∣ = |k|.

2.2.2 Nuclear Scattering

Unlike the case for an x-ray scattering from an electron, which could be described through
quantum electrodynamics, there is no complete theory of nucleon-nucleon scattering [52,
55]. From experiments, the interaction between neutron and a nucleus is known to be
short range, ∼ 10−14 m. The wavelength of a low energy neutron is much larger than the
range of the interaction resulting in isotropic scattering. This isotropic scattering can be
described by a single parameter, b called the scattering length. The scattering length b is
different for each atom type and isotope, and is assumed to be independent of energy for
the range of interest in condensed matter. The interaction energy between the neutron and
the nucleus can be approximated by the Fermi pseudo-potential, which gives isotropic
scattering as a δ function [54].

Vnuclear(r) =
2π~2

m

∑
i

biδ
(
r − Ri

)
(2.57)
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The sum in the above term is over all nuclei in the system, where Ri is the position of the
ith nucleus. The scattering cross-section for an unpolarised neutron beam becomes

d2σ

dEdΩ
=

∣∣∣∣∣∣∣
〈(

k′, σ′
)

; Ψβ

∣∣∣∣∣∣∣∑i

biδ
(
r − Ri

)∣∣∣∣∣∣∣ (k, σ) ; Ψα

〉∣∣∣∣∣∣∣
2

δ(Ei − E f )

=

∣∣∣∣∣∣∣∑i

bi

∫
d3r e−ik′·Riδ

(
r − Ri

)
eik·Ri

∣∣∣∣∣∣∣
2

δ(Ei − E f )

=

∣∣∣∣∣∣∣∑i

bie
i(k−k′)·Ri

∣∣∣∣∣∣∣
2

δ(Ei − E f ) (2.58)

If the nuclei are arranged in a periodic structure as in the case for a crystal system, the
same reasoning can be used as in the case for x-rays, section 2.1.6. This results in scatter-
ing only occurring when k − k′ is equal to a reciprocal lattice point, Ghkl of the sample.
The scattering cross-section for an unpolarised neutron beam scattering from a periodic
lattice of nuclei is written as

d2σ

dEdΩ
=

8π3N
V

δ
((

k − k′
)
−Ghkl

) ∣∣∣∣∣∣∣∑i

bie
i(k−k′)·Ri

∣∣∣∣∣∣∣
2

δ(Ei − E f ) (2.59)

Where N is the number of unit cells exposed to the neutron beam and V is the volume of
a single unit cell. The index i now ranges over the nuclei in a single unit cell, rather than
the entire crystal. The above cross-section assumes the lattice is fixed and neglects the
nuclei’s thermal motion. Isotopes of the same atomic type can have markedly different
scattering lengths. The isotopes are not distributed in a crystal with any periodicity, and
lead to incoherent scattering effects not accounted for by the above model.

2.2.3 Magnetic Scattering

As stated earlier, the neutron has a magnetic moment, which allows it to interact with
any unpaired electrons in the system. The interaction potential of a neutron in a magnetic
field is described by −µn · H, where µn is the magnetic moment operator for a neutron.
The operator µ can be expressed as γµNσ̂ where gyromagnetic ratio, γ is -1.91, µN is the
nuclear magneton, and σ̂ is the Pauli matrix with σ̂/2 being the neutron spin operator. For
magnetic neutron scattering from a condensed matter system the magnetic field is due to
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the electron density. The magnetic field due to a single electron is given in Landau and
Lifshitz [56], as

H = ∇ ×

µe ×
(
r − ri

)∣∣∣r − ri

∣∣∣3
 +
−e
c

ve ×
(
r − ri

)∣∣∣r − ri

∣∣∣3 (2.60)

The vector ri is the position of the electron, r is the position at which the field is measured
and v the velocity of the electron. µe is the magnetic moment operator of the electron,
and can be written as µe = −2µBŝ, where µB is the Bohr Magneton and ŝ the electron spin
operator. The first term arises from the spin moment of the electron, whilst the second
term to the H-field arises from the orbital moment. As shown in [57], the interaction
potential between a neutron and an system of electrons becomes

Vmagnetic = − γµNσ̂ ·H

= 2γµNµB

∑
i

σ̂ · ∇ ×

 ŝi ×
(
r − ri

)∣∣∣r − ri

∣∣∣3


−
γµNe
2mec

∑
i

pi ·
σ̂ ×

(
r − ri

)∣∣∣r − ri

∣∣∣3 +
σ̂ ×

(
r − ri

)∣∣∣r − ri

∣∣∣3 · pi


=Vspin (r) + Vorbit (r)

The operators ŝi and pi are the spin and linear momentum operators which act on the ith

electron. The orbital term has been split to take into account the operator nature of pi.
In c.g.s. units the definition of a Bohr magneton is µB = e~

2mec , and nuclear magneton is
µN = e~

2mpc , these can be used to take a common factor of 2µNµB out of the interaction
potential.

d2σ

dEdΩ
=

(
V0m

2π~2

)2 (
2γµNµB

)2
∑
α

pα

∣∣∣∣∣∣∣∣
〈(

k′, σ′
)

; Ψα

∣∣∣∣∣∣∣∣
∑

i

σ̂ · ∇ ×

 ŝi ×
(
r − ri

)∣∣∣r − ri

∣∣∣3


−
1

2~

∑
i

pi ·
σ̂ ×

(
r − ri

)∣∣∣r − ri

∣∣∣3 +
σ̂ ×

(
r − ri

)∣∣∣r − ri

∣∣∣3 · pi


∣∣∣∣∣∣∣∣ (k, σ) ; Ψα

〉∣∣∣∣∣∣∣∣
2

δ(Ei − E f ) (2.61)

The cross-section can simplified by integrating the interaction potential over the neutron
coordinates k and k′. The notation κ = k − k′ and κ̂ = k−k′

|k−k′|
is used to simplify the
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expression.

d2σ

dEdΩ
=

(
m

2π~2

)2 (
2γµNµB

)2 (4π)2
∑
α

pα

∣∣∣∣∣∣∣
〈
σ′; Ψα

∣∣∣∣∣∣∣σ̂ ·
∑

i

eiκ·ri κ̂ ×
(
ŝi × κ̂

)
−

i
~|κ|

∑
i

eiκ·ri κ̂ × pi


∣∣∣∣∣∣∣σ; Ψα

〉∣∣∣∣∣∣∣
2

δ(Ei − E f )

=

(
γe2

mec
2

)2 ∑
α

pα
∣∣∣∣〈σ′; Ψα

∣∣∣σ̂ ·M⊥ (κ)
∣∣∣σ; Ψα

〉∣∣∣∣2 δ(Ei − E f ) (2.62)

The operator M⊥ is the magnetic interaction vector and can be written in terms of the
magnetic structure factor, M(κ), as M⊥(κ) = κ̂ ×M(κ) × κ̂. The magnetic structure factor
is the Fourier transform of the total magnetisation distribution. This can be written as a
summation of magnetic moments, µi over all the magnetically active ions [57].

M
(
k − k′

)
=

∑
i

f mag
i

(
k − k′

)
µie

i(k−k′)·ri (2.63)

f mag
i

(
k − k′

)
is the magnetic form-factor and is the Fourier transform of the magnetisation

distribution of the ith ion. This form-factor is dependent on the value of k− k′, and in this
respect it is more similar to the charge scattering of x-rays, than the nuclear scattering of
neutrons, where the form-factor bi was constant with k − k′. For the work in this thesis,
unpolarised neutrons were used, this removes any sensitivity to the σ̂ ·M⊥

(
k − k′

)
term.

The advantage of using unpolarised neutrons is intensity. Neutrons, unlike synchrotron
radiation, are produced unpolarised, and spin filters are required to produce a beam of
polarised neutrons, by filtering out any neutrons with the non-desired polarisation. This
dramatically reduces the beam intensity.

2.2.4 Time-of-Flight

The neutron work presented in this thesis was collected from the ISIS neutron spallation
source, in the UK. Neutron spallation works by bombarding a heavy metal target with
protons, releasing two or three smaller nuclei and several neutrons. The ISIS source uses
a 70 MeV linear accelerator to speed up H− ions to an 800 MeV synchrotron ring. The
synchrotron magnetic field is designed so positive ions bend into the ring direction. The
H− ions enter the ring they are passed through a gold stripper foil which removes two
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electrons to give a bare proton. The synchrotron accelerates the protons to a velocity of
0.84c. This process continues until 2.8 × 1013 protons accumulate in the ring. The proton
beam has a charge of 4.5 µC, and is split into two pulses each of 100 ns. The whole
process happens 50 times a second, resulting in a mean current of 200 µA. There are two
target stations at ISIS, the WISH instrument used in this thesis, is situated on target station
two, which receives one in four pulses, resulting in a mean current of 42 µA. The target
is composed of tungsten clad in tantalum, and a decoupled solid methane moderator. The
decoupled moderator provides the WISH instrument with a energetically broad pulse,
with little to no tail and a width of 30-50 µs.

X-ray diffraction experiments are performed with a monochromatic x-ray beam. Diffrac-
tion from a particular Ghkl reciprocal lattice point occurs at a specific point. Neutrons
from spallation sources are non monochromatic and are produced with a range of ener-
gies. Unlike the case with electromagnetic radiation, a neutron’s velocity is related to its
energy through the kinetic energy relation EK = 1

2mnv2. Neutrons of different energies
travel at different speeds, combined with the pulsed nature of the spallation source, means
that in addition to the scattered position, the time-of-flight since the pulse origin can be
measured. For example, the WISH instrument has two-dimensional detectors covering a
scattering angle from 10-170◦ and an out of plane angle of ±12.8◦ [58]. For every scatter-
ing event, the time-of-flight, to f is recorded, resulting in each pixel having a time-of-flight
vs intensity spectrum. In this manner two scattering conditions which are on top of each
other, i.e. the [1, 1, 0] at E and [2, 2, 0] at 4E which have the same scattering angle θ, are
separable in time-of-flight. Using the distance from source to detector, the time-of-flight
can be converted to crystallographic d-spacing. The relationship between time-of-flight
and d-spacing, d is given by the following quadratic relationship.

to f = DIFC d + DIFA d2 + ZERO (2.64)

The first term, DIFC which is the linear d coefficient, is the theoretical time-of-flight of a
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measured Bragg reflection. This arises from de Broglie relation and Bragg’s Law.

λ =
h

mnv
=

h
mnL

to f =2dhkl sin θ

to f =
2mn

h
Ldhkl sin θ (2.65)

=505.56Ldhkl sin θ

The simplification of the above equation holds when dhkl is measured in Å, the flight path
L measured in m, and time-of-flight in ms.

The DIFA value is the coefficient of the quadratic d-spacing term, d2. This term arises
from wavelength dependent absorption cross-section. Short wavelengths experience less
absorption than longer wavelength. The average penetration into the sample is wavelength
dependent, and therefore the total flight path L is wavelength dependent. DIFA is a small
correction term, that empirically has been shown to have a d2 relationship.

The ZERO term corresponds to small differences between various timing signals and
the synchrotron, as well as response times for detectors. The ZERO term is instrument
specific.

During a neutron time-of-flight experiment, the scattering angle and time-of-flight are
recorded. The analysis is more complicated than in the monochromatic diffraction case,
but a d-spacing spectra can be extracted from the time-of-flight. Using the scattering
angle and d-spacing the diffraction pattern can be indexed using the reciprocal space hkl

notation. The WISH instrument, although built as a time-of-flight powder diffraction
instrument, has the capabilities for single crystal diffraction, using a transmission Laue
geometry, with the advantage that families of peaks can be separated in the d-spacing
spectra.

2.3 Muon Spin Relaxation

Muon spin relaxation experiments, µSR use a beam of spin polarised muons to probe the
local magnetism in the target sample.

2.3.1 The muon particle

The muon is a lepton with a mass of 206 me (approximately 1/9 the mass of a proton),
carries a charge of ±e, and has a lifetime of 2.2 µS. In order to use muons as a successful
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magnetic probe, the incident muons need to be spin polarised.

It is important to note, unlike the x-ray and neutron techniques used in this thesis,
muon spectroscopy is not a scattering technique. Muons implant in materials, where they
remain for the rest of their lifetime before decaying in to a positron or electron depending
on charge of muon. Positive muons, for this purpose can be thought of as lightweight pro-
tons, and sit in positions well away from the nucleus, in regions of high electron density,
before decaying into a positron. Negative muons are attracted to the nucleus and tend to
displace an electron from the atom and drop down to the 1s state, where it either decays
into an electron or undergoes µ− capture with a proton in the nucleus and forms a neutron
and a neutrino. For condensed matter systems, positive muons provide a far more inter-
esting probe, as they are far more sensitive to the electron cloud. The ARGUS instrument
operates using positive muons.

Muon facilities, such as ISIS, produce muons by passing an energetic proton beam,
from a proton synchrotron through a thin graphite target. Collisions between the protons
(800 MeV) in the beam and protons and neutrons in the graphite, lead to the production
of pions, π±.

p + p→ p + n + π+

p + n→ n + n + π−

The pions have a relatively short lifetime of 0.026 µs and subsequently decay into muons.

π+
→ µ+ + νµ

π− → µ− + ν̄µ

The pion has a spin quantum number of zero, S = 0, and neutrinos possess negative
helicity meaning there spin is antiparallel to their momentum. Under conservation of
linear and angular momentum, in the pion rest frame the muon is forced to have negative
helicity. The muons are produced in pulses of nearly 100% spin polarised meaning their
spin is antiparallel to their momentum.
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2.3.2 Muon interaction with matter

The muons enter the sample and undergo a number of stopping processes, including ion-
isation of atoms, scattering with electrons, electron capture/loss reactions. Damage to the
sample by the muon beam, occurs near the sample surface, early in the muon’s trajectory.
All later stopping mechanisms, mainly electron capture/loss cause no permanent damage.
The site where the muon finally implants (zero Ek), will be away from any possible dam-
age caused to the sample. The various stopping processes the muon undergoes tend to
leave the spin polarisation unchanged. When the muon comes to rest in the sample it will
have a well defined spin direction. The muon spin will interact with the local magnetic
field through a process known as Larmor precession. The moment from the muon expe-
riences a torque when subject to an external magnetic field, this torque is given by the
cross product of the magnetic moment and the B-field and is equal to the rate of change
of angular momentum.

dµ
dt

= µ × B

The muons spin precesses with a frequency ω =
ge

2mµ
B = 2π × 135.5B, where 135.5 MHz

T−1 is the gyromagnetic ratio for the muon, mµ is the mass of the muon and the g-factor
g ≈ 2.

The dominant decay channel for a muon is into a positron, electron neutrino and muon
anti-neutrino.

µ+
→ e+ + νe + ν̄µ

In this decay process the positron is emitted preferentially along the direction of the
muons spin, due to the parity violating weak interaction, and the conservation of linear
and angular momentum. This allows us to read out the polarisation state of the muon.
The angular distribution of positron emission is a function of the positrons energy ξ.
The maximum energy the positron can have is 52.83 MeV, we can parametrise the decay
probability using the substitution x = ξ/ξmax. The decay probability W of the positron
emission can be written a combination of the normalised energy spectrum, E(x) and an
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µ+

Figure 2.4: Angular distribution of the emitted positron from the decay of a µ+, with
respect to the direction of the µ+ spin (green). The distribution is energy dependent, the
figure shows the case ξ = 0.7ξmax (light blue) and ξ = ξmax (black).

asymmetry factor, a(x).

dW(x, θ) = E(x)[1 + a(x)cosθ]dxd(cosθ)

E(x) = 2x2(3 − 2x)

a(x) = ±
2x − 1
3 − 2x

,

The asymmetric angular distribution of the emitted positron is shown in figure 2.4, for
two particular positron energies 0.7ξmax (light blue) and ξmax (black).

2.3.3 Muon Spectrometer

The ARGUS instrument, (Advanced Riken General-Purpose mUsr Spectrometer) is based
at the RIKEN-RAL Muon Facility at the neutron spallation source ISIS. The basic design
of the ARGUS spectrometer, shown in figure 2.5, consists of two circular banks of detec-
tors either side of the sample. Each detector bank known as forward and back, consists
of 96 detector elements. The spin polarised muon beam is sent in pulses, enters the spec-
trometer, through the centre of the back detector bank, and implants in the sample. The
positive muons implants inside the crystal in areas of high electron density, where they are
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Figure 2.5: Schematic of the experimental set-up in the ARGUS spectrometer at the ISIS
facility (RAL, UK). The muon beam travels in from the left hand side, spin polarised with
their magnetic moment (black arrows) antiparallel to their momentum, and implant in the
sample shown in grey. Two sets of detectors, forwards and back are shown in black. A
magnetic field can be applied longitudinally or transverse, shown by the red rings.

subject to local magnetic fields, until they decay into positrons. The muon subsequently
decays into a positron,which is emitted from the sample, and detected by either the for-
ward or back detector bank. For each positron detection event, the detector bank (F/B)
and the time since the muon pulse is created is recorded. If the muon decays immediately
after implanting in the sample, it will still have its spin pointed backwards and the subse-
quent positron will be emitted in the direction of the back detector. If the muon decays
after time, t where it has be able to precess half a revolution, the subsequent positron will
be emitted in the direction of the forward detector. The time evolution of the number of
events detected by the forward and back detectors are described by functions NF(t) and
NB(t). The sum of these two functions is an exponential decay, as expected for a radioac-
tive decay process. The time evolution of the spin polarisation can be seen by taking the
normalised difference.

A(t) =
NB(t) − NF(t)
NB(t) + NF(t)

(2.66)

Argus comes equipped with two sets of magnetic field coils, shown in red in figure 2.5.
These allow a magnetic field to be applied both longitudinally and transverse across the
sample.

42



Chapter 3

Magnetic and Charge order in oxygen deficient
Transition metal oxide, Strontium Ferrate

3.1 Introduction to SrFeO3−δ

3.1.1 Transition Metal Oxides

Transition metal oxides (TMO) are a class of material which contain a transition metal
and oxygen. Transition metals are defined as an element whose atom has an incomplete
d sub-shell or which can give rise to cations with an incomplete d sub-shell [59]. The
valency of these d orbitals allow transition metals to bond ionically, covalently and metal-
lically across the period. Unlike other oxide classes, TMOs show a range of physical
phenomena such as high temperature superconductivity in the cuprates, e.g. YB2Cu3O7,
BiSrCaCu2Ox [60–62], colossal magnetoresistance in the layered manganates, e.g.

La2−2xSr1+2xMn2O7 [63], metal-insulator transitions, e.g. VO2 [64] and multiferroicity,
e.g. BiFeO3,TbMnO3 [65, 66] [67].

For a free ion of a transition metal the d orbitals are degenerate, and the electronic
configuration is determined by Hund’s Rules. In a transition metal oxide, the transi-
tion metal is now surrounded by oxygen. The oxygen acts as a distribution of negative
charge, and as a consequence of the repulsion between electrons, the energy of the d or-
bitals increases. If this distribution of negative charge around the transition metal ion was
spherically symmetric we would expect it to affect all of the d orbitals equally. In a crystal
system the oxygen cations occupy particular sites in the unit cell. The co-ordination of the
oxygen around the transition metal can vary greatly depending on the crystal structure of

43



Chapter 3. Charge and Magnetic Ordering in SrFeO3−δ

Figure 3.1: Different oxygen geometries seen amongst the transition metal oxides. The
transition metal is brown and the oxygen is red. (a) Linear, (b) ‘Tetrahedral, (c) Octahe-
dral, (d) Squared-based Pyramid, (e) Square-Planar geometries.

the material. A variety of co-ordinations, shown in Figure 3.1, have been observed across
the spectrum of TMOs - from linear chains, where the transition metal has two oxygen
ligands; tetrahedral where four oxygen ligands surround the transition metal, maximising
space; octahedral with 6 oxygen ligands; squared-based pyramidal with 5 oxygen ligands;
and square-planar, where four oxygen ligands surround the transition metal ion confined
to a plane.

This distribution of charge around the transition metal can vary greatly from spherical
for different coordinations, affecting each of the d-orbitals differently. Crystal field theory
uses a quantum mechanical description of the transition metal ion in the crystal electric
field potential given by oxygen-cation coordination to predict the energy level splitting of
the degenerate d sub-shell [68,69]. For the linear crystal field, an oxygen anion sits above
and below the transition metal ion. The dz2 orbital is located in the highest region of nega-
tive charge, and its energy level increases the most from the isolated ion case, followed by
the dxz and dyz orbitals, lastly the dxy and dx2

−y2 are furthest away from the oxygen anion
and experience the least negative charge, having the lowest energy level. Figure 3.2 show
the splitting of the degenerate d orbitals energy level for linear, tetrahedral, octahedral,
squared-based pyramid and square planar.

As the d orbitals are no longer degenerate, Hund’s rules are no longer sufficient to
find the electron configuration, and some attention must be paid to the size of the orbital
splitting. If the orbital splitting is large compared to the energy cost of pairing electrons,
then the lower energy orbitals will doubly occupy before electrons fill the higher energy
orbitals. If the orbital splitting is small compared to the pairing energy, then the orbitals
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Figure 3.2: Different orbital energy level splittings for the different oxygen ligand ge-
ometries predicted by crystal field theory. (a) Linear, (b)Tetrahedral, (c) Octahedral, (d)
Squared-based Pyramid, (e) Square-Planar

will all singly occupy first. The crystal field splitting and valency of the transition metal
ion affect the physical properties of the system and are responsible for the wide range of
behaviours observed in TMO’s.

3.1.2 SrFeO3

As mentioned earlier in this chapter, colossal magnetoresistance has been found in the
transition metal oxides, in the manganite family [70, 71]. Magnetoresistance is the prop-
erty of a material to change its resistance in the presence of an external magnetic field.
The term colossal refers to the size of the magnetoresistance effect, iron and nickel expe-
rience a change in resistance of the order of 1% , whereas manganites experience changes
in resistance on the scale of several orders of magnitude- with the La-Ca-Mn-O system
showing a change in resistance of 108 % [71] . The parent of the La-Ca-Mn-O family
is the cubic perovskite material LaMnO3. The perovskite structure has a cubic lattice
of lathanum atoms at the corner [0,0,0] position, with a body-centred manganese atom
octahedrally coordinated with face-centred oxygen atoms.

SrFeO3 provides an interesting comparison to LaMnO3 as it also crystallises in the
Pm3̄m cubic perovskite structure, with lattice parameter a = 3.851(1) Å [72] . Mössbauer
results show the iron ion exhibits Fe4+ electronic configuration [73], giving it the same
valency of 4 electrons in the d-orbitals as Mn3+.

The octahedral crystal field splitting, breaks the d-orbitals into two degenerate sub-
shells. The dz2 and dx2

−y2 form the higher energy eg orbital, and the dxy, dxz and dyz

form the lower energy t2g orbital. This gives two possible electron spin configurations,
a low spin state [Ar].t2g↑↑↑↓ or a high spin state [Ar].t2g↑↑↑.eg↑. The magnetic structure
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of SrFeO3 was determined by neutron diffraction to form a helical phase at TN = 134 K,
with a wavevector k = (0.13, 0.13, 0.13) [74]. Neutron diffraction determined the expected
ground state magnetic moment of the Fe to reach the high spin value. X-ray photoemis-
sion spectroscopy (XPS) combined with cluster-model configuration-interaction calcula-
tions performed by Bocquet et al., have shown the high-spin configuration, t3

2ge1
g ground

state to be stable [75]. With the high spin state, a cooperative Jahn-Teller effect is ex-
pected, as is the case in LaMnO3 [76]. The high spin state, t3

2ge1
g is doubly degenerate, as

there is a choice of dz2 and dx2
−y2 orbitals. The Jahn-Teller effect is a distortion of the oxy-

gen octahedra causing the degenerate eg state to split, lowering the overall energy of the
electron configuration. No evidence has been found for the existence of the cooperative
Jahn-Teller effect, either static or dynamic in SrFeO3 [73, 77]. Bocquet et al. [75] have
used a p − d charge-transfer cluster-model calculation to interpret the Fe 2p core level
spectra. They found a large amount of charge is transferred along the Fe-O bond from the
oxygen 2p band to the iron d orbitals. This results in a ground state dominated by the d5L

configuration rather than the d4, explaining the lack of Jahn-Teller distortions present.

3.1.3 SrFeO3−δ series

One method to investigate the effects of valency and crystal field splitting in these ma-
terials, is to reduce the oxygen content, introducing oxygen vacancies. In the case of
SrFeO3−δ, these oxygen vacancies order, creating a family of materials with the formula
SrnFenO3n−1, with n = 1, 2, 4, 8, ∞, equivalently SrFeO3− 1

n
. The phase diagram for

SrFeO3−δ is known to contain the 5 vacancy ordered structures separated by miscibility
gaps [72]. The n =∞ case returns our cubic perovskite.

When reducing the oxygen content, the n = 8 structure Sr8Fe8O23 (alternatively written
as SrFeO2.875) forms. Sr8Fe8O23 has a tetragonal structure 2

√
2ac × 2

√
2ac × 2ac where ac

is the cubic perovskite lattice parameter, with space group I4/mmm and lattice parameters
a = 10.929(1) Å and c = 7.698(1) Å shown in figure 3.3(b) [72]. This unit cell contains
16 iron ions, 12 of which remain octahedrally coordinated, the other 4 lose an oxygen
forming square-based pyramids.

Upon reducing the oxygen content further, the n = 4 phase forms. Sr4Fe4O11, (SrFeO2.75)
adopts an orthorhombic C-centred unit cell 2

√
2ac×2ac×

√
2ac with space group Cmmm

and lattice parameters a = 10.974(1) Å, b = 7.702(1) Å, c = 5.473(1) Å [72]. The unit cell,
shown in figure 3.3(c), contains 8 Fe ions, 4 octahedral and four square-based pyramids.
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Figure 3.3: Crystal structures of members of the family SrnFenO3n−1(a)n = ∞, (b)n = 8,
(c)n = 4, (d)n = 2, (e)n = 14. Strontium atoms are shown in green. oxygen are shown
in red, and iron is shown in brown, silver, blue and purple, to illustrate different oxygen
coordinations.

The n = 2 compound Sr2Fe2O5(SrFeO2.5) forms the brownmillerite orthorhombic
structure,

√
2ac × 4ac ×

√
2ac figure 3.3(d) [78]. This consists of alternating layers of

octahedra and tetrahedra. Finally in the n = 1 compound, SrFeO2, adopts a tetrago-
nal structure with space group P4/mmm and lattice parameters a = 3.99107(3) Å and
c = 3.47481(5) Å [79,80]. SrFeO2 contains planes of square planar FeO4 shown in figure
3.3(e), and can be related to the cubic perovskite phase 3.3(a) with two oxygen vacancies,
reducing the octahedra into square planar geometry.

Sr8Fe8O23 has three inequivalent iron sites. In the unit cell, four iron ions (Fe1) sit
at the 4e Wyckoff site, surrounded by five oxygen in a square-based pyramid geometry.
Of the remains 12 octahedra, eight (Fe2) are tilted sitting at the 8 f Wyckoff site, forming
zig-zag lines of tilted octahedra in the c-direction. The remaining 4 octahedra (Fe3) at
the 4d Wyckoff site are nearly regular, with four Fe-O bonds 1.912 Å and two 1.925 Å,
compared to the SrFeO3 compound with six Fe-O bonds all 1.926 Å. Mössbauer spectra
measured by Adler et al. [81] at room temperature show two iron valence states Fe4+ in
the high spin configuration and Fe3.5+ of a 1:1 ratio. Bond strength sums calculated for
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all three iron sites show the tilted octahedra have a lower valency, with Fe4+ assigned
to the Fe1, square-based pyramids and Fe3 regular octahedra, and Fe3.5+ to the Fe2 tilted
octahedra site. Mössbauer measurements taken by Takano et al. [82] show that the Fe3.5+

state is due to fast electron transfer between Fe3+ and one-third of the Fe4+ ions relative to
10−8 s characteristic Mössbauer time frame. At 4 K the Mössbauer results show two iron
valencies of Fe3+ and Fe4+ in a ratio of 1:3. [72, 81, 82]. This has been interpreted [82]
as the formation of charge order of Fe3+ and Fe4+ on the Fe2 sites, or at least a slowing
of the charge transfer process to a rate on a timescale larger than 10−8 s, the characteristic
timescale of the Mössbauer process.

Due to the miscibility gaps in the phase diagram, of SrFeO3−δ, there has been difficulty
in achieving single-phase samples in the literature. Bulk measurement techniques, such as
magnetic susceptibility, resistivity, and Mössbauser spectroscopy, are insensitive to con-
tributions from different phases, and average over the whole sample. Susceptibility and
resistivity measurements reported in reference [1], show markedly different behaviour for
different oxygen content, see figure 3.4. Of their three samples, SrFeO3 was reported to
consist entirely of the cubic perovskite phase; SrFeO2.85 is a mix of 80% tetragonal n = 8,
and 20% cubic perovskite; and SrFeO2.81 is 70% tetragonal n = 8 and 30% orthorhom-
bic n = 4. The cubic phase is metallic, and its resistivity increases with temperature.
The two oxygen-deficient samples show a metal insulator transition at low temperatures,
interpreted to be characteristic of the tetragonal phase.

Magnetic structure determination by Reehius et al. [83] used neutron diffraction on
three multi-phase samples, with oxygen deficiencies identified as δ = 0.03, 0.13,0.23.
The δ = 0.13 which is closed to the stoichiometric n=8 (δ=0.125) oxygen content was
identified as a mixture tetragonal n = 8 and cubic n = ∞ of proportions 74(2):26(2).
Across the SrFeO3−δ phase diagram between δ = 0 − 0.23 they identified seven distinct
magnetic phases. Of these seven magnetic phases, four were assigned to host lattices. The
helical phase belongs to the cubic δ = 0 phase with a wavevector k = (0.13, 0.13, 0.13)

and transition temperature of TN = 134 K [1]. A second helical phase with wavevector
k = (0.2, 0.2, 0.2) and transition temperature TN = 75 K was assigned to the δ = 0.125
tetragonal phase. A spin density wave with wavevector expressed in the cubic basis as k =

(0.17, 0.17, 0.17) and transition temperature TN = 75 K was also assigned to the δ = 0.125
tetragonal phase. An antiferromagnetic phase was assigned to the orthorhombic δ = 0.25
phase, with a transition temperature of TN = 232 K, and a periodicity commensurate with
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Figure 3.4: (a)-(c) Resistivity measurements on heating and cooling for zero field (black)
and 9 T field (red) for three samples of different oxygen deficiencies (a) δ = 0, (b) δ = 0.15
and (c) δ = 0.19. (Inset (a)-(c)) Magnetoresistance (MR) plots for the three samples. In
this case, MR is defined as ρ(H=9 T )−ρ(H = 0)

ρ(H = 0) . (d) Magnetic susceptibility, measure on field
cooling and warming with a field of B = 1 T. The three samples have been shifted by 0,
0.005 and 0.01 emu/mol for clarity. Reprinted from reference [1].

the orthorhombic unit cell.

