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Cecilia Piergentili 

Exploring the determinants of metal sensing in Salmonella 

typhimurium using FrmR, a non-metal sensing RcnR/CsoR 

family member 

Salmonella FrmR, a member of the RcnR/CsoR family of metalloregulators, has been 

characterised during the course of this work and was coincidentally confirmed to bind 

specifically to the frmRA operon, which encodes a putative Zn(II)-requiring class III alcohol 

dehydrogenase. FrmR shares a high degree of similarity with Ni(II)/Co(II)-sensing RcnR, in 

particular conserving two residues of a so-called WXYZ motif required to detect metals. Metal-

binding properties of FrmR were therefore extensively investigated in vitro and its ability, or 

otherwise, to respond to metals explored in vivo.  

FrmR binds Zn(II), Cu(I), Co(II) and Ni(II), adopting different geometries, and always 

involving a mercapto group from the only cysteine residue (Cys35). Moreover, KZn(II)
FrmR

 is only 

slightly below the range of affinity found for other zinc sensors.  

Since FrmR fails to sense metals in cells, where only formaldehyde is detected, questions about 

which parameters are required in metal regulation in Salmonella and, in general, in bacteria 

were investigated. A single-point mutation (Glu64  His) allows FrmR to sense cellular zinc 

and cobalt. FrmR and E64HFrmR have been consequently used as a case of study to test 

hypotheses about the mechanisms determining which metals are detected by a given sensor in 

cells.  

In addition, the ability of FrmR to detect cellular formaldehyde has been investigated, and a 

reaction mechanism tested by site-directed mutagenesis in vitro. Salmonella Ni(II)/Co(II)-

sensing RcnR has been characterised, and employed to test the specificity of formaldehyde 

responsiveness of FrmR. By a single point-mutation (Ser2  Pro), the Ni(II)/Co(II)-sensing 

RcnR has been successfully switched to a formaldehyde sensor in vitro, further endorsing the 

proposed mechanism.  

Investigation of FrmR structure has been pursued by producing apo- and Zn(II)-bounded FrmR 

and E64HFrmR crystals, which were then analysed at the Diamond Light Source. The best 

dataset has been processed to obtain a 3D-structure. 
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1.1 Control of the intracellular metal landscape 

 Metals in biological systems 1.1.1

Carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorous (P) and sulfur (S) are the 

constituents of the cell: proteins, nucleic acids, lipids, membrane, sugars, and metabolites; the 

chemistry of these six elements and their compounds is considered by classical biochemistry. 

However, additional elements belonging to the d-block and the alkaline and alkaline-earth 

groups play critical roles and are essential for life.  

Sodium (Na), potassium (P), magnesium (Mg) and calcium (Ca) have an important role in living 

organisms, in relatively high proportions and for this reason they are called “bulk-metals”. The 

reason for their high bioavailability lies in the solubility of their salts, together with their natural 

abundance. The main biological functions of Na
+
 are associated with membrane potentials, 

while its chemistry as enzyme activator is very limited (Alberts et al. 2002; Rana et al. 2011). 

Potassium, however, in addition to the important role in stabilizing nucleic acids structures 

(Marathias & Bolton 2000; Owczarzy et al. 2008), is also necessary for the activation of a large 

variety of enzymes, such as pyruvate kinase, pyruvate phosphatase, DNA polymerase, aldehyde 

dehydrogenase, etc. (Oria-Hernandez et al. 2005; Boyer et al. 1942; Di Cera 2006; Kachmar & 

Boyer 1953, Suelter 1970, Bostian & Betts 1978;). Amongst the alkaline metals, only K
+
 has 

been shown to act as stoichiometric cofactor (in particular, in the pyruvate kinase, in association 

with Mg
2+

) (Oria-Hernandez et al. 2005). The low charge density of potassium precludes its use 

as a Lewis acid and so its role consists of orienting the pyruvate in the active site, acting as a 

bridge between the enzyme and the substrate (Oria-Hernández et al. 2005). The Lewis-acid 

character of Mg(II) and its polarizing power against water molecules, oxygen atoms of 

phosphate groups, or phosphoric esters, together with its bioavailability, makes it indispensable 

in the catalysis of many biochemical processes (Cowan 1995, 2002; Black & Cowan 1995). A 

representative example of a process where Mg(II) plays an essential role is the reversible 

transfer of the phosphate group from the phosphoenolpyruvate to the ADP, producing pyruvate 

and ATP (Boyer P. D et al. 1942;  Garcia-Olalla & Garrido-Pertierra 1986). 

The remaining metals belong to the d-block and can be further divided in “trace” and “ultra-

trace” metals. Iron (Fe), copper (Cu) and zinc (Zn) belongs to the first subset and essential to 

virtually all characterised organisms, whereas the ultra-trace subset includes manganese (Mn), 

molybdenum (Mo), cobalt (Co), nickel (Ni), tungsten (W), vanadium (V) and chromium (Cr) 

(Bertini et al. 2000). 

The d-block metal ions are fundamental constituents of approximately one- quarter to one-third 

of all proteins and have roles encompassing structural components of biomolecules, signaling 

molecules, catalytic cofactors in reversible oxidation-reduction and hydrolytic reactions, and in 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Marathias%20VM%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bolton%20PH%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oria-Hern%C3%A1ndez%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16147999
http://www.ncbi.nlm.nih.gov/pubmed/2953122
http://www.ncbi.nlm.nih.gov/pubmed/2953122
http://www.ncbi.nlm.nih.gov/pubmed/2953122
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structural rearrangements of organic molecules and electron transfer chemistry (Bertini et al. 

2000). 

A useful classification is to discern between metal ions possessing structural and functional 

roles depending on whether the metal ion is required to stabilize the three-dimensional structure 

of the macromolecule (e.g. Zn, which is redox-inactive), or is involved in the reactivity of the 

biomolecule. For instance metals that have more than one oxidation state (e.g. Fe, Mn, Cu, Ni, 

Mo, V, W) are used in redox processes. They can act as conveyors of electrons (in the electron-

transfer chain), catalyse oxidation and reduction reactions, or bind to small exogenous 

molecules (e.g. O2) (Bertini et al. 2000; Valko et al. 2015). Metals with good Lewis acid 

properties (such as Zn) are used to catalyse hydrolytic reactions exploiting their ability to 

polarize chemical bonds (representative example is its role in alcohol dehydrogenase) (Coleman 

et al. 1972; Dunn & Hutchison 1973). 

 Physico-chemical factors determining metal-ligand interaction 1.1.2

The high assortment of properties of metal ions makes them simple and convenient co-factors 

available to biomolecules in the cell. The association between metal and ligand depends on 

physico-chemical properties of both species. Metal ions bind a given ligand according to several 

parameters such as its valence state (a higher metal’s net charge is reflected in a stronger ionic 

interaction with an anionic ligand) and its ionic radius (the complexation reaction between a 

given ligand a metal become less favorable as the metal increases its size because this occurs in 

association with a decrease in charge density) (Dudev & Lim 2014). In addition to these, 

preferred coordination geometry, coordination number and charge-accepting ability must be 

considered (e.g. Mg
2+ 

and Zn
2+

 possess the same charge, +2, and a similar ionic radius, 86 and 

88 Å respectively, but zinc ion is a better Lewis acid therefore the final zinc-ligand complex 

will be more stabilized than with Mg
2+

) (Dudev & Lim 2014).  

For a given metal, preferences toward different amino acid residues are driven by the ligand net 

charge (negatively charged residues are more favorable than neutral residues as they can 

stabilize the positively charge located on the metal ion), charge-donating/accepting ability 

(better Lewis bases such as oxygen and sulphur, which are more polarizable, are preferable), 

number of ligands, dipole moment and polarizability (asparagine, glutamine and histidine 

residues are more favorites as they are polar and uncharged) (Dudev & Lim 2014). In addition, 

in many amino acid residues there are more than one donor atom: in these cases the ligands are 

called multidentate and the affinity for the metal species is incremented. 

Not only should the properties of first-shell ligands be taken in account but also those of second-

shell ligands. In fact these residues can stabilize the metal-binding site (resulting in an increased 

metal affinity) (Dudev & Lim 2014; Dudev et al. 2003), interact with and stabilize ligands 

belonging to the inner coordination sphere (Dudev & Lim 2006), and assist metal selection by 
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operating a steric selection (Dudev et al. 2003). They can also “protect” the inner coordination 

shell from unfavorable interactions (Lee & Lim 2011) or aid the proper orientation of the first-

coordination sphere (Dudev et al. 2003; Lesburg et al. 1995; Kiefer et al. 1995; El Yazal et al. 

2000.  

Another fundamental parameter is the effects (increase of coordination site rigidity, effects on 

access of water molecules, repercussions on enzyme catalysis, etc.) that the remaining amino 

acid residues have on the formation of the metal complex. (Dudev & Lim 2014; Kuppuraj et al. 

2009) 

 Metal preference regulation in proteins 1.1.3

Although the overview of parameters involved in metal-binding presented in the previous 

paragraph (Section 1.1.2) could suggest that protein metallation is a finely tuned process, when 

metals compete with each other mismetallation (protein binding the wrong metal) can occur. 

There is not much knowledge regarding how many proteins in the cell get mismetallated and if 

they are recycled or selectively degraded (Foster et al. 2014b). 

The affinities of proteins for metal have a tendency to follow a universal order of preference, 

which for essential divalent metals is the Irving-Williams series: 

Mg(II), Ca(II),< Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II) 

In fact, the Irving-Williams series predicts an order of stability for divalent metal complexes, 

including those coordinated by protein ligands (Irving & Williams 1948, 1953; Foster et al. 

2014b). Although not entirely exhaustive, several theoretical bases have been proposed to 

explain this trend of relative stabilities. These include the evaluation of the Crystal Field 

Stabilization Energy (CFSE), which refers to the number of electrons of a metal located in the 

bonding molecular orbitals (low-energy, stabilizing effect) compared to those in the anti-

bonding molecular orbitals (high-energy, destabilizing effect). CFSE value of Ni(II), which is a 

d
8
 low spin in the tetrahedral geometry, is the highest in the Irving-Williams series, whereas 

CFSE values of Zn(II) and Mn(II) are zero (Weller et al. 2014). The distortion undergone by 

Cu(II) complexes (Jahn-Teller effect) helps explain why these complexes are more stable than 

Ni(II) ones even if CFSE
Ni(II)

 > CFSE
Cu(II) 

(Weller et al. 2014). Another factor is the ionic radius 

length of the metal since a smaller radius allows a higher degree of overlap between metal and 

ligand orbitals, increasing the stabilization of the resulting complex. Although the ionic radius 

of an ion is a property depending on several factors, such as the coordination number, it is 

possible to observe a trend in its variation through the periodic table. For example, Zn(II) has 

the smallest radius in the set, resulting in a short metal-ligand distance and a stabilization of the 

complex (Weller et al. 2014). 
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In addition to the Irving-William series, which deals only with divalent metal ions, monovalent 

copper and trivalent iron are also highly competitive as are cadmium, mercury and silver. 

Notably Cu(I) and Fe(III) are also sparingly soluble. Based only on these affinity considerations 

alone it is unclear how many proteins acquire and bind uncompetitive metal ions such as 

manganese when copper and zinc are also present in the cytosol.  

In order to minimize mismetallation, cells must discern the elements to maintain optimal 

buffered levels of each metal. Ultimately, intracellular bioavailability becomes a major 

determinant of metal-protein speciation because the sum total effects of the parameters 

described above are insufficient to give perfect discrimination between the elements. Bacterial 

and archaeal cells restrict access to competitive metals, keeping these metals out of binding sites 

for less competitive metals (those lower down in the stability series). Each protein competes 

with other proteins for a limited pool of metals therefore the relative metal affinities of the 

different proteins for a particular metal become more important than their absolute metal 

affinities. This is achieved in part by the action of metalloregulatory proteins (sensors) used to 

control the expression of genes encoding proteins that manage metal homeostasis and resistance 

(Waldron et al. 2009).  

Metal sensors (Section 1.2) are specialized allosteric proteins, in which the direct binding of a 

specific metal ion(s) drives a conformational change in the regulator that allosterically activates 

or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby 

converting a poor promoter to a strong one.  

1.2 Metalloregulatory proteins 

Metal sensor proteins bind metal ions and repress, derepress or activate the transcription of 

operons that encode metal-specific efflux pumps, metal transport proteins, metal-sequestering 

proteins and often the metal-responsive transcriptional regulator itself. In this way the correct 

concentration of a particular transition metal in the cell is maintained. Structural (and other) 

studies reveal distinct families of metal sensor proteins: the MerR, ArsR/SmtB and RcnR/CsoR 

families regulate the expression of genes required for metal ion detoxification, efflux and 

sequestration (Pennella & Giedroc 2005). Metal binding leads to activation (MerR) or 

derepression (ArsR/SmtB, RcnR/CsoR) of the resistance operon. In contrast, the DtxR, Fur, and 

NikR families classically regulate genes encoding proteins involved in metal ion utilization 

(Pennella & Giedroc 2005; Giedroc & Arunkumar 2007). Metal binding to these sensors leads 

to repression. This work focused on the metallo-regulatory network of Salmonella enterica 

serovar typhimurium (herein Salmonella typhimurium or Salmonella), which was chosen as 

model organism because is an important foodborne pathogen and a target for anti-microbial 

products. Additionally, there exists a range of preliminary studies of its metal-sensors and of 

homologous proteins from the closely related organism Escherichia coli.  
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Salmonella is a facultative anaerobe, Gram-negative bacterium widely distributed in nature. It is 

the bacterial agent most commonly isolated in cases of foodborne infections, both sporadic and 

epidemic. This organism is present in  nature with more than 2400 known variants (serotypes) 

but the strains most frequently widespread in humans and animal species, in particular those 

reared for the food chain, are S. enteritidis and S. typhimurium. Infections from Salmonella are 

distinguished between typhoid forms (caused by S. typhi and S. paratyphi, responsible for 

typhoid and enteric fevers in general), in which humans are the only reservoir for the organism, 

and the non-typhoid forms, caused by other serotypes (such as S. typhimurium and S. 

enteritidis), responsible for clinical forms with predominantly gastrointestinal event. Salmonella 

enterica subspecies I, serovar typhimurium (S. typhimurium) causes serious medical and 

veterinary problems world-wide causing millions of infections characterized by persistent 

diarrhoea, abdominal pain, fever, and headache, and many deaths each year (Coburn et al. 2007, 

Osman et al. 2010, Majowicz et al. 2010). Salmonella typhimurium strain LT2, the principal 

strain studied as a model for cellular and molecular biology in Salmonella, was isolated in the 

1940s and used in the first studies on phage-mediated transduction. Virulence has been related 

to deficiency and excess of different transition metal ions (such as copper, cobalt, iron, 

manganese, nickel, zinc) (Boyer E. et al. 2002; Zaharik et al. 2004) and the control of transition 

metal availability in this organism depends on the actions and the interactions of metal sensing 

regulatory proteins. Salmonella possesses sixteen deduced DNA-binding metal-sensing 

transcriptional regulators (Figure 1. 1) five of which have previously been characterized. In the 

following sections the families of metalloregulators characterized in various organisms will be 

presented.  

 CsoR/RcnR-like de-repressors 1.2.1

Escherichia coli RcnR (resistance to cobalt and nickel repressor) and Mycobacterium 

tuberculosis (Mtb) CsoR (copper-sensitive operon repressor) are the founding members of a 

large family of bacterial metal-responsive DNA-binding proteins (Blaha et al. 2011) (Figure 1. 

2). 

RcnR was first identified as a repressor of E. coli rcnA (Ni(II)/Co(II) inducible resistance gene) 

expression (Iwig et al. 2006). The induction of this gene, which is divergently transcribed from 

rcnR, is Ni(II)-dependent therefore questions were raised as to whether its regulation was 

correlated with that of nikABCDE expression (Iwig et al. 2006).  Iwig and coworkers used lacZ 

reporter gene assay and EMSA analyses to confirm that RcnR is a Ni(II)/Co(II) dependent rcnA 

regulator. It is thought that RcnR prevents premature shutdown of the nik import system by 

preventing NikR sensing spill over nickel ions (Iwig et al. 2006). When the copper sensing 

Mycobacterium tuberculosis CsoR   
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Figure 1. 1 The families are: m = MerR-like activators (CueR, GolS, ZntR, STM1266, 

STM1390, STM2160, STM4033, STM4320), f= Fur-like co-repressors (Fur, MntR, Zur), n = 

NikR-like co- repressor (NikR), c = CsoR/RcnR-like de-repressors (RcnR, STM1628), o = 

ModE-like co- repressor (ModE), s = SmtB/ArsR-like de-repressor (ArsR). At the start of the 

project, five of the shown regulators have been characterised in S. typhimurium (CueR, GolS, 

Fur, MntR and Zur). For sensors ZntR, NikR, RcnR, ModE, and ArsR were predicted the 

correct metal operator promoter targets considering the sequence similarity and/or gene context. 

In addition, five MerR-homologues and one RcnR/CsoR family member have been identified as 

possible metal-sensing representatives. 

This figure was produced by Dr. Jen Cavet for the Industrial Partnership Awards Proposal 

presented to P&G.  
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Figure 1. 2 Scheme representing members of the RcnR/CsoR family of DNA-binding 

transcriptional de-repressors, their cognate metals and the microorganisms in which they have 

been isolated.  
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transcriptional regulator was discovered by Liu and collaborators (Liu et al. 2007), a novel 

metalloregulatory family was discovered. 

The Cu(I)-sensitive operon repressor CsoR was subsequently characterized in various Gram-

positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Thermus thermophilus, L. 

monocytogenes, and Streptomyces lividans (Smaldone & Helmann 2007; Ma et al. 2009a; Baker 

et al. 2011; Sakamoto et al. 2010; Corbett et al. 2011; Dwarakanath et al. 2012). CsoR 

homologues were also identified in cyanobacteria and proteobacteria, however it is not yet clear 

if they are involved in copper regulation. The gene coding for CsoR, csoR, is located upstream 

of the copper responsive gene ctpV which is a putative copper exporter involved in the copper 

efflux response of Mycobacterium tuberculosis to copper stress (Ward et al. 2010) The cso 

(copper sensitive operon) operon includes csoR, ctpV and an uncharacterized gene located 

between the two, which are co-transcribed (Liu et al. 2007).  

In addition to RcnR and CsoR, various family members have been characterised, including InrS 

(internal nickel-responsive repressor), RicR (regulated in copper repressor), DmeR (divalent 

metal efflux repressor) and the non-metal responding CstR (CsoR-like sulphur transferase 

repressor) and FrmR (formaldehyde responsive repressor). 

1.2.1.1 Ni(II)- and Co(II)-sensing repressor RcnR  

In E. coli, regulation at the transcriptional level of genes coding for RcnA and RcnB, 

(responsible for Ni(II) and Co(II) export when the concentration of these ions reaches the 

toxicity limit) is operated by RcnR. RcnR is a homotetramer of ~ 40 kDa that regulates the 

transcription of RcnA and RcnB by binding to the promoter in the apo-form. Although RcnR is 

capable of binding a number of transition metals, only coordination of Ni(II) and Co(II) triggers 

the conformation change which leads to the disruption of the protein:DNA interactions as the 

affinity of the holo-form for the promoter region is strongly decreased (Iwig et al. 2008, Higgins 

et al. 2012). One Ni(II) or Co(II) ion binds to a RcnR protomer with low-nanomolar affinities 

(2.5 x 10
-8

 and 5 x 10
-9

 M, respectively) which stabilizes the protein to denaturation (Iwig et al. 

2008). In E. coli, when the concentration of free Ni(II) or Co(II) increases above the toxicity 

level, RcnR binds the metal ions leading to induction of rcnA expression Iwig et al. 2008) and 

the correct [Ni(II)] or [Co(II)] will be restored due to the resulting efflux. Both Ni(II)- and 

Co(II)-RcnR complexes possess a common N-terminal coordination motif (NH2-Xaa-NH-His) 

but the remaining coordination environment is different for the two transition metals. As 

revealed by XAS, XANES and EXAFS analyses, Ni(II) and Co(II) bind in a pseudo-octahedral 

geometry to a similar six-coordinated metal site (with ligands Cys(His)2(N/O)3) (Iwig et al. 

2008). Each metal coordinates a conserved cysteine ligand with distinct M-S distances, 2.54 Å 

for Ni(II)-RcnR and 2.24 Å for Co(II)-RcnR). The long distance observed by Iwig and 

collaborators (Iwig et al. 2008) can be explained considering that six-coordinate Ni(II) 
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complexes are high spin (with two unpaired electrons), with a small crystal field splitting energy 

which renders the complex substitutionally labile, characterised by longer M-L interatomic 

distances. 

Since E. coli contains an additional nickel-responsive transcriptional regulator, NikR, Ni(II)-

binding sites of the two proteins were extensively compared. When nickel stress is present in the 

cytoplasm the first to detect Ni(II) is NikR which subsequently binds to its operator region in 

order to prevent transcription of nikABCDE cassette which would otherwise allow production of 

the NikABCDE uptake permease. Only when full repression of the cassette is achieved, RcnR, 

which possesses a weaker affinity for Ni(II), starts to detect the metal and does dissociate from 

rcnA operator (Iwig et al. 2006). 

E. coli NikR is characterized by two Ni(II) binding sites, where the tightest has three His and 

one Cys involved in Ni(II) coordination (Schreiter et al. 2003). This metal site has a high crystal 

field splitting, resulting in a low-spin complex with a square planar coordination geometry 

(Carrington et al. 2003, Schreiter et al. 2003). The lower affinity (comparable to the Ni(II)-site 

in RcnR) site is high-spin, six-coordinated but unlikely to be metallated due to a greater 

abundance of RcnR. The intrinsic difference between the high-spin (in RcnR) and the low-spin 

(in NikR) Ni(II)-binding sites results in the two proteins adopting different ligand exchange 

mechanisms, in fact RcnR is supposed to undergo a dissociative ligand-substitution (favored in 

tetrahedral and octahedral complexes) whereas NikR an associative ligand-substitution (favored 

in square planar complexes) (Iwig et al. 2008; Wilkins 1991). The mechanism adopted by NikR 

means that a conformational change must occur in order to allow metal release as the metal-

binding site becomes buried and not easily accessible (Wilkins 1991; Rowe et al. 2005). 

Conversely, RcnR interaction with Ni(II) is readily disrupted as the metal ion level starts to 

decrease (Iwig et al. 2008; Rowe et al. 2005). Both the Ni(II)-binding site in RcnR and the high 

affinity Ni(II)-binding site in NikR contains one cysteine residue coordinates the divalent metal. 

This amino acid residue is characterized by a thiolate group, which is a soft ligand according to 

the HSAB theory, and is often used in metal binding (an example are the cysteines involved in 

Zn(II) coordination in Zinc Finger domains, (Tang et al. 2014) or the [NiFe]-hydrogenase which 

binds Ni(II) through Cys residue). Cysteines, usually deprotonated, bind metals by interacting 

with a single metal ion or forming a bridge between two, exploiting the two lone electron pairs 

on the sulfur. Sulfur shows both σ- and π-electron donation as it possesses occupied p orbitals, 

therefore it tends to form a stronger interaction with metals which present unfilled σ-symmetry 

orbitals. Ni(II)-NikR is a low spin complex (empty σ-orbitals, Ni-Cys 2.13 Å; Carrington et al. 

2003), whereas RcnR forms a high-spin complex with Ni(II) and the partially occupied σ-

orbitals result in a longer M-L bond (Ni-Cys 2.54 Å; Iwig et al. 2008). Since Co(II) is a d
7
 ion 

with one vacancy in the π-orbital allowing π-interactions, the M-L interaction will have an 

intermediate length between the two just described (Co-Cys 2.24 Å; Iwig et al. 2008). 
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Site-directed mutagenesis analysis suggested which residues are involved in Ni(II)- and Co(II)-

binding sites, as already proposed by EXAFS data (Iwig et al. 2008). Both Ni(II) and Co(II) are 

coordinated through the primary amine NH2 of the N-terminal region (Iwig et al. 2008). This 

portion was shown to be fundamental in order for RcnR to distinguish between cognate and 

non-cognate metals, as only Ni(II) and Co(II) are detected employing this coordination motif 

(Higgins et al. 2012). Although RcnR is able to bind a number of additional metals (Zn(II), 

Cu(II), Cu(I)), it does so involving three protein residues and one anion from the buffer, not 

including the N-terminal amine, resulting in these metals inability to elicit an allosteric 

conformational change (Higgins et al. 2012). The side-chain of His 3 appears to be decisive in 

metal selectivity in RcnR. Both mutation of the His3 into a Leu or insertion of an extra Ala in 

position 2, disrupt Ni(II)- and Co(II)- binding implying a fundamental role of the N-terminus 

region in metal responsiveness (Iwig et al. 2008; Higgins et al. 2012). Since RcnR has a 

preference for high coordination metal complexes, the introduction of non-coordinating ligands 

and subsequent formation of a metal binding site with ligands placed with a square-planar 

geometry, led to no detectable responsiveness of Co(II) and Ni(II) (Iwig et al. 2008). Further 

confirmation of His3 being involved in metal coordination came from mutation of the residue to 

a potential metal ligand such as Cys or Glu with generation of a residual metal response, 

although substantially impaired (Higgins et al. 2012). Combination of XAS analyses and site-

directed mutagenesis suggests that in addition to His3 sidechain also the backbone amide 

constitutes a Ni(II) and Co(II) ligand (Iwig et al. 2008). 

In addition to His3 further metal-binding residues were identified in His64 and, as already 

mentioned, Cys35, which contribute to metal coordination in different ways. Spectroscopic 

studies conducted by Iwig and collaborators (Iwig et al. 2008) with C35ARcnR in the presence 

of Co(II) or Ni(II) demonstrate that the residue is a key ligand in metal binding. However, 

substitution of Cys35 to Ala fails to disrupt Ni(II) responsiveness which may be unexpected. An 

explanation alludes to a more conspicuous role of Cys in metal-selectivity rather than the 

allosteric conformational change upon metal binding (Iwig et al. 2008). In the literature it is 

possible to find examples of characterized metalloregulator proteins where metal-binding 

residues were distinguished between those having an allosteric function (i.e. capable to 

communicate the conformational change upon metal-binding to the DNA-binding regions) and 

those necessary to maintain the preferred geometry (Eicken et al. 2003; Pennella et al. 2006). 

However, a C35ARcnR variant shows a completely abolished  Co(II) responsiveness, indicating 

a structural difference in the Ni(II)/Co(II)-mediated mechanisms regulating DNA release from 

RcnR (Iwig et al. 2008).  

His60 appears to be involved in Co(II) coordination but not Ni(II), as shown by spectroscopic 

and mutagenic studies (Iwig et al. 2008), suggesting that RcnR can implement this extra ligand 

in order to discriminate between the two divalent metals. 
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Summarizing these findings, Co(II) is coordinated by the NH2-terminus, His3 backbone amide 

and His3, Cys35, His60 and His64 sidechains, whereas Ni(II)-coordination differs only for not 

using His60. The sixth position remains therefore free to be coordinated by a solvent molecule 

or an additional main chain amide (Iwig et al. 2008). 

1.2.1.2  Copper(I)-sensing repressor CsoR  

CsoR was firstly structurally characterized by Liu and co-workers (Liu et al. 2007) showing an 

α-helical protein constituted by a dimer of dimers where four helices (α1-α2-α1’-α2’) are 

arranged in a four-helix bundle architecture and two additional helices (α3/α3’ ) from the C-

terminal region are organized at the tetramer interface. CsoR binds cuprous ions with extremely 

tight affinity (Kd spans a range of 10
-18 

- 10
-21 

M amongst different organisms; Dwarakanath et 

al. 2012; Ma et al. 2009a; Liu et al. 2007) at the periphery of the bundle. The protein adopts a 

trigonal coordination geometry which employs two cysteine residues (in M. tuberculosis 

notation, Cys36 from the α2-helix and Cys65’ and His61’ from the opposite subunit within the 

dimer) as shown by X-ray crystallography (Liu et al. 2007). XAS (X-ray absorption 

spectroscopy) and EXAFS (extended X-ray absorption fine structure) spectroscopies also 

confirmed that M. tuberculosis CsoR binds Cu(I) ion via a S2N ligand set allocated in a trigonal 

coordination geometry (Liu et al. 2007). Although XAS analysis executed on H61A reports a 

two-coordinate Cu(I), suggesting that His61 is involved in cuprous binding, EXAFS analysis of 

wild-type CsoR does not exhibit features attributable to imidazole coordination, which can be 

explained by taking in account a different Cu(I) coordination in solution or a diverse orientation 

of the imidazole ring with respect to the Cu-N bond (Liu et al. 2007). Further investigation 

conducted by EMSA on C36A and H61A CsoR variants display the loss of copper 

responsiveness and a significant weakening of Cu(I) affinity (Liu et al. 2007). 

Analogous structural studies conducted on B. subtilis (Bsb) and S. aureus (Sa) CsoR 

homologues confirmed a 3-coordinate Cu(I) with M-S distance similar to what reported for M. 

tuberculosis (Mtb) CsoR (Ma et al. 2009a; Grossoehme et al. 2011).  

Mutation of Glu90 in BsbCsoR (corresponding to Glu81 in MtbCsoR) does not affect Cu(I) 

binding at least in as much as the protein variant retains an analogous copper affinity (Ma et al. 

2009a). 

Stabilization of copper-CsoR is further accomplished with the aid of a hydrogen-bond network 

which involves His61’, Glu81’ (from one subunit) and Tyr35 (from the other subunit) that is 

important to communicate the Cu(I)-binding to CsoR to the protein regions involved in DNA-

interaction (Higgins et al. 2007) (see Section 7.3.2 for further discussion). Glu81 has been 

identified as central in the allosteric response regulated by cuprous coordination (Liu et al. 

2007). In fact, when Glu81 is mutated to a residue unable to bind metals (E81  A), the CsoR 

variant still binds the cso operon with an affinity comparable with that of wild-type but Cu(I) 

coordination does not result in an equivalent weakening of DNA binding affinity (Liu et al. 
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2007). A similar result was found by Ma et al. (2009a) in B. subtilis CsoR (Glu90 in BsuCsoR 

notation) corroborating the hypothesis that the hydrogen-bond network is functionally important 

in driving negative allostery regulation of DNA binding by Cu(I) amongst CsoR homologues .  

In a recent study by Chang and collaborators (Chang et al. 2014) Geobacillus 

Thermodenitrificans CsoR (GtCsoR) has been used as a model to study CsoR proteins 

belonging to other mesophilic bacilli such as B. subtilis, which differ significantly from the 

better characterised M. tuberculosis CsoR. The interpretation presented in this work is that 

several Cu(I)-sensing CsoR proteins have evolved within the RcnR/CsoR family, conserving 

specific residues (other than those belonging to the X-Y-Z motif or the secondary coordination 

sphere) which allow discrimination amongst these sub-CsoR families (Chang et al. 2014). 

Members of the GtCsoR sub-family employ Arg65 and Lys101 to achieve high affinity DNA-

binding; upon Cu(I) binding these residues are either involved in metal-binding or merely 

reoriented causing the protein to rearrange in a low affinity DNA-binding state (Chang et al. 

2014) 

Use of NMR and SAXS analysis to investigate the allosteric changes induced by Cu(I)-binding 

to GtCsoR, shows that metal binding elicits a compaction of the tetramer, with the N-terminal 

tail redirected toward the Cu(I)-binding site and the formation of hydrogen-bonds and 

electrostatic interactions which stabilise the holo- form of the protein (Chang et al. 2014) 

Since the N-terminal region is also employed by non-Cu(I) responsive CsoR family members, 

such as E coli RcnR (Iwig et al. 2008) and Synechocystis InrS (Foster et al.  2012; Foster et al. 

2014), Chang and collaborators propose to use the GtCsoR model to better comprehend how 

these proteins coordinate the respective cognate metals using the N-terminal region. Since 

residue Arg18 in GtCsoR is shown to be crucial during the folding process of the N-terminal 

tail, the aligned residues in EcRcnR (His3) and SyInrS (His21), were proposed to be involved. 

1.2.1.3 Regulated in copper repressor RicR 

Festa and co-workers (Festa et al. 2011) identified a second Cu(I)-inducible pathway involved 

in copper homeostasis in Mycobacterium tuberculosis, in addition to CsoR. The two systems 

appear to be mutually exclusive but not redundant (Festa et al. 2011; Shi et al. 2014). RicR, 

named as “regulated in copper repressor”, regulates the expression of five genes, lpqS, Rv2963, 

mymT, socAB and ricR, all sharing the palindromic motif 5’-TACCC-N5-G/AGGTA-3’ which is 

recognized by RicR in the absence of Cu(I) stress. Since the constitutive expression of the five 

genes was observed upon ricR disruption, it was hypothesised that RicR may have a protective 

role against toxic levels of Cu(I) (Festa et al. 2011). mymT is the only gene, amongst those 

regulated by RicR, which has already been characterised (Gold et al. 2008) and encodes for a 

copper metallothionein probably involved in Cu(I) resistance. Rv2963 and LpqS possess 

histidine-rich domains therefore they could work together in order to export cellular Cu(I). 
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Moreover, it has been suggested that RicR may regulate the expression of the multi-copper 

oxidase Rv0846c (divergently expressed from lpqS) which oxidizes Cu(I) to the less toxic 

Cu(II) (like CueO in E. coli (Kosman 2010)) and hence could contribute to protect M. 

tuberculosis from Cu(I) noxious effects (Festa et al. 2011).  

1.2.1.4 Dimer metal efflux repressor DmeR 

Cupriavidus metallidurans, dmeF gene encodes for a cation diffusion facilitator (CDF) which is 

involved in Ni(II)/Co(II) resistance (Munkelt et al. 2004). A homologue of this gene (39 % 

amino acid identity) was identified in Rhizobium leguminosarum, a bacterium able to establish a 

symbiotic relationship with legume plants, fixing atmospheric nitrogen into ammonia (Canfield 

et al. 2010; Rubio-Sanz et al. 2013). 

A gene sharing high similarity with E. coli rcnR was identified upstream dmeF and sequence 

alignment revealed conservation of the W-X-Y-Z motif (H3-C35-H60-H64) (Rubio-Sanz et al. 

2013) involved in Ni(II)/Co(II) response in RcnR (Higgins et al. 2013; Iwig et al. 2008). The 

gene was named dmeR (dimer metal efflux repressor). DmeR interacts with a palindromic type-

1 region (according to Iwig & Chivers notation (Iwig & Chivers 2009, Sections 7.3.1)) upstream 

dmeR, suggesting a repression mechanism similar to RcnR. 

1.2.1.5  Internal nickel-responsive sensor InrS 

InrS was first characterised in Synechocystis PCC 6803 (hereinafter called Synechocystis) by 

Foster and co-workers in 2012 (Foster et al. 2012). This repressor regulates the expression of 

nrsD, which is part of the Synechocystis Ni(II)-efflux operon, nrsBACD (Garcia-Dominguez et 

al. 2000; Foster et al. 2012). NrsS (periplasmic Ni(II) sensor) and NrsR (transcriptional 

regulator) also participate in nrs regulation, allowing Ni(II) efflux in the presence of toxic metal 

concentration (Garcia-Dominguez et al. 2000; Lopez-Maury et al. 2002). Since cyanobacteria 

are ancestors of chloroplasts, their metal homoeostasis is particularly important. Moreover this 

class of bacteria is characterised by special demands for metals due to the photosynthetic 

machinery (Keren N. et al. 2004; So &, Espie 1998; Tottey et al. 2007). Although InrS senses 

Ni(II) ions, it shares more similarities with CsoR rather than RcnR (Foster et al. 2012). 

Moreover the presence of an N-terminal arm rich in His residues, not identified in RcnR or 

CsoR, further differentiates this protein from the other family members (Foster et al. 2012). 

InrS coordinates Ni(II) by adopting a square planar coordination geometry (like Ni(II)-CsoR or 

Ni(II)-NikR) (Foster et al. 2012; Ma et al. 2009a; Wang et al. 2004). It was shown that InrS 

Ni(II)-binding affinity is tighter than the other metal sensors present in Synechocystis (ZiaR, 

ZuR, CoaR), explaining why nickel ions do not trigger an allosteric response in these proteins in 

vivo (Foster et al. 2012). Site-directed mutagenesis was employed to test the role of specific 

residues in InrS allosteric regulation. In view of the A-B-W-X-Y-Z motif, InrS possesses a His 
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in position Y (His78) and a Glu in position B (Glu98) like CsoR, but lacks a tyrosine residue in 

position A. In addition, a conserved Glu residue (Glu95 in InrS notation) was identified in other 

InrS homologues and its position was designated as “C” (Foster et al. 2012). Glu95 and Glu98 

were demonstrated to contribute toward the allosteric mechanism without being absolutely 

necessary. Moreover, unlike CsoR, the hydrogen bond between His78 (first coordination 

sphere) and Glu98 (second coordination sphere) is not essential in coupling Ni(II)-binding to the 

weakened DNA-binding affinity in InrS ((Foster et al. 2012).  

A recent study reports Cu(I), Cu(II) and Zn(II) ability, in addition to Ni(II), to trigger InrS 

conformational change in vitro (Foster et al. 2014a). Moreover, Foster and co-workers proved 

that if zinc concentration transiently exceeds the set-point for InrS detection (defined by InrS 

zinc binding constant), the protein is able to sense Zn(II) ions in vivo (Foster et al. 2014a). 

1.2.1.6 CsoR-like-sulfur-transferase repressor CstR 

Although CstR is a member of the RcnR/CsoR family of transcriptional regulators, this protein 

does not sense cellular metal stress but sulfite, S-methylmethanethiosulfonate (MMTS) and 

persulfide (Grossoehme et al. 2011; Luebke et al. 2013, Luebke et al. 2014). This protein was 

first identified in S. aureus, a Gram positive pathogen (Lowy 1998; Nizet 2007; Conrady et al. 

2008) which lacks a biological pathway to assimilate sulfate as source of sulfur to be used in 

biosynthesis of cysteines and Fe-S clusters (Lithgow et al. 2004; Jacob et al. 2003). It has been 

shown that perturbation of cysteine metabolism impacts on the ability of this pathogen to 

produce the biofilm needed to survive outside and inside the host (Soutourina et al. 2009; 

Soutourina et al. 2010). However, S. aureus may use inorganic thiosulfate, as sulfur source, 

which can be produced by the mammalian host (Lithgow et al. 2004; Grossoehme et al. 2011).  

CstR shares the critical features of its homologue CsoR, which is also present in this organism 

and regulates the proposed Cu(I)-exporter copA (Grossoehme et al. 2011). As M. tuberculosis 

and B. subtilis CsoRs (Ma et al. 2009a; Ma et al. 2009b), S. aureus CstR tightly binds two type 

2 operator sites (4 GC base-pairs flanked by AT-rich regions) located within the cstR-cstA 

intergenic region (Grossoehme et al. 2011). Although S. aureus CsoR binds the same operator 

sites with an affinity ~ four-fold tighter than CstR KDNA, its inability to adopt a higher order 

structure as CstR does (four tetramers bound to two operator sites) prevents the regulation of the 

cst genes by CsoR (Grossoehme et al. 2011). 

Repression of cst expression is alleviated in conditions that can alter thiol-disulfide homeostasis 

(including sulfite-stress), as a pair of intra-protomer cysteine residues (Cys31 and Cys60’) 

interact with the effector (e.g. sulfite) yielding a di- or tri-sulfate bond across the protein which 

leads to a conformational change and a weakening in the DNA-binding affinity (Grossoehme et 

al. 2011; Luebke et al. 2013). Furthermore, CstR was shown to react with chalcogen oxyanions 

yielding CstR2
(RS-SR’)

 and CstR2
(RS-X-SR’)n

 (n = 1 or 2; X = Se, Te) species triggering cst genes 
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expression (Luebke et al. 2013). Fluorescence anisotropy analyses conducted in the presence of 

SeO3
2-

 (selenite), TeO3
2- 

(tellurite) and SeO3
2-

 (tetrathionate) oxyanions displayed a substantial 

decrease in the operator-binding affinity, suggesting that CstR does not discriminate amongst 

the nature of the cross-linking agent (Luebke et al. 2013). More studies may be necessary in 

order to elucidate selenite and tellurite toxicity in S. aureus. 

1.2.1.7 Formaldehyde repressor FrmR 

E. coli FrmR was identified in the course of a study aimed to determine the effects of reading-

through amber stop codons. FrmR possesses such a stop and appeared to regulate the expression 

of frmRAB operon (Herring & Blattner 2004). FrmA has formaldehyde dehydrogenase activity 

and the operon was subsequently shown to respond to exogenous formaldehyde (when cells 

were treated with formaldehyde it was observed a 215-fold induction increase in frmR 

expression) (Herring & Blattner 2004; Gutheil et al. 1992).  

Formaldehyde is a highly toxic compound because of its ability to cross-link proteins and 

nucleic acids. The origin of formaldehyde in biological systems, and its toxicity and 

detoxification mechanisms will be discussed in details in Section 1.5. Herring and co-workers 

identified a glutathione-dependent formaldehyde-resistance pathway in E. coli that involves a 

formaldehyde dehydrogenase (FrmA) and an S-formylglutathione hydrolase (FrmB), both 

regulated by the transcriptional repressor FrmR. First formaldehyde spontaneously reacts with 

intracellular glutathione yielding an S-hydroxymethylglutathione which will be then oxidised in 

S-formylglutathione by FrmA. The last step involves conversion of S-formylglutathione to 

glutathione and formate catalysed by FrmB (Herring & Blattner 2004). Formate is further 

oxidised to carbon dioxide which can then diffuse to the periplasm. 

The in vitro biophysical properties of E. coli FrmR have been investigated in a PhD dissertation 

by J. R. Law (Law 2012). The project aimed to further understand how bacteria sense 

formaldehyde and the connection with formaldehyde detoxification systems. All the attempts to 

determine the crystal structures of wild-type FrmR failed, probably due to oxidation 

modifications, whilst C36SFrmR crystals were successfully produced and analysed by X-ray 

diffraction, although the merohydral twinning of the crystals probably caused the inability to 

obtain a refined model (Law 2012).  

The study revealed that FrmR protomer assembles in helical tetrameric oligomerization state 

(like RcnR and CsoR), and specifically binds to the promoter of frmRAB operon in vitro by 

EMSA analysis. Moreover HCOH was shown to impair DNA-binding, confirming the results 

by Herring and collaborators (Herring & Blattner 2004). In addition, Cys36 was proved to be 

essential in the formaldehyde induced derepression mechanism, and the author proposed the 

formation of a covalent adduct via successive cysteinyl thiol nucleophilic attack to 

formaldehyde (Law 2012). Cys36 corresponds to the conserved cysteine residue involved in 
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RcnR and CsoR metal sensing (Iwig et al. 2008) (Liu et al. 2007). Mtb CsoR’s Cys36 is located 

in a loop in the middle of the peptide chain, and Cu(I)-binding is coupled to a change in the loop 

position initiating the reciprocal movements of the α-helices. As a consequence, the DNA-

binding residues change positions resulting in a conformation with weak DNA-binding affinity 

(Liu et al. 2007). Since E. coli FrmR’s Cys36 is also located in a similar loop, the author 

suggested an analogous mechanism (Law 2012). 

A number of computer programmes were used in order to predict the residues involved in DNA-

recognition and three highly conserved candidates, Arg14, Arg46 and Lys91, were identified. 

Mutation of these residues to an Ala resulted in a diminished or abolished DNA-binding affinity 

in vivo. Arg14 corresponds to Arg15 in Mtb CsoR, which has been shown to be essential for 

CsoR’s DNA-binding by creating a positively charged patch that may electrostatically interact 

with the DNA phosphate backbone (Ma et al. 2009a), suggesting a similar recognition path in E. 

coli FrmR. Moreover, a BLAST search performed by Law (2012) in order to identify FrmR 

orthologues, detected frmR in forty-two bacterial species, denoting that, amongst the others, the 

first 60 residues and the last three C-terminal residues are highly conserved. This finding 

contributes to the hypothesis that also K91 is involved in DNA-recognition, and further 

confirmation comes from the inability of the His-tag FrmR version to bind frmRAB in EMSA 

analyses. 

A recent work from Denby and collaborators (Denby et al. 2015) shows that this operon is 

induced during anaerobic respiration using trimethylamine-N-oxide (TMAO) as the terminal 

electron acceptor. TMAO is an osmolyte in marine organisms and can be reduced by the TMAO 

reductase TorA to yield trimethylamine (TMA) (Mejean et al. 1994). When E. coli cultures 

were exposed to [TMAO] ≥ 5 mM, the transient induction of frmRAB operon was observed 

(Denby et al. 2015). Moreover, after TMAO addition up to 0.23 mM dimethylamine (DMA) 

was detected, a sub-millimolar value comparable to the formaldehyde concentration needed to 

induce the frmRAB operon (Denby et al. 2015; Herring & Blattner 2004). These findings led the 

authors to suspect the presence of TMAO demethylase activity which would produce DMA and 

formaldehyde from TMAO (Denby et al. 2015). The endogenous formaldehyde, generated as a 

by-product of TMAO demethylation, would then trigger frmRAB operon expression in response 

to potentially toxic formaldehyde levels. The authors confirmed this theory by observing the 

inhibition of growth in an engineered frmRAB mutant unable to detoxify formaldehyde after 

exposure to 40 mM TMAO for 60 min (Denby et al. 2015).  

In addition to formaldehyde and TMAO, also carbon monoxide and chloride treatments have 

been shown to trigger expression of the frm operon (Wang et al. 2009; Nobre et al. 2009). 

Carbon monoxide, CO, is produced from the incomplete oxidation of organic matter and from 

haem oxygenase activity (Li et al. 2007). Its toxicity originates from the preference of CO to 

bind proteins containing transitional metals, inducing conformational modifications and altering 
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the biological function (Nobre et al. 2009). When the E. coli global transcriptome was analysed 

following treatment with the CO-releasing CORM-2 (tricarbonyldichlororuthenium (II) dimer), 

the frmRAB operon was induced in both aerobic and anaerobic conditions (Nobre et al. 2009). 

Wang and collaborators tested the effects of NaClO (sodium hypochlorite) and H2O2 (hydrogen 

peroxide) on E. coli strains from eight clades to study how the cell copes at the transcriptional 

level with oxidative stress (Wang et al. 2009). They found that the frmRAB operon, amongst 

others, was dramatically induced by NaClO but not by H2O2 treatment. They also registered the 

induction of genes involved in the glutathione-dependent detoxification pathway (Wang et al. 

2009) which play a vital role during oxidative stress due to the ability of glutathione to scavenge 

oxidant compounds (Haenen & Aalt Bast 2014). 

 Other families of transcriptional regulators 1.2.2

1.2.2.1  MerR family 

The mercury resistance operon repressor MerR regulates the transcription of the gene coding for 

the mercury reductase MerA (Schelert et al. 2004). MerA is involved in the mercury 

detoxification pathway across a wide range of organisms catalysing the reduction of Hg(II) to 

the less reactive and therefore less toxic Hg(0), exploiting the consequent oxidation of NADPH. 

Regulators belonging to this family sense several environmental stimuli such as metal ions, 

lipophilic drugs and nitric oxide and superoxide (induced by oxidative stress) (Ahmed et al. 

1994; Pomposiello & Demple 2001; Chen & He 2008; Brown et al. 2003). MerR family 

members possess similar N-terminal helix-turn-helix DNA binding regions and C-terminal 

effector binding regions that are specific to the inducer recognized.   

This family of transcriptional regulators includes CueR (copper export regulator, Stoyanov et al. 