The last three phases were found to have magnetic wavevectors expressed in the cu-
bic lattice as (0.3, 0.3, 0.75), (0.79, 0.79, 0) and tetragonal lattice (0, 0, 1/2), but were not
able to be associated with a particular crystallographic phase with transition temperatures
65(4) K, 110(4) K and 60(5) K respectively.

3.2 Experiment
A single crystal of SrFeO3−δ was grown by the floating zone method [84] by our collabo-
rators S. H. Lee, C. H. Du at Tamkang University, Taiwan. The crystal structure was con-
firmed by powder diffraction. A portion of the single crystal, was cut and finely ground.
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The powder diffraction study was performed on beam line BL01C2 at the NSRRC syn-
chrotron in Taiwan, using 17 keV incident x-rays. The results confirmed that the tetrag-
onal (I4/mmm) was the majority phase with lattice parameters a = b = 10.3931 Å and
c = 7.7 Å, shown in 3.3(b). The reciprocal lattice vectors will be given in the tetragonal
basis unless stated otherwise.

A magnetic transport study was under taken at Tamkang university. Resistivity and
susceptibility measurements were performed on this sample using a Quantum Design
Physical Properties Measurement System PPMS. The sample’s alignment was found us-
ing an in-house x-ray diffractometer. The sample was cut into a thin slab, and 200 nm
thick gold contacts were deposited using high energy sputtering. Magnetic susceptibility
was measured both field cooled (FC) and zero-field cooled (ZFC) from 300 K to 10 K.
The resistivity was measured at a rate of 2 K a minute, on both cooling and warming, in
zero field and a 9 T magnetic field.

A second piece of the sample was aligned for synchrotron experiments using their
in-house x-ray diffractometer and a surface prepared with a [001] direction normal. The
sample had dimensions 2×3×1 mm3. High energy x-ray diffraction experiments were per-
formed at hard x-ray beamlines BL07 and BL12B2 at the NSRRC, Taiwan and SPRING-
8, Japan. The incident x-ray energy was tuned to 10 keV by a pair of Si(111) single
crystals and the scattered beam was analysed by LiF(400) analyser crystal.

A resonant x-ray diffraction experiment was performed on soft x-ray beamline EPU
05B3 at the NSRRC. By tuning the incident energy to the iron LII/III and oxygen K ab-
sorption edges, the resonance exchange scattering process provides sensitivity to the mag-
netic structure, allowing magnetic diffraction peaks to be measured. EPU 05B3 has a
in-vacuum two circle diffractometer in a horizontal scattering setup. The diffractometer
operates at a vacuum of 6.6×10−8 mbar. A Janis ST-400 UHV cryostat was used with a
liquid helium generator, allowing a stable base temperature of 20 K for the experiment.
The detector arm has both a photodiode detector and a channeltron charge detector. The
channeltron is used in conjuncture with a thin film of CsI. The CsI absorbs the scattered
photons and emits a large amount of secondary photons that the channeltron subsequently
detects, allowing weak signals to be measured. The EPU 05B3 provides control over both
the energy and polarisation state of the incident beam. Fluorescence spectra were mea-
sured using the photodiode to locate the iron LII/III and oxygen K absorption edges. The
polarisation state of the incident beam set up to be parallel (π-polarised), perpendicular
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(σ-polarised), circular left and right with respect to the scattering plane. The sample was
mounted with the [0, 0, 1] surface normal, and the a-axis perpendicular to the scattering
plane. The channeltron was used to measure the magnetic diffraction peaks.

3.3 Results

All experiments were carried out on two samples taken from the same growth boule. The
transport measurements were carried out on one sample, and all the x-ray experiments
were carried out on the other sample. Powder diffraction measurements carried out on a
peice taken from the boule reveal the sample to be made up of a majority phase of the
n = 8, tetragonal Sr8Fe8O23, with lattice parameters a = b = 10.3931 Å and c = 7.7 Å.
The powder diffraction showed Sr8Fe8O23 to be the majority phase with a 5% unidentified
phase, resulting in δ = 0.125 ± 0.007.

3.3.1 Transport measurements

The resistivity was measured along the [1,1,0] and [0,0,1] directions on both cooling
and warming, in zero field and an applied field of 9 T, resulting in 8 measurements in
total. Figure 3.5 shows the temperature dependence of the resistivity. The sample shows
semiconductor behaviour, with resistivity increasing at lower temperatures, changing by
four orders of magnitude between 10 K and 300 K. Qualitatively the resistivity shows
similiar behaviour to a mixed phase sample reported by Lebon et al. [1] to have a δ =

0.19, reproduced in figure 3.4. This disparity between the oxygen deficiency shows the
need for single phase samples to get useful information from bulk transport measurement.
The resistivity along the [110] direction is consistently higher over the entire measured
temperature range. A transition in the resistivity can be seen around 115-120 K, below
which the resistivity increases rapidly with decreasing temperature. This transition is
more pronouced in the [110] than the [001] direction. There is a further transition in
the resitivity around 60 K. This transition is more apparent in the [001] direction. The
transition around 60 K shows thermal hysteresis, with measurements on warming having
higher resistance. The thermal hysteresis has a width of 11 K.

The effect of an applied magnetic field is shown in figure 3.5 (bottom). The applied
field has no effect on the resistivity until below the transition at 120 K. The effect of the
applied field is easier to see in figure 3.6 which shows the magnetoresistance. Magnetore-
sistance has been defined as resistance in the applied field minus resistance in zero field,
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Figure 3.5: The resistivity was measured along the c-axis and the ab-plane for both
warming and cooling and in zero-field and an applied field of 9 T.

all divided by the resistance in zero field.

MR =
ρH (T ) − ρ0 (T )

ρ0 (T )
(3.1)

By defining the magnetoresistance using the above formula, the negative magnetoresis-
tance is limited to -100%, whilst positive magnetoresistance is uncapped. The system
shows magnetoresistance behaviour along both the [110] and [001] axis. At the base
temperature of 10 K the system exhibits positive magnetoresistance along both crystal-
lographic directions, of around 140%. Upon warming the magnetoresistance drops and
becomes negative around 45%. Further warming the magnetoresistance returns to zero.
The exact transition temperatures depends on the measurement direction, and whether the
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Figure 3.6: Magnetoresistance, defined by equation MR =
ρH(T )−ρ0(T )

ρ0(T ) ’. Magnetoresis-
tance measured along the c-axis and ab plane on cooling (top) and warming (bottom).

measurement was performed upon warming or cooling.

The negative magnetoresistance effect appears along the [110] direction at the first
transition in the resistivity, around 120 K, whilst the magnetoresistance along the [001]
direction does not appear until the second transition at 60 K.

3.3.2 Magnetic Susceptibility measurements
Magnetic susceptibility, figure 3.7, shows an antiferromagnetic transition around 75 K.
Above this transition the system exhibits paramagnetic-like behaviour with an increasing
magnetic susceptiblity upon cooling. The behaviour is not true paramagnetism, as the
magnetic susceptibility of paramagnetism as described by the Curie Weiss law is expected
to be linear when the inverse susceptibility is plotted. The red trend line in figure 3.7
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Figure 3.7: (top) Magnetic susceptibility measured on field-cooling and zero field-
cooling.(bottom) The reciprocal of susceptibility. Paramagnetic behaviour is indicated
by a straight line. The red line indicated a linear trend, indicating where the susceptibility
departs from the Curie Weiss behaviour.

shows that the inverse susceptibility departs from a linear relationship with temperature
below 240 K.

3.3.3 High Energy X-ray Diffraction

X-ray diffraction experiment was carried out at 10 keV, with the sample mounted with
the c-axis along the scattering vector. A LiF analyser crystal was used to increase the
resolution of the instrument. The (0,0,4) Bragg peak was found and high resolution θ−2θ
scan were measured as a function of temperature. The θ − 2θ peaks were analysed using
a Lorentzian-Squared function, and the centre and width extracted. Figure 3.8 shows the
results from the temperature dependence of the (0,0,4) Bragg peak. The centre position
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Figure 3.8: Temperature dependence of (0, 0, 4) Bragg peak. (Top) Change in c lattice
parameter on warming (closed circles) and cooling (open circles). (Bottom) Temperature
dependence of width of (0, 0, 4) Bragg peak on warming and cooling.

of the θ − 2θ peak can be used to calculate the c-lattice parameter, and is shown in the top
of figure 3.8. The width is shown the bottom of figure 3.8.

The c-axis parameter decreases from 7.7155 Å to 7.7070 Å upon cooling from 300 K
to 20 K. A transition is observed around 50 - 65 K, with thermal hysteresis on warming
and cooling. The width of the (0,0,4) Bragg peak decreases on cooling until the transition
at 50 - 65 K, where the width increases to 2.2 × 10−3 r.l.u., On further cooling the width
remains constant. The thermal hysteresis of this structural transition is also visible in the
width.

A set of weak satellite reflections were also identified around Bragg peaks in the
[0,0,L] direction. These satellite were found at positions (0,0,1.37), (0,0,2.63), (0,0,3.37),
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Figure 3.9: Temperature dependence of the (0, 0, 4−τ) structural satellite peak, on warm-
ing (closed circle) and cooling (open circle). (Top) Wavevector, τ of the (0, 0, 4 − τ)
satellite reflection. (Bottom) Width of the (0, 0, 4 − τ) satellite reflection.

(0,0,4.63), (0,0,5.37), (0,0,6.63) et cetera. Due to the crystal symmetry of the structure
only even Bragg peaks are expected along the [0, 0, L] direction. The satellite peaks have
been indexed as (0, 0, L ± τ) where L is even and τ ∼ 0.625 at 20 K. The reciprocal space
positions have been corrected for the change in c lattice parameter measured in figure 3.8.

High resolution θ − 2θ scans were measured across the (0, 0, 4 − τ) satellite reflection
on both warming and cooling. The diffraction peaks were analysed with a Lorentzian
peakshape, and the centre position and width extracted. Figure 3.9 shows the variation of
wavevector and width of the satellite peak. The satellite peaks disappear at 115 K.

When the satellite reflections first appear at 115 K the wavevector takes an incom-
mensurate value which varies with temperature. Upon cooling the wavevector linearly
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Figure 3.10: Reciprocal space scan along the [00L] direction at the Fe LIII with π incident
polarised light.

decreases. The wavevector transitions from an incommensurate value to a higher com-
mensurate value of 5/8 around 60 K. This transition to a commensurate value shows ther-
mal hysteresis, with a lower transition temperature on cooling than warming. The satel-
lite peak has a width of 3 × 10−2 r.l.u. when it appears at 115 K, and quickly decreases
to 1 × 10−2 r.l.u. The transition from incommensurate to commensurate wavevector is
observed in the width, with a small increase in width. The 11 K hysteresis is apparent
in the width, with the transitions occurring at 51 K and 62 K, on cooling and warming
respectively.

3.3.4 Soft Resonant X-ray Diffraction

In order to further study the satellite reflections a resonant scattering experiment was
carried out at the soft Fe LII/III edges. The sample orientation was kept along the [0, 0, L]
direction. The EPU beamline 05B3 has control of the incident polarisation, but does not
have the capabilities for post-scatter polarisation analysis.

The incident x-ray was tuned to the Fe LIII absorption edge. Figure 3.10 shows a scan
along the [0, 0, L] direction, performed at 20 K, with π incident light. Two peaks are
present, one at (0,0,0.5) and another at (0,0,0.63) corresponding to the τ satellite peaks
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Figure 3.11: Resonance of the (0, 0, τ) peak at Fe LII/III. σ incidence light, shown in red,
π incidence shown in blue.

measured non-resonantly.

Energy resonances were measured across the both peaks by measuring high resolution
θ−2θ scans as a function of incident energy. The resonances were measured with incident
polarised light in the σ-, π-, circularly left-, and right- polarisation channels. Figures 3.11
and 3.12 show the resonances for the (0, 0, τ) and (0, 0, 0.5) peaks respectively. For both
cases the circularly left and right channels did not show any differences, and have not
been shown on the figures. For the (0, 0, τ) reflection the diffraction in the σ-channel is
seven times as intense as that in the π-channel. The σ- and π- channels show different
resonant structures. This is suggestive of different origins to the scattering in the different
channels. The resonance of the (0, 0, 0.5), figure 3.12, shows the same structure in both
channels. The π-channel is also four times more intense than the σ-channel.

The sample was warmed up and the (0, 0, τ) disappeared at 115 K, confirming it to
be the same origin as the non-resonant satellite peaks. A more detailed temperature de-
pendence was carried out on the (0, 0, 0.5) resonant peak. High resolution reciprocal
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Figure 3.12: Resonance of the (0, 0, 0.5) peak at Fe LII/III. σ incidence light, shown in
red, π incidence shown in blue, fluorescence shown by dashed line.

space scans were carried out in the [0, 0, L] direction, and analysed with a Lorentzian-
Squared peak profile. Figure 3.13 shows the temperature dependence of the (0, 0, 0.5)
reflection. Measuring on warming the reflection disappears around 72 K. Fitting the
integrated-intensity of the peak with a critical scattering function, shown in figure 3.13
(top), refined the transiton temperature to TN = 71.8 ± 0.01, with a β = 0.41 ± 0.06.
The width, figure 3.13 (bottom), stays constant with temperature around 0.5 × 10−2 r.l.u.
until the sample is warmed to a temperature around 55 - 60 K, when the widths begins to
increase until the peak disappears.

In order to examine the critical behaviour around the transition, the reduced tempera-
ture was plotted against the normalised intensity and shown on a log-log plot, figure 3.14.
A straight line is expected with a gradient of 2β and an intercept of zero. The fit of a
straight line to the log plot results in a β = 0.410 ± 0.003. The fit was performed using
seven data points within 6 K of the transition, and the critical linear behaviour continues
to 40 K.
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Figure 3.13: Temperature dependence of the (0, 0, 0.5) at the Fe LIII edge in the π inci-
dence polarisation channel. Reciprocal space scan analysed with a Lorentzian-squared
peakshape (top) Integrated intensity (bottom) width. A critical scattering function has
been fitted to the intensity. The fit results in a transition temperature of 71.8 K and
β = 0.41 ± 0.06.

The (0, 0, 0.5) reflection was found to resonate at the oxygen K edge. Figure 3.15
shows the results of high-resolution θ − 2θ as a funtion of energy across the oxygen K

absorption edge. The resonance shows two separate features, one below the edge and one
above the edge. The oxygen resonance was found only in the π-incident channel, and not
the σ channel.

Temperature dependence of the (0, 0, 0.5) reflection at the oxygen K edge was mea-
sured at 529.3 eV, with π-incident light. Due to higher harmonic energies present at the
oxygen edge, contributions from the (0, 0, 2) Bragg peak appear at the same position as
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Figure 3.14: Temperature dependence of the intensity of the (0, 0, 0.5) at Fe LIII edge.
A log-log plot has been used to highlight the critical scattering. A straight line with an
intercept of zero, results in β = 0.410 ± 0.003.

the (0, 0, 0.5) on resonance. The diffraction signal did not disappear at the transition tem-
perature, but the resonant contribution disappeared. The width of the diffraction peak
from the Bragg reflection is an order of magnitude narrower than the satellite peak. It
is possible to extract the resonance satellite peak by fitting the contribution from a non-
resonant Bragg peak and resonant satellite peak, using two Lorentzian-squared functions
with different widths.

Figure 3.16 shows the temperature dependence of the intensity (top) and width (bot-
tom) at the oxygen K edge. The width shows similar behaviour to the Fe LIII resonance,
with the reflection having the same width. Fitting a critical scattering function results in
β = 0.47 ± 0.01, which is within error of the value at the Fe LIII edge. The transition
temperature was found to be around 68 K, which is 4 K below the transition at the Fe
LIIIedge.

The critical scattering behaviour at the oxygen K edge is more clearly seen in the
log-log plot in figure 3.17. The errors are larger at the oxygen edge as the resonance
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Figure 3.15: Resonance of the (0, 0, 0.5) peak at the Oxygen K-edge. σ incidence light,
shown in red, π incidence shown in blue, fluorescence shown by dashed line.

enhancement is very weak compared to the Fe LIII edge. The linear fit results in β =

0.45 ± 0.01.
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Figure 3.16: Temperature dependence of (0, 0, 0.5) at the Oxygen K-edge in the π-
incident polarisation channel. Reciprocal space scan analysed with a Lorentzian-squared
peakshape (top) Integrated intensity (bottom) Width. A critical scattering function has
been fitted to the intensity. The fit results in a transition temperature of 68.8 K and
β = 0.47 ± 0.08.
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3.4 Discussion

Powder diffraction results show the sample used in this study to be 95% of Sr8Fe8O23. The
resistivity and x-ray diffraction results will be assumed to be a property of the Sr8Fe8O23

system. As stated earlier this structure has three inequivalent iron sites, labelled earlier
as Fe1, Fe2 and Fe3. The sample shows typical semiconductor behaviour with resistivity
decreasing on increasing temperature. The feature in the resistivity around 120 K below
which the resistivity rises rapidly, is coincident with the appearance of the satellite peaks
at positions (0, 0, τ) away from Bragg peaks. The measurement of the (0,0,4) Bragg peak
reveal a structural transition around 65 K. This structural transition is linked to the transi-
tion in the resistivity at the same temperature. Both the resistivity and the (0,0,4) Bragg
peak show thermal hysteresis, suggesting the structural transition is not the driving order
parameter, but have a common origin. Mössbauer spectroscopy has shown the Fe2 tilted
octahedra site undergoes a charge ordering transition from a valency of Fe3.5+ to Fe4+ and
Fe3+ [72,81,82]. Neutron diffraction experiments carried out by Reehuis et al. has associ-
ated this charge ordering with a structural transition at 75 K [83]. Due to an increase in the
width of peaks above 130◦ the neutron powder diffraction study determined the symme-
try lowered from the tetragonal I4/mmm to a monoclinic I2/m space group. The lowering
of the space group splits Fe2 into two inequivalent sites, which has been interpreted as
the Fe2 site charge ordering. Neutron diffraction is insensitive to the ion valency, and is
not usually used to measure charge ordering, but differing Fe-O bond lengths were used
to imply charge ordering. The transition in the c-axis parameter occurs 10 K below that
measured by Reehuis et al.. Qualitatively, apart from the lower transition temperature, the
change in lattice parameter agrees with that reported by Reehuis et al.. The appearance
of structural satellites at 115 K as well as structural transition at 65 K implies a more
complex charge ordering than a single structural transition.

The structural reflection has an incommensurate wavevector, which shows a lock-in
transition to a high-order commensurate wavevector of (0, 0, 5/8). This lock-in transition
occurs concomitantly with the transition in c-axis lattice parameter and resistivity, at 65 K.
The incommensurate to commensurate transition also shows the 11 K wide thermal hys-
teresis, suggesting this transition is not the driving order parameter. The x-ray experiment
carried out at the Fe LIII absorption edge identified a resonant reflection with the same
wavevector as the structural satellites. This resonance reveals the charge-order on the Fe2
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site has the same wavevector as the structural distortion. The polarisation analysis shows
two different features in the resonance. The feature below the edge is predominantly in
the σ channel, only 1% in the π-channel, and a larger feature at higher energy in both the
π- and σ-channel. The reflection is at a scattering angle close to a detector angle, 2θ of
90◦. Scattering from the charge-order is suppressed in π channel by a cos 2θ dependence,
and is expected to be less than 1%, which agrees with the lower energy peak. Without
post-scatter polarisation analysis, it is not possible to confirm the other resonance, but
due to the presence of the structural distortion having the same wavevector it is likely the
anisotropic tensor of scattering is the origin.

The temperature dependence of the scattering was measured on warming, and shows
the same behaviour as the structural satellite. The matching wavevectors of the charge-
order and structural distortion indicates the structural distortion is brought about by the
charge ordering. The formation of the charge-ordering is a localisation of charge carri-
ers on the Fe2 site. Localising charge carriers causes an increase in resistivity, similar
to a metal-insulator transition. The formation of charge ordering, and consequent struc-
tural distortion with an incommensurate wavevector undermines a simple tetragonal to
monoclinic distortion. A full structural determination is required accounting for the in-
commensurate satellite reflections. Charge ordering on a magnetically active site changes
the magnitude of the magnetic moment, and is reflected in the paramagnetic region of the
magnetic susceptibility data, by the change in gradient in figure 3.7 which accompanies
the formation of charge order at 115 K.

It is clear from figure 3.9 that the charge order has three distinct phases. Upon first ap-
pearing the incommensurate wavevector decreases linearly with lowering temperature, in
accordance with the behaviour of weakly localised charges [85]. In this region the width
of the reflection is decreasing with cooling, as the charge ordering becomes more corre-
lated. The temperature dependent incommensurate wavevector is a feature of the charge
order being weakly correlated, and weakly localised upon its initial formation. When
the charge order becomes more correlated and the peak width stabilises at 1 × 10−2 r.l.u.,
the incommensurate wavevector stabilises at (0,0,0.610). The charge-order stays at this
wavevector until the lock-in transition occurs between 53 - 64 K. Figure 3.9 shows the
lock-in transition is a sharp second order transition, as the reflection has been measured
at incommensurate values between 0.610 and 5/8, but also shows thermal hysteresis show-
ing the charge-order is not driving the order parameter. The lock-in transition of the
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charge-order to the commensurate wavevector is accompanied by the phase becoming
less correlated.

For the cubic perovskite parent compound SrFeO3, neutron [74] and x-ray photoe-
mission spectroscopy (XPS) [75] have shown the magnetic moment takes the high spin
configuration t3

2ge1
g. As a consequence, a cooperative Jahn-Teller effect is expected to

occur, but has not been observed. Modelling of the 2p core spectra has shown a large
amount of charge transfer along the Fe-O bond from the oxygen 2p band to the iron 3d
orbital [75]. The ground state of SrFeO3 is dominated by a d5L configuration, explaining
the lack of Jahn-Teller distortion. In Sr8Fe8O23, the charge ordering is known to occur
on the Fe2 site. The Fe2 sites form a zig-zag chain along the c direction, where adjacent
atoms share an oxygen. In the ab plane the Fe2 atoms do not share oxygens with one
another, but with Fe1 and Fe3 sites. Of the six oxygen around the Fe2 atom the Fe-O bond
along the c direction, shared between adajacent Fe2’s is the shortest [83]. Charge ordering
is likely to occur via a charge transfer hybridisation along this Fe-O bond. The high-order
commensurate wavevector of (0, 0, 5/8) precludes a simple model of an arrangement Fe3+

and Fe4+. The magnitude of the charge-order cannot be extracted from the x-ray diffrac-
tion, but Mössbauer studies [1, 81] show the valency of the Fe2 site changes from Fe3.5+

to Fe3+ and Fe4+ at 4 K.

The Mössbauer process has a characteristic time-scale of 10−8 s. The observed valency
of Fe3.5+ at room temperature, has been suggested as due to fast electron transfer between
Fe3+ and Fe4+ relative to 10−8 s [82]. The appearance of Fe3+ and Fe4+ at 4 K is a slowing
down of the electron transfer. If the charge-order is due to a cooperative charge transfer
phenomena, it is expected to be through the Fe-O bond. A large amount of hybridisation
is expected between the Fe 3d and O 2p bands.

The negative magnetoresistance, figure 3.6, along the [0,0,1] direction occurs at the
incommensurate-commensurate charge order transition, whilst the magnetoresistance
along the [1,1,0] direction appears with the formation of the charge-order at 115 K. This
is similar to the magnetoresistant manganite, La0.5Ca0.5MnO6, where a commensurate-in-
commensurate charge-order transition has been reported [86,87]. In this case a first-order
ferromagnetic to antiferromagnetic transition was reported to relate to an incommensurate
to commensurate charge-order transition.

The appearance of the (0, 0, 1/2) resonant peak at 80 K, co-incident with the antifer-
romagnetic transition in the magnetic susceptibility, suggests a magnetic origin. The
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incident π-channel is four times larger than the σ-channel. For charge scattering the π
channel is expected to be eight times weaker than the σ channel, so charge scattering can
be ruled out. Distinguishing between magnetism, orbital ordering and ATS is difficult
without the capability of post-scatter polarisation analysis. The framework for resonant
magnetic scattering allows for the π-channel to be more intense than the σ-channel, as
shown in equation 2.43, as the π-channel is sensitive to the entire moment, whilst the
σ-channel is sensitive to the moment confined in the scattering plane. The coincident
transition temperatures of the magnetic susceptibility and the (0, 0, 1/2) satellite with the
polarisation analysis is highly indicative of a magnetic origin of the (0, 0, 1/2) reflection.
A paramagnetic to antiferromagnetic transition, with the antiferromagnetic ground state
having a supercell of 1×1×2 of the crystallographic unit cell would give rise to the mag-
netic reflection at (0, 0, 1/2). Assuming a electric dipole transition process for the magnetic
resonance, the intensities for the π- and σ-incident channels for the experimental set-up
can be expressed as the following.

Iσ =z∗bzb cos2 θ + z∗czc sin2 θ −
1
2

(z∗bzc + zbz∗c) sin 2θ

Iπ =z∗bzb cos2 θ + z∗czc sin2 θ +
1
2

(z∗bzc + zbz∗c) sin 2θ + zaz∗a sin2 2θ

Iπ =Iσ + (z∗bzc + zbz∗c) sin 2θ + zaz∗a sin2 2θ (3.2)

Where θ is the scattering angle and za,zb, and zc are components of the moment along
the a, b, and c crystal lattice axes. Simple collinear structures along the a, b, or c direction
can be can be ruled out, as these would give equal intensities in the σ- and π- channels
or zero intensity in the σ channel. Neutron powder diffraction study reported by Reehuis
et al. [83] identified seven magnetic structures in mixed phase samples of SrFeO3−δ. One
magnetic structure had a wavevector of (0, 0, 1/2) in the tetragonal basis, although they
were unable to assign the magnetic structure to a specific host lattice. They were able to
resolve the spin structure as a canted antiferromagnetic in the a-c plane, with a canting
angle of 54◦ with respect to the c-axis. Due to the tetragonal unit cell, there is no differ-
ence between the a-c and b-c plane. The canted antiferromagnet can be described by a
magnetisation vector z = (i, 0,−0.24) or z = (0, i, 0.24) for the other tetragonal domain.
Due to the wavevector being along the c-axis both tetragonal domains contribute to the
same reflections. The ratio of Iπ/Iσ is expected to be between 1 and 8 depending on the
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magnetic domains exposed to the x-ray beam. It is not possible to confirm or rule out the
magnetic structure proposed by Reehuis et al., without post-scatter polarisation analysis
and azimuthal measurements.

The temperature dependence of width of the (0, 0, 1/2) reflection, shows the transition
to be second-order, starting as short-range spin correlations at 72 K and develops long-
range order only at 60 K. X-ray diffraction is sensitive to long-range order, a local probe,
such as muon spin relaxation, is necessary to study the short-range spin correlations.

The temperature dependence of the integrated intensity of (0, 0, 1/2) reflection was fit-
ted with a critical scattering function, which refined the transition temperature to 71.8 K
and resulted in a β = 0.410±0.003. This value of β is larger than expected for Ising, X−Y

and Heisenberg which predict values of 0.326, 0.345, and 0.367 respectively.

The (0, 0, 1/2) has multiple features in the resonance, figure 3.12. The σ- and π-
channels show the same resonant structure implying a common origin to the scattering.
Sr8Fe8O23 has three different iron sub-lattices, with different valencies and crystal field
geometries leading to different orbital splittings and a multiplet ground state, giving rise
to the multiple peaks in the resonance observed [88]. An x-ray resonance experiment on
cubic SrFeO3 would provide a useful qualitative comparison

On warming, the structural transition and incommensurate-commensurate charge or-
der transition occur coincident with the antiferromagnetic ground state becoming long-
range ordered. The second-order nature of the magnetic transition indicates that the mag-
netic order is the driving force behind both the incommensurate to commensurate charge-
order transition and structural transition. The appearance of the short-range spin corre-
lations around 72 K stabilises the incommensurate charge-order wavevector with respect
to temperature. The onset of long-range order around 60 K causes the incommensurate
charge-order to rapidly lock into a commensurate value.

The (0, 0, 0.5) magnetic reflection also shows a resonance at the oxygen K absorption
edge. This reveals a hybridised band structure between the Fe 3d and the O 2p states.
The resonance at the O K edge at the same wavevector as the magnetic ordering on the
Fe atoms, shows the presence of an orbital magnetic moment on the oxygen, indicating
the presence of spin polarised oxygen. This confirms the magnetism is at least in part
mediated by an indirect exchange mechanism via the oxygen atoms. To get quantita-
tive information from a resonance spectra ab-initio calculations are required. Calculation
packages, such as FDMNES [89] are capable of predicting resonance structures, but cal-
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culations for Sr8Fe8O23 would not converge. The oxygen resonance has two features, one
at the K edge at 529.3 eV and one above the edge at 531.1 eV The difficulty in modelling
resonant scattering energy dependences, obviates any quantitative information from be-
ing extracted. Discussion on the origin of the two features will necessarily be conjecture.
The polarisation analysis of the oxygen resonance is different to that of the Fe LIII edge,
showing no signal in the σ-incidence channel whatsoever. This suggests that the moment
on the oxygen may not have the same canted spin structure as the iron moments. From
equation 3.2, an oxygen moment along the b direction would only give intensity in the
π-channel.

The presence of three separate Fe sites, and charge-ordering on Fe2, complicates the
magnetism in the system. The charge-ordering suggests both superexchange and double-
exchange interaction play a role in the long-range magnetic order. The Fe1 squared based
pyramid and Fe3 octahedra, both have a valency of Fe4+, do not share a common oxygen,
but both share oxygens with the charge-ordered Fe2 tilted octahedra. Along the c-axis
each type of iron site shares an oxygen with itself, i.e. Fe1-O-Fe1, Fe2-O-Fe2 and Fe3-
O-Fe3. In Sr8Fe8O23, the super-exchange mechanism drives antiferro-ordering between
ions of the same valency, the Fe4+ ions. The double-exchange mechanism drives ferro-
magnetic ordering between ions of different valency, Fe4+ of Fe1,3 and the charge-ordered
Fe2 site. These two different exchange mechanisms could be the origin of the two reso-
nant features at the oxygen K edge, although without quantitative modelling this is just
speculation. The presence of both double-exchange and super-exchange, would create
coupling between the charge and magnetic degrees of freedom, as both charge-ordering
and magnetic-ordering are mediated by the oxygen anions.

Observations of resonances at the oxygen K edge at magnetic wavevectors, is not new
and has been reported in a number of transition metal oxides [90, 91]. In the materials
Ba3NbFe2Si2O14 and TbMn2O5 resonances at the oxygen K edge have been measured
at the magnetic wavevectors [90, 91]. In both cases a single peak was measured with
FWHM of 0.7 eV wide for TbMn2O5 and 1.3 eV for Ba3NbFe2Si2O14, in comparison
to the double peak feature observed in Sr8Fe8O23 with a FWHM of 0.75 eV and 1.0 eV.
For the material TbMn2O5, modelling using FDMNES package [89] was able to replicate
the single feature. TbMn2O5 is composed of two manganese sites, an Mn3+ in a squared
based pyramid co-ordination and Mn4+ in octahedral co-ordination. Their study found
that the oxygen resonance could only be reproduced in the model with a moment on the
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Mn3+, if the moment on the Mn3+ was set to zero, then the predicted oxygen resonance
vanished. They concluded the oxygen spin polarisation arose purely from a hybridisation
with the Mn3+. Sr8Fe8O23 has three different iron sites, and the double feature could be
indicative of hybridisation with two different Fe ions.