2001; Espariz et al. 2007) and GolS (gold sensor Checa et al. 2007 Pontel et al. 2007; Perez 

Audero et al. 2010) which coordinate monovalent metals, Cu(I) and Au(I) respectively, 

employing two conserved Cys residues from the C-terminal region (metal binding loop, MBL) 

and ZntR (zinc responsive transcriptional regulator, Brocklehurst et al. 1999; Outten et al. 1999; 

Binet & Poole 2000) which sense divalent metal ions by using an extra Cys residue from the 

start of the α5 helix (Khan et al. 2002). This position is occupied by a Ser in monovalent metal 

sensors and it is thought that the steric and hydrophobic restrictions introduced by this residue 

participate to metal selectivity within the MerR family. The crystal structures of two E. coli 

MerR-like metalloregulators, Zn(II) specific regulator ZntR and Cu(I) sensor CueR, also 

contributed to this hypothesis (Changela et al. 2003). Comparing the different metal 

coordination sites of the two proteins suggests that the metal specificity of these MerR proteins 

derives from differences in coordination number and type of metal ligands utilized. For 

instance, CueR has an unusual metal binding mode where the metal-receptor site is buried and 

restricts the metal to a linear, two coordinate geometry (Changela et al. 2003). However, recent 
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work conducted by Ibañez and collaborators (Ibañez et al. 2015) shows that metal specificity is 

achieved not only by ligand selection but also through the flexibility of the metal binding cavity. 

In fact, if the aforementioned Ser is mutated to an Ala the activation pattern triggered by 

binding of monovalent metal ions is not altered. Moreover, when the extra Cys is introduced in 

GolS and CueR to replace the Ser residue, the metal binding pocket assumes a “pan-like” shape 

making both proteins able to sense with high sensitivity monovalent and Hg(II) ions (Ibañez et 

al. 2015). 

1.2.2.2  ArsR/SmtB family 

Members of this family of transcriptional regulators repress the expression of operons involved 

in heavy metals detoxification mechanisms. They possess homodimeric helix-turn-helix (HTH) 

motifs that specifically bind to their operator/promoter DNA binding sites in the metal-free apo 

state. De- repression of ArsR/SmtB-regulated promoters occurs when the proteins bind the 

respective metal resulting in a weaker affinity for DNA. The proteins belonging to this family 

possess one or more structurally distinct metal binding sites commonly derived from α3-helix 

and α5-helix ligands however many “themes and variations”exist (Busenlehner et al. 2003). 

Examples of the α3N/α3 subgroup are Staphylococcus aureus and Listeria monocytogenes 

CadCs homologues and E. coli ArsR. These proteins coordinate Cd(II), Pb(II), Bi(III) and 

As(III) through a set of Cys residues recruited from the α3-helix (in ArsR) and from the N-

terminal region (in CadCs). Synechococcus SmtB, Synechocystis ZiaR, S. aureus CzrA and M. 

tuberculosis NmtR belong to the α5C/ α5 subgroup and exploit a mix of histidine residues and 

carboxylate groups from amino acid residues on the C-terminal α5 helices (Busenlehner et al. 

2003). The founding members of this family are the Zn(II) repressor Synechococcus PCC 7942 

SmtB which regulates the expression of the smtA gene (SmtA is a class II metallothionein 

involved in zinc(II) ions sequestration) (Morby et al. 1993) and the arsenic/antimony-

responsive, ars operon repressor, ArsR (characterised in a number of bacteria, including E. coli) 

(Wu & Rosen 1991; Ji & Silver 1992), involved in the regulation of an arsenate reductase (Xu et 

al. 1998). 

SmtB binding to its operator/promoter region is negatively affected preferentially by Zn(II) 

(Cavet et al. 2002) although also Co(II) and Cd(II) can be sensed in vitro (VanZile et al. 2000) 

and in vivo (Huckle et al. 1993). Other divalent metal ions can be sensed by members of this 

family, such as S. aureus ZntR (Zn(II) and Co(II)) (Singh et al. 1999; Xiong et al. 1998), M. 

tuberculosis NmtR (Ni(II) and Co(II)) (Rutherford et al. 1999; Cavet et al. 2002) and S. aureus 

CadC (Cd(II), Pb(II), Bi(II), Zn(II)) (Yoon et al. 1991; Endo & Silver 1995; Busenlehner et al. 

2002a; Busenlehner et al. 2002b). 
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1.2.2.3  Ferric uptake regulator (Fur) family 

In the early anaerobic environment prior the Great Oxygenation Event (GOE) bacteria used 

Fe(II) ions as co-factors. However, after this event organisms were forced to acquire Fe(III) 

which is insoluble in aqueous solution by employing siderophores, specialised molecules with 

high affinity for ferric ions. Moreover both Fe(II) and Fe(III) can generate reactive oxygen 

species (ROS) by Fenton chemistry (Fenton 1894) that can oxidise macromolecules and lipids 

(Imlay & Linn 1988; Lloyd et al. 1997) leading to cellular death (Von Harsdorf et al. 1999) 

(Hildeman et al. 2003). It is therefore evident that the cell must tightly control the level of iron 

ions.  

Members of the Fur family are now known to be involved in sensing a variety of metals and 

possess various biological functions (Lee & Helmann 2006) including regulation of genes 

coding for iron uptake proteins (Hantke 1981; Hantke 1984), Fe(II), Zn(II) and Mn(II) transport 

systems and enzymes able to protect against ROS damage (Anjem & Imlay 2012; Anjem et al. 

2009). The founding member is Fur (ferric ion uptake regulator) was first described in E. coli 

and controls iron homeostasis in many Gram-negative bacteria most commonly by binding to 

target regulatory sequences (fur boxes) (Calderwood & Mekalanos 1987; De Lorenzo et al. 

1988, Calderwood & Mekalanos 1988; DeLorenzo et al. 1987; Stojiljkovic et al. 1994) in the 

promoter regions of iron-responsive genes when iron is replete (Ernst et al. 1978; Bagg & 

Neilands 1985; Bagg & Neilands 1987; Neilands 1993; Escolar et al. 1997; Escolar et al. 1998). 

When the iron concentration is low the expression of these genes occurs because Fur no longer 

acts as a repressor. 

The first three-dimensional structure of a Fur family member was obtain by X-ray 

crystallography by Pohl and collaborators in 2003 (Pseudomonas aeruginosa Fur complexed 

with zinc(II) rather than iron(II)) (Pohl et al. 2003). Subsequently, many crystallographic 

structures of Fur-family regulators have been solved such as Streptococcus pyogeness NS88.2 

and B. subtilis PerR homologues (Lin et al. 2014; Traoré et al. 2006; Traoré et al. 2009; 

Jacquamet et al. 2009), with the metalloregulatory site either empty or containing Zn(II) and 

Mn(II) ions, Streptomyces coelicolor and E. coli Zur (Shin et al. 2011; Gilston et al. 2014), 

Streptomyces coelicolor Nur (An et al. 2009) and many other Fur homologues from E. coli 

(Pecqueur et al. 2006), Helicobacter pylori (Dian et al. 2011), Vibris cholera (Sheikh & Taylor 

2009), Campylobacter jejuni subsp. Jejuni (Butcher et al. 2012). The regulators belonging to 

this family contain a C-terminal ββαβα dimerization domain linked to a typical winged helical 

domain and two metal sites per subunit. 

1.2.2.4 ModE-like regulators 

ModE regulates the ModABC molybdnenum transport system in a variety of organisms, 

although it is not ubiquitous (Wiethaus et al. 2006; Studholme & Pau 2003). In addition, E. coli 
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ModE was shown to repress genes coding for molybdoenzymes and molybdopterin synthesis in 

the absence of Mo (Grunden et al. 1996; Anderson et al. 1997). Molybdenum is required for the 

activity of enzymes involved in N, S, C metabolism (Hille 1996; Zhang & Gladyshev 2008), 

and is often associated to a pterin to yield the Moco co-factor. Pterin is thought to control the 

redox-chemistry of Mo and to direct the metal toward the active center of molybdenum enzymes 

(Kisker et al. 1997; Mendel & Kruse 2012). E. coli ModE coordinates molybdenum through a 

tandem repeat of the Molybdopterin-binding protein (Mop) domain situated at the C-terminus 

(Hall et al. 1999). The conserved SARNQ sequence was identified in a number of ModE 

homologues, and suggested to contain the positively charged amino acid residues involved in 

Mo coordination (Grunden et al. 1996). 

DNA-binding is achieved by interaction of the N-terminal domain with an 8-bp inverted 

repeated sequence (TAAC GTTA) (Grunden et al. 1996). 

1.2.2.5  NikR-like regulators 

They are ribbon-helix-helix proteins which mediate the repression of the nik operon in Gram-

negative bacteria and archaea in response to nickel(II). The first regulator of this family was 

identified in E. coli (De Pina et al. 1999; Chivers & Sauer 1999; Schreiter et al. 2003; Schreiter 

et al. 2006). Regardless of the presence of nickel(II) the structure is homotetrameric. In this 

metal-sensing protein the N-terminal domain binds to DNA and the C-terminal domains bind to 

nickel(II) (Chivers & Sauer 2002; Schreiter et al. 2003; Chivers & Sauer 1999). The 

crystallographic structure of the C-terminal region of E. coli NikR visualizes the drastic 

conformational changes required for operator recognition and shows the formation of a metal-

binding site in the presence of DNA (Schreiter et al. 2003). In fact tetrameric NikR has two 

different Ni(II)-binding sites, one of them possessing a high affinity for nickel(II) which 

activates binding to DNA (Chivers & Sauer 2002; Wang et al. 2004). The second Ni(II)-binding 

site has a lower nickel(II) affinity and enhances the DNA binding affinity of NikR (Bloom & 

Zamble 2004; Chivers & Sauer 2002). When the protein is not bound to DNA nickel has square-

planar coordination geometry whereas, upon binding to the operator DNA, the new metal site 

undergoes a change in geometry switching to a six-coordinate one. In this new arrangement 

there are six N/O donors incorporating at least a subset of the original square planar donors. 

This conformational change alters the orientation of the N-terminal DNA binding domains 

relative to the core domain and probably leads to the positive regulation of DNA binding by 

NikR (Schreiter et al. 2006; Phillips et al. 2008). 

1.3 How metal sensors detect the right metal 

It has been proposed that metal sensors achieve metal specificity by operating a selection of the 

metal ion detected on the bases of relative metal-binding affinity, relative allostery and relative 
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access (Waldron et al. 2009; Waldron & Robinson 2009; Foster et al. 2014b). In the following 

sections these thermodynamic and kinetic parameters will be further examined. 

 Relative metal affinity 1.3.1

Foster and collaborators have shown that nickel sensing in a cyanobacterium follows 

thermodynamics (Foster et al. 2012). An example of how relative metal affinity can explain the 

specific metal detection by a metal sensor is provided by the Ni(II)-sensor InrS, described in 

Section 1.2.1.5. InrS is characterized by a tighter affinity for Ni(II) when compared to the other 

metal sensors from Synechocystis PCC 6803 (Foster et al. 2012). Direct competition 

experiments between pairs of metal sensors confirmed the partition of Ni(II) ions to InrS (Foster 

et al. 2012). 

Since InrS regulates the expression of nrsD (part of the Ni(II)-efflux operon nrsBACD) (Garcia-

Dominguez et al. 2000; Foster et al. 2012), the level of cellular Ni(II) needed by the other 

sensors (ZiaR, ZuR and CoaR) to detect the metal will never be reached as the Ni(II) ions in 

surplus (exceeding the level set by KNi(II) of InrS) will be expelled by NrsD (Foster et al. 2012). 

Therefore InrS achieves metal specificity by buffering intracellular nickel content such that the 

other metal sensors do not gain access to nickel (Foster et al. 2012). 

 Allosteric mechanism triggered by effector binding  1.3.2

Members of the RcnR/CsoR transcriptional repressors family detect anomalous cellular 

concentrations of several metals (e.g. Cu(I) or Ni(II)/Co(II) for CsoR and RcnR, respectively) in 

order to trigger a correct response. Allostery is exploited to link cognate metal-binding to the 

release of DNA operator-promoter region located upstream of the gene or operon regulated by 

these proteins.  

According to the classical “concerted model”, also named after the researchers who first 

described it (Monod-Wyman-Changeux, MWC model), the regulated protein exists in two 

different states depending on the presence or absence of the ligand molecule acting as an 

effector (Monod et al. 1965). Ligand-binding to a certain subunit of the protein will trigger the 

conformational change that, once propagated to the other protein subunits, will result in an 

alteration of ligand-binding affinities for these subunits (Monod et al. 1965).  

Coupling allosteric free energy ΔGc is a parameter which reports the magnitude of the allosteric 

driving force in a quantitative way (Grossoehme & Giedroc 2009; Reinhart 2004). Depending 

on the system and protein regulator characteristics, it can be calculated by measuring metal-

binding affinity of free and DNA-bound protein or otherwise by measuring DNA-binding 

affinity of apo- and holo-protein forms (Grossoehme & Giedroc 2009; Reinhart 2004). 
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Grossoehme and coworkers (Grossoehme & Giedroc 2009) reported the coupled 

thermodynamic equilibria (assuming a closed system) which describes in a simplicistic way the 

relationship between protein regulator (P), n atoms of metal (n M) and a single DNA operator 

(D) (see Figure 3. 22A). The scheme represents the four end-states that a metalloregulator 

protein can adopt in the presence of its cognate metals and a limited amount of DNA 

(Grossoehme & Giedroc 2009). Each of these four equilibria is described by the respective 

affinity constant. The coupling constant (Kc) (Figure 3. 22B) is a dimensionless quantity which 

represents the magnitude of allosteric regulation and can be determined either from the ratio 

K4/K3 (KD
Mn·P

/KD
P
) or the ratio K2/K1 (KM

D·P
/KM

P
) and used to calculate ΔGc using the standard 

thermodynamic equation (Equation 1): 

ΔGc = -RTlnKc 

Equation 1 

where R is the ideal gas constant (8.314 J K
−1

 mol
−1

) and T is 298 K (temperature at which the 

experiments is performed). In the case of DNA-binding de-repressors such as RcnR and CsoR, 

where the conformational change induced by cognate metal binding leads to an assembly state 

with a diminished DNA-binding affinity, the ternary complex (P·M)D is less stable than P·M 

and free P (K3 < K1 ; K4 < K2) and Kc > 0. As a consequence the ligand exchange equilibrium 

shown in Figure 3. 22B is shifted to the left (ΔGc > 0) (Grossoehme & Giedroc 2009). This 

approach suggests that in de-repressors a positive increment of allosteric free energy is 

necessary in order to link metal-binding to the structural change in protein assembly that will 

result in the release of the DNA operator-promoter. 

An exemplary case is given by ZiaR, the Zn(II)-sensor present in Synechosystis PCC6803. 

Although the organism possesses also the Ni(II)-sensor InrS, which has a KZn(II) comparable to 

the tightest sites of ZiaR, the allosteric response elicited by Zn(II) in ZiaR is greater to that 

observed in InrS. Since both proteins are derepressors this conclusion can be derived from the 

simple comparison of their ΔGc
Zn(II)

. As a result, InrS is less effective than ZiaR in derepressing 

its target promoter region upon Zn(II)-binding, therefore to achieve a comparable degree of 

derepression it would need a higher concentration of Zn(II) (Foster et al. 2014b). 

Another exemplary case occurs in Mycobacterium tuberculosis: the DNA-binding 

transcriptional repressor NmtR, senses surplus cobalt and nickel but has tighter affinity for zinc, 

while a related protein SmtB, detects zinc but does not detect nickel. Both of them contain a 

helix-turn-helix motif and the metal-sensing residues are located in the same regions of the 

respective folds but SmtB has only four binding residues whereas NmtR possesses six metal-

binding residues. In this case the specificity for metal sensing is given by the coordination 

geometry preferred by the metals determining allostery. Nickel and cobalt in NmtR bind to six 

residues in an octahedral geometry, the geometry necessary to lead to the conformational 

http://en.wikipedia.org/wiki/Joule
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change in the sensor that alters its binding to DNA. However, binding of zinc takes place 

through only four of the six residues in a tetrahedral geometry and although zinc binds to NmtR 

tightly it does not produce the conformational change required to drive allostery (Cavet et al. 

2002; Pennella et al. 2003) and as a result repression in vivo is not reduced. Experiments 

conducted in vivo showed no detection by NmtR of zinc (Cavet et al. 2002; Pennella et al. 

2003). 

 Channeling 1.3.3

Another strategy for controlling metal availability involves protein-protein contact, for example 

there exist metallochaperones which traffic metals acting as intermediaries providing the right 

metal ion to the protein. The metal acquired by a protein from the carrier protein depends more 

on the protein-protein interactions than the affinity of the protein for the metal. For instance in 

Synechocystis sp. PCC 6803 the zinc exporter ZiaA binds copper(I) more tightly than zinc(II) 

but the copper-chaperone Atx1 does not interact with ZiaA, therefore the specific Atx1 

interactions prevent ZiaA from gaining access to copper(I). 

Another example of how thermodynamics cannot be applied to explain metal-sensing is 

provided by Synechocystis CoaR. CoaR is a Co(II)-sensing activator belonging to the MerR 

family of transcriptional regulators (Section 1.2.2.1) and regulates the transcription of CoaT, a 

P1-type ATPase Co(II) exporter (Rutherford et al. 1999). Co(II)-affinity of CoaR tightest site 

was estimated to be approximately within the range of 8.64 nM < KCo(II) < 1 mM by UV-vis 

spectroscopy and competition with the ratiometric fluorescent metal chelator Fura-2 (Fura-2; 

KCo(II) = 8.64 x 10
-9 

M) (Patterson et al. 2013). Since CoaR is an activator, and hence binds 

Co(II) when on its operator promoter, KCo(II) of the DNA-bound form of CoaR was also 

investigated, however, it did not appear tighter than that of the free-form (Patterson et al. 2013). 

Since Synechocystis PCC 6803 possesses also metal sensors from other families (ZiaR from 

ArsR/SmtB family, InrS from CsoR/RcnR family, and ZuR from Fur family) which all possess 

a tighter Co(II)-binding affinity of their tightest sites (Patterson et al. 2013), the specificity of 

Co(II)-binding by CoaR cannot be explained by relative affinity. In the same work, Patterson 

and colleagues show by fluorescence anisotropy that Co(II) may act as an allosteric effector in 

vitro also for ZiaR, InrS and Zur, in addition to CoaR (Patterson et al. 2013).  

CoaR possesses a precorrin isomerase-like domain (Rutherford et al. 1999), therefore the 

possibility that Co(II) ions are channeled to the metal binding site of the protein was invoked to 

explain the specificity of the detection of cellular Co(II) by the sensor. In fact, precorrin 

isomerases catalyse the methyl isomerization in cobalamin biosynthesis and their substrates are 

cobalt-binding tetrapyrroles (Moore & Warren 2012). This observation, along with the weak 

Co(II)-binding affinity, suggests that CoaR may not solely detect free Co(II) ions, but either a 

tetrapyrrole which may aid Co(II) insertion into the protein by enhancing the KCo(II) of the site, 
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or a pre-formed Co(II)-tetrapyrrole adduct (Patterson et al. 2013). These hypotheses were 

investigated by Patterson and coworkers by mutating the residues involved in the binding of 

tetrapyrrole substrates in precorrin isomerases and showing the consequent loss of activation of 

the Co(II)-dependent expression from the coaT promoter (Patterson et al. 2013).   

1.4 DNA recognition 

 Structure of DNA-binding proteins 1.4.1

The SCOP (Structural Classification of Proteins) database classifies the proteins deposited in the 

PDB in distinct superfamilies on the bases of their structural properties (Murzin et al. 1995). 

Rohs and collaborators (Rohs et al. 2010) grouped the DNA binding proteins available in the 

SCOP database in 70 superfamilies depending on the secondary structure of the DNA binding 

domains. This group revised the more representative superfamilies in a review dated 2010 and a 

brief synopsis will be now reported here. 

1.4.1.1 Mainly α motifs 

This category includes proteins from 16 SCOP superfamilies (Rohs et al. 2010) which use α-

helical domains to contact predominantly the DNA major groove, although interactions with the 

minor groove have also been reported (e.g. Lac repressor (Lewis et al. 1996; Schumacher et al. 

1994). Helix-turn-helix (HTH), winged helix-turn-helix (wHTH), helix-loop-helix (HLH) and 

leucine-zipper motifs, all belong to this category. They are characterised by a recognition helix, 

which interacts with DNA by establishing hydrogen bonds and hydrophobic and van der Waals 

interactions, and a second helix which stabilizes the protein-DNA complex. The presence of one 

or more “wings” in the wHTH motifs allows extra-stabilization of the interaction usually by 

contacting the minor groove. 

1.4.1.2 Mainly β motifs 

β-domain structures can be identified in 7 SCOP families and include the TATA-box binding 

domain, Immunoglobulin-like β-sandwich, β-trefoil and β-β-β motifs (Rohs et al. 2010). TATA-

binding proteins (TBP) recognize DNA minor groove using a β-sheet surface (Kim Y. et al. 

1993; Kim J. L. et al. 1993) inducing a large distortion in the double helix which allows the 

formation of extra contacts between the concave surface of the protein and the edges of the 

nucleotides in the TATA-box. Runt-domains (Tahirov et al. 2001) and p53-like transcriptional 

factor (Cho et al. 1994) show the Immunoglobulin-like (Ig-like) β-sandwich fold. In this fold 

the domain can be oriented with different angles relative to the double helix axis, and the loops 

can be involved in the specific interaction with DNA. 
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1.4.1.3 Mixed α/β motifs 

In 48 SCOP superfamilies, α/β domains are employed to recognize target DNA sequences (Rohs 

et al. 2010). An example is given by zinc-finger proteins, which possesses a short recognition 

helix, used to specifically contact the base pairs on the major groove, and two-stranded anti-

parallel β-sheets (Pavletich & Pabo 1991). Classification of zinc-finger proteins is based on the 

residues coordinating the structural Zn(II) ion (Cys2His2, Cys4, Cys6, etc.). Further specificity is 

achieved by contacting the same DNA sequence with multiple zinc-fingers motifs (overlapping 

pattern). 

A Ribbon-helix-helix motif can be identified in Met, Arc and NikR repressors (Somers & 

Phillips 1992; Raumann et al. 1994; Chivers & Sauer 1999). This motif is characterised by a 

two-stranded antiparallel β-ribbon, which is inserted in the major groove, and two helices which 

are involved in dimerization allowing interaction with other proteins possessing the same 

domain. 

1.4.1.4 Multi-domain proteins 

In order to achieve higher specificity and affinity for DNA, a large number of proteins establish 

contacts with more than one DNA binding domain. A representative example is MarA, a 

member of the AraC prokaryotic transcriptional activator family. This protein contains two α-

helical sub-domains, each of them containing a HTH motif, and a long C-terminus loop. The 

two recognition helices (one from each sub-domain) interact with two consecutive major 

grooves on the same face of DNA inducing a distortion of the double-helix since the distance 

between the two α-helices is smaller than the pitch of B-DNA (Rhee et al. 1998). 

 Sequence-dependent variations of DNA-structure 1.4.2

DNA binding proteins can recognize specific sequences on the double helix exploiting 

sequence-dependent deviations in the DNA structure from the common B-DNA form (Rohs et 

al. 2009a). These variations of DNA structure can produce different electrostatic potentials that 

can be distinguished by proteins, and therefore have a fundamental role in DNA recognition. 

Structural deviations can be divided in global and local shape variations. 

1.4.2.1 Global shape variations 

The most common conformation of genomic DNA, B-DNA, is right-handed, with the base pairs 

perpendicular to the double-helix axis. The major groove is wider and shallower compared to 

the minor groove (Table 1. 1), which presents a more electronegative potential (Rohs et al. 

2010).The potential difference between AT-rich and GC-rich tracts arises, in both grooves, from 

the disposition of the polar groups and AT-rich tracts exhibit a more negative potential (Rohs et 

al. 2010; Jayaram, et al. 1989; Lavery & Pullman 1981). Under conditions of dehydration it is 
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possible to observe a reversible conformational change in the B-DNA resulting in a wider and 

shallower structure named A-DNA (Lu et al. 2000). The same conformation can be detected in 

some protein-DNA complexes and is favored by GC-rich tracts (Shakked et al. 1989) A-DNA’s 

major groove structurally resembles B-DNA’s minor groove and shares a negative electric 

potential (Table 1. 1; Shakked & Rabinovich 1986). This occurs because the base-pairs are 

inclined at around 20º in the direction of the helix axis, narrowing the major groove. Therefore 

A-DNA causes compression along the helical axis. An A-DNA variant is the TA-DNA (tilted-

DNA) which is observed in TATA-boxes where the rotation around the glycosidic bond causes 

a ~ 50º inclination of the base-pairs relative to the helix (Guzikevich-Guerstein
 
& Shakked 

1996). 

The left-handed Z-DNA conformation is observed in alternating purine/pyrimidine sequences 

under high salt conditions (Rohs et al. 2010; Wang et al. 1979; Arnott, et al. 1980). 

The nucleotides along the sequence alternate in the syn and anti conformations producing a zig-

zag backbone (Wang et al. 1985). The minor groove is narrow and deep, similar to B-DNA 

while the major groove is very shallow (Table 1. 1). The presence of salt stabilizes this structure 

reducing the electrostatic repulsion between the phosphate groups of the opposite filaments.  

In addition to these deviations from the classical B-DNA shape, a global curvature of the DNA 

double-helix is observed in A-tracts (three or more consecutive A·T base pairs without a TpA 

step) (Rohs et al. 2010; Nelson et al. 1987; Hizver et al. 2001; Haran & Mohanty 2009). The 

flexibility of such DNA-tract ascribed to variations in the roll angles between the base pairs at 

the A-tract/ non-A-tract junctions and the rest of the chain (Hizver et al. 2001). Moreover Haran 

and coworkers suggest that the biological role of the A-tract, for example in gene regulation, 

may result from its distinct structure rather than the global bending induced in these sequences 

(Haran & Mohanty 2009). 

1.4.2.2 Local shape variations 

DNA kinks and minor groove narrowing are amongst the local shape variations (Rohs et al. 

2010). The main difference between DNA kinks and DNA bending is that the first refers to a 

local deviation from the B-DNA shape, which affects only a single base pair, while the rest of 

the α-helix usually retains its linear conformation. This local deformation causes the loss of 

stacking of a base pair step and is likely to involve a pyrimidine-purine step, since these are less 

stabilized by base stacking. ApT step is the most stabilized by these contacts, whereas the TpA 

step, also defined as the “hinge” step (Crothers & Shakked 1999; Olson et al. 1998), is the most 

flexible as the small overlap between the base pairs does not allowed stabilization by stacking 

(Rohs et al. 2010). 

Local variation of the minor groove width is caused by differences in the interactions made at 

each dinucleotide step in an attempt to optimize and maximize hydrogen bonds and stacking  
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 B - DNA A-DNA Z-DNA 

 Right handed Right handed Left handed 

bp per turn 10.4 11 12 

Vertical rise per bp (Å) 3.4 2.3 3.8 

Rotation per bp +36 º +33 º -30 º 

Helical diameter (Å) 19 23 18  

Major groove wide, shallow narrow, deep flat 

Minor groove narrow, deep hallow narrow, deep 

Table 1. 1 Structural properties of B-DNA, A-DNA and Z-DNA conformations. Adapted from 

Freeman 2002. 
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interactions. (Rohs et al. 2009b). It is often observed in A-tracts whilst TpA steps and CG-rich 

sequences tend to widen the minor groove (Rohs et al. 2009b; Haran & Mohanty 2009). 

Upon minor groove narrowing, an increase in the negative character of the electrostatic potential 

can be identified at distinct positions (Joshi et al. 2007; Rohs et al. 2009a). These evenly spaced 

positions can be detected by the side chain of basic amino acids such as arginine, contributing to 

the sequence-specific readout (Rohs et al. 2009b).  

 Mechanisms of protein-DNA recognition 1.4.3

Many interactions are involved in the molecular recognition of a target DNA sequence by a 

protein. Janin and colleagues explored the crystal structures of protein-DNA assemblies 

deposited in the PDB in order to identify which geometric and chemical interface properties 

govern the stability and specificity of the interaction (Janin et al. 2007). An average of 24 

amino-acid residues and 12 nucleotides were found to be employed at the macromolecular 

interface (Janin et al. 2007). The following paragraphs describe the two principal modalities to 

achieve DNA binding specificity. 

1.4.3.1 Base readout 

This recognition mechanism consists of a DNA-binding protein that interacts with specific bases 

in either major or minor groove by reading the physical-chemical properties of the base or base 

pair (Rohs et al. 2010).  

In order to create specific connections with the major groove, the protein exploits hydrogen 

bonds and hydrophobic interactions. In contrast to the minor groove, the four possible base pairs 

in the major groove possess distinct patterns of hydrogen bond acceptors and donors (Seeman et 

al. 1976; Harrison & Aggarwal 1990) which can be read by proteins using HTH domains, zinc-

fingers, leucine-zippers and Ig-like motifs (Garvie & Wolberger 2001; Luscombe et al. 2000; 

Hong et al. 2008; Rohs et al. 2010). In addition to α-helical domains, also β-sheets can interact 

with the target DNA sequence by widening the major groove, forming hydrogen bonds with the 

bases, and exposing a generally more electrostatically positive surface (Tateno et al. 1997). 

Hydrogen bonds in the major groove allow distinction between purines whilst hydrophobic 

contacts with the protein side chains are adopted to discriminate between pyrimidines (Harrison 

& Aggarwal 1990; Xiong & Sundaralingam 2001). 

Another way for proteins to achieve DNA recognition is through hydrophobic contacts with the 

minor groove. These often elicit a widening of the DNA conformation and the release of water 

molecules. The resulting increase in the system entropy is the driving force for DNA binding 

(Rohs et al. 2010; Crane-Robinson et al. 2006; Privalov et al. 2007; Privalov et al. 2009). 

Displacement of single water molecules can also occur when amino acids intrude in the minor 

groove (Li et al. 1998). Hydrogen bond formation is possible also with bases in the minor 
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groove although these interactions do not allow the differentiation between AT from TA and 

GC from CG (Rohs et al. 2010; Seeman et al. 1976). 

1.4.3.2 Shape readout 

Since proteins can detect local and global deviations from the B-DNA conformation, shape 

readout also contributes to DNA binding affinity and specificity (Rohs et al. 2009b; Travers 

1989). As mentioned in section 1.4.2.2, proteins can contact the minor groove by recognizing 

the local narrowing, often associated with AT-rich tracts, by employing Arg residues. In 

addition to arginines, proteins also exploit positively charged side chains of lysine and histidine, 

although less frequently (Rohs et al. 2009b). 

DNA kinks (section 1.4.2.2) may be recognized by the protein by insertion of side chains in the 

local deformation, resulting in a further deviation from the linearity of the double-helix (Rohs et 

al. 2010). Moreover, shape readout mechanism can also involve large sections of DNA chain, 

where A-DNA, Z-DNA and bent regions can be selectively bound by the target protein. A-DNA 

(favoured by CG-tracts) are characterised by having the sugar moieties more exposed and 

therefore able to interact with non polar amino acids (Ala, Leu, Phe, Val) (Kim Y. et al. 1993; 

Tolstorukov et al. 2004). But proteins can not only read the A-DNA sequence but also 

recognize the B  A conformational conversion at the A-DNA/B-DNA junction (Travers 

1995). In the A-DNA shape the sugar-phosphates are selectively exposed, therefore their 

location, in addition to other structural parameters such as roll, twist angles, etc., contribute to 

DNA recognition (Lu et al. 2000). The distinctive zig-zag disposition of sugar-phosphate 

backbone in Z-DNA is also the signature code in Z-DNA binding proteins. For example 

Schwartz and colleagues, by determining the X-ray structure of the editing enzyme dsRNA 

adenosine deaminase (ADAR1), revealed that this enzyme uses a winged-helix fold (usually 

adopted to contact the B-DNA) to bind Z-DNA with high affinity (Schwartz et al. 2001). 

 DNA recognition in RcnR and CsoR homologues 1.4.4

Proteins sharing DNA binding domains such as helix-turn-helix, winged helix and ribbon-helix-

helix typically interact with the major groove because base pair functional groups are here more 

exposed (Rohs et al. 2010; Garvie & Wolberger 2001). Thermodynamically, this type of 

interaction is usually enthalpically driven (Privalov et al. 2007), while when the contact 

involves the minor groove the driving force is ascribed to the entropy change (ΔS increases) 

resulting from the release of a significant number of water molecules from the site (Privalov et 

al. 2007). Minor groove interaction typically takes place when proteins lack the DNA binding 

domains previously described (Section 1.4.1) and involves a pronounced kinking of DNA (Kim 

J. L. et al. 1993). Interestingly, this is the scenario for RcnR/CsoR family members. 

Transcriptional factors belonging to this family can be divided into three groups according to 

the operator sequences that they recognize as proposed by Iwig and Chivers (Iwig & Chivers 
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2009; Tan et al. 2013). The first group includes proteins which recognize a single G/C tract (3-8 

bp) flanked by inverted repeats rich in A/T (hereafter called type 1 site) (Iwig & Chivers 2009). 

Proteins belonging to the second group bind to a sequence where two shorter G/C tracts are 

separated by 2-4 bp and the A/T rich inverted repeats are located outside the G/C tracts 

(hereafter called type 2 site) (Tan et al. 2013). A third group of proteins bind to so defined 

“tandem” sites, which have two separate sites of type 1, type 2, or both (Iwig & Chivers 2009). 

E. coli RcnR belongs to the first group because two protein tetramers bind a tandem operator 

site consisting of two type 1 sites (each binding with a 1:1 stoichiometry), where CsoR 

homologues (from S. lividans, M. tuberculosis and B. subtilis), bind at the type 2 semi-

continuous G/C tract with a 2:1 stoichiometry (Iwig & Chivers 2009; Ma et al. 2009; Tan et al. 

2013). E. coli RcnR was shown to recognize both major and minor groove regions by 

interacting with inverted repeats rich in T/A and with G/C tract respectively, promoting DNA 

wrapping (Iwig & Chivers 2009). Extensive studies employing isothermal titration calorimetry 

analysis (ITC) tested the role of the T/A sites in DNA recognition in both E.coli RcnR (Iwig & 

Chivers 2009) and S. lividans CsoR (Tan et al. 2013). Mutations in these regions had striking 

effects on the DNA binding affinity on both proteins suggesting an “end-to-end” interaction of 

both proteins across the site (Iwig & Chivers 2009, Tan et al. 2013). Major groove contact is 

carried out by interactions with the G/C tract in both proteins (Iwig & Chivers 2009; Tan et al. 

2013). As discussed in Section 1.4.2, poly-(G) sequences were shown to impose A-form 

characteristics to DNA, resulting in a deepening of the major groove and a widening of the 

minor groove (Peticolas et al. 1988; Basham et al. 1995; Werner et al. 1995; Jauch et al. 2012). 

These dramatic changes were observed in E. coli rcnRAB promoter region by Circular 

Dichroism analysis (CD), where it was possible to distinguish between A-DNA (in the G/C 

tract) and B-DNA (in the flanking regions) features (Iwig & Chivers 2009). Combination of the 

two features results in a significantly different architecture, including the formation of kinks at 

the juncture between the two different forms of DNA which can aid DNA recognition and 

wrapping (Iwig & Chivers 2009). An analogous A-DNA feature was observed by CD in the 

G/C tract from the consensus sequence recognized by S. lividans (Tan et al. 2013). The A-DNA 

characteristic of this tract was enhanced upon addition of up to two CsoR tetramers providing a 

more suitable protein-binding site as tetrameric CsoR width approximately coincides with the 

length of the consensus sequence (Tan et al. 2013).  

1.5 Formaldehyde: Toxicity, origins and detoxification 

mechanism 

Formaldehyde (HCOH) is the simplest and the most reactive among the aldehydes. It is a highly 

toxic and colourless compound.  
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 Reactivity 1.5.1

Formaldehyde is characterized by a carbonyl group C=O, which is planar, with σ-bond (where 

sp
2
 orbitals overlap to each other) and a π-bond (overlap of 2p orbitals). The carbonyl group is 

polarized toward the most electronegative atom (oxygen) making the carbon electro-deficient. 

Formaldehyde, as aldehydes in general, can easily undergo oxidation to yield the corresponding 

carboxylic acid, formic acid (HCOOH) (McMurry 2011).  

The most common reaction involving aldehydes (and ketones) is the nucleophilic addition, 

where a nucleophile species attacks the electron deficient carbon on the carbonyl group. The 

hybridization of C changes from sp
2
 to sp

3
 and a tetrahedral alkoxide ion intermediate is 

generated (McMurry 2011). After this step the reaction can continue following two main routes 

yielding an alcohol or a species with a C=Nu (where Nu is a nucleophilic species) double bond 

(McMurry 2011). Nucleophilic additions are more favourable on aldehyde rather than ketones 

for steric and electronic reasons. In fact, the carbonyl C is less crowded and more accessible in 

aldehydes since these organic substances possess only one substituent larger than a proton 

resulting in a low energy transition state (McMurry 2011). Moreover, secondary carbocations 

are less reactive than primary ones because they possess two alkyl groups, which are electron 

donating and therefore can stabilize the positive charge on C more efficiently (Figure 1. 3).   

Hence, aldehydes carbonyl group is more polarized than ketones increasing the reactivity of 

these molecules in nucleophilic additions (McMurry 2011). This applies to a greater extent to 

formaldehyde which undergoes nucleophilic attack even more readily since it does not have any 

alkyl group to inductively stabilize the C
+
 in the corresponding carbocation. 

To further introduce formaldehyde reactivity in this section we will discuss in details the 

nucleophilic addition reaction between a generic aldehyde and an oxygen (or sulfur) nucleophile 

(Section 1.5.1.1), with the consequent formation of an acetal (or thioacetal), or a nitrogen 

nucleophile (Section 1.5.1.2), which yields a Schiff base. 

1.5.1.1 Nucleophilic addition of oxygen and sulfur nucleophiles 

Figure 1. 4 shows the reaction mechanism of the acetal, R2C(OR’)2, synthesis occurring upon 

the initial attack of an oxygen (or sulfur) nucleophile to the carbonyl group of the aldehyde. An 

analogous sequence of steps (not shown) yields thioacetals, R2C(SR’)2 from the initial attack of 

thiol (RSH) groups. 

The reaction can be subdivided in two steps: addition of one molecule of alcohol to produce one 

molecule of hemiacetal and the subsequent conversion to acetal upon addition of a second 

molecule of alcohol. Although alcohols are weak nucleophiles, the rate of the reaction can speed 

up in the presence of basic or acidic conditions. Since alcohols are not strong nucleophiles, the 

reaction must be catalysed. The synthesis of hemiacetals can occur in both acid and basic 



1. Introduction 

33 | P a g e  

 

 

Figure 1. 3 The stability order of carbocations derived from formaldehyde, generic aldehyde and 

generic ketone compared to the reactivity order of the corresponding carbonyl compounds. 
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Figure 1. 4  Under acid conditions, the first step involves the protonation of the carbonyl oxygen 

with the subsequent activation of the carbonyl group for nucleophilic attack of the oxygen from 

the alcohol species. The formation of the tetrahedral intermediate hemiacetal is achieved by loss 

of the proton on the alcohol group and restoration of the acid catalyst. Otherwise, in the 

presence of a base the alcohol is deprotonated and converted to a better nucleophile which 

attacks the carbonyl group yielding the hemiacetal. The reaction proceeds in the presence of an 

acid catalyst which protonates the hydroxyl group, converting it in a good leaving group. Loss 

of a water molecule yields the oxonium ion which undergoes the addition of a second molecule 

of alcohol. Loss of a proton regenerates the acid catalyst and yields the acetal as final product. 

Hemiacetal and acetal products are highlighted in red. 
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conditions (Figure 1. 4), while the subsequent formation of acetal can only take place in acid 

conditions (McMurry 2011).  

1.5.1.2 Nucleophilic addition of nitrogen nucleophiles 

Nucleophilic addition of a primary amine to an aldehyde (or a ketone) yields an imine (RC=NR) 

(Figure 1. 65), whereas secondary amine produces an enamine (R2N-CR=CR2) (Figure 1. 6)  

(McMurry 2011). Both reactions occur in acidic conditions, with the maximum rate observed at 

pH = 4.5, low enough to protonate the tetrahedral intermediate (carbinolamine) but not too low 

to also protonate the amine, preventing in such a way the initial nucleophilic attack (McMurry 

2011). The two mechanisms are quite similar, and are characterised by the synthesis of the 

tetrahedral intermediate carbinolamine and the final product with a newly formed C=Nu. 

However this reaction cannot occur if the aldehyde does not possess a hydrogen in position α 

(Figure 1. 6), which is the case of formaldehyde. Hence reaction with formaldehyde would stop 

after the formation of carbinolamine. 

 Toxicity  1.5.2

Formaldehyde is an irritant chemical which can lead to a variety of symptoms, ranging from 

mild inflammations to severe ulceration. In 2004 it has been classified as a mutagen, carcinogen 

to humans (Group 1 substances) by the International Agency for Research on Cancer. The 

World Health Organization (WHO) studied the association between formaldehyde exposure and 

various types of cancers such as nasopharyngeal, sinonasal and leukaemia. (WHO 2006; Kerns 

et al. 1983). Since formaldehyde carcinogenicity derives from the ability of this aldehyde to 

cross-link proteins and DNA, the number of these interactions have been exploited as a 

genotoxicity marker (WHO 2006).  

1.5.2.1 Protein-DNA crosslinking with formaldehyde in vitro  

Formaldehyde toxicity results from its ability to react with amino groups of cytosines, guanines 

and adenines of single and double stranded DNA and, with higher rates, with imino groups of 

thymines and guanines of single stranded DNA (Solomon & Varshavsky 1985; Brodolin 2010) 

(Figure 1. 7). In proteins, formaldehyde usually reacts with lysine, arginine, tryptophan and 

histidine residues. When long crosslinking times (t > 2 min) are allowed, multiple crosslinks 

between protein-protein and DNA-protein occur (with both melted and double-stranded regions 

of DNA). Since the groups involved in formaldehyde crosslinks must be in close contact (the 

interaction is at the range of Van der Waals radii (Kunkel et al. 1981), these crosslinks can be 

used as a tool to study protein domains in close contact with DNA (Brodolin 2010). One 

application is the use of relatively mild crosslinking conditions to study specific RNA 

polymerase-promoter interactions, (Brodolin 2010). The adopted conditions usually involve a 

concentration of formaldehyde of 2-30 mM and incubation times of 10-30 sec at 37 ºC, while  
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Figure 1. 5 The first step involves the nucleophilic attack of the primary amine to the carbonyl 

carbon (electrophile) with the production of a dipolar intermediate which is then converted to a 

neutral carbinolamine by proton transfer. Protonation of the hydroxyl group by the acid catalyst 

and subsequent loss of water produces the iminium ion. Regeneration of the acid catalyst yields 

an imine (in red). 
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Figure 1. 6 The first part of the mechanism is identical to the imine synthesis. The lack of an 

additional proton on the secondary amine group now bound to the aldehyde causes a variation in 

the mechanism. Extraction of a proton bound to the Cα to regenerate the acid catalyst results in 

the formation of a double bond C=C.  
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Figure 1. 7 Reactions mediated by formaldehyde. Formation of a methylol derivative on thymine 

(1a.) or on the amino group of an amino acid side-chain (1b.) is followed by the production of 

an immine which undergoes the addition of a second amino group yielding a stable 

condensation product (2.). This scheme has been adapted from “Protein-DNA crosslinking with 

formaldehyde in vitro” by Brodolin K. (Chapter 10 “DNA-Protein interaction” 2010).  

+
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higher concentrations could interfere with the formation of specific DNA-protein contacts. The 

crosslinking reaction is then terminated by addition of SDS which denatures the nucleoprotein 

complexes and destroys any non –covalent interaction between protein and DNA (Brodolin 

2010) and then analysed by SDS-PAGE. 

 Origins 1.5.3

Formaldehyde can be ubiquitously found in all living organisms (Heck et al. 1985), in part 

because it is the by-product of many metabolic pathways. An example is given by the oxidative 

demethylation of DNA, which is associated with formaldehyde production following the 

reconversion from methylated to unmodified bases (Trewick et al. 2002). Moreover, when liver 

homogenate oxidizes biological labile methyl groups in sarcosine to yield carbon dioxide, 

production of formate and formaldehyde can be detected amongst several other intermediates 

(Handler et al. 1941; MacKenzie 1950). Furthermore formaldehyde plays an important role in 

atmospheric chemistry being a product of photochemical reactions in the troposphere. 

Aldehydes, and in particular HCOH, act as autocatalytical sources of hydroxyl radicals (·OH) 

(Monks 2005; Michoud et al. 2012). Formaldehyde can be emitted by plants (Lipari et al. 

1984), from oxidation of Volatile Organic Compounds (VOCs) (Carlier et al. 1986) or can be a 

product of incomplete combustion (Ciccioli et al. 1993; Sassine et al.  2014).  

 Detoxification 1.5.4

In order to avoid formaldehyde accumulation, living organisms evolved several detoxification 

pathways. Some organisms have adapted to employ formaldehyde in their energy metabolism, 

maintaining the formaldehyde level high while tightly modulating it in order to avoid 

cytotoxicity (Christoserdova et al. 2009; Vorholt 2002). Methylotrophic bacteria use C1 

compounds, species without C-C bonds (CH4, CH3OH, HCOH etc.), as sources of carbon and 

energy (Chistoserdova et al. 2009). These bacteria may convert formaldehyde (for example to 

carbon dioxide) adopting several metabolic strategies: the ribulose monophosphate pathway 

(RuMP) which assimilates formaldehyde at relative low concentrations (Dijkhuizen et al. 1992; 

Ferenci et al. 1974; Anthony 1982; Vorholt 2002), metabolic pathways involving the addition of 

a cofactor to formaldehyde prior to oxidation, and the C1-metabolism which sees the initial 

oxidation of C1 species to yield formaldehyde that is then utilized to produce energy or 

assimilated into biomass (Vorholt 2002). An example is given by Methylobacterium sp MF1, 

isolated by Mitsui, Omori and colleagues (Mitsui et al. 2005), which can use HCOH (or 

CH3OH) as the sole source of carbon by exploiting a metabolism that makes use of enzymes 

similar to those  involved in C1 metabolism. In these microorganisms, disruption of the 

formaldehyde assimilation pathway may result in the accumulation of formaldehyde up to 100 

mM in less than 1 min (Attwood & Quayle 1984; Vorholt et al. 2000). The analogous 

http://www.methanotroph.org/wiki/references#_ENREF_15
http://www.methanotroph.org/wiki/references#_ENREF_188
http://www.methanotroph.org/wiki/references#_ENREF_188
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metabolism has been observed also in plants which, in addition, can assimilate formaldehyde 

into the Calvin cycle (Song et al. 2013; Khadem et al. 2012).  

Microorganisms have evolved several formaldehyde detoxification pathways, amongst which 

the glutathione dependent mechanism, present in some prokaryotes and all eukaryotes, is the 

most commonly found (Harms et al. 1996). The second most abundant detoxification pathway 

is the ribulose monophosphate metabolism (RuMP) which, while adopted by methyltrophic 

bacteria to fix formaldehyde, is widespread in non-methyltrophic bacteria and archaea to avoid 

formaldehyde accumulation to toxic levels. In the next paragraphs these pathways will be 

discussed in details, with a particular focus on the GSH-dependent mechanism. 

1.5.4.1 GSH-dependent formaldehyde detoxification pathways 

The glutathione-dependent pathway represents the most widespread formaldehyde 

detoxification strategy adopted by organisms of wide phylogeny (Harms et al. 1996) with the 

exception of archaea (Gonzalez et al. 2006). Harms and colleagues investigated this mechanism 

in Paracoccus denitrificans where the oxidation of methanol, methylamine and choline leads to 

the transient production of formaldehyde (Harms et al. 1996). The microorganism faces a 

regulation problem since it must respond to toxic levels of formaldehyde without slowing its 

further oxidation. 

Methanol and methylamine are converted to formaldehyde by the corresponding periplasmic 

enzymes, and formaldehyde is subsequently transported to the cytoplasm (Harms & Van 

Spanning 1991). Oxidation of choline to glycine occurs in several steps and is coupled with the 

release of formaldehyde in the cytoplasm (Harms et al. 1996). Here, formaldehyde 

spontaneously reacts with reduced glutathione yielding S-hydroxymethylglutathione which is 

then oxidized to S-formylglutathione by the NAD-dependent formaldehyde dehydrogenase 

(GD-FALDH) (Van Ophem & Duine 1994). The following step involves the hydrolysis of S-

formylglutathione by S-formylglutathione hydrolase (FGH) to glutathione and formate, which 

can then be further oxidized to carbon dioxide by formate dehydrogenase (Min et al. 1988). The 

gene coding for FGH has been also recognised to be identical to the human esterase D (ESD) in 

human erythrocytes (Eiberg & Mohr 1986). Expression of flhA and fghA, which encode for GD-

FALDH and FGH respectively, is low but constant and increases upon addition of methanol, 

methylamine and choline (Harms et al. 1996).  