The temperature dependence of the oxygen resonance is shown in figures 3.16 and
3.17. A fit of the critical scattering found a slightly lower transition temperature for the
oxygen resonance, of 68 K. Unfortunately, this could simple be a consequence of localised
beam heating due to a difference in absorption at the iron and oxygen edges. Fitting a
critical scattering function to the integrated intensity, resulted in a β = 0.45 ± 0.02. This
value is higher than that found for the iron resonance, but is within twice the error.

The charge ordering is responsible for the unusual transport behaviour seen in the
resistivity. Although the charge-ordering exists at temperatures above the long-range
magnetic order, the formation of the magnetic long-range order drives a incommensurate-
commensurate transition in the charge-order. In this way, the magnetism indirectly af-
fects the resistivity. The magnetic susceptibility measurement shows the application of an
applied field suppresses the antiferromagnetic transition to a lower temperature. This
is expected to lower the transition temperature of the incommensurate-commensurate
charge order transition. It is presumed the commensurate and incommensurate charge
order phases have a different effect on the resistivity of the system. The negative mag-
netoresistance can be explained by a suppression of the incommensurate-commensurate
charge-order transition, causing the system to be in the lower resistance state until lower
temperatures. The magnetic field also has the effect of causing the resistivity to increase
more rapidly once in the commensurate phase, causing the eventual positive magnetore-
sistance seen at low temperatures. In order to confirm the role of the charge-order in the
magnetoresistance a repeat of the high-energy x-ray experiment in an applied magnetic
field would give direct confirmation of the effect of magnetic field on the charge order
transitions. A resonant experiment at the Fe K edge to study the charge order satellites,
would also help elucidate the nature of the charge density wave. The magnetoresistance
shows the same resistance as a mixed phase sample (δ ∼ 0.17) measured by Srinath et

al. [92]. They concluded the negative magnetoresistance is due to double-exchange pro-
cesses and the positive magnetoresistance at low temperatures, is due to the opening up
of the band gap due to antiferromagnetic interactions. The observation of the (0, 0, 1/2)
reflections at the Fe II/III confirms the antiferromagnetic ground state. The resonance at
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the oxygen K edge verifies the role of indirect exchange mechanism via a spin-polarised
oxygen.

3.5 Conclusion
In conclusion, by combining bulk transport studies and x-ray scattering techniques on a
single phase sample of SrFeO2.875, this study has shown direct evidence that the giant
magnetoresistance is a consequence of the coupling between the charge- and spin- order
parameters and the lattice distortion. An antiferromagnetic ground state was identified,
which doubles the unit cell in the c-axis. The additional resonance at the oxygen K edge
reveals a hybridised band structure between the Fe 3d and O 2p, as well as the presence
of an orbital moment on the oxygen.

This study reports the first observation of the charge-order with a wavevector of
(0, 0, 5/8), as well as the accompanying lattice distortion with the same wavevector. The
charge-ordering undergoes an incommensurate to commensurate transition, which coin-
cides with the negative magnetoresistance. The formation of the long-range magnetic
order drives this incommensurate charge order transition to a high-order commensurate
ground state. This coupling of the magnetic order to the charge and lattice distortion leads
to the unusual magnetoresistance effects observed.
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Chapter 4

Muon Spin Relaxation study of FeCrAs

4.1 Introduction

In this chapter, the magnetism of a single crystal FeCrAs has been studied using a com-
bination of transport and heat capacity measurements, magnetic susceptibility and muon
spin relaxation. The iron pnictide family of materials has become an interesting area of
study, since the discovery in 2008 of high temperature superconductivity in the layered
systems LaFeAs(O1−xFx) [93], (Ba,K)Fe2As2 [94], LiFeAs [95] and FeSe1−δ [96]. Iron is
a well-known ferromagnetic material, and it is the co-existence of magnetism and high
temperature superconductivity, that makes the iron pnictide family unusual [97]. Super-
conductivity and magnetism are often thoughts of as incompatible phenomena. In con-
ventional s-wave superconductors, magnetic moments break up the spin singlet Cooper
pairs, destroying the superconductivity [98]. The two phenomena had only been found
to overlap in materials where the superconductor’s dimensions have been reduced, ei-
ther in layered interface films, LaAlO3/SrTiO3 [99], or materials where the magnetic
moments are strongly localised to a crystallographic site isolated from the conduction
path, RNi2B2C [100],UGe2 [101],URhGe [102], and ZrZn2 [103]. The iron pnictides,
(Ba1−xKx)Fe2As2, LaFeAs(O1−xFx) and Ca(Fe1−xCox)AsF all show a similar antiferro-
magnetic ordering in their phase diagrams, which overlap with the superconducting re-
gion. Muon spin relaxation (µsr) techniques have shown that these materials phase sepa-
rate in to superconducting and magnetic phases. [104–107]

FeCrAs, although not a superconductor, is an interesting member of the iron pnictide
family for it unusual transport, magnetic and thermodynamic properties showing both
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non-Fermi and Fermi liquid behaviour, and can be considered a “non metallic metal”.
The resistivity of this material shows non-metallic behaviour with an increase in resistiv-
ity when the material is cooled, whilst the heat capacity shows classic Fermi liquid be-
haviour at low temperatures obeying a linear C/T ∝ T 2 relationship [108]. FeCrAs differs
from the superconducting members of the iron pnictide family, with its hexagonal three-
dimensional structure. The superconductors tend to form tetragonal two-dimensional
structures with insulating layers. FeCrAs has a magnetic spin density transition, similar to
the superconductors. All evidence points to the magnetism being on the chromium sites
instead of the iron sites as is the case with the superconductors. In the high temperature
regime, FeCrAs behaves similarly to the parent compounds of the superconductors. At
low temperatures, the behaviour is qualitatively different from any previous observations
of non-metallic non-Fermi-liquid behaviour [108].

4.1.1 Crystal Structure of FeCrAs

FeCrAs belongs to a family of materials known as ternary transition metal monopnictides,
with the chemical formula MM′Z, where M and M′ are 3d or 4d transition metal elements
and Z is a pnictogen, (N, P, As, Sb, Bi). These compounds adopt three types of crystal
structure, a tetragonal Co2P structure, hexagonal Fe2P and the orthorhombic Cu2Sb struc-
ture. All three structures have a common subunit which contains two kinds of metal sites,
a tetrahedrally coordinated site with four Z atoms and a square-based pyramidal site co-
ordinated with five Z atoms. The most electropositive transition metal generally occupies
the pyramidal site.

FeCrAs adopts the Fe2P (also known as ZrNiAl-type in some references) hexagonal
structure with space group P6̄2m, and lattice parameters a = 6.0675 Å and c = 3.657 Å.
Chromium occupies the 3g Wyckoff site with five neighbouring arsenic atoms in a squared-
based pyramidal co-ordination, whilst iron sits at the 3 f Wyckoff site in the centre of
an arsenic tetrahedron. In the more general family of RMX materials (R = Rare-Earth-
like/alkali-earth, M = transition metal, p-electron element), thirty percent adopt this crys-
tal structure [109]. The 3g and 3f sites have three equivalent positions in the unit cell
each at (x1, 0, 1/2), (0, x1,

1/2), (−x1,−x1,
1/2) and (x2, 0, 0), (0, x2, 0), (−x2,−x2, 0), forming

separate layers of the two metal atoms half a unit cell apart in the c-direction. For a given
layer of 3g or 3f sites for the space group P6̄2m, if xi is between a third and two-thirds,
1/3 < xi <

2/3, the metal atoms form a distorted kagomé lattice, with the case of xi = 1/2
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(a) (b)

(c)

Figure 4.1: (a) The undistorted kagomé lattice. The hexagonal unit cell contains three
equivalent metal sites, at (1

2 , 0), (0,1
2 ) and ( 1

2 , 1
2 ). (b) The primitive hexagonal unit cell of

FeCrAs, chromium atoms are shown in blue, iron atoms in yellow and arsenic in green.
The c-axis is shown vertically up the page. (c) Supercell corresponding to (3 × 3 ×1)
of the hexagonal primitive cell, shown down the c axis direction. The distorted kagomé
lattice is shown in blues and Fe trimers are in yellow.

being the undistorted kagomé lattice. For only nearest-neighbour (n.n.) interactions the
distorted and undistorted kagomé lattice are topologically equivalent [110]. Figure 4.1a
shows the undistorted kagomé lattice structure. By placing three atoms in a two dimen-
sional hexagonal unit cell at ( 1

2 , 0), (0, 1
2 ) and (1

2 , 1
2 ) positions, a tiling effect arises where

every atom is a vertex of two regular hexagons and two regular equilateral triangles. If xi

is less than a third or greater than two-thirds, 0 < xi <
1/3 or 2/3 < xi < 1, the metal atoms

75



Chapter 4. µsr study of FeCrAs

form isolated equilateral triangles. The case where xi = 1/3 describes a a triangular lattice.

The chromium sites, (xi = 0.564), form a distorted kagomé lattice and the iron sites (xi

= 0.240) form a triangular lattice of trimers. The distorted kagomé lattice of chromium
atoms differs from an undistorted kagomé lattice by a displacement of the chromium
atoms to the sites (1

2+d, 0), (0, 1
2+d) and (1

2 -d, 1
2 -d), where d = 0.064 or 0.388 Å.

4.1.2 Geometric Frustration

A magnetic system can be considered to be comprised of N magnetic moments fixed to
a lattice. Depending on whether we consider the magnetic moments as having a discrete
or continuous distribution (Ising or X-Y,Heisenberg), there is either a finite or infinite
number of microstates. The ground state of the system is the microstate with the lowest
energy where the interactions between all the magnetic moments are satisfied. Geometric
frustration arises in particular lattices where no single unique lowest energy state exists,
rather a variety of similar low energy states exist [111]. The effect of the lattice can
be seen in the simplest case, the Ising model where magnetic dipole moments can be
in one of two discrete states, +1 and -1. In the Ising case for N moments, there are 2N

microstates, although some of theses microstates could be symmetrically equivalent due
to the underlying symmetry of the host lattice. If only nearest-neighbour interactions are
considered, for the case of an antiferromagnetic exchange, antiparallel adjacent spins are
energetically favourable. We can simplify the Hamiltonian for the exchange interaction.

H =

N∑
α

N∑
β

Jα,βS α · S β = J
N∑
α

n.n∑
β

S αS β (4.1)

For a square lattice, figure 4.2a, it is possible to satisfy the exchange interaction for all
the sites. For a square lattice system with N = 4 sites, there are 16 different configurations
of Ising spins of which four are symmetrically unequivelent. Of these four configurations,
the one shown in figure 4.2a has the lowest energy, as all neighbouring spins are antipar-
allel, making this the ground state. For a triangular lattice, figure 4.2b, it is not possible
to satisfy the antiferromagnetic exchange interaction. In the triangular lattice example
shown in figure 4.2b, there are N = 3 sites, leading to eight possible microstates. Of these
eight microstates, six have the same energy, with only the two microstates with moments
either all up or all down having higher energy. In the example shown in 4.2b, once the
first two spins have been placed antiparallel, the third spin cannot be placed as to min-
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(a) (b) (c) (d)

Figure 4.2: (a) Ground state configuration of antiferromagnetic Ising spins on a square
lattice. (b) Frustrated configuration of antiferromagnetic Ising spins on a triangular lat-
tice. The third spin can take either +1 or -1 and be equally frustrated. (c) & (d) Two
possible ground state configurations for X-Y spins on the triangular lattice, (c) has nega-
tive chirality and (d) has positive chirality.

imise the interaction with both the first two spins at the same time, this leads to a six-fold
degenerate ground state, causing frustration in the Ising nearest-neighbour case.

For the X-Y model, the magnetic moments have a continuous distribution, with the
direction of all the moments confined to a plane. As the distribution of directions of
the magnetic moments is continuous rather than discrete, there are an infinite number of
microstates. Figure 4.2c and 4.2d, show two possible ground states for the X-Y model,
here the spins are rotated by 120◦ to each other, resulting in a zero net moment. There is a
choice of direction of the rotation, negative, figure 4.2c , or positive chirality, figure 4.2d.

4.1.3 Magnetism in FeCrAs

In magnetic materials that adopt the Fe2P crystal structure, the magnetic ion sits on the
distorted kagomé lattice [112,113]. The distorted and undistorted kagomé lattice have the
same four nearest neighbours. Each site on the kagomé lattice is a vertex of two triangles,
figure 4.1. Similar to the Ising case for the triangular lattice, there is no unique ground
state for the spin configuration, and frustration arises. More generally, the Mermin-
Wagner theorem states that for a one- or two-dimensional isotropic spin-S Heisenberg
system, at non-zero temperatures, long-range order is not expected for either ferromag-
netic or antiferromagnetic exchange [114]. In a purely two-dimensional kagomé lattice
we do not expect long-range order to develop at non-zero temperatures. When consider-
ing a classic Heisenberg model, two degenerate ground states exist at absolute zero, with
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a q = 0 and a q =
√

3 ×
√

3 structure [115–119]. For the q = 0 state, the magnetic
cell and the crystal cell overlap, figure 4.3a. For the q =

√
3 ×
√

3 the magnetic cell and
crystal unit cell do not overlap, and a 3×3 supercell is needed to encompass the magnetic
repeat. Figure 4.3b, shows the crystal unit cell, highlighted by the thin dashed lines, the
√

3×
√

3 cell in thick solid line and the larger 3×3 magnetic cell in thick dashed line. The
q =

√
3 ×
√

3 state can be described by a (1/3, 1/3, 0) wavevector in the basis of the crystal
unit cell. Monte-Carlo simulations have shown that the kagomé lattice displays an order-
by-disorder transition, which breaks the degeneracy to pick a ground state q =

√
3 ×
√

3
structure as T → 0, causing an entropically-driven local spin-nematic order at low tem-
peratures, with a diverging correlation length as T → 0 [115]. The order-by-disorder is
brought about by the effects of thermal fluctuations around the ground states lifting the
degeneracy [120].

Bulk magnetisation measurements, reported by Wu et al. [108] show a feature in the
susceptibility at 125 K, with the susceptibility along the a- and c-axis splitting below this
point. The susceptibility was shown not to exhibit Curie-Weiss behaviour up to 300 K.
The effects of field cooling on the magnetisation measurements, only caused a splitting
in the susceptibility at low temperatures of 7 K and 11 K for the c- and a-directions, re-
spectively. Neutron powder diffraction was carried out by Swainson et al. [121]. Upon
cooling to 2.8 K six magnetic satellite peaks were found at (1⁄3,1⁄3,0) positions. The in-
tensity of the magnetic peaks could be modelled by non-collinear moments on the Cr
sites only, as Mössbauer measurements report no moment on the iron site, to an error of
0.1 µB [122]. The non-collinear spin structure is shown in figure 4.3c, the alternative
√

3 ×
√

3 cell holds for this structure. The moments on the Fe sites were zero within the
error of the measurement. The chromium sites were found to vary in magnitude taking
values of one-, two- and four-times 0.685(1) µB, with an average moment of 1.22 µB per
chromium site, with a net moment of zero. The lack of moment on the iron site is in
agreement with electronic structure calculations performed by Ishida et al. [123], which
showed that for a range of CrMZ compounds (M = Fe, Co, Ni, Z = P, As) the magnetic
moments lie only on the Cr site and that the M site although magnetic in its elemental
form, has no magnetic moment. The electronic structure calculation for FeCrAs predicts
a ferromagnetic phase, rather than the observed non-collinear antiferromagnetism.

Although experimentally FeCrAs was found to have a similar
√

3×
√

3 type ordering
with a wavevector of (1/3, 1/3, 0), the transition temperature of 125 K is too high for the
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a

b

(a)

a

b

(b)

a

b

(c)

Figure 4.3: (a) The q = 0 magnetic structure. (b) The q =
√

3 ×
√

3 magnetic structure.
(c) The magnetic structure of FeCrAs, measured by the neutron powder diffraction [121],
green moment is 4 × 0.685 µB, orange moment is 2 × 0.685 µB and pink moment is
1 × 0.685 µB. For (b) & (c) the crystal unit cell is shown by the thin dashed line, the√

3 ×
√

3 magnetic cell by the thicked solid line, and the larger 3 × 3 magnetic cell by the
thick dashed line.

order-by-disorder transition to be the origin. When coupling between layers, in a stacked
kagomé lattice is taken into account for the Heisenberg case, the system is found to remain
short-range-ordered independent of the strength of the coupling between the planes [124,
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125]. Dipolar interactions between chromium planes would allow a finite temperature
magnetic ordering, although this has been estimated to occur at a temperature of the order
of 1.27 × 10−4 K [110].

On the kagomé lattice, there is no inversion symmetry between two neighbouring
sites. As a consequence of this the Dzyaloshinsky-Moriya (DM) interaction is non-zero.
This is an anisotropic exchange between the excited state of one ion and the ground state
of the other ion [126]. Although the Mermin-Wagner theory states a isotropic 2-D sys-
tem should not order at non-zero temperatures [114], the DM interaction is anisotropic.
Theoretical studies have shown the DM interaction can lead to non-zero ordering temper-
atures [127] in 2-D systems. For the undistorted kagomé lattice the addition of the DM
interaction into a Monte-Carlo simulation, drives the system to ordered states [128]. For
the distorted case with nearest-neighbour, next-nearest-neighbour and DM interactions
being taken into account, theoretical studies [129] for the X-Y model find a number of
magnetic structures, depending on the relative strengths of the various exchange interac-
tions, including a structure with a wavevector of (1/3, 1/3, 0).

A theoretical study carried out by Redpath et al. [110] looked at the coupling between
the chromium and the iron atoms. In their study, the three nearest iron atoms which form
a trimer, shown in yellow in figure 4.1c, are treated as a single magnetic site. These iron
molecules form a triangular lattice, between layers of chromium in a distorted kagomé
lattice. The trimer approximation holds with the assumption that the energy scales for
interactions between trimers are small relative to that within the trimers [130]. Using
Monte-Carlo simulations, their model [110] for FeCrAs magnetically orders at a finite
temperature in a coplanar

√
3×
√

3 magnetic order, predicting susceptibility qualitatively
similar to that measured by Wu et al. [108].

4.2 Experimental

4.2.1 Crystal Growth

The samples of FeCrAs used in this study were grown by Dr K. A. Al-ziq, from the King
Fahd University of Petroleum and Minerals, Saudi Arabia. The samples were grown
by the self-flux method. Stoichiometric quantities of iron, chromium and arsenic were
sealed under partial arsenic pressure in a quartz tube. The furnace temperature was raised
by 100◦ an hour to a temperature of 1100◦ C. The furnace was kept at this temperature
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Figure 4.4: (Top) X-ray powder diffraction measurement performed on a sample of Fe-
CrAs. The intensity measured on the detector is 2×104 bigger than that shown on y-axis.
The observed data is shown in black squares. A refinement was made using the Fullprof
software suite, and the profile is shown by the red line. The 2θ positions of the allowed
bragg peaks for FeCrAs are shown with green ticks. The cyan and magenta ticks indicate
positions of Bragg reflections from minority FeO and Cr phases. (Bottom) Difference
spectra between the observed and calculated diffraction patterns.

for 2 hours, before being allowed to slowly cool at a rate of 2-5◦ an hour until it reached
700◦ C, when the furnace was switched off. This cooling rate allowed for the formation of
crystals. The growth yields, were approximately 2.3 g of powder and small single crystals.
The single crystal aligned for measurements had a mass of 1.94 mg. An attempt was made
to grow the crystals using the vapour transport method using iodine gas, as was the case
for FeAs [131]. This method had the side effect of partially decomposing the sample. The
single crystal was aligned using the in-house Huber four-circle diffractometer, and the a,
b and c axes identified.

4.2.2 Powder Diffraction

Powder diffraction was carried out on a sample of the powder, using a Cu Kα x-ray source.
Data was collected between detector angle 2θ, of 10◦ to 120◦. A Rietveld refinement of
the diffraction intensity was performed using the Fullprof software suite. FeCrAs was
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found to be the majority phase with a refinement r-factor RBragg = 10.66. Figure 4.4
shows the observed and refined calculated diffraction intensity. The green ticks mark
the positions of the Bragg peaks from FeCrAs crystal structure. There are a few weak
peaks in the data, unaccounted for by the FeCrAs crystal structure. A minority phase of
FeO was added to the refinement, which accounts for the peak at 36.6◦. There is still
an unaccounted reflection at 54.8◦, and it has not been possible with any confidence to
identity the impurity phase from a single weak reflection.

Parameter Value (Error) Literature Values [132]
a 6.109(1) 6.0954
c 3.646(1) 3.6663

Fe x 0.247(1) 0.2485(1)
Cr x 0.589(1) 0.5854(1)

Table 4.1: Best fit parameters from the Rietveld refinement of the x-ray powder diffrac-
tion measurement, shown in figure 4.4. Comparison is made to those report in refer-
ence [132]

The lattice parameters and atomic positions, given in table 4.1 agree with those mea-
sured by W. Wu [132].

4.2.3 EDX Spectroscopy
Energy dispersive X-ray (EDX) spectroscopy was performed on the powder sample of
FeCrAs. EDX spectroscopy reveals information about which constituent elements are
present, but does not contain information about the bonding environment and structure of
that element. An electron microscopy image of the powder sample is shown at the top
of figure 4.5, and in the rest of the figure are the fluorescence maps from each element
present plus oxygen for the area shown in the electron microscopy image. The iron and
chromium fluorescence maps show these elements to be fairly equally distributed, the
arsenic fluorescence indicates a slight arsenic deficiency. The oxygen fluorescence is in
agreement with the observed FeO impurity in the powder diffraction refinement. The
oxygen fluorescence also suggests a small amount of chromium oxide impurities. The
fluorescence maps also rule out the presence of any single element grains.

The EDX spectroscopy results rule out contamination from any other elements. The
fluorescence spectra was measured at eight different sites, and are shown in figure 4.6.
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Fe As O

Cr 200μm

Figure 4.5: (Top) Electron microscopy image of the powder sample of FeCrAs. (Be-
low) EDX maps of the same area tuned into fluorescence from a specific element, Iron,
chromium, arsenic and oxygen.

The elements responsible for the fluorescence peaks have been labelled and the relative
abundance of the elements at each site have been calculated and are presented in table 4.2.
The oxygen content was difficult to determine due to the presence of a secondary arsenic
fluorescence peak near the oxygen peak. The largest ratio of oxygen found in the sample
was 4.97 %, but was typically around 1 %. Half of the sites investigated had roughly equal
proportions of the chromium, iron and arsenic, the other half appear chromium rich, with
up to 82 % chromium. Although only eight sites have been examined using the EDX
technique, the results suggest the powder is inhomogeneous. Although some areas agree
with expected results for FeCrAs, other areas are dominated by chromium. The powder
diffraction and EDX spectroscopy techniques appear to give contradictory results.

In EDX spectroscopy a beam of electrons is used to stimulate the emission of charac-
teristic x-rays from the constituents of the sample. The penetration depth of this technique
is 1000-2000 nm [133], and the x-rays are emitted from the excited atom in all directions.
The likelihood of an x-ray escaping the sample is absorption dependent, and therefore
dependent on the wavelength. When the sample is inhomogeneous, such as a rough sur-
face or a powder, the technique is much more sensitive to the surface composition than
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Figure 4.6: Fluorescence spectra from eight different sites labelled in the electron mi-
croscopy images at the top. Main contributions from elements are labelled, all unlabelled
peaks are secondary peaks from the elements already labelled. The intensities have been
normalised for each spectra.

the bulk. Interpreting the EDX and powder diffraction data together, the sample bulk is
majority FeCrAs, with iron and chromium oxide impurities on the surface of the powder
grains.

84



µsr study of FeCrAs Chapter 4.

Site Fe (%) Cr (%) As (%) O (%)
A 14.54 74.5 10.61 0.35
B 36.79 30.81 31.41 0.99
C 37.15 26.8 34.79 1.26
D 10.81 82.32 5.35 1.52
E 30.93 39.01 29.32 0.74
F 12.82 74.72 7.5 4.97
G 12.78 78.21 8.22 0.79
H 43.57 30.21 23.01 3.22

Table 4.2: Relative elemental abundance from fluorescence data shown in figure 4.6

4.3 Results

4.3.1 Heat Capacity

The heat capacity, C of a single crystal of FeCrAs was measured using a Quantum De-
signs Physical Properties Measurement System (PPMS). The sample was mounted in a
small amount of thermal grease on a puck. Measurements were also made on the puck
without the sample to infer the effects of the sample. The heat capacity was measured
over a temperature range of 3 to 300 K. Figure 4.7 shows the results of the heat capac-
ity measurement. The heat capacity increases smoothly with temperature, levelling out
towards a value of 80 J mol−1 K−1. The lattice and electronic contributions to the heat
capacity can be modelled using a sum of the Sommerfeld, Debye and Einstein models for
heat capacity, shown in equation 4.2, with coefficients AE and AD.

C (T ) = γT + AECE
(
T, θE

)
+ ADCD

(
T, θD

)
(4.2)

The Sommerfeld term is simply proportional to temperature and can be derived from
the free electron model, where γ is proportional to the density of states at the Fermi
energy. The Einstein and Debye terms account for contributions to the heat capacity
from lattice vibrations. The principal difference between the Einstein term and the Debye
term, is how they treat the lattice vibrations. The Einstein model considers a solid as
a collection of non-interacting quantum oscillators, whilst the Debye model treats the
vibrations as phonons in a box. Equation 4.3 and 4.4 show the form of the einstein and
Debye equations, respectively, where N is the number of atoms in the crystal, and θE and
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Figure 4.7: (Top) Heat capacity per mole (C) as a function of temperature (T) for a single
crystal. The fit from model shown in equation 4.2, shown by the solid line, Debye contri-
bution shown in small dashes, Einstein contribution shown in dash-dot, and Sommerfeld
contribution shown in large dashes. (Bottom) Close up of the discontinuity around 125 K.

θD are the einstein and Debye temperatures, which are specific to the materials.

CV = 3Nk
(
θE

T

)2 eθE/T

(eθE/T − 1)2 (4.3)

CV = 9Nk
(

T
θD

)3 ∫ θD/T

0

x4ex

(ex
− 1)2 dx (4.4)

Both models predict the levelling out in the high temperature region, whilst the De-
bye model correctly predicts the low temperature behaviour. Due to assumptions made to
simplify the problem, the Debye model struggles to predict the intermediate temperature
range correctly. The Einstein and Debye models, are only dependent on the temperature,
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and a characteristic temperature, θE and θD, respectively. It is often reported in the lit-
erature, to fit the heat capacity as a sum of all three terms. This has been shown to be
successful in the related superconducting iron pnictides [134].

Parameter Value (Error)
γ 27.0(1) mJ mol−1K−2

AE 1.57(5)
θE 369(7) K
AD 1.55(5)
θD 255(4) K

Table 4.3: Best fit parameters of the Heat capacity model for FeCrAs, defined in equation
4.2. Sommerfeld constant (γ), Einstein temperature (θE), Debye Temperature (θD). AE
and AD are simply scale factors for the Einstein and Debye terms.

The heat capacity per mole measured against temperature is shown in figure 4.7. The
solid black line shows the model for the total heat capacity, the large dashes, small dashes
and dash-dot lines show the contributions from the Sommerfeld, Debye, and Einstein
terms, respectively. The defining parameters of theses terms are shown in table 4.3. At low
temperatures the Debye heat capacity can be approximated to a T 3 dependence, shown in
Equation 4.5, alternatively this can be expressed as a linear relationship between C/T and
T 2.

C =γT + AT 3

C
T

=γ + AT 2 (4.5)

Heat capacity over temperature (C/T) has been plot against temperature-squared (T 2)
in figure 4.8. The bottom figure shows that at low temperatures, below 35 K, C/T be-
haves linearly with T 2, with the y-intercept being the Sommerfeld parameter, at 27.0(1)
mJ mol−1K−2. This agrees with previous studies that found the Sommerfeld coefficient to
be 31.6 mJ mol−1K−2, but with up to 20% variation between samples [108]. A value of
27.0 mJ mol−1K−2 for the Sommerfeld constant is quite high for d-electron system, but is
in agreement with measurements carried out on other iron pnictides. Certain dopings of
SmFeAsO1−xFx were found to have Sommerfeld coefficient as high as 137 mJ mol−1K−2,
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whilst LiFeAs has a Sommerfeld coefficient of 23.3 mJ mol−1K−2. [134]. Extracting the
Debye temperature from the gradient A of low temperature approximation, gives a value
of 109.5±0.1 K. This value is significantly different from that obtained in table 4.3, and
is due to the effects of including ther einstein model.

A discontinuity is evident in the heat capacity, between 125 K and 150 K. Figure
4.7 (bottom) shows the heat capacity over this range. This discontinuity occurs over the
range where the magnetic transition is reported to occur. Monte-Carlo simulations of the
magnetic contribution to the heat capacity reported by Redpath et al. [110], predicts a peak
in the heat capacity around the transition temperature, but the discontinuity measured in
the data, does not take the form of the single distinct peak as expected.

4.3.2 Bulk Magnetisation Measurements

Magnetic susceptibility and magnetisation were measured as a function of temperature
and applied magnetic field, H. These measurements were carried out using a Quantum
Design Magnetic Properties Measurement System (MPMS), using the Superconducting
QUantum Interference Device (SQUID) magnetometer to measure very small changes
in magnetisation. Both a powdered sample, 167.17 mg and the single crystal, 1.94 mg
(aligned with the field applied along the a- and c-directions) were measured. The temper-
ature dependence of the magnetisation was measured over a range from 1.8 K to 300 K. A
magnetic-field of 1000 Oe was applied across the sample at each temperature to measure
the susceptibility. This measurement was repeated for both zero field cooled (ZFC), and
field cooled (FC) in an applied field of 5000 Oe. Magnetisation against magnetic field
curves (M-H) were measured for all three samples at temperatures of 2 K, 125 K and
300 K. The magnetisation isotherms were measured using a field up to ±5 T.

Figure 4.9 shows the magnetic susceptibility (χ) per mole for the powdered sample
of FeCrAs. The inverse susceptibility is plotted on the same x-axis, but with a different
y-axis (right). A transition is apparent in the magnetisation data, around 125 K, where
upon cooling the susceptibility increases rapidly. This transistion is easier to see in the
1st derivative of susceptibility, shown in figure 4.10, where a clear transistion is seen
starting at 125 K. The susceptibility continues to increase until the sample is cooled to a
temperature of T ∼ 45 K where the susceptibility begins to level off, and decreases below
20 K. The inverse susceptibility is an indicator of paramagnetic behaviour as the Curie-
Weiss law describes a linear relationship between inverse susceptibility and temperature.
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Figure 4.8: (Top) Heat capacity per mole over temperature (C/T ) as a function of tem-
perature squared (T 2) for a single crystal, showing the expected T 3 dependence of the
heat capacity. The fit from model shown in equation 4.2, shown by the solid line, Debye
contribution shown in small dashes, Einstein contribution shown in dash-dot, Sommer-
feld contribution shown in large dashes. (Bottom) Close up of the low temperature T 3

response of the heat capacity, the y-intercept shows the linear Sommerfeld response.
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Figure 4.9: Magnetic susceptibility per mole of powdered FeCrAs, measured on an Quan-
tum Designs MPMS system, with applied field of 1000 Oe. The zero field cooled mea-
surement is shown in black, and the field cooled in 0.5 T is shown in dashed. Inverse
susceptibility is shown on the right hand y-axis in the fine dashed line.

It is quite clear that no part of the inverse susceptibility below 300 K behaves linearly with
temperature, ruling out any Curie-Weiss paramagnetic behaviour.

Figure 4.11 shows the temperature dependence of the susceptibility for the single
crystal sample. The single crystal is only about 1% the mass of the powder sample,
but the magnetic moment measured was 1000 times smaller than the powder sample.
This apparent difference between the powder and single crystal magnetisation data can be
attributed to difference in mass between the single crystal and the powder, and the effect
this has on the error. The susceptibility along both the a- and c- crystallographic axes
shows qualitatively the same behaviour as the powder sample, with a transition around
125 K, below which the susceptibility increases and a lower transition around 20-48 K
where the susceptibility decreases. The susceptibility along the a-axis is consistently
higher for the entire temperature range than along c-axis. The susceptibility was measured
under an applied field of 0.5 T. In both cases, the single crystal and powder, there is
dramatic splitting between the FC and ZFC behaviour, at a temperature ≈ 48 K. As stated
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Figure 4.10: The first derivative of the magnetic susceptibility per mole with respect to
temperature for powdered FeCrAs. The 1st derivative was calculated from the ZFC data
shown in figure 4.9

earlier for the ZFC measurement the susceptibility decreases at low temperatures, whilst
the FC measurement continues to increase. This FC splitting is symptomatic of a spin
freezing phenomena.

The magnetisation against applied field measurements are shown in figure 4.12. No
hysteresis was observed at any temperature on either the powder or the single crystal. The
powder and the single crystals both show a strong magnetisation response to the applied
field. For both the crystal and powder samples, the magnetisation response increases for
decreasing temperature. The powder appears to show a stronger magnetisation response,
than either the a or c direction, this again is a consequence of sample size. In the powder
sample, a curve in the M-H behaviour is seen at the lowest temperature of 2 K.

4.3.3 Muon Spin Relaxation

To investigate the complex magnetic behaviour present in FeCrAs, a muon spin relaxation
(µSR) study was performed using the ARGUS µSR beam line at ISIS, Didcot, UK. The
ISIS muon source operates using a double pulse muon beam, with typically 10,000 muons
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Figure 4.11: Magnetic susceptibility per mole of single crystal sample of FeCrAs, mea-
sured on an Quantum Designs MPMS system, with applied field of 1000 Oe. Zero field-
cooled with measurement field applied along the c-axis (dashed), and the field along the
a-axis (solid), and 0.5 T field cooled shown in fine dashed for both directions.

in each pulse. The gap between pulses is sufficiently large, to monitor decays up to
15 muon lifetimes. The pulsed structure reduces the number of background positron
detections, compared to the continuous beam alternatives, providing more sensitivity to
weaker fields. Approximately 230 mg of FeCrAs was ground up to a fine powder, and
mounted in thermal grease in a silver foil packet on the cold finger of a cryostat. Further
foil was added to the cryostat to act as shielding.

The cryostat was placed in the spectrometer and cooled to 5 K. To calibrate the spec-
trometer forward-back asymmetry, a weak transverse field is applied to the sample. Under
a transverse field, the muon’s spin will precess with time, this oscillation should be ap-
proximately centred on the zero asymmetry point. Due to the differing efficiency between
the forward and back detectors, this is seldom the case, and a correction is applied to the
raw data.

A(t) =
NF − αNB

NF + αNB
(4.6)

In equation 4.6 the value α can be fitted from the data, is related to the efficiencies
of the forward- and back-detector groups and should be close to 1. A weak transverse
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Figure 4.12: Magnetisation per mole of FeCrAs, (Top) Single crystal aligned with c-axis
parallel to field. (Middle) Single crystal with a-axis in direction of field. (Bottom) Powder
sample. Measurements taken at 300 K (blue), 125 K (green) and 2 K (red).

magnetic field of 985 ±1 µT was applied across the sample at 20 K, and a spectrum was
measured until 25 million positron emission events had been collected. Figure 4.13 shows
the spectrum for the transverse field. The top figure shows the raw data for the forward
and backwards detectors, solid and dashed line respectively. The decay events in both
forward and back channels, show an exponential decay, which has been highlighted by the
logarithmic y-scale. There is also an oscillatory component to the decay with the front and
back channels appearing to be out of phase. The bottom figure shows the forward/back
(F/B) asymmetry between the two detector groups, calculated using equation 4.6. The
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Figure 4.13: (Top) Raw data for positron emission time spectra for the forward and back-
ward detector groups at 20 K and a transverse magnetic field of 985±1 µT, 25 millions
positron emission events were collected. (Bottom) Forward/back asymmetry for the same
data set with different instrument forward/back asymmetry values, calculated using equa-
tion 4.6

red data shows the asymmetry with α = 1, while the black data shows the asymmetry
with α = 1.27. The asymmetry spectra was fitted using a decaying cosine function and a
constant background, and a least squares fitting algorithm was used to find the value for α
where the asymmetry oscillates around zero (background went to zero). This fit resulted
in a value of α = 1.27 ± 0.01, this value of α was used to calculate the asymmetry on all
subsequent data.

The fit to the transverse field spectra was found to have a frequency of 0.135±0.001
MHz. Given the gyromagnetic ratio for a muon is 135.5 MHz T−1, for an applied field of
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Figure 4.14: Selected forward-backward detector asymmetry spectra of the muon decay.
Spectra measured at 265 K (blue), 54 K (green) and 5 K (red). The fits, shown in black

dashed line, from the decay function A0e−λte−
1

2σ2 t2
+ CB.G., with σ fixed at 8.59 µs.

985 µT, the muon should precess with a frequency of 0.133 MHz, in agreement with the
experimental data.

The magnetic field was removed, and muon decay spectra were collected as a func-
tion of temperature. A minimum of 25 million positron detection events were recorded
at each temperature. Initially spectra were collected every 10 K between 5 K and 105 K,
and every 20 K between 105 K and 265 K. Once regions of interest were identified, ad-
ditional spectra were collected every 3 - 5 K. Three qualitatively different spectra were
found at different temperatures, figure 4.14, shows three selected temperatures to high-
light the difference. In the high temperature region the muon depolarisation spectra shows
Gaussian-like behaviour, whilst at lower temperatures the muon depolarisation spectra
shows exponential-decay-like behaviour.

The high temperature Gaussian behaviour is typical for relaxation due to static nuclear
dipolar fields. In order to get a more quantitative understanding of the muon relaxation
spectra, a single function describing the asymmetry, to fit the entire temperature range is
desirable. After trialling several functions, the best results were attained using a combi-
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Figure 4.15: Background constant from the fit to forward-backward asymmetry decay as
a function of temperature.

nation of a Gaussian and an exponential with a constant background.

A(t) = A0e−λte−
1

2σ2 t2
+ CB.G. (4.7)

The initial asymmetry is given by A0 + CB.G., the Gaussian width is given by σ and
the rate of the exponential decay is given by λ. The value of the Gaussian width was
found to be independent of temperature, and was fixed across the entire temperature range.
Using a Levenberg-Marquardt non-linear least squares algorithm [135, 136], a value for
the Gaussian width was found to be 8.59±0.01 µs. It was necessary to allow the A0, λ and
CB.G. to vary with each temperature.

The background was found to decrease linearly as temperature decreased, until around
100 K, where the background levels out at approximately 12%, shown in figure 4.15. The
initial asymmetry and decay rate, λ are shown in figure 4.16. Three different regions can
be seen in the initial asymmetry and decay rate, the high temperature regime, 100 - 265 K,
where the decay rate is close to zero, and the initial asymmetry is at it’s highest. In the
temperature regime, 48 K to 100 K, there is a rapid increase in decay rate, with a peak of
λ = 0.75 MHz, at 48 K. In the same temperature regime the initial asymmetry experiences
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Figure 4.16: Temperature dependence of parameters from the relaxation function

A0e−λte−
1

2σ2 t2
+ CB.G., with σ fixed at 8.59 µs. (Top) Initial asymmetry (%), sum of am-

plitude of decay function and background. (Bottom) Relaxation decay constant, λ. Black
dashed line shows λ ∝ e

∆
T

a drop from 20% down to 14%. Finally below this transition in the region of 5 K to 48 K
the decay rate has drop to approximately λ ≈ 0.25 MHz, where it remains stable, whilst
the initial asymmetry stabilises at around 15%.

The decay rate λ at temperatures between 48 K and 100 K, appears to increase almost
exponentially upon cooling. Upon further cooling below the transition point at 48 K,
there is a discontinuity where the decay rate rapidly drops. The decay rate above this
discontinuity appears to be related to the temperature with a Boltzmann-like exponential.

λ ∝ e
(

∆
kbT

)
(4.8)

This relationship can be seen in figure 4.17, where 1/T has been plotted against the
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Figure 4.17: Logarithm of the decay exponent, ln(λ), as a function of 1/T. The dashed
line shows a linear fit with gradient 233±5 K

ln(λ). A linear relationship exists between 1/T and ln(λ), between 48 K and 225 K, and a
straight line has been fit to the data giving a gradient of 233±5 K, this gradient gives a ∆ =

20.1±0.4 meV. This relationship from equation 4.8, between decay rate and temperature
has been plotted on the figure 4.16, shown by the black dashed line, highlighting the
discontinuity at 48 K. The ∆ value can be interpreted as the energy difference between the
high- and low- energy states that the muon can flip between, when interacting with the
polarisation of the host lattice. A quantum of energy of ~ωµ can be supplied to the muon
from the host lattice to transition the muon between a spin-up and spin-down states. A
spin-flip transition in the host lattice can provide this energy.

Longitudinal magnetic field dependences were collected either side of the magnetic
transition at 20 K and 120 K. The sample was cooled to 120 K allowed to stabilise,
and muon relaxation spectra were collected for a minimum of 25 million positron emis-
sion events, for a range of applied longitudinal magnetic fields. The magnetic field was
changed on a logarithmic scale collecting spectra at 0, 1.00, 1.77, 3.14, 5.56, 9.85, 17.45,
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Figure 4.18: The effects on the decay rate, λ, from the relaxation function defined in
equation 4.7 as a function of longitudinal magnetic field

30.92, 54.77, 97.03, 171.91, 304.55, 539.54, 955.85, 1693.38 and 3000 Gauss. The same
function from equation 4.7 was used to fit the asymmetry for the field dependences, figure
4.18 shows the results of the fits to the high and low temperature field dependences.

The background term was found to increase as a function of magnetic field for both
magnetic regimes at 20 K and 120 K. The effects of longitudinal applied magnetic field
on the decay rate, λ is shown in figure 4.18. Applying a longitudinal field has very little
effect on the high temperature regime (T = 120 K), with a slight peak at 10 Gauss. Below
the transition at 20 K, applying a longitudinal magnetic field causes the value of λ to
increase from around 0.2 MHz to 1.4 MHz at around 50 Gauss, where it appears to reach
a noisy plateau with further applied field.

4.4 Discussion

It has been suggested in the literature, [108] that the electronic behaviour of FeCrAs war-
rants a new class of non-Fermi liquid. Although unable to measure resistivity ourselves,
due to small sample size, FeCrAs has been established to be “non-metallic”, due to its in-
creasing resistivity with a decrease in temperature. A study of resistivity as a function of
applied pressure, was carried out by Tafti et al. [137]. FeCrAs was found to keep its non-
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metallic behaviour with pressures up to 17 GPa, beyond the suppression of the magnetic
order, suggesting long-range order of the moments does not play a significant role in de-
termining the non-metallic behaviour. Our own heat capacity results show similar results
to those reported by Wu et al. [108] with the same high temperature plateau value of 80 J
mol−1K−1 and a similar Sommerfeld coefficient 27 mJ mol−1K−2. The primitive unit cell
has 3 Fe, 3 Cr, and 3 As, if the heat capacity per mole of unit cell is used instead, the high
temperature heat capacity levels out at 26.6 J mol−1 K−1, which is close to the prediction
of the Dulong-Petit Law of 3R ≈ 25 J mol−1K−1. The measured Sommerfeld coefficient is
unusually high for a d-electron metal, but is a common feature in the parent compounds of
the iron pnictide superconductors. At low temperatures the heat capacity shows metallic-
like behaviour with its T 3 dependence. The fits to the Debye and Einstein models show
similar results to superconductors LiFeAs and LaFeAsO0.9F0.1 but with a slightly higher
Debye temperature. Our sample of FeCrAs, shows a more pronounced feature at 125 K
in the temperature dependence of the heat capacity than that previously reported by Wu et

al [108, 132]. Magnetic susceptibility results are qualitatively different to those reported
previously [108, 132]. Of the eleven growths reported by Wu [132], markedly different
susceptibilities were measured, whilst the “non-metallic” resistivity and “metallic” heat
capacity remained consistent across the samples. In frustrated lattice systems, such as the
kagomé lattice, it is not surprising that the magnetism is highly sensitive to the crystalline
quality.

The sample, presented by Wu as the highest quality, shows an antiferromagnetic tran-
sition at at 125 K, with a clear peak in the magnetisation. Our sample shows a rapid in-
crease in the susceptibility below 125 K, with an antiferromagnetic-like transition around
25-48 K. Below this transition at 48 K FC splitting is observed. This splitting is indicative
of a spin-freezing phenomena, where below the transition at 48 K the spins become fixed
in a energetically stable disordered state (spin glass). Thermal irreversibility between FC
and ZFC susceptibility below the spin-freeze transition are characteristic properties of a
spin glass. If the system is cooled through the spin-freeze transition in an applied field
the system is more susceptible to further applied field. The field cooled splitting was seen
in all of the growths by Wu et al., but the effect was small in their highest quality growth
sample, around 5% increase occurring below 20 K, whereas the FC splitting in our sample
was more drastic, with a 300% increase for the powder sample and 40% increase for the
single crystal.
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Over the entire temperature range measured, no Curie-Weiss paramagnetic behaviour
has been observed, in agreement with the measurements by Wu et al. [108]. The inverse
susceptibility suggests that the system may enter a paramagnetic phase above 300 K.

Results from the muon relaxation study, shed some light on the magnetism. Three dif-
ferent regimes are identified between 5 K and 300 K. Firstly, a high temperature regime,
were the muon relaxation asymmetry is Gaussian-like. This is indicative of muon po-
larisation precessing in a dipolar field from the nuclear moments. This is the expected
behaviour above any magnetic transition, where nuclear moments dominate the asymme-
try.

As the sample is cooled down the shape of the asymmetry spectra becomes more
exponential-decay-like, as the muons depolarise faster. In this regime, the muon is more
sensitive to electronic magnetic fields. Below 100 K the decay rate, λ begins to increase
rapidly. The temperature dependence of the decay rate, λ is described by an exp

(
∆

kBT

)
,

where ∆ is measured to be 20.1±0.4 meV. The plot of 1/T against ln(λ) clearly shows
a linear relation between 225 K and 48 K. The value ∆ is indicative of the energy re-
quired to cause a muon to flip between a high and low energy state. At 48 K there is
a discontinuity in the temperature dependence of the decay rate, where the decay rate
rapidly drops. This third regime below 48 K, coincides with the field splitting in the
susceptibility data. In this regime the asymmetry spectra is almost constant at around
12% with a slow decay rate. This regime is clearest to see in the plot of initial asym-
metry, where over the spin freeze transition, the initial asymmetry drops rapidly from
around 20% to 14%. The increase in muon depolarisation decay rate, λ as the spin-
freeze transition is approached and then consequent drop in decay rate in the spin glass
phase has been observed by µsr in spin glass materials before. In the kagomé lattice
system, hydronium jarosite (H3O)Fe3(OH)6(SO4)2, the muon depolarisation can be de-
scribed by an stretched exponential decay [138]. The decay rate λ shows qualitatively
similar behaviour in (H3O)Fe3(OH)6(SO4)2, increasing rapidly on cooling towards spin-
freezing before dropping off in the spin-glass phase. In similar kagomé system , Cr-
jarosite (KCr3(OH)6(SO4)2), and kagomé like (CuxZn1−x)3V2O7(OH2)(H2O)2, the muon
depolarisation also has a exponential-decay-like behaviour, but without any sign of spin-
freezing down to 25 mK and 50 mK, respectively [139, 140]. In the regime above the
spin-freeze transition, between 225 K and 48 K, the muons experience dynamic magnetic
fields, brought about by spin fluctuations. Below the spin-freeze transition, the muon
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experiences static magnetic fields associated with the spin glass state.

The kagomé lattice allows a coplanar X-Y 120◦ ground state, as shown in figure 4.3.
The kagomé geometry also permits continuous spin folding zero energy modes, that pre-
serve the 120◦ structure through ”spin facets” [141]. Spins which lie on the edge of the
facets can rotate around the common axis of a facet with no energy cost. The magnetic
susceptibility measurement, showed that the magnetic moments do not behave param-
agnetically, above the spin freezing temperature. Below 225 K patches of short-range
metastable spin-glass begin to appear. The geometry of the kagomé lattice allow low-
energy excitations of these extended blocks of spin [138]. These blocks of magnetic
order are not ordered with neighbouring blocks. As the sample is cooled towards the
spin-freezing transition of 48 K, more of these spin blocks form, and these blocks be-
come larger until the spin freezing temperature is reached. As more of these blocks of
metastable spin glass appear the muon depolarisation decay rate increases until the spin
freezing transition.

Monte-Carlo simulations of FeCrAs by Redpath et al. [110] modelled FeCrAs as a
stack of a chromium on a distorted Kagomé lattice and iron molecules on a triangular
lattice. In their simulations they have two exchange terms, J1 between nearest neighbours
in the kagomé net, and J2 between the chromiums in the kagomé net and the iron trimers
on the triangular lattice. The kagomé lattice will only display short-range ordering, until
absolute zero, the addition of the coupling between the layers of kagomé and triangular
lattices allows the system to order at a non-zero temperature.

From the susceptibility, heat capacity and muon relaxation spectra results, two mag-
netic transitions appear to occur. Above 48 K short-range ordering exists between chromi-
ums on the kagomé net, but thermal background stops the interactions between layers
playing a role. Below 48 K, spins freezing sets in. At 225 K where the short range
order first appears, kBT ≈ 20 meV, which is in agreement with the interaction energy
extracted from the µsr. At 48 K, kBT ≈ 4 meV, if this is compared to the value of ∆

extracted from the µsr data of 20.1 meV, we can get a rough idea of the strength of the
coupling interactions, J1 and J2. Mainly the interaction within the chromium kagomé net
is 5 times stronger than the coupling between the kagomé net and the triangular lattice
of iron trimers. Redpath et al. compared their simulation to magnetic susceptibility data
collected by Wu et al., to find a relative interaction strength of J2/J1 ≈

1/9.

The longitudinal field dependence of the µS R asymmetry spectra at 120 K show little
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variation, with an increase in background the only noticeable effect up to 3000 Gauss.
The low temperature longitudinal field dependence at 20 K, also shows this increase in
background, but in addition shows a large increase in decay rate with field. This agrees
with the M-H curves, which showed a far bigger susceptibility in the spin-glass phase at
2 K than at 125 K. The decay rate λ increases with field until the measurement taken at
54.77 Gauss, after which it reaches a noisy plateau. This noisy plateau may be due to
the frequency response limitations of the ARGUS instrument. The magnetic field depen-
dence, further confirms the different nature of the magnetic phases above and below the
spin-freezing transition.

The magnetism in our sample of FeCrAs is very different to that reported in the lit-
erature. Although x-ray powder diffraction, confirms our sample to be majority phase
FeCrAs, the x-ray probe is not sufficient to distinguish doping of chromium atoms on
the iron site, due to their similar x-ray scattering lengths. The EDAX spectroscopy sug-
gests the sample might be slightly chromium rich, but can not accurately quantify the
chromium content. A neutron powder diffraction measurement would be the ideal probe
to measure any chromium doping on the iron site as the neutron scattering lengths for
chromium and iron are 3.635 fm and 9.45 fm respectively [142]. A spin glass is also
seen in the CrFe alloy system. Chromium has an unusual spin-density-wave antiferro-
magnetic ground state, by doping with iron, the Cr1−xFex system can show an spin glass
transition. If x < 0.16 the system exhibits the spin density wave, x > 0.19 the system
exhibits ferromagnetism, between 0.16 < x < 0.19 the system exhibits a spin-glass mag-
netic phase [143]. It has also been shown that the spin density wave and spin glass phase
can coexist for Cr1−xFex [144]. A µsr study on the spin-glass phase of the x = 0.175 com-
pound shows similar exponential behaviour to that observed in our sample of FeCrAs,
with a rapid increase of depolarisation rate, λ as the system is cooled down towards the
spin-freezing transition [145]. Further work may be to consider the system Fe1−xCr1+xAs,
which our own sample may fall into. As Mössbauer meausrements suggest little to no
magnetic moment on the iron [122], doping of chromium onto the iron site should drasti-
cally change the magnetic coupling between the kagomé lattice and the triangular lattice
layers. There may even be phase coexistence between the spin-glass phase observed in
this study and the (1/3, 1/3, 0) antiferromagnetism observed by Swainson et al. [121]. Fur-
ther muon beamtime will be used to study, in collaboration, the sample used in the neutron
measurement by Swainson et al.. In addition, beamtime has also been obtained to perform
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a resonant scattering experiment, on the (1/3, 1/3, 0) antiferromagnetism, to make use of the
element specificity, to understand the role of the iron trimers in the magnetic ground state.

4.5 Conclusions
Samples of FeCrAs were grown by the flux method, and show the same metallic heat
capacity as presented in the literature. The magnetic ground state, however was very dif-
ferent from (1/3, 1/3, 0) antiferromagnetism found by Swainson et al. Magnetic susceptibil-
ity results show a spin-freezing phenomena below 48 K. Muon spin relaxation provided
evidence of three distinct magnetic phases. A high temperature regime where the nu-
clear magnetic moments dominate the muon spectra, a mid-temperature region, between
48 K and 225 K, where the muon spectra is dominated by depolarisation effects from
dynamic magnetic field from spin fluctuations, and a low temperature phase, where the
spins freeze and the decay rate of muon depolarisation drops. Comparing these results
to the literature, this behaviour is characteristic of a spin-glass transition on a kagomé
lattice. Although the spin freezing transition does not occur till 48 K, there is evidence
of the short-range spin blocks freezing from 225 K. The muon depolarisation decay rate
in the 45-225 K regime, fits a Boltzmann-like exponential, with respect to temperature,
with an exchange energy of ∆ = 20.1 ± 0.4 meV. Comparing this to the thermal energy
of the spin freeze transition of 48 K, kBT ≈ 4 meV, an estimate can be made of the ex-
change interactions within the plane, and between the planes. A Monte-Carlo study by
Redpath et al. suggests the magnetism in the kagomé lattice remains short-range, unless
interactions between the chromium and iron layers are considered. The short-range order-
ing first appears at 225 K, where kBT ≈ 20 meV and agrees with the interaction energy
from the muon measurement,∆ = 20.1 ± 0.4 meV, suggesting the interaction between
chromiums in the kagomé lattice, although short-range is around 20 meV. The spin-glass
transition is at 48 K, kBT ≈ 4 meV and from the Monte-Carlo simulations by Redpath et

al. can be thought of as the energy at which the interaction between the chromium and
iron layers drive the spin freeze transition. The differing results of the spin-glass observed
compared to the antiferromagnetism measured by Swainson et al., may be due to doping
of chromium on the iron site, strengthening the coupling between layers.
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Chapter 5

Helical Spin Structures in FeAs

5.1 Introduction

In this chapter, the magnetic structure of FeAs will be investigated using resonant x-
ray scattering. Until recently very little had been published on the binary system FeAs,
the crystal and magnetic structure was studied by powder neutron diffraction in 1969-
1972 [146–148]. With the discovery of high-temperature superconductivity in the
La[O1−xFx]FeAs system in 2008 [93], the field of iron pnictide based superconductors
rapidly emerged, with other superconducting systems being discovered, (Ba,K)Fe2As2

[94], LiFeAs [95] and, FeSe1−δ [96]. Since then, interest has picked up on FeAs, espe-
cially its magnetic properties. Magnetism and superconductivity are traditionally consid-
ered antagonistic phenomena. For conventional s-wave superconductors magnetic mo-
ments break up the spin singlet Cooper pairs, destroying the superconductivity [98]. For
many of the iron pnictide endmembers, the undoped non-superconducting materials have
a spin density wave ground state [149]. Many of these antiferromagnetic systems, such
as BaFe2As2 and LaFeAsO also show high electrical conductivity. Upon chemical dop-
ing, high pressure or oxygen deficiency, these systems lose their antiferromagnetic order-
ing and become superconducting [150–153]. Phonon coupling has been ruled out as the
sole mechanism of the superconductivity, as calculations of the La[O1−xFx]FeAs system
show it to be a poor electron phonon superconductor [154]. The existence of adjacent
magnetism and superconducting regions in the phase diagrams of these systems suggest
magnetic fluctuations may play a role in the origin of the superconductivity in the iron
pnictides.
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x y z

Fe1 0.004 0.25 0.199
Fe2 0.496 0.75 0.699
Fe3 0.996 0.75 0.801
Fe4 0.504 0.25 0.301

Table 5.1: Four equivalent iron sites in the orthorhombic unit cell. Coordinates are given
as fractions of the lattice parameters

Iron pnictide superconductors, like their cuprate cousins, have a layered crystal struc-
ture. All superconducting iron pnictides have active planar layers of tetrahedrally co-
ordinated FeAs. FeAs like the other end members of the iron pnictides is an itinerant
magnet, where the conductivity increases in the long-range ordered antiferromagnetic
ground state. Recent papers published on FeAs, since the discovery of superconductivity
in the iron pnictides, show that the magnetic ground state may be more complicated than
previously thought [155, 156].

5.1.1 The MnP Structure

The binary compund FeAs is known to adopt the MnP type structure [146]. This is an
orthorhombic structure consisting of distorted FeAs6 octahedra. These octahedra are face
sharing along the a-axis and edge sharing along the b- and c-axis. The unit cell has
the space group Pnma and lattice parameters a = 5.456, b = 3.328 and c = 6.031 Å
[146, 156]. There is some confusion in the literature as b and c are often reported in-
terchangeably. The iron atoms sit at the 4c Wyckoff site, giving rise to four equivalent
positions in the unit cell, (1) x, 1

4 , z, (2) x̄+1
2 , 3

4 ,z+1
2 , (3) x̄, 3

4 , z̄, and (4) x+1
2 , 1

4 , z̄+1
2 . Table

5.1 shows the positions of atoms found by neutron powder diffraction from Rodriguez et

al. [156], where x and z were found to be 0.004 and 0.199 respectively.

The FeAs crystal structure is shown in figure 5.1, the view along the b-axis, shows
the face sharing octahedra along the a-axis. The distorted octahedra are tilted in the
ac-plane and not in the bc-plane. The iron layers in the superconducting structures are
tetrahedrally coordinated by arsenic, rather than octahedrally coordinated, as in FeAs.
Unlike in superconducting structures where iron atoms form a square lattice, there is
no lower dimensionality in the binary FeAs structure. The MnP structure is a common
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(a) (b)

Figure 5.1: Crystal Structure of FeAs. Iron atoms are shown in brown, and Arsenic atoms
are shown in green. (a) a-c plane, (b) b-c plane.

structure for a number of different binary metal (Cr, Fe, Co, Ru and V) arsenides and
phosphides [157, 158], and can be thought of as a distortion of the more common [159]
hexagonal NiAs-type structure [157, 160]. Bonding interactions between the metal ions
can lead to a phase transition between the two structures [161, 162].

5.1.2 Magnetism in FeAs

Results from a neutron powder diffraction study in 1972 [147] show a transition to a
long-range ordered antiferromagnetic state at 77 K. Refinement of the neutron powder
diffraction found a helical magnetic structure with a wavevector of q = (0, 0, 0.375) best
described the data. They also found a moment of 0.5 µB. Isostructural MnP has a rich
magnetic phase diagram with competing collinear and non-collinear ground states [163,
164], but the zero-field ground state of MnP is the a magnetic helix [165]. A more general
relation between the MnP type crystal structure and the helical magnetic structure may
exist [166].

In 2008, a magnetic susceptibility and transport study by Segawa et al. [155], gave
results that disagree with a simple helical magnetic structure. The susceptibility, shown in
figure 5.2 shows a kink at 70 K in the a- and b-direction but not in the c-direction (Segawa
et al. use a convention where b and c are swapped). Although this agrees with the helical
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reported in the literature;6) the propagation vector of the
helical magnetism is reported to be along the b-axis, and the
spin orientation of the ordered moment is along the ac-plane
(please note that the convention of the axes is different in
the papers5,6) by Selte et al.)8) Therefore, the temperature of
70 K, at which the kink is observed, evidently corresponds to
the Néel temperature TN. We have confirmed that TN does
not change in a crystal grown with raw materials of higher
purity (99.998% for Fe and 99.9999% for As); nonetheless,
the TN in the present result is lower than 77 K reported in the
old literature.6) The reason for this discrepancy is not clear
at the moment, but a more recent paper reports the TN of
71 K.10) A bifurcation of the magnetic susceptibility between
the zero-field-cooled (ZFC) and field-cooled (FC) data is
observed at low temperature only in !c, which indicates that
some anisotropic antiferromagnetic domains are formed in
the helical ordered phase. Such an anisotropy has never been
recognized in the neutron scattering studies in the past, so its
clarification would be useful for building a general under-
standing of the relation between the MnP-type crystal
structure and the helical magnetic order.11)

Figure 3(a) shows the temperature dependence of the
resistivity along the b-axis ("b) and the c-axis ("c). The
a-axis resistivity "a has not been measured, because it is
difficult to prepare a sample with the longest dimension

along the a-axis. The absolute value of "b is nearly two
times larger than that of "c at room temperature, but they
tend to merge upon lowering temperature. Both "b and "c
show a considerable decrease below !150 K, and a kink is
observed at 70 K, which obviously corresponds to the helical
magnetic transition. The 70-K kink can be a misleading
feature in other pnictide samples including FeAs as an
impurity phase, because it is reminiscent of superconduc-
tivity due to a minor phase. Below !70 K, the temperature
dependence of the resistivity becomes so weak that it does
not obey the Bloch–Grüneisen formula nor a T2-law.
Figure 3(b) shows the temperature dependence of the Hall
coefficient. The magnetic field is along the a-axis and the
current is along the c-axis. At room temperature RH is
positive, but it changes to negative at !170 K upon
decreasing temperature. At 70 K, the temperature depend-
ence of RH shows a sharp dip, and the sign changes again
to positive below !50 K. This result signifies that multiple
bands contribute to the charge transport.