1.5.4.2 Other formaldehyde detoxification pathways 

The ribulose monophosphate mechanism represents the second most widespread formaldehyde 

detoxification pathway adopted by living organisms. It has been first observed in methyltrophic 

bacteria, which utilize this pathway to fix formaldehyde, and in non-methyltrophic bacteria and 

archaea to avoid formaldehyde accumulation (Yasueda et al. 1999; Mitsui et al. 2003; Kato et 

al. 2006). 

http://www.methanotroph.org/wiki/references#_ENREF_107
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The mechanism involves the aldolic condensation of formaldehyde with ribulose 5-phosphate 

catalyzed by 3-hexulose-6-phosphate synthase (HPS) to yield D-arabino-3 hexulose-6-

phosphate which is then isomerized to fructose 6-phosphate by the 6-phospho-3 

hexuloisomerase enzyme (PHI). The hydrolysis reaction product may then be further 

phosphorylated to form fructose 1,6-biphosphate which can be metabolized to pyruvate by 

glycolysis (Quayle & Ferenci 1978; Kato et al. 2006). Three moles of formaldehyde can 

therefore yield one mole of pyruvate: 

3 HCOH + ADP + NAD
+
  pyruvate + ATP + NADPH + H

+ 

It has been shown that expression of HPS and PHI is induced by formaldehyde in bacteria, 

whereas in archaea these enzymes are constitutively expressed. Archaea also exploit the reverse 

reaction in the pentose phosphate biosynthesis (Kato et al. 2006). 

Two other less common detoxification strategies are the glutathione-independent and the 

tetrahydromethanopterin-dependent (H4MPT) pathways. The gene coding for the GSH-

independent pathway in bacteria share only 24 % identity with those required in the GSH-

dependent mechanism. Here, formaldehyde is not condensed with a co-factor prior to be 

assimilated. The GSH-independent formaldehyde dehydrogenase, fdhA, is a member of the zinc-

containing medium chain alcohol dehydrogenase and catalyzes the dismutation of two 

molecules of formaldehyde to formate and methanol (Oppenheimer et al. 1997; Ogushi et al. 

1984): 

2 HCOH + H2O  HCOO
- 
+ CH3OH 

Moreover, all methylotrophic bacteria possess the H4MPT-dependent pathway, which has also 

been identified in methanogenic archaea and in some Burkholderia species such as B. 

fungorum LB400 (Marx et al. 2003; Vorholt 2002). The metabolism involves a first step where 

formaldehyde is condensed with the archaeal cofactor H4MPT by the formaldehyde activating 

enzyme (FAE) (Vorholt et al. 2000), followed by several steps which convert the adduct to 

formate (Vorholt 2002).  

In order to prevent formaldehyde from accumulating to toxic concentrations, organisms often 

use a combination of the formaldehyde detoxification pathways discussed above, (Marx et al. 

2004) which in some cases do not appear redundant (Chistoserdova et al. 2000). 

 Regulation of detoxification pathways 1.5.5

Expression of genes coding for enzymes involved in formaldehyde detoxification pathways 

must be tightly regulated. In fact, regulators of formaldehyde detoxification pathways must 

avoid accumulation of this substance above a toxicity threshold but also prevent the wasteful 

oxidation of formaldehyde if its concentration is too low. These regulatory mechanisms have 
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been investigated in a few organisms employing the GSH-dependent formaldehyde 

detoxification pathway.  

As already introduced in Section 1.5.4.1, Paracoccus denitrificans possesses flhA and fghA 

genes which encode GD-FALDH (formaldehyde dehydrogenase) and FGH (S-

formylglutathione hydrolase) respectively, involved in the formaldehyde oxidation to formate. 

flhRS genes have been isolated and sequenced by Harms and colleagues (Harms et al. 2000) and 

were found to encode for a two-component regulatory system, FlhRS. This system can both 

activate the detoxification pathway and control the activity of the quinoprotein methanol 

dehydrogenase MDH (which produces formaldehyde) relative to the formaldehyde consumers, 

GD-FALDH and FGH (Harms et al. 2000). Rhodobacter sphaeroides possesses two-component 

systems. In addition to the regulatory machinery analogous to P. denitrificans’s (AfdS and 

AfdR proteins share ~ 50 % identity with the corresponding P. denitrificans’s FlhR and FlhS) 

(Barber & Donohue 1998), the RfdSR system was identified by Hickman and collaborators 

(Hickman et al. 2004). However, RfdS and RfdR show a weak homology with AfdS and AfdR 

and it has been shown that they repress transcription of the GSH-FDH gene independently from 

formaldehyde levels, suggesting that other effectors may be sensed by this system (Hickman et 

al. 2004). In addition to Escherichia coli FrmR, which is involved in the glutathione-dependent 

formaldehyde detoxification system frmRAB (as extensively described in Section 1.2.1.7), a 

regulatory system has been identified in Bacillus subtilis and Bacillus cereus. Bacillus subtilis 

possesses both glutathione-dependent and RuMP pathways. The glutathione-dependent system 

appears to lack the FGH enzyme, suggesting that other metabolic routes must be adopted by the 

microorganism to catabolize S-formyl-glutathione. The gene coding for GDH-FDH enzyme, 

adhA, is part of the adhA-yraA operon (yraA encodes a cysteine proteinase) which is regulated 

by the formaldehyde-sensing transcriptional regulator AdhR. This protein belongs to the MerR 

family (Section 1.2.2.1) which includes metal-sensing activators but also proteins responding to 

toxic levels of oxidative stress (e.g. formaldehyde) (Potter et al. 2010; Ahmed et al. 1994; 

Pomposiello & Demple 2001; Chen & He 2008; Brown 2003). It has been shown that Cys52 

has a key role in formaldehyde sensing by AdhR (Huyen et al. 2009). This residue may be 

modified by formaldehyde, inducing a conformational change in AdhR which can lead to 

activation of the adhA-yraA operon transcription. 

B. subtilis contains also hxlA and hxlB genes coding for the HPS and PHI enzymes required 

during the metabolic RuMP metabolic pathway. Formaldehyde sensor HxlR is encoded by a 

gene divergently transcribed relative to hxlAB operon (Yasueda et al. 1999). HxlR is the 

founding member of the HxlR-like family of transcriptional regulators and part of the GntR 

super-family of proteins which bind their promoter regions employing the wHTH motif in the 

N-terminus region and the effector with the C-terminus region (Hoskisson & Rigali 2009). In 

the absence of formaldehyde, HxlR binds two promoter regions upstream hxlAB operon. In the 

presence of toxic levels of formaldehyde the expression of the hxlAB operon is induced. In order 
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to explain the activation of the transcription induced by formaldehyde two hypotheses have 

been proposed by (Yurimoto et al. 2005). The first involves a conformational change in the 

transcriptional regulator, elicited by formaldehyde binding, which stimulates the recruitment of 

RNA polymerase. The second one considers formaldehyde binding to other factors which can 

then trigger the activation of HxlR. An analogous effect has been observed also with 

methylglyoxal raising questions about HxlR selectivity towards formaldehyde-binding. A 

member of the HxlR-family has also been identified in Bacillus cereus where regulates the 

operon involved in the glutathione-dependent detoxification pathway (Law 2012).  

1.6 Aims and objectives 

The aims of this project were two-fold: 

1. To pursue a deeper understanding of the bacterial systems for sensing and adapting to 

metal stress in Salmonella enterica serovar typhimurium, the formaldehyde-sensing FrmR was 

examined through a combination of biochemical, biophysical and structural studies. Crucial 

determinants of metal sensing in cells were tested by creating a FrmR variant (E64HFrmR) 

capable of sensing cellular Zn(II) and Co(II). The gain-of-function Glu64  His mutation was 

originally intended to enhance FrmR Ni(II)- and Co(II)-affinity in vitro by creating a RcnR-like 

metal binding site, although unexpectedly switched the formaldehyde-sensor into a metal-

sensor. 

Zn(II)-, Co(II)-, Cu(I)-binding affinities, DNA-affinity of apo- and holo-protein, and allosteric 

coupling free energy values were measured for FrmR and a variety of mutants. These 

experiments aimed to characterize FrmR and enhance understanding of the microbial metal-

regulatory system that somehow discriminates between metals in Salmonella.  

2. The second part of this work focused on Salmonella FrmR cellular role as the 

formaldehyde-sensing transcriptional regulator of the frmRA operon, involved in the cellular 

formaldehyde-detoxification pathway. By determining the residues involved in formaldehyde 

detection through site-directed mutagenesis, a potential formaldehyde-sensing mechanism was 

formulated. In order to investigate the specificity of the formaldehyde-FrmR interaction, DNA-

binding in the presence or absence of formaldehyde stress was compared to that of Salmonella 

RcnR. Creation of an in vitro formaldehyde-responsive variant of RcnR further corroborated the 

mechanism here proposed. 
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2.1 Reagents and chemicals 

All reagents and chemicals were purchased from standard commercial suppliers (Sigma-

Aldrich, AnalaR, Thermo Scientific and Acros Organics) unless otherwise specified. Enzymes 

were obtained from New England Biolabs and Promega. All solutions were prepared using 

bacteria- and particle-free double deionised (nanopure) water (nH2O). 

2.2 Molecular biology methods 

2.2.1 Growth conditions 

For all gene cloning steps, the E. coli strain DH5α (Genotype: F-, φ80dlacZΔM15, Δ(lacZYA-

argF)U169, deoR, recA1, endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1) 

was used. For overexpression of recombinant proteins, the E. coli strain BL21(DE3) (Genotype: 

F–, ompT, hsdSB (rB–, mB–), dcm, gal, λ(DE3), pLysS) was used. All liquid E. coli cultures 

were grown in Luria-Bertani (LB) medium (Sambrook & Russell 2001) at 37 ᵒC with orbital 

shaking at approximately 180 rpm, unless otherwise stated. Bacterial E. coli cultures grown on 

LB agar plates were incubated overnight at 37 ᵒC to allow colony formation.  

Dr. J.S. Cavet (University of Manchester) kindly provided the S. enterica sv. Typhimurium 

SL1344 and LB5010a strains that were used as wild-type and as restriction-deficient 

modification-proficient hosts for DNA manipulations, respectively. 

All media for bacterial culturing was sterilised by autoclave prior to use. 

2.2.2 Antibiotics 

Antibiotics (supplied by Sigma and Melford laboratories Ltd.) were used as selectable markers 

when growing E. coli cells transformed to antibiotic resistance with recombinant plasmids. 

Antibiotics routinely used were kanamycin (50 μg ml
-1

) for pET29a and carbenicillin (100 μg 

ml
-1

) for pGEMT plasmids, unless otherwise stated. 

2.2.3  List of oligonucleotides 

All primers, listed in Table 2. 1, were obtained from Sigma-Aldrich. All subcloned DNA 

fragments were sequenced (DBS Genomics, Durham University, UK) to verify no 

mutations/errors in sequences. 
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Primer name Sequence (5′-3′) Description 

frmR_F 
GAACATATGCCGCATTCACCTGAAG

ATAAAAAAC 

PCR primer 

(production of 

pGEM-TfrmR and 

pETfrmR) 

frmR_R 
GAAGAATTCTTATTTTAGATAAGCG

CGAAGAAGATGGCC 

PCR primer 

(production of 

pGEM-TfrmR and 

pETfrmR) 

rcnR_F 
GAACATATGTCACATACCATCCGGG

AC 

PCR primer 

(production of 

pGEM-TrcnR and 

pETrcnR) 

rcnR_R 
GAAGAATTCCTATTTTATATAAGAA

TCCAGCACCTTTAATATTACG 

PCR primer 

(production of 

pGEM-TrcnR and 

pETrcnR) 

frmR_E64H_SD
M_F 

GAAATCCATCTGAAAGATCACCTGG

TCAGCGGGGAG 

FrmR Glu64His 

‘quickchange’ 

frmR_E64H_SD
M_R 

CTCCCCGCTGACCAGGTGATCTTTC

AGATGGATTTC 

FrmR Glu64His 

‘quickchange’ 

frmR_C35A_SD
M_F 

GAGTCTGGCGAACCTGCTCTGGCGA

TTCTGCAAC 

FrmR Cys35Ala 

‘quickchange’ 

frmR_C35A_SD
M_R 

GTTGCAGAATCGCCAGAGCAGGTTC

GCCAGACTC 

FrmR Glu64His 

‘quickchange’ 

frmR_H60L_ 
SDM_F 

GTGAAATGGTTGAAATCCTTCTGAA

AGATGAGCTGGTCAG 

FrmR His60Leu 

‘quickchange’ 

frmR_H60L_ 
SDM_R 

CTGACCAGCTCATCTTTCAGAAGGA

TTTCAACCATTTCAC 

FrmR His60Leu 

‘quickchange’ 

frmR_P2S_ 
SDM_F 

GGAGATATACATATGTCGCATTCAC

CTGAAGATAAAAAACGTATCC 

FrmR Pro2Ser 

‘quickchange’ 
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frmR_P2S_ 
SDM_R 

GGATACGTTTTTTATCTTCAGGTGA

ATGCGACATATGTATATCTCC 

FrmR Pro2Ser 

‘quickchange’ 

frmR_E81A_ 
SDM_F 

GGTTCGGATGGCGGCAATCGGCCAT

CTTC 

FrmR Glu81Ala 

‘quickchange’ 

frmR_E81A_ 
SDM_R 

GAAGATGGCCGATTGCCGCCATCCG

AACC 

FrmR Glu81Ala 

‘quickchange’ 

rcnR_S2P_ 
SDM_F 

GAAGGAGATATACATATGCCACATA

CCATCCGGGACAAAC 

RcnR Ser2Pro 

‘quickchange’ 

rcnR_S2P_ 
SDM_R 

GTTTGTCCCGGATGGTATGTGGCAT

ATGTATATCTCCTTC 

RcnR Ser2Pro 

‘quickchange’ 

pGEMCon3_F ATCACTAGTGCGGCCGCC 
Production of 

pGEMCon3 

pGEMCon3_R 
GATAACAATTTCACACAGGAAA 

CAGC 

Production of 

pGEMCon3 

rcnRAProEM_F GAAGAAGTGTCGAAAATTCACCC 
Production of 

rcnRAProEM 

rcnRAProEM_R 
GAACCGGATGGTATGTGACATTACA

AC 

Production of 

rcnRAProEM 

frmRAPro_F 
[HEX]TTCTGATAGTATACCCCCCTAT

AGTATATGGAG 

Production of 

frmRAPro 

frmRAPro_R 
CTCCATATACTATAGGGGGGTATAC

TATCAGAA 

Production of 

frmRAPro 

frmRPro-T/A-
mod_F 

[HEX]TTCTGGTTCAACACCCCCCTAT

AGTATATGGAG 

Production of 

frmRAPro-T/A-mod 

frmRPro-T/A-
mod_R 

CTCCATATACTATAGGGGGGTGTTG

AACCAGAA 

Production of 

frmRAPro- T/A-mod 

rcnRAPro-
site1_F 

[HEX]CATTCTACTCCCCCCCAGTAT

AGAATAC 

Production of 

rcnRAPro
1site
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rcnRAPro-
site1_R 

GTATTCTATACTGGGGGGGAGTAGA

ATG 

Production of 

rcnRAPro
1site

 

rcnRAPro-
sites1,2_F 

[HEX]TACTCCCCCCCAGTATAGAAT

ACTACCCCCCAGTA 

Production of 

rcnRAPro
1,2sites

 

rcnRAPro-
site1,2_R 

TACTGGGGGGTAGTATTCTATACTG

GGGGGGAGTA 

Production of 

rcnRAPro
1,2sites

 

Table 2. 1 List of primers used during this work. [HEX] is the fluorescent tag 

hexachlorofluorescein. 
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2.3 DNA manipulation 

2.3.1 Amplification of DNA by Polymerase Chain Reaction (PCR) 

Polymerase chain reactions (PCR) were prepared to a final volume of 50 µl containing dNTPs 

(a mixture of dATP, dCTP, dGTP, dTTP, each at a final concentration of 40 µM), 10 - 100 ng 

of plasmid or genomic DNA, 0.4 μM of forward and reverse PCR primers (primers frmR_F,R; 

rcnR_F,R; Table 2. 1), Promega PCR buffer (containing 20 mM MgSO4) and 2-3 units of Pfu 

polymerase enzyme. PCR reactions were performed in a thermocycler using 95 ᵒC for the 

melting step, a variety of temperatures for annealing and 72 ᵒC for extension. 

2.3.2 3’-A tailing of PCR products 

The pGEM-T plasmid (Promega) was used for the propagation of cloned DNA fragments. An 

‘A-tailing’ strategy was chosen in order to facilitate ligation into this vector. Immediately 

following the PCR strategy described in Section 2.3.1, the PCR reaction was heated to 95 ᵒC for 

20 min in order to degrade Pfu polymerase, then 15 µl of 2 mM dATP was added to the reaction 

mix along with 5 units of Taq polymerase. The reaction was then incubated at 70 ᵒC for 15 min. 

In this way a single deoxyadenosine (A) was added to the otherwise blunt 3’ ends of the PCR 

products to complement the single 3’deoxythymidine present in the pGEM-T vector (Section 

2.3.4). 

2.3.3 Agarose gel electrophoresis 

DNA fragments were analysed by agarose gel electrophoresis. Agarose concentrations were 

selected depending on the size of the DNA fragment to be analysed knowing that the greater the 

percentage of agarose, the smaller the linear DNA that can be resolved. The gels were cast in a 

Tris/Borate/EDTA (TBE) buffer system which was also used for running the gel (Sambrook & 

Russell 2001). Ethidium bromide (0.5 µg ml
-1

) was also added to the gel to allow DNA 

visualization under UV light. DNA samples containing 6x loading dye (NEB) and a 1 kb DNA 

marker (NEB) were loaded onto the gel. Agarose gels were typically run at 90 V for 

approximately 1 h.  

DNA was then visualised by exposure to UV light using a UV transilluminator. DNA fragments 

that were required for further manipulation were excised from the gel and DNA was purified 

from the gel matrix using a GenElute gel extraction kit (Sigma-Aldrich) or a Qiaquick gel 

extraction kit (Qiagen) according to manufacturer instructions. 

2.3.4 Ligation into pGEM-T plasmid 

For ligation into pGEM-T, components of the pGEM-T vector system (Promega) were used. A 

10 μl ligation reaction was prepared, containing 1 μl pGEM-T plasmid vector stock (50 ng μl
-1

), 
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3 μl gel purified PCR product (~ 150 ng μl
-1

), 5 μl of T4 DNA ligase 2x reaction buffer and 1 μl 

of T4 DNA ligase enzyme (3 units μl
-1 

stock). Positive and negative controls were also prepared 

replacing the PCR products with 2 μl of a control DNA insert or with pure water, respectively. 

Reactions were either incubated at room temperature for 1 h or incubated at 4 ᵒC overnight. 

Following incubation, 2 µl from each reaction was used to transform E. coli strain DH5α to 

carbenicillin resistance as described in Section 2.3.10.  

2.3.5 Blue/white identification of transformant cells and colony PCR 

In order to quickly and easily distinguish between recombinant and non-recombinant colonies, 

the blue/white colony screening was used. The multi-cloning site of pGEM-T is contained 

within the α-peptide coding region of the enzyme β-galactosidase. Successful ligation of PCR 

inserts interrupts this coding sequence, therefore these clones are unable to convert the 

colourless substrate X-gal (bromo-chloro-indolyl-galactopyranoside) into the insoluble, blue 

compound 5-bromo-4-choroindole. A white colony indicates that the α-peptide in the plasmid is 

disrupted (insert present) whereas a blue colony indicates that the α-peptide is intact (no insert).  

LB-Agar plates containing carbenicillin were streaked with 40 µl 2 % w/v X-gal and 7 µl 20 % 

w/v isopropyl β-D-1-thiogalactopyranoside (IPTG) which was allowed 3-4 h to soak into the 

plate, after which aliquots of DH5α cells transformed with pGEM-T derivatives were then able 

to be plated.  

Plates were incubated overnight at 37 ᵒC to allow colony growth. White colonies were further 

analysed by a colony PCR screen to confirm the presence of the desired insert. Colony PCR 

reaction mixtures were prepared as described in Section 2.3.1 however using 5-10 units of Taq 

polymerase and NEB Thermopol buffer (diluted from a 10x stock containing 20 mM MgSO4). 

PCR primers were those used to amplify the DNA fragment from genomic DNA (Table 2.1). 

Colonies approximately 1 mm in diameter were picked with a sterile pipette tip, streaked onto a 

replica plate and then transferred to the PCR tube as DNA templates. PCR reaction was 

performed as described in Section 2.3.1 using 1 kb min
-1

 at 68 ᵒC for extension. PCR-amplified 

DNA fragments were analysed by agarose electrophoresis (Section 2.3.3) allowing 

identification of the desired insert. Plasmid DNA was prepared from colonies harbouring the 

desired PCR product (Section 2.3.7) and sequenced (DBS Genomics, Durham University) to 

confirm the integrity of the cloned fragment.  

2.3.6 Ligation into pET29a plasmid 

A protocol similar to that employed for ligation into pGEM-T plasmid was used to ligate DNA 

fragments into the overexpression plasmid pET29a.  

The 10 μl ligation reaction contained 1 μl of restriction digested pET29a plasmid (~ 1 µg μl
-1

), 

up to 7 μl of the restriction digested DNA insert from pGEM-T, 1 μl of T4 DNA ligase 10x 
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reaction buffer (Invitrogen) and 1 μl of T4 DNA ligase enzyme (3 units μl
-1 

stock).  Reactions 

were either incubated at room temperature for 1 h or incubated at 4 ᵒC overnight and 100 µl 

cells of the E. coli strain DH5α were transformed using up to 5 µl from each reaction and 

screened to confirm successful ligation. Cells were transformed (Section 2.3.10) to kanamycin 

resistance and ~ 100 µl of cells were plated onto LB agar plates containing 50 μg ml
-1

 

kanamycin. Following overnight incubation at 37 ᵒC, colonies appeared on the plates. Colonies 

containing successfully ligated plasmids were identified by diagnostic restriction digestion 

(Section 2.3.8). Several colonies were picked from the plate with a sterile pipette tip and used to 

inoculate approximately 5 ml of LB media containing 50 μg ml
-1

 kanamycin. These cultures 

were then grown overnight at 37 ᵒC with orbital shaking of 150 rpm. Plasmid DNA was isolated 

from each culture (Section 2.3.7) and each DNA sample was subjected to restriction digestion. 

To verify the presence of the correct insert in each sample, agarose gel electrophoresis was 

performed.  

2.3.7 Isolation of plasmid DNA 

For Miniprep DNA isolation, 5 ml E. coli cell overnight cultures were centrifuged at 6000 x g 

for 10 min at 4 ᵒC using a bench-top microcentrifuge (Beckman Coulter Microfuge 18), where 

for Midiprep DNA isolation a 100 ml culture was grown overnight and pelleted by 

centrifugation in a Beckman Coulter Allegra X-22R benchtop centrifuge (3082 x g, 10 min, 4 

ᵒC). Plasmid DNA was extracted from cells using either a Qiaprep Spin Miniprep Kit (Qiagen) 

or a GenElute Plasmid Miniprep kit (Sigma-Aldrich) for minipreps and a Qiagen Plasmid Midi 

kit for midipreps according to manufacturer protocols. Recovery of plasmid DNA was 

confirmed by agarose gel electrophoresis and using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific) which also allowed DNA concentration to be determined. 

2.3.8 Restriction digestion 

In order to allow efficient incorporation of fragments into pET29a plasmid, restriction enzymes 

were used to generate overhanging ends, with protruding terminal nucleotides, and 

complementary to those generated by analogous digestion of the plasmid. Each digestion 

reaction contained 5 μl of isolated plasmid, 1 μl of each of the pair of restriction enzymes 

(NEB), 5 μl of 10 x restriction enzyme buffer and nH2O up to a final volume of 50 μl. 

Following 1 h incubation at 37 ᵒC, samples were analysed to verify the presence of insert by 

agarose gel electrophoresis loading a small aliquot or all of the reaction volume if insert or 

digested plasmid was to be recovered. In the latter case the desired DNA inserts were isolated 

from the gel matrix as described in Section 2.3.3. 
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2.3.9 Site directed mutagenesis using the ‘Quick Change’ method 

‘Quickchange’ site directed mutagenesis protocol, developed by Stratagene, was used to 

introduce substitutions in the amino acid sequence of proteins. This involves a linear rather than 

an exponential amplification using a pET29a plasmid as templates for the DNA synthesis step. 

For this reason the low copy number plasmid was first purified according to the Midiprep 

protocol (Section 2.3.7) in order to obtain it in higher concentration. Each reaction was prepared 

in a similar way to that described in Section 2.3.1 except for the use of 5 µl of midiprep DNA 

instead of genomic DNA. The Stratagene protocol suggests designing a primer with a Tm of at 

least 78 ᵒC, a minimum GC content of 40 % and a length between 25 and 45 bases. The manual 

also specifies that the primers need to be PAGE or FPLC purified although desalted primers 

were successfully used in this work. Primers used are listed in Table 2.1. The initial 

denaturation was achieved incubating the samples at 95 ᵒC for 30 sec, and was followed by 

sixteen cycles at 95ᵒC for 30 sec (melting), 55 ᵒC for 1 min (annealing) and 72 ᵒC for 14 sec 

(extension). A control reaction was set up where Pfu polymerase was substituted with nanopure 

water. The amplified DNA fragments were then incubated with 1 µl Dpn1 restriction enzyme 

(20 unit µl
-1

) at 37 ᵒC for 3 h in order to eliminate the template DNA. This restriction enzyme is 

specific for methylated DNA and the mutated plasmid, which being generated in vitro is 

unmethylated, will be left intact. An aliquot (3µl) of each reaction was used to transform 50 µl 

of DH5α cells to kanamycin resistance (see Section 2.3.10). Typically no colonies were found 

on the minus Pfu control plate. Around 10 colonies were transferred to a replica plate and used 

to produce plasmid minipreps, then sequenced in order to confirm correct changes had been 

introduced. 

2.3.10 Production and transformation of E. coli chemically competent cells 

Competent cells were produced using a variation of the CaCl2/MgSO4 method. LB medium (500 

µl) was added to a previously prepared aliquot of cells kept at -80 ᵒC. Following incubation at 

37 ᵒC with orbital shaking for 1 h, the sample was used to streak a LB plate (no antibiotic 

added). The following day a colony from this plate was used to prepare a 5 ml culture in LB 

medium which was grown in the absence of antibiotic at 37 ᵒC overnight. An aliquot (2 ml) 

from this culture was used to inoculate 100 ml of LB medium which was then incubated at 37 

ᵒC, while shaking at 180 rpm, until an optical density (OD600 nm) of ~ 0.5 (corresponding to mid-

log phase) was reached. The cells were spun down for 10 min, at 4 ᵒC and 18,595 x g in a 

Beckman Coulter Avanti J-20 XP centrifuge using a JLA 10.500 rotor. The supernatant was 

discarded and the cell pellet was gently resuspended in ice-cold 100 mM MgCl2 (to a volume of 

25 % the original culture volume) and incubated on ice for 5 min. Cells were then recentrifuged 

in sterile 50 ml centrifuges tubes in a Beckman Coulter Allegra X-22R benchtop centrifuge 

(1204 x g, 10 min, 4 ᵒC). The cell pellet was resuspended in 5 % the initial culture volume of 

ice-cold 100 mM CaCl2 sterile solution before addition of a further 45 % and incubation on ice 
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for 1 h. This cell suspension was recentrifuged in sterile 50 ml falcon tubes in a Beckman 

Coulter Allegra X-22R benchtop centrifuge (1204 x g, 10 min, 4 ᵒC) and resuspended in 2 %  

the initial culture volume of ice cold, sterile solution of 85 mM CaCl2, 15 % (w/v) glycerol. The 

resuspended cells were divided into 50 or 100 µl aliquots (on ice), flash-frozen in liquid 

nitrogen and stored at -80 ᵒC. 

To transform E. coli cells to antibiotic resistance, 50 µl was inoculated with 1-5 μl of 

concentrated, purified DNA construct or ligation product respectively. Samples were incubated 

on ice for 15 min, heat shocked at 42 ᵒC for 90 sec and incubated again on ice for 4 min. LB 

medium (1 ml) was added to the mixture that was then incubated with shaking at 37 ᵒC. After at 

least 1.5 h, cells were pelleted by centrifugation in a Beckman Coulter Microfuge 18 (18,000 x 

g, 10 min), resuspended in 50 - 70µl LB medium and plated onto a LB agar plate containing the 

appropriate antibiotic. 

2.3.11  Production and transformation of S. typhimurium electrocompetent 

cells 

Salmonella typhimurium electrocompetent cells were produced using 500 µl of LB medium 

added to a previously prepared aliquot of cells kept at -80 ᵒC. Following incubation at 37 ᵒC 

with orbital shaking for 1 h, the sample was used to streak a LB plate (no antibiotic added). The 

following day a colony from this plate was used to prepare a 10 ml culture in LB medium which 

was grown in the absence of antibiotic at 37 ᵒC overnight. An aliquot (500 µl) from this culture 

were used to inoculate 50 ml of LB medium which was then incubated at 37 ᵒC, while shaking 

at 200 rpm, until an optical density (OD600 nm) of ~ 0.4 - 0.6 was reached. The cells were 

transferred into two 50 ml falcon tubes and chilled on ice for 15 min before being spun down for 

10 min, at 4 ᵒC and 2,975 x g in a Beckman Coulter Avanti J-20 XP centrifuge using a JLA 

10.500 rotor. The supernatant was discarded and the cell pellet was gently resuspended in 10 ml 

of ice-cold sterile pure water. Cells were then recentrifuged at 2,975 x g for 10 min at 4 ᵒC. The 

supernatant was poured off, the cell pellet resuspended again in 10 ml sterile water and 

centrifuged. Supernatant was discarded and cells were resuspended in 10 ml of ice-cold 10 % 

w/v sterile glycerol. Cells were pelleted at 2,975 x g for 10 min at 4 ᵒC and supernatant 

discarded. 1.25 ml of 10 % w/v glycerol was added. The resuspended cells were then divided 

into 50 µl aliquots (on ice), flash-frozen in liquid nitrogen and stored at -80 ᵒC. To transform S. 

typhimurium cells to antibiotic resistance, 50 µl electrocompetent cells were thawed and kept on 

ice for 10 min. Plasmid DNA was also thawed and kept in an ice box for 10 min. DNA plasmid 

(4 µl) was aseptically added to competent cells and mixed gently by pipetting. Samples were 

incubated on ice for 15 min and aseptically transferred to a pre-cooled 2 mm gap width 

electroporation cuvette and kept on ice. Electroporation was carried out using a BioRad Gene 

Pulser set to resistance 200 ohms, capacitance 25 µF, voltage 2.5 µV. 500 µl LB medium was 

then immediately added to the cuvette in an aseptic environment. Samples were incubated for 1 
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h at 37 ᵒC with orbital shaking prior to plate cells on to selective agar LB-carbenicillin (100 

µg/ml) plate. 

2.3.12 Generation of Salmonella Deletion Mutants 

Deletion mutants of strain SL1344 were produced by Dr. Deenah Osman as described 

previously (Osman et al. 2015). 

2.3.13 Generation of Promoter-lacZ Fusion Constructs and β-Galactosidase 

Assays 

PfrmRA and PfrmRA-frmR were produced by Dr. Deenah Osman who performed β-galactosidase 

assays as described previously (Osman et al. 2015). 

2.4 Protein production and purification 

The composition of the buffers used in the following sections is summarized in the Appendix 

(Table 8. 1). 

2.4.1 SDS-PAGE analysis 

In order to determine purity and abundance of recombinant proteins, SDS-PAGE analysis 

(Sambrook & Russell 2001) was carried out during and post purification. For analysis of 

purified FrmR and RcnR wild type and mutants, gels were made at 18 % w/v acrylamide 

concentration. Gels were run at 200 V for approximately 1 h. Gels were stained in Instant Blue 

Coomassie stain (Thermo Scientific) overnight and then destained in pure water (nH2O). 

2.4.2 Native gel analysis 

Non denaturing conditions were chosen to analyse DNA samples after annealing experiment. A 

native gel containing 12 % w/v acrylamide was prepared according to Sambrook & Russell, 

2001. Gels were run at 90 V for approximately 2 h and then transferred to a tank filled with ~ 50 

ml of water and 10 µl of ethidium bromide (stock 10 mg ml
-1

). Following staining, visualization 

of the gel was carried out with UV light. 

2.4.3 Overexpression and solubility testing 

During this work pET29aFrmR, pET29aE64HFrmR, pET29aC35AFrmR, pET29aP2SFrmR, 

pET29aH60LFrmR, pET29aE81AFrmR, pET29aRcnR and pET29aS2PRcnR were produced. 

Small scale tests of protein expression were performed to find the right conditions to be applied 

to large-scale overexpression. For each expression test a single E. coli transformant colony was 

added to 5 ml LB medium in presence of 50 µg ml
-1 

kanamycin and incubated overnight at 37 

ᵒC with orbital shaking. The following day 250 µl from each culture were used to inoculate 25 
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ml LB medium and cells were grown until the OD600 nm  reached approximately 0.6. Different 

IPTG concentrations (200 - 500 µM) were then added to each culture. Aliquots of culture (5 ml) 

were removed at specific time points (after 1-2-3-4-5-16 h) and centrifuged using a Beckman 

Coulter Allegra X-22R benchtop centrifuge (1,764 x g, 10 min, 4 ᵒC). The supernatants were 

discarded and cell pellets frozen at -20 ᵒC. An aliquot of culture was removed also prior to 

addition of IPTG in order to assess pre-induction protein expression. Cell pellets from each 

condition were thawed on ice, resuspended in 1 ml of resuspension buffer (10 mM Hepes pH 

7.0, 10 mM EDTA, 10 mM DTT, 100 mM  NaCl)  and lysed by sonication (8 x 20 sec bursts 

performed on ice). Cell lysates were clarified twice by centrifugation (18,000 x g, 4 ᵒC, 10 min 

in a microfuge, and 39,191 x g, 4 ᵒC, 20 min using a Beckman JA25.50 rotor). The soluble 

fraction (supernatant) was decanted while the insoluble fraction (pelleted cell) was resuspended 

in 1 ml of resuspension buffer. Aliquots were taken from each fraction and loaded onto an 18 % 

w/v SDS-PAGE run as described in Section 2.4.1. Both FrmR and RcnR proteins were mainly 

found in the soluble fractions. 

2.4.4 Overexpression conditions for recombinant FrmR and RcnR in E. coli 

1 µl of pET29a plasmid, harbouring the coding sequence for wild-type and mutant versions of 

FrmR and RcnR, was used to transform 50 µl of BL21(DE3) competent cell to kanamycin 

resistance (Section 2.3.10). The following day 10 ml of LB medium were inoculated with a 

single transformant colony and incubated overnight at 37 ᵒC using an orbital shaker. The culture 

was then diluted 100-fold into 1L pre-warmed fresh LB supplemented with 50 µg ml
-1 

kanamycin and incubated at 37 ᵒC, 180 rpm until OD600nm ~ 0.5 (approximately 4 - 5 h), at 

which point protein expression was induced by addition of 200 µM IPTG for 3.5 - 4 hours under 

the same growth conditions. Cells were collected by centrifugation at 3,993 x g, 4 ᵒC, 20 min 

using a JLA 8.100 rotor. Each pellet was suspended in 20 ml fresh LB, transferred to 50 ml 

Falcon tube before a second round of centrifugation in a Beckman X-22R benchtop centrifuge at 

3,082 x g 4 ᵒC, 15 min and storage at - 20 ᵒC.  

2.4.5 Overexpression conditions for recombinant ZntR and CueR in E. coli 

ZntR and CueR were overexpressed by Dr. Deenah Osman, as described previously (Osman et 

al. 2015). 

2.4.6 Purification of recombinant wild-type and mutated FrmR proteins 

Pellets from 1L culture were thawed at room temperature (approximately 15 min) and 

resuspended in 50 mM sodium phosphate, pH 7.4, 300 mM NaCl, 5 mM DTT, 1 mM PMSF 

and 10 mM imidazole (buffer A). Cells were transferred to 1.5 ml microcentrifuge tubes in 750 

µl aliquots, lysed by sonification (30 s at 35 % power on ice) and clarified twice by 

centrifugation (18000 x g, 4 ᵒC, 10 min in a microfuge, and 39,191 x g, 4 ᵒC, 20 min using a 
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Beckman JA25.50 rotor). The soluble cell lysate was loaded onto a 5 ml HisTrap FF column 

(GE Healthcare) prepared according to manufacturer’s instruction and equilibrated in buffer A 

at 2.5 ml min
-1

. Bound protein was washed with 25 ml buffer A and eluted in buffer A with 300 

mM imidazole without PMSF (buffer B). The presence of protein in HisTrap eluate was first 

confirmed by SDS-PAGE analysis (Section 2.4.1) but given the high reproducibility of the 

protocol this step was then omitted. A quick test using 90 µl of Bradford reagent (Sigma-

Aldrich) and 10 µl of sample was enough to confirm the presence of protein routinely in 

fraction 2. HisTrap eluate (~ 3 ml) was further purified by size exclusion chromatography 

(HiLoad 26/60 Superdex S75, GE Healthcare) running at 2.5 ml min
-1

 in buffer B300 (with 10 

mM Hepes, pH 7.0, 300  mM NaCl, 10 mM DTT and 10 mM EDTA). Fractions containing 

FrmR (as identified by 18% w/v SDS-PAGE) were pooled, diluted in buffer B100 (NaCl 100 

mM, Hepes pH 7.0 10 mM, 10 mM DTT, 10 mM EDTA) and bound to two 1 ml HiTrap 

Heparin columns connected to each other and pre-equilibrated with buffer B100. Bound protein 

was washed with 20 ml buffer B100 and eluted in a single step with buffer B500 containing 10 

mM Hepes, pH 7.0, 500 mM NaCl, 10 mM DTT and 10 mM EDTA. 

2.4.7 Purification of recombinant wild-type and mutated RcnR proteins 

Pellets from 1L culture were thawed at room temperature (approximately 15 min) and 

resuspended in buffer B300 with inclusion of 1 mM PMSF. Cells were transferred to 1.5 ml 

eppendorfs in 750 µL aliquots, lysed by sonication (30 s at 35 % power on ice) and clarified 

twice by centrifugation (18000 x g, 4 ᵒC, 10 min in a microfuge, and 39,191 x g, 4 ᵒC, 20 min 

using a Beckman JA25.50 rotor). The soluble cell lysate was loaded onto an equilibrated 5 ml 

HiTrap Heparin column at ~ 2.5 ml min
-1

. Bound protein was washed with 25 ml buffer B300 

and eluted in buffer B800 (800 mM NaCl, 10 mM EDTA, 10 mM DTT, 10 mM Hepes pH 7.0) 

collecting four fractions (4.5 ml, 5.5 ml, 5 ml, 5 ml). Fractions containing RcnR (exclusively 

Fraction 2) were further purified by size-exclusion chromatography using a HiLoad 26/60 

Superdex 75 running at 2.5 ml min
-1

 in buffer B300. Fractions enriched for RcnR (usually F28-

F33, but fractions with significant contaminating proteins as observed in SDS PAGE were 

avoided) were pooled, diluted to buffer B100 and loaded onto an equilibrated 5 ml HiTrap SP 

column at ~2.5 ml min
-1

. Bound protein was washed with 25 ml buffer B200 (200 mM NaCl, 10 

mM EDTA, 10 mM DTT, 10 mM Hepes pH 7.0) and eluted in buffer B300 collecting six 

fractions (4.5 ml and 5 x 5 ml). Fractions 2 and 3 routinely contained RcnR, as confirmed by 18 

w/v % SDS-PAGE. 

2.4.8 Purification of recombinant wild-type ZntR and CueR  

ZntR and CueR were purified by Dr. Deenah Osman, as described previously (Osman et al. 

2015). 
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2.4.9 Estimation of protein concentration 

For FrmR, RcnR, ZntR and CueR, concentrations were estimated by measurement of 

absorbance at 280 nm and by use of the experimental extinction coefficients determined by 

quantitative Amino Acid Analysis (AAA) (AltaBioscience Ltd). The analysis consists of an 

initial hydrolysis (24 hours at 110 °C) of the protein sample, followed by ion exchange 

separation of the amino acids and by post column photometric detection. The determination of 

the number of moles per ml of each amino acid allows the calculation of the experimental 

concentration of the given protein sample. Lambert-Beer equation (Equation 2, Section 3.3) was 

then applied in order to determine the experimental extinction coefficient. These were 1951 M
-

1
cm

-1
 for FrmR proteins, 2422 M

-1 
cm

-1 
for RcnR proteins, 11505 M

-1 
cm

-1
 for ZntR and 5136 M

-

1 
cm

-1
 for CueR (Osman et al. 2015). 

2.4.10  Detection of Met1 cleavage in FrmR and E64HFrmR by liquid 

chromatography (LC) 

The following analyses have been performed by Dr. Huggins T. G. and Dr. Chen J. at the 

Procter and Gamble Mason Business Centre, Cincinnati (Ohio).  

An aliquot (5 µg) of FrmR or E64HFrmR was digested in 200 μl 50 mM NH4HCO3 buffer by 

adding 1 μl trypsin (0.5 mg ml
-1

). Digestion mixture was mixed with an orbital shaker incubator 

(1000 rpm, 37 °C, 16 h,) and stopped with 5 μl 15 v/v % formic acid. The digested sample was 

separated by gradient elution at 0.3 ml min
-1

 using a Zorbax Eclipse Plus C18 column (2.1 x 150 

mm, 3.5 μm particles; Agilent Technologies) at RT. Mobile phase A and B consisted of 0.1% 

formic acid in water and 0.1% formic acid in acetonitrile, respectively. A volume of 10 μl was 

loaded onto a 6500 triple quadrupole mass spectrometer (AB Sciex) operating in positive 

ionization mode. Acquisition methods used the following parameters: 5500 V ion spray voltage, 

25 psi curtain gas, 60 psi source gas, 550 °C interface heating temperature, 40 V declustering 

potential, 26 V collision energy, and 27 V collision cell exit potential. Scheduled multiple 

reaction monitoring (MRM) was carried out with a 90 s MRM detection window and 1.00 s 

target scan time.  

2.5 Anaerobic manipulation of protein 

2.5.1 Production of Chelex-treated, anaerobic buffers 

In order to avoid any metal contamination of protein samples prepared in the absence of EDTA, 

all buffers were ion exchanged with Chelex-100 matrix (Sigma-Aldrich) prior use. The Chelex-

100 resin is a styrene-divinylbenzene co-polymer containing iminodiacetic groups, able to 

sequester transition metal ions. The column method involves pouring a column with the Chelex 

resin and passing the sample through to achieve the separation. The following protocol was used 
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in order to prepare the matrix according to manufacturer instructions: 2 bed volumes in 1 M 

HCl, 5 bed volumes water rinse, 1 M NaOH, 5 bed volumes water rinse. The sample was slowly 

added to the column, taking care to not disturb the resin bed. The first 50-100 ml (void volume) 

passed though the column was discarded prior to collecting the metal-free effluent. Buffers to be 

used under anaerobic conditions were purged with N2 for 3 - 4 h before transferring into an 

anaerobic chamber (Belle Technology). 

2.5.2 Production of anaerobic, metal-free protein samples 

All in vitro experiments, unless otherwise stated, were carried out under anaerobic conditions 

using Chelex-treated and N2-purged buffers as described previously (Section 2.5.1). 

In order to study metal- and formaldehyde-binding properties of proteins in the absence of 

added reducing agents, all the analysis were carried out in an anaerobic chamber. FrmR was 

buffer-exchanged on 1 ml Heparin column (GE Healthcare) equilibrated in buffer B100 outside 

and washed with at least 10 ml 20 mM NaCl, 80 mM KCl, 10 mM Hepes pH 7.0 (buffer C100) 

inside the anaerobic chamber. Proteins was then eluted with 100 mM NaCl, 400 mM KCl, 10 

mM Hepes pH 7.0 (buffer C500) collecting three fractions (~ 900 µl and 2 x 1 ml). RcnR was 

transferred inside the anaerobic chamber in a similar way except for using an overall salt 

concentration (1 NaCl : 4 KCl) of 300 mM (buffer C300) for the washing step and 1 M (buffer 

C1000) for the elution. Proteins were stored at 4 ᵒC for up to 1 month. 

2.5.3 Determination of reduced sulphur content of proteins 

5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) is a symmetrical aryl disulphide which readily 

undergoes the thiol-disulphide interchange reaction in the presence of free thiols. Treatment of 

the protein with DTNB can yield the number of oxidized cysteines Cys-S-S-Cys. A solution of 

protein (1 ml) and DTNB (72 µg ml
-1

) was prepared anaerobically in a gas tight 1 ml quartz 

cuvette (Hellma). First the DTNB blank A412 was determined in the absence of protein using a 

Perkin Elmer λ35 UV-visible spectrophotometer. The protein was then added to the sample in 

order to obtain a cysteine concentration of 30 μM. Absorbance at 412 nm was read after 30 min. 

The number of thiols modified was calculated using the maximum absorbance at 412 nm 

measured, Lambert-Beer’s law and DTNB extinction coefficient (ε412nm = 14,150 M
–1

 cm
–1

, 

Riddles et al. 1979). Only protein preps with reduced cysteine content above 85 % were used. 

2.5.4 Measurement of metal content of purified proteins 

Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the residual 

metal content in purified protein stock after removal of chelator agent (Section 2.5.2). Protein 

samples were prepared anaerobically and diluted to 20 - 30 µM in the elution buffer (C500 for 

FrmR and C1000 for RcnR). An aliquot of this sample was then diluted to 10 % into 2 % w/v 
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nitric acid and analysed for metal content. Only protein preps with metal content below 5 % 

were used. 

2.6 Experimental procedures 

2.6.1 Preparation of metal stocks 

All metal stocks (except for CuCl) were prepared by dissolving the metal salt into nanopure 

water. Serially diluted stocks of metal solutions were analysed by ICP-MS in order to assess the 

experimental metal concentration. Solid CuCl was weighed aerobically, transferred inside the 

anaerobic chamber and then dissolved in oxygen-free 100 mM HCl and 1 M NaCl. The 

concentration of copper was determined by ICP-MS and the concentration of Cu(I) by titration 

against an excess of bathocuproinedisulfonic acid (BCS, SigmA-Aldrich). Before being used, 

every day CuCl stock was confirmed to be > 95 % Cu(I) by titration against BCS (Barry et al. 

2011; Dainty et al. 2010).  

2.6.2 Fractionation of protein-bound metal complexes by size-exclusion 

chromatography 

For experiments to resolve bound and free protein-metal complexes, a Sephadex G-25 matrix 

column (PD10 column, GE Healthcare) was used. The PD10 column was equilibrated according 

to manufacturer’s instructions by washing with 2 column volumes of pure water, 500 µl of 0.5 

M EDTA, followed by 2 column volumes of pure water. The PD10 column was then transferred 

inside the anaerobic chamber and washed with 2 column volumes of buffer C500. Where stated 

the final buffer was supplemented with metal. Proteins were incubated (t > 60 min) with a three-

fold molar excess of ZnCl2, CoCl2, NiCl2 or CuCl (verified to be > 95 % Cu(I)) in buffer C500 

and an aliquot (500 µl) was applied to the PD10 column. Alternatively, apo-protein (no metal 

added) was resolved as described above except with addition of 20 µM NiCl2 or CoCl2 to the 

chromatography buffer. Fractions (500 µl) were analysed for metal by ICP-MS and protein by 

Bradford assay using known concentrations of the analysed protein as standards.  

2.6.3 UV-visible absorption spectroscopy 

Experiments were carried out anaerobically in 1 ml gas tight cuvettes (Hellma). Buffer C500 

was used for FrmR, E64HFrmR, ZntR, and CueR, with addition of 5 % v/v glycerol for RcnR. 

Protein was titrated with CoCl2, NiCl2 or CuCl. In the case of Zn(II), protein was first pre-

equilibrated with CoCl2 and then titrated with ZnCl2. Each sample was left to reach equilibrium 

prior to use of a Perkin Elmer λ35 UV-visible spectrophotometer to record absorbance spectra. 
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2.6.4 Monitoring quenching of protein intrinsic fluorescence upon metal-

binding 

Experiments were carried out anaerobically in 1 ml gas tight cuvettes (Hellma). Both FrmR and 

RcnR possess 1 residue, a tyrosine, of the three aromatic amino acids which may contribute to 

protein intrinsic fluorescence. Therefore it was possible to detect a weak fluorescence emission 

using a Cary Eclipse Fluorescence Spectrophotometer. The instrument excitation and emission 

wavelengths were set to λex 280 nm and λem 300 - 400 nm. Spectra were recorded anaerobically 

diluting the protein in buffer C500. Changes in fluorescence were recorded at 20 ᵒC at 5 min 

intervals to equilibrium. 

2.6.5 Measurement of the metal-binding affinities of recombinant FrmR 

proteins and RcnR 

Experiments were carried out anaerobically in 1 ml gas tight cuvettes (Hellma). The buffer 

system was 100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 (C500). A Cary Eclipse 

Fluorescence Spectrophotometer was used for fluorescence spectroscopy and a Perkin Elmer 

λ35 for UV-vis spectroscopy. For competition with fura-2 the fluorescence spectrophotometer 

excitation and emission wavelengths were set to λex 360 nm and λem 510 nm as described 

previously (Patterson et al. 2013). Fura-2 and quin-2 were quantified using extinction 

coefficients obtained from the supplier (ɛ363nm 28,000 M
-1

cm
-1

 for fura-2 and ɛ261nm 37,000 M
-

1
cm

-1
 for quin-2). 

Mag-fura-2 was quantified via its extinction coefficient ɛ369nm 22,000 M
-1

cm
-1

 (Golynskiy et al. 

2006). 

2.6.5.1 Measurement of the Zn(II) binding affinities of FrmR and E64HFrmR by competition 

with quin-2 and mag-fura-2 

The metallochromic indicator quin-2 forms a Zn(II)-quin-2 complex with an association 

constant of 2.70 x 10
11

 M
-1

 (Jefferson et al. 1990) while the affinity of mag-fura-2 for Zn(II) is 

2.2 x 10
-8

 M (Reyes-Caballero et al. 2010). A mixed solution of chelator and protein was 

titrated with ZnCl2 and absorbance recorded to equilibrium (after each metal addition reactions 

were left to equilibrate until no further change was observed in absorbance values). A control 

experiment was always included where the metallochromic indicator alone was titrated with 

metal salt aliquots. An increase in absorbance at 325 nm was monitored with mag-fura-2 

(Reyes-Caballero et al. 2010), while a decrease in absorbance at 261 nm was detected when 

quin-2 was used (Jefferson et al. 1990). Data were fit to the models described in Chapters 3-4 

and in the Appendix, using Dynafit, to determine Zn(II) binding constant. 
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2.6.5.2 Estimation of the Cu(I) affinity of FrmR and E64HFrmR by competition with BCS 

CuCl was produced anaerobically as described in Section 2.6.1. Competition experiments were 

carried out in a single step addition and/or titration fashion. In the first case BCS (10 µM) was 

incubated with 0.5 molar equivalent of Cu(I). The absorbance at 483 nm was monitored to 

equilibrium, determining the [Cu(I)-BCS]. Addition of protein (10 µM) caused the bleaching of 

the spectral feature at 483 nm, allowing determination of the amount of Cu(I) migrated to the 

protein. For competition titration assays, Cu(I) was titrated into BCS (25 µM) in the absence or 

presence of FrmR (20 µM) and the absorbance at 483 nm was monitored.  

2.6.5.3 Estimation of the Cu(I) affinity of FrmR and E64HFrmR by competition with BCA 

CuCl (produced anaerobically as described in Section 2.6.1) was titrated into a solution of BCA 

(40 µM) and protein (10 µM) in buffer C500 (100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 

7.0) and the absorbance at 562 nm was recorded. Data were fit using Dynafit to a model 

describing a total of eight Cu(I) binding sites per FrmR or E64HFrmR tetramer (see Appendix). 

β2Cu(I) 1.58 × 10
17.2

 M
−2

 at pH 7.0 was used for BCA using the Schwarzenbach’s α-coefficient 

method (Xiao & Wedd 2010).  

2.6.5.4 Estimation of the Co(II) affinity of FrmR and E64HFrmR by competition with BisTris 

and Fura-2 

Competition between FrmR proteins and Fura-2 was performed by Dr. Deenah Osman. A mixed 

solution of protein and Bis-Tris or protein and Fura-2 was titrated with CoCl2 in buffer C500. 

Competition with fura-2 was monitored at 20 ºC using a  fluorescence spectrophotometer with 

excitation and emission wavelengths set to λex 360 nm and λem 510 nm as described previously 

(Patterson et al. 2013). Competition with Bis-Tris was monitored by recording Abs336 nm at 

equilibrium using a UV-visible spectrophotometer. Data were fit to the model described in the 

Appendix (four sites with equal affinity per tetramer) using Dynafit to determine KCo(II)
protein

. 

Fura-2 and Bis-Tris cobalt binding constants (KCo(II)
Fura-2

 = 8.64 × 10
-9

 M at pH 7.0, Kwan & 

Putney 1990, and KCo(II)
Bis-Tris

 = 2.26 × 10
-2

 M at pH 7.0, calculated using the Schwarzenbach’s 

α-coefficient method, Xiao & Wedd 2010) were used. 

2.6.5.5 Estimation of the Ni(II) affinity of FrmR and E64HFrmR by competition with mag-

fura-2 

A solution of the chromophore 10 µM mag-fura-2 (KNi(II) = 2 x 10
7
 M

-1
 at pH = 7.0, Reyes-

Caballero et al. 2010) was titrated with Ni(II) in buffer C500 (100 mM NaCl, 400 mM KCl, 10 

mM Hepes pH 7.0) and the absorbance at 366 nm was recorded using a UV-vis spectrometer, 

observing the formation of a 1:1 complex. For competition assay, Ni(II) was titrated into a 

mixed solution of mag-fura-2 (10 µM) and protein (10 µM) and Abs366 was monitored. 
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2.6.6 Interprotein metal-exchange 

2.6.6.1 Metal-exchange between Salmonella ZntR, CueR, RcnR and FrmR 

In order to assess relative Cu(I)- and Zn(II)-affinities, competition experiments with Salmonella 

cognate metal sensors were carried out by Dr. Deenah Osman, as described previously (Osman 

et al. 2015). 

2.6.6.2 Metal-exchange between Salmonella ZntR and E64HFrmR 

In order to assess relative Zn(II)-affinity, 56 μM of E64HFrmR was anaerobically pre-

equilibrated with 14 μM ZnCl2 in C500 buffer prior to addition of 28 μM of ZntR in a final 

volume of 1 ml. Reaction mixtures were then diluted to C100 buffer (salt content 20 mM NaCl, 

80 mM KCl) and applied to a 1 ml heparin affinity chromatography column. E64HFrmR was 

eluted with C500 buffer, whereas ZntR was recovered in the loading buffer as it does not bind 

the column. Fractions (1 ml) were analysed for protein by SDS-PAGE and metal by ICP-MS. 

2.6.7 Analysis of protein-DNA interaction by fluorescence anisotropy (FA) 

2.6.7.1 Production of fluorescently labelled annealed, double stranded DNA oligonucleotide 

Complementary single stranded oligonucleotides (frmRAPro_F,R; frmRAPro-T/A-mod_F,R; 

rcnRAPro-site1_F,R; rcnRAPro-sites1,2_F,R; Table 2. 1) containing the identified FrmR or 

RcnR binding site and flanking nucleotides were obtained from Sigma-Aldrich. One of the 

strands was purchased with the 5’ end labelled with the fluorescent tag hexachlorofluorescein 

(HEX). DNA primers were annealed by heating 10 µM of each strand in 10 mM Hepes pH 7.0, 

150 mM NaCl to 95 C before being cooled to room temperature overnight. The successful 

annealing was confirmed by Native PAGE analysis using a 12 % w/v gel with a TBE buffer 

system (Sambrook & Russell 2001). 

2.6.7.2 Analysis of protein-DNA binding by fluorescence anisotropy  

Experiments were carried out anaerobically in 1 ml gas tight cuvettes (Hellma). The 

fluorescently labelled, annealed probe was diluted to 10 nM in C300 with inclusion of 5 mM 

EDTA or 5 μM ZnCl2 as required. EDTA (5 mM) was also included when experiments were 

conducted in presence of different concentrations (10 μM – 20 μM – 50 μM – 100 μM – 0.36 

M) of formaldehyde, in order to prevent metal contamination. The 0.36 M value was chosen as 

correspond to 1 % v/v formaldehyde (d = 1.09 g/ml), a concentration used for random protein – 

DNA and protein – protein crosslinking (Brodolin 2000). All experiments were performed 

under anaerobic conditions. Protein was prepared in C500 and 5 mM EDTA. In fluorescence 

anisotropy (FA) experiments where metal effects on DNA-binding were to be analysed, the 

protein was incubated with 1.2 molar equivalents of ZnCl2 or CuCl (verified to be > 95% Cu(I)) 

and EDTA was omitted. For dissociation experiments EDTA was also omitted from the buffer. 
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A modified Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies) fitted with 

polarising filters (λex 530 nm, λem 570 nm, averaging time 20 s, replicates 5, 25C) was used to 

measure change in anisotropy (Foster et al. 2014a). Upon each addition data was recorded after 

5 min to allow equilibration. Dynafit was used to fit data to models described throughout the 

work and in the Appendix. When experiments were performed in the presence of formaldehyde 

or metals and DNA-binding did not saturate, the response (Δrobs) was obtained from maximum 

response value determined from apo experiments. The standard thermodynamic equation, ΔGC = 

 RTlnKC, was used to calculate the coupling free energy (ΔGC) as will be further described in 

Chapter 3 (Foster et al. 2014a; Guerra & Giedroc 2012). Each experiment was performed in 

triplicate allowing calculation of mean K1 (KDNA
apo-protein

) or K3 (KDNA
effector-protein

) and standard 

deviations. Mean ΔGC values were calculated by permuting pair-wise these association constant 

values. 

2.6.7.3 Assessment of FrmR-, E64HFrmR- and RcnR- DNA stoichiometry by fluorescence 

anisotropy  

Production of fluorescently labelled annealed, double stranded DNA oligonucleotides was 

carried out as already described (Section 2.6.7), however, the annealing reaction was conducted 

using 200 µM of each strand in order to obtain a highly concentrated DNA stock. Protein 

aliquots (1 molar equivalent steps) were added to 2.5 µM DNA diluted in buffer C300 and 5 

mM EDTA in 1 ml gas tight cuvettes (Hellma). The samples were thoroughly mixed by 

pipetting and allowed to equilibrate. Again, a modified fluorescence spectrophotometer was 

used to record change in anisotropy, as described previously (Section 2.6.7.2). 

2.6.8 Analysis of DNA binding by Electrophoretic mobility shift assay 

(EMSA) 

2.6.8.1 Production of probe DNA fragments by PCR 

Protocols described in Sections 2.3.1-2.3.8 were used to produce the probe DNA fragments. The 

entire rcnA-rcnR intergenic region was amplified from genomic DNA using appropriate primers 

(rcnRAProEM_F,R; Table 2. 1), then ligated to pGEMT to create pGEMrcnRAPro. The specific 

rcnRAProEM DNA fragment was sequenced and amplified from pGEMrcnRAPro using the 

same primers and Pfu polymerase. The non-specific DNA fragment, consisting of sequence 

from the pGEM-T multi-cloning site and flanking regions, was amplified from recircularised 

empty pGEM-T using appropriate primers (pGEMCon3_F,R; Table 2. 1) and designated 

pGEMCon3 (141 bp).  

A single gel extraction column was used in order to collect the product of multiple PCR 

reactions and to obtain a highly concentrated stock. DNA stock concentration was measured 

using a NanoDrop 1000 spectrophotometer (Thermo Scientific).   
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2.6.8.2 Binding of RcnR to DNA monitored by EMSA 

A purified stock of RcnR was buffer exchanged by loading onto a 1 ml Heparin column pre-

equilibrated with buffer B300. The column was then washed with 10 column volumes of buffer 

B300 before elution in 1.2 M NaCl, 40 mM Hepes pH 7.8, 8 mM EDTA, 8 mM DTT (buffer E). 

Protein concentration was determined by measuring UV absorbance at λ 280 nm.  

RcnR was incubated for 30 min at room temperature with rcnRAProEM and nsDNA (100 nM of 

each) with varying [RcnR] in 10 mM Hepes, pH 7.8, 300 mM NaCl, 2 mM DTT, 2 mM EDTA, 

3 % v/v glycerol, and 0.05 mM spermidine, then resolved by native PAGE using a TBE buffer 

system (Sambrook & Russell 2001) and bands visualised with ethidium bromide. 

2.7  Crystallography 

2.7.1 Crystal trials 

Protein was purified as described in Section 2.4.6 but instead of being moved inside the 

anaerobic chamber was stored aerobically in a buffer containing a reducing agent (500 mM 

NaCl, 10 mM Hepes pH 7.0, 1 mM DTT, 1 mM EDTA). Protein was quantified by measuring 

the absorbance at 280 nm and subsequently concentrated to ~ 10 mg/ml (~ 1000 µM) using a 

Vivaspin2 (3kDa MWCO) and diluted back to 400 mM NaCl, 10 mM Hepes pH 7.0, 1 mM 

DTT, 1 mM EDTA (chelex-treated buffer). When crystal trials were designed to include metal 

ions, protein was eluted from the last purification step and subsequently diluted in buffer not 

containing any chelator. Desired final concentration was ~ 500 µM (equivalent to ~ 5mg/ml 

since MWFrmR 10185.8 Da). Samples were stored at 4 ᵒC for up to two weeks and protein purity 

and folded state was checked by 18% w/v SDS-PAGE daily prior to use. When crystals of 

protein-metal complex were desired, protein was first incubated with 1.2 molar equivalent of 

ZnCl2 prior to crystallization assays. 

Pure samples of FrmR and E64HFrmR were screened against various commercial screens 

obtained by Molecular Dimensions (Hampton Research) (Table 2. 2) using the sitting-drop 

vapor diffusion method. Crystal trials were set up in a 96-well crystallization plate format. An 

aliquot of screening solution (100 µL) was deposited into the reservoir wells of the plate and 

200 nL of protein was dispensed into each microbridge of the tray with a Screen Maker robot 

(Innovadyne technologies). The robot then dispensed 200 nL of the reservoir in the 

corresponding microbridge well already containing the protein sample. Trays were sealed and 

kept at 20 ᵒC. 

Hanging-drop technique was subsequently used to screen the most promising crystallization 

conditions (Table 2. 3). Sample solution was spun down (18,000 x g) for 5 min in order to 

remove any particulate such as dust or precipitated protein. Grease was applied with a 20 ml  
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SITTING DROP KITS 

JCSG-plus
™

 

Clear Strategy™ Screen I  

Clear Strategy™ Screen II  

PACT premier™  

Structure Screen 1  

Table 2. 2 Hampton Research crystallization kits used for a preliminary screening of 

crystallization conditions of FrmR and E64HFrmR. These kits allow the screening of several 

conditions, such as various salt concentrations, different organic and PEG precipitants, effect of 

ΔpH (4.0-10.5) or  addition of a number of cryoprotectants. 

 HANGING DROP CONDITIONS 

1. PEG4000 15% to 25% w/v (2 % step), BisTris  pH 6.0 – 6.5 

2. PEG3350 15% to 25% w/v (2 % step), BisTris pH 4.9 – 5.0 – 5.1 – 5.2 

3. PEG1150 15% to 25% w/v (2 % step), BisTris pH 4.9 – 5.0 – 5.1 – 5.2 

4. PEG2000-MME 15% to 25% w/v (2 % step), BisTris pH 4.9 – 5.0 – 5.1 – 5.2 

5. PEG200 40% to 50% w/v (2 % step), BisTris pH 6.0 – 6.5 

6. (NH4)2SO4 1.5 to 2 M (2 % step), NaCH3COO pH 4.0 – 4.5 – 5.0 

7. (NH4)2SO4 1.5 to 2 M (2 % step), BisTris pH 5.5 – 6.0 

8. PEG1500 15% to 25% w/v (2 % step), NaCH3COO pH 4.0 – 4.5 – 5.0 

Table 2. 3 Crystallization cocktails adopted for the optimization screening of crystallization 

conditions of FrmR and E64HFrmR.  

http://www.moleculardimensions.com/shopexd.asp?id=2541
http://www.moleculardimensions.com/shopexd.asp?id=1995
http://www.moleculardimensions.com/shopexd.asp?id=1996
http://www.moleculardimensions.com/shopexd.asp?id=2384
http://www.moleculardimensions.com/shopexd.asp?id=1998
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syringe around each well of a 24-well hanging-drop tray. An aliquot of reservoir solution (500 

µL) was then manually pipetted inside each well and increasing concentrations of NaCl (5 % 

v/v to 20 % v/v) were added to each row. Micro-drops containing different protein:ratios (1:1, 

2:1) were pipetted on a 0.5 mm glass coverslip which was then placed upside down on the 

greased well. Trays were stored at 20 ᵒC. Crystals were checked with an illuminator microscope 

(Leica KL1500 LCD) every day for 7 days and every couple of days afterwards.  

2.7.2 Data collection  

Crystals successfully grown as described in Section 2.7.1 were treated with a cryo-protectant 

solution (glycerol, sorbitol) and then fished out of the cryo-solution with the appropriate loop. 

At this step we encountered some difficulties as crystals appeared to disintegrate immediately 

upon treatment with glycerol and, to a lesser extent, sorbitol. Crystals were therefore rapidly 

fished out, resulting in an inefficient protection against freezing. Samples mounted on the loops 

were flash-frozen in liquid nitrogen and sent to the Diamond Light Source (UK’s national 

synchrotron science facility) for X-ray diffraction analyses. Beamline (ID: IO3) wavelength was 

0.97625 Å. Images were recorded by a PILATUS detector (Broennimann et al. 2006) through 

180ᵒ with an individual oscillation angle of 0.5ᵒ. 

At the time of writing, data processing is still ongoing and is being carried out by Dr. Ehmke 

Pohl (Durham University) therefore it will not be described in this work. 

2.8 Bioinformatics 

To identify sequences displaying homology with the input sequence, BLAST searches were 

performed using the NCBI Protein BLAST tool (Altschul et al. 1990). EMBOSS Needle (Rice 

et al. 2000) was used to compare amino acid sequences and determine the optimal global 

sequence alignment while ClustalW2 (Thompson et al. 1994) was chosen when three or more 

sequences were to be aligned. ProtParam tool (Gasteiger et al. 2005), an algorithm available at 

the Expasy Proteomics Server (Gasteiger et al. 2003), was used to obtain various physical and 

chemical parameters (such as molecular weight, theoretical pI and amino acid composition) of 

the input protein. 

Software used by Dr. Ehmke Pohl (Durham University) in order to process X-ray diffraction 

data collected at Diamond Light Source are not listed or described in this work. 
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3.1 Aims and objectives 

This chapter presents the identification of the gene encoding Salmonella FrmR, member of the 

RcnR/CsoR-family of transcriptional repressors, followed by protein characterization, analyses 

of metal binding properties and Zn(II)-, Cu(I)-, Co(II)- and Ni(II)-binding affinities. Moreover, 

the region to which FrmR binds has been identified upstream of the frmRA operon, and the 

protein:DNA interaction has been investigated by fluorescence anisotropy. Site-directed 

mutagenesis was employed to identify the amino acid residues involved in DNA-binding and to 

further understand metal-binding. 

3.2 Identification of recombinant FrmR 

The frmRA operon is displayed in Figure 3. 1A, which also shows the putative promoter region 

to which FrmR, transcriptional regulator of this operon, is predicted to bind. This region is 

located eleven bp upstream of frmR and contains a palindromic motif, a likely candidate 

transcription factor binding site. This sequence has analogy to CsoR/RcnR binding sites (Figure 

3. 1B), which are centered with a GC rich region (Iwig & Chivers 2009; Grossoheme et al. 

2011). FrmR in Salmonella is predicted to act as a DNA-binding transcriptional repressor, 

interacting with the palindromic sequence and preventing the binding of the RNA polymerase, 

thus impeding the expression of frmA.  

The primary sequence of FrmR was aligned with Mycobacterium tuberculosis CsoR 

(CsoR_Mtb), Synechocystis PCC 6803 InrS (InrS_Syn), E. coli RcnR (RcnR_Ec) and S. 

typhimurium RcnR (RcnR_Sty) (all belonging to CsoR/RcnR family), using ClustalW2 (Figure 

3. 2), whereas their similarity and amino acid identity were compared with FrmR using 

EMBOSS Needle (Table 3.1). 

3.3 Production and purification of recombinant FrmR 

Salmonella FrmR was overexpressed in E. coli (~ 5 mg/l culture) as a recombinant, tag-free 

protein and a purification procedure was developed based on the inherent biochemical 

properties of FrmR (Figure 3. 3). Since FrmR is likely to bind metals because it retains at least 

two potential metal-ligands, (residues X and Y in the WXYZ motif), the first step in the 

purification protocol involved a nickel affinity column, which was loaded with crude cell lysate 

and eluted in a single step with an elution buffer containing 0.3 M imidazole. A highly 

concentrated sample was routinely recovered in fraction 2 (although protein was also found in 

fractions 1 and 3) (Figure 3. 3A) and then loaded onto a size exclusion chromatography column 

(HiLoad 26/60 Superdex S75 GE Healthcare) which was used to separate FrmR from other 

proteins and molecules in the cell lysate depending on molecular weights (MW). The size 

exclusion chromatography column was previously equilibrated with a buffer containing 0.3 M 

NaCl. The same buffer was used to elute FrmR which was recovered 
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Mtb_CsoR  3’-GTTCGACTCCTTGGGTAGCCCACCCCCAGTGGGGTGGGATACCATGAACGGGTG-5’ -19bp 

Bs_CsoR   3’-AATCATAAAGCGTTTTTTATTGTAATACCCTACGGGGGTATGGTAGGATGAAAA-5’ -28bp 

Ec_RcnR   3’-ATTAATCTACTGGGGGGTAGTATCAGGTACTGGGGGGGAGTAGAATCAGATTGC-5’ -26bp 

Sy_InrS   3’-CTCATCAATATCCCCCCTGGGGGCATAGAATAGAGATCAATTTTCTACCCCAAA-5’ -8bp 

Ec_FrmR   3’-TATATACTATAGGGGGGTATGCAN8TAGAATACCCCCCTATAGTATATTGCATG-5’ -10bp 

Sty_FrmR  3’-ATATACTATAGGGGGGTATACTATCAGAATTTTATGTTTATGTAATTGTAAAAT-5’ -9bp 

B. 

Figure 3. 1 A Genomic region of frmR and frmA (to scale) and deduced transcriptional regulator 

binding site (palindromic region rich in CG) upstream of frmR. The G tract is highlighted in red 

and the T/A-rich tracts are underlined. B Comparison of DNA binding sites of RcnR/CsoR 

proteins. G/C tracts are highlighted in red and T/A-rich tracts are underlined. The value reported 

next to each sequence refers to the number of bp until the predicted translation start.  

3’-ATACTATAGGGGGGTATACTAT-5’

frmA frmR

A.



3. Characterisation of Salmonella FrmR 

71 | P a g e  

 

      W                               AX 

Ec_RcnR         ------------------MSHTIRDKQK-LKARASKIQGQVVALKKMLDEPHECAAVLQQ 41 

Sty_RcnR        ------------------MSHTIRDKQK-LKARTSKIQGQVAALKKMLDEPHECAAVLQQ 41 

Sty_FrmR        ------------------MPHSPEDKKR-ILTRVRRIRGQVEALERALESGEPCLAILQQ 41 

Ec_FrmR         ------------------MPSTPEEKKK-VLTRVRRIRGQIDALERSLEGDAECRAILQQ 41 

Syn_InrS        MTSQPVPHPSARHSHAHPHVHSQESLQK-LVNRLSRIEGHIEGVKTMVQENRPCPEVLIQ 59 

Mtb_CsoR        ------------------MSKELTAKKRAALNRLKTVRGHLDGIVRMLESDAYCVDVMKQ 42 

                                    :     ::    *   :.*:: .:   ::.   *  :: * 

 

                                  Y   Z             C  B                

Ec_RcnR         IAAIRGAVNGLMREVIKGHLTEHIVH-QGDELKREEDLDVVLKVLDSYIK---------- 90 

Sty_RcnR        IAAIRGAVNGLLREVIKGHLTEHIVH-ESEEQKREEDLDVVLKVLDSYIK---------- 90 

Sty_FrmR        IAAVRGASNGLMSEMVEIHLKDELVSGETTPDQRAVRMAEIGHLLRAYLK---------- 91 

Ec_FrmR         IAAVRGAANGLMAEVLESHIRETFDRNDCYSREVSQSVDDTIELVRAYLK---------- 91 

Syn_InrS        VAAVRGALDRVARLILDDHMNECITR-AAAEGNIEQELAELKEALDRFL----------- 107 

Mtb_CsoR        ISAVQSSLERANRVMLHNHLETCFST-AVLDGHGQAAIEELIDAVK-FTPALTGPHARLG 100 

                ::*::.: :     ::. *:   :        :    :  : . :  :             

 

Ec_RcnR         ------------------- 

Sty_RcnR        ------------------- 

Sty_FrmR        ------------------- 

Ec_FrmR         ------------------- 

Syn_InrS        ------------------- 

Mtb_CsoR        GAAVGESATEEPMPDASNM 119 

Figure 3. 2 Alignments of S. Typhimurium FrmR (Sty_FrmR) with Mycobacterium tuberculosis 

CsoR (Mtb_CsoR), Synechocystis PCC 6803 InrS (Syn_InrS), E. coli FrmR (Ec_FrmR), E. coli 

RcnR (Ec_RcnR) and S. Typhimurium RcnR (Sty_RcnR) by Clustalw2. The residues involved 

in the primary [W, X, Y, Z] and secondary [A, B, C] co-ordination sphere are highlighted in red 

and yellow, respectively. 

S. typhimurium FrmR Similarity (%) Identity (%) 

E. coli FrmR 74.7 52.7 

E. coli RcnR 64.1 39.1 

S. typhimurium RcnR 64.8 39.6 

M. tuberculosis CsoR 35.2 21.9 

Synechocystis InrS 27.8 13.6 

Table 3. 1 Similarity and identity of amino acid sequences of Mycobacterium tuberculosis CsoR 

(Mtb_CsoR), Synechocystis PCC 6803 InrS (Syn_InrS) , E. coli RcnR (Ec_RcnR) and S. 

Typhimurium RcnR (Sty_RcnR) were compared to S. Typhimurium FrmR (Sty_FrmR) using 

EMBOSS NEEDLE. 
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Figure 3. 3 Purification of FrmR by nickel affinity chromatography, size exclusion and heparin 

affinity chromatography. A SDS-PAGE analysis (18 % w/v acryl-bis) of fractions eluted from a 

5ml Ni(II)-affinity column with buffer A containing 0.3 M imidazole. Fraction 2 was routinely 

found to contain FrmR in the highest concentration. B SDS-PAGE analysis (18 % w/v acryl-bis) 

of fractions 28-36 eluted from a Superdex S75 column loaded with fraction 2 (3 ml) from the 

previous purification step (A.) C SDS-PAGE analysis (18 % w/v acryl bis) of fractions eluted at 

0.5 M NaCl from two 1 ml Heparin columns linked together loaded with size exclusion 

fractions enriched for FrmR. 

HisTrap FF column

W1   W2     1     2    3      4kDa

6.5

14.2

29
48.5

116

6.5

14.2

29
48.5

116

kDa

S75 sixe exclusion chromatography

28 29   30    31   32    33   34   35   36   

6.5

14.2

29

116

kDa

48.5

Heparin column

W1   W2    1     2      3      

A.

B.

C.

S75 size exclusion chromatography
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in fractions 30-34  (Figure 3. 3B) although only the 2-3 most concentrated samples were pooled 

and further purified by heparin-Sepharose affinity chromatography (Figure 3. 3C). In these 

columns agarose beads are coupled with heparin and, due to its polyanionic nature, this 

chromatography methodology is used to bind cationic macromolecules (Farooqui 1980), such as 

DNA-binding proteins. This last step was also added in order to concentrate the protein sample. 

FrmR purity was assessed after each purification step by 18 % w/v SDS PAGE confirming ≥ 95 

% purity for the final sample. For use in the anaerobic chamber, protein was loaded onto a 1 ml 

heparin affinity column to be moved inside the anaerobic glove box. Since we intended to 

investigate FrmR metal binding properties, it was necessary to remove EDTA and DTT present 

in the buffers up to this step by washing the column with Chelex-treated, oxygen-free buffers 

inside the chamber. 5-5’-dithiobis-(2nitrobenzoic acid) (DTNB or Ellman’s Reagent) was used 

to determine FrmR reactive thiol content. FrmR possesses one cysteine, Cys35, (Figure 3. 2) 

therefore only one sulfhydryl group is able to react with DTNB. Sulfhydryl group concentration 

was assayed using the extinction coefficient of TNB (14,150M
-1

 cm
-1

 at 412 nm) confirming the 

production of almost completely reduced protein samples (only samples with a reduced thiol 

content ≥ 85 % were accepted, although routinely the value was in the 95-100 % range). Prior to 

be utilized for in vitro characterisation, protein samples were analysed for metal content by ICP-

MS verifying a contamination < 5 %.  

This preliminary characterization of apoFrmR showed a single species roughly corresponding to 

a homotetramer as deduced by the elution volume of FrmR (peak fractions volume = 155-160 

ml) from the Superdex S75 column. The size exclusion column used for FrmR (HiLoad 26/60 

Superdex S75, GE Healthcare) was calibrated with standards of known molecular weight by Dr. 

A. W. Foster obtaining a linear relationship between k (gel phase distribution coefficient) and 

log10MW (k = -0.52 log10MW + 2.6499; Foster 2012). The k coefficient was then calculated for 

FrmR using the formula k = (Ve – V0)/(Vt – V0), where Ve is the elution volume of FrmR (157.5 

ml), V0 is the void volume of the column (100 ml) and Vt is the total volume of the column (318 

ml) (Foster 2012). k
FrmR

 (0.26) can be converted to log10MW which corresponds to MW
FrmR

 = 

39,436 Da. This value is consistent with FrmR adopting a tetrameric state under micromolar 

concentrations (monomer MW = 10185.8 Da) and this has subsequently been confirmed by X-

ray crystallography (Chapter 6). Moreover it is consistent with what was observed for E. coli 

FrmR by Law using multi angle light scattering (MALS) and size exclusion chromatography 

(SEC) techniques (Law 2012). Other RcnR-CsoR family members are tetramers at micromolar 

concentrations (E. coli RcnR, Iwig et al. 2008 and CsoR from different organisms, Ma et al. 

2009a; Sakamoto et al. 2010; Dwarakanath et al. 2012).   

Amino-acid sequencing (or Amino Acid Analysis, AAA) was carried out on the protein to 

calculate experimental extinction coefficient ε, by determining the experimental concentration 

of a purified FrmR sample previously analysed by UV-vis spectroscopy and by applying the 

Lambert-Beer equation (Equation 2): 

http://www.sciencedirect.com/science/article/pii/S0021967300890044
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𝐴 =  𝜀𝑏𝑐 

Equation 2 

where A is the absorbance value at 280 nm, ε (M
-1 

cm
-1

) is the extinction coefficient (to be 

determined), b is the path length (here 1 cm) and c (M) is the protein concentration (here 

determined by AAA) (Lambert 1760; Beer 1852). The UV-vis absorbance spectrum and the 

calculations showing how the extinction coefficient was obtained will be presented in the 

Appendix (Figure 8. 1). Furthermore, this analysis suggested the cleavage of the N-terminal 

methionine, resulting in a proline being the first amino acid residue, as will be further discussed 

in Section 5.3.1. The numbering used in this work will still refer to the full frmR gene sequence, 

therefore the above mentioned proline will be named Pro2. 

3.4 Analysis of FrmR metal binding properties 

  Co(II)- and Zn(II)-binding properties 3.4.1

Since Salmonella FrmR shares similarity with other metal sensors belonging to RcnR/CsoR 

family (see Table 3.1), particular interest is raised in regard of FrmR metal binding properties, 

especially since it contains at least two potential metal-ligands of the WXYZ fingerprint (Figure 

3. 2). 

Titrations of protein with Co(II) (Figure 3. 4) leads to absorption bands present in the near-UV 

region at 294 and 336 nm, indicative of a S-Co(II) Ligand-Metal-Charge-Transfer (LMCT) 

absorption. These high energy features are a direct probe of ligand-metal bonding and indicate 

that the protein ligand valence orbitals (electron donor) are close in energy to metal d orbitals 

(electron acceptor) (Holm et al. 1996). The intensity of the LMCT features allows us to quantify 

the extent of the ligand: metal interactions. (Holm et al. 1996). An intense low-energy CT 

transition such as those observed for Co(II)-FrmR are consistent with a metal site containing a 

thiolate or a phenolate. In addition to the LMCT features Co(II)-FrmR also shows a broad d-d 

transition envelope centred at ~ 600 nm (peak maximum at 614 nm). d-d electronic transitions 

are very valuable because they are diagnostic of the Co(II) coordination sphere in the metal 

binding site. FrmR cobalt-dependent d-d transition features have an ε ~ 0.3 x 10
3
 M

-1
 cm

-1 
which 

is consistent with one Co(II) ion bound in a tetrahedral coordination environment (VanZile et al. 

2002b). This is distinguishable from cobalt binding with symmetrical coordination geometry, 

such as octahedral, where the d-d transitions would have much lower intensity (ε < 0.05 x 10
3
 

M
-1

 cm
-1

) because theoretically forbidden by the Ligand field theory selection rule (Roe et al. 

2007). According to this theory, before a ligand approaches a metal ion, all d orbitals are 

equivalent in energy (Roe et al. 2007).  
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Figure 3. 4 A Representative apo-subtracted UV-visible difference spectra of FrmR (83.9 µM 

protomer) upon titration with CoCl
2
 and binding isotherms (inset) at absorbance maxima 294 

nm (circles), 336 nm (triangles), and 614 nm (squares). B Size-exclusion fractionation of 

protein-bound and free Co(II). FrmR (50 μM) was applied and resolved anaerobically on a 

Sephadex G-25 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 

with the addition of 20 µM CoCl2. Bound and free metal were eluted in the same buffer. 

Fractions (500 µl) were analysed for protein by Bradford assay (closed circles) and cobalt by 

ICP-MS (open circles).  
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Upon ligand approach, the energy of the metal d orbitals increases in an uneven fashion 

resulting in a split in two levels (t2g and eg) separated by the ligand-field splitting parameter Δo 

(where “o” refers to the octahedral field) (Roe et al. 2007). In a strictly octahedral complex, the 

ligand arrangement has inversion of symmetry therefore the d orbitals retain their centres of 

symmetry. Therefore all the d orbitals retain the same symmetry and, according to Laporte 

selection rule, electronic transitions between levels of the same symmetry are forbidden (i.e. 

gerade  gerade, ungerade  ungerade) (Roe et al. 2007). We would actually still detect low 

intensity d-d transitions, because the approaching ligand is vibrating asymmetrically causing a 

distortion in the symmetry of d orbitals. 

However, in tetrahedral complexes the coordination environment is non-symmetric therefore 

transitions between split-orbitals are not Laporte-forbidden and so electronic transitions can take 

place. For tetrahedral complexes we observe high intensity d-d transitions but at a lower energy 

because the ligand-field splitting parameter Δt (where “t” refers to the tetrahedral field) is lower 

than Δo (Roe et al. 2007). The intensity of the LMCT feature in the region of 330 nm of Co(II)-

FrmR, ε ~ 0.9 x 10
3
 M

-1
 cm

-1
, is consistent with a single Cys thiolate ligand (ε between 0.8 and 

1.2 x 10
3
 M

-1
 cm

-1 
for each Co(II)-thiolate bond (VanZile et al. 2002b). FrmR is expected to be a 

tetramer under these conditions, therefore there are four metal sites per tetramer. Both LMCT 

and d-d transition spectral features saturate after 1 molar equivalent of cobalt suggesting a 1:1 

Co(II)-FrmR monomer stoichiometry although binding curves are linear implying KCo(II) too 

tight to estimate by this method (insets Figure 3. 4A). 

To further elucidate stoichiometry, apoFrmR was resolved anaerobically on a Sephadex G25 

matrix previously equilibrated with buffer containing 20 µM CoCl2. Samples were analysed for 

metal by inductively coupled plasma mass spectrometry (ICP-MS), and for protein by Bradford 

assay. FrmR does not migrate with cobalt implying a weak cobalt affinity of FrmR (further 

investigated in Section 3.5.2) (Figure 3. 4B).   

In order to study Zn(II) binding to FrmR, a method involving a competition [Zn(II) vs Co(II)] 

experiment was employed (Figure 3. 6). Many examples can be found in the literature showing 

that Zn(II) addition quenches Co(II)-dependent spectral features (VanZile et al. 2000; Ma et al. 

2011a; Foster et al. 2012). In fact Zn(II) has a 3d
10

  configuration so there is not a free t2g orbital 

to be filled with an electron excited from an eg orbital. ApoFrmR was titrated as described with 

Co(II) to a stoichiometry excess (2.2 molar equivalent) and optical spectra were then measured 

upon addition of ZnCl2. Quenching of spectral features in the near-UV (Figure 3. 5) occurred 

after ~ 1 molar equivalents of zinc. This outcome suggests that Zn(II) and Co(II) occupy the 

same binding site on FrmR and adopt the same coordination geometry (tetrahedral with one 

thiol in the inner coordination sphere). Since 1 molar equivalent of zinc is able to displace 2.2 

molar equivalents of cobalt it can be hypothesized a greater affinity for zinc than for cobalt 

although it was not possible to determine a KZn from these data because the excess of cobalt  
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Figure 3. 5 Apo-subtracted UV-visible difference spectra of Co(II)-FrmR (58.97 µM, monomer; 

equilibrated with excess of CoCl2) and decrease upon addition of 0.5 and 1 molar equivalent of 

ZnCl2 per FrmR monomer. Quenching of the Co(II)-dependant spectral features indicates 

displacement of Co(II) from FrmR by Zn(II). The absorbance of Co(II)-dependant LMCT is 

completely quenched by 1 molar equivalent of Zn(II) per FrmR monomer. The final values do 

not return to 0 because of the upshift in the baseline after Co(II) addition before zinc quenching. 
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required in this analysis led to protein precipitation. The slightly upshifted baseline results in 

zinc not being able to completely quench the cobalt dependent feature. However, if subtraction 

of the difference in absorbance at 294 nm resulting from protein precipitation is performed, the 

aforementioned spectral feature is completely quenched.  

UV-vis absorbance spectroscopy cannot be used directly to assess Zn(II)-binding by FrmR and 

so an alternative strategy was used to determine Zn(II):FrmR stoichiometry. Figure 3. 6A 

exhibits FrmR tyrosine natural fluorescence quenched upon zinc titration. Fluorescence 

spectroscopy is a very powerful method to study protein assembly and interactions because it is 

broadly applicable since almost all proteins possesses intrinsic fluorophores (e.g. tyrosine and 

tryptophan) (VanZile et al. 2002b; Munishkina & Fink 2007; Waldron et al. 2009). Tryptophans 

are commonly used to probe protein folding and dynamics since they have a higher quantum 

yield than tyrosines and energy transfer to Trp residues usually quenches the Tyr fluorescence 

(Munishkina & Fink 2007). FrmR is a Trp-lacking protein, possessing only a single tyrosine 

residue (Y89). The Tyr emission is not as sensitive to the polarity of the environment as the Trp 

emission but can still be a valuable tool for studying the complex mechanisms of metal protein 

binding (Munishkina & Fink 2007). Another great advantage of using fluorescence emission 

techniques is the high signal to noise ratio which allows the use of small protein concentrations. 

Consistent with this, a titration of Zn(II) into a solution containing FrmR (13.1 µM, pH 7.0) was 

carried out, monitoring the protein fluorescence emission spectrum following excitation at 280 

nm. 

As shown in Figure 3. 6A inset, apo-FrmR Tyr emission has a maximum at ~ 305 nm, which 

was then quenched after addition of 1 molar equivalent of zinc (Figure 3. 6A). This outcome 

suggests the formation of a 1:1 zinc:protein complex and it is in accord with what was observed 

for Co(II)-quenching by UV-visible spectroscopy.  

In support of a 1:1 Zn(II)-binding stoichiometry, FrmR migrates with approximately one molar 

equivalent of zinc when a sample of FrmR, anaerobically incubated with excess metal for 2 h, 

was resolved on Sephadex G25 media (Figure 3. 6B). Since Zn(II) displaced Co(II) in the metal 

binding site, as shown by UV-vis spectroscopy (Figure 3. 6A), FrmR presumably has a higher 

affinity for zinc than for cobalt therefore the matrix and/or buffer competition effect here should 

be negligible. This stoichiometric binding allows a minimum estimate of Zn(II)-binding affinity 

of FrmR of  < 10
-7

 M.  
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A.  

B.  

Figure 3. 6 A Fluorescence emission at 304 nm (λex = 280 nm) of FrmR (13.1 µM, monomer) 

and following titration with ZnCl2. Fluorescence is quenched after addition of 1 molar 

equivalent of Zn(II) per FrmR monomer, consistent with a Zn(II)-dependant conformational 

change of FrmR which alters the environment of the tyrosine residue. B Size-exclusion 

fractionation of protein-bound and free Zn(II). FrmR (50 μM) was incubated anaerobically with 

150 μM Zn(II) for 2 h. Bound and free metal were resolved on Sephadex G-25 equilibrated with 

100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 and eluted in the same buffer. Fractions 

(500 µl) were analysed for protein by Bradford assay (filled circles) and zinc by ICP-MS (open 

circles).  
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3.4.2 Cu(I)- and Ni(II)-binding properties 

Reduced Cu(I) stocks were prepared in a strictly anaerobic environment by dissolving CuCl salt 

in N2-purged buffers inside an anaerobic glove-box. The solution was then validated to be ~100 

% Cu(I) by calibrated BCS assay (Figure 3. 7). BCS (bathocuproine disulfonate) is a Cu(I) 

binding metallochromic indicator which forms a 2:1 complex (Section 2.6.1). 

To determine if FrmR could bind Cu(I) in vitro, Cu(I) titration into FrmR was monitored by 

UV-visible spectroscopy (Figure 3. 8A). A single spectral feature with a maximum at 240 nm 

was observed. An inflection after 1 molar equivalent of Cu(I) is detectable although the feature 

continues to rise after this point (Figure 3. 8A inset). Since the spectral feature appears as a 

straight line up to one equivalent, tight binding of at least one Cu(I) can be inferred. No other 

spectral features were detected at lower energies, confirming the reduced status of the copper 

used in this analysis. This LMCT spectral feature possesses a molar absorptivity at 240 nm ~ 8 x 

10
-3

 M
-1

 cm
-1

 and is diagnostic of S-Cu(I) bond (Angeletti et al. 2005). A similar feature at 240 

nm was previously assigned to distorted tetrahedral coordination geometry in Hg-proteins 

(Tamilarasan & McMillin 1986; Choudhury S. 1983). The same band was then attributed to a 

trigonal planar complex with strong support for a three-coordinate environment coming from 

EXAFS (extended X-ray absorption fine structure) data for Hg-MerR (Watton et al. 1990). 

Attributing Cu(I)-FrmR spectral feature at 240 nm to Cys thiolate-Cu(I) trigonal coordination is 

in line with what is reported in the literature for other Cu(I) binding proteins: B. subtilis CsoR 

(Ma et al. 2009a), S. lividans CsoR (Dwarakanath et al. 2012), M. tuberculosis CsoR (Liu et al. 

2007), S. aureus CsoR (Grossoehme et al. 2011), E. coli RcnR (Higgins et al. 2012b) and 

Synechocystis InrS (Foster et al. 2012). 

CsoR homologues from B. subtilis (Ma et al. 2009a) and M. tuberculosis (Liu et al. 2007) 

exhibit a maximum in the absorbance spectrum at 240 nm indicative of the formation of the 

thiolate-copper coordination bond. EXAFS were used to determine that B. subtilis CsoR binds 

Cu(I) forming a trigonal S2N coordination site (Ma et al. 2009a). In addition O. brevis BxmR is 

capable of forming low coordination number (n =2 or 3) metal complexes with Ag(I) and Cu(I) 

ions (both d
10

). Theoretically, these metal ions have closed-shell d
10

 centers which cannot be 

filled by electrons from the lower energy level. However an interaction, attributed to the 

relativistic effect, has been observed between d
10

 metals (Yam 2001). We can speculate that the 

LMCT observed for Cu(I) complexes could be explained in a similar way considering a 

configuration mixing of  the filled d orbitals with the empty ones at higher energies. 

Furthermore one equivalent of Cu(I) binds sufficiently tightly to co-migrate with FrmR in size 

exclusion chromatography (Figure 3. 8B). Reduced FrmR (50 µM) was incubated with three-

fold 
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Figure 3. 7 Stocks of Cu(I) were prepared anaerobically and analysed for total dissolved Cu(I) 

by ICP-MS. The proportion of Cu(I) in solution was verified as approximately 100% by titration 

against the Cu(I)- specific metallochromic indicator BCS.  
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A.  

B.  

Figure 3. 8A FrmR (21.3 µM) upon titration with CuCl (oxidation state verified as Cu(I)) and 

binding isotherm (inset) at 240 nm. B Size-exclusion fractionation of protein-bound and free 

Cu(I). FrmR (50 μM) was incubated anaerobically with 150 μM Cu(I) for 1 h. Bound and free 

metal were resolved on Sephadex G-25 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 

10 mM Hepes pH 7.0 and eluted in the same buffer. Fractions (500 µl) were analysed for 

protein by Bradford assay (filled circles) and copper by ICP-MS (open circles). 
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excess of CuCl and applied to a column. After elution only [Cu] ~ 50 µM (migrated with the 

protein) was recovered suggesting a possible competition from matrix. 

Ni(II)-binding properties of FrmR were assessed by UV -visible spectroscopy and size 

exclusion chromatography. Ni(II)-dependent spectral features were observed in the sub 300 nm 

region (Figure 3. 9A). In particular an LMCT feature, which rises as a straight line and saturates 

at ~ 0.8 equivalent (ε ~ 1500 M
-1

 cm
-1

) (Figure 3. 9A inset), can be detected at 280 nm 

suggesting a minimum estimate of Ni(II) binding affinity of FrmR of < 10
-7 

M. The presence of 

non-specific light scattering on Ni(II) additions make the spectra interpretation more difficult, 

however a weak band at ~ 500 nm can be identified. This weak absorbance feature has a molar 

absorptivity of ~ 200 M
-1

 cm
-1

 and it is indicative of FrmR binding Ni(II) with a square planar 

geometry (Chen et al. 2000). The presence of non-specific light scattering caused by protein 

precipitation could be indicative of a not entirely formed Ni(II) binding site where adventitious 

ligands may be recruited to coordinate the metal or of additional weak sites. 

A square planar configuration presents the four ligands equidistant from the central metal ion 

with the ligands arranged at the corners of a square in a plane that include the central ion (Roe et 

al. 2007). When Ni(II) is bound in a square planar geometry we observe a lack of any electronic 

transition at lower energies (λ ≥ 700 nm) indicating a large crystal-field splitting and a single 

absorption feature at ~ 500 nm (50 < ε < 500 M
-1

 cm
-1

) (Lever 1984; Chen et al. 2000;  Ünver & 

Hayvali 2010). Ni(II)-binding proteins such as Synechocystis InrS (Foster et al. 2012), E. coli 

NikR (Wang et al. 2004, Chivers & Sauer 2000) and H. pylori NikR (Abraham et al 2006) show 

a similar spectra featuring the peak at ~ 300 nm and the weak band  at ~ 475 nm although it is 

difficult to find a correlation between the number of thiolates involved in the bond and the 

intensity of the LMCT peak which appears significantly weaker in intensity for FrmR.  