4. Discussions

The temperature dependences of the magnetic suscepti-
bility and the resistivity bear a striking resemblance: both
show a decrease below 150 – 200 K and a kink at TN of 70 K.
The spins of the 3d electrons on the iron sites are possibly
becoming itinerant with decreasing temperature. Actually, it
is reported that the magnetic moment of the ordered spins at
low temperatures is much smaller than that of the free spins
at high temperatures.6) As for the resistivity, the itinerancy
might be responsible for the significant decrease of resis-
tivity below !150 K. From the Hall coefficient, a possible
scenario is that the delocalized 3d electrons widens an
electron-like band as the temperature is lowered to 70 K,
below which the electron-like band contributes less at the
Fermi energy.
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Fig. 1. An example of Laue photograph for the bc-plane of a FeAs single
crystal.

J. Phys. Soc. Jpn., Vol. 78, No. 10 K. SEGAWA and Y. ANDO

104720-2

Figure 5.2: Magnetic susceptibility data measured along the a-, b- and c-directions, taken
from Segawa et al. [155]. The b and c-axis labelling are the reverse of the convention used
in this study.

structure, the susceptibility along the b-axis is lower than along a, and only the b-axis
displays a magnetic field splitting. The anisotropy in the susceptibility between the a- and
b-axes raises doubt as to the simple spin helix, suggesting the magnetic ground state is
more complicated, although the lack of features in the c-axis measurement suggests the
magnetic moment is fixed to the a-b plane. The resistivity measurement by Segawa et al.,
confirmed the itinerant behaviour of FeAs, with the resistivity decreasing below 150 K. A
kink was also observed in the resistivity at 70 K. Segawa et al. drew parallels to another
itinerant magnet CrB2, which was also reported to have a helical ground state [167, 168],
where NMR studies have recently questioned the helical structure [169].

In 2011 a neutron diffraction study was carried out by Rodriguez et al. [156] on FeAs,
using a combination of powder and polarised single-crystal neutron diffraction. This study
reported a slightly different incommensurate wavevector of (0,0,0.395). Powder diffrac-
tion studies cannot differentiate between a spin helix and a collinear spin-density-wave.
The polarised neutron diffraction results confirmed a spin helix, but the spin flip ratios
suggest a 15% larger moment along the b-axis than the a-axis, suggesting a slightly ellip-
tical spin helix.

Shubnikov groups are not sufficient to solve the helical incommensurate magnetic
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structure [170, 171], and representational analysis has to be employed. For representa-
tional analysis the program Baslreps was used. There are 8 symmetry elements of the
crystallographic space group Pnma, these are E, C2x, C2y, C2z, I, σx, σy, and σz. The little
group Gq is formed by those symmetry elements of Pnma which leave the incommensu-
rate wavevector q = (0, 0, 0.395) unchanged. The little group Gq is composed of the four
symmetry elements E, C2Z, σx, σy. The matrix form of these symmetry elements, in the
basis of the unit cell, are given below in 5.1

E =


1 0 0
0 1 0
0 0 1

 , C2z =


−1 0 0
0 −1 0
0 0 1



σx =


−1 0 0
0 1 0
0 0 1

 , σy =


1 0 0
0 −1 0
0 0 1


(5.1)

Upon application of the symmetry elements in subgroup Gq on the atom postions given in
table 5.1, Fe1 and Fe2 transform into each other by way of a return vector, e−iqπ, similarly
Fe3 and Fe4 transform into each other. Fe1,2 is no longer equivalent to Fe3,4, creating
two orbits in the magnetic structure with a phase difference between them. This type of
magnetic structure is often termed a double-helical structure [172–175].

5.2 Experimental

The sample was grown by an iodine vapour transport method by our collaborator K. A.
Ziq from the King Fahd University of Petroleum & Minerals [131]. The growth method
resulted in a selection of single crystals of typical dimensions of hundred of microns.
Several samples were studied using the in-house four-circle diffractometer, and a single
crystal selected, with a natural c-axis facet and a sharp (0, 0, 2) reflection with a rocking
width of 0.0025◦. This single crystal was used for all subsequent experiments.

Resonant x-ray diffraction experiments were carried out at both the soft Fe LII/III and
the hard Fe K absorption edges. For the Fe L edges experiments the beamlines ID08,
ESRF and I10, Diamond were used. For the K edge experiments the beamline P09, Pe-
tra III was used [176]. All three beamlines are situated on an undulator insertion device.
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ID08 does not provide post-scatter polarisation analysis. I10 does provide post-scatter po-
larisation analysis, as well as full control of incident linear polarisation, allowing for full
polarisation analysis measurements. ID08 and I10 are equipped with a Janis liquid helium
cryostat, enabling base temperatures of 12 K to reached. P09 has a six-circle diffractome-
ter with post-scatter polarisation analysis, and a Joule-Thompson cryostat, enabling a base
temperature of 1.4 K.

For all diffraction experiments the sample was mounted with the c-axis surface nor-
mal. For the ID08 and I10 experiments the sample was mounted with the b-axis in the
scattering plane. For the P09 experiment the [-1,0,0] reciprocal direction was used as the
azimuthal reference vector. In all cases vertical scattering geometry was used.

5.3 Results

In this section the results from the resonant scattering experiments will be described.
All experiments were performed on the same sample of FeAs. Two experiments were
performed at the Fe LII/III absorption edge using the beamlines ID08, ESRF and I10, Dia-
mond. The Fe K edge experiment was performed at P09, Petra III.

5.3.1 ID08 REXS experiment

At the Fe LIII energy (≈ 707 eV) the radius of the Ewald sphere limits access along the
l reciprocal direction to l = 0.68. Within this limit two resonant reflections were found
along the l direction, at positions l = 0.389 and l = 0.611. A scan along the [00L] direction
is shown in figure 5.3. The shape of the peaks are asymmetric, with the peak at l = 0.611
having the reverse asymmetry to the l = 0.389 reflection. A likely explanation of the
asymmetric peak shape, is the shape of the energy profile coming from the undulator.
The (0,0,0.611) reflection having the reverse shape of the [0,0,0.389] reflection reveals
the (0,0,0.611) to be a satellite of the (0,0,1) forbidden Bragg peak. The two reflections
can be indexed up as (0,0,0)+(0,0,τ) (τ), and (0,0,1)-(0, 0, τ) (1 − τ), where τ = 0.389.

Energy resonances of the two reflections, without post-scatter polarisation analysis are
shown in figure 5.4. These scans were performed by decreasing the energy of the incident
x-ray whilst maintaining the diffraction condition for the magnetic peak. The resonances
were measured with both σ- and π-polarised incident light. Assuming a dipole-dipole
transition (E1E1) is responsible for the resonant feature, the transition is from the Fe
2p orbital to the Fe 3d band. Exciting into the Fe 3d causes the large sensitivity to the
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Figure 5.3: Scan along the L reciprocal lattice direction, at the Fe LIII edge. Due to the
large wavelength of the Fe LIII edge the Ewald sphere is limited to 0.68c∗.

magnetism, as it is the 3d orbitals that are the magnetically active spin-polarised band
for iron. The τ reflection shows a marked difference between the two channels, this is
sufficient to rule out charge scattering and simple collinear structures along the a-, b-, or
c-directions assuming a E1E1 origin to the scattering. Without post-scatter polarisation
analysis it is not possible to draw more specific conclusions. The 1 − τ reflection shows
very different behaviour, showing equal intensity with incident σ- and π-polarised light.
This indicates a different origin for the 1−τ peak to the τ peak. The τ and 1−τ reflections
occur at θ angles of 34.4◦ and 63.7◦, respectively. These angles are not close to 45◦ or 90◦,
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(bottom), withσ- and π- polarised incident light. No post-scatter polarisation analysis was
used.

which may cause a suppression of scattering due to the θ dependences of the scattering
amplitude.

The energy scans were repeated with circular-positive and circular-negative light,
shown in figure 5.5. For the τ reflection the intensity in the circular-positive channel
is roughly twice that of the circular-negative channel. This is a good indication of a non-
collinear spin structure. The 1 − τ reflection has equal intensity in the circular-positive
and circular-negative channels. This again shows very different behaviour to the τ peak.

A temperature dependence of the (0, 0, τ) peak was performed by measuring the diffrac-
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Figure 5.5: Energy resonance of the magnetic satellite peaks, (0, 0, τ) (top) and (0, 0, 1−τ)
(bottom), with circular-positive and negative-polarised incident light.

tion in the [0, 0, L] direction on warming. The results are shown in figure 5.6. The mag-
netic (0, 0, τ) peak disappears at 70.5 K. The temperature dependence was analysed by
fitting the [0, 0, L] scans using a Lorentzian-squared peakshape. The wavevector is tem-
perature dependent appearing at q = 0.402 at 70.5 K, and moving gradually to q = 0.389
at 12 K. The neutron study be Rodriguez et al. [156] found that the wavevector shift fol-
lowed a quadratic path with a 0 K intercept at 0.389. The temperature dependence in
figure 5.6 shows similar quadratic behaviour for the wavevector as that reported by Ro-
driguez et al. [156], but with a small difference at higher temperatures, as the magnetic
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peak disappears at q = 0.402, compared to the neutron studied which found the peak
moved all the way to q = 0.404. The neutron diffraction measurement was of lower reso-
lution with a peak width of 0.03 r.l.u. which is six times larger than the total movement
of the incommensurate q-vector, compared to our x-ray study, with a width of 0.002 r.l.u.
The quadratic shape of the wavevector temperature dependence suggests the incommen-
surate wavevector locks into a constant, potentially commensurate value of 0.389, or 7/18

at low temperatures. The temperature dependence of the width of the magnetic peak was
extracted from the measurement and used to calculate the correlation length of the mag-
netism. As a Lorentzian-squared peakshape was the best fit to the reflection profile in the
L-direction, the correlation length can be calculated simply using the relation shown in
equation 5.2.

∆x =
1.38127

∆q
(5.2)

The correlation length is shown in figure 5.6 in black circles. At the base temperature
of 12 K, the magnetism is most correlated with a correlation length of 5000 Å, roughly
830 unit cells. Upon warming the magnetism becomes less correlated as expected, till
around 40 K, where the correlation length flattens off around 4200 Å, about 700 unit
cells. Above 64 K, the correlation length increases, unusually the magnetism becomes
more correlated until the magnetic reflection disappears at TN . The integrated intensity is
shown in the same figure, but in open circles. The integrated intensity was fitted using a
critical exponent function, shown in equation 5.3 below.

I(T ) = I0

(
TN − T

TN

)2β

(5.3)

The exponent β = 0.124 ± 0.009 was found by fitting the data in the region close to the
transition (65-70.5 K), this fit also refined the transition temperature to TN = 70.59 ±
0.06 K. The exponent is close to the value reported by Rodriguez et al. [156]. In their
study they used the intensity of 12 points in a temperature range from 55-70 K to fit the
critical exponent, whilst this study used 35 data points within 5 K of the transition.

Figure 5.7 shows a log-log plot of the reduced temperature which is defined as (TN − T )/TN

against the scattering intensity. If the magnetisation of the system follows the function
given in equation 5.3, then a log-log plot would show a straight line with an intercept of
zero and a gradient of 2β. The dashed line shows the result of a least-square fit of y = mx,
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Å

Figure 5.6: Temperature dependence of the (0,0,τ) magnetic diffraction peak, (top) shows
the change in incommensurate wavevector as a function of temperature. (middle) The
integrated intensity is shown in open circles. (bottom) The correlation length calculated
from the peak, shown in black circles.

with the intercept fixed at zero. The gradient is m = 0.244± 0.002, which yields a β value
of β = 0.122 ± 0.001.
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Figure 5.7: A log-log plot of the magnetic x-ray scattering intensity from the (0, 0, τ)
reflection as a function of reduced temperature. A gradient of a line y = mx which passes
through zero has been fit to the data. The gradient was found to be m = 0.244 ± 0.002.

5.3.2 I10 REXS experiment

The same sample was mounted in the ultra-high vacuum diffractometer, RASOR at I10.
The incident x-ray source was tuned to the Fe LIII absorption edge and the τ and 1 − τ
diffraction peaks were found. A full linear polarisation analysis was carried out on both
peaks and the results are shown in figure 5.8. In this measurement the incident linear light
is rotated through a full 180◦, and at each incident polarisation angle, the polarisation
state of the scattered beam is measured. Figure 5.8 plots the incident polarisation angle
against the outgoing polarisation using Poincaré-Stokes parameters, P1 and P2 (these are
defined in section 2.1.1). The results show a very different polarisation analysis for the τ
and 1 − τ reflections, confirming they have very different origins. The solid and dashed
lines in figure 5.8 show the results of simulations based on structure factor calculations
which are explained in the next section.

For the τ reflection the incident x-ray beam was polarised to both circular positive
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Figure 5.8: Full linear polarisation analysis (FLPA). The linear polarisation state of the
incident beam, was rotated through a full 180◦, at each incident polarisation angle, the
polarisation state of the scattered beam was measured, and described using the Poincaré-
Stokes parameters. (Top) FLPA measured on the (0, 0, τ) reflection. (bottom) FLPA mea-
sured on the (0, 0, 1 − τ) reflection. The lines are a model based on the derived structure
factor in section 5.4.2.

and circular negative and the polarisation state of the outgoing beam was measured by a
rotation of the polarisation analyser crystal. The results of this are shown in figure 5.16,
and should yield information about the chirality of the magnetic helix.
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5.3.3 P09 REXS experiment

A resonant x-ray experiment was carried out at the hard x-ray energy of the Fe K ab-
sorption edge. This type of experiment allows for a far wider field of access to reciprocal
space than the technically difficult experiments at the soft energies of ID08 and I10 exper-
iments, but at a cost of sensitivity to the magnetism. A typical E1E1 transition at the Fe
K absorption edge, excites a Fe 1s electron into the empty Fe 4p band. The sensitivity to
magnetism arises from any overlap, or hybridisation, between the Fe 3d and Fe 4p bands.

A survey of resonant reflections was conducted and satellite reflections were found at
(0, 0, 2− τ), (0, 0, 2 + τ), (0, 0, 4− τ), (0, 0, 4 + τ), as well as at (0, 0, 2τ), and (0, 0, 3τ). An
off-axis reflection was also observed at the (1, 0, 3−τ) position. No reflections were found
at positions away from the odd forbidden Bragg peaks ((0, 0, 1±τ) & (0, 0, 3±τ)). Figures
5.9, 5.10 and 5.11 show the resonances and reciprocal space scans of the (0, 0, 2 − τ),
(0, 0, 2τ), and (0, 0, 3τ). All three types of satellite reflection show a sharp resonant feature
at 7110 eV. The reciprocal space scans show the (0, 0, 2 − τ) peak to be the sharpest with
a width of 0.0006 ± 0.0001 r.l.u., whist the 2τ and 3τ reflections are wider with widths of
0.0019 ± 0.0001 and 0.0014 ± 0.0001 r.l.u. respectively. The τ and 2τ reflections were
found only in the σ−π channnel and not in the σ−σ channel, whilst the 3τ reflection was
found in both channels but was stronger in the σ − σ channel. An E1E1 type transition
can produce τ and 2τ reflections, but a quadrupole-quadrupole type transition (E2E2)
is required to explain the presence of a 3τ reflection. An E2E2 transition would be an
excitation from the 1s orbital into the magnetically active 3d spin-polarised band.

An azimuthal measurement was performed on the (0, 0, 2 − τ) reflection, shown in
figure 5.12. The azimuth direction is a rotation of the sample around the scattering vec-
tor, maintaining the diffraction condition (A rotataion around U3 in figure 2.2). In this
measurement reciprocal space [0, 0, L] scans are collected as a function of azimuthal an-
gle around the scattering vector. The zero point on the azimuthal axis is defined when
the [−1, 0, 0] reciprocal vector is in the scattering plane away from the incident beam.
The lines in figure 5.12 show the simulations of azimuths based on the structure factor
explained in the next section. Qualitatively, this azimuth data rules out a simple non-
elliptical helix. For the (0, 0, 2 − τ) reflection, the scattering vector is parallel to the
magnetic propagation direction, an azimuthal measurement rotates around the magnetic
propagation vector. If the magnetic helix was circular, then there would be no change in
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Figure 5.9: Energy scan of resonance of the (0, 0, 2 − τ) magnetic reflection (left). [00L]
Reciprocal space scan of (0, 0, 2 − τ) (right). Scans were performed in the σ − π channel.
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Figure 5.10: Energy scan of resonance of the (0, 0, 2τ) magnetic reflection (left). [00L]
Reciprocal space scan of (0, 0, 2τ) (right). Scans were performed in the σ − π channel.
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Figure 5.11: Energy scan of resonance of the (0, 0, 3τ) magnetic reflection (left). [00L]
Reciprocal space scan of (0, 0, 3τ) (right). Scans were performed in the σ − σ(solid) and
σ − π (dashed) channel.

moment direction upon an azimuthal rotation, and constant intensity would be expected.
An azimuthal measurement was performed on the off-axis magnetic reflection (1, 0, 3−

τ). This reflection is approximately 23◦ away from the surface normal. A consequence
of the off-axis nature of the reflection is the volume absorption by the sample will not be
constant as the sample is rotated through the azimuth. This a large source of error on an
azimuthal measurement.
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Figure 5.12: Azimuthal measurement of the (0, 0, 2−τ) magnetic Bragg peak. The dashed
and solid lines show predictions made using the structure factor formulated in section
5.4.2. The green dashed line shows the expected azimuth for circular helical magnetic
structure. The red dashed line shows the expected azimuth for a elliptical helical magnetic
structure (ma : mb = 1 : 2.58). The solid black line shows the prediction for the elliptical
helix rotated by -22◦ around the c-axis.
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Figure 5.13: Azimuthal measurement of the (1, 0, 3−τ) magnetic Bragg peak. The green
dashed line shows the predicted azimuth for a circular helical magnetic structure. The
black solid lines shows the prediction for an elliptical rotated magnetic structure. The red
dashed line shows predicted c-axis structure. These predictions were calculated using the
structure factor formulated in section 5.4.2.
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5.4 Discussion

5.4.1 Scattering at the Critical point of Phase Transition

The temperature dependence of the correlation length of the magnetism shows unusual
behaviour. There appears to be two mechanisms acting on the magnetism, one which
causes the usual behaviour of the system becoming more correlated as it cools. There
is a second mechanism at high temperatures which is acting to make the magnetism less
correlated upon cooling. This type of behaviour is similar to the inverse melting phenom-
ena that has been observed for charge ordering in the nickelate, La5/3Sr1/3NiO4 [177]. The
flat region of low correlation between 40-65 K is a consequence of these two competing
mechanisms.

The scaling theory of critical phase transitions states that the critical exponent β of
the phase transition should only be dependent on the universality class of the system [13].
This means for a continuous phase transition the critical exponent should depend on the
dimensionality of the system, i.e. 1D, 2D, 3D, the dimensionality of the order parameter,
i.e. for magnetism, Ising, XY, Heisenberg, and finally whether the forces are short or
long range [13]. The critical exponent from the x-ray magnetic data was found to be
β = 0.122 ± 0.002. For a 3D XY model, the typical class for a helical structure, the
critical exponent has been predicted to be 0.345, this is quite different from the observed
value. The observed value of β is closer to that of the 2D Ising model of 0.125, which is
inconsistent with a helical magnetic structure. The measured value of β is similar to that
found in K2NiF4 and K2MnF4 with values of 0.138 ± 0.004 and 0.15 ± 0.01respectively
[178,179], both these systems are best described by a 2D Heisenberg moment. Kawamura
has shown that chirality makes a difference to the universality class [180–182]. A helical
magnetic structure has a chiral degeneracy, as a left-handed helix and a right-handed
helix are equally favoured. Kawamura predicted a value of β = 0.253 for a chiral helical
magnet [180–182], which was later shown to consistent with the critical scattering in
archetypal helical magnet β−MnO2 [183]. Although this is closer to the measured value of
β than the 2D XY case, it is still significantly different. This unexpected critical exponent
combined with the unusual correlation length behaviour, suggests the magnetism in FeAs
is more complicated than a simple helical magnet.
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5.4.2 Structure Factor Calculation

To explain the appearance of both (0, 0, τ) and (0, 0, 1 − τ) reflections, the structure factor
needs to be considered.

There are four iron sites in the unit cell of FeAs, given in table 5.1, taking positions
(1) x, 1

4 , z, (2) x̄+1
2 , 3

4 ,z+1
2 , (3) x̄, 3

4 , z̄, (4) x+1
2 , 1

4 , z̄+1
2 where x = 0.004 and z = 0.199.

The general conditons for reciprocal space positions of the Bragg peaks from the crystal
structure are given by if h = 0, then k+l = 2n and if l = 0, then h = 2n. This means along
the [0, 0, L] direction, only even Bragg peaks exist.

For a E1E1 resonance the magnetic structure factor for a reflection k can be written as
a polarisation factor ε′ × ε, and a sum of atomic phase factors multiplied by the magnetic
axis for each atom, eik·Rhm

(
Rh

)
, over the whole crystal, where k is the reciprocal lattice

vector, and Rh is the position vector to the atom h, as shown in equation 5.4.

f = − i
1

N0

3
4π|q|

(
F1
−1 − F1

+1

) (
ε′ × ε

)
·

V∑
h

eik·Rhm
(
Rh

)
(5.4)

where N0 is the number of unit cells, and FL
M are dimensionless resonance strength terms

dependent on atomic properties defined in section 2.1.8, and q is the wavevector of the
incident x-ray.

For the magnetic helix, the magnetic axis is fixed in a plane perpendicular to the
propagation vector. In the case of FeAs the magnetic axis is fixed in the a-b plane, and
rotates as you move along the c axis. We can describe this magnetisation vector using
equation 5.5, where τ is the propagation vector, r is a position vector in the crystal, χ can
be ±1 and describes the chirality of the helix and is ψn is a phase shift for the orbit on
atom n. For completeness the factors S a and S b are included as these describe the size of
the moment along the respected direction, for a circular helix these are equal.

mn, j

(
rn,j

)
= S a cos

(
τ · rn, j − ψn

)
â + S b cos

(
τ · rn, j − ψn + χ

π

2

)
b̂ (5.5)

These can be simplified using Euler’s formula, eiθ = cos (θ) + i sin (θ), to give the result
in terms of exponentials given in equation 5.6. Here the magnetic helix is expressed as a
complex vector, where the direction of the magnetic moment vector is independent of τ

124



Helical spin structure in FeAs Chapter 5.

and position r.

mn, j

(
rn, j

)
=

S a

2

[
eiτ·rn, je−iψn + e−iτ·rn, jeiψn

]
â +

S b

2

[
eiτ·rn, je−iψneiχ π2 + e−iτ·rn, jeiψne−iχ π2

]
b̂

=
eiτ·rn, je−iψn

2

[
S aâ + iχS bb̂

]
+

e−iτ·rn, jeiψn

2

[
S aâ − iχS bb̂

]
=

eiτ·rn, je−iψn

2
M +

e−iτ·rn, jeiψn

2
M∗ (5.6)

Where M =
[
S aâ + iχS bb̂

]
We can simplify the structure factor further by using the lattice relation that any point

in the crystal can be defined by a position vector rn, j, from some arbitrary origin. Due to
the periodic nature of a lattice this vector can be split into two parts rn, j = l j + dn, a set
of vector l j , defining the origin of jth unit cell, and a vector dn describing the position of
nth atom in the unit cell. When using the basis vectors of the unit cell, a, b, c, the vector
l j takes integer values, and dn takes fractional coordinates. The general structure factor
shown in equation 5.4 can be simplified for a magnetic helix, using the magnetisation
vector shown in equation 5.6.

f ∝
(
ε′ × ε

)
·

4∑
n=1

∞∑
j

eik·rn, j

(
eiτ·rn, je−iψn

2
M +

e−iτ·rn, jeiψn

2
M∗

)

∝
(
ε′ × ε

)
·

4∑
n=1

∞∑
j

1
2

ei(k·rn, j+τ·rn, j)e−iψnM +
1
2

ei(k·rn, j−τ·rn, j)eiψnM∗

∝
(
ε′ × ε

)
·

4∑
n=1

∞∑
j

1
2

ei(k+τ)·rn, je−iψnM +
1
2

ei(k−τ)·rn, jeiψnM∗

∝
(
ε′ × ε

)
·

4∑
n=1

∞∑
j

1
2

ei(k+τ)·(l j+dn)e−iψnM +
1
2

ei(k−τ)·(l j+dn)eiψnM∗

f ∝
(
ε′ × ε

)
·

∞∑
j

ei(k±τ)·l j

4∑
n=1

1
2

ei(k±τ)·dne∓iψn


S a

±iχS b

0

 (5.7)

Similar to the case for Thompson diffraction from a charge unit cell, the sum of the
phase factors ei(k±τ)·l j over a very large lattice vanishes unless the phase factors are identi-
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cal.

∞∑
j

ei(k±τ)·l j → N0δk±τ,g (5.8)

Where N0 is the number of unit cells and δk±τ,g is the Kronecker delta function, which
has the value 1, when k ± τ = g, zero otherwise. This states that scattering only occurs
when the scattering vector k, matches the reciprocal lattice vector g plus or minus the
propagation vector of the spin helix τ. This means that for a spin helix, with a propagation
vector τ, additional satellite peaks appear around the charge Bragg peaks, g = ha∗+ kb∗+
lc∗, at positions hkl ± τ.

Using equation 5.8, we can simplify the structure factor for a spin helix in equation
5.7.

f ∝ N0δk±τ,g
(
ε′ × ε

)
·

4∑
n=1

1
2

ei(k±τ)·dne∓iψn


S a

±iχS b

0


∝

N0

2
(
ε′ × ε

)
·M

4∑
n=1

e
i2π

( h
k
l

)
·

( xn
yn
zn

)
e−iψn

∣∣∣∣∣∣∣
k=hkl−τ

+
N0

2
(
ε′ × ε

)
·M∗

4∑
n=1

e
i2π

( h
k
l

)
·

( xn
yn
zn

)
eiψn

∣∣∣∣∣∣∣
k=hkl+τ

(5.9)

Equation 5.9 can trivially be split up into two separate sums, for the satellite peaks
either side of the reciprocal lattice point at hkl. As the vector describing the moment’s
direction of anisotropy is independent of n, this can be taken out of the sum, which leaves
the sum over the 4 atoms in a single unit cell where xn, yn, zn are the fractional coordinates
of the nth atom and ψn is the phase shift associated with the orbit on that atom. The factor
of 2π arises from the choice of basis vectors for the real- and reciprocal-space vectors,
when using fractional coordinates and Miller indices.

The structure factor shown in equation 5.9 holds for any particular reciprocal lattice
point. If we look at the satellites along the l-direction only, by setting h and k to zero, we
can simplify the structure factor further.
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f00l ∝
N0

2
(
ε′ × ε

)
·M

4∑
n=1

ei2πlzne−iψn

∣∣∣∣∣∣∣
k=00l−τ

+
N0

2
(
ε′ × ε

)
·M∗

4∑
n=1

ei2πlzneiψn

∣∣∣∣∣∣∣
k=00l+τ

(5.10)

The fractional position along the c -axis of the four iron atoms in the unit cell can be can
be expressed in terms of first iron atom labelled Fe1 in table 5.1. z1 = 0.199, z2 = z1 + 1/2,
z3 = 1− z1, and z4 = 1/2− z1. Expanding the sum in equation 5.10 over the four iron atoms
yields the following results.

f00l ∝
N0

2
(
ε′ × ε

)
·M

(
ei2πz1le−iψ1 + ei2πz1leiπle−iψ2 + e−i2πz1lei2πle−iψ3 + e−i2πz1leiπle−iψ4

)∣∣∣∣∣
k=00l−τ

+
N0

2
(
ε′ × ε

)
·M∗

(
ei2πz1leiψ1 + ei2πz1leiπleiψ2 + e−i2πz1lei2πleiψ3 + e−i2πz1leiπleiψ4

)∣∣∣∣∣
k=00l+τ

∝
N0

2
(
ε′ × ε

)
·M

(
ei2πz1l

(
e−iψ1 + (−1)l e−iψ2

)
+ e−i2πz1l

(
e−iψ3 + (−1)l e−iψ4

))∣∣∣∣∣
k=00l−τ

+
N0

2
(
ε′ × ε

)
·M∗

(
ei2πz1l

(
eiψ1 + (−1)l eiψ2

)
+ e−i2πz1l

(
eiψ3 + (−1)l eiψ4

))∣∣∣∣∣
k=00l+τ

(5.11)

It is clear from equation 5.11 that there is a difference between satellite peaks orig-
inating from an odd and even (0,0,l) reflections. For even l values, the structure factor
is related to the sum of the phases of the Fe1 and Fe2, and Fe3 and Fe4, whilst for odd l

values the structure factor is related to the difference between the phases of the Fe1 and
Fe2, and Fe3 and Fe4. Using the symmetry arguments that split the iron sites into two
orbits, Fe1 and Fe2 are still related by symmetry and will have the same phase, ψ1 = ψ2,
and similarly for Fe3 and Fe4, ψ3 = ψ4.

f00l ∝
N0

2
(
ε′ × ε

)
·M

(
ei2πz1le−iψ1

(
1 + (−1)l

)
+ e−i2πz1le−iψ3

(
1 + (−1)l

))∣∣∣∣∣
k=00l−τ

+
N0

2
(
ε′ × ε

)
·M∗

(
ei2πz1leiψ1

(
1 + (−1)l

)
+ e−i2πz1leiψ3

(
1 + (−1)l

))∣∣∣∣∣
k=00l+τ

(5.12)
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The structure factor for satellite reflections around forbidden odd Bragg peaks along
the [00L] direction is zero, whilst nonzero for allowed even Bragg peaks. For an ellip-
tical helix, along the [0, 0, L] direction, satellites peaks only appear around even Bragg
reflections.

f00l ∝ N0
(
ε′ × ε

)
·M

(
ei2πz1le−iψ1 + e−i2πz1le−iψ3

)∣∣∣∣
k=00l−τ

+ N0
(
ε′ × ε

)
·M∗

(
ei2πz1leiψ1 + e−i2πz1leiψ3

)∣∣∣∣
k=00l+τ

(5.13)

From equations 5.12 and 5.13, a simple helix magnetic moment modulation does not
account for the reflection that occurred at the (0,0,1-τ) positions in figure 5.3. The po-
larisation and azimuthal dependence of the structure factor for the (0,0,τ) reflection is
also independent of the phase difference between the Fe1,2 and Fe3,4 orbits. The phase
difference acts as a scale factor, changing the predicted intensity of the reflection. The
approach employed in using complex numbers in calculating the structure factor, allows
for the separation of the magnetisation vector from the sum over atom positions in the unit
cell. The long-range magnetic order is expressed as Fourier components of the crystallo-
graphic unit cell, negating the need to sum over an extended magnetic cell. This divides
the structure factor into two parts, a sum of atom dependent phase factors which just con-
tribute to the strength of the satellite reflection, and a term independent of atom positions,
ε′ × ε ·M which describes the polarisation and azimuthal dependences. Using the Jones
matrix approach, explained in section 2.1.2, the polarisation and azimuthal dependences
can be easily calculated from this structure factor. A non-linear least-squares regression
based on the Levenberg-Marquardt algorithm or damped least-squares method [135,136],
was used to fit the ellipticity to the full polarisation analysis of the (0, 0, τ) reflection in
figure 5.8 (top) and the azimuthal measurement of the (0, 0, 2 − τ) reflection shown in
figure 5.12. Figure 5.12 shows the predicted azimuthal dependences for perfectly circu-
lar helical structure, and elliptical structures. The circular structure predicts a constant
intensity as a function of azimuthal angle, as expected. As the structure is made more
elliptical the azimuth changes from a constant to a sinusoidally changing intensity be-
tween a higher and lower value, with a frequency of 180◦. If the magnetic structure has
the long axis of the ellipse pointing down the b-axis, then the azimuth goes to a minimum
at 180◦. The azimuth of the (0, 0, 2 − τ) reflection goes to a minimum at around 157◦.
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In the current magnetisation model, the azimuth intensity can only go to zero at 0◦and
180◦ or 90◦ and 270◦ depending on whether the long axis of the ellipse is along the a- or
b-axis. To account for this, the ellipse is allowed to rotate such that long- and short-axes
no longer point along the a- and b-axes. This can simply be achieved by transforming the
magnetisation vector M by a rotation matrix which rotates the magnetisation vector by an
angle ζ around the propagation axis, i.e. the c-axis. Equation 5.14 shows the form of this
rotation matrix, in the basis of the unit cell.