To further establish the stoichiometry of the Ni(II):FrmR complex, the protein was applied and 

eluted from Sephadex G25 media which was equilibrated with buffer containing 20 µM NiCl2. 

However, Ni(II) did not co-migrate with the protein (Figure 3. 9B). The column matrix or buffer 

may compete for Ni(II). The tyrosine fluorescence emission spectrum shows no quenching upon 

nickel titration (Figure 3. 10). One explanation may be that tyrosine is not perturbed by the 

ligands rearranging to coordinate Ni(II). 
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Figure 3. 9 Ni(II)-binding properties of FrmR. A Apo-subtracted UV-visible difference spectra 

of FrmR upon titration with NiCl2 (15.2 µM monomer). Inset: Binding isotherm of the spectral 

feature at 280 nm. B Size-exclusion fractionation of protein-bound and free Ni(II). FrmR (50 

μM) was applied and resolved anaerobically on a Sephadex G-25 matrix equilibrated with 100 

mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 with the addition of 20 µM NiCl2.Bound and 

free metal were eluted in the same buffer. Fractions (500 µl) were analysed for protein by 

Bradford assay (filled circles) and copper by ICP-MS (open circles).  
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Figure 3. 10 Fluorescence emission at 304 nm (λex = 280 nm) of FrmR (13.1 µM) and following 

titration with NiCl2. Fluorescence is not quenched by nickel, suggesting that FrmR binds the 

metal too weakly to be detected by this assay or Ni(II)-binding does not elicit a ligand 

rearrangement which involves Tyr. 
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3.5 Metal binding affinities of FrmR 

We revealed that FrmR binds Co(II), Zn(II), Cu(I) and Ni(II) (Figures 3. 4-3. 10). Moreover, 

FrmR is shown to be able to retain Zn(II) and Cu(I) upon resolution by size exclusion 

chromatography. Exploring if this protein would be capable to bind those metals with affinities 

close to those of Salmonella metal sensors could provide valuable insights in order to 

understand metal selectivity and homeostasis. 

3.5.1 Measurement of the Zn(II)-binding affinity of FrmR by competition with 

mag fura-2 and quin-2 

Saturation of Co(II)-FrmR absorbance peaks and co-migration of FrmR with ~ 1 molar 

equivalent of zinc during size exclusion chromatography, indicate a stoichiometric binding of 

Zn(II) (Figure 3. 6A-B). In order to measure Zn(II)-binding affinity, FrmR was competed 

against mag fura-2 and quin-2,  chromophoric chelators which form 1:1 complexes with Zn(II) 

with known affinities (KZn(II)
mag fura-2

 = 2.0 x 10
-8

 M and KZn(II)
quin-2

 = 3.7 x 10
-12

 M).  

Mag-fura-2 and quin-2 are valuable tools for measuring divalent metal affinities since the 

absorbance diagnostic of apo-mag-fura-2 undergoes a blue shift (from 366 to 325 nm) upon 

metal binding whereas metal binding to apo-quin-2 causes quenching of the spectral feature at 

265 nm. Metal-binding to the protein can therefore be monitored by disappearance of the apo 

mag-fura-2 absorbance at 366 nm or the apo quin-2 absorbance at 265 nm, allowing estimation 

of protein KZn(II) (Foster et al. 2014; Lisher et al. 2013; Golynskiy et al. 2006; Jefferson et al. 

1990, Simons 1993; Kwan & Putney 1990; Xiao & Wedd 2010; VanZile et al. 2002b). 

Mag fura-2 (12.2 μM) was titrated with Zn(II) in the presence of FrmR (20.4 µM, monomer). 

Absorbance at 366 nm did not change upon addition of up to 0.5-0.75 equivalents of Zn(II) per 

FrmR monomer, suggesting competition between protein and chromophore for Zn(II) (Figure 3. 

11A). As mentioned earlier, at micromolar concentrations FrmR exists as a tetramer with one 

metal-binding site per monomer, comparable to CsoR/RcnR family members which also show 

negative cooperativity between sites (Ma et al. 2009a; Iwig et al. 2008; Foster et al. 2012; 

Chang et al. 2014)). As shown in Figure 3. 11A, competition for Zn(II)-binding is complete 

after ~ 27.5 μM Zn(II), suggesting that only three sites in FrmR can compete with mag-fura-2. 

DynaFit (Kuzmic 1996) was exploited to fit the data using a model describing tight binding of 

three molar equivalents of Zn(II) per protein tetramer, with dashed lines representing simulated 

curves describing KZn1-3 ten-fold tighter or ten-fold weaker than FrmR (Figure 3. 11A). Fitted 

data points approach the KZn1-3 ten-fold tighter simulated curve, suggesting that FrmR KZn1-3 may 

be outside the range of this assay. 
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Figure 3. 11 A Representative (n =3) of mag-fura-2 (12.2 µM) titrated with ZnCl
2 
in the presence 

of FrmR (20.04 µM). The absorbance at 366 nm was measured by UV-vis spectrophotometer. B 

Representative (n = 3) of quin-2 (14.1 µM) with ZnCl
2 
in the presence of FrmR (39.9 µM). The 

absorbance at 265 nm was measured by UV-vis spectrophotometer. In both cases, the model 

describes competition of FrmR monomer with the chelator for 0.75 molar equivalents of Zn(II) 

(3 sites per tetramer, KZn1-3). Dashed lines represent simulated curves describing K
Zn1-3

 10-fold 

tighter and 10-fold weaker. 
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A similar approach was adopting using quin-2, which possesses a tighter affinity for Zn(II). 

Quin-2 (14.1 μM) was titrated with Zn(II) in the presence of 39.9 μM FrmR monomer (Figure 3. 

11B). FrmR’ binding of three molar equivalents of Zn(II) was fitted by DynaFit. Dashed lines in 

Figure 3. 11B describe simulated curves for KZn1-3 ten-fold tighter or ten-fold weaker than 

FrmR. KZn1-3 = 1.7 ± 0.7 x 10
-10

 M is within the range of this competition assay (Figure 3. 11B, 

Table 8.3 Appendix).  

3.5.2 Measurement of Co(II)-binding affinity of FrmR by competition with 

Fura-2 and BisTris 

As previously discussed, FrmR does not migrate with cobalt upon resolution by size exclusion 

chromatography (Figure 3. 4B), although it does bind the metal as monitored using UV-vis 

spectroscopy (Figure 3. 4A), suggesting a possible competition from the matrix or the buffer 

and thereby a weak cobalt affinity of FrmR. Hypothesizing an affinity in the nM range, the 

ratiometric fluorescent metal chelator Fura-2 (Fura-2; KCo(II) = 8.64 x 10
-9 

M) was used as 

previously reported (Patterson et al. 2013; Iwig et al. 2008). Co(II)-affinity of FrmR (41.9 μM) 

was analysed by competition with 9.8 μM Fura-2 (Figure 3. 12A) following quenching of Fura-

2 fluorescence emission in the absence (open circles) and presence (filled circles) of protein. As 

the two sets of data points overlap, both showing an inflection after ~ 10 µM of Co(II), we can 

conclude that FrmR does not compete with Fura-2.  

In contrast, FrmR (83.9 μM) showed competition with a large excess (50 mM) of Bis Tris 

(Figure 3. 12B). BisTris (KCo(II) = 2.26 x 10
-2 

M) was chosen because it weakly coordinates 

Co(II) therefore it is suitable for competition experiments with proteins which form weak 

complexes with this metal (Scheller et al. 1980, Xiao & Wedd 2010). Co(II) titration into FrmR 

was carried out as previously discussed (Figure 3. 4A) except for the presence of BisTris. 

Increase in absorbance of the deduced LMCT feature at 336 nm was monitored by UV-visible 

spectroscopy (Figure 3. 12B). The model used to fit the data by DynaFit describes binding of 

four Co(II) ions with equal affinity per tetramer. Fitted curve significantly diverges from 

simulated upper and lower limits curves (upper dashed line represents a ten-fold weaker KCo1-4 

whereas lower dashed line represents a ten-fold tighter KCo1-4) allowing determination of KCo1-

4
FrmR

 = 7.59 (± 0.4) x 10
-6

 M from triplicate assays (Table 8.3, Appendix).  

3.5.3 Measurement of the Cu(I)-binding affinity of FrmR by competition with 

BCS and BCA 

Cuprous binding affinity was examined by competition assays using bathocuproine disulfonate 

(BCS, β2 = 6.01 × 10
19.8

 M
-2

, Xiao & Wedd 2010) and bicinchoninic acid (BCA, β2 = 1.58 × 
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Figure 3. 12 A Representative (n = 3) of fura-2 (10.3 µM) titration with CoCl
2
 in the presence of 

FrmR (41.9 µM). Fluorescence emission (λ
ex

 = 360 nm; λ
em

 = 510 nm) was measured by a 

fluorescence spectrophotometer. This experiment was performed by Dr. Deenah Osman. B 

Representative (n = 3) of FrmR (83.9 µM) titration with CoCl
2
 in the presence of 50 mM 

BisTris. Variation of the absorbance at 336 nm (diagnostic of the LMCT feature) was monitored 

by a UV-vis spectrophotometer. The model (solid line) describes a FrmR monomer competing 

for 1 molar equivalents of Co(II) (4 sites per tetramer, KCo1-4). Dashed lines represent simulated 

curves describing K
Co1-4

 10-fold tighter and 10-fold weaker. 
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10
17.2

 M
-2

, (Xiao & Wedd 2010) as competitor ligands (Figure 3. 13A-B and Figure 3. 14A-C). 

Figure 3. 13A represents BCS (7.8 µM) absorbance spectrum upon incubation with ~ 0.5 molar 

equivalent of Cu(I). Formation of a spectral feature at 483 nm is diagnostic of the formation of 

[Cu(I)BCS]2 complex (solid line) and BCS can be quantified using the extinction coefficient 

(ε483 = 13500 M
-1

 cm
-1

) for [CuBCS2] = 3.88 µM. FrmR (10.3 µM) was then added to the 

preformed complex (incubation time = 2 h), causing partial bleaching of the spectral feature 

(Figure 3. 13A). Calculating again [CuBCS2] and subtracting this value, 3.08 µM, from the one 

obtained in absence of FrmR, it is possible to determine the amount of cuprous ions associated 

with the protein (c = 0.8 µM). FrmR was capable of quenching ~ 21 % of the CuBCS2 spectral 

feature. To further establish if BCS can be used as a probe to measure FrmR Cu(I) binding 

affinity, 25 µM BCS was titrated with Cu(I) in the absence (empty circles) and in the presence 

of FrmR (20.6 µM) (filled circles) as shown in Figure 3. 13B. An inflection at ~ 12.5 µM and ~ 

14 µM was detected in the control and the competition experiments respectively (less sharp in 

latter case) revealing weak or absent competition by FrmR.  

For this reason the cuprous affinity of FrmR was examined using BCA, which also forms a 2:1 

complex with Cu(I) but possesses a weaker affinity for the metal. Increase of the absorbance at 

λ = 562 nm was monitored during titration of BCA (40 µM) with Cu(I) in presence of FrmR (10 

µM). An inflection was observed at ~ 40 µM which reveals competition for 2 molar equivalents 

of Cu(I) per monomer ([BCA]/2 = 20 µM, [FrmR protomer] = 10 µM; 20 µM + 10 µM + 10 

µM = 40 µM) (Figure 3. 14A-C). Data were fit, using Dynafit, to a model describing 

competition from FrmR for 2 molar equivalents of Cu(I) (8 sites per tetramer, with KCu1-2 < KCu3-

4 < KCu5-8). Dashed lines represent simulated curves describing KCu1-2 10-fold tighter and 10-fold 

weaker than the optimised value with KCu3-4 and KCu5-8 fixed to their optimised values (Figure 3. 

14A), KCu3-4 10-fold tighter and 10-fold weaker than the optimised value with KCu1-2 and KCu5-8 

fixed to their optimised values (Figure 3. 14B) and KCu5-8 10-fold tighter and 10-fold weaker 

than the optimised value with KCu1-2 and KCu3-4 fixed to their optimised values (Figure 3. 14C). 

Fitted data depart from simulated curves describing KCu1-2 or KCu3-4 10-fold tighter and 10-fold 

weaker, whereas KCu5-8 is too weak to be determined by this assay, and only a lower limit can be 

inferred. Data from triplicate assays: KCu1-4 = 4.90 ± 1.6 x 10
-15

 M, KCu3-4 = 1.72 ±  0.7 x 10
-12

 M, 

KCu5-8 ≥ 8.36 ± 1.9 x 10
-11

 M (Table 8.3, Appendix). 

3.5.4 Probing Ni(II)-binding affinity of FrmR by competition with mag-fura-2 

Ni(II)-binding affinity was investigated by competition with the chromophore mag-fura-2 which 

has KNi(II) = 2 x 10
7
 M

-1
 at pH = 7.0 (Reyes-Caballero et al. 2010). Titration of FrmR (10.04 

µM) and mag-fura-2 (8.1 µM) with Ni(II) (filled circles, Figure 3. 15) gave a negligible 

difference in absorbance at 366 nm compared to mag-fura-2 alone titrated with Ni(II) (empty 

circles,  
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A.      

B.    

Figure 3. 13 A Representative (n = 3) titration of BCS (10µM) with Cu(I) (10µM) in the absence 

of FrmR showed a spectral feature at 483 nm, diagnostic of the formation of CuBCS2 complex 

(solid line). Addition of FrmR (10µM) showed a decrease in absorption at 483 nm (dashed line) 

after an incubation of 2 h. B Titration of 25 µM BCS with Cu(I) in the absence of FrmR showed 

an inflection at around 12.5 µM consistent with the formation of CuBCS2 complex (open 

circles). The same experiment carried out in presence of 20.6 µM FrmR showed a shift of 2-3 

µM in the inflection suggesting a weak competition from the protein (filled circles).  
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Figure 3. 14 A-C Representative (n = 3) BCA absorbance upon titration of BCA (40 µM) with 

Cu(I) in the presence of FrmR (10 µM). Addition of Cu(I) gave an increase in absorbance at 562 

nm (diagnostic of the BCA2Cu(I) complex) with an inflection at ~ 40 μM total Cu(I). Solid line 

represents a fit to a model describing competition from FrmR for 2 molar equivalents of Cu(I) 

(see Appendix for details). Combination of KCu5-6 and KCu7-8 resulted in an improved fit. Each 

panel shows the fit to a model where each KCu is fixed to its optimised values except for one, for 

which simulated curves representing KCu 10-fold tighter and weaker than optimised value are 

shown. A KCu1-2 (dashed line_10-fold tighter and 10-fold weaker; B KCu3-4 (dashed lines_10-fold 

tighter and 10-fold weaker); C KCu5-8 (dashed lines_10-fold tighter and 10-fold weaker).  
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Figure 3. 15 Titration of 8.1 µM mag-fura-2 with Ni(II) in the absence of FrmR showed an 

inflection after the addition of 1 molar equivalent of nickel consistent with the formation of 1:1 

complex (empty circles). The same experiment carried out in the presence of 10.04 µM FrmR 

showed a shift of ~2 µM in the inflection suggesting a weak competition from the protein.  
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Figure 3. 15), suggesting none or very little competition from FrmR. Thus it was not possible to 

determine FrmR’ nickel-binding affinity with this assay and no further analyses were carried out 

to resolve KNi(II) due to in vivo results discussed in a later section (Section 4.2.1). 

3.6 Identification of FrmR’s DNA binding site and 

characterisation of the DNA-protein interaction 

3.6.1 FrmR:DNA interactions 

The frmR gene is convergently co-transcribed with the frmA gene (Figure 3. 1A), which encodes 

the deduced class III alcohol dehydrogenase FrmA. As discussed in Chapter 1, E. coli FrmR 

binds the frmRAB operator region obstructing the site for RNA polymerase binding which 

cannot start transcription of the downstream genes.  

However, in the presence of formaldehyde, FrmR releases the DNA allowing transcription of 

frmR, frmA and frmB (the latter has not been identified in Salmonella), implying a derepression 

role for FrmR upon formaldehyde-binding (Herring et al. 2004; Gonzalez et al. 2006).  

E. coli FrmA is a formaldehyde dehydrogenase (class III alcohol dehydrogenase) which 

oxidizes the glutathione-formaldehyde adduct (S-hydroxymethylgluthatione), following the 

spontaneous reaction between formaldehyde and glutathione. The resulting product is S-

formylglutathione which is then hydrolysed to formate and glutathione by FrmB (S-

formylglutathione hydrolase) (Chapter 1) (Gonzalez et al. 2006; Stover et al. 2005; Moulis et al. 

1991; Sanghani et al. 2002) Salmonella and E. coli FrmR homologues possess amino acid 

identity = 52.7 % and similarity = 74.7 % (determined by use of EMBOSS NEEDLE, see Table 

3.1). Salmonella possesses frmR and frmA genes, suggesting a similar detoxification pathway to 

that adopted by E. coli. In order to investigate the FrmR interaction with the frmRA operator 

promoter region, a DNA fragment incorporating the region upstream of frmRA was produced. 

Within this fragment is an ATAGTATAC6TATAGTAT sequence with a high degree of 

similarity to characterized promoter elements recognised by other RcnR/CsoR family members 

(i.e. E. coli RcnR, CsoR homologues, Synechocystis InrS) (Figure 3. 1B). The region upstream 

of Salmonella frmR includes a conserved palindromic sequence (ATA-X-TATA-C6-TATA-X-

TAT) (see Figure 3. 1B) which corresponds to a type 1 site according to Iwig & Chivers (2009) 

classification. These sites consist of a single G/C tract (3-8 bp) flanked by inverted repeats rich 

in A/T. DNA binding by FrmR is explored in the next paragraph by fluorescence anisotropy 

(FA). 

3.6.2 Fluorescence Anisotropy (FA) principles  

Fluorescence anisotropy has been used to study protein:DNA interactions, and in particular 

those involving metalloregulators, in a more quantitative way than EMSA (VanZile et al. 
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2002a; Harvie et al. 2006; Andoy et al. 2009; Humbert et al. 2013; Chang et al. 2014). A 

modified Cary Eclipse fluorescence spectrophotometer (Agilent Technologies) fitted with 

polarising filters (λex = 530 nm, λem = 570 nm, averaging time = 20 s, replicates = 5, T = 25 C) 

was used to measure the difference in the tumbling rates during the protein-DNA interaction. 

Since the molecular size of the complex is sufficiently different from free DNA a DNA binding 

curve can be obtained. In this assay we exploited the extrinsic fluorophore 

Hexachlorofluorescein (HEX) (ε535 = 96,000 M
-1

cm
-1

, as stated by the supplier) bound to the 33 

bp DNA fragment in order to monitor the signal between the free and bound DNA states. The 

use of an extrinsic fluorophore with a high absorptivity allows measurements in the nanomolar 

concentration range. When the fluorophore attached on the 5’ end of DNA is excited with plane 

polarised light, it will emit a light that is also polarised. Depolarisation of the emitted light will 

occur through rotational diffusion of the fluorophore and if the rate of tumbling is slower than 

the rate of emission, the emitted light will stay polarised causing intrinsic anisotropy ro. Upon 

protein binding to DNA the tumbling will be much slower because of the bigger size of the 

complex and the anisotropy will increase (Δrobs = (robs - ro ) > 0).  

The anisotropy value is calculated via Equation 3: 

 

Equation 3 

where IVV and IVH are the fluorescence intensity parallel (measured in the vertical plane) and 

perpendicular (measured in the horizontal plane) to the excitation polarization (which is made 

with vertically polarised light) (Andoy et al. 2009). Fitting the anisotropy values using a model 

describing the stoichiometry of the event will yield the association constant of the interaction 

(Grossoehme et al. 2012). 

3.6.3 FA oligonucleotides production  

Complementary oligonucleotides (33 bp) incorporating the predicted FrmR binding site (Figure 

3. 16) and 5/6 flanking nucleotides either side of the motif were obtained commercially. One of 

the pair of primers was labelled at its 5’ end with the fluorophore Hexachlorofluorescein (HEX) 

(Figure 3. 16). The native PAGE shown in Figure 3. 16 confirms successful annealing of the 

two oligonucleotides (described in Chapter 2) to produce the double stranded sample hereafter 

called frmRAPro (Chapter 2, Table  2. 1). As expected the unlabelled oligonucleotide (referred 

in the figure as “reverse primer”) migrated through the gel matrix slightly faster than the HEX-

labelled (“forward primer”) because of the bigger size of the latter. Likewise the double-

stranded frmRAPro samples were observed to migrate slower than single stranded primers.  

robs = 
(IVV-IVH)

(IVV+2IVH)
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5’-[HEX]TTCTGATAGTATACCCCCCTATAGTATATGGAG 

Figure 3. 16 Production of a double stranded, 5’-[HEX]-labelled, oligonucleotide containing the 

FrmR recognition site for use in fluorescence anisotropy assays. DNA sequence (33 

nucleotides) composed of the identified FrmR recognition site and flanking nucleotides. The 

HEX-labelled primer was annealed with its unlabelled reverse complement. The native PAGE 

shown here confirms the successful annealing of the two oligonucleotides to produce the double 

stranded frmRAPro. Sample concentrations: 10 µM (lanes 1-2), 200 µM (lanes 3-4).     

Forward primer Reverse primer

Annealed frmRAPro

I          II         III        IV
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3.6.4 FrmR:DNA stoichiometry studied by FA 

Stoichiometry of FrmR binding to frmRAPro was carried out anaerobically in buffer containing 

60 mM NaCl, 240 mM KCl, 10 mM Hepes pH 7.0, 1 mM DTT and 5 mM EDTA to prevent 

metal contamination. The 1:4 ratio between NaCl and KCl was intended to emulate Na
+
/K

+ 

inside the cell. Fluorescence anisotropy was used to monitor binding of FrmR to the 33 bp DNA 

(2.5 µM) under these conditions (Figure 3. 17A). The change in anisotropy (robs) after each 

addition of FrmR (one molar equivalent steps) is linear and saturates at about 8 molar 

equivalents of FrmR (20 µM), Figure 3. 17B shows a hypothetical model describing one FrmR 

tetramer binding to each side of the DNA recognition site, as will be further discussed in 

Section 7.3.1, suggesting a stoichiometry of two FrmR tetramers binding to one DNA molecule, 

since free FrmR is a stable tetramer in solution (Section 3.3). To further study the role of T/A 

sites in DNA recognition, a new fluorescently labelled double stranded oligonucleotide (named 

frmRAPro-T/A-mod) was produced in a similar way to frmRAPro. However in frmRAPro-T/A-

mod, the first T/A site was randomly modified (ATAGTATA  GTTCAACA) (Figure 3. 18B). 

Stoichiometry of FrmR binding to frmRAPro-T/A-mod was performed under identical 

conditions to those just described for frmRAPro, but the point of inflection was observed after 

addition of 4 equivalents of protein monomer suggesting one tetramer binding to frmRAPro-

T/A-mod. This finding may indicate that binding of one of the two protein tetramers was 

abolished. However, the inflection after four molar equivalents of protein is not fully conclusive 

and the overall response (Δrobs at the inflection point) is very low compared to what was 

obtained for the unmodified DNA recognition site, therefore it remains unclear if each FrmR 

tetramer needs to interact simultaneously with both T/A sites. 

3.6.5 FrmR:DNA interaction studied by FA 

In order to measure the affinity of FrmR for its promoter operator region, the protein was 

directly titrated into a solution of a limiting concentration of frmRAPro probe (10 nM) under 

anaerobic conditions. Buffer conditions were the same as those used in Section 3.6.4. Changes 

in anisotropy (Δrobs) were measured as described previously (Figure 3. 19A). Upon each 

addition, the cuvette was allowed to equilibrate at 25 ᵒC for 5 min before recording data. Data 

were fit to the model describing two non-dissociable tetramers binding to frmRAPro with equal 

affinity (n = 3) using Dynafit. 

The protein:DNA 2:1 stoichiometry has been determined in Section 3.6.4. As commonly found 

in the literature the DNA-binding constant value refers to models using monomer protein 

concentrations. KDNA was found to be 99.4 ± 30 nM, which is within the range of DNA affinities 

available in literature for metalloregulators (~30 - 200 nM) (Ma et al. 2009a; Iwig & Chivers 

2009; Foster et al. 2012) and confirms the binding of FrmR on its own promoter operator 

region. The same experiment was performed using frmRAPro-T/A-mod (Figure 3. 19B) 
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A.  

 

 

B. 

Figure 3. 17 DNA binding stoichiometry (n=1) of FrmR. A Anisotropy change upon titration of 

frmRAPro (2.5µM) with FrmR (2.5 µM monomer with each addition). A point of inflection is 

observed after addition of ~ 8 equivalents of protein monomer indicating a protein:DNA 

stoichiometry of 8:1 (two tetramers per frmRAPro). The further increase in anisotropy following 

this inflection may represent further binding of FrmR to frmRAPro with substantially weaker 

affinity. Another hypothesis may be that the effect of tumbling changes above the 8:1 

stoichiometry. B Proposed schematic of FrmR interacting with its operator with the region of 

the G/C tract in blue and the two T/A sites in yellow. Results shown in panel A suggest a model 

where two FrmR tetramers bind to this sequence. 

G/C tractATAGTATA

FrmR

FrmR

TATAGTATA
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A.  

         

B. 

Figure 3. 18 DNA binding stoichiometry (n=1) of FrmR using operator sequence with first T/A 

site modified (herein called frmRAPro-T/A-mod). A Anisotropy change upon titration of 

frmRAPro-T/A-mod (2.5µM) with FrmR (2.5 µM monomer with each addition). frmRAPro-

T/A-mod contains the same promoter region as frmRAPro except for the introduction of a 

random nucleotide sequence in place of the first T/A site). A point of inflection is observed after 

addition of ~ 4 equivalents of protein monomer indicating a protein:DNA stoichiometry of 4:1 

(one tetramer per frmRAPro-T/A-mod). The overall response is very low so it remains unclear if 

FrmR interacts simultaneously with both halves of the inverted repeat of the recognition 

sequence. B Proposed schematic of FrmR interacting with its operator with the region of the 

G/C tract in blue, the first T/A site (modified) in red and the second T/A site (unmodified) in 

yellow. Only one FrmR tetramer would bind to this sequence with an extremely weakened 

KDNA. 

G/C tractGTTCAACA

FrmR

FrmR

TATAGTATA
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                   A.

      B.  

Figure 3. 19 Titration of frmRAPro with apoFrmR. A frmRAPro (10 nM) was anaerobically 

titrated with FrmR in the presence of 5 mM EDTA. DNA binding was monitored by 

fluorescence anisotropy. Solid line represents simulated curves produced from the average KDNA 

determined across the experimental replicates shown. Symbol shapes represent individual 

experiments. Data were fit to a model describing a 2:1 FrmR tetramer (non-dissociable):DNA 

stoichiometry. B As A except for the use of frmRAPro-T/A-mod.  
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showing no binding (the titration was carried out up to [FrmR] = 4000 nM), reinforcing the 

hypothesis suggested in Section 3.6.4, according to which FrmR tetramers need to interact 

simultaneously with both T/A sites.  

3.6.6 FrmR:DNA interaction in the presence of Zn(II) and Cu(I)  

In vitro experiments presented in Section 3.4 showed that FrmR is able to bind Zn(II), Cu(I), 

Co(II) and Ni(II) (the first two with high affinity and the last two with a significant weaker 

affinity, albeit the binding of Ni(II) was not further investigated). In order to test if these metals 

would be able to trigger the allosteric mechanism leading to a conformational change in FrmR 

and the subsequent disruption of protein:DNA complex, FA association analyses have been 

employed in the presence of metals. Figure 3. 20A shows titration of frmRAPro (10 nM) with a 

sample of FrmR incubated with a zinc salt in 20 % excess (1.2 molar equivalents ZnCl2). Given 

FrmR Zn(II) affinity for the tightest sites is KZn(II)1-3 = 1.7 x 10
-10

 M, 5 µM ZnCl2 was also added 

to the reaction buffer which should be well in excess of the concentration required in order to 

maintain a metalled form of the protein throughout the experiment.  A notable shift in the FrmR 

association curve reveals a significantly weakened binding to DNA, which implies that Zn(II) 

acts as an effector in vitro causing conformational change in FrmR which, in the metallated 

form, releases its operator region. A similar result, although less prominent, was obtained with 

CuCl (verified to be ≥ 95 % Cu(I)) (Figure 3. 20B). In this experiment no additional cuprous 

ions were added to the buffer since FrmR possesses an even tighter affinity for the metal (KCu(I)1-

2 = 4.90 ± 1.6 × 10
-15

 M  KCu(I)3-4 = 1.72 ± 0.7 × 10
-12

 M; KCu(I)5-8  ≥ 8 × 10
-11 

M). Data from both 

experiments were fitted to the same model used for apo-association (Section 3.6.2) and 

KDNA
Zn(II)FrmR

 and KDNA
Cu(I)FrmR

 were calculated to be 3110 ± 400 nM (Figure 3. 20A) and 654 ± 

130 nM (Figure 3. 20B) respectively. 

For these experiments where DNA binding did not saturate, the average fitted Δrobs maximum 

value from apo-protein experiments was used in the script as found in literature (Reyes-

Caballero et al. 2011; Foster et al. 2014). Figure 3. 20C displays a representative data set from 

experiments discussed in this section in comparison with those for the apo-FrmR:DNA 

association (Section 3.6.5, Figure 3. 19A) in order to better appreciate the effect these metals 

have on DNA binding. The scheme in Figure 3. 21A was presented by Grossoehme and Giedroc 

in 2009 and represents the thermodynamic cycle describing the allostery response that a 

metalloregulatory protein for its DNA operator region will encounter upon metal binding (see 

Chapter 1). The protein, here FrmR, is in its tetrameric state (P4) and the assumption that 

monomeric FrmR does not have affinity for DNA is made (Giedroc & Arunkumar 2007; 

Grossoehme & Giedroc 2009, 2012).  
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Figure 3. 20 A frmRAPro (10 nM) was anaerobically titrated with FrmR in the presence of 5 µM 

ZnCl2. The protein was incubated with 1.2 molar equivalents of ZnCl2 and EDTA was omitted. 

B frmRAPro (10 nM) was anaerobically titrated with FrmR incubated with 1.2 molar equivalents 

of CuCl (verified to be > 95% Cu(I)) and EDTA was omitted. C Comparison of the anisotropy 

change upon titration of frmRAPro with apo-FrmR (blue circles), Cu(I)-FrmR (pale blue circles) 

and Zn(II)-FrmR (green circles). DNA binding was monitored by fluorescence anisotropy. 

Symbol shapes represent individual experiments. Data were fit to a model describing a 2:1 

FrmR tetramer (non-dissociable):DNA stoichiometry. Solid line represents simulated curves 

produced from the average KDNA determined across the experiment replicates shown.  
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Figure 3. 21 Allosteric coupling scheme as described by Grossoehme and Giedroc (2012) 

applied to homotetrameric FrmR A Generalized thermodynamic cycle accounting for the four 

allosteric “end” states of a homotetrameric metalloregulatory protein (P4) can hypothetically 

adopt: apo (P4), metal-bound (P4·Mn), DNA-bound apoprotein (P4·D), and a “ternary” protein–

metal–DNA complex ((P4·Mn)·D). Each equilibrium (K1, K2, K3, K4) describes a direct 

transition from one configurational state to another as shown. Note also that P4 and thus the 

entire scheme is in equilibrium with free P monomer, defined by Ktetramer, which has no affinity 

for the DNA. B Ligand exchange equilibrium, defined by the adimensional parameter Kc, 

dictates the degree of allostery between the metal binding and DNA binding sites.  

4 P            P4 + nM            P4•Mn

Ktetramer K1

+                     +

D                         D

P4•D + nM          (P4•Mn)•D 

K3 K4

K2

P4•D + P4•Mn P4 + (P4•Mn)•D
Kc

A.

B.
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The values obtained from the experiments described in the current and in the previous section 

coincide with the constants in the vertical equilibria in Figure 3. 21A (KDNA
FrmR

 is K3 and 

KDNA
metal-FrmR

 is K4). The ligand exchange equilibrium constant, Kc, represents the magnitude of 

allosteric regulation and is expressed by the ratios K4/K3 and K2/K1 (Grossoehme & Giedroc 

2009, 2012). The first ratio corresponds to the difference in metal affinity between the protein 

bound to DNA and in its free form, while the second can be thought of as the difference in DNA 

binding affinity between the metallated and the apo-protein (Grossoehme & Giedroc 2012). 

Having measured K3 and K4 by fluorescence anisotropy, we can now determine the coupling 

equilibrium constant Kc and therefore obtain the allosteric coupling free energy ΔGc via the 

standard thermodynamic function described in Section 1.3.2 (Equation 1). Mean ΔGc values 

(and standard deviations) were calculated from the full set of (equally weighted) possible pair-

wise permutations of Kc. This yields ΔGc
Zn(II)FrmR

 = + 2.03 (± 0.08) kcal mol
-1

 and ΔGc
 Cu(I)-

FrmR·DNA
 = + 1.10 (± 0.10) kcal mol

-1
 (Table 8. 2, Appendix). 

This approach revealed that Zn(II) is more allosterically effective when binding to FrmR, 

because ΔGc
 Cu(I)-FrmR·DNA

 is smaller. In fact for repressors in which metal binding induces 

dissociation of the repressor of the DNA operator, the tertiary state (P4·Mn)·D is destabilized 

compared to D and P4·Mn therefore the difference in free energy associated with the ligand 

exchange reaction (Figure 3. 21B) will be positive and the reaction will not proceed 

spontaneously (Grossoehme & Giedroc 2012). Since in the presence of metal the promoter will 

not be occluded anymore, access for RNA polymerase will be possible. 

The ability of Zn(II) and Cu(I) to disrupt the interaction between FrmR and its operator was also 

tested by titrating the preformed protein:DNA complex with metal aliquots. FrmR (2.5 µM, 

chosen because FA apo-FrmR curves showed complete associations at this [protein]) was 

incubated with 10 nM frmRAPro for 30 min before titration with ZnCl2 or CuCl. Figure 3. 22A 

shows that dissociation of the protein:DNA complex occurs upon addition of 0.25 - 0.5 molar 

equivalents of Zn(II) suggesting that the allosteric mechanism allowing FrmR to release the 

DNA is mainly trigged during the filling of the second site of the tetrameric protein. Titration of 

frmRAPro with Cu(I) results in dissociation after 2 molar equivalents of metal (Figure 3. 22B), 

consistent with what is described in Section 3.5.1 where competition of eight atoms of Cu(I) per 

tetramer (2:1 stoichiometry) was observed. Thus FrmR binds specifically to frmRA operator-

promoter as an inverse function of [Zn(II)] or [Cu(I)]. The weak affinities of FrmR for Co(II) 

(KCo(II)1-4 = 7.59 ± 0.4 x 10
-6

 M) and Ni(II) (as suggested by competition experiment with mag-

fura-2, Figure 3. 15) prevented us to carry out dissociation experiments with these metals.       
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Figure 3. 22 Titration of pre-formed FrmR:DNA complexes with ZnCl2 and CuCl. frmRAPro (10 

nM) was pre-incubated with FrmR (2.5 µM) before titration with A ZnCl2 and B CuCl. 

Dissociation of protein:DNA complexes was monitored by fluorescence anisotropy. 

Experiments were performed anaerobically at pH 7.0.  

[Zn(II)]/[FrmR]

0.3

0.15

0.0
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3.7 Identification of residues required for DNA-binding 

In addition to the W-X-Y-Z residues, already identified as involved in the first coordination 

sphere (see Section 1.2.1), two additional residues have been identified as contributing toward 

allostery. Synechocystis InrS possesses two glutamate residues in position C and B (Glu95 and 

Glu98, respectively) (Figure 3. 23B). The presence of a glutamate in position C is a common 

feature in multiple family members that lack the secondary shell hydrogen bond network found 

in CsoR homologues (Foster et al. 2014). M. tuberculosis and B. subtilis CsoRs also have a Glu 

in position B which is important for the regulation of DNA binding (Ma et al. 2009; Liu et al. 

2007). In common with CsoR Synechocystis, InrS conserves H78 (position Y) and E98 (position 

B) but lacks the tyrosine residue in position A which is substituted with a Pro (Foster et al. 

2014). E98 has been shown to propagate the allosteric response upon metal binding, while the 

abovementioned Tyr (position A) seems to modulate the magnitude of the response (Ma et al. 

2009; Corbett et al. 2011). In InrS, in the absence of nickel, α3 and α2 helices are kept parallel 

allowing the protein backbone to interact with DNA (Foster et al. 2014). α3 helix is in fact rich 

of residues negatively charged and a hypothesis suggests that upon metal binding, the helix 

moves toward the metal binding site, approaching the also negatively charged phosphate groups 

on DNA resulting in electrostatic repulsion. This conformational change would cause the 

protein to release DNA. A hydrogen bond between the two helices involves E98 and H78 

(position B and Y respectively) and was tested in order to comprehend its contribution to 

allostery (Foster et al. 2014). Fluorescence anisotropy analyses carried out with E98AInrS 

(mutant lacking the strong electronegative oxygen in position B), displays how the hydrogen 

bond between H78 and E98 is not absolutely required for allostery although it does have a small 

effect (Foster et al. 2014). This may be due to the presence of an extra connection between the 

two helices, which is the salt bridge between R85 and E95 (Foster et al. 2014). Since mutation 

of E95A showed a smaller allostery coupling free energy compared to wild-type, the residue 

in position C seems to also contribute towards coupling metal binding and DNA binding in InrS 

(Foster et al. 2014). 

Salmonella FrmR possesses a similar set of residues in these positions (Figure 3. 23A) although 

the Glu-Arg salt bridge that further stabilizes the two helices in InrS (E95-R85) is not present in 

FrmR.  

An analogous pair of Glu-Arg can be identified by examining FrmR sequence (E64 on helix α2 

and R78 on helix α3) but the two residues are presumably located too far apart to allow such a 

weakly interacting salt bridge to form. This assumption needs to be validated by investigation of 

the X-ray structure of apo-E64HFrmR produced during this work (See Chapter 6). However, at 

the time of writing, the processing of helix α3 electron density is still ongoing. The only 

apparent connection between the two helices is therefore the hydrogen bond between H60 and 

E81 (FrmR notation, position Y and B respectively) which is equivalent to that between H78 

http://en.wikipedia.org/wiki/Synechocystis
http://en.wikipedia.org/wiki/Synechocystis
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Figure 3. 23 Schematic representation of the interactions between α2 and α3 helices which are 

theorized to keep the two helices parallel in A FrmR and B InrS.  

A.

B.
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and E98 (InrS notation, position Y and B respectively) found in InrS (Figure 3. 23B). If this is 

true, mutation of one of these residues should result in weakened DNA binding affinity. To test 

this hypothesis H60LFrmR and E81AFrmR mutants were produced and DNA binding affinities 

measured by fluorescence anisotropy. 

3.7.1 Production and purification of recombinant H60LFrmR and 

E81AFrmR  

H60LFrmR and E81AFrmR were produced by site-directed mutagenesis and purified as 

previously described for wild-type FrmR (Section 2.4.6, Figure 3. 24A-B), and protein samples 

were transferred inside the anaerobic glove box and subsequently reduced status of cysteine 

residue and metal contamination assays were performed. 

3.7.2 H60LFrmR and E81AFrmR DNA binding properties studied by FA 

Fluorescence anisotropy analyses were performed on apoH60LFrmR and apoE81AFrmR 

mutants in an analogous way to that described for wild-type FrmR in Section 3.6.5. As we 

conjectured, the substitution of residues supposedly vital for DNA binding with amino acid 

residues unable to form a hydrogen bond, led to a weakened interaction with the operator 

(Figure 3. 25A-B).  

This may be explained as the elimination of the only identified connection between α2 and α3 

resulting in the two helices being no longer parallel leading to a conformation that is not 

optimized for high affinity DNA binding. Figure 3. 25C shows the H60LFrmR and E81AFrmR 

association curves in comparison with wild-type FrmR to emphasize how shifted the mutants 

curves appear. Data were fit to the same model used for FrmR, describing two non-dissociable 

protein tetramers associating with frmRAPro, and KDNA were calculated. 

H60LFrmR has DNA affinity weakened over two-fold compared to E81AFrmR (KDNA = 1918 

nM vs 870.5 nM) and this could be explained hypothesizing that other residues on α3 helix can 

interact with His60 (α2) in E81AFrmR, partially stabilizing the DNA binding protein 

conformation. Experiments must be replicated in order to assign a standard deviation. Further 

experiments must be conducted in order to truly understand the mechanism connecting metal 

binding to impaired DNA-binding.  
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A.  

B.  

Figure 3. 24 Purification of H60LFrmR and E81AFrmR by nickel affinity chromatography, size 

exclusion and heparin affinity chromatography. A SDS-PAGE analysis (18 % w/v acryl-bis) 

showing fractions containing H60LFrmR from each purification step. “HisTrap f2” refers to the 

second fraction eluted from a 5 ml Ni(II)-affinity column with buffer A containing 0.3 M 

imidazole. Fractions “S75 f31-f34” were eluted from a Superdex S75 column loaded with 

fraction “HisTrap f2”. Fraction “Heparin 2” was eluted at 0.5 M NaCl from two 1 ml Heparin 

columns linked together loaded with size exclusion fractions f32-f33 combined. Presence of 

only one band at around 10 kDa confirms the purity of the protein. B  SDS-PAGE analysis (18 

% w/v acryl-bis) showing fractions containing E81AFrmR from each purification step. 

“HisTrap f2” refers to the second fraction eluted from a 5 ml Ni(II)-affinity column with buffer 

A containing 0.3 M imidazole. Fractions “S75 f31-f33” were eluted from a Superdex S75 

column loaded with fraction “HisTrap f2”. Fraction “Heparin 2” was eluted at 0.5 M NaCl from 

two 1 ml Heparin columns linked together loaded with size exclusion fractions f31-f32 

combined. The presence of only one band at around 10 kDa confirms the purity of the protein. 

HisTrap           S75                    Heparin

f2       f31     f32    f33     f34       2       

14.2

29

116

kDa

48.5

HisTrap           S75                 Heparin

f2           f31     f32    f33          2       

6.5

14.2

29

116

kDa

48.5
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Figure 3. 25 Titration of frmRAPro with H60LFrmR and E81AFrmR. A frmRAPro (10 nM) was 

anaerobically titrated with H60LFrmR in the presence of 5 mM EDTA. B Same as A but using 

E81AFrmR to titrate frmRAPro. C Comparison of the anisotropy change upon titration of 

frmRAPro with wtFrmR (black circles), E81AFrmR (red  circles) and H60LFrmR (yellow 

circles). DNA binding was monitored by fluorescence anisotropy. Data were fit to a model 

describing a 2:1 protein tetramer (non-dissociable):DNA stoichiometry. Solid line represents 

simulated curves produced from the KDNA determined for the experiments shown.   
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3.8 Identification of residues required for metal-binding 

As previously discussed in Section 1.2.1, all RcnR/CsoR family members possess a signature 

fingerprint, W-X-Y-Z, which contains four ligands consistent with metal-sensing (Iwig et al. 

2008; Ma et al. 2009b). As presented in the sequence alignment in Figure 3. 2 the fingerprint in 

CsoR is x-C-H-C (x is any amino acid) and in RcnR is H-C-H-H. Salmonella FrmR contains 

three of four ligands consistent with binding of Ni(II)/Co(II) in RcnR, in positions W-X-Y. In 

addition, CsoR conserves second coordination sphere residues, A and B, which propagate the 

allosteric response occurring upon cognate metal binding (Ma et al. 2009b; Liu et al. 2007). 

RcnR does not possess the A-B motif suggesting a different allosteric mechanism relative to 

CsoR (Iwig et al. 2008). Salmonella FrmR conserves the position B in the extended fingerprint 

motif but, as InrS, has a Pro instead of Tyr in position A. During the course of this work, metal 

binding properties of a number of FrmR single point mutants (C35A, H60L, E64H), each 

lacking one of the residue conserved in the RcnR/CsoR X-Y-Z fingerprint, have been tested in 

order to identify the residues contributing to metal binding. H60LFrmR production has already 

been described in section 3.8 and E64HFrmR production and metal binding properties will be 

extensively explored in Chapter 4 therefore the next paragraph will describe only production of 

C35AFrmR variant and metal binding properties of C35AFrmR and H60LFrmR. 

3.8.1 Production and purification of recombinant C35AFrmR  

C35AFrmR was produced by site-directed mutagenesis and purified as previously described for 

wild-type FrmR (Section 3) (Figure 3. 26). Since C35 is the only cysteine residue, work with 

this mutant was carried out under aerobic conditions. Metal contamination assay was performed 

as routine. 

3.8.2 Zn(II) binding properties of C35AFrmR investigated by size exclusion 

chromatography 

By using a combination of XAS, site-directed mutagenesis and EXAFS analyses it has been 

shown that Cys35 (Salmonella FrmR nomenclature, position X in the fingerprint motif) is a 

metal ligand in RcnR/CsoR family members (Iwig et al. 2008; Higgins et al. 2013; Chaplin et 

al. 2015). This residue is highly conserved as reported by Iwig and colleagues (2008) where 

alignment of 48 predicted Ni/Co-dependent regulators (retrieved using a BLAST search with 

E.coli RcnR) resulted in Cys35 having an identity ≥ 75 % (Iwig et al. 2008). Here we aim to 

study if this residue plays a vital role in metal (zinc) binding as much as found in other family 

members in cognate metal binding. As shown in Figure 3. 27A, Zn(II) does not migrate with 

C35AFrmR when the protein was incubated with an excess of zinc, applied and resolved on a 

Sephadex G25 matrix. 
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Figure 3. 26  Purification of C35AFrmR by nickel affinity chromatography, size exclusion and 

heparin affinity chromatography. SDS-PAGE analysis (18 % w/v acryl-bis) showing fractions 

containing C35AFrmR from each purification step. “HisTrap f2” refers to the second fraction 

eluted from a 5 ml Ni(II)-affinity column with buffer A containing 0.3 M imidazole. Fractions 

“S75 f31-f33” were eluted from a Superdex S75 column loaded with fraction “HisTrap f2”. 

Fraction “Heparin 2” was eluted at 0.5 M NaCl from two 1 ml Heparin columns linked together 

loaded with size exclusion fractions f31-f32 combined. Presence of only one band at around 10 

kDa confirms the purity of the protein.  
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Figure 3. 27 Size-exclusion fractionation of protein-bound and free Zn(II). A C35AFrmR  (50 

μM) was incubated anaerobically with 150 μM Zn(II) for 2 h. Bound and free metal were 

resolved on Sephadex G-75 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM 

Hepes pH 7.0 and eluted in the same buffer. Fractions (500 µl) were analysed for protein by 

Bradford assay (filled circles) and zinc by ICP-MS (open circles). B C35AFrmR (10 μM) was 

anaerobically loaded onto a Sephadex G-75 matrix equilibrated with 100 mM NaCl, 400 mM 

KCl, 10 mM Hepes pH 7.0 and 20 μM Zn(II). Elution was carried out in the same buffer. 

Fractions (500 µl) were analysed for protein by Bradford assay (filled circles) and zinc by ICP-

MS (open circles).  
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To determine if this was due to weakened zinc binding leading to competition from buffer 

and/or matrix, the experiment was repeated without incubating FrmR with metal but 

equilibrating the Sephadex G25 matrix with buffer containing 20 µM ZnCl2 (Figure 3. 27B). 

Again, no Zn(II) was found in fractions corresponding to FrmR. These data strongly suggest 

that Cys35 is essential for Zn(II)-binding.  

3.8.3 Apo- and Zn(II)-C35AFrmR:DNA interactions studied by fluorescence 

anisotropy 

In order to assess if Cys35 is also required for Zn(II)-mediated allostery, fluorescence 

anisotropy analyses was used. Titration of frmRAPro with C35AFrmR shows that this mutant 

interacts with the FrmR DNA recognition site with a slightly weaker DNA affinity when 

compared to wild-type (KDNA = 158.2 ± 17.6 nM) (Figure 3. 28A). The same titration was 

repeated in the presence of 5 µM ZnCl2 and with C35AFrmR samples incubated with 1.2 molar 

equivalent of zinc displaying a DNA affinity indistinguishable from the apo-form (KDNA = 147.4 

± 53.8 nM, ΔGc
Zn(II)-C35AFrmR

 -0.07 ± 0.21 kcal mol
-1

) (Figure 3. 28B). This outcome was further 

confirmed by assessing the ability of Zn(II) to dissociate the pre-formed C35AFrmR:DNA 

complex. Zn(II) cannot titrate C35AFrmR off DNA even at a 5-fold molar excess of zinc over 

protein (Figure 3. 28C). These results suggest that mutation of the residue in position X in the 

WXYZ motif negatively affects FrmR zinc-binding and responsiveness in vitro. It is therefore 

possible to conclude that Cys35 plays a prominent role in zinc sensing. 

3.8.4 Zn(II) and Cu(I) binding properties of H60LFrmR investigated by size 

exclusion chromatography and fluorescence emission 

H60LFrmR mutant was prepared as described in Section 3.8. The ability of H60LFrmR to bind 

Cu(I) and Zn(II) was investigated by resolving the protein on a Sephadex G25 matrix after 

incubation with a large excess of these metal salts (Figure 3. 30 and Figure 3. 29A). Binding of 

one molar equivalent of Cu(I) is detected with this assay (Figure 3. 29) however, in contrast 

with what was observed with wild-type FrmR (Figure 3. 6B), H60L variant is not able to retain 

binding of Zn(II) under these conditions and the totality of the metal elutes in its unbound form 

(Figure 3. 30A). In order to minimize metal-binding competition from the column matrix the 

experiment was carried out without incubating the protein with metal excess but simply by 

applying H60LFrmR to the column previously equilibrated with a buffer containing 20 µM of 

ZnCl2 (which was also used to elute the protein). As shown in Figure 3. 30B, zinc co-elutes with 

the protein showing a 1:1 stoichiometry consistent with what was observed for FrmR. 

These preliminary experiments suggest a diminished zinc(II)-binding affinity by H60LFrmR, 

which could be indicative of His60 being involved in the Zn(II) coordination sphere.   
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Figure 3. 28 Titration of frmRAPro with apo-C35AFrmR and Zn(II)-C35AFrmR. A frmRAPro 

(10 nM) was anaerobically titrated with C35AFrmR in the presence of 5 mM EDTA. DNA 

binding was monitored by fluorescence anisotropy. B As A. except for the use of 5 µM ZnCl2 in 

the reaction buffer and the omission of EDTA. C35AFrmR samples were also incubated with 

1.2 molar equivalent of ZnCl2. Solid lines represent simulated curves produced from the average 

KDNA determined across the experiment replicates shown. Symbol shapes represent individual 

experiments. Data were fit to a model describing a 2:1 C35AFrmR tetramer (non-

dissociable):DNA stoichiometry. C Titration of pre-formed C35AFrmR:DNA complex with 

ZnCl2 monitored by FA. frmRAPro (10 nm) was pre-incubated with C35AFrmR (2.5 µM) 

before titration with ZnCl2. Fluorescence anisotropy of protein:DNA complex was monitored 

during the titration. All experiments were performed anaerobically at pH 7.0. 
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Figure 3. 29 Size-exclusion fractionation of protein-bound and free Cu(I). H60LFrmR  (50 μM) 

was incubated anaerobically with 150 μM Cu(I) for 2 h. Bound and free metal were resolved on 

Sephadex G-75 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 

and eluted in the same buffer. Fractions (500 µl) were analysed for protein by Bradford assay 

(filled circles) and copper by ICP-MS (open circles). 
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A.   

B.  

Figure 3. 30 Size-exclusion fractionation of protein-bound and free Zn(II). A H60LFrmR  (50 

μM) was incubated anaerobically with 150 μM Zn(II) for 2 h. Bound and free metals were 

resolved on Sephadex G-75 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM 

Hepes pH 7.0 and eluted in the same buffer. Fractions (500 µl) were analysed for protein by 

Bradford assay (filled circles) and zinc by ICP-MS (open circles). B H60LFrmR  (10 μM) was 

anaerobically loaded onto a Sephadex G-75 matrix equilibrated with 100 mM NaCl, 400 mM 

KCl, 10 mM Hepes pH 7.0 and 20 μM Zn(II). Elution was carried out in the same buffer. 

Fractions (500 µl) were analysed for protein by Bradford assay (filled circles) and zinc by ICP-

MS (open circles). 
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In the absence of this residue FrmR could recruit other amino acids in close proximity to the 

metal-binding site in order to replace histidine in metal coordination and therefore retaining an 

ability to bind Zn(II) although with weaker KZn(II). Tyrosine fluorescence emission spectrum of 

H60LFrmR appears very similar to wild-type FrmR’s, with an inflection in the signal observed 

upon addition of ~ 1 molar equivalent of zinc (Figure 3. 31). 

3.9 Concluding remarks  

Genomic location of the gene coding for Salmonella FrmR was identified upstream frmA, which 

encodes the formaldehyde dehydrogenase FrmA. FrmR was shown to bind in vitro Zn(II) and 

Cu(I) and, more weakly, Co(II) and Ni(II), adopting a variety of coordination geometries and 

displaying different metal-binding affinities. Zn(II) and Co(II) bind the same pocket created by 

C35, H60 and two additional ligands, and adopting a tetrahedral geometry (Section 7.2). 

However, Zn(II) is detected by FrmR with a tighter affinity than Co(II), in accord with 

predictions made by the Irving-Williams series (Section 7.2). The role of two of the WXYZ 

residues involved in metal-binding in RcnR/CsoR family members was investigated. Cys35 

(residue X) appears to be essential for Zn(II)-binding as shown by size-exclusion 

chromatography and fluorescence anisotropy, whereas His60 (residue Y) retains the ability to 

bind Cu(I) and Zn(II), although some evidence suggests that the latter is coordinated with a 

weaker affinity. These findings will be further discussed in Section 7.2. 

Interaction of FrmR with the type-1 palindromic region ATA-X-TATA-C6-TATA-X-TAT was 

analysed by fluorescence anisotropy and KDNA
FrmR

 was calculated to be 99.4 ± 3.0 nM, which is 

within the range of DNA-binding affinities documented for RcnR/CsoR family members. This 

contact can be negatively affected by Zn(II) and Cu(I) (KDNA
Zn(II)-FrmR

 = 3110.0 ± 40.1 nM, 

KDNA
Cu(I)-FrmR

 = 654.3 ± 130.2 nM) (Section 7.3.2). 

The role of Glu81 (α3-helix) and His60 (α2-helix) in the propagation of the conformational 

change upon effector-binding was studied by producing single point mutants each lacking one 

of these residues (E81AFrmR and H60LFrmR). Both mutants showed an impaired DNA-

binding affinity. The most striking effect was observed in H60LFrmR (KDNA
H60LFrmR

 = 1918 nM) 

suggesting that His60 can still form a hydrogen bond with the electronegative atom of another 

residue on the α2-helix or, alternatively, other residues can be recruited to form weak contacts 

between the two helices. See Section 7.3.2 for further discussion. 
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Figure 3. 31 Fluorescence emission at 304 nm (λex = 280 nm) of H60LFrmR (13.1 µM, 

monomer) and following titration with ZnCl2. Fluorescence is quenched after addition of 

approximately 1 molar equivalent of Zn(II) per FrmR monomer, consistent with a Zn(II)-

dependant conformational change of FrmR which alters the environment of the tyrosine residue 

probably changing access to water. 
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Chapter 4 

Generation of a metal-sensing transcriptional regulator by gain of 

function point mutation 

 

 

 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 

 

 

 

 

The contents of parts of this chapter has been published in, and hence adapted from, Deenah 

Osman
1
, Cecilia Piergentili

1
, Junjun Chen, Buddhapriya Chakrabarti, Andrew W. Foster, Elena 

Lurie-Luke, Thomas G. Huggins, and Nigel J. Robinson (2015). In vivo assays and in vitro 

competition experiments performed by Dr. Deenah Osman have been noted in figure legends 

and text. Interpretation is my own.  



 4. Generation of a metal-sensing transcriptional regulator 

121 | P a g e  

 

4.1 Aims and objectives 

The concentration of cellular metals is believed to be controlled by the actions of DNA-binding, 

metal-sensing transcriptional regulators which in turn aids correct protein-metallation (Foster et 

al. 2014; Reyes-Caballero et al. 2011): tight affinities of these proteins for a given set of metals 

results in low [buffered metal] (Foster et al. 2014).  

Sequence similarity between Salmonella FrmR and other CsoR/RcnR family members, 

suggested that FrmR may coordinate transition metals. This hypothesis was confirmed in 

Chapter 3. FrmR is able to bind Zn
2+

, Cu
+
, Co

2+
 and Ni

2+
, with KZn(II)1-3

FrmR  
1.7 ± 0.7 x 10

-10 
M 

and KCu(I)1-2
FrmR

 4.9 ± 1.6 x 10
-15 

M for the tightest sites. 

Recent studies have inferred by correlation that a combination of relative affinity, relative-

allostery and relative-access determine the ability of metal-sensors to respond selectively in vivo 

(Foster et al. 2014). In this Chapter we test these theories via a mutation of non-metal sensing 

FrmR. By creating an RcnR-like helix α2′ HxxxH motif (E64HFrmR), FrmR gains 

responsiveness to cobalt and Zn(II) in vivo. Relative-properties which, in combination, enable 

metal-sensing are identified by comparing the biochemical properties of Salmonella FrmR with 

E64HFrmR, and then relating these parameters to endogenous sensors for cobalt, Zn(II) and 

Cu(I).    

4.2 Wild-type FrmR responds only to formaldehyde in vivo 

4.2.1 In vivo expression from pRSfrmR following exposure to metals and 

formaldehyde 

Despite similarity between FrmR and metal sensing RcnR and CsoR, exposing Salmonella 

cultures to maximum non-inhibitory concentrations (MNIC) of MnCl2, C6H5FeO7, CoCl2, 

NiSO4, CuSO4 or ZnSO4 (Figure 4. 1A) and Na2SeO3 or Na2TeO3 (Figure 4. 1B) does not 

induce expression from PfrmRA-frmR fused to lacZ in ΔfrmR cells, as shown by β-galactosidase 

assay. However, exposure to MNIC formaldehyde does alleviate repression by Salmonella 

FrmR (Figure 4. 1A-B), confirming FrmR as a formaldehyde-sensing transcriptional regulator, 

as it will be further explored in Chapter 5. These experiments have been performed by Dr. 

Deenah Osman. 

4.2.2  In vivo expression from pRSfrmRE64H following exposure to metals 

and formaldehyde 

A single point mutation of FrmR (His64Glu) generates an RcnR-like WXYZ motif. The 

ability of E64HFrmR to respond to metals in vivo was tested by a β-galactosidase assay in 

ΔfrmR cells containing pRSfrmRE64H fused to lacZ in the absence and presence of MNIC of 
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Figure 4. 1 A β-galactosidase activity measured in ΔfrmR containing PfrmRA-frmR fused to lacZ  

following growth to mid-exponential phase in M9 minimal medium and continued incubation in 

M9 with no metal supplement (filled circles) or maximum permissive concentrations of Mn(II) 

(open circles), Fe(III) (filled squares), Co(II) (open squares), Ni(II) (filled diamonds), Cu(II) 

(open diamonds), Zn(II) (filled triangles) or formaldehyde (open triangles). B β-galactosidase 

activity measured in ΔfrmR containing PfrmRA-frmR fused to lacZ  following growth to mid-

exponential phase in M9 minimal medium in A, the absence or presence of MNIC of MnCl2, 

Fe(III)citrate, CoCl2, NiSO4, CuSO4, ZnSO4, Na2SeO3, Na2TeO3 or formaldehyde. These 

experiments have been performed by Dr. Deenah Osman.  
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MnCl2, C6H5FeO7, CoCl2, NiSO4, CuSO4, ZnSO4 or formaldehyde (Figure 4. 2B). Surprisingly, 

expression was induced by CoCl2 and ZnSO4, therefore, replacement of residue 64 (glutamate) 

with histidine, generated a metal-sensing variant of FrmR. Other metals tested in this assay, 

Fe(II), Ni(II) and Cu(II), did not affect expression from PfrmRA-frmRE64H, while formaldehyde-

responsiveness was retained. This experiment has been performed by Dr. Deenah Osman. 

A single residue mutant of RcnR gains the ability to detect cellular Zn(II) (Higgins et al. 2012) 

but this work describes the first successful attempt to turn a non-metal sensor into a metal 

sensor. This creates an opportunity to directly test the inferred determinants of metal-selectivity 

via gain-of-function rather than solely by correlation. The basal expression from the frmRA 

promoter in cells containing E64HFrmR is greater than that of wild-type FrmR (Figure 4. 1 and 

Figure 4. 2). This is further discussed in Chapter 7. 

4.3 Production and purification of recombinant E64HFrmR 

To identify the properties which enable metal-sensing by E64HFrmR, recombinant E64HFrmR 

was generated and purified and its biochemical properties recorded. These parameters were then 

compared with those of the endogenous sensors for Co(II), Zn(II) and Cu(I). Glu64  His 

substitution was performed by site-directed mutagenesis of pETFrmR, and E64HFrmR was 

overexpressed in E. coli as a recombinant, tag-free protein and purified using its inherent 

biochemical properties. Crude lysate was applied to a nickel affinity column and eluted in a 

single step with 300 mM imidazole (Figure 4. 3A). 

E64HFrmR was further purified by size-exclusion chromatography. The protein was routinely 

found in fractions 30-33 (Figure 4. 3B). This elution volume (157.5 ml) corresponds to 

E64HFrmR adopting a tetrameric state as previously discussed for FrmR (Section 3.3). 

Following size exclusion chromatography the pooled protein was diluted and applied to a 

heparin affinity column and eluted with a step-wise NaCl gradient (Figure 4. 3C). SDS-PAGE 

analysis confirmed the protein to be > 95 % pure (Figure 4. 3C). E64HFrmR was moved into an 

anaerobic glovebox by application to a Heparin affinity column followed by elution in the glove 

box using N2-purged, Chelex-treated, EDTA- and DTT-free buffer. Quantification of 

E64HFrmR was performed by measuring A280 and using the experimentally determined 

extinction coefficient for FrmR (ε280 = 1951 M
-1

 cm
-1

). The absorbance spectrum of apo-

E64HFrmR (Figure 4. 4A) routinely differed from that of FrmR (Figure 8. 4A, Appendix), 

exhibiting a shoulder at ~ 300 nm (although two early preparations of E64HFrmR did resemble 

the apo-FrmR spectrum, Figure 4. 4B). Reduced thiol and metal content assays revealed the 

protein was fully reduced and metal-free ruling out a possible link between the appearance of 

this feature and oxidation or metal contamination. Furthermore, the hypothesis that this spectral 

feature may be informative of the formation of an adduct with organic molecules available in 

the cellular environment was explored. Formaldehyde and glutathione were considered as 
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 Sty_E64HFrmR  

                            W                                                                                                       X 

MPHSPEDKKRILTRVRRIRGQVEALERALESGEPCLAILQQIAAVR 

                                                                 Y           Z  

GASNGLMSEMVEIHLKDHLVSGETTPDQRAVRMAEIGHLLRAYLK 

A. 

 

B. 

 

Figure 4. 2 A S. typhimurium E64HFrmR (Sty_E64HFrmR) sequence. The residues at positions 

of the W-X-Y fingerprint are high-lighted in red. Residue Z (now mutated GluHis) is 

highlighted in green. B β-galactosidase activity measured in ΔfrmR containing PfrmRA-frmRE64H 

fused to lacZ  following growth to mid-exponential phase in M9 minimal medium, and 

continued incubation in M9 with no metal supplement (filled circles) or maximum permissive 

concentrations of Mn(II) (open circles), Fe(III) (filled squares), Co(II) (open squares), Ni(II) 

(filled diamonds), Cu(II) (open diamonds), Zn(II) (filled triangles) or formaldehyde (open 

triangles). A single residue change renders FrmR responsive to cobalt and zinc, in addition to 

formaldehyde. Experiment conducted by Dr. Deenah Osman. 
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Figure 4. 3 Purification of E64HFrmR by nickel affinity chromatography, size exclusion and 

heparin affinity chromatography. A SDS-PAGE analysis (18 % w/v acryl-bis) of fractions 

eluted from a 5ml Ni(II)-affinity column with buffer A containing 0.3 M imidazole. Fractions 

W1 and W2 contain material not bound to the column and flow through during wash step with 

25 ml buffer A respectively. Fraction 2 was routinely found to contain E64HFrmR in the 

highest concentration. B SDS-PAGE analysis (18 % w/v acryl-bis) of fractions 24-37 eluted 

from a Superdex S75 column loaded with fraction 2 (3 ml) from the previous purification step 

(A). C SDS-PAGE analysis (18 % w/v acryl bis) of fractions eluted at 0.5 M NaCl from two 1 

ml Heparin columns linked together loaded with size exclusion fractions enriched for 

E64HFrmR.  
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Figure 4. 4 A large majority (all except two) of the apo-E64HFrmR proteins produced during 

this work showed a second peak at around 300 nm in the UV-visible absorbance spectrum (A). 

Figure B shows apo-E64HFrmR UV-visible spectrum obtained in two extracts, lacking the 

second shoulder and showing no difference compared to apo-wtFrmR UV-visible spectrum 

(Figure 8. 2A, Appendix). 
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plausible candidates since the first is detected by FrmR and the second spontaneously reacts 

with formaldehyde to yield S-hydroxymethylglutathione, FrmA substrate. However, incubation 

(16 h) with formaldehyde or glutathione in anaerobic conditions or incubation (16 h) of the 

protein in aerobic conditions did not lead to an increase in the intensity of the feature in 

E64HFrmR preparations where the shoulder was already present, nor to development of the 

aforementioned feature in early preparations of E64HFrmR in which the feature was absent 

(Figure 8. 4B-D). Since the majority of purified E64HFrmR stocks exhibited this spectral 

feature (although its nature remains unclear) the following data, unless otherwise stated, have 

been obtained with this protein form. 

4.4 In vitro analysis of E64HFrmR metal binding properties 

As described in Section 4.3, the introduction of a His residue in position Z of the WXYZ motif 

of FrmR generates a metal sensing mutant, likely through the creation of a metal-binding site. 

E64HFrmR metal-binding properties will be explored in this section in order to ascertain if a 

metal binding site has been generated and to detect any dissimilarity with wild-type FrmR 

(Section 3.4). 

4.4.1 Co(II)-binding properties 

Titration of E64HFrmR (87.0 µM) with Co(II) results in the appearance of the spectral features 

observed for FrmR (Figure 4. 5), consistent with Co(II) binding to both proteins with the same 

coordination geometry. The two spectral features in the near-UV region are indicative of S
-

Co(II) ligand-to-metal charge transfer (LMCT) and the intensity at saturation of the band at 

336 nm (~ 0.9 x 10
3
 M

-1
 cm

-1
) is consistent with a single thiolate ligand (Figure 4. 5) (VanZile et 

al. 2000). The intensities of a second set of Co(II)-dependent features in the region of 600 nm, 

indicative of d-d transitions (VanZile et al. 2000), suggest tetrahedral coordination geometry. 

The binding curves (294, 336 and 614 nm) are linear up to one equivalent of Co(II) implying 

KCo(II) is too tight to be estimated by direct titration (inset Figure 4. 5). 

4.4.2 Zn(II)-binding properties 

Zn(II) is spectrally silent due to its filled 3d
10

 orbitals however Zn(II)-binding can lead to a 

change in intrinsic protein fluorescence (VanZile et al. 2002b; Larissa et al. 2007; Waldron et 

al. 2010). Titration of Zn(II) into 10.65 µM E64HFrmR was performed and tyrosine intrinsic 

emission, following excitation at 280 nm, was monitored (Figure 4. 6A). As shown in Figure 4. 

6A inset, apo- E64HFrmR Tyr emission has a maximum at ~ 305 nm, as does wild-type FrmR, 

however ZnCl2 additions resulted in an unexpected increase, rather than quenching observed in 

FrmR (Figure 3. 7A), of fluorescence intensity. The result suggests that Tyr89 residue is located 

in a distinct environment compared to FrmR.  
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Figure 4. 5 Representative apo-subtracted UV-visible difference spectra of FrmR (87.0 µM 

protomer) upon titration with CoCl
2
 and binding isotherms (inset) at absorbance maxima 294 

nm (circles), 336 nm (triangles), and 614 nm (squares).  
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Figure 4. 6 A Fluorescence emission at 307 nm (λex = 280 nm) of E64HFrmR (10.65 µM, 

monomer) and following titration with ZnCl2. Fluorescence is not quenched upon zinc addition, 

suggesting a different environment of the tyrosine residue in the E64HFrmR structure compared 

to the wild-type. B Size-exclusion fractionation of protein-bound and free Zn(II). E64HFrmR 

(50 μM) was incubated anaerobically with 150 μM Zn(II) for 2 h. Bound and free metal were 

resolved on Sephadex G-25 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM 

Hepes pH 7.0 and eluted in the same buffer. Fractions (500 µl) were analysed for protein by 

Bradford assay (filled circles) and zinc by ICP-MS (open circles).   
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One equivalent of Zn(II) binds sufficiently tightly to co-migrate with E64HFrmR during size-

exclusion chromatography (performed with Sephadex G25 medium) as shown in Figure 4. 6B. 

This supports a 1:1 Zn(II) binding stoichiometry as already confirmed to be the case for FrmR 

(Figure 3. 7B). 

4.4.3 Cu(I)- and Ni(II)-binding properties 

In addition to Zn(II) and Co(II), which are competent to alleviate frmRA expression by 

E64HFrmR, Cu(I)- and Ni(II)-binding were also tested as these are the metals sensed by CsoR 

and RcnR, respectively.  

Titration of E64HFrmR (21.5 µM) with a reduced Cu(I) stock showed a Cu(I)-dependent 

absorption band in the near UV range (240 nm) indicative of the formation of the thiolate-

copper coordination bond (Angeletti et al. 2005). The inflection in intensity of this feature 

indicates tight binding of at least one equivalent of Cu(I) (Figure 4. 7A). Again, this finding is 

in line with what was presented and discussed for FrmR (Figure 3. 8A).  

One equivalent of copper also co-migrates with E64HFrmR (50 µM) during size-exclusion 

chromatography (Figure 4. 7B), analogous to what was shown for FrmR. Although the protein 

was incubated with a large excess (three molar equivalents) of Cu(I), not all the copper was 

recovered at the end of the experiment most likely due to the inherant affinity of the size-

exclusion matrix for Cu(I). Cu(I)-binding stoichiometry, as inferred from spectroscopy and size 

exclusion chromatography, and coordination geometry (suggested by UV-vis spectroscopy) do 

not appear different from that of FrmR, suggesting an unaltered Cu(I) binding site in 

E64HFrmR. 

When E64HFrmR (15.3 µM) is titrated with Ni(II) and monitored by UV-visible absorbance 

spectroscopy, a spectral feature at 280 nm can be detected (Figure 4. 8A). The band shows an 

inflection at ~ 1 molar equivalent indicating a 1:1 Ni(II)-binding stoichiometry as previously 

observed for FrmR (Figure 3. 9A). Although the presence of non-specific light scatter 

throughout the experiment makes difficult the determination of an extinction coefficient for the 

LMCT feature, a (probably overestimated) value of ε280 =  0.8 x 10
3
 can be made. The retention 

of the A280 nm feature, although of reduced intensity, suggests that this mutant can still bind 

Ni(II). Furthermore, the spectra appear different from those observed with FrmR because of the 

absence of the wide band at ~ 500 nm, although the presence of non-specific light scattering 

may have concealed this feature (Figure 4. 8A). An analogous spectrum was observed with E. 

coli Ni(II)-RcnR (Iwig et al. 2008), where only peaks at 235 nm (present also in FrmR and 

E64HFrmR but not shown in the figures) and 280 nm were detected. The RcnR spectrum is 

indicative of a six-coordinate Ni(II)-coordination site involving a thiolate, a result confirmed by 

X-ray absorption and electron paramagnetic resonance spectroscopies (Iwig et al. 2008). Since 

E64HFrmR was originally produced to re-create a RcnR-like Ni(II) binding site, these 
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Figure 4. 7 A E64HFrmR (21.5 µM) upon titration with CuCl (oxidation state verified as Cu(I)) 

and binding isotherm (inset) at 240 nm. B Analysis of fractions (0.5 ml) for protein by Bradford 

assay (filled circles) and copper by ICP-MS (open circles) following size exclusion 

chromatography of E64HFrmR (0.5 ml at 50 µM) incubated with 150 µM CuCl and eluted with 

chelex-treated 10 mM HEPES pH 7.0, 100 mM NaCl, 400 mM KCl.  
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Figure 4. 8 A Apo-subtracted UV-visible difference spectra of E64HFrmR upon titration with 

NiCl2 (15.3 µM monomer). Inset: Binding isotherm of the spectral feature at 280 nm. B Size-

exclusion fractionation of protein-bound and free Ni(II). E64HFrmR (50 μM) was incubated 

anaerobically with 150 μM Ni(II) for 2 h. Bound and free metal were resolved on Sephadex G-

25 matrix equilibrated with 100 mM NaCl, 400 mM KCl, 10 mM Hepes pH 7.0 and eluted in 

the same buffer. Fractions (500 µl) were analysed for protein by Bradford assay (filled circles) 

and nickel by ICP-MS (open circles). 
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similarities (albeit the lower intensity of the LMCT feature) are not surprising. 

Although the metal binding site may be now more suitable to bind nickel, E64HFrmR still 

displays a weak Ni(II) affinity as shown in Figure 4. 8B, which shows migration of only ~ 0.1 

equivalents of nickel with the protein when resolved on a size-exclusion chromatography 

column. Again it is possible that the chromatography matrix complexes with Ni(II). 

4.5 Metal binding affinities of E64HFrmR 

As the E64HFrmR variant, but not FrmR, responds to Zn(II) and Co(II) in the cell, a 

preliminary hypothesis was that this substitution had succeeded in increasing the affinity for 

these metals. Zn(II), Co(II) and Cu(I) binding affinities have therefore been determined by use 

of mag-fura-2, quin-2, fura-2, BCA and BCS chromophores and values have been compared to 

those measured for FrmR (Section 3.4). 

4.5.1 Measurement of the Zn(II) binding affinity of E64HFrmR by 

competition with mag-fura-2 and quin-2 

The low-affinity chromophore mag-fura-2 forms a 1:1 complex with Zn(II) and undergoes a 

concomitant change in absorbance upon metal-binding which can be used to monitor 

competition with proteins and hence to estimate protein KZn(II) (Foster et al. 2014a; Lisher et al. 

2013; Simons et al. 1993). Titration of 10.1 µM mag-fura-2 (KZn(II)
mag-fura-2

 = 2.0 x 10
-8

 M)  with 

Zn(II) in the presence of 18.8 µM E64HFrmR was monitored by UV-visible spectroscopy and 

resulted in the increase in intensity of a spectral feature at 325 nm (not reported here) and a 

decrease in the intensity of a feature at 366 nm (Figure 4. 9A). The two curves intersect at the 

isosbestic points, 342 nm and 276 nm, indicating a clean 1:1 reaction (Xiao & Wedd 2010). No 

Zn(II)-dependent change in the spectral features of mag-fura-2 was observed up to ~ 0.75 molar 

equivalent of zinc per protein monomer, analogous to that previously observed with FrmR. 

Since change in absorbance is complete after addition of ~ 24.2 µM, three of the four metal 

binding sites per tetramer are capable of competition with mag-fura-2, whereas the fourth site is 

too weak. Data were fit using Dynafit (Kuzmic 1996) to a model describing tight binding of 

three molar equivalent of Zn(II) per tetramer, with dashed lines representing simulated curves 

describing KZn1-3 ten-fold tighter and 10-fold weaker than the calculated affinity (Figure 4. 9A). 

Further inspection of the 10-fold tighter simulated curve, which is close to the calculated one, 

suggests that KZn1-3 approaches the upper limit of the assay. 

Competition was then conducted with quin-2 (KZn(II)
quin-2

 = 3.7 x 10
-12

 M) which has been 

reported to produce UV difference spectra with isosbestic wavelengths at 342, 317 and 252 nm 

(Jefferson et al. 1990) Formation of 1:1 Zn(II):quin-2 complex can be monitored at 265 nm. 

Titration of 13.4 µM quin-2 with ZnCl2 in the presence of 42.7 µM E64HFrmR (concentration 

of protein monomer) showed saturation of the signal upon addition of ~ 45 µM Zn(II), which  
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Figure 4. 9 A Representative (n = 3) of mag-fura-2 (10.1 µM) titrated with ZnCl
2 
in the presence 

of E64HFrmR (18.8 µM). The absorbance at 366 nm was measured by UV-vis 

spectrophotometer. B Representative (n = 3) of quin-2 (13.4 µM) with ZnCl
2 
in the presence of 

E64HFrmR (42.7 µM). The absorbance at 265 nm was measured by UV-vis spectrophotometer. 

In both cases, the model describes competition of FrmR monomer with the chelator for 0.75 

molar equivalents of Zn(II) (3 sites per tetramer, KZn1-3). Dashed lines represent simulated 

curves describing K
Zn1-3

 10-fold tighter and 10-fold weaker.  
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indicates competition of three sites per protein tetramer (~ 32 µM + 13.4 µM = 45.4 µM) 

(Figure 4. 9B). Again, the fourth site does not compete with quin-2. Data were fit to a model 

describing competition of three molar equivalents of Zn(II) per tetramer and simulated curves 

describing a ten-fold tighter and ten-fold weaker KZn1-3 (dashed lines) were produced using 

DynaFit. Since both simulated curves now greatly depart from the calculated curve, the 

resulting KZn1-3 = 2.33 ± 0.3 x 10
-11 

M it appears to be within the limits of the assay. Therefore 

E64HFrmR Zn(II) affinity appears to be ten-fold tighter than wild-type FrmR (KZn1-3 = 1.7 ± 0.7 

x 10
-10 

M).  

The difference in Zn(II) binding affinity between mutant and native protein can be further 

visualised in Figure 4. 10A -B where comparisons between mag-fura-2 (Figure 4. 10A) and 

quin-2 (Figure 4. 10B) zinc(II) competition in presence of FrmR (yellow symbols) or 

E64HFrmR (blue symbols) is shown. Control experiments were performed in the absence of 

protein and change in both mag-fura-2 or quin-2 spectral features saturated upon addition of 1 

molar equivalent of Zn(II) confirming the formation of a 1:1 chelator:Zn(II) complex (empty 

symbols in Figure 4. 10A and B, respectively). 

4.5.2 Measurement of the Co(II)-binding affinity of E64HFrmR by 

competition with fura-2 

To measure E64HFrmR Co(II) affinity, competition was initially carried out with the 

fluorescent metal chelator fura-2 which has a KCo
fura-2

 = 8.64 x 10
-9

 M and therefore has been 

previously used to determine protein Co(II) affinities in this range (Iwig et al. 2008; Patterson et 

al. 2013). E64HFrmR (49.3 µM) was competed with fura-2  (9.8 µM) for Co(II)-binding  and 

quenching of fura-2 fluorescence emission at 510 nm was monitored as shown in Figure 4. 11A. 

Since quenching occurred upon addition of ~ 20-22 µM Co(II), consistent with only one site per 

protein tetramer being filled, the data were fit to a model describing competition from a single 

site per tetramer (see Appendix, for details). The fitted curve significantly departs from 

simulated curves describing KCo1 ten-fold tighter and ten-fold weaker (Figure 4. 11A). KCo1 was 

calculated to be 2.56 ± 0.4 x 10
-7 

M (from triplicate assays). 

In Chapter 3 it was discussed that FrmR is not capable of competing with fura-2 for Co(II) 

binding, in fact the data points from the competition assay completely overlay those from Co(II) 

titration of fura-2 alone (Figure 3. 12A). To test the overall order of magnitude of Co(II) affinity 

for the four binding sites in order to compare it with that calculated for FrmR, competition with 

a large excess of BisTris (50 mM, KCo(II)
BisTris

 = 2.26 x 10
-2

M) was performed (Figure 4. 11B). 

The fitted curve describing binding of four Co(II) ions with equal affinity per tetramer (see 

Appendix, for details) significantly departs from simulated curves describing KCo1-4 10-fold 

weaker, but not from the curve describing the upper limit (KCo1-4 tighter). For this reason only a 

weaker limit of KCo1-4 < 10
-6

 M can be determined. This outcome, in combination with the  
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Figure 4. 10 A Comparison between mag-fura-2 absorbance upon titration of mag-fura-2 (30.64 

µM) with ZnCl
2 
in the presence of E64HFrmR (blue circles, c = 32.56 µM) and FrmR (yellow 

circles, c = 33.03 µM). Control: white circles represent mag-fura-2 titrated with Zn(II) in the 

absence of protein.  B Comparison between quin-2 absorbance upon titration of quin-2 (13.4 

µM) with ZnCl
2 
in the presence of E64HFrmR (blue circles, c = 47.32 µM) and FrmR (yellow 

circles, c = 39.9 µM) as previously shown in Figure 4. 9B and Figure 3. 12B. Control: white 

circles represent quin-2 titrated with Zn(II) in the absence of protein.  

A. 

B. 
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Figure 4. 11 A Representative (n = 3) of fura-2 (9.8 µM) titration with CoCl
2
 in the presence of 

E64HFrmR (49.3 µM). Fluorescence emission (λ
ex

 = 360 nm; λ
em

 = 510 nm) was measured by a 

fluorescence spectrophotometer. The model (solid line) describes a E64HFrmR monomer 

competing for 0.25 molar equivalents of Co(II) (1 site per tetramer, KCo1). Simulation of K
Co1

 

10-fold tighter and weaker is represented by dashed lines. B  Representative (n = 3) of 

E64HFrmR (87.0 µM) titrated with CoCl
2
 in the presence of 50 mM BisTris. Variation of the 

absorbance at 336 nm (diagnostic of the LMCT feature) was monitored by a UV-vis 

spectrophotometer. The model (solid line) describes a E64HFrmR monomer competing for 1 

molar equivalents of Co(II) (4 sites per tetramer, KCo1-4). Simulation of K
Co1

 10-fold tighter and 

weaker is represented by dashed lines. These data have obtained by Dr. Deenah Osman.  
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~10
-7 

M value calculated for the tightest site, suggests an increase of ~ one order of magnitude 

of Co(II) binding affinity in E64H mutant.  

4.5.3 Measurement of the Cu(I) binding affinity of E64HFrmR by 

competition with bicinchoninic acid (BCA) and bathocuproine 

disulfonate (BCS) 

Cuprous copper affinity was examined using BCA (bicinchoninic acid β2 = 10
17.2

 M
-2

) and BCS 

(bathocuproine disulfonate, β2 = 10
19.8

 M
-2

) as done for wild-type FrmR (Figures 3. 13-3. 14). 

BCA is a derivative of 2-2’-bipyridyl and titration with Cu(I) induces an intense absorbance at 

562 nm upon formation of [Cu
I
BCA2]

3-
 complex (Xiao & Wedd 2010). 

Cuprous copper (> 95 % Cu(I)) titration of BCA (40 µM) in the presence of E64HFrmR (11 

µM, protomer) revealed negligible increase of absorbance up to ~ 6 µM Cu(I) (Figure 4. 12A-

D). After this point, subsequent addition of Cu(I) gave an increase of absorbance at 562 nm with 

saturation reached at ~ 40 µM consistent with competition from E64HFrmR for 2 molar 

equivalents of Cu(I). Consequently, data were fit to a model describing binding of eight Cu(I) 

ions per tetramer, with best fit obtained by describing KCu1-2 < KCu3-4 < KCu5-6 < KCu7-8. KCu1-2 

appears too tight to be measured by this assay as implied by the close proximity of fit and 

simulated 10-fold tighter and weaker curves (black line and red solid lines, respectively (Figure 

4. 12A). The dashed red line in Figure 4. 12A represents a simulated curve describing KCu1-2 

100-fold weaker than the calculated value when the remaining KCu are fixed to their optimised 

values. Figure 4. 12B-C-D show solid and dashed lines, the first representing the optimised 

value of KCu3-4, KCu5-6 and KCu7-8 respectively, whereas the second describes affinities 10-fold 

tighter and 10-fold weaker than the calculated value where the remaining KCu stay fixed to their 

optimised value (see Figure 4. 12 footnotes for details). The red dashed lines in Figure 4. 12D 

also describe KCu7-8 100-fold tighter than the calculated value. These data demonstrate that KCu3-4 

and KCu5-6 depart from simulated upper and lower limits whereas KCu1-2 and KCu7-8 are too tight 

and too weak, respectively, to be determined by this assay, and only limits can be defined. 

Competition was then carried out between E64HFrmR (29.7 µM, protomer) and BCS (10µM), 

which binds Cu(I) more tightly (β2 = 10
19.8

 M
-2

), and monitored by change in absorbance at 483 

nm. However, inflection of the signal was observed at [Cu
I
]:[L] ≈ 0.5, indicating formation of 

the [Cu
I
BCS2]

3-
 complex and suggesting little or no competition from E64HFrmR (Figure 4. 

13). This finding implies that the E64H mutant can only marginally depart from the value 

estimated using BCA (KCu1-2 ~ 5 x 10
-16 

M).  

Control experiments (copper titrated in chelator sample in the absence of protein) were routinely 

conducted on the day of the experiment, with the same concentration of both BCA and BCS 

used in the competition assay, always confirming formation of the [Cu
I
L2]

3-
 complex   
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Figure 4. 12 A-D Representative (n = 3) BCA absorbance upon titration of BCA (40 µM) with 

Cu(I) in the presence of E64HFrmR (11 µM). Increase in absorbance at 562 nm (diagnostic of 

the BCA2Cu(I) complex) was observed only after addition of ~ 6 μM Cu(I), with an inflection at 

~ 42 μM total Cu(I). Solid black line represents a fit to a model describing competition from 

E64HFrmR for 2 molar equivalents of Cu(I) (see Appendix for details). Best fit were obtained 

by pairing the eight sites in the following way:  KCu1-2 < KCu3-4 < KCu5-6 < KCu7-8. Each panel 

shows the fits to a model where each KCu is fixed to its optimised values except for one, for 

which simulated curves representing KCu 10- or 100- fold tighter and/or weaker than optimised 

value are shown. A KCu1-2 (solid red line_10-fold tighter and 10-fold weaker; dashed red line_ 

100-fold weaker); B KCu3-4 (dashed black lines_10-fold tighter and 10-fold weaker); C KCu5-6 

(dashed black lines_10-fold tighter and 10-fold weaker); D KCu7-8 (solid red lines_10-fold tighter 

and 10-fold weaker; dashed red line_100-fold tighter). Insets: enlargement of specific titration 

area. These data have been collected by me and analysed in conjunction with Dr Deenah 

Osman. 
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Figure 4. 13 Representative (n=4) BCS absorbance upon titration of BCS (10 µM) with CuCl 

[> 95% Cu(I)] in the presence of E64HFrmR (29.7 µM, protomer). Addition of Cu(I) gave an 

increase in absorbance at 483 nm (diagnostic of the BCS2Cu(I) complex) with an inflection at ~ 

5 μM total Cu(I) indicating little, or no competition from E64HFrmR for Cu(I).   
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 (Figure 8. 4, Appendix).  

4.6 Relative metal binding affinities of wild-type FrmR and 

E64HFrmR  

Wild-type FrmR and E64HFrmR relative metal affinities have been tested across a range of 

Salmonella metal sensors with the aim of elucidating why FrmR does not sense cellular metals 

and if E64HFrmR can compete with  the Zn(II)-sensor ZntR for Zn(II), in order to explain the 

observed de-repression of β-galactosidase expression  previously discussed in Section 4. 2 

(Figure 4. 2B). 

4.6.1 Metal-binding competition between FrmR and Salmonella Zn(II)-, 

Co(II)- and Cu(I)-sensors ZntR, RcnR and CueR 

The experiments presented in this section were performed by Dr Deenah Osman. If metal-

sensing is dictated by relative affinity within the set of Salmonella metal-sensors, the affinity of 

E64HFrmR for Zn(II) and Co(II) would need to become comparable to cellular sensors for these 

metals. Conversely, Cu(I) affinity would need to remain weaker than Cu(I)-sensing CueR 

making Cu(I) still undetectable (Osman et al. 2010, 2013; Espariz et al. 2007). The Zn(II) and 

Co(II) sensors in Salmonella are ZntR and ZuR (Zn(II)), and RcnR (Co(II)) (Ammendola et al. 

2014; Petrarca et al. 2010).  

To confirm, or otherwise, that FrmR Kmetal is weaker than CueR KCu(I), ZntR KZn(II) and RcnR 

KCo(II), pair-wise competitions were conducted for the tightest metal-binding site. FrmR (40 µM, 

protomer) was incubated with CuCl (10 µM, in order to fill only the tightest site) and resolved 

by heparin affinity chromatography. Cuprous-FrmR solution was applied to a 1 ml Heparin 

column equilibrated with buffer C100 (Table 8. 1, Appendix) and eluted in buffer C500 (Table 

8. 1, Appendix) in fractions F7-F9. Protein and metal elution profiles confirm co-migration with 

copper (Figure 4. 14C). An analogous result was obtained when Cu(I)-CueR ([CueR] = 20 µM 

[Cu(I)] = 10 µM) was applied to the column and eluted in C300 (Table 8. 1, Appendix) 

although CueR was found in a broader range of fractions, ~F8-F15 (Figure 4. 14B). When 

Cu(I)-FrmR was then mixed with apo-CueR, all the copper migrated with CueR demonstrating 

that, under these conditions, FrmR is not able to compete (Figure 4. 14A). Likewise, after 

mixing Zn(II)-FrmR ([Zn(II)] = 10 µM, [FrmR] = 40 µM) with apo-ZntR (20 µM), the elution 

profile was consistent with zinc predominantly migrating with ZntR (Figure 4. 15A-B-C).  

Since RcnR and FrmR share the same elution profile when resolved by heparin affinity 

chromatography, but bind Co(II) assuming different coordination geometries, appearance or 

otherwise of d-d transitions upon Co(II) addition was monitored by UV-visible spectroscopy in 

order to discriminate between metal-binding to the two proteins (Figure 4. 16). FrmR (56 µM)  
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Figure 4. 14 A Representative (n =3) of Cu(I)-binding competition between FrmR and CueR. 

FrmR (40 μM) equilibrated with Cu(I) (10 μM) and after subsequent addition of apo-CueR (20 

μM).  Proteins were separated by heparin affinity chromatography and fractions (1 ml) assayed 

for copper by ICP-MS and protein by SDS-PAGE. FrmR was present predominantly in F7-F9 

whereas CueR eluted over a broader range of fractions. B Cu(I) loading and chromatography of 

CueR as described in A except without addition of apo-FrmR. C Cu(I) loading and 

chromatography of FrmR. These data have been obtained by Dr. Deenah Osman. 
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Figure 4. 15 A Representative (n =3) of Zn(II)-binding competition between FrmR and ZntR. 

FrmR (40 μM) equilibrated with Zn(II) (10 μM) and after subsequent addition of apo-ZntR (20 

μM). Proteins were separated by heparin affinity chromatography and fractions (1 ml) assayed 

for zinc by ICP-MS and protein by SDS-PAGE.  ZntR does not bind the column and is present 

in the flow-through (F8-F12) and FrmR elutes predominantly in F16 and F17. B Zn(II) loading 

and chromatography of ZntR as described in A except without addition of apo-FrmR. C Zn(II) 

loading and chromatography of FrmR. These data have been obtained by Dr. Deenah Osman. 
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Figure 4. 16 Representative (n =3) of Co(II) (II)-binding competition between FrmR and RcnR. 

The apo-subtracted difference spectra of RcnR (62 μM; solid black line), FrmR (56 μM; dashed 

black line), or a mixture (red line) of RcnR (62 μM) and FrmR (56 μM) upon addition of 14 μM 

Co(II).
 
 These data have been obtained by Dr. Deenah Osman. 
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was incubated with enough Co(II) to fill the first site (14 µM) and formation of a tetrahedral 

complex was confirmed by the presence of spectral features in the d-d transitions region (apo-

subtracted difference spectrum of the region is represented as a black dashed line in Figure 4. 

16). When RcnR (62 µM) was added to the reaction mixture, the aforementioned spectral 

feature was lost, indicating formation of Co(II)-RcnR octahedral complex (red line in Figure 4. 

16) and therefore establishing that RcnR outcompeted FrmR. 

4.6.2 Salmonella Zn(II)-sensors ZntR competition with E64HFrmR for zinc 

binding  

To test if the ~ 10-fold increase in Zn(II) affinity would enable E64HFrmR to compete with the 

Salmonella Zn(II) sensor ZntR, the same approach adopted in Section 4.6.1 with FrmR was 

adopted here. The tightest site of E64HFrmR was anaerobically metallated with Zn(II) 

([E64HFrmR] = 56 µM, [ZnCl2] = 14 µM) in buffer C500 (Table 8. 1, Appendix). Zinc-loaded 

protein was then diluted in buffer C100 (Table 8. 1, Appendix) and applied to a 1 ml Heparin 

column pre-equilibrated with the same buffer under anaerobic conditions. Elution was carried 

out with buffer C500 and zinc(II)-E64HFrmR eluted predominantly in fraction F17 (as FrmR) 

(Figure 4. 17C). ZntR does not bind to Heparin and exhibits a broad elution profile centered at 

around F11 (Figure 4. 17B). When apo-ZntR (28 µM) is mixed with cuprous-E64HFrmR (56 

µM of E64HFrmR equilibrated with 14 µM Zn(II)), the resulting elution profile indicates 

migration of Zn(II) from E64HFrmR to ZntR (Figure 4. 17A). Although the KZn(II) of 

E64HFrmR approaches that of cognate sensors (ZntR and ZuR), ZntR still outcompetes 

E64HFrmR for zinc binding in vitro, suggesting that relative affinity alone might not be 

sufficient to explain the gain-of-function in vivo. 

4.7 Contribution of glutathione to metal-sensing by FrmR and 

E64HFrmR  

In addition to responding to cellular zinc, E64HFrmR responds to Co(II), although its KCo(II) is ~ 

500-fold weaker than the endogenous cobalt sensor RcnR, which outcompetes the FrmR variant 

as shown in Figure 4. 16. An ~ 10-fold increase in KCo(II) alone cannot explain why this mutant 

has become responsive to cobalt. Recent studies conducted on metal sensors from a 

cyanobacterium showed that Ni(II) partitions to the sensor of tightest affinity whereas Zn(II) 

sensing is based on relative allostery, therefore detection of these metals follows 

thermodynamic predictions (Foster et al. 2012, 2014). Cobalt detection by CoaR, however, does 

not follow relative affinity or relative allostery (Patterson et al. 2013). To explain why this 

metal is detected by the weakest Co(II)-binding sensor in the set a substantial kinetic component 

was invoked. In fact the study suggested that Co(II) ions, free and/or inserted in tetrapyrroles, 

may be channeled to the protein (Patterson et al. 2013). 
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Figure 4. 17 A E64HFrmR (56 μM) equilibrated with Zn
2+

 (14 μM) and after subsequent 

addition of apo-ZntR (28 μM).  Proteins were separated by heparin affinity chromatography and 

fractions (1 ml) assayed for zinc by ICP-MS and protein by SDS-PAGE. ZntR does not bind the 

column and is present in the flow-through (F8-F13) and E64HFrmR elutes predominantly in 

F17. B Zn
2+

 loading and chromatography of ZntR as described in A except without addition of 

apo-FrmR. C Zn
2+

 loading and chromatography of E64HFrmR.   
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Since the tripeptide glutathione (GSH) is well known for its role in metal homeostasis (see 

Section 7.4.3) (Wang & Ballatori 1998), the following sections will explore its contribution to 

metal detection by E64HFrmR in vitro.  