R =


cos ζ − sin ζ 0
sin ζ cos ζ 0

0 0 1

 (5.14)

In order to fit the azimuth of the (0, 0, 2 − τ), the long axis of the ellipse has to be placed
along the b-axis and rotated by -21◦ around the c-axis. As the magnetic structure is
elliptical rather than circular, the form of the full linear polarisation analysis of the (0, 0, τ)
should be highly dependent on the azimuth at which the measurement is taken. A minor
disadvantage of carrying out resonant scattering at the soft x-ray energies, is the small
size of the Ewald sphere, which frequently restricts access to Bragg peaks. The lack of
accessible Bragg peaks, combined with the experimental limitation in moving the sample
out of the scattering plane, makes establishing an alignment UB matrix an impossibility. A
limitation to align the sample, provides the largest source of error for the azimuth position.
For all the resonant experiments carried out in this study, the sample was aligned in-house
using Cu Kα emission x-ray source (8047.78 eV [184]). The sample’s orientation was
found, but due to its small size, there will be a source of error on azimuth when mounting
the sample on the RASOR diffractometer’s mount.

For the model of the full linear polarisation analysis of the (0, 0, τ) reflection the rota-
tion of the ellipse has a similar effect to changing the azimuth position the calculation is
performed at. The effect of ellipticity on the full polarisation measurement is quite dra-
matic, and is shown in figure 5.8. The circular model is shown with a dashed line, whilst
the elliptical model is shown with the solid line. For a circular magnetic structure, the
predicted P1 remains negative for all incident angles. The full linear polarisation analysis
does not require a rotation of the magnetic ellipse to fit the data, but the rotation can be
accommodated by correcting for a potential offset in the azimuth position.
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A final fit was performed, combining both the azimuth of the (0, 0, 2 − τ) reflection
and the full linear polarisation analysis of the (0, 0, τ) reflection. This fit uses only three
parameters, the ellipticity, S b/S a, the rotation, ζ and the azimuth offset of the polarisation
analysis measurement ψflpa.

The final fit results in an ellipticity of S b/S a = 2.58±0.03, which is far more substantial
than the ellipticity of 1.15 proposed by the neutron experiment of Rodriguez et al. [156].
Due to the covariance of the rotation angle ζ and the azimuthal offset ψflpa in the polarisa-
tion analysis model, fitting both these two variables from the flpa measurement results in
large errors. The azimuthal measurement suggests a rotation of the ellipse of −21.9±0.2◦.
As a consequence the azimuthal position of full linear polarisation measurement needs to
be 11.0±0.2◦. This value of the azimuthal offset from the b-axis is within the experimental
uncertainty of mounting the sample.

Although the (0, 0, 1 − τ) reflection is predicted to have zero intensity from the above
structure factor, the polarisation term can still be calculated neglecting the phase sum
and the resulting polarisation dependence does not resemble the experimentally collected
data, even qualitatively. This provides evidence that a different origin is needed to explain
the appearance of the (0, 0, 1 − τ) reflection.

5.4.3 Canted Structure Factor

In order to explain the origin of the (0,0,1-τ) reflections, a spin helix restricted within the
a-b plane is not sufficient. It should also be apparent that the phase difference brought
about by the two-orbit structure is the origin for the predicted extinction of the (0, 0, 1−τ)
reflection, and not the direction of the magnetisation vector. This means that changing
the magnetic structure M to a cycloid or collinear spin density wave will not change the
extinction of the (0, 0, 1−τ), whilst the two-orbit structure remains. It is also the case that
adding a canting in the c direction will not contribute to a satellite peak, as it will have no
periodicity, and any effects will be hidden under the charge Bragg peak at hkl.

Adding a c-axis component to the magnetic moment that oscillates with a periodicity
of τ will contribute to the satellite of allowed Bragg peaks, (i.e. the (0, 0, τ)) but will not
break the predicted extinction of the (0, 0, 1 − τ) from that of equation 5.12, it will just
add a c-axis component to the vector M.

If we re-examine the crystal structure of FeAs shown in figure 5.1, the unit cell is made
up of 4 iron atoms, octahedrally coordinated by arsenic in a three-dimensional network.
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Fe1

Fe2

(a) (b)

Figure 5.14: Crystal structure of FeAs. (a) a-c plane, (b) b-c plane. The local crystal
geometry of the Fe sites suggests that the magnetic easy-axis lies in the a-c plane as the
distorted octahedra are tilted in the a-c plane not the b-c plane. The black lines shows a
suggested direction of magnetic easy-axis. The blue and green arrows show the canting
effect towards the easy-axis of the a-axis component of the moment. This holds true for
any direction the easy-axis may take in the a-c plane.

These octahedra are tilted in the a-c plane, figure 5.14a, remaining untilted in the b-c

plane, figure 5.14b. If we assume the existence of an easy-axis for the magnetic moment
tied to the crystal geometry, it is reasonable to assume that this easy -axis lies in the a-c

plane. The black line in figure 5.14a shows a example direction for the easy-axis, and
the green and blue arrows show the canting effect on the a component of the moment
towards the easy-axis. For the moments on the Fe1 and Fe2 sites that make up one orbit
of the helix, the magnetic easy-axis on the Fe2 site will be a reflection by the σx mirror
plane of the easy-axis on site Fe1, resulting in a canting in the opposite direction along the
c-axis. The same relationship holds for the canting effects between the Fe3, Fe4 sites. As
Fe1 and Fe2 are half a unit cell apart the oscillation in the c-axis canting can be described
by a cosine with a periodicity of the unit cell, with a phase shift between the two orbits,
proportional to the difference in z component of the positions of Fe1 and Fe3. The resulting
c-axis component to the magnetic moment, is dependent on both its position along the c-
direction in the unit cell and the position around the magnetic helix, as only the a-axis
component of the moment experiences a canting effect.
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mn, j

(
rn, j

)
· ĉ = αa,cβnS a cos

(
τ · rn, j − ψn

)
(5.15)

Equation 5.15 shows the c-axis component to the magnetic moment, where
S a cos

(
τ · rn, j − ψn

)
is the magnitude of the a component, and αa,c is a constant that is

determined by the strength of the canting effect, and βn takes the value ±1 depending on
the atoms site, i.e. Fe1 and Fe3 take the value +1 and Fe2 and Fe4 the value -1. The specific
direction of magnetic easy-axis is included in the value βn, if the easy-axis is perpendic-
ular to the example shown in figure 5.14a, then αa,c simply takes a negative value. If the
easy-axis is entirely along the a- or c-axis we expect αa,c to be zero.

mn, j

(
rn, j

)
= mH

n, j

(
rn, j

)
+ αa,cβnS a cos

(
τ · rn, j − ψn

)
ĉ

= mH
n, j

(
rn, j

)
+ αa,cβnS a

(
eiτ·rn, je−iψn + e−iτ·rn, jeiψn

)
ĉ (5.16)

The added complexity of having a term with a periodicity of τ and β with periodicity
of c∗, means that taking out a factor of e±iτ·rn, j does not leave a term independent of atom
position n. The magnetic moment can be written as a sum of the magnetic moment for
the a-b confined helical case mH

n, j

(
rn, j

)
, defined in equation 5.6 with a periodicity of 2.57c

(1/0.389) and the magnetic moment in the c direction which oscillates with a periodicity of
roughly of 18.0c. If we substitute this into the structure factor equation given in 5.4 the
first term remains the same as the structure factor for a a-b helical spin structure given in
equation 5.9, but we get two addition terms shown in equation 5.17.

f ∝
(
ε′ × ε

)
·


∞∑
j

ei(k±τ)·l j

4∑
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1
2
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±iχS b

0


+

∞∑
j

ei(k+±τ)·l j

4∑
n=1

βn

2
ei(k±τ)·dne∓iψn


0
0

αa,cS a


 (5.17)
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Given that the sum
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(5.18)

For the case of (0, 0, L) type reflections, as before the first two terms only appear for
even values of l, shown in equation 5.12. The addition of the βn term, for the second two
terms, changes this condition, shown in equation 5.19 below. If l is even the structure
factor becomes zero, the second set of τ satellite peaks are only allowed around the odd
(0, 0, l) reflections. This magnetic structure results in the satellite peaks at ±τ positions
around both even and odd Bragg peaks. The polarisation dependence of even and odd
satellites is expected to have hugely different behaviour, as even satellite peaks are only
sensitive to the components of the moment present in the a-b plane, whilst odd satellite
peaks are sensitive only to the moment in the c direction.
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The simulation of the full polarisation analysis of the (0, 0, 1 − τ) is shown by the
solid line in figure 5.8 (bottom). The predicted structure factor for the (0, 0, 1 − τ) is only
dependent on the c-axis component of the magnetisation vector. There are no parameters
to fit in simulating the full linear polarisation analysis, as the only parameter αa,c, controls
the strength of the tilting, i.e. the magnitude of the c-axis component with respect to the
helical component, and consequently has no impact on the polarisation dependence of the
(0, 0, 1 − τ) which is only sensitive to the c-axis component. The simulation of the polar-
isation dependence of the (0, 0, 1 − τ) reflection agrees perfectly with a collinear c-axis
moment. This confirms the canted model, where only the component of the moment in
the b-direction experiences a canting effect, and the Fe1,3 and Fe2,4 sites have opposite
canting effects. Unfortunately, the full polarisation analysis of the (0, 0, 1 − τ) reflection
does not contain the information for the magnitude of the canting. The (0, 0, τ) reflec-
tion only contains information about the a-b helical component and the (0, 0, 1 − τ) only
contains information about the c-axis component. It is not possible to extract the size
of the canting from polarisation analysis of reflections along the [0, 0, L] direction. The
structure factor for satellite peaks along other directions does not separate the helical and
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canting components so completely. Equation 5.20 shows the general structure factor for
a satellite reflection from a position (h, k, l), where h, k, l are integers
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2
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ε′ × ε

)
·


(i)keiψ1,2ei2πlz1

[
M∗

H

(
ei2πhx1 + (−1)h+k+le−i2πhx1
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+MC

(
ei2πhx1 − (−1)h+k+le−i2πhx1

)]
+(−i)keiψ3,4e−i2πlz1

[
M∗

H

(
e−i2πhx1 + (−1)h−k+lei2πhx1

)
+MC

(
e−i2πhx1 − (−1)h−k+lei2πhx1

)]


(5.20)

The vectors M∗
H and MC are the helical component and canted component to the

magnetic structure. The above equation holds for the plus satellite terms, whilst for the
minus satellites, the terms in red need to be replaced with their complex conjugates. It
should be apparent from the general formula, that whilst h = 0, and k + l is even then only
the helical term contributes to the satellite reflections, if h = 0 and k + l is odd then only
the canted term contributes. The situation becomes more complicated if h , 0, as the
helical and canted terms both contribute to the same reflections. Either the helical term or
the canting term dominates, dependent on the hkl and the phase difference between the
two orbits. The relative contribution of the canting term is dependent on both the phase
difference between the two orbits and the strength of the canting.

The (1, 0, 3−τ) reflection was measured and an azimuthal dependence of the scattering
collected. The structure factor for this reflection is dominated by the helical magnetic
term, unless the phase difference between the orbits falls within the range 1.8 and 2.0
radians, canting strength dependent, in which case the canting component becomes the
more dominant. Figure 5.13 shows the results of the azimuthal dependence of the (1, 0, 3−
τ) satellite reflection. This was measured on the same experiment as the (0, 0, 2 − τ)
reflection, resulting in the (1, 0, 3 − τ) reflection being around 23◦ away from the surface
normal. An attempt was made to correct for non-constant absorption on the azimuth by
measuring the (1, 0, 3) Bragg peak as a function of azimuth to counter the effects of the
odd geometry. Three different models are shown in figure 5.13, the predicted azimuth for
a circular helical structure, a rotated elliptical structure, and the c-component only. The
data quantitatively does not agree with any of the three models, while qualitatively it most
resembles the elliptical model. The c-component and circular models are significantly
different from the measured result. This result is sufficient to further rule out the non-
elliptical case, but the measurement is not sufficient to gain any information about the
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phase difference between the two orbits or the magnitude of the canting.

To explain the presence of (0, 0, 1 − τ) reflection, canting of the a-axis component
along the c-axis with the periodicity of the unit cell is required. The full linear polarisation
analysis confirms that the (0, 0, 1−τ) reflection is due to magnetic moment pointing along
the c-axis.

5.4.4 Chirality

The magnetic helix structure has a choice of handedness (chirality). This is the choice of
direction of rotation of the helix along the propagation vector and is either right-handed
or left-handed. The chirality is given by the term χ in equation 5.5, which describes the
magnetisation axis. This term takes the value ±1 dependent on whether the magnetism is
being described as a right-handed or left-handed helix. FeAs has two inequivalent helical
orbits. Both orbits could be either left-handed or right-handed, or one could be left-
handed and the other right-handed, as is the case for the material CeAl2, which is known
as a non-chiral spiral (helix) [185]. The chirality has no effect on the simulations for a full
linear polarisation analysis, but is important when circular incident light is used [186]. For
a chiral magnetic structure incident circular positive and incident circular negative light
can be used to establish the chirality [186]. Energy scans of the (0, 0, τ) and (0, 0, 1 −
τ) reflections were performed at the Fe LII/III edges and were shown in figure 5.5. The
predicted intensities of the (0, 0, τ) and (0, 0, 1 − τ) peaks were made using the structure
factor calculations from sections 5.4.2 and 5.4.3 for both chiralities, these are shown figure
5.15. The intensity of the (0, 0, 1− τ) reflection does not change between circular positive
and circular negative incident light, as this peak is sensitive only to the c-axis component,
which does not have a chiral nature. The (0, 0, τ) peak does show a variation with incident
circular light, and predictions show that one circular channel is expected to be over twice
as intense as the other. This is observed to be the case. The predictions also show that for a
right-handed chiral helix the positive circular channel is expected to be the most intense,
and for a left-handed chiral helix the negative circular channel is expected to be more
intense. The non chiral case, where the two orbits have opposite chirality, is predicted
to show equal intensity in the circular positive and negative channels. The energy scans
show the positive circular channel was the most intense channel, ruling out the non-chiral
case and strongly suggesting the magnetic helix is right-handed.

The linear polarisation analyser was used to examine the scattered beam from the
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Figure 5.15: Predicted intensities for circular incident polarisation for the (0, 0, τ) and
(0, 0, 1 − τ) for both right chiral (top) and left chiral (bottom) helical magnetic structure.

(0, 0, τ) satellite reflection, with both circular positive and circular negative incident light.
The analyser Stokes scan are shown in the top of figure 5.16, for circular positive, blue,
and circular negative, red, incident light. Using the helical structure factor, with the pa-
rameters from the fit of the linear polarisation and azimuth measurements, the analyser
scans were simulated for both chiral cases. For the left and right-handed chiral cases
the positive and negative incident lights are predicted to show opposite behaviour. The
data resembles the right-handed chiral structure, proving again that the magnetic helix has
right-handed chirality
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Figure 5.16: (top) Rotation of polarisation analyser around the scattered beam for circular
incident polarisation for the (0, 0, τ) magnetic Bragg peak. (middle) & (bottom) Predicted
Stokes scans for a right-handed and left-handed helical magnetic structure.

5.4.5 Satellite Peaks at the K edge

Unlike the resonances at the Fe LII/III absorption edge, at the Fe K absorption edge along
the (0, 0, L) satellite peaks were only observed around even l positions and not l odd
positions. Given that the (0, 0, τ) and (0, 0, 1 − τ) satellite peaks are roughly the same
magnitude at the Fe LII/III edges, it is surprising that odd satellite peaks are not observed.
The difference between a resonance transition at the Fe K edge than the LII/III edge is the
intermediate state in which the electron is excited into. For the simple E1E1 case, the K

edge excites an electron into the empty Fe 4p band, whilst a resonance at the LII/III excites
an electron into the Fe 3d band. The K edge transition gets its sensitivity to magnetism
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from any overlap of the Fe 4p band with the Fe 3d band.

The magnetic moment is composed of a spin component and a orbital component.
Under the formulation of resonant scattering length the total moment is observed, and
spin and orbital components behave the same with polarisation and azimuth. Although
resonant scattering cannot distinguish between the orbital and spin components of the
moment, orbital and spin components can contribute different amounts at the resonances
at the K and LII/III. For a resonance from the 1s orbital (K edge) resonant scattering is
only sensitive to the orbital component of the magnetic moment. For systems where the
spin and orbital components have the same structure this has no effect on the scattering.
If the c-axis canting only effects the spin component of the moment, and the resonance
at the LII/III is more sensitive to the spin component, then the odd satellites may only be
visible at Fe LII/III. In order to confirm or reject this hypothesis, a non-resonant x-ray mag-
netic scattering experiment is needed. Although the non-resonant x-ray scattering has the
disadvantage of being a weak effect, it has the major advantage over neutron and reso-
nant magnetic scattering, that the spin and orbital components to the total moment have
different polarisation and azimuthal dependences. Carrying out a full linear polarisation
analysis on the (0, 0, τ) and (0, 0, 1 − τ) off-resonance would be needed to determine the
spin and orbit nature of the magnetic structure.

The appearance of the (0, 0, 2τ) and (0, 0, 3τ) higher harmonic satellite peaks at the
Fe K edge is expected and has been observed before in the helimagnet phase in holmium
[187]. The presence of the τ and 2τ reflections can be explained simply by the E1E1 scat-
tering process [187,188]. While the 3τ reflection can not be recreated by E1E1 scattering
process and requires an E2E2 scattering process.

5.4.6 Conclusion

This chapter has described how detailed polarised resonant x-ray magnetic scattering can
be used to provide quantitative information on the complex magnetic ordering of the he-
lices in FeAs. The critical scattering analysis performed on the temperature dependence
shows unusual behaviour, displaying an almost 2D Ising-like transition. The correlation
length shows a peculiar behaviour with temperature, becoming less correlated with re-
ducing temperature below the transition. The resonant scattering results have shown that
a double circular helical magnetic structure is insufficient, and that the helix maps out
an ellipse. This ellipse has been shown to have an major axis 2.58 times longer than the
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minor axis. The azimuthal measurement, showed that major axis of the ellipses is rotated
-21◦ around the c-axis. The full polarisation analysis of the unexpected (0, 0, 1 − τ) peak,
requires a canting of the a-axis component of the moment along the c-direction with a pe-
riodicity of the unit cell. The absolute magnitude of the canting cannot be found from the
measurements taken, just its presence. The phase difference between the two magnetic
orbits has not been found. Figure 5.17 shows the a-, b-, and c-axis components of the
magnetic moment for the canted spin helix, for one orbit.

The effect of canting the a-axis component of the helix with the periodicity of the
unit cell c parameter, results in a total magnetic structure with a periodicity longer than
given by τ. If we assign τ, 0.389 the commensurate position of 7/18, the effect of the
canting is to make the system repeat every 18 unit cells along the c-axis. This can be seen
in figure 5.17 where the moment rotates around the helix seven times before returning
to its starting position. It should be noted that although the canting effect is assumed
to be restricted to the a-c plane due to crystal symmetry arguments, the structure factor
calculation just requires it to be fixed to single direction in the helical plane and not
necessarily the a-axis. This unusual canting effect which only occurs along one direction
of the helix combined with the ellipticity explains the unusual magnetic susceptibility
measured by Segawa et al. [155]. The zero-field splitting only occurs in the b-direction,
shows a definite anisotropy between the a- and b-axis. Whilst an elliptical helical structure
goes some way to explain why the susceptibility along the b-direction is lower than along
the a-direction, it does not explain the presence of the field splitting in only one direction.
The presence of c-axis canting, with the periodicity of the unit cell only along one of the
directions of the helix plane explains the difference in field-cool splitting.
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Figure 5.17: a-, b-, and c-axis components of the magnetic helix, shown in red, green and
blue respectively. Dashed red line shows a-axis component envelope around the c-axis
component.
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Chapter 6

Magnetism of Frustrated system, CuFeO2

6.1 Introduction

Triangular lattice systems exhibit a wealth of electronic phenomena and unusual magnetic
ground states. These phenomena are due to geometric spin frustrations, where primary
magnetic interactions are unable to be satisfied, and secondary interactions play a vi-
tal role in determining the ground state. The delafossite crystal structure is a common
frustrated structure adopted by a number of ABO2 materials. Many triangular lattice
antiferromagnets belong to this structure. CuFeO2 belongs to this structure and should
be considered a classic triangular lattice antiferromagnet, except its behaviour is unlike
most, with a strong anisotropic Ising-like nature below 14 K, and a ferroelectric polari-
sation with applied magnetic field. The chapter reports findings from neutron and x-ray
diffraction experiments exploring the zero- and high-field behaviour of CuFeO2.

6.2 Delafossite Crystal Structure

Delafossite is the mineral name for the compound CuFeO2, first identified by Charles
Friedel in 1873. The delafossite structure was first determined in 1935 with a synthetic
sample [189], and 1946 with a mineral sample [190].

Materials that adopt the delafossite structure belong to a family of ternary oxides with
the general formula ABO2. Materials with the formula ABO2, adopt a range of differ-
ent structures, with four different coordination classes identified, AVIBVIOVI

2 , AIVBIVOIV
2 ,

AVIIIBIVOVI
2 , and AIIBVIOIV

2 .

ABO2 materials adopt structures, from the hexagonal delafossite structure of CuFeO2,
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to the orthorhombic β-NaFeO2, tetragonal α-LiFeO2, and orthorhombic KFeO2. The ionic
radius of the A and B cation appears to be the defining variable in determining which struc-
ture to adopt. Marquardt et al. [191] compiled a structure map using the ionic radius of
around 80 known ABO2 oxide materials. A material only adopts the delafossite structure
when composed of the smaller ionic radius A cations. The delafossite structure only exists
for four small radius A site cations, Cu+, Pd+, Pt+ and Ag+, typically 2.8 to 3.0 Å , whilst
several B site cation are possible, including p-block metals, transition metals, and rare-
earth ions. The A site has a valency of +1, and is linearly coordinated to two oxygen. The
B site cation has a valency of +3, and is coordinated by oxygen in a distorted edge-shared
octahedra.

The delafossite structure is built of alternating layers of A site cations in a triangular
pattern, and layers of edge sharing BO6 octahedra, along the c-axis. The distorted BO6,
are tilted with respect to the c-axis, such that the B-site cation, and the oxygen also sit
on a triangular lattice in the a-bplane. Two polytypes exist for the delafossite structure,
depending on the stacking. The 2H type, where alternate double layers of A & BO6

are oriented 180◦ relative to each other. The 3R polytype is formed from stacking three
double layers, oriented in the same direction, but with an offset between each layer. These
polytypes are shown in figure 6.1.

The 2H polytype belongs to the hexagonal P63/mmc space group, whilst the 3R poly-
type belongs to the rhomberhedral R3̄m space group. Figure 6.1c shows the 2H polytype,
this has a hexagonal primitive unit cell with a six-fold rotation axis along the c-direction.
The 3R polytype shown in figure 6.1b has a non-primitive hexagonal unit cell with three
lattice points and only has a three-fold improper rotation axis along the c-direction. The
three-fold improper rotation can be seen more clearly by taking the primitive unit cell,
which is the rhombehedra shown in figure 6.1a.

CuFeO2 adopts the 3R polytype, with the Fe3+ ions sitting in the octahedral sites
in close packed oxygen double layers, and the Cu+ ions linearly coordinated to oxygen
atoms. The trivalent and monovalent oxidation states of the iron and copper respectively,
has been confirmed by lattice energy calculations and Mössbauer spectroscopy [192–194].
The room temperature crystal structure has lattice parameters aH = bH = 3.0351 Å and
cH = 17.166 Å in the hexagonal basis [195], equivalent to arh = brh = crh = 5.9843Å
and α = 29.380◦ in the rhombohedral basis. In the hexagonal basis the angle between
the reciprocal lattice vectors b1 and b2 is 60◦ and b3 normal to the b1 − b2 plane. The
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(a) (b) (c)

Figure 6.1: Two polytypes that the delafossite structure can take. The constituents of
ABO2 are shown in blue (A), brown (B) and red (O). The lattice directions are a, b and c
are shown by the red, green, and blue arrows respectively. (a) & (b) show the rhombohe-
dral and hexagonal unit cells for the 3R polytype. Stacking of ABO6 double layer with an
offset between layers in a three layer sequence. (c) 2H polytype. Stacking of the ABO6
double layer with alternate layers orientated 180◦ to each other.

reciprocal lattice has three-fold improper rotation symmetry, causing Bragg diffraction
from the crystal lattice to occurs at reciprocal-lattice positions where −h + k + l = 3n

where h, k, l and n are integers. This gives rise to families of reflections with two, six and
twelve multiplicities. hk planes with l = 3n have six-fold symmetry, whilst hk planes with
l = 3n ± 1 have three-fold symmetry, with planes of ±l being inverted.

6.3 Magnetism in CuFeO2

As stated earlier all three constituent atoms form triangular lattices in the ab plane, with
nearest neighbours being 3.03 Å apart, with Fe neighbours between planes being 5.98 Å
apart. As established in section 4.1.2 and figure 4.2, placing spins on a triangular lattice
creates an issue of geometrical frustration. By placing spins on the vertices of an equilat-
eral triangle, the interactions between all three spins are equal. For the antiferromagnetic
Ising spin case it is not possible to satisfy all the magnetic exchange interactions, inducing
a large magnetic ground state degeneracy. In triangular lattice systems where a magnetic
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ground state forms, magnetic moments tend to adopt a noncollinear 120◦ spin configu-
ration to alleviate this frustration, as shown in figure 4.2c and 4.2d. Related magnetic
materials, LiCrO2, AgCrO2 and CuCrO2 all share the delafossite structure, and at low
temperatures adopt a form of the standard 120◦ spin structure [196–198].

The Fe3+ is the only magnetic ion in CuFeO2, the Cu+ and O2− have filled electronic
shells. The trivalent Fe3+ ion has a half filled 3d5 d-orbital, which using Hund’s rules gives
a S = 5/2 spin state. In addition the magnetic moments interact antiferromagnetically,
making CuFeO2 a model triangular lattice antiferromagnet (TLA). The antiferromagnetic
exchange interaction is expected to be isotropic, resulting in a purely Heisenberg moment.
Unusually for a TLA, CuFeO2 adopts a collinear Ising-like ground state below 11 K [199].
Two transitions were observed to occur in CuFeO2, at 14 K and 11 K. Above 14 K the
system exhibits paramagnetic behaviour. Between 14 K and 11 K the phase is described
as a partial disordered incommensurate structure, with wavevector (q,q,3/2) , with q close
to 1/5 [199, 200]. In this phase 1/5 of the moments remain paramagnetic. Below the 11 K
transition, the system adopts a four sublattice (4SL) collinear structure with magnetic
wavevector (1/4,1/4,3/2). Spins align parallel to the c-axis, with two up and two down in the
a-b plane [201, 202].

Monte Carlo simulations up to third nearest neighbours of a two-dimensional Ising
TLA describe successive magnetic phases in CuFeO2, although does not provide justifi-
cation for assuming Ising-like spins [201–205]. Relative strengths of exchange interac-
tions up to third nearest neighbours J1 : J2 : J3 were found to be 1 : 1/2 : 3/4, with J1

approximately 1.2 meV [203, 206, 207].

The magnetisation was observed to be highly isotropic above 14 K, but undoubtedly
anisotropic below the transition. The 2D Ising model can not account for this isotropic
behaviour, and this is where this model breaks down [203,207–209]. Structural distortion
has been observed in CuFeO2, concurrent with the magnetic transitions. At 14 K, the
hexagonal R3̄m symmetry reduces to monoclinic C2/m. At 11 K the symmetry reduces
to a lower monoclinic group [210–213]. This structural distortion can be explained classi-
cally by the “spin Jahn-Teller” effect, with notable spin-lattice coupling inducing a struc-
tural distortion, reducing the spin-state degeneracy in the system [214–216]. Alternatively
the low temperature structural distortion, results in a lattice of scalene triangles, splitting
the nearest neighbour interactions into three unequal interactions [210–213]. It has been
suggested this structural distortion introduces a magnetic easy-axis along the c-axis [217].
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Figure 6.2: Magnetic field (c-axis oriented) temperature phase diagram of CuFeO2 taken
from [2]. The diagram summarises bulk magnetisation, susceptibility, specific heat and
dielectric measurements measurements taken from a range of different studies [2, 207,
209, 217, 220, 221, 223–225].

A Heisenberg Hamiltonian with a single-ion anisotropy term and strong spin-phonon cou-
pling can explain the Ising-type behaviour [2, 216, 218]. An inelastic neutron scattering
experiment has shown the spin-driven lattice distortions significantly affect the exchange
interactions in CuFeO2 [219]. Upon application of an external magnetic field along the
c-axis, CuFeO2 undergoes several magnetic transitions. The exact position, in field, of
these transitions is temperature dependent, at 1.5 K they occur at 7 T, 13 T, 20 T, 34 T
and 53 T, finally saturating at approximately 70 T [203,207,209,217,218,220–223]. The
magnetic-field temperature phase diagram shown in figure 6.2, has been taken from [2]
and summarises bulk magnetisation, susceptibility, specific heat, and dielectric measure-
ments from a range of studies [2, 207, 209, 217, 220, 221, 223–225].