4.7.1 Assessing GSH contribution to zinc sensing by FrmR and E64HFrmR  

Since KCo(II) is weak even for E64HFrmR (2.56 ± 0.4 x 10
-7

 M for the tightest site), the 

contribution of glutathione to metal binding by FrmRE64H was analysed only for Zn(II) by 

competition with mag-fura-2. Migration of zinc(II) from mag-fura-2 (100 µM), previously 

incubated with a 1:1 molar ratio of Zn(II), to FrmR or E64HFrmR (Figure 4. 19A-B, 

respectively) was carried out monitoring increase in the spectral feature at 366 nm by UV-

visible spectroscopy. The experiment was conducted in the presence (red line) or absence (black 

line) of 20 µM glutathione (Figure 4. 19A-B). “TimeDrive” software was employed in order to 

detect any difference in Zn(II) acquisition rates between FrmR and E64HFrmR. Since protein 

was added to the Zn(II)-mag-fura-2 sample inside the anaerobic glove-box and followed by 

scanning with an UV-visible spectrophotometer outside, it was possible to monitor change in 

absorbance only after ~ 30 sec from protein addition (Figure 4. 19A-B). 

Mag-fura-2 titration with Zn(II) in the absence of protein produced a sharp inflection upon 

addition of one molar equivalent of metal, confirming formation of a 1:1 [M:L] complex, both 

in the presence or absence of glutathione (Figure 4.18A). If protein is added to mag-fura-2 fully 

loaded with Zn(II) (which does not possess any spectral feature at 366 nm), it is possible to 

monitor the formation of Zn(II):protein complex by observing rising of the peak at 366 nm. 

Since upon addition of 5 mM EDTA at the end of the time-course experiment the absorbance of 

the spectral feature still increases in both wild-type and mutant FrmR, not all the Zn(II) seems to 

migrate from the chelator to the protein (Figure 4. 18B-C). 

When the experiment was carried out in the presence of glutathione, a negligible difference, if 

any, was noticed in the curve slope if compared to that obtained in the absence of glutathione, 

suggesting that glutathione does not aid transfer of Zn(II) from mag-fura-2 inferring that 

proteins receive Zn(II) directly from the chelator (Figure 4. 19A-B).  

However, if comparison is made between experiments with wild-type FrmR and E64H variant, 

in the presence or absence of GSH, in both cases Zn(II) ions migrate faster to E64HFrmR than 

to wild-type (Figure 4. 20A-B). An explanation could be that E64HFrmR conformation in the 

apo-form is more open, with ligands already placed in a better position to receive the metal or, 

possibly, mag-fura-2 under these conditions acts as glutathione in the cell, handing Zn(II) to the 

E64H variant more promptly than to wild-type for reasons not yet clear. Both speculations could 

be valid and do not exclude each other.  
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Figure 4. 18 A Mag-fura-2 titrated with ZnCl2 in the presence (red squares) or absence  

(open triangles) of 20 µM glutathione. B-C UV-vis spectra of FrmR (B) or E64HFrmR (C) 

(solid black line), end of competition between mf2 and protein for Zn(II)-binding (blue solid 

line) and upon addition of 5 mM EDTA (dashed black line). 

(nm)

200 400 600

A
b
s

0.0

0.2

0.4

(nm)

200 400 600

A
b
s

0.0

0.2

0.4

[Zn(II)]/[MF2]

0 1 2

A
b

s
3

6
6

n
m

0.0

0.2

0.4

A.

B.                                                     C.



 4. Generation of a metal-sensing transcriptional regulator 

149 | P a g e  

 

 

Figure 4. 19 A-B Time course experiments monitoring migration of zinc from mag-fura-2 to 

FrmR (A) or E64HFrmR (B) in the presence (red lines) or in absence (black lines) of 

glutathione (20 µM). UV-visible absorbance was recorded at 366 nm using “TimeDrive” 

software available on the instrument. Mag-fura-2 (100 µM) previously incubated with ZnCl2 

(100 µM) was added to FrmR (13.67 µM, monomer) (A) or E64HFrmR (13.73µM) (B). In each 

case sample preparation and addition were carried out in the anaerobic chamber therefore the 

change in absorbance, indicative of metal sequestration by the protein, was monitored after 28 

sec in A and 33 sec in B.  
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Figure 4. 20 A-B Time course experiments monitoring zinc migration from mag-fura-2 to FrmR 

(orange line) or E64HFrmR (green line) in the presence (A) or absence (B) of glutathione (20 

µM).   
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4.8 In vitro interaction between E64HFrmR and frmRA promoter  

In order to pursue the identification of the parameter (or set of parameters) regulating 

E64HFrmR gain-of-function, interaction with the target frmRA operator-promoter region was 

examined by fluorescence anisotropy. As briefly mentioned in Section 4.3, two distinct forms of 

purified E64HFrmR were discovered, the first characterised by an absorbance spectrum 

undistinguishable from wild-type (Figure 4. 4A) and the second, more frequently obtained, 

showing a spectral feature at ~ 300 nm which could not be related to oxidation nor to 

formaldehyde or glutathione modification (Figure 4. 4B). Preliminary studies conducted on the 

first form yielded metal affinities virtually identical to wild-type (data not shown). This singular 

and sporadic E64H form (~ 20 % of purified protein samples), named here as E64HFrmR*, was 

used to perform experiments to assess DNA binding affinity.  

Figures 8. 6A-B and 8. 7A-B (Appendix) report findings obtained with this preparation, which 

exhibit analogous KDNA to wild-type (106.6 ± 6.8 nM) and which is allosterically inhibited by 

zinc-binding by the same degree (ΔGc
Zn(II)E64HFrmR*

 = 1.92 ± 0.09 kcalmol
-1

). As it became clear 

that a more prevalent protein form was routinely purified, E64HFrmR* was set aside. 

Consequently, the following sections will discuss data obtained with this second and most 

frequently purified form of E64HFrmR.  

4.8.1 E64HFrmR:DNA stoichiometry determined by fluorescence anisotropy 

The fluorescently labelled, double-stranded DNA fragment used for wild-type FrmR, 

frmRAPro, was employed to determine E64HFrmR:DNA stoichiometry. 

Titration of E64HFrmR into 2.5 µM frmRAPro was carried out anaerobically and monitored by 

fluorescence anisotropy. Inflection was visible upon addition of ~ 8 molar equivalents of protein 

confirming the model where two E64HFrmR tetramers bind to the target DNA region as 

observed with wild-type FrmR (Figure 4. 21A). The experiment was also conducted using 

frmRAPro-T/A-mod, which differs from the original target sequence by having the first T/A site 

randomly altered (Figure 3 .18B). As with wild type FrmR, only one mutant tetramer binds this 

DNA, as indicated by the sharp inflection at 4 molar equivalents (Figure 4. 21B). However, it 

must be noted that the response in the latter case is significantly (almost 10-fold) smaller than 

that observed for frmRAPro which complicates interpretation of data. 

4.8.2 E64HFrmR:DNA interaction monitored by fluorescence anisotropy 

Titration of 10 nM frmRAPro with E64HFrmR was monitored by fluorescence anisotropy, 

reporting a weakened affinity for the target DNA sequence compared to FrmR (Figure 4. 22A). 

The DynaFit script, describing the binding of two non-dissociable protein-tetramers per DNA  
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Figure 4. 21 A Anisotropy change upon titration of frmRAPro (2.5µM) with E64HFrmR (2.5 µM 

monomer with each addition). A point of inflection is observed after addition of ~ 8 equivalents 

of protein monomer indicating a protein:DNA stoichiometry of 8:1 (two tetramers per 

frmRAPro). The further increase in anisotropy following this inflection may represent further 

binding of FrmR to frmRAPro with substantially weaker affinity. B As A except for the use of 

frmRAPro-T/A-mod (DNA sequence containing the same promoter region as frmRPro except 

for the introduction of a random nucleotide sequence in place of the first T/A tract). Inflection 

was observed after ~ 4 equivalents of protein monomer indicating a protein:DNA stoichiometry 

of 4:1 (one tetramer per frmRAPro-T/A-mod).   
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Figure 4. 22 A frmRAPro (10 nM) was anaerobically titrated with E64HFrmR in the presence of 

5 mM EDTA. B frmRAPro (10 nM) was anaerobically titrated with E64HFrmR in the presence 

of 5 µM ZnCl. The protein was incubated with 1.2 molar equivalents of ZnCl2 and EDTA was 

omitted. In A-B DNA binding was monitored by fluorescence anisotropy. Solid line represents 

simulated curves produced from the average KDNA determined across the experiment replicates 

shown. Symbol shapes represent individual experiments. Data were fit to a model describing a 

2:1 E64HFrmR tetramer (non-dissociable):DNA stoichiometry. C Data in A (filled symbols) 

and B (open symbols).   
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molecule, gave KDNA
E64HFrmR

 426 ± 40 nM. This result might explain (at least partially) the 

enigmatic increase observed in the frmRA basal expression when regulated by FrmRE64H 

(Figure 4. 2B). If the mutant possesses a weaker affinity for its operator region than wild-type, 

this could result in the loss of repression observed in β-galactosidase assay. 

4.8.3 E64HFrmR:DNA interaction in the presence of Zn(II)  

The ability of Zn(II) to trigger the allosteric mechanism which alters DNA-binding was tested in 

vitro by fluorescence anisotropy. The experiment was carried out as discussed in the previous 

section except for the absence of EDTA and the addition of 5 µM ZnCl2 to the reaction buffer 

and 1.2 molar equivalent of Zn(II) to the protein sample (to ensure fully metallated state 

throughout the experiment) (Figure 4. 22B). The association of E64HFrmR with frmRAPro was 

greatly inhibited, consistent with previous observations with FrmR, (KDNA
Zn(II)E64HFrmR

 = 3510 ± 

700 nM, ΔGc
Zn(II)E64HFrmR

 = 1.24 ± 0.16 kcal/mol). The magnitude of allosteric regulation of 

Zn(II)-E64HFrmR is smaller than that observed for wild type FrmR (ΔGc
Zn(II)FrmR

 = 2.03 ± 0.08 

kcal/mol), which is a counterintuitive result considering that in vivo Zn(II)- and Co(II)-binding 

to E64HFrmR inhibits binding to DNA more effectively than for wild type FrmR (Figures 4. 1-

4. 2). 

However, it must be noted that, despite a smaller ΔGc, KDNA
E64HFrmR

 (DNA-binding affinity of 

apoE64HFrmR) is more than four-times weaker than KDNA
FrmR

 whereas Zn(II)-E64HFrmR has a 

DNA affinity comparable to Zn(II)-FrmR (Table 8.2, Appendix). Hence at equivalent Zn(II) 

saturation, DNA occupancy by wild type FrmR will be higher than E64HFrmR, with the result 

that the variant will be more sensitive to de-repression (Osman et al. 2015). This outcome is 

valid only for the FrmR variant which displays a different absorption spectrum to wild-type, 

whereas is not correct for the E64HFrmR* form (Table 8.2, Appendix). Nevertheless, if our 

experience in E64HFrmR production reflects the real proportion between the two variant forms 

in the cell, then most of the mutant has a weaker DNA-binding affinity when metallated with 

Zn(II) and will be more allosterically effective. Disruption of the pre-formed E64HFrmR:DNA 

complex upon Zn(II) titration was monitored by fluorescence anisotropy as previously described 

for FrmR (Section 3.6.6). Figure 4. 23 shows one experimental replicate where full dissociation 

occurs upon addition of 0.5 - 1 molar equivalents of Zn(II), however great variability was 

observed amongst multiple replicates precluding the possibility of determining how many 

metallated sites are needed to elicit DNA release.   

4.9 Concluding remarks  

This chapter has presented the first successful attempt to turn a non-metal sensor into a metal-

sensor by a gain-of-function mutation. The WXYZ motif of FrmR was modified in order to 

reproduce an RcnR-like consensus sequence (HCHH). Β-galactosidase assay shows that  
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Figure 4. 23 frmRAPro (10 nm) was pre-incubated with FrmR (2.5 µM) before titration with 

ZnCl2. Dissociation of protein:DNA complexes was monitored by fluorescence anisotropy. 

Experiments were performed anaerobically at pH 7.0.   
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E64HFrmR is able to detect cellular Zn(II) and Co(II), in addition to formaldehyde. In order to 

explore the determinants underlying metal-specificity in FrmR proteins, the biochemical 

properties of E64HFrmR were analysed and compared to those of FrmR in Chapter 3 (see 

Section 7.4 for further discussion).  

In addition to Zn(II)- and Co(II)-binding properties also Ni(II)- and Cu(I)-coordination was 

explored since RcnR and CsoR sense these metal ions. E64HFrmR binds Zn(II), Co(II) and 

Cu(I) with ~ one order of magnitude tighter affinity than wild-type and the inability of Zn(II) to 

quench Tyr89 intrinsic fluorescence suggests a difference in the spatial disposition of this 

residue and, maybe, of the ligands involved in Zn(II)-coordination. However, a slightly tighter 

Zn(II)-binding affinity alone may not be sufficient to allow E64HFrmR to adequately compete 

for Zn(II)-binding with Salmonella Zn(II)-sensor ZntR in vivo. Likewise, E64HFrmR’ detection 

of cellular Co(II) cannot be explained by a tighter Co(II)-binding affinity since its KCo(II) is still 

~ 500-fold weaker than the endogenous cobalt sensor RcnR (Section 7.4.1). The hypothesis that 

a kinetic component may be involved in metal-sensing was tested by exploring glutathione (one 

of the major components of the cellular buffer) role in Zn(II)-detection in vitro (Section 7.4.3). 

Unexpectedly, E64HFrmR has a ten-fold weaker DNA-binding affinity (compared to FrmR), 

resulting in a smaller ΔGc
Zn(II) 

and yet, is more allosterically effective. This result seemingly 

contradicts previous knowledge of metal-sensor transcriptional de-repressors (Grossoheme & 

Giedroc 2012) and will be further discussed in Section 7.4.2. Hence, gain of Zn(II)-binding 

function appears to be the result of two distinct contributions, a ten-fold tighter metal-binding 

affinity and ten-fold weaker KDNA. As a consequence DNA occupancy of E64HFrmR is a 

hundred-fold smaller than wild-type (Section 7.4.2). 
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β-galactosidase assays were planned, performed and interpreted by Dr. Deenah Osman. 

These contributions are noted in figure legends and/or in text.    
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5.1 Aims and objectives 

FrmR has been shown to respond to formaldehyde in vivo (Chapter 4), consistent with E. coli 

FrmR (Law 2012; Herring & Blattner 2004). However, the mechanism of sensing of any FrmR 

remains unexplored. This chapter will explore further the FrmR formaldehyde responsiveness, 

in vitro and in vivo, by β-galactosidase assay and fluorescence anisotropy. Site-directed mutants 

in proposed formaldehyde binding residues will be generated to test a hypothetical model of 

formaldehyde sensing. Furthermore, a paralogous sensor RcnR, which is homologous to E. coli 

Ni(II)/Co(II)-sensing RcnR, has been employed to test the formaldehyde specificity of FrmR in 

vitro. 

5.2 Identification of formaldehyde-sensing characteristics 

Based on homology to E. coli FrmR, it was anticipated that Salmonella FrmR would also 

responds to formaldehyde and this has already been confirmed in vivo. The effect of 

formaldehyde on DNA-binding by FrmR was tested by fluorescence anisotropy (FA) and β-

galactosidase assay. 

5.2.1 Formaldehyde weakens FrmR KDNA 

To investigate FrmR ability to sense formaldehyde, we explored the interaction between FrmR 

and its promoter operator region in the presence of various formaldehyde concentrations. As 

described in Chapter 3, fluorescence anisotropy (FA) can be used to assess DNA-protein 

interactions. Figure 5. 1A-B shows the anaerobic titration of frmRAPro with FrmR in the 

presence of EDTA and formaldehyde. Formaldehyde is an extremely reactive molecule used as 

a cross-linker (non-specific) for protein and DNA conjugation at concentrations ranging 

between 2 mM and 360 mM (1 % v/v, d = 1.09 g/ml) (Section 1.5.2.1) (Brodolin 2000). Hence, 

in order to prevent any unspecific crosslinks within protein residues and/or DNA bases, the 

concentrations of formaldehyde used in the in vitro experiments were much lower (ranging from 

10 µM to 100 µM). 

The proposed binding mechanism indicates a stoichiometric interaction between formaldehyde 

and FrmR (Section 5.3.1), suggesting that a specific response may be observed at much lower 

formaldehyde concentrations. For this reason experiments were carried out with 10 and 20 µM 

formaldehyde. 

Data were fit with Dynafit as previously described for apo-FrmR generating a KDNA
HCOH-FrmR

 = 

637 ± 16 nM (if [HCOH] = 10 µM) and 7089 ± 593 nM (if [HCOH] = 20 µM). Figure 5. 1C 

shows the comparison between these data and the apo-FrmR association curve shown in 

Chapter 3, highlighting weakening of FrmR KDNA in the presence of formaldehyde. ΔGc values 

were calculated, as described previously (Table 8.2, Appendix), to be 1.10 ± 0.02 kcal mol
-1

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Blattner%20FR%5BAuthor%5D&cauthor=true&cauthor_uid=15466022
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Figure 5. 1 frmRAPro (10 nM) was anaerobically titrated with FrmR in the presence of 5 mM 

EDTA in presence of 10 µM (A) and 20 µM (B) of formaldehyde. Figure C shows the 

comparison of data from the same FrmR:DNA association in the absence (blue circles), or in the 

presence of 10 µM (pale blue) and 20 µM (green circles) of formaldehyde. DNA-binding was 

monitored by fluorescence anisotropy. Solid line represents simulated curves produced from the 

average KDNA determined across the experiment replicates shown. Symbol shapes represent 

individual experiments. Data were fit to a model describing a 2:1 FrmR tetramer (non-

dissociable):DNA stoichiometry.    
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(with 10 µM HCOH), and 2.52 ± 0.05 kcal mol
-1

 (with 20 µM HCOH). 

Furthermore, in order to explore if FrmR responds specifically upon formaldehyde stress, the 

same experiment has been performed in the presence of 20 µM of ethanol (C2H5) or 

acetaldehyde (C2H4O) (Figure 5. 2). FrmR affinity for frmRAPro was calculated by DynaFit 

using the analogous script previously adopted for apo-FrmR analyses (Appendix) which gave a 

KDNA
EtOH ̇-FrmR

 = 92.06 nM and KDNA
C2H4O-FrmR

 = 85.55 nM (more replicates of these experiments 

will be needed to calculate standard deviations). These findings suggest that FrmR is either not 

able to interact with any of the alcohols and aldehydes tested or these interactions are not 

coupled with an allosterically active conformational change. These results do not contradict 

what was found with E. coli FrmR where small but significant activity in vivo was observed for 

small aldehydes but not for bulkier such as furaldehyde and tribromoacetaldehyde (Law 2012). 

This is informative of the specificity of formaldehyde detoxification since it suggests that the 

size of the binding pocket within the protein can accommodate only a small molecule such 

formaldehyde. 

5.2.2 In vivo study of FrmR function 

In Chapter 4 it was shown by β-galactosidase assay that Salmonella FrmR responds to MNIC of 

formaldehyde. Moreover, β-galactosidase assays on SL1344ΔfrmR harbouring either PfrmRA-

::lacZ or PfrmRA-frmR::lacZ construct, show that FrmR is necessary for repression of PfrmRA in 

Salmonella Figure 5. 3A. In fact, the formaldehyde response is lost and basal expression 

elevated, in cells harbouring the construct devoid of frmR (PfrmRA-::lacZ) (Figure 5. 3A). Thus, 

in common with E. coli FrmR (Herring & Blattner 2004; Law 2012), the Salmonella homologue 

represses expression from the frmRA operator promoter with repression alleviated by 

formaldehyde. 

To further analyse the specificity of PfrmRA operator induction upon formaldehyde stress, β-

galactosidase assay was employed to assess frmR activity in the absence or presence of 

minimum non-inhibitory concentrations (inhibited growth ≈ 10 %) of a range of alcohols and 

acetaldehyde in addition to formaldehyde, used as a control (Figure 5. 3B). Activity was 

induced only by formaldehyde and, to a lesser degree, by acetaldehyde which is the second 

smallest aldehyde after formaldehyde (R = CH3). However, none of the alcohols were able to 

trigger PfrmRA induction. These outcomes are consistent with results obtained by fluorescence 

anisotropy (Figure 5. 2). 

5.3 Mechanism of formaldehyde responsiveness by FrmR 

5.3.1 Proposed formaldehyde binding mechanism 

It has been suggested that the mechanism used by E.coli FrmR to bind formaldehyde and trigger 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Blattner%20FR%5BAuthor%5D&cauthor=true&cauthor_uid=15466022
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Figure 5. 2 frmRAPro (10 nM) was anaerobically titrated with FrmR in the presence of 5 mM 

EDTA and in the presence of 20 µM of (A) acetaldehyde and (B) ethanol. DNA-binding was 

monitored by fluorescence anisotropy. Data were fit to a model describing a 2:1 FrmR tetramer 

(non-dissociable):DNA stoichiometry.    
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Figure 5. 3 A In vivo expression from PfrmRA-frmR::lacZ. Representative (n=3) β-galactosidase 

activity following growth of SL1344ΔfrmR, harbouring either PfrmRA::lacZ or PfrmRA-frmR::lacZ 

construct, in M9 minimal media in the absence or presence of minimum non-inhibitory 

concentrations of formaldehyde. B In vivo expression from PfrmRA-frmR::lacZ Representative 

(n>3) β-galactosidase activity following growth of SL1344ΔfrmR, harbouring a PfrmRA-

frmR::lacZ construct, in M9 minimal media in the absence or presence of minimum non-

inhibitory concentrations of ethanol, methanol, 1-butanol, 1-propanol, 2-propanol, 

formaldehyde and acetaldehyde. These data were obtained by Dr. Deenah Osman. 
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the conformational change that causes the release of its promoter region involves a cysteine 

(Higgins & Giedroc 2014; Law 2012). Cysteine residues are involved in sensing in other 

RcnR/CsoR family members (Iwig & Chivers 2009; Foster et al. 2012; Ma et al. 2009a). 

Moreover, reactions of thiols with carbonyl compounds are well known (Jencks 1969; Kallen 

1971; Lienhard & Jencks 1966). In particular, the reaction of cysteine residues with 

formaldehyde can be divided in two steps. First, the sulphur atom on the thiol group attacks the 

carbonyl group of formaldehyde producing a hemithioacetal intermediate, followed by removal 

of one molecule of water and ring closure due to the attack of the amino group from cysteine 

backbone to yield a thiazolidinecarboxylic acid (Schubert 1935; Ratner & Clarke 1937). 

Aqueous formaldehyde is present in its hydrated form, methanediol (CH2(OH)2); however, 

carboxyl compounds are reactive toward nucleophilic attack in their unhydrated forms 

(Lienhard & Jencks 1966; Sander & Jencks 1968; Bell & Evans 1966; Bell 1966; Kallen & 

Jencks 1966). Formaldehyde dehydration is catalyzed by hydroxide ions above pH = 7.0 (Le 

Henaff  1960) and was shown to not be a rate determining step in the subsequent reactions with 

cysteine residues (Kallen 1971). 

A conserved residue, Cys35, was identified as the cysteine that reacts with formaldehyde in E. 

coli FrmR (Law 2012), and coincides with the only cysteine residue (located on helix 2, 

monomer 1) found in Salmonella FrmR. Figure 5. 4 outlines the proposed reaction mechanism 

between Salmonella FrmR and formaldehyde when this is present in low concentrations. In 

order to generate the reactive thiolate group (deprotonated form of thiol) on Cys35 a nearby 

residue is needed to act as a Lewis base and remove the proton (H
+
) from the sulfhydryl group. 

This residue, herein called amino acid X, has not been identified but  good candidates could be 

His60 or Asp63 since both have a carboxylate group deprotonated at pH values close to 7.0 

(pKr
His

 = 6.04 and pKr
Asp

 = 3.90 in aqueous solution at 20 
ᵒ
C). The now negatively charged 

sulphur atom of the Cys35 thiol group can give a nucleophilic addition on the formaldehyde 

yielding a tetrahedral intermediate. Subsequent abstraction of a proton from amino acid X 

(restoring the initial deprotonated form) yields an alcohol group. It has been postulated that a 

second residue from the N-terminal region of a different monomer is involved in this 

mechanism using its amino group (Higgins & Giedroc 2014). The amino terminus region is also 

required for metal-sensing by E. coli RcnR (Iwig et al. 2008; Higgins et al. 2012b). We here 

suggest that this residue could be Pro2 (on helix 1, monomer 2) which retains a basic 

pyrrolidine ring.  

When a sample of purified FrmR was examined by quantitative amino acid analysis, the result 

was consistent with the presence of only three methionine residues instead of four, as the 

theoretical sequence would predict. Results from the Amino Acid Analysis performed on the 

protein are shown in the Appendix. If the number of moles per ml of Met, 513, is divided by the 

number of moles per ml of Tyr (since FrmR possesses only one tyrosine), 181, the resulting 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chivers%20PT%5BAuthor%5D&cauthor=true&cauthor_uid=19703465
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A. A.

 

Figure 5. 4 Proposed mechanism of action of formaldehyde crosslinking FrmR. The reaction 

takes place in several steps. An amino acid (possibly His60 or Asp63, herein called amino acid 

X) close to Cys35 (helix 2, monomer 1) deprotonates the sulphur atom of the Cys35 thiol group, 

placing a negative charge on sulphur and making the thiol group more nucleophilic. Subsequent 

nucleophilic addition on the formaldehyde by the lone-pair electrons of the thiol on the Cys35 

yields a tetrahedral intermediate. The basic intermediate abstracts a proton (H
+
) from amino acid 

X to yield an alcohol group and regenerate the deprotonated form of amino acid X. Pro2 on 

helix 1, monomer 2 is the first residue of the N-terminal region and possesses a pirrolydine ring. 

Pyrrolidine is a strong base and it is among the most basic simple amines in nature (its 

conjugate acid has pKa = 11.27) (Hall 1957). The nitrogen on this residue attacks the positively 

polarized carbon. The alcohol group abstracts the proton from the now positively charged 

nitrogen and acts as a good living group (H2O) to yield the final product. 
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value, 2.83, can be rounded up to 3. The analysis has been repeated twice on different 

preparations of FrmR, confirming the detection of only three methionine residues. This outcome 

was interpreted as evidence of the cleavage of Met1, a co-translational process predicted to 

occur in the ~ 80 % of the totality of proteins (Waller 1963; Matheson et al. 1975; Brown 1970; 

Frottin et al. 2006). Moreover, the cleavage of Met1 was confirmed by LC-MS analysis, 

performed by our collaborators Dr. Huggins and Dr. Chen (Procter and Gamble Mason Business 

Centre, Cincinnati, Ohio), on FrmR and E64HFrmR samples following digestion with trypsin 

(0.5 mg ml
-1

) to obtain specific transitions (Figure 8. 3, Appendix). The presence of both 

PHSPEDK (where Met1 has been cleaved) and MPHSPEDK peptides was detected, but the 

qualitative nature of the analysis did not inform of their proportions. However, the presence of 

MPHSPEDK can be explained by considering that purified proteins are routinely overexpressed 

up to ≥ 5 mg/ml and the activity of the methionine aminopeptidase, the enzyme designated to 

cleave the methionine, would be hence limited by the large amount of available substrate. Since 

the Amino Acid Analysis previously discussed did not detect a fourth methionine, it is plausible 

to assume that a substantial proportion of the purified protein has undergone the cleavage. 

This result is in accord with what was observed for E. coli FrmR by Law (Law 2012). The main 

FrmR peak detected by time-of-flight mass-spectrometry (TOF-MS) (ionization source: 

electrospray) has a molecular mass of 10186 Da instead of 10318 Da (the predicted FrmR 

molecular mass) (Law 2012). The difference between the predicted and the experimental mass 

is 132 Da which coincides with the cleavage of the methionine (131 Da).  

In this scenario Pro2 is the first residue of the N-terminal region and it possesses a secondary 

amine group not involved in peptide bonding. According to the mechanism proposed here, the 

nitrogen on this residue attacks the electrophilic carbon on the tetrahedral intermediate and the 

alcohol group abstracts the proton from the now positively charged nitrogen creating a good 

leaving group (H2O) to yield the final product. The specific crosslink would connect monomer 1 

to monomer 2 of tetrameric FrmR causing a conformational rearrangement that produces a new 

protein assembly with a lower DNA-binding affinity.  

In order to further explore these hypotheses, DNA-binding affinities of mutant FrmR proteins in 

the absence and in presence of stoichiometric concentration of formaldehyde were analysed. 

5.4 Probing the formaldehyde-sensing mechanism of FrmR 

In order to probe the proposed mechanism and identify residues necessary for formaldehyde-

sensing, two single-point mutants were produced and tested by fluorescence anisotropy. The 

mechanism suggests that Cys35 and Pro2 contribute to the reaction with formaldehyde. Hence, 

Cys35 was mutated to an alanine, which is unable to interact with formaldehyde, whereas Pro2 

was substituted with a serine, which is located in the same position in RcnR and CsoR 
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homologues (formaldehyde-unresponsive) (Figure 3. 2). Production and purification of 

C35AFrmR was discussed in Chapter 3 (Section 3.8.1). 

5.4.1 C35AFrmR:DNA KDNA is unaffected by formaldehyde  

Titration of frmRAPro with C35AFrmR was previously shown in Chapter 3 (Section 3.8.3), 

resulting in KDNA = 158.2 ± 17.6 nM (Figure 3. 28A). Titration of frmRAPro with C35AFrmR in 

the presence of 20 µM of formaldehyde does not affect DNA binding as confirmed by the 

unaltered KC35AFrmR·DNA = 151.4 ± 2.2 nM (Figure 5. 5A, Appendix, Table 8. 2). Addition of 50 

µM and 100 µM of formaldehyde to the reaction buffer resulted in a tighter DNA binding 

affinity (KDNA
C35AFrmR

 = 128.6 ± 5.6 nM and KDNA
C35AFrmR

 = 96.7 ± 4.5 nM, respectively) (Figure 

5. 5B-C, Appendix, Table 8. 2) which might be explained by potential non-specific contacts, 

between protein and DNA operator, mediated by formaldehyde. Moreover the almost unaltered 

DNA-binding affinity of C35AFrmR variant suggests that the cysteine residue is the first to 

react, as suggested by the proposed mechanism (Figure 5. 4). Figure 5. 5D summaries these 

outcomes showing that DNA binding curves in the absence and presence of increasing 

concentrations of formaldehyde almost completely overlay. Coupling free energy values were 

ΔGc
C35AFrmR

 -0.02 ± 0.01 kcal mol
-1 

(20 µM formaldehyde), ΔGc
C35AFrmR

 -0.15 ± 0.02 kcal mol
-1 

(50 µM formaldehyde), and ΔGc
C35AFrmR

 -0.29 ± 0.05 kcal mol
-1 

(100 µM formaldehyde). 

5.4.2 Production and purification of P2SFrmR 

Pro2Ser mutation was inserted by site-directed mutagenesis of pETfrmR and was confirmed 

by sequence analysis. The production and purification steps (Figure 5. 6) followed the same 

protocol used for wild-type FrmR (Chapter 2) and protein was moved into the anaerobic glove-

box and buffer exchanged with N2-purged, chelex-treated buffer. Analysis of oxidized sulphur 

content and metal contamination by DTNB assay and ICP-MS respectively were performed to 

confirm reduced thiol content > 85 % and metal contamination < 5 %. 

5.4.3 P2SFrmR:DNA interactions in the presence of various formaldehyde 

concentrations by fluorescence anisotropy 

Fluorescence anisotropy was employed to test the role of Pro2 in formaldehyde binding, as 

previously shown with C35AFrmR (Section 5.4.1). As shown by Law, Pro2 is strictly conserved 

among predicted bacterial FrmR proteins located in operons with genes encoding deduced 

formaldehyde dehydrogenases (Law 2012). As in Salmonella FrmR, the N-terminus methionine 

is cleaved from E. coli FrmR, resulting in Pro2 being the first residue (Law 2012). If the lone 

electron pair of the Pro2 amino group was involved in the formation of a peptide bond with 

Met1 (or any other amino acid residue) it would not be available to coordinate formaldehyde. 

Fluorescence anisotropy analyses on the apo-P2SFrmR (Figure 5. 7A) reported a DNA-binding 

affinity weaker than wild-type but comparable to C35AFrmR (KDNA
P2SFrmR

 = 146.45 ±16.37 nM) 
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Figure 5. 5 frmRAPro (10 nM) was anaerobically titrated with C35AFrmR in the presence of 5 

mM EDTA plus 20 µM (A), 50 µM (B) and 100 µM (C) of formaldehyde. Figure D shows the 

comparison of one representative data set from C35AFrmR:DNA associations in the absence 

(blue circles), or presence of 20 µM (green circles), 50 µM (orange circles) and 100 µM (red 

circles) of formaldehyde. DNA binding was monitored by fluorescence anisotropy. Solid line 

represents simulated curves produced from the average KDNA determined across the experiment 

replicates shown. Symbol shapes represent individual experiments. Data were fit to a model 

describing a 2:1 C35AFrmR tetramer (non-dissociable):DNA stoichiometry.    
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Figure 5. 6 Purification of P2SFrmR by nickel affinity chromatography, size exclusion and 

heparin affinity chromatography. SDS-PAGE analysis (18 % w/v acryl-bis) showing fractions 

containing P2SFrmR from each purification step. “HisTrap f2” refers to the second fraction 

eluted from a 5 ml Ni(II)-affinity column with buffer A containing 0.3 M imidazole. Fractions 

“S75 f31-f33” were eluted from a Superdex S75 column loaded with fraction “HisTrap f2”. 

Fraction “Heparin 2” was eluted at 0.5 M NaCl from two 1 ml Heparin columns linked together 

loaded with size exclusion fractions f31-f32 combined. Presence of only one band at around 10 

kDa confirms the purity of the protein. 
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Figure 5. 7 frmRAPro (10 nM) was anaerobically titrated with P2SFrmR in the presence of 5 

mM EDTA in presence of 0 µM (A), 20 µM (B), 50 µM (C) and 100 µM (D) of formaldehyde. 

DNA binding was monitored by fluorescence anisotropy. Solid line represents simulated curves 

produced from the average KDNA determined across the experiment replicates shown. Symbol 

shapes represent individual experiments. Data were fit to a model describing a 2:1 P2SFrmR 

tetramer (non-dissociable):DNA stoichiometry.    
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suggesting that these mutations affect FrmR DNA-binding to a modest degree. The same 

experiment was conducted in the presence of various concentrations of formaldehyde (20 µM – 

50 µM – 100 µM, see Figure 5. 7 B-C-D respectively) producing the following values: 

KDNA
HCOH-P2SFrmR

 = 586.4 ± 130.3 nM, ΔGc
HCOH-P2SFrmR

 = 0.81 ± 0.13 kcal mol
-1

 (20 µM 

formaldehyde), KDNA
HCOH-P2SFrmR

 = 1349.1 ± 468.7 nM, ΔGc
HCOH-P2SFrmR

 = 1.29 ± 0.22 kcal mol
-1

 

(50 µM formaldehyde) and KDNA
HCOH-P2SFrmR

 = 5757.7 ± 462.6 nM, ΔGc
HCOH-P2SFrmR

 = 2.18 ± 

0.07 kcal mol
-1

 (100 µM formaldehyde). As shown in Figure 5. 8, which reviews and compares 

the P2SFrmR:DNA association curves in the presence and absence of formaldehyde,  the 

protein is still capable of interacting with formaldehyde but retains a tight DNA-binding affinity 

at a HCOH concentration of 20 µM. On the contrary, this concentration was sufficient to almost 

completely abolish any interaction with DNA in FrmR (Figure 5. 1B).  

Comparison of the ΔGc values calculated for P2SFrmR and FrmR (Table 8. 2, Appendix) 

indicates that a concentration of formaldehyde of 100 µM is needed to achieve a response in 

P2SFrmR comparable to that shown by FrmR when treated with 20 µM of formaldehyde. 

However, inclusion of 100 µM of formaldehyde in association experiments using C35AFrmR 

with frmRAPro did not affect DNA-binding. These outcomes suggest that, unlike C35AFrmR, 

P2SFrmR is still capable of interacting with formaldehyde, presumably with a different 

mechanism. Formaldehyde may bind Cys35 yielding the tetrahedral intermediate, and a nearby 

residue may replace the amino group of the Pro2 (e.g. amino group of His3 imidazole). 

Alternatively, the modification on Cys35 alone may be sufficient to impair the ability of 

P2SFrmR to bind DNA with the same affinity of apo-protein. 

5.5 In vitro analysis of the RcnR:rcnRA promoter interaction 

In order to establish whether or not the range of [HCOH] used in the previous sections lead to 

non-specific formaldehyde contacts within protein and/or with DNA, Salmonella RcnR was 

produced and DNA binding properties were investigated under the same reaction conditions. 

5.5.1 Recombinant Salmonella RcnR production and purification 

Salmonella RcnR was overexpressed as outlined in Chapter 2 from single colonies of E. coli 

BL21 (DE3) containing pETRcnR. The protein was purified using a three-step protocol which 

involved 5 ml Heparin-affinity column, HiLoad 16/60 Superdex S75 GE Healthcare column and 

5 ml HiTrap SP column (Chapter 2). SDS-PAGEs 18 % w/v were run after each step to 

determine the fractions containing RcnR and to confirm the purity of the protein after the last 

step (Figure 5. 9A-C). Pure protein from HiTrap SP column step was concentrated and buffer 

exchanged inside the anaerobic glove-box using N2-purged, chelex-treated buffers. RcnR was 

quantified by measuring absorbance at 280 nm using the experimental extinction coefficient  
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Figure 5. 8 Comparison of one representative data from P2SFrmR:DNA associations in the 

absence (blue circles), or in the presence of 20 µM (green circles), 50 µM (orange circles) and 

100 µM (red circles) of formaldehyde, as previously shown in Figure 5.A-D. DNA binding was 

monitored by fluorescence anisotropy. Solid lines represent simulated curves produced from the 

average KDNA determined across the experiment replicates shown. Data were fit to a model 

describing a 2:1 P2SFrmR tetramer (non-dissociable):DNA stoichiometry.    
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Figure 5. 9 Purification of RcnR by heparin affinity chromatography, size exclusion and HiTrap 

SP- chromatography. A. SDS-PAGE analysis (18 % w/v acryl-bis) of fractions eluted from a 

5ml Heparin-affinity column with buffer B800 containing 800 mM NaCl. Fractions W1 and W2 

contain material not bound to the column and flow through during wash step with 25 ml buffer 

B300 (300 mM NaCl) respectively. Fraction 2 was routinely found to contain RcnR in the 

highest concentration. B. SDS-PAGE analysis (18 % w/v acryl-bis) of fractions 27-35 eluted 

from a Superdex S75 column loaded with fraction 2 (5.5 ml) from the previous purification step 

(A.) C. SDS-PAGE analysis (18 % w/v acryl bis) of fractions eluted at 0.3 M NaCl from a 5 ml 

SP column with size exclusion fractions enriched for RcnR. 
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(ε280 = 2422 M
-1

cm
-1

) determined by quantitative amino acid analysis (Table 8.5, Figure 8. 2). 

Amino acid analysis on the purified protein also revealed the absence of one methionine, 

consistent with the loss of the N-terminal Met1 residue, as seen for E. coli RcnR (Iwig et al. 

2008). Reduced cysteine content (> 85% free thiol) and metal contamination (< 5%) were 

determined by DTNB assay and ICP-MS. Protein was stored at 4 ºC for up to one month 

although a few RcnR preps showed signs of protein precipitation after the last buffer exchange 

step inside the glove-box and were therefore discarded.  

5.5.2 PrcnRA unlabelled oligonucleotides production and competitive EMSA 

to study RcnR:DNA interaction 

In order to predict and test for binding to the promoters of gene(s) regulated by Salmonella 

RcnR, bioinformatics comparison with the E. coli RcnR operator region and EMSA screening 

were adopted in order to locate promoter elements that might represent RcnR binding sites. 

The Salmonella genome upstream of the rcnR gene was searched for promoter regions with 

similarity to the DNA binding site of E. coli RcnR with which Salmonella RcnR shares an 

identity of 92.2 % (Figure 5. 10, Table 5. 1). RcnR recognizes the pseudo palindromic, type 1, 

sequence TACT-G6-N-AGTA, two of which are located in the E. coli rcnA-rcnR intergenic 

region (Iwig & Chivers 2009). This DNA recognition takes place through multiple contacts in 

the minor groove and non-specific interactions with the flanking DNA regions promoting DNA 

wrapping (Section 1.4.4). 

The region including 100 bp immediately upstream of the rcnR translational start codon was 

therefore searched and two sequence (herein called site 1 and site 2) presenting features similar 

to those recognized by E. coli RcnR (type 1 category, containing one G/C tract flanked by AT-

rich inverted repeats) were identified as shown in Figure 5. 11. As with E. coli RcnR the 

distance between the two centred A/T-rich tracts is 9 bp for each separate RcnR binding site. 

We initially explored the interaction between Salmonella RcnR and this region by 

electrophoretic mobility shift assay (EMSA). The nucleotide sequence containing the start of the 

rcnR coding region and the region immediately upstream was amplified by PCR, ligated to 

pGEM-T and the newly constructed plasmid was propagated in E. coli DH5α. Primers were 

designed homologous to the two regions underlined in Figure 5. 11A. The DNA probe (177bp, 

designated rcnRAProEM) was then amplified by PCR. As a control for non-specific protein-

DNA binding in EMSA assay, a non-specific DNA probe (141 bp, designated pGEMCon3) was 

PCR amplified from re-circularised pGEM plasmid using primers homologous to either side of 

the multi-cloning site (Table 2.1). Figure 5. 11B shows how, upon addition of ~ 3 µM RcnR to 

the EMSA binding reaction a first shifted rcnRAProEM band is visible whereas after 8 µM 

RcnR the entire population of rcnRAProEM has been retarded. The presence of two retarded 

bands may represent the formation of multimeric complexes and has been observed in EMSA
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                      W                               X 

Ec_RcnR            1 MSHTIRDKQKLKARASKIQGQVVALKKMLDEPHECAAVLQQIAAIRGAVN     50 

                     ||||||||||||||.|||||||.||||||||||||||||||||||||||| 

Sty_RcnR           1 MSHTIRDKQKLKARTSKIQGQVAALKKMLDEPHECAAVLQQIAAIRGAVN     50 

 

 

                              Y   Z                               

Ec_RcnR           51 GLMREVIKGHLTEHIVHQGDELKREEDLDVVLKVLDSYIK     90 

                     ||:||||||||||||||:.:|.|||||||||||||||||| 

Sty_RcnR          51 GLLREVIKGHLTEHIVHESEEQKREEDLDVVLKVLDSYIK     90 

 

Figure 5. 10 Alignments of S. typhimurium RcnR (Sty_RcnR) with E. coli RcnR (Ec_RcnR) by 

Clustalw2. The residues at positions of the WXYZ fingerprint are highlighted. 

E. coli RcnR Similarity (%) Identity (%) 

S. typhimurium RcnR 95.6 92.2 

Table 5. 1 Similarity and identity of amino acid sequence of S. typhimurium RcnR compared to 

E. coli  RcnR using EMBOSS NEEDLE. 



  5. Formaldehyde sensing by Salmonella FrmR and RcnR 

      175 | P a g e  

 

CCTTGCTGAAGAAGTGTCGAAAATTCACCCATGAGAATGATTCTTAGTTGTTTTATGTGGGCGTCATTCT

ACTCCCCCCCAGTATAGAATACTACCCCCCAGTAGCATCGTAATGCTATAATTTGTATTCGTTAATGTTA

GTGAGGTGTTGTAATGTCACATACCATCCGGGACAAACAAAAGCTTAAAGCCAGA 

A. 

B.

RcnR : DNA 

complex 

0 0.5 0.8 1 1.3 1.5 3 4 5 8 10 15 20

[RcnR] µM  

rcnRAProEM

pGEMCon3

 

Figure 5. 11 A Nucleotide sequence of the start of the coding region and upstream region of 

rcnRAProEM. The potential RcnR binding sites (containing one of the two C/G tracts) are 

highlighted in red and the translational start codon is highlighted in the box. Primers (Table 2.1) 

were designed homologous to the two regions underlined, and used to amplify this region from 

Salmonella genomic DNA producing the probe named rcnRAProEM used in EMSA analysis. B 

Competitive EMSA assessing RcnR binding to rcnRAProEM. Competitive EMSA with 177 bp 

rcnRAProEM (100 nM) and 141 bp non-specific DNA probe pGEMCon3 (100 nM) incubated 

with 0-20 µM RcnR. 

Site 1                                     Site 2 
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analyses using other RcnR/CsoR family members such as M. tuberculosis (Liu et al. 2007), L. 

monocytogenes CsoR (Corbett et al. 2011) and Synechocystis InrS (Foster et al. 2012). 

Alternatively the lower mass retarded band may indicate the specific interaction between RcnR 

and rcnRAProEM while the higher mass retarded may represent the non-specific interaction of 

RcnR with the control fragment, consistent with the pGEMCon3 band fading approximately at 

the same [RcnR]. In fact, as the concentration of RcnR is further increased, a decrease in the 

intensity of the free pGEMCon3 (after ~ 5 µM RcnR) starts to be visible indicating an affinity 

of RcnR, although weak, for the control fragment. The apparent affinity of RcnR for 

rcnRAProEM is KDNA,app ~ 1.5 µM, which is significantly weaker than that observed for E. coli 

RcnR by Iwig and collaborators (KDNA-site1 = 126 nM and KDNA-site2 = 174 nM)  (Iwig & Chivers 

2009). Since this may be due to the non-equilibrium nature of the EMSA assay, a quantitative 

approach intended to estimate RcnR DNA-affinity was performed at equilibrium by 

fluorescence anisotropy and presented in Sections 5.5.4 and 5.5.5. 

5.5.3 RcnR labelled oligonucleotides production  

Production of a HEX-labelled double stranded, oligonucleotides containing the RcnR 

recognition region for use in fluorescence anisotropy was performed as described for FrmR in 

Chapter 3, section 3.6.3. Two DNA sequences were produced, rcnRAPro
sites1,2

 and rcnRAPro
site1

, 

the first is composed of 35 nucleotides and contains the two identified RcnR recognition sites 

and flanking nucleotides whereas the second (28 bp) contains only RcnR recognition site 1 and 

flanking nucleotides (Figure 5. 12). Successful annealing of HEX-labelled oligonucleotides with 

their unlabelled reverse complements was confirmed by native PAGE analysis as shown in 

Figure 5. 12. 

5.5.4 RcnR:DNA stoichiometry explored by fluorescence anisotropy 

It has been shown that the DNA binding stoichiometry in E. coli RcnR is one RcnR tetramer per 

DNA recognition site (Iwig & Chivers 2009). Although E. coli RcnR is able to singularly 

interact with the two TACT-G6-N-AGTA motifs almost with the same affinity, Iwig and 

Chivers demonstrated that the combination of site 1 and 2 is important for observing the 

extended footprint and DNA wrapping (Iwig & Chivers 2009). In order to determine the 

stoichiometry of Salmonella RcnR:DNA complex, increasing amounts of RcnR were added to 

concentrated samples of rcnRAPro
sites1,2

 and rcnRAPro
site1

 (2.5 µM) (Figure 5. 13A-B, 

respectively) and variation in anisotropy (robs) upon each protein addition was monitored by a 

modified Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies) as described in 

Chapter 2.  