The ground state four-sublattice structure persists until a magnetic field of around 7 T
is applied. Measurements of the magnetoelectric current show that between 7 and 13 T
the system develops an electric polarisation, revealing this phase to be ferroelectric [209].
Single crystal neutron diffraction studies by Mitsuda et al. [224] and Petrenko et al. [220]
confirms the four-sublattice structure of the zero-field phase, with the appearance of mag-
netic satellite peaks at positions (1/4, 1/4, 3/2) away from Bragg peaks. Due to experimental
limitations when carrying out diffraction with an applied magnetic field along the c-axis,
the accessible diffraction was confined to the hk0 plane. In the four-sublattice phase, no
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magnetic peaks are visible in the hk0 plane. Above 7 T weak incommensurate magnetic
peaks appear at 2q positions away from Bragg peaks, with q taking an incommensurate
value close to 1/5. The peaks were labelled up as 2q as a pulsed neutron experiment per-
formed earlier identified a wavevector close to 1/5 [226]. This has led to the labelling the
state between 7 and 13 T as ferroelectric incommensurate (FEIC) phase. Additionally a
peak was observed at (1/2 + 2q, 1/2 + 2q, 0) position in the FEIC phase. Above 13 T, strong
magnetic reflections were seen at commensurate hh0 positions with h = 1/5, 2/5, 3/5, 4/5,
identifying the 13-20 T phase as having a five-sublattice structure with moment pattern
↑↑↑↓↓.

Doping a small amount (2-4%) of non-magnetic impurity, such as aluminium or gal-
lium, can drastically alter the ground state of the system, and in some cases bring the
FEIC phase down to zero applied magnetic field. To date the only way to get an insight
into the magnetic structure of the FEIC phase is to examine it in a doped sample, remov-
ing the experimental limitation brought on by a high-field magnet. For the doped system,
the FEIC phase was found to have an incommensurate wavevector (q, q, 3/2) with q close
to a 1/5. The spin structure was determined by neutron diffraction to be an incommen-
surate helix [227]. Further work by Arima [228] and Nakajima et al. [229], has gone
on to show the ferroelectricity is induced by a proper-screw type magnetic order. In the
case of CuFe1−xAlxO2 the proper helical magnetic ordering induces a spontaneous elec-
tric polarisation parallel to the vector spin chirality. The spin current model of Katsura,
Nagaosa, and Balatsky has been successful in explaining the origin of ferroelectricity in
a number of helimagnet multiferroics [230], but is unable to explain the ferroelectric-
ity in CuFe1−xAlxO2 as the electric polarisation is parallel to the vector spin chirality.
Arima [228] successfully explained the origin of ferroelectricity in CuFe1−xAlxO2. Arima
found that in systems with with triclinic, monoclinic or rhombohedral symmetries, ferro-
electricity can be induced by a proper screw type magnetic ordering through the variation
in the metal-ligand hybridisation with spin-orbit coupling.

The magnetic structures at higher fields have not been experimentally verified, by a
diffraction technique. Lummen et al. [2, 218] have characterised the high-field structures
from the bulk susceptibilty measurement using a phenomenological classical spin model.
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Figure 6.3: (a) Relation between crystallographic axes and the reciprocal lattice for the
hexagonal system. The c and c∗ vectors point out of the page. (b) Six directions in the
hexagonal basis which are equivalent. In the rhombahedral symmetry with 3̄ improper
rotation, the direction indicated by a dashed and solid lines are inequivalent.

6.4 Experimental

A single crystal sample of CuFeO2 was grown by the floating zone method [84] by C.
H. Du at Tamkang University, Taiwan. The hexagonal structure was confirmed using
the in-house four-circle Eulerian-cradle diffractometer. Reciprocal lattice vector will be
given in the hexagonal basis for the rest of this chapter, unless explicitly stated otherwise.
Reciprocal lattice indexing in a hexagonal case, is less intuitive than in an orthorhombic
case. As in the case of orthorhombic lattice the hexagonal c-axis and the reciprocal c∗

point along the same direction. The a-b plane is slightly more complicated, due to the
120◦ angle between the a- and b-axis. The a∗ reciprocal vector is perpendicular to the b-c

planes and similarly the b∗ vector is perpendicular to the c-a plane. This results in the
a∗ and b∗ reciprocal vectors not pointing along the same direction as there corresponding
crystallographic vector. Additionally the a∗ and b∗ reciprocal vectors point 60◦ apart, as
shown in figure 6.3a. This leads to some counter intuitive situations where reflections
(110) and (2̄,1,0) have the same d-spacing.

The sample’s alignment was determined and two faces were ground and polished
along the [116] direction, as well as the [001] direction. The same sample was used for all
the neutron and synchrotron experiments. A single crystal neutron experiment was per-
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formed on the time-of-flight (tof) powder diffractometer, WISH at the ISIS pulsed neutron
spallation source [58]. The WISH beamline sits on a solid methane moderator, provid-
ing neutrons with a wavelength range 1.5-15 Å enabling a d-spacing range of 0.7-17 Å
to be examined. The instrument has 10 banks of pixelated He3 detectors symmetrically
arranged covering a range of scattering angles from 10-170◦, without any gaps. The He3

detectors have an active height of 1 m, providing ±12◦ access to out-of-plane diffraction.
When using the powder instrument in single crystal mode the wide in-plane and out-of-
plane access allows comprehensive Laue images to be taken with the tof spectra providing
d−spacing sensitivity. The WISH instrument has a dedicated 13.4 T superconducting ver-
tical magnet, which reduces the out of plane access to -5◦/+10◦.

The sample was mounted in the magnet with the c-axis along the field direction. The
sample was cooled to a base temperature of 1.5 K, and the magnetic field phase diagram
was studied with access to the out of plane [q,q,3⁄2] reflections for the first time. Laue
images were collected at 1.5 K in steps of 1 T up to a maximum field of 13.4 T, then at a
constant field of 13 T from 3 K to 15 K.

In order to probe the magnetic structure in the zero-field phase, two iron K edge
magnetic resonant x-ray scattering experiments were carried at I16, Diamond and P09,
Petra III [176]. At both beamlines, a focussed monochromatic x-ray beam was optimised
with a incident energy of 7112 eV. Harmonic rejection mirrors were utilised to remove
higher harmonics from the x-ray beam. Both beamlines provide post-scatter polarisation
analysis using a copper polarisation analyser crystal scattering from the [220] surface.

I16 has a six-circle kappa-geometry diffractometer, with both an APD point detector
(on the polarisation stage) and Pilatus 100K area detector. The kappa geometry gives a
wider access to the crystal than the Euler-geometry. The sample was cooled to a base
temperature of 7.8 K, using a closed cycle cryostat. A survey of magnetic peaks was
performed and an azimuthal rotation measurement was taken on the strongest peak. The
intensity of the magnetic peak was measured in the σ−σ and σ−π polarisation channels
as a function of the rotation of the crystal around the scattering vector.

The P09 beamline has a six-circle Eulerian-cradle diffractometer, with a Displex cryo-
stat with a Joule-Thompson cooling stage which has a base temperature of 1.7 K. The
P09 beamline comes equipped with a set of diamond phase plates [231], which allow
the polarisation of the incident x-ray beam to be any incident linear angle, and circular
polarised left and right. A full linear polarisation analysis of the resonant magnetic peak
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was performed. In this measurement the crystal is placed in the diffraction condition for
a magnetic Bragg peak and the angle of the linear polarisation of the incident beam, η is
rotated through a full 180◦. At each incident linear polarisation angle, η, the polarisation
analyser stage is rotated around the scattered beam through at least 180◦, enabling the
polarisation state of the scattered beam to be extracted.

A second experiment was performed at the P09 beamline using the heavy-load diffrac-
tometer with a 14 T magnet. In this setup, the magnetic field is perpendicular to the scat-
tering plane and there is only a very small motion out of plane. The sample was mounted
with the c-axis along the magnetic field direction, requiring the [HK0] plane to be in the
scattering plane. A scattering experiments was performed at 1.8 K at the iron K absorption
edge, examining the higher magnetic field phases. The heavy-load diffractometer oper-
ates in a horizontal scattering mode, consequently the incident polarisation is π polarised
without the use of the phase plates.

6.5 Results

6.5.1 Neutron Diffraction

The single crystal neutron experiment was able to access the PD, 4SL, FEIC and the 5SL
phases. At each point measured in the phase diagram, two Laue images were collected
with the sample orientated 60◦ apart in the a-b plane. Each Laue image was collected for
a total integrated current of 20 µAhr, averaging around 30 minute collection time on target
station 2 which has a current of 40 µA. Each pixel on the Laue images taken on WISH
corresponds to a time-of-flight spectra. Using instrument specific parameters d−spacing
spectra can be calculated from time-of-flight for each pixel. The Mantid software suite
was used to extract the data from Laue images, this software provides the necessary rou-
tines to convert the units and mask areas of pixels.

Figure 6.4 shows the d−spacing spectra totalling over all the areas of intensity on the
Laue images. The four figures shows the d−spacing spectras in different phases in the
phase diagram, with 6.4(a) and (d) being in the paramagnetic phase, with a magnetic field
of 0 T and 13 T respectively. Figures 6.4 (b) and (c) show the material in the 4SL and
FEIC phases respectively. These phases are clearly distinguished by the appearance of
additional diffraction peaks, which are highlighted in green. Across the three phases be-
tween 0 T and 13.4 T, 23 magnetic peaks where identified with 12 existing in all three

150



Magnetism of Frustrated system, CuFeO2 Chapter 6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

d-spacing [Å]
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Figure 6.4: d-spacing plot from time-of-flight single-crystal neutron diffraction . (a)
Paramagnetic phase. (b) Four sub-lattice phase. (c) Ferroelectric incommensurate phase.
(d) Five sub-lattice phase.

phases (4SL, FEIC, 5SL) with changing wavevector, and eight additional peaks only ex-
isting in the FEIC phase and three additional peaks only existing in the 5SL phase.

The 12 peaks that belong to all the low temperature phases have three different
d−spacings, and can be indexed up as (HKL) + τ where (HKL) are nuclear Bragg peaks
and τ is the magnetic wavevector. Due to the threefold improper rotation symmetry,
the magnetic wavevector, τ, (q,q,3/2) is equivalent to (q,−2q,3/2), (−2q,q,3/2), (−q,−q,−3/2),
(−q,2q,−3/2) and (2q,−q,−3/2).

Figure 6.5 shows contour plots of selected magnetic and nuclear Bragg peaks with
applied magnetic field. d−spacing is presented on the x-axis and and the applied magnetic
field on the y-axis. The intensity of the diffraction is represented by a spectral colour
map. The colour is calibrated on each map, and it is not possible to compare intensities
between peaks using figure 6.5. The top row shows the d−spacing of magnetic peaks at
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positions with a wavevector (q,q,3/2), or equivalent, away from nuclear Bragg peaks. The
peak positions all show qualitative similar behaviour with applied magnetic field. The
d−spacing stays constant with field until around 7 T, where the peak jumps to a different
d−spacing, both higher and lower position, reflection dependent. The d−spacing then
linearly shift with higher applied field until 13 T where the d−spacing appears to stay
constant.

The bottom left frame shows the d−spacing of the (1,1,0) nuclear peak with applied
magnetic field. The (1,1,0) does not change with applied field position to within the
resolution of the instrument, suggesting the a lattice parameter does not change signif-
icantly with applied magnetic field. The remaining figures in 6.5 show the appearance
of (q,q,0), (2q,2q,0), and (3q,3q,0) reflections at 13.4 T, in the 5SL phase. All three
of these reflections appear at the same position on the Laue image as the (1,1,0) Bragg
peak, but are separable in time-of-flight. Both the nuclear and magnetic Bragg diffraction
peaks in the time-of-flight spectra have a distinctive asymmetric shape. A convolution
of a back-to-back exponential and a Gaussian function provides a close approximation
to the time-of-flight diffraction peaks. There are five fitting parameters to the function,
the integrated intensity, I, the peak position, x0, the standard deviation of the Gaussian
part, σ, and exponential constant of the rising and decaying part of the peak, A and B.
Equation 6.1 shows the form of this function, where erfc is the error function.

I(x) = I
AB

2 (A + B)

exp

A
[
Aσ2 + 2

(
x − x0

)]
2

 erfc
(

Aσ2 +
(
x − x0

)
σ
√

2

)

+ exp

B
[
Bσ2 + 2

(
x − x0

)]
2

 erfc
(

Bσ2 +
(
x − x0

)
σ
√

2

) (6.1)

For each magnetic peak the exponential rise and decay terms A and B were held con-
stant with field and temperature, and only the integrated intensity, position and Gaussian
standard deviation were allowed to vary. Figure 6.6 shows the variation of wavevector
with applied magnetic field for the (1 − 2q, q,−1

2 ), (1 − q, 2q,−1
2 ), (2q, 1 − q, 1

2 ), and
(q, 1 − 2q, 1

2 ) reflections. The time-of-flight position was extracted by fitting with the
back-to-back exponential function, converted to d−spacing, and used to calculate the q

from the wavevector (q,q, 3
2 ). The four-sublattice phase exists up to and including 7 T at

1.5 K, with the wavevector commensurate at q = 1/4. At 8 T CuFeO2 enters the ferroelec-
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Figure 6.5: Neutron diffraction contour maps showing d−spacing of seven satellite re-
flections and the (110) Bragg peak as a function of applied magnetic field along the c-axis
at a temperature of 1.5 K.

tric incommensurate phase where the wavevector jumps to an incommensurate position
q ∼ 0.21. The wavevector then decreases linearly with magnetic field till 13 T where
q = 1

5 . Between 13 and 13.4 T the system enters the five-sublattice phase, where q = 1
5 .

The transition between all the phases, particularly the FEIC and 5SL phase, are more
easily seen in the variation of intensity shown in figure 6.7. For the 4SL and FEIC phase
a constant intensity has been fit and plotted using a dashed line. These dashed lines act
as a guide to the eye to highlight the different phases. The magnetic peaks appear to get
weaker in the FEIC phase.
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Figure 6.6: Wavevector q of the magnetic satellite peaks as a function of magnetic field
at 1.5 K, extracted from fitting the time-of-flight neutron data of the four satellite re-
flections shown in the top of figure 6.5 using a back-to-back exponential function. The
q-wavevector has been calculated using the a lattice parameter measured from the (1,1,0)
Bragg peak at each field.

In the FEIC phase, seven additional peaks appeared at reciprocal space positions
(q,q,3/2) away from 1/2 positions, e.g. (1/2 + q,q − 1/2,1/2). It is not possible to comment
on whether these peaks exist in the 4SL phase, because with q = 1/4 the additional 1/2 − τ

peaks overlap with the (HKL) − τ peaks. Figure 6.8 shows a colour-map of the intensity
and variation of wavevector of the (1/2 − q, 2q, 1/2) peak with applied magnetic field. The
1/2−τ reflection’s incommensurate position has identical behaviour as the (HKL)−τ type
reflections. The intensity of the peak is strongest when it first appears at 8 T and gradually
gets weaker with applied field. At 13.4 T, the peak appears to vanish completely, however
a peak remains with an intensity of 1 % of it’s maximum value.

A temperature scan was performed, by collecting Laue images in an applied field of
13 T, from 3 K until it disappeared around a temperature of 14 K. This scan starts in
the five-sublattice phase and passing through the partially disordered phase, before the
peaks disappear in the paramagnetic phase. Figure 6.9 shows contour maps of a selected
number of magnetic and nuclear Bragg peaks, plotting the d−spacing on the x−axis and
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Figure 6.7: The integrated intensity of the magnetic satellite peaks as a function of mag-
netic field. Integrated intensity was measured from fitting the time-of-flight neutron data
of the four satellite reflections shown at the top of figure 6.5 using a back-to-back expo-
nential function. Three distinct phases can be seen in the intensity, with the linear fits
acting as guides to the eye.

the temperature on the y−axis. The top row shows the (HKL)− τ type reflection, where a
commensurate to incommensurate transition occurs between 9 and 10 K. The d−spacing
remains fixed on warming from 3 K to 9 K and begins to vary above 9 K. Above 10 K
the intensity of the peak slowly decreases before disappearing completely above 13 K.
The lower right frame in figure 6.9 shows the behaviour of the (110) nuclear Bragg peak.
This does not, as expected, appear to vary significantly with temperature compared to the
magnetic peaks.

The remaining three contour maps on the bottom right of figure 6.9 show the (q, q, 0),
(2q, 2q, 0), (3q, 3q, 0) type reflections. The (q, q, 0) and (3q, 3q, 0) type reflections disap-
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Figure 6.8: Contour colour plot showing the q wavevector of the (1/2 − q, 2q, 1/2) as a
function of magnetic field. The q = 1/4 4SL phase the peak would overlap with the (q, 1 −
2q, 1/2) type reflection. A very weak peak remains at 13.4 T, approximately 1% of the
maximum intensity.

pear at 9 K where the (HKL)−τ type reflections become incommensurate. The (2q, 2q, 0)
reflection shows similar behaviour to the odd reflections up until 9 K, but shows incom-
mensurate behaviour above 9 K, before disappearing above 13 K. Once again a convo-
lution of a back-to-back exponential and a Gaussian (equation 6.1), was used to fit the
diffraction peaks in the time-of-flight spectra.

Figure 6.10 shows the temperature dependence of the wavevector for a selection of re-
flections. The top frame shows the wavevector q for reflections of type (HKL)− (q, q, 3/2).
For the calculation from d−spacing to wavevector, q, the a lattice parameter was extracted
from the (1, 1, 0) Bragg peak, whilst the literature value of the c-lattice parameter was
used (a = 17.17 Å [211]). There is a systematic offset on the calculated wavevector be-
tween different magnetic Bragg peaks. This maybe due to the hexagonal lattice not being
the correct basis to expresss the wavevector in, as a lower monoclinic structure has been
shown to be necessary to describe CuFeO2 at low temperatures [210–213]. The results
show the wavevector, starts with q = 1/5 in the five-sublattice phase at 3 K. With increasing
temperature the wavevector remains constants at 1/5 until 9 K, above which the wavevec-
tor becomes incommensurate, gradually moving with temperature until disappearing at
q = 0.193 around 13 - 14 K.
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Figure 6.9: Neutron diffraction heat maps showing d−spacing of seven satellite reflec-
tions and the (1,1,0) Bragg peak as a function of increasing temperature in an applied
magnetic field along the c-axis of 13 T.

The lower frame in figure 6.10 shows the temperature dependence of the wavevector
q for the (q, q, 0) type reflections. The odd multipules, i.e. (q, q, 0) and (3q, 3q, 0) stay
constant at q = 1/5, then disappear above 9 K. The (2q, 2q, 0) reflection remains constant
at q = 1/5 until 9 K, at which point it becomes incommensurate shifting with temperature
to a lower value around q = 0.194 before vanishing at 14 K. Figures 6.11 and 6.12 show
the temperature dependence of integrated intensity of the (HKL) − τ and (q, q, 0) type
magnetic reflections. The pink area indicates the temperature range where the wavevec-
tor transitions from commensurate to incommensurate. In the case of the (HKL) − τ
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Figure 6.10: Wavevector q of the magnetic satellite peaks as a function of tempera-
ture, extracted from fitting the time-of-flight neutron data of the seven satellite reflections
shown in top of figure 6.9 using a back-to-back exponential function. The q-wavevector
has been calculated using the a lattice parameter measured from the (1,1,0) Bragg peak at
each temperature.

reflections the intensity was fitted with a critical exponent of the form shown in equation
6.2.

I(T ) = I0

(
Tc − T

Tc

)2β

(6.2)

In figure 6.11, the critical exponent fits are plotted in a dashed red line. The results of
fitting the critical exponent found a transition temperature of 13.6 K and β values in the
range 0.17 - 0.27. From the integrated intensity data alone, shown in figure 6.11 it is not
possible to identify the commensurate to incommensurate transition.
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Reflection Type d−spacing, Å Phase

(−q, 1−q, 1/2),
(q, 1−2q, 1/2),
(1−q,−1+2q, 1/2),
(1−2q,−1+q, 1/2),
(−1+2q,−q, 1/2),
(1−2q, q, − 1/2),
(1−q,−q, − 1/2)

(HKL) − τ 3.57-3.94 4SL, FEIC, 5SL, PD

(2q, 1−q, 1/2),
(1−q, 2q, − 1/2),
(1−q,−2q, − 1/2)

(HKL) − τ 2.48-2.40 4SL, FEIC, 5SL, PD

(−q, 1+2q, 1/2),
(q, 1+q, 1/2)

(HKL) − τ 2.01-1.88 4SL, FEIC, 5SL, PD

( − 1/2+q, 1/2+q, 1/2),
(1/2−q, 2q, 1/2),
(1/2+q,−2q, 1/2)

1/2 − τ 4.21-4.28 FEIC

(1−2q, 1/2+q, 1/2),
(1/2+q, 1−2q, − 1/2),
(3/2−q,−1+2q, − 1/2)

1/2 − τ 2.34-2.32 FEIC

(1/2+q,−2q, 1/2) 1/2 − τ 4.21-4.28 FEIC

(q, q, 0) (q, q, 0) 7.57 5SL
(2q, 2q, 0) (q, q, 0) 3.79-3.92 5SL, PD
(3q, 3q, 0) (q, q, 0) 2.53 5SL

Table 6.1: Table of magnetic reflections detected in the Laue images across all accessible
phases. Reflections are divided up by type and d−spacing as well as which phases they
were detected in. In the case where d−spacing is given as a range, is due to the variation
of q across the phase diagram, all the reflections have the same spacing for a particular
field and temperature.
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Figure 6.11: Integrated intensity of the (q, q, 3/2)-type magnetic satellite peaks as a func-
tion of temperature. The integrated intensity was measured from fitting the time-of-flight
neutron data of the reflection shown at the top of figure 6.9 using a back-to-back expo-
nential function. A critical exponent curve has been fitted to the data. The transparent red
line indicates the transition from commensurate to incommensurate wavevector.

6.5.2 High-field x-ray diffraction

Figures 6.13, 6.14 and 6.15 show the results of the high-field x-ray diffraction experiment
performed at P09. The experiment was performed at the iron K edge, in the hopes of
detecting a magnetic reflection on resonance. The experiment was confined to the a-b

plane, and no resonantly enhanced satellite reflections were detected. A non-resonant
reflection was found at a position of [0.6, 0.6, 0) in the five-sublattice phase, this could
be indexed up as either a (3q, 3q, 0) reflection or a (1, 1, 0) − (2q, 2q, 0) type reflection.
Figure 6.13 shows the contour plots of the (0.6, 0.6, 0) reflection for field and tempera-
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Figure 6.12: Integrated intensity of the (q, q, 0)-type magnetic satellite peaks as a func-
tion of temperature. The integrated intensity was measured from fitting the time-of-flight
neutron data of the reflections shown at the bottom of figure 6.9 using a back-to-back ex-
ponential function. The transparent red line indicates the transition from commensurate
to incommensurate wavevector.

ture dependences across the phase diagram. The contour plots were measured by taking
reciprocal space scans along the [HH0] direction at different temperatures and magnetic
fields. Figure 6.13(a) shows a schematic of the magnetic field phase diagram of CuFeO2,
with the two temperature scans (A&B) and magnetic field scan (C) shown. Figure 6.13(d)
shows an applied magnetic field scan at 2 K. This scan clearly indicates the (0.6, 0.6, 0)
only exists above 12.5 T in the five-sublattice phase.

Figure 6.13(b) and (c) show the temperature dependences of the (0.6, 0.6, 0) reflection
at different applied magnetic fields, 13 T and 11 T respectively. In the 11 T scan the
(0.6, 0.6, 0) reflection does not appear until the system is warmed up above 8.5 K, whilst
in the 13 T scan, the reflection is there from 2 K but gets stronger on warming. This
shows a curved boundary between the FEIC phase and the 5SL phase. Both scans at 11 T
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Figure 6.13: X-ray diffraction performed in high magnetic field. (a) Magnetic phase
diagram highlighting scan directions. (b) Temperature dependence of the (0.6,0.6,0) re-
flection at magnetic field of 13 T, labelled A in fig a). (c) Temperature dependence of
the (0.6,0.6,0) reflection at magnetic field of 11 T, labelled B in fig a). (d) Magnetic field
dependence of of (0.6,0.6,0) reflection at a temperature of 2 K, labelled C in fig a)

and 13 T show the reflection to transition to a incommensurate wavevector above 10 K.
The wavevector gradually increases with temperature until q = 0.613 at which point the
reflection disappears at 12 K. This indicates that the reflection should be indexed up as
the (1, 1, 0) − (2q, 2q, 0) as the wavevector is shown to decrease in the partial disordered
phase from the neutron results. Figure 6.14 shows a high-resolution [HH0] reciprocal
space scan using a post-scatter polarisation analyser. The polarisation analysis shows the
diffraction is only present in the π − π channel and is completely absent from the π − σ
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Figure 6.14: Reciprocal space scan in the [HH0] direction, using a polarisation analyser
crystal with π incident light. π−π channel shown in red and π−σ channel shown in blue.

channel. The polarisation analysis combined with the non-resonant nature of the satellite
peak indicates this reflection is structural in origin. The temperature dependence at 13 T,
was analysed by fitting a Lorentzian-squared peakshape to the reciprocal space scans.
Figure 6.15 shows the temperature dependence of the centre of the diffraction peak and
the width of the diffraction peak. The transition from commensurate to incommensurate
wavevector is at 9.3 K. The satellite peak disappears at 11.8 K. Beam heating from the
x-ray beam, will cause a systematic offset in transition temperatures between x-ray and
neutron measurements. The commensurate-incommensurate transition shows the same
wavevector behaviour as the neutron diffraction. The width of the peak increases as the
system cools down through the partially disordered phase between 11.8 K and 9.3 K. Be-
low 9.3 K the width of the peak jumps to a narrower value, similar to the value at 11.8 K,
where it remains constant on further cooling. The peak width is inversely proportional to
the correlation length of the phase. An increase in peak width of the structural satellite
upon cooling is a peculiar trait as electronic phases tend to become more correlated upon
cooling. This behaviour indicates a clear difference between the five-sublattice phase and
the partially disordered phase.
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Figure 6.15: Temperature dependences of the (0.6,0.6,0) satellite peak. The [HH0] re-
ciprocal space scan was fitted with a Lorentzian-squared and the centre (top) and width
(bottom) were extracted.

6.5.3 Zero-field x-ray experiments

Figures 6.16, 6.17, 6.19 and 6.20 show the results of a resonant x-ray scattering study of
the zero field four-sublattice phase, and fig 6.18 of the zero-field partial disordered incom-
mensurate phase. The experiments were performed at the iron K absorption edge. The
experiment was performed at I16, the ( − 3/4, 21/4, 3/2) satellite reflection was detected and
found to resonate. This reflection can be indexed up as a satellite of the (2,−1, 0), being
(1/4, 1/4, 3/2) away. Figure 6.16 shows the energy resonance spectra of the ( − 3/4, 21/4, 3/2) re-
flection in the σ−σ (top) and σ−π (bottom) polarisation channels measured at a number
of different azimuthal positions. Resonant contributions appear in both polarisation chan-
nels. The measured spectra show multiple contributions to the resonance structure with
different azimuthal dependences. An azimuthal measurement was undertaken at 7115 eV
in the σ − π channel and 7118 eV in the σ − σ channel. The [0, 0, 1] direction was used
as the azimuthal reference vector. This means the zero point on the azimuth corresponds
to when the [0, 0, 1] lies in the scattering plane closest to k′. Figure 6.17 shows the results
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Figure 6.16: Energy scans across the resonance of the ( − 3/4, 21/4, 3/2) magnetic satellite
peak at the Fe K absorption edge at different azimuths in the σ−σ and σ− π polarisation
channels.

of the azimuthal measurement. The dashed blue and green lines show simulations for
a collinear magnetic structure with magnetic moments pointed along the c-axis. E2E2
scattering is required to simulate the scattering in the σ − σ channel, as E1E1 scattering
process does not have a contribution in the σ−σ channel. The simulations for E1E1 and
E2E2 scattering have the same azimuthal dependence in the σ − π channel. For E2E2
scattering the intensity is calculated to be 100 times stronger in the σ − σ channel than
the σ − π channel. Both E1E1 and E2E2 scattering processes are needed to fully explain
the azimuthal data.

At high azimuth angles the simulation differs significantly from the data, although
qualitatively shows similar behaviour. The sample was not mounted with the ( − 3/4, 21/4, 3/2)
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Figure 6.17: Intensity of the ( − 3/4, 21/4, 3/2) magnetic satellite peaks as a function of az-
imuthal angle, measured from the [001] in the both σ−σ and σ−π polarisation channels.
Theσ−σ channel was measured at 7118 eV andσ−π channel at 7115 eV. The simulations
require both E1E1 and E2E2 type resonant transitions.

reflection as the surface-normal direction. A change in the amount of x-rays absorbed as
the sample is rotated around the azimuth, is likely to be the cause of the low intensity at
high azimuth. Additionally an incommensurate peak was found in the partially disordered
phase at 11 K in zero magnetic field. Figure 6.18 shows reciprocal space scan across the
incommensurate peak. The wavevector was found to be q = 0.211(1), closer to 1/5 than
1/4.

In the experiment performed at P09, resonantly enhanced reflections were found at
the (1/4, 1/4, 3/2) and (3/4, 3/4, 9/2) ((1, 1, 6) − (1/4, 1/4, 3/2)) positions. Both these reflections are
along the same crystallographic direction. Figure 6.19 shows the resonance spectra of
the (1/4, 1/4, 3/2) and (3/4, 3/4, 9/2) reflections, in the top and bottom frames respectively. The
dashed line shows the fluorescent spectra, whilst the red lines shows the resonance spec-
tra of the (21/4, − 3/4, 3/2) reflection measured at I16. The point of inflexion in the fluo-
rescent absorption measurement is at 7123.5 eV. The main resonance feature appears at
7129.5 eV, with extra resonance peaks at 7114.5, 7140, 7175 eV. This is a highly un-
usual structure for a K edge resonance, especially the resonance feature 50 eV above the
absorption edge.
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Figure 6.18: Scan measured along the [−1, 2, 0] direction of the incommensurate peak
(−0.789, 1.422, 1.5) in the partially disordered phase at 0 T and 11 K.

A full linear polarisation analysis was performed on the main resonance feature at
7129.5 eV of the (1/4, 1/4, 3/2) reflection. The polarisation analysis was performed at an
azimuth of 24.5◦ with the azimuthal reference vector defined as the [−1, 0, 0]. Figure 6.20
shows the result of the polarisation analysis, with the outgoing polarisation expressed us-
ing the Poincaré-Stokes parameters. Experimentally only P1 and P2 can be found, as it is
not possible to distinguish the circular polarised contribution from the unpolarised signal.
The solid lines are simulations of the diffraction from a collinear magnetic structure, with
the magnetic moment pointed along the c-axis. E2E2 resonance is necessary to simulate
the data, as E1E1 requires P1 and P2 to be -1 and 0 for an incident polarisation of 0◦.
In order to fully simulate the data, the fact that the incident polarisation is not 100% po-
larised has to be taken into account. For the phase plates at P09 the linear Poincaré-Stokes
component can be expressed approximately using equation 6.3 [231].

PLin =

√
P2

1 + P2
2 ≈ 0.95 + 0.05 sin(2η + π/2) (6.3)
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Figure 6.19: Energy scans across the resonance of the (1/4, 1/4, 3/2) (top) and (3/4, 3/4, 9/2)
(bottom) magnetic satellite peak at Fe K absorption edge in the σ-π polarisation channels.
The resonance shown in red is the I16 data measured at the ( − 3/4, 21/4, 3⁄2) satellite peak.
The fluorescence scan is shown in black.
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Figure 6.20: Full linear polarisation measurement of the (1/4, 1/4, 3/2) magnetic satellite
peak on top of the resonance at 7129.5 eV. The Poincaré-Stokes parameters P1 and P2
of the scattered x-ray are shown in blue and red circles respectively. The solid lines
are calculated from a simulation of E2E2 electric transition with the magnetic moment
aligned along the c-axis.
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6.6 Discussion

The neutron experiment on WISH marks the first diffraction measurements out of the
[HH0] plane for the FEIC and 5SL phase for undoped CuFeO2. The neutron results
clearly reveal four distinct phases in the magnetic field phase diagram. The diffraction
from the 4SL is simply composed of a star of satellites of wavevector (1/4, 1/4, 3/2) away
from the allowed nuclear Bragg peak. The five-sublattice is composed of two types of
reflections, with wavevectors (1/5, 1/5, 3/2) and (1/5, 1/5, 0). The FEIC phase is composed of
reflections with wavevector (q, q, 3/2) away from nuclear Bragg peaks as well as away
from half-positions in reciprocal space. Finally the PDIC phase was found to have in-
commensurate reflections at positions (q, q, 3/2) away from nuclear Bragg peaks as well as
at (2q, 2q, 0) reflection. It is not possible to distinguish between a multi-q structure where
the magnetic phase is described by six k-vectors, or simply contributions from three mag-
netic domains contributing ±k wavevectors. Figure 6.21 shows a HK reciprocal space
map with l = 1/2 (left) and l = − 1/2 (right). The magnetic Bragg peaks measured in the
neutron experiment are shown by circles, with (HKL) − τ reflections shown in black and
1/2 − τ shown in red. The symmetrically related reflections are shown slightly transpar-
ent. The arrows indicate the direction the magnetic diffraction peaks would move with
an increasing magnetic wavevector q. The maps are drawn with q = 1/5, with the q = 1/4

positions indicated at the end of the arrow. The anomalous reflection circled in the l = 1/2

map indexes up as (1/2, − 1/2,−1] + [q, q, 3/2) reflection.

Neutron and resonant x-ray diffraction in the 4SL phase, measured magnetic Bragg
reflections which could be indexed up as being (1/4, 1/4, 3/2) away from crystallographic
Bragg peaks. The measured positions of the magnetic reflections is in agreement with
Mitsuda et al. [201] and Mekata et al. [199], who both performed neutron diffraction on
powder samples of CuFeO2. Mekata et al. found eight reflections, two of which were
indexed up with l = 1/2. For our neutron diffraction measurement out-of-plane access was
restricted, and only reflections with l ± 1/2 were measured. Single crystal studies by Pe-
trenko et al. and Mitsuda et al. [200, 220] restricted themselves to the [HHL] diffraction
plane, and consequently only observed reflection at positions (2n+1

4 , 2n+1
4 , 6m+3

2 ), where n

and m are integers. There are no l = ±1/2 reflections in the [HHL] diffraction plane. Both
the azimuthal and FLPA measurement from resonant x-ray diffraction confirm the mag-
netic moment is collinear and lies along the c-axis. From the wavevector of (1/4, 1/4, 3/2),

170



Magnetism of Frustrated system, CuFeO2 Chapter 6.

[0,0,½]

a*

b*

(a)

[0,0,-½]

a*

b*

(b)

Figure 6.21: Reciprocal space maps of the l = 1/2 and l = − 1/2 planes. The black marks
indicates the (HKL) − τ type reflections and the red marks indicate the 1/2 − τ type re-
flections. The arrows indicate the directions the magnetic Bragg peaks would move with
increasing q.

the magnetic cell requires a super cell of 4aH × 4bH × 2cH of the hexagonal crystal cell.
The l component of the magnetic wavevector is l = 3/2. This arises from the antifer-
romagnetic stacking between layers in the c-direction. There are three offset triangular
lattice layers in one crystallographic unit cell. The layers are stacked antiferromagneti-
cally, | →←→ | ←→← |, resulting in three repeats of the magnetic stacking in two unit
cells in the c-direction [199, 201], shown in figure 6.22a. The resonant x-ray diffraction
showed both E1E1 and E2E2 resonant transitions. The observation of resonance at the
iron K edge, rules out a purely spin moment, challenging the position of CuFeO2 as an
archetypal triangular lattice antiferromagnet with S = 5/2. An unusually strong E2E2
contribution to the resonance has been measured. E2E2 is normally a weak effect in
comparison to E1E1 scattering. Additionally there is a resonance 50 eV above the K

edge, which is unusual for a K edge transition. The K edge, corresponds to a transitions
from the 1s orbital, which has l = 0 and cannot be split. The unusual resonance spectra
is purely a result of spin splitting of the 3d and 4p bands, and the role spin-orbit coupling
plays in this material. In order to recreate Ising-like spin structure present in CuFeO2,
strong spin-phonon coupling has to be included in Monte Carlo simulations [207]. It may

171



Chapter 6. Magnetism of Frustrated system, CuFeO2

(a) (b)

Figure 6.22: Possible magnetic structures of the 4SL (left) and 5SL (right) phases. The
large dashed line indicate the unit cells, whilst the thin dashed line indicates an Fe layer
inside the unit cell. The origin of the l = 3/2 component of the magnetic wavevector can
be seen as there are three repeats of the antiferromagnetic motiff in two crystallographic
unit cells in the c-direction. The 5SL phase is composed of a antiferromagnetic cell and
ferromagnetic cell giving rise to the two wavevectors, (q, q, 3/2) and (q, q, 0).

be the coupling of the lattice and spin degrees of freedom, that give CuFeO2 its unusual
resonance spectra.

Neutron measurements of the 5SL phase, resulted in two types of reflections, corre-
sponding to (1/5, 1/5, 3/2) and (1/5, 1/5, 0) wavevectors. These two wavevectors correspond
to a 5SL structure with a ferromagnetic component [220, 224]. Figure 6.22b shows the
5SL structure. Four of the moments stack antiferromagnetically, as in the 4SL case, with
one moment stacking ferromagnetically between layers. The four antiferromagnetically
stacked moments contribute to the (1/5, 1/5, 3/2) type reflections, whilst the ferromagneti-
cally aligned moment contributes to the (1/5, 1/5, 0) type reflections.

When warming out of the 5SL phase into the PDIC phase, the (q, q, 3/2) reflections
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remain with q becoming incommensurate, becoming less the 1/5. Of the (q, q, 0) type re-
flections only the (2q, 2q, 0) remains. The PDIC phase has been identified as a collinear
incommensurate phase [199, 200]. This phase has been identified to be truly incommen-
surate, a study by Ye et al. [211] has shown that in zero field the wavevector, q, in the
incommensurate phase moves from 0.19 to 0.22 on cooling, without locking in at q = 1/5.

The (2q, 2q, 0) reflection has been observed before in the PDIC phase under field by
Mitsuda et al. [224]. Their interpretation of the 2q reflection, is that of a slight ferromag-
netic component to the collinear incommensurate spin density wave, whose projection on
to the [110] axis oscillates with a periodicity of 2q. X-ray diffraction performed on the
5SL phase, identified a (1 − 2q, 1 − 2q, 0) reflection. This reflection was not found to
resonate, evidence of its structural origin. The temperature dependence of the wavevector
of the structural distortion measured by x-rays is exactly twice the magnetic wavevector
measured by neutrons. The identical wavevectors confirm the structural distortion from
the hexagonal unit cell is driven by the magnetism; providing evidence that spin-lattice
coupling plays a major role in determining the ground state of the system [207]. The tem-
perature dependence of the width of the structural peak shows an unusual behaviour. The
width of the structural satellite can be interpreted as how well the structural phase is cor-
related. On warming through the 5SL phase the widths remains constant. When warming
into the PDIC phase the width discontinuously increases, and then proceeds to decrease
upon further warming. This is odd behaviour as electronic phases tend to become better
correlated on cooling not on warming, as was the case for the structural satellite measured
in SrFeO3 in figure 3.9. This is clear evidence of a second structural transition between
the PDIC phase and the 5SL phase, at 11 K, distinct from the structural transition at 14 K.

The zero-field resonant x-ray diffraction experiment, recorded a magnetic satellite re-
flection in the PDIC phase at a single temperature, with a wavevector of q ∼ 0.211, greater
than 1/5. This result confirms the result by Mitsuda et al. and Ye et al. [200, 211], that at
zero field the PDIC wavevector on warming starts above 1/5. The temperature dependence
of the (2/5, 2/5, 0) structural satellite measured at different magnetic fields shows the 5SL
phase exists between the FEIC and PDIC phases, as shown in phase diagram in figure
6.13(a). Only two different fields were examined, so the FEIC phase and PDIC phase
sharing a phase transition at a field lower than 11 K cannot be ruled out. At some point in
the phase diagram for the PDIC phase, the incommensurate structure changes from being
purely incommensurate, to tending towards 1/5, when it shares a phase transition with the
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5SL phase.

These results mark the first measurements of out-of-plane (q, q, 3/2) type reflection
in the FEIC phase in the undoped CuFeO2 system. Extremely weak (2q, 2q, 0) reflec-
tions have been measured by Mitsuda et al. [224]. The FEIC phase has been studied to
great length in zero field, in the aluminium and gallium doped systems, CuFe1−xAlxO2

and CuFe1−xGaxO2 [227, 232, 233]. In the FEIC phase, magnetic reflections appeared at
(q, q, 3/2) positions as well as 1/2 − (q, q, 3/2) positions. Upon application of magnetic field,
the (q, q, 3/2) type reflections have a discontinuous change in q, from q = 0.25 in the 4SL
phase to q = 0.21 in the FEIC phase. Upon application of further magnetic field the
wavevector (q, q, 3/2) gradual shifts towards q = 1/5 at the 5SL phase transition.

Both the PDIC phase and FEIC phases have incommensurate wavevectors close to
a 1/5, suggesting a close connection to the 5SL phase. In the aluminium-doped samples
the FEIC phase is thought to adopt a spin helical structure [227, 232]. The appearance
of the 1/2 − (q, q, 3/2) type reflections is associated to the structural transition creating to
inequivalent iron sites in the a-b plane. The two inequivalent iron sites cause two orbits of
the helical structure to form with a phase difference between them. If this phase difference
in not zero or π then magnetic satellites are predicted away from 1/2 positions in reciprocal
space. It is not possible to determine if the 1/2− (q, q, 3/2) reflections exist in the 4SL phase,
as they overlap exactly with reflection away from crystallographic Bragg peaks, shown in
figure 6.21. The 1/2 − (q, q, 3/2) peaks were not observed in the 5SL phase, suggesting
no phase shift between the two inequivalent sites. A phase shift between the two orbits
in the FEIC phase, confirm the FEIC phase has a similar spin density wave magnetic
ordering to the doped systems. The noncollinear spin density wave was shown to be a
helix in the aluminium doped sample, by comparing intensities of reflections in different
l layers [227]. Unfortunately this approach cannot be used in this study as only reflection
in l = ±1/2 planes were measured. It has not been possible to distinguish cycloidal or
helical ordering in the FEIC phase from this study. Different origins for the formation of
the ferroelectric moment exist depending on whether the FEIC phase is described by a
cycloidal or helical spin structure [228,230]. In order to confirm whether the FEIC phase
in CuFeO2 adopts the same helical structure as the doped material, polarised neutrons
will need to be employed [234]. The instrument WISH at ISIS is predominantly a powder
instrument, and does not have the capabilities for polarised neutrons. In order to further
characterise the FEIC phase, a different instrument with different capabilities is needed.
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6.7 Conclusion
Neutron and x-ray scattering experiments have been performed on a single crystal sample
of CuFeO2. The Ising-like nature of the spin structure has been reconfirmed. Structural
satellites have been found with twice the magnetic wavevector in the [1, 1, 0] direction,
confirming the strong spin-lattice coupling that occurs in this material. Evidence of two
distinct structural transitions at 14 K and 11 K from the unusual temperature dependence
of the 2q structural satellites. The behaviour of the width of the structural reflection
between 11 and 14 K, identifies these two transitions not be be continuous. The 5SL
phase was found to have a multi-q spin structure, with an antiferromagnetic (1/5, 1/5, 3/2) and
a ferromagnetic (1/5, 1/5, 0) contributions. Diffraction from the FEIC phase was measured
and shown to have similar behaviour to the aluminium doped counterparts. Although
the measurement was not sufficient to distinguish between the cycloidal and helical spin
structures, the appearance of 1/2 − (q, q, 3/2) type reflections show that the noncollinear
structure is split into two inequivalent orbits. The phase shift between the two orbits is
not known. Mapping out of the 2q structural satellites suggest the 5SL phase may separate
the FEIC phase from the PDIC phase. The resonant scattering spectra rebut the idea that
CuFeO2 is a pure spin triangular lattice antiferromagnet, showing both the 3d and 4p

bands are spin-polarised.
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Conclusions

In this thesis four different crystalline materials were studied using x-ray, neutron, and
muon experimental techniques. These materials all contain iron but display a variety of
different and interesting electronic phenomena. Understanding the microscopic mecha-
nisms that leads to these electronic phenomena will aid in the design of new materials
with technological applications.

The third chapter studied the an oxygen-vacancy-ordered perovskite SrFeO3−δ. This
system has five structures separated by miscibility gaps. The δ = 1/8 structure displays
both negative and positive colossal magnetoresistance. The δ = 1/8 structure has three
different iron sites with different valencies. Bulk transport measurements of the mag-
netic susceptibility and resistivity characterised the magnetoresistance transition, and x-
ray diffraction identified a structural transition as well as incommensurate structural satel-
lites. Resonant x-ray scattering at the iron LIII edge showed that charge-ordering occurs
at the same incommensurate wavevector. The temperature dependence of the incom-
mensurate satellite peaks show a incommensurate-commensurate transition, locking into
q = (0, 0, 5/8) concomitant with the appearance of negative magnetoresistance. An addi-
tional reflection was found at the iron LIII edge at the q = (0, 0, 0.5) position whose origin
was determined to be magnetic. The temperature dependence of the magnetic and charge
reflections suggest that the magnetism is the driving order-parameter which causes both
the structural and incommensurate-commensurate charge-order transitions. This provides
a mechanism between the magnetism and the resistivity of the sample providing an ex-
planation for the magnetoresistance. The magnetic reflection was also shown to resonate
at the oxygen K-edge, providing direct evidence of spin-polarised oxygen with a small
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orbital moment present at the oxygen site. This confirms an indirect exchange-interaction
via the oxygen anion is crucial in determining the magnetic ground state. The long-range
charge-, and magnetic-, order are both mediated via shared oxygen ligands, providing a
likely origin for the microscopic mechanism responsible for the magnetoresistance.

The fourth chapter looked at the distorted kagomé lattice material FeCrAs. This ma-
terial has two magnetic ions, the chromium atoms sit on the kagomé lattice and the iron
atoms sit on a triangular lattice of iron trimers. Previous studies have suggested the iron
magnetic moment is quenched and the chromium site orders in a

√
3 ×
√

3 supercell at
a relatively high temperature of 125 K. A combination of susceptibility, heat capacity
and muon relaxation spectroscopy measurements were used to study this system. No
evidence of a simple antiferromagnetic transition was seen. A spin-freezing phenomena
was measured at low temperatures in the magnetic susceptibility measurement. Muon
spectroscopy shed light on the complex magnetism in this system, and three different
magnetic phases were identified by taking muon spectra at different temperatures. At
room temperature the muon spectroscopy is dominated by the nuclear moments. Upon
cooling below 225 K the muons depolarise more rapidly. The frequency of depolarisation
increases upon cooling down to 48 K where the frequency drops sharply when the system
enters a spin-frozen phase. The depolarisation rate of the middle phase can be described
by a Boltzmann-like exponential with a characteristic energy of 20 meV. This character-
istic energy matches to the thermal energy of the transition temperature of 225 K. The
spin-freezing transition temperature, where this magnetic behaviour disappears at 48 K
has a thermal energy of 4 meV. Monte Carlo simulations predict that the chromium on
the kagomé lattice will only remain short-ranged ordered. The 20 meV energy can be
interpreted as the strength of the short-range interactions between the chromium atoms.
Monte Carlo simulations suggest the system may undergo long-range order if interactions
between the iron and chromium layers are taken into consideration. The 4 meV energy
at 48 K may refer to the strength of the interaction between chromium and iron layers,
and only below 48 K, when interlayer interactions take effect, can the system enter a
spin-glass phase.

The fifth chapter looked at the iron pnictide end member FeAs. Since the discovery of
superconductivity in the iron pnictides in 2008, there has been much interest in this family
of compounds. FeAs is a simply binary system with the iron and arsenic forming a 3d

network of face sharing octahedra. FeAs is an itinerant magnet. Previous neutron diffrac-
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tion studies identified FeAs to have a magnetic helix ground state. More recent magnetic
susceptibility and polarised neutron studies have suggested the magnetic structure is more
complex, with asymmetry seen within the plane of the helix. We completed a resonant
x-ray scattering study of a single crystal of FeAs at both the soft x-ray iron LII/III edges
and the hard x-ray iron K edge. Detailed full polarisation analysis of the resonant scatter-
ing was able to reveal quantitative information about the magnetic structure. The results
of full polarisation and azimuthal analysis of the resonant x-ray scattering, showed the
helical structure was quite elliptical, with the moment along the b-axis being 2.58±0.03
times longer than the moment along the a-axis. The scattered linear polarisation of the
resonant scattering was measured for incident circularly polarised x-rays, revealing the
chirality of the magnetic helix to be right-handed. The appearance of a magnetic satellite
around the forbidden (0, 0, 1) Bragg peak at the iron LIII edge could only be explained
by out-of-plane c-axis canting of the moment. Due to the crystal symmetry this canting
would flip between equivalent iron sites in the unit cell, creating a secondary spatial fre-
quency to the periodicity of the magnetic helix, creating a longer repeat unit than given
by the magnetic wavevector τ = 0.389. Full polarisation analysis of this second satellite
peak showed it’s origin to be from a c-axis component.

The sixth chapter looked at the frustrated triangular lattice antiferromagnet, CuFeO2.
This system should be considered an archetypal triangular lattice antiferromagnet, except
it shows an unusual Ising-like transition at 14 K. The magnetic field phase diagram for
CuFeO2 shows a wealth of different phases. In zero magnetic field the system changes
from paramagnetic to a incommensurate partially-disordered phase at 14 K, and then to a
four-sublattice phase below 11 K. Upon application of a magnetic field this four-sublattice
phase changes to a ferroelectric incommensurate phase at 7 T, then a five-sublattice phase
around 13 T. We performed neutron and x-ray scattering experiments exploring this phase
diagram. Resonant x-ray scattering of the four-sublattice phase showed that the system
does have a collinear Ising-type structure. The resonant spectra showed unusually large
contributions from E2E2 scattering and rebut the idea the CuFeO2 is a pure spin trian-
gular lattice antiferromagnet, showing that both the 3d and 4p bands are spin-polarised.
Structural satellites were identified at twice the magnetic wavevector with x-ray diffrac-
tion, confirming the strong spin-lattice coupling which creates the Ising-like behaviour.
Studying the structural peaks over the transition between the partially disordered incom-
mensurate phase and the five-sublattice phase showed this transition to be discontinuous.
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The five-sublattice phase was found to have a multi-q magnetic structure with both an
antiferromagnetic (1/5, 1/5, 3/2) and ferromagnetic (1/5, 1/5, 0) contributions. Neutron scatter-
ing in the ferroelectric incommensurate phase was not sufficient to distinguish between a
cycloidal and helical spin structure. The appearance of additional (q, q, 3/2) satellite reflec-
tions around (1/2, 1/2, 0) type positions, in the ferroelectric phase showed the non-collinear
structure splits into two inequivalent orbits of the non-collinear structure with a phase
difference between them.

These four magnetic materials all contain iron, but show a broad range of magnetic
phases. The interplay between the crystal symmetry of the iron site, ligand co-ordination
and valency cause this variety of possible electronic phases to exist for iron-based com-
pounds from spin-glass, ferroelectricity, elliptical spin helices, charge-order and magne-
toresistance.

There are always more questions that can be answered and the future work to build
upon that completed in this thesis splits into two parts; the continuation of research around
the materials studied and the development of experimental techniques in accessing quanti-
tative information. Performing diffraction experiments on SrFeO3−δ under magnetic field
would give insight into the origin of the magnetoresistance. FeCrAs is is very sensitive to
the occupancy of the iron and chromium site. Exploring the phase diagram of the system
Fe1+xCr1−xAs would reveal information on the interaction between the trimer and kagomé
layers. Full polarisation analysis of the FeAs provided new quantitative information on
the structure of magnetic helix. Future work would include performing the diffraction
technique on other noncollinear systems, such as the non-chiral spiral present in CeAl2.
This technique should be sensitive to pick up any deviations from a perfect circular helix
in systems like the archetypal helical magnet holmium. Further research on CuFeO2 re-
quires the development of new diffractometers which can apply magnetic fields at angles
other than perpendicular to the scattering plane. This constraint is a limiting factor in the
application of a whole host of existing diffraction techniques to the problem, as the engi-
neering constraints of supporting a large magnet on a diffractometer make them currently
impossible to carry out. Single crystal time of flight Laue images on WISH provided an
alternative but further work would require much larger access to reciprocal space, and the
development of refinement procedures to analyse the patterns.

179



Bibliography

[1] A. Lebon, P. Adler, C. Bernhard et al., Phys. Rev. Lett., 92 037202 (2004).

[2] T. T. A. Lummen, C. Strohm, H. Rakoto et al., Phys. Rev. B, 81 224420 (2010).

[3] A.-M. Haghiri-Gosnet and J.-P. Renard, J. Phys. D Appl. Phys., 36 127 (2003).

[4] F. Zheng, Z. Wang, Z.-G. Fu et al., Europhys. Lett., 103 27001 (2013).

[5] F. L. Pratt, P. J. Baker, S. J. Blundell et al., Nature, 471 612 (2011).

[6] A. Kholkin, N. Pertsev, and A. Goltsev, In A. Safari and E. Akdoan (Eds.), Piezo-
electric and Acoustic Materials for Transducer Applications, pp. 17–38. Springer
US (2008).

[7] D. I. Khomskii, J. Magn. Magn. Mater., 306 1 (2006).

[8] S. D. Matteo, J. Phys. D: Appl. Phys., 45 163001 (2012).

[9] J. B. Clark, J. W. Hastie, L. H. E. Kihlborg et al., Pure Appl. Chem., 66 577 (1994).

[10] S. Blundell, Magnetism in Condensed Matter (Oxford Master Series in Physics).
Oxford University Press (2001).

[11] R. Peierls, T. A. Kaplan, and P. W. Anderson, Phys. Today, 44 13 (1991).

[12] P. W. Anderson, P. Langacker, and A. K. Mann, Phys. Today, 43 117 (1990).

[13] M. F. Collins, Magnetic critical scattering. Oxford University Press (1989).

[14] V. M. Dubovik and V. V. Tugushev, Phys. Rep., 187 145 (1990).

[15] J. D. Jackson, Classical Electrodynamics Third Edition. Wiley (1998).

[16] G. Subı́as, J. Herrero-Martı́n, J. Garcı́a et al., Phys. Rev. B, 75 235101 (2007).

[17] S. Di Matteo, Y. Joly, A. Bombardi et al., Phys. Rev., 91 257402 (2003).

180



Bibliography

[18] V. Scagnoli, U. Staub, Y. Bodenthin et al., Science, 332 696 (2011).

[19] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys. Condens. Mat., 20 434203
(2008).

[20] T. V. Ramakrishnan, H. R. Krishnamurthy, and S. R. Hassan, Phys. Rev., 92 157203
(2004).

[21] K. Liu, X. W. Wu, K. H. Ahn et al., Phys. Rev. B, 54 3007 (1996).

[22] M. Angst, R. P. Hermann, W. Schweika et al., Phys. Rev. Lett., 99 256402 (2007).

[23] M. A. Ruderman and C. Kittel, Phys. Rev., 96 99 (1954).

[24] T. Kasuya, Prog. Theor. Phys., 16 45 (1956).

[25] K. Yosida, Phys. Rev., 106 893 (1957).

[26] I. Dzyaloshinsky, J. Phys. Chem. Solids, 4 241 (1958).

[27] T. Moriya, Phys. Rev., 120 91 (1960).

[28] S.-W. Cheong and M. Mostovoy, Nat. Mater., 6 13 (2007).

[29] H. A. Jahn and E. Teller, P. Roy. Soc. Lond. A Mat., 161 220 (1937).

[30] J. B. Goodenough, Phys. Rev., 100 564 (1955).

[31] J. Rodrı́guez-Carvajal and F. Bourée, EPJ Web of Conferences, 22 00010 (2012).

[32] C. G. Barkla, P. Roy. Soc. Lond. A Mat., 77 247 (1906).

[33] M. Born and E. Wolf, Principles of Optics. Cambridge University Press, 7th ed.
(1999).

[34] M. Blume and D. Gibbs, Phys. Rev. B, 37 1779 (1988).

[35] F. de Bergevin and M. Brunel, Acta Crystallogr. Sec. A, 37 314 (1981).

[36] F. W. Lipps and H. A. Tolhoek, Physica, 20 85 (1954).

[37] U. Fano, Rev. Mod. Phys., 29 74 (1957).

[38] F. W. Lipps and H. A. Tolhoek, Physica, 20 385 (1954).

[39] R. C. Jones, J. Opt. Soc. Am., 31 488 (1941).

[40] H. Hurwitz, Jr and R. C. Jones, J. Opt. Soc. Am, 31 493 (1941).

181



Bibliography

[41] R. C. Jones, J. Opt. Soc. Am., 31 500 (1941).

[42] R. C. Jones, J. Opt. Soc. Am, 38 671 (1948).

[43] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics.
Reed, 2nd ed. (1982).

[44] A. Akhiezer and V. Berestetskii, Quantum Electrodynamics. Wiley (1965).

[45] M. Blume, J. Appl. Phys., 57 3615 (1985).

[46] M. Altarelli, In E. Beaurepaire, H. Bulou, F. Scheurer et al. (Eds.), Magnetism:
A Synchrotron Radiation Approach, vol. 697 of Lect. Notes Phys., pp. 201–242.
Springer Berlin Heidelberg (2006).

[47] G. Taylor, Acta Crystallogr. Sec. D, 59 1881 (2003).

[48] P. J. Brown, A. G. Fox, E. N. Maslen et al., Intensity of diffracted intensities. John
Wiley & Sons, Ltd (2006).

[49] J. P. Hill and D. F. McMorrow, Acta Crystallogr. Sec. A, 52 236 (1996).

[50] S. D. Matteo, J. Phys. D: Appl. Phys., 45 163001 (2012).

[51] J. P. Hannon, G. T. Trammell, M. Blume et al., Phys. Rev. Lett., 61 1245 (1988).

[52] L. Koester, In Neutron Physics, vol. 80 of Springer Tracts in Modern Physics, pp.
1–55. Springer Berlin Heidelberg (1977).

[53] A. Foderaro, The Neutron Interaction Theory. The MIT Press, Cambridge, Mas-
sachusetts and London, England (1971).

[54] S. W. Lovesey, The Theory of Neutron Scattering from Condensed Matter: Volume
I (The International Series of Monographs on Physics) (v. 1). Oxford University
Press (1985).

[55] S. Mughabghab, M. Divadeenam, and N. Holden, Academic, New York (1981).

[56] L. D. Landau and L. M. Lifshitz, Quantum Mechanics, Third Edition: Non-
Relativistic Theory (Volume 3). Butterworth-Heinemann (1981).

[57] S. W. Lovesey, The Theory of Neutron Scattering from Condensed Matter: Volume
II (The International Series of Monographs on Physics). Clarendon Press (1986).

[58] L. C. Chapon, P. Manuel, P. G. Radaelli et al., Neutron News, 22 22 (2011).

182



Bibliography

[59] A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminol-
ogy. Blackwell Scientific Publications, 2nd ed. (1997).

[60] J. G. Bednorz and K. A. Müller, Eur. Phys. J. B, 64 189 (1986).

[61] L. F. Schneemeyer, J. V. Waszczak, T. Siegrist et al., Nature, 328 601 (1987).

[62] H. Maeda, Y. Tanaka, M. Fukutomi et al., Jpn. J. Appl. Phys., 27 L209 (1988).

[63] Y. Moritomo, A. Asamitsu, H. Kuwahara et al., Nature, 380 141 (1996).

[64] N. B. Aetukuri, A. X. Gray, M. Drouard et al., Nat. Phys., 9 661 (2013).

[65] F. Kubel and H. Schmid, Acta Crystallogr. Sec. B, 46 698 (1990).

[66] T. Kimura, T. Goto, H. Shintani et al., Nature, 426 55 (2003).

[67] S.-W. Cheong, Nat. Mater., 6 927 (2007).

[68] H. Bethe, Ann. Phys., 395 133 (1929).

[69] J. Van Vleck, Phys. Rev., 41 208 (1932).

[70] S. Jin, T. H. Tiefel, M. McCormack et al., Science, 264 413 (1994).

[71] G.-Q. Gong, C. Canedy, G. Xiao et al., Appl. Phys. Lett., 67 1783 (1995).

[72] J. Hodges, J. Solid State Chem., 151 190 (2000).

[73] P. K. Gallagher, J. Chem. Phys., 45 2466 (1966).

[74] T. Takeda, Y. Yamaguchi, and H. Watanabe, J. Phys. Soc. Jpn., 33 967 (1972).

[75] A. Bocquet, A. Fujimori, T. Mizokawa et al., Phys. Rev. B, 45 1561 (1992).

[76] J. Rodrı́guez-Carvajal, M. Hennion, F. Moussa et al., Phys. Rev. B, 57 R3189
(1998).

[77] J. MacChesney, R. C. Sherwood, and J. F. Potter, J. Chem. Phys., 43 1907 (1965).

[78] P. K. Gallagher, J. MacChesney, and D. Buchanan, J. Chem. Phys., 41 2429 (1964).

[79] Y. Tsujimoto, C. Tassel, N. Hayashi et al., Nature, 450 1062 (2007).

[80] L. Seinberg, T. Yamamoto, C. Tassel et al., Inorg. Chem., 50 3988 (2011).

[81] P. Adler, A. Lebon, V. Damljanovic̀ et al., Phys. Rev. B, 73 094451 (2006).

183



Bibliography

[82] M. Takano, T. Okita, N. Nakayama et al., J. Solid State Chem., 73 140 (1988).

[83] M. Reehuis, C. Ulrich, A. Maljuk et al., Phys. Rev. B, 85 184109 (2012).

[84] W. Pfann and J. K. Kennedy, J. Electrochem. Soc., 114 26C (1967).

[85] J. Loudon, S. Cox, A. Williams et al., Phys. Rev. Lett., 94 097202 (2005).

[86] C. H. Chen and S.-W. Cheong, Phys. Rev. Lett., 76 4042 (1996).

[87] G. C. Milward, M. J. Calderon, and P. B. Littlewood, Nature, 433 607 (2005).

[88] M. Abbate, F. M. F. de Groot, J. C. Fuggle et al., Phys. Rev. B, 46 4511 (1992).
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