Since only 9 bp separates the centers of E. coli RcnR AT-rich sequences, resulting in a rotation 

of DNA ~ 324 º which places the two regions on the same face (Iwig & Chivers 2009), the 

protein is able to simultaneously interact with the two inverted repeat motifs flanking the G-rich  
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Annealed rcnRAPro

Forward primer Reverse primer

Annealed rcnRAPro

Forward primer Reverse primerForward primer                      Reverse primer

rcnRAPro        rcnRAPro
sites1,2                        site1

 

 

                                   site 1                                           site 2 

5’-[HEX]TACTCCCCCCCAGTATAGAATACTACCCCCCAGTA 

 

                                                 site 1                                         

5’-[HEX]CATTCTACTCCCCCCCAGTATAGAATAC 

Figure 5. 12 Production of double stranded, 5’-[HEX]-labelled, oligonucleotides containing both 

RcnR recognition sites (rcnRAPro
sites1,2

) or only site 1 (rcnRAPro
site1

) and flanking nucleotides 

for use in fluorescence anisotropy assays. The HEX-labelled primers were annealed with their 

unlabelled reverse complements. The native PAGE shown here confirms the successful 

annealing of the oligonucleotide pairs to produce the double stranded rcnRAPro
sites1,2

 (first three 

lanes) and rcnRAPro
site1

 (last three lanes). Forward and reverse primer samples shown in the gel 

refers to rcnRAPro
sites1,2

 oligonucleotides. Sample concentrations: 10 µM.  
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Figure 5. 13 A Anisotropy change upon titration of rcnRAPro
sites1,2

 (2.5µM) with RcnR (2.5 µM 

monomer with each addition) (n = 1). A point of inflection is observed after addition of ~ 8 

equivalents of protein monomer indicating a protein:DNA stoichiometry of 8:1 (two tetramers 

per rcnRAPro
sites1,2

). B Anisotropy change upon titration of rcnRAPro
site1

 (2.5µM) with RcnR 

(2.5 µM monomer with each addition) (n = 1). A point of inflection is observed after addition of 

~ 4 equivalents of protein monomer indicating a protein:DNA stoichiometry of 4:1 (one 

tetramer per rcnRAPro
site1

). The overall response is lower than half the response obtained using 

DNA containing the two tracts rich in C/Gs therefore it remains unclear if the binding of only 

one RcnR tetramer to the DNA needs both halves of the inverted repeat of the recognition 

sequence.  
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tract resulting in a 1:1 RcnR:DNA stoichiometry for each recognition site (previously illustrated 

in Figure 3. 17). An analogous result was observed with Salmonella RcnR where an inflection 

after 8 molar equivalents of protein (consistent with two RcnR tetramers per DNA region) was 

detected with rcnRAPro
sites1,2

 (Figure 5. 13A), which contain both recognition site 1 and 2, and 

after 4 when rcnRAPro
site1

 (containing only site 2) was used (Figure 5. 13B). In the experiment 

with rcnRAPro
site1

 the overall response (Δrobs at the inflection point) appears smaller than the 

expected value which was theoretically predicted to be ~ half the Δrobs obtained when 

rcnRAPro
sites1,2

 was used. This could indicate that the response is strictly specific to the length 

and composition of the DNA sequence. 

5.5.5 RcnR:rcnRAPro interaction explored by fluorescence anisotropy 

Titrations of fluorescently labelled rcnRAPro
sites1,2

 (10 nM) with RcnR performed anaerobically 

in the presence of 5 mM EDTA, produced binding isotherms shown in Figure 5. 14A (symbol 

shapes represent individual experiments). Since it has been established by ITC that E. coli RcnR 

is able to bind essentially with the same affinity for each single site (KDNA-site1 = 126 nM and 

KDNA-site2 = 174 nM) (Iwig & Chivers 2009), data were fit to a model describing binding of two 

RcnR tetramer to one DNA molecule (containing two G/C sites), making the assumption that 

the two tetramers bind DNA with equal affinity and that the relationship between protein 

binding and robs is linear. KrcnRAPro-sites1,2
RcnR

 was found to be 152 ± 8 nM which is very close to 

the values calculated for E. coli RcnR (Iwig & Chivers 2009).  

Anaerobic titration of RcnR with rcnRAPro
site1

 (10 nM), which contains only site 1, yielded a 

weaker DNA binding affinity (KrcnRAPro-site1
RcnR

 = 1562 nM) (Figure 5. 14B) suggesting a positive 

cooperativity, which was seen in E. coli RcnR foot printing experiments involving large DNA 

duplex (~ 300 bp) but not for short fragments (Iwig & Chivers 2009). 

5.5.6 Analysis of the specificity of RcnR:rcnRAPro interaction 

To probe whether Salmonella RcnR-DNA contact is restricted at its consensus operator site, we 

tested if RcnR is capable of binding to frmRAPro with affinities sufficiently tight to mediate 

effective repression. In fact, frmRAPro belongs to type 1 site and the rcnRAPro
sites1,2

 contains a 

tandem operator site consisting of two type 1 sites. frmRAPro (10 nM) was anaerobically titrated 

with RcnR in the presence of 5 mM EDTA and change in anisotropy monitored by fluorescence 

anisotropy, showing an overall response (final Δrobs) consistent with what has already been 

observed for frmRAPro (Chapter 3 sections 3.6.5). KfrmRAPro
RcnR

 was calculated to be 2.0 µM 

using Dynafit software with a model describing a 1:1 RcnR tetramer:frmRAPro ratio (red line in 

Figure 5. 15) and 745.8 nM considering two RcnR tetramers:frmRAPro (blue line in Figure 5. 

15). The difference between the two fitted curves is very small, however the latter model 
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Figure 5. 14 rcnRAPro
sites1,2

 (10 nM) (containing two C/G tracts (A)) and rcnRAPro
site1

 

(containing only one C/G tract (B)) were anaerobically titrated with RcnR in the presence of 5 

mM EDTA. DNA binding was monitored by fluorescence anisotropy. Symbol shapes represent 

individual experiments. Solid lines represent simulated curves (in A the average KDNA has been 

determined across the experiment replicates shown). Data were fit to a model describing (A) a 

2:1 RcnR tetramer (non-dissociable):DNA stoichiometry), and (B) a 1:1 RcnR tetramer (non-

dissociable):DNA stoichiometry). 
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Figure 5. 15  frmRAPro (10 nM) was anaerobically titrated with RcnR in the presence of 5 mM 

EDTA. DNA binding was monitored by fluorescence anisotropy. Final Δrobs is consistent with 

what was previously observed for FrmR: frmRAPro association. Solid lines represent simulated 

curves. Data were fit to a model describing a 2:1 RcnR tetramer (non-dissociable):DNA 

stoichiometry (blue line), and a 1:1 RcnR tetramer (non-dissociable):DNA stoichiometry (red 

line). 
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appears to better describe the experimental data, suggesting that RcnR is capable of binding this 

DNA region with a 2:1 stoichiometry, although with low affinity. In fact, both values are 

outside the range of DNA binding affinities commonly found in transcriptional regulators (~30 - 

200 nM) (Ma et al. 2009, Iwig & Chivers 2009, Foster et al. 2012) therefore it is unlikely that 

cross regulation occurs.  

5.5.7 Effect of Co(II)- and Ni(II)-binding on formation of RcnR:rcnRAPro 

interaction 

As discussed in Chapter 1, E. coli RcnR responds to cobalt and nickel in vivo. To explore 

Salmonella RcnR in vitro, FA was employed to analyse the effect of Ni(II) and Co(II) on DNA 

binding. RcnR has upper limits on the KD of Ni(II)- and Co(II)-binding of of 25 nM and 5 nM, 

respectively (Iwig et al. 2008). Assuming a comparable affinity for Ni(II)- and Co(II)-binding in 

Salmonella RcnR, titration of DNA was performed with RcnR pre-incubated with [Ni(II)] or 

[Co(II)] = 5 µM, which is likely to saturate the metal binding sites. DNA-binding reactions were 

monitored by fluorescence anisotropy. No increase in measured robs values was observed when 

the association experiment was performed in the presence of Ni(II), indicating an extremely 

weak binding of Ni(II)-RcnR to DNA under these conditions (Figure 5. 16A). 

KrcnRAProsites1,2
Ni(II)RcnR

 = 5911.7 ± 1287.0 nM was calculated using a model describing a 2:1 RcnR 

tetramer:DNA ratio. Figure 5. 16B shows comparison with apo-RcnR association binding curve 

already presented in Section 5.5.5.  

The allosteric coupling free energy was calculated, using the thermodynamic equation described 

in Section 3.6.2, to be ΔGc
Ni(II)RcnR

 = 2.17 ± 0.15 kcal mol
-1

. An analogous result was obtained 

when the same experiment was conducted with Co(II) (Figure 5. 17A-B), giving KrcnRAPro-

sites1,2
Co(II)RcnR

 = 14950 ± 1837 nM and ΔGc
Co(II)RcnR

 = 2.72 ± 0.13 kcal mol
-1

. These findings are 

consistent with Ni(II) and Co(II) functioning as allosteric effectors of Salmonella RcnR, as in E. 

coli RcnR (Iwig et al. 2008). 

RcnR can now be used as a control to explore the specificity of the FrmR response to 

formaldehyde (Section 5.3.1). 

5.6 Assessing Salmonella RcnR responsiveness to formaldehyde 

in vitro  

5.6.1 RcnR:DNA interaction by fluorescence anisotropy in the presence and 

absence of various concentrations of formaldehyde 

Analyses of the effects of formaldehyde at 20 µM, 50 µM, and 100 µM on DNA-binding was 

carried out by fluorescence anisotropy in the presence of a large excess of EDTA (5 mM)  
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Figure 5. 16 A rcnRAPro
sites1,2

 (10 nM) was anaerobically titrated with RcnR in the presence of 

of 5 µM NiCl2 in the reaction buffer. RcnR samples were also incubated with 1.2 molar 

equivalent of NiCl2. B Comparison between the data shown in A and the same experiment 

carried out in presence of EDTA and in absence of metal (previously shown in Figure 5. 15A). 

Solid lines represent simulated curves produced from the average KDNA determined across the 

experiment replicates shown. Symbol shapes represent individual experiments. Data were fit to 

a model describing a 2:1 RcnR tetramer (non-dissociable):DNA stoichiometry. 
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Figure 5. 17 Titration of rcnRAPro
sites1,2

 with apo-RcnR and Co(II)-RcnR. A rcnRAPro
sites1,2

 (10 

nM) was anaerobically titrated with RcnR in the presence of of 5 µM CoCl2 in the reaction 

buffer. RcnR samples were also incubated with 1.2 molar equivalent of CoCl2. B Comparison 

between the data shown in A and the same experiment carried out in the presence of EDTA and 

in the absence of metal (previously shown in Figure 5. A). Solid lines represent simulated 

curves produced from the average KDNA determined across the experimental replicates shown. 

Symbol shapes represent individual experiments. Data were fit to a model describing a 2:1 

RcnR tetramer (non-dissociable):DNA stoichiometry. 
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(Figure 5. 18A-B-C). The estimated dissociation constant for protein binding to DNA (KrcnRAPro-

sites1,2) in the presence of 20 µM of formaldehyde is 157.6 ± 8.2 nM, (obtained for replicate 

titrations as routine) and shows that HCOH-RcnR interacts with rcnRAPro essentially 

identically to apo-RcnR. Binding parameters for HCOH-RcnR when the concentration of 

formaldehyde is 50 µM (KrcnRAPro-sites1,2 = 366.7 ± 110.3 nM, ΔGC = 0.51 ± 0.18 kcal mol
-1

) and 

100 µM (KrcnRAPro-sites1,2 = 774.9 ± 285.2 nM, ΔGC = 0.94 ± 0.21 kcal mol
-1

) describe a much 

weaker interaction between RcnR and formaldehyde compared with what was obtained for 

FrmR in the same conditions (Section 5.2.1). These results support the hypothesis that 

formaldehyde detection by FrmR is specific, with FrmR being especially reactive with 

formaldehyde relative to RcnR. In fact, 20 µM of formaldehyde does not prevent RcnR from 

binding to DNA whereas FrmR binding is almost completely disrupted in the same conditions. 

Also, when the experiment was carried out with the highest formaldehyde concentration used in 

this work (100 µM), we measured a ΔGc for RcnR still smaller than the value obtained for 

FrmR at a [HCOH] ten-times lower (Table 8. 2, Appendix). 

5.7 RcnR Ser2  Pro: Generation of a formaldehyde sensor in 

vitro by a single point mutation  

As the experiments described in the previous sections of this Chapter seem to confirm that 

Cys35 and Pro2 are involved in specific formaldehyde-binding (as shown in Section 5.4) and in 

order to further probe the predicted mechanism an attempt was made to create a FrmR-like 

formaldehyde binding site in Salmonella RcnR. RcnR already possesses a cysteine residue in 

position 35 whereas a serine, and not a proline, is located at the start of the N-terminal region. 

As previously observed for FrmR (Section 3.3.1), only two methionine residues (instead of 

three, as predicted by the theoretical sequence) were detected by Amino Acid Analysis (Table 8. 

5, Appendix), suggesting that Met1 has been cleaved. In this scenario Ser2 is the actual first 

residue. In the next sections Ser2Pro mutation will be described and S2PRcnR:rcnRAPro
sites1,2

 

interaction characterised in the absence and in presence of formaldehyde. 

5.7.1 Production and purification of recombinant S2PRcnR 

The serine residue in RcnR (Ser2), adjacent to the conserved W position of the CsoR/RcnR 

WXYZ motif (Figure 5. 10), was replaced with proline by site directed mutagenesis of 

pETRcnR to create the hypothesized FrmR-like formaldehyde binding site. The site directed 

mutant was purified following the protocol designed for wild-type RcnR (Chapter 2) (Figure 5. 

19). Assays to determine free thiol content and metal contamination were performed as routine 

(Chapter 2). 
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Figure 5. 18 rcnRAPro
sites1,2

 (10 nM) was anaerobically titrated with RcnR in the presence of 5 

mM EDTA plus 20 µM (A), 50 µM (B) and 100 µM (C) of formaldehyde. Figure D shows the 

comparison of data from the same RcnR:DNA association in the absence (blue circles), or 

presence of 20 µM (green circles), 50 µM (orange circles) and 100 µM (red circles) of 

formaldehyde.  DNA binding was monitored by fluorescence anisotropy. Solid line represents 

simulated curves produced from the average KDNA determined across the experimental replicates 

shown. Symbol shapes represent individual experiments. Data were fit to a model describing a 

2:1 RcnR tetramer (non-dissociable):DNA stoichiometry.    
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Figure 5. 19 SDS-PAGE analysis (18 % w/v acryl-bis) showing purification steps of S2PRcnR 

by nickel affinity chromatography, size exclusion and heparin affinity chromatography. 

“Heparin f2” represents the second fraction eluted from a 5 ml Heparin-affinity column with 

buffer B800 (Table 8. 1, Appendix) containing 800 mM NaCl. “S75 f30-f32” represents 

fractions 30-32 eluted from a Superdex S75 column loaded with fraction 2 (5.5 ml) from the 

previous purification step. “SP-column f2-f3” represents fractions eluted at 0.3 M NaCl from a 

5 ml SP column with size exclusion fractions enriched for RcnR (f2 elution volume = 10 ml, f3 

elution volume = 5 ml). 
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5.7.2 S2PRcnR:DNA interaction by fluorescence anisotropy in presence and 

in absence of formaldehyde. 

To ensure that the substitution does not affect DNA binding affinity of RcnR, the ability of 

S2PRcnR to bind rcnRAPro
sites1,2

 was assessed by fluorescence anisotropy (Figure 5. 20A). The 

DNA-binding affinity of the RcnR mutant was found to be KrcnRAPro-sites1,2
S2PRcnR

 = 155 ± 10 nM, 

which is identical to the value calculated for wild-type RcnR (KrcnRAPro-sites1,2
RcnR 

= 152 ± 8 nM, 

Section 5.5.5). This result indicates that S2PRcnR retains the ability to bind DNA with 

comparable affinity to wild-type. Fluorescence anisotropy was also used to monitor the 

interaction of S2PRcnR with DNA in the presence of [HCOH] = 20 µM, 50 µM and 100 µM 

(Figure 5. 20B-C and D, respectively). The binding parameters show a weakening in DNA-

binding affinity even after only [HCOH] = 20 µM (KrcnRAPro-sites1,2
S2PRcnR

 = 696 ± 141 nM, ΔGC = 

0.88 ± 0.14 kcal mol
-1

) which was not observed for RcnR and, as formaldehyde concentration 

increases, the differences with wild-type protein becomes more evident ([HCOH] = 50 µM, 

KrcnRAPro-sites1,2
S2PRcnR

 = 1781 ± 471 nM, ΔGC = 1.43 ± 0.18 kcal mol
-1

; [HCOH] = 100 µM, 

KrcnRAPro-sites1,2
S2PRcnR

 = 2620 ± 327 nM, ΔGC = 1.67 ± 0.09 kcal mol
-1

) (Table 8. 2, Appendix) 

(Figure 5. 21). 

Although these outcomes provide additional support for the hypothesis that Pro2, in addition to 

Cys35, may be involved in formaldehyde sensing in FrmR, the smaller (compared to FrmR), 

ΔGC values obtained with the engineered formaldehyde-binding RcnR protein suggest the 

possibility that the formaldehyde-mediated mechanism of allosteric negative regulation may 

differ in the two proteins and may involve other residues. Furthermore, while in FrmR the 

presence of Cys35 only (in P2SFrmR mutant) was sufficient to substantially impair DNA 

binding in vitro, in wild-type RcnR (which inherently lacks Pro2 but possesses Cys35) the effect 

of HCOH on DNA binding is noticeably smaller (Figures 5. 7 - 5. 18). The origin of 

these differences is not yet known and production of RcnR X-ray crystal structure could 

elucidate why the allosteric inhibition of DNA binding by formaldehyde-binding is not as 

effective as in FrmR.  

5.8 Concluding remarks  

Salmonella FrmR is a formaldehyde-sensing transcription factor belonging to the RcnR/CsoR 

family. In this chapter the detection of formaldehyde by FrmR has been explored and a putative 

reaction mechanism has been presented and analysed (see Sections 7.5.1, 7.5.2 and 7.5.3 for 

further discussion). 

This mechanism has been directly tested by site-directed mutagenesis producing two FrmR 

mutants (C35AFrmR and P2SFrmR) each lacking one of the two residues thought to be 

involved in the selective detection of formaldehyde at low concentrations. Substitution of Cys35 
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Figure 5. 20 rcnRAPro
sites1,2

 (10 nM) was anaerobically titrated with S2PRcnR in the presence of 

5 mM EDTA and in the presence of 0 µM (A), 20 µM (B), 50 µM (C) and 100 µM (D) of 

formaldehyde. DNA binding was monitored by fluorescence anisotropy. Solid line represents 

simulated curves produced from the average KDNA determined across the experiment replicates 

shown. Symbol shapes represent individual experiments. Data were fit to a model describing a 

2:1 S2PRcnR tetramer (non-dissociable):DNA stoichiometry.    
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Figure 5. 21 Comparison of data from the S2PRcnR:DNA association in the absence (blue 

circles), or presence of 20 µM (green circles), 50 µM (orange circles) and 100 µM (red circles) 

of formaldehyde as previously shown in Figure 5. 21A-C. DNA-binding was monitored by 

fluorescence anisotropy. Solid line represents simulated curves produced from the average KDNA 

determined across the experimental replicates shown. Symbol shapes represent individual 

experiments. Data were fit to a model describing a 2:1 S2PRcnR tetramer (non-

dissociable):DNA stoichiometry.    
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(α2’ helix) with Ala completely abolishes the protein’s ability to sense formaldehyde suggesting 

that this residue is involved in the first step of the reaction with the aldehyde, probably yielding 

a thiohemiacetal intermediate. Pro2 (α1 helix) appears to be less fundamental as formaldehyde 

is still able to elicit an allosteric response in P2SFrmR, although to a lesser extent and at a 

higher concentration of formaldehyde. This result suggests that once Cys35 binds 

formaldehyde, other residues could intervene and interact with the Cys-formaldehyde adduct, 

inducing a perturbation in the protein conformation not as efficient as the Cys35-formaldehyde-

Pro2 cross-link hypothesized in wild-type FrmR. Another explanation could be that the steric 

hindrance of the Cys-formaldehyde adduct may be sufficient to mis-align the two helices 

involved in DNA-binding (see Section 7.5.1 for further discussion). 

In order to test the specificity of the formaldehyde detection by FrmR, Salmonella RcnR was 

identified and produced. Analysis of the interaction with its promoter operator region was 

investigated by EMSA and fluorescence anisotropy. Effects of low concentration formaldehyde 

along with cognate metals Ni(II) and Co(II) on DNA-binding were tested by fluorescence 

anisotropy, confirming that the formaldehyde concentration must be increased by 10-fold in 

order to detect a similar magnitude of KDNA weakening as observed in FrmR (Section 7.6.1).  

Furthermore, we applied our proposed mechanism to successfully create a novel in vitro 

formaldehyde-sensor by substituting the residue in position 2 of Salmonella RcnR with a Pro, 

(RcnR already possesses a Cys residue in position 35) (Section 7.7). 
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Chapter 6 

Crystal structure determination of E64HFrmR 
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6.1  Aims and objectives 

This chapter describes attempts to generate high resolution structures of the purified apo and 

Zn(II) forms of FrmR and E64HFrmR (from Chapter 3 and 4). 

If successful, the production of a detailed molecular structure of the apo-form will provide 

information needed to elucidate the atomic details of protein interaction with formaldehyde and 

DNA operator promoter, whereas the structure of the Zn(II)-form will clarify which ligands 

participate in the zinc(II)-binding site. Furthermore, an aim is to detect the difference, if any, in 

the structure of FrmR and E64H variant as suggested by the biophysics assays findings 

discussed in Chapter 4 and the conformational change mediated by effector- (Zn(II)) binding. 

6.2  Crystallization background 

6.2.1   Crystal assembly 

Crystallization is a purification technique and a separation process which occurs when a set of 

randomly arranged molecules are organized in a three-dimensional arrangement which is 

orderly, highly reproducible and very accurate. The selectivity of the process by which a 

molecule in the fluid is incorporated in the crystal, arises from the fact that every specific 

surface of the crystal recognizes the molecule and leads it to be arranged in the position that will 

have in the final structure. The final structure will be the one with a 3D layout where the bulk is 

more stabilized by intermolecular interactions (i.e. with the minimum lattice energy). 

Equation 4 shows the fundamental equation for the free energy of crystallization: 

ΔGc = ΔHc – T ΔSc 

Equation 4 

The thermodynamic driving force of the process is the increase of entropy of the solvent (ΔSs > 

0) due to the release of water molecules which were ordered around both hydrophobic and polar 

residues. This factor must overcompensate other destabilizing contributions to ΔGs such as the 

loss of entropy of the protein (-25 < ΔSp< -75 cal mol-1 K-1) due to the reduction of degrees of 

freedom (during the formation of the crystal lattice, the protein loses translational and rotational 

freedom and limits conformational freedom). The contribution by enthalpy ΔHp is favourable 

(ΔHp > 0) but negligible because the few contact points formed within the crystal are mediated 

by weak interactions. Therefore the thermodynamic equation (Equation 5) can be re-written 

taking in account the contributions to the system composed by protein and solvent:                                      

ΔGc = ΔHc  – T (ΔSp + ΔSs) 

Equation 5 
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However, achievement of a negative ΔGc is not the only requirement for crystal formation. 

Crystallization rate depends on the concentration of the molecule (here the protein). The 

concentration range in which the process occurs has a lower limit which is defined by the 

equilibrium composition of the saturated solution ceq(T). The solubility curve in Figure 6. 1 

shows how the composition of a saturated solution varies with temperature T, which is only one 

of the many parameters involved in nucleation and crystal growth. The kinetic driving force of 

the self-assembly of molecules into a crystal is therefore constituted by the supersaturation. 

Supersaturation is a dimensionless quantity indicated with σ and corresponds to the difference 

between the chemical potential of a molecule at steady state and at supersaturation state. In the 

supersaturated solution, local and labile aggregates of molecules will form by thermal agitation 

(Brownian motion). This state is metastable and only if the radius of these aggregates exceeds a 

threshold value (critical radius) the formation of nuclei will occur (Figure 6. 1). The existence of 

a critical radius for the size of stable aggregates is linked to an energy barrier which opposes the 

nucleation. In fact the creation of a nucleus is accompanied by the formation of stabilizing 

interactions in the “bulk” but also by the creation of a surface at the interface between the 

solution (liquid phase) and the crystal (solid phase). The creation of this surface requires energy, 

because the molecules are in a state of tension not being able to satisfy all the interactions 

available. 

6.2.2  Crystallization techniques 

In order to crystallize biological molecules, factors such as temperature, pH, dielectric constant, 

presence of metal ions and/or additives, must be considered, in addition to the nature of the 

precipitant agent of choice. A common strategy involves a two-step approach: the use of 

commercial matrix sparse screens to coarse test a large number of crystallization and solubility 

conditions (with the aid of a crystallization robot), followed by optimization of specific 

crystallization conditions varying specific components of the crystallization cocktail (Jancarik & 

Kim 1991; Dessau & Modis 2011). 

Spontaneous crystallization of a molecule occurs when the process is favored 

thermodynamically, therefore when the free energy of the system reaches a minimum. Since a 

biological macromolecule is located at a minimum of energy when it is fully solvated (and this 

condition must remain valid even in the crystal), a crystal protein contains a large number of 

water molecules. The difficulty of crystallizing a protein therefore consists in finding the 

chemical-physical conditions that allow the transition from solution to solid phase while the 

macromolecule remains solvated and consequently can assemble in a 3D ordered arrangement 

instead of an amorphous aggregate.  

Since often it depends on the rate at which the saturation is reached, the strategy is to bring the 

system very slowly toward a minimum of solubility so as to obtain crystals suitable for X-ray  
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Figure 6. 1 Schematic representation of the solubility curve. If the solution has a concentration 

of solute below ceq it is undersaturated and any crystal introduced in the solution will melt. A 

solution over the upper curve is supersaturated, and the content of dissolved solute is higher 

than ceq. Crystals can nucleate and grow only from supersaturated solutions. Between these 

conditions there is a zone of supersaturation “metastable”, in which nucleation does not take 

place and only preformed crystals will grow. 
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diffraction (Rupp 2009). There are various techniques to obtain supersaturation of the protein 

solution but microdialysis and vapor diffusion methods are the most common. In this work we 

used vapor diffusion methods, in particular sitting-drop for the initial screening of 

crystallization conditions and hanging-drop for the optimization. Vapor diffusion techniques 

exploit a system where, in a closed system, two solutions of the same substance, but at different 

concentrations, are allowed to equilibrate. 

In the sitting-drop method (Figure 6. 2) a micro drop (200 nL) of the protein of interest is mixed 

with the precipitant (200 nL) and placed in a microbridge inside a transparent container (e.g. 96-

well plate) which already contains ~ 100 µL of precipitant solution (“reservoir”). The 

concentration of precipitant equilibrates through the vapor phase and if the supersaturation 

condition is reached crystal growth can occur (Rupp 2009).  

In the hanging-drop method (Figure 6. 2) a micro drop of protein solution (0.5 – 1 µL) is mixed 

with an analogous volume of precipitant and placed on a microscope coverslip. The coverslip is 

then suspended over a well containing 0.5 mL of precipitant solution (Rupp 2009). 

6.2.3  Diffraction experiment theory and principles 

X-ray diffraction happens when high energy electromagnetic radiation interacts with the 

electrons of the atoms in the crystal. During a single-crystal diffraction experiment the X-ray 

beam encounters the single crystal of the material of interest. At this point the photons will 

either travel through the object (probability of ~ 98 %) or interact with the obstacle (~ 2 %). In 

the latter scenario, the electrons in the crystal will start to oscillate coherently within the 

photon’s coherence length and will emit virtual waves which interfere constructively or 

destructively depending on their directions, following Equation 6 known as Bragg’s Law (Bragg 

1913; Rupp 2009): 

nλ = 2dsinθ 

Equation 6 

where n is an integer, λ is the wavelength of the photons, d the interplanar distance, and θ the 

scattering angle (see Figure 6. 3). W.H and W.L Bragg observed and explained for the first time 

the relationship between the angle of reflection to the X-ray and several parallel planes (due to 

the periodic nature of a crystal, this can be described as the sum of a series of equally spaced 

planes). 

Only certain angles of incidence will produce in-phase diffracted waves and the probability of 

finding the scattered photon in a particular direction will be proportional to the amplitude of the 

resulting wave in that direction. The constructive and destructive events of a single photon will 

be recorded by a detector, such as CCDs (charge-coupled devices) (Walter et al. 1995) or pixel  
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Figure 6. 2 Schematic representation of sitting-drop and hanging-drop vapour diffusion 

techniques.
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array detectors (Broennimann et al. 2006), and the sum of the diffraction events of all the 

photons will produce a pattern of spots scattered around the main incident beam (diffraction 

pattern). Bragg defined the relationship between the diffraction pattern and the crystal structure. 

Diffraction can be seen as the reflection of the primary beam by a set of parallel planes passing 

through the elementary cells of the crystal. Once the diffraction pattern has been recorded, 

Fourier methods are used to reconstruct the electron density of the molecule. 

The electron density ρ(x,y,z) of the crystal sample is a periodic function and therefore can be 

represented by a Fourier series (see Equation 7).  

2 ( )1
( , , )

V

i hx ky lz

hkl
h k l

x y z F e       

Equation 7 

h,k and l  are the indices of reflection hkl and identify a set of equivalent, parallel planes, 

whereas Fhkl is the structure factor describing the reflection (Rhodes 1993). 

6.2.4  Data processing and phase problem 

In order to produce a model for protein structure, data collection is followed by “indexing” 

(assignment of a set of integers h k l to each reflection and identification of a cell with sides a, b, 

c and angles α, β, γ), determination of potential space-group (as a result of crystal architecture) 

and “integration” (prediction of a diffraction pattern, measurement of the spot intensities and 

summing of the spots belonging to the same reflection). “Scaling” and “merging” steps consist 

in merging equivalent measurements and in putting all the reflections on a common scale. 

Subsequent determination of the space group and conversion of the intensities into structure 

factor amplitudes (|F|) provides information about twinning, B-factors, and many other factors. 

Since the structure factor Fhkl is a wave equation (Section 6.2.3), it is defined by an amplitude, 

which is directly proportional to the intensity of the spot (Ihkl), and a phase, which cannot be 

directly obtained from the diffraction experiment. The phase is therefore the only additional 

parameter needed in order to obtain ρ(x,y,z) and produce the 3D-structure of the desired 

molecule. 

In order to solve the “phase problem”, several common techniques, such as molecular 

replacement, heavy-atom method and anomalous scattering, can be adopted (Rhodes 1993). 

These methods will only provide an estimate of a limited number of phases but each of the 

thousands of reflections used in the Fourier series approximating the electron density has a 

phase. Further refinement using phase improvement and phase extension techniques is 

necessary to provide an interpretable electron density map (Rhodes 1993). 
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Figure 6. 3 The scheme shows the graphical interpretation of the Bragg’s law. The blue and red 

arrows represent X-rays whereas the green lines represent planes of atoms. The interaction of 

the incident X-rays with the crystalline sample produces parallel diffracted rays with a reflection 

angle θ which is equal to the incident. The path difference between the two incident beams is 

BA + CA where BA = CA = dsinθ, consequently BA + CA = 2 dsinθ. Reflection will occur 

only if this “extra” distance corresponds to the wavelength of the X-ray. 
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6.3 Crystallization of apo- and zinc-forms of FrmR and 

E64HFrmR 

An initial screening was performed using the sitting-drop vapor diffusion method. Several 

crystallization screens by Molecular Dimensions (Hampton Research) were set up in a 96-well 

crystallization plate format and the protein samples were dispensed with a Screen Maker robot 

(Innovadyne technologies). Crystallization kits (Hampton Research) adopted in this work are 

listed in Chapter 2 table 2.1. 

Drops were inspected for appearance of crystals every day during the first week and every week 

afterwards. Both FrmR and E64HFrmR in the presence and absence of Zn(II) readily formed 

crystals in several conditions. In particular JCSG-plus™ (Page et al. 2003; Newman et al. 

2005a-b; McPherson et al. 2001) (Table 2.2, Section 2.7.1) and PACT premier™ (Newman et 

al. 2005a-b) (Table 2.2, Section 2.7.1) kits were the most successful screens, providing hits 

where various crystal forms were found. Although the crystal size was often too small to be 

used in a diffraction experiment, these preliminary tests allowed identification of successful 

crystallization agents and pH range, and determination of the crystallization potential of the 

protein of interest in the presence of different ions.  

The hanging-drop technique was adopted applying a systematic approach, performing grid 

screens of ammonium sulphate or PEG (polyethylene glycol) with various molecular masses 

and exploring the effect of small variation of pH and [NaCl] on nucleation and crystal growth 

(as described in Chapter 2). Larger and improved crystals were obtained within a few days 

although complete growth required ~ one week. A comprehensive list of successful 

crystallization conditions used at this stage can be found in Chapter 2 table 2.2. 

Attempts to crystallize E. coli FrmR were reported in the Ph.D. dissertation by J. Law, although 

none of these were successful probably due to oxidation sensitivity of the protein (Law 2012). 

Crystals of C36AFrmR mutant (where Cys36 is the only cysteine residue present in E coli FrmR 

and corresponds to Cys35 in Salmonella FrmR) were obtained and diffracted with an adequate 

resolution (2.3 Å) although, no resulting structure was deposited in the Protein Data Bank 

(PDB) (Law 2012). Although the similarity between the two homologues is significant (74 %, 

Table 3.1), we did not encounter the same difficulties and various crystal forms of apo and 

Zn(II)-loaded FrmR and E64HFrmR were obtained (the most representative are shown in Figure 

6. 4 and Figure 6. 5). 

6.4  Diffraction data collection on FrmR and E64HFrmR crystals 

Protein crystals, soaked into the reservoir solution, were cryomounted in small loops, tightly 

sealed in order to prevent evaporation of the solvent and disintegration of the crystal (Teng 

http://www.moleculardimensions.com/shopexd.asp?id=2541
http://www.moleculardimensions.com/shopexd.asp?id=2384


  6. Crystal structure determination of E64HFrmR 

201 | P a g e  

 

1990). During the diffraction experiment the crystal was slowly rotated so as to have all the 

reflections in diffraction conditions. Data collection occurred at cryogenic temperatures (77 K) 

since high X-ray radiation elicits formation of free radicals which can destroy crystal contacts 

(Rupp 2009; Henderson 1990; Meents et al. 2010). Addition of a cryoprotectant to the sample 

prevents formation of ice in the crystals (Petsko 1975; Teng 1990; Hope et al. 1989). 

Diffraction experiments were carried out by Dr. Ehmke Pohl on apo and zinc-forms of FrmR 

and E64HFrmR at the Diamond Light Source synchrotron facility using beamline ID: IO3. The 

optimal wavelength, 0.97625 Å, was selected by a monochromator and directed at the crystal. 

The images were recorded through 180ᵒ with an individual oscillation angle of 0.5ᵒ using an 

imaging plate. Most of the various crystal forms obtained during the course of this work 

diffracted, although the presence of a sub-optimal cryo-protectant caused low resolution and/or 

poor completeness in the collected data sets. However, a few data sets presented higher 

resolution and the best diffraction pattern in the set (relative to apo-E64HFrmR) is shown in 

Figure 6. 6. The plate-like apo-E64HFrmR crystals diffracted to a resolution of 2.19 Å. The data 

obtained from the diffraction experiment are listed in Table 6.3. 

6.5  Data processing of apo-E64HFrmR diffraction data 

Due to time constrain, diffraction data processing and refinement was carried out by Dr. Ehmke 

Pohl, therefore it will not be discussed in detail. Solution of the phase problem (Section 6.2.4) 

through molecular replacement was first attempted using Phaser (McCoy et al. 2007). This 

method exploits the use of a known structure of a protein with a great degree of similarity 

(generally > 30 %) with the protein of interest. It is based on the assumption that proteins with 

similar sequences tend to fold in a similar conformation (Anfinsen 1973). The atomic model for 

the known structure is rotated and translated in the unit cell of the unknown structure until the 

best fit between the calculated data (from the replaced model) and the observed (experimental) 

is reached (Rupp 2009). The unknown phases can then be estimated and a preliminary model 

can be built. The next step involves model refinement, where the differences between the 

amplitudes, observed and calculated by the model, are minimized thus to optimize the geometry 

of the model. Cycles of refinement and reconstruction are repeated until convergence between 

the calculated and the target model is reached. The phasing models for E64HFrmR were the two 

CsoR structures (PDB ID: 2HH7 from Mycobacterium tuberculosis and PDB ID: 3AAI from 

Thermus thermophilus HB8) and Synechocystis InrS structure which has been recently solved 

by colleagues in my research group (Foster et al., in preparation) (Table 6.2). Unfortunately, it 

was not possible to obtain a plausible molecular replacement solution.  

ARCIMBOLDO, a program designed to solve the phase problem for difficult macromolecule 

structures at medium resolution (~ 2 Å) (Rodriguez et al. 2009; Rodriguez 2012), was then 

implemented and the phase was successfully determined. Its approach combines the use of  
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Figure 6. 4 Pictures taken on E64HFrmR crystals formed in A screen 6. (ammonium sulphate 

1.8M, pH 5.0): perfectly formed cubic single crystals in hanging drop; B screen 4. (PEG2000 

MME 23 %, pH 4.6): thin plates in hanging drop; C screen 8. (PEG1500 15 %, pH 5.1): cluster 

of thin needles in hanging drop; D screen 1. (PEG4000 17 %, pH 6.0): single irregular plate-like 

crystal in hanging drop. Screen compositions are described in Table 2.3, Chapter 2. 
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Figure 6. 5 Pictures taken on FrmR crystals formed in A well A4 of screen 2. (PEG3350 17 %, 

pH 4.9): cluster of thin needles in hanging drop; B screen 1. (PEG4000 17 % pH 6.5): perfectly 

formed cubic single crystal in hanging drop; C well C1 of JCSG-plusTM: irregular dendritic 

growth of crystals in sitting drop, and D screen 1. (PEG4000 19 %, pH 6.5): thin plates in 

hanging drop. Screen compositions are described in Table 2.3, Chapter 2. 



  6. Crystal structure determination of E64HFrmR 

204 | P a g e  

 

 

 

Figure 6. 6 Diffraction pattern (h = 0, k, l) showing integrated data obtained from the plate-like 

apo-E64HFrmR crystal using the Phenix software (Adams et al. 2002). The intensity of each 

dot is informative of the intensity of each reflection and the color coding refers to the signal-to-

noise ratio I/σ(I). The empty red circles (0, k, 0) are the systematic extinct reflections. 
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Phaser, to determine the accurate location of small fragments, and SHELXE (Sheldrick 2008, 

2010) to perform electron density modification and autotracing in order to expand the small 

fragment structures to a substantial part of the macromolecule structure (Rodriguez 2012).  

At the time of writing, a partial structure has been determined and preliminary model refinement 

is still ongoing; any communication can be directed to Dr. Ehmke Pohl. 

6.6 Concluding remarks 

In order to further investigate and validate the mechanistic hypotheses proposed in the previous 

chapters of this work, a 3D model of FrmR proteins was pursued by X-ray crystallography. 

Several crystals of FrmR and E64HFrmR were obtained in the presence or absence of ZnCl2 and 

analysed at the Diamond Light Source synchrotron facility consenting collection of various 

data-sets. In particular, one of the tested apo-E64HFrmR crystals was suitably diffracting (2.19 

Å). Data processing and model building have been performed by Dr. Ehmke Pohl. At the time 

of Ph.D. thesis submission the 3D electron density model is still undergoing refinement, 

however, preliminary outcomes will be shown in Chapter 7 in order to aid the interpretation of 

results presented in previous sections of this work. 
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 PROCESSING PROGRAMS 

iMosflm Indexing and integration of images 

SCALA Scaling and merging 

Pointless Space group determination 

Truncate 
Conversion of intensities to structure factors, 

Generation of a 5 % R-free dataset 

Phaser Phase determination 

Arcimboldo Phase determination 

Table 6. 1 List and description of programmes adopted during processing of diffraction data-sets 

collected at Diamond Light Source facility. 

Salmonella FrmR IDENTITY SIMILARITY 

Mycobacterium tuberculosis CsoR 

PDB ID: 2HH7 

21.9 % 

 

35.2 % 

Thermus thermophilus  CsoR 

PDB ID: 3AAI 

28.3 % 47.5 % 

Synechocystis InrS 

PDB ID: 5FMN  

13.6 % 27.8 % 

Table 6. 2 Identity and similarity values obtained comparing Salmonella FrmR sequence with 

those of proteins adopted in MR process by use of EBLOSUM62 matrix (EMBOSS NEEDLE). 

At the time of writing InrS structure (ID: 5FMN) is under embargo until paper publication. 
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 E64HFrmR 

Space group P 1 21 1 

Unite cell dimensions 

 

a = 68.79 Å 

b = 25.68 Å 

c = 100.50 Å 

α = 90.00 ᵒ 

β = 103.11 ᵒ 

γ = 90.00 ᵒ 

Wavelength  0.97625 Å 

Resolution limits  2.19 – 29.70 Å 

Number of observations/ 

Unique reflections 
124698 / 19983 

Completeness (%) 98.5 

Mean I/σI 12.2 

Rmerge 0.081 

Multiplicity 6.3 

Table 6. 3 Data collection statistics for apo-E64HFrmR high resolution synchrotron data set. The 

data analysis has been performed by Dr. Ehmke Pohl using iMosflm (Leslie et al. 2002; Battye 

et al. 2011).  
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7.1 Summary of results 

Prior to the start of this work, stm1628 was hypothesised to encode a metal-sensing transcription 

factor due to the high degree of similarity (64.1 %, Table 3.1) with the E. coli Ni(II)/Co(II)-

sensing RcnR, member of the RcnR/CsoR family of metalloregulators.  

Due to its genomic location, STM1628 was supposed to regulate stm1627 (located right 

upstream stm1628, Figure 3. 1A), predicted to encode a putative Zn(II)-requiring class III 

alcohol dehydrogenase. Alcohol dehydrogenases can be found in animals, yeasts, plants and 

bacteria (Branden et al. 1975) and are classified depending on the presence or absence of metal 

ions, typically zinc or iron. In zinc-requiring alcohol dehydrogenases, Zn(II) ions play both 

catalytic and structural roles (Jörnvall et al. 1987). Since Zn(II) was presumably necessary for 

STM1627 activity, this transition metal appeared a plausible candidate as STM1628 effector, 

able to trigger an allosteric response in the transcription regulator. 

In the light of these observations, STM1628 metal-binding properties were investigated in vitro. 

Initially, protein quantification of purified samples was carried out by applying the Lambert-

Beer equation (Section 3. 3), using FrmR predicted extinction coefficient, ε
theoretical

 1490 M
-1

 cm
-

1
. This value was obtained using the ProtParam tool (Gasteiger et al. 2005), available at the 

Expasy Proteomics Server (Gasteiger et al. 2003). Only when characterization experiments did 

not show an exact stoichiometric ratio between the protein and various metals, a protein sample 

was analysed by Amino Acid Analysis (AltaBioscience Ltd) to determine the experimental 

extinction coefficient, which resulted to be ε
experimental

 1951 M
-1

 cm
-1

, allowing rigorous 

quantification of FrmR samples. The protein was found to bind various transition metals, such 

as Zn(II), Cu(I), Co(II) and Ni(II), adopting a number of geometries and involving a mercapto 

group from the only cysteine residue (Cys35) (Figure 7. 4).  

Metal-binding affinities were measured by competition with chelators of known affinities, 

revealing sub-nanomolar and femtomolar values, respectively, of KZn(II)
FrmR

 and KCu(I)
FrmR

 for the 

tightest sites (Figures 3. 1-3. 13). Fluorescence anisotropy studies revealed that Zn(II) and Cu(I) 

were capable of disrupting STM1628:DNA interaction, contributing to the formulation of a 

hypothetical mechanism where STM1628 acts as a metallo-regulatory protein, presumably 

detecting zinc. 

Twelve months in the project our research group got approval to establish a class 2 laboratory, 

allowing us to study Salmonella STM1628’ behavior in vivo. Β-galactosidase assays carried out 

by Dr. Osman on Salmonella Δstm1628 cells with Pstm1628-stm1627-stm1628 fused to lacZ showed 

that only exposure to maximum non-inhibitory concentrations (MNIC) of formaldehyde 

alleviates repression by Salmonella STM1628 but not exposure to various metals (Mn(II), 

Fe(III), Co(II), Zn(II), Cu(II), Ni(II), Se(IV) and Te(IV)) (Figures 4. 1A-B).   
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These studies supported STM1627 identification by bioinformatics analyses as the 

formaldehyde dehydrogenase FrmA (STM1627 shares 90.6 % of sequence similarity with E. 

coli FrmA, Figure 7. 1), and STM1628 as a Salmonella homologue of E. coli formaldehyde-

sensing transcriptional factor FrmR.  

In light of these findings, and being aware of the ability of Zn(II) not only to bind to STM1628 

(now called FrmR) with sub-nanomolar affinity, but also to elicit the negative allosteric 

regulation of stm1628-stm1627 (now called frmRA), we decided to investigate if there may be a 

relationship between Zn(II)-binding and formaldehyde sensing. A model where Zn(II) directly 

coordinates formaldehyde, further increasing the polarity of the carbonyl group due to its Lewis 

acid character, was then proposed (inset Figure 7. 2) and tested by time-course fluorescence 

anisotropy. As shown in Figure 7. 2A-B, disruption of the pre-formed FrmR:DNA complex due 

to formaldehyde, occurred faster when 0.2 molar equivalents of zinc was added to the reaction 

buffer. The same experiment was repeated in the absence of formaldehyde and adding ZnCl2 

(0.2 molar equivalent) or EDTA (5 mM) Figure 7. 2C-D, showing a small degree of dissociation 

of the protein-DNA complex in both cases.  

It was not clear if the finding shown in Figure 7. 2B was due to the formation of a zinc-

formaldehyde adduct with enhanced electrophilicity, or if we were simply additively monitoring 

the distinct effects that zinc and formaldehyde have on FrmR-DNA complexes. The hypothesis 

of Zn(II) aiding the nucleophilic attack on the carbon by enhancing the polarization of the 

carbonyl group was later discarded due to lack of supporting evidence. 

The discovery that the formaldehyde-sensor FrmR is capable of binding metals in vitro but fails 

to do so in the cell, where only formaldehyde is detected, confirms that the relative (and not the 

absolute) effector preference of a sensor determines which effector species will be detected in 

vivo. FrmR cannot access Zn(II) or Cu(I) in vivo because Salmonella Zn(II)- and Cu(I)-sensors 

(ZntR, ZuR for Zn(II), and CueR for Cu(I)) maintain the metal level below a lower set point 

(Section 4.6.1; Osman et al. 2015). 

In the attempt to construct an RcnR-like metal-binding site in FrmR by single-point mutation 

(Glu64  His), we created a sensor of cellular zinc and cobalt (Section 4.3). FrmR and 

E64HFrmR properties were consequently compared in order to directly test hypotheses about 

the mechanisms determining which metals are detected by a given sensor in cells, previously 

introduced in Section 1.3. These results will be further discussed in Section 7.3. 

In addition, we investigated the ability of FrmR to detect cellular formaldehyde, proposing a 

reaction mechanism which was tested by site-directed mutagenesis in vitro. Mutagenesis and 

sequence conservation studies already present in literature suggested a model where 

formaldehyde interacts with Cys35 and/or an amino acid residue in the N-terminus region 

(Higgins & Giedroc 2014). In this work we suggest that Pro2 in the N-terminus region can be a  
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Sty_STM1627        1 MKSRAAVAFGPGQPLKIVEIDVAPPKKGEVLVKITHTGVCHTDAFTLSGD     50 

                     |||||||||.||:||:|||||||||||||||:|:|||||||||||||||| 

Ecoli_FrmA         1 MKSRAAVAFAPGKPLEIVEIDVAPPKKGEVLIKVTHTGVCHTDAFTLSGD     50 

 

Sty_STM1627       51 DPEGVFPAVLGHEGGGVVVEVGEGVTSLKPGDHVIPLYTAECGECKFCKS    100 

                     |||||||.||||||.||||||||||||:|||||||||||||||||:||:| 

Ecoli_FrmA        51 DPEGVFPVVLGHEGAGVVVEVGEGVTSVKPGDHVIPLYTAECGECEFCRS    100 

 

Sty_STM1627      101 GKTNLCQAVRATQGKGLMPDGTTRFSYNGEPVYHYMGTSTFSEYTVCAEI    150 

                     ||||||.|||.||||||||||||||||||:|:|||||.||||||||.||: 

Ecoli_FrmA       101 GKTNLCVAVRETQGKGLMPDGTTRFSYNGQPLYHYMGCSTFSEYTVVAEV    150 

 

Sty_STM1627      151 SLAKVNPQAPLDKVCLLGCGVTTGIGAVHNTAKVKAGDTVAVFGLGGIGL    200 

                     ||||:||:|..:.|||||||||||||||||||||:.||:|||||||.||| 

Ecoli_FrmA       151 SLAKINPEANHEHVCLLGCGVTTGIGAVHNTAKVQPGDSVAVFGLGAIGL    200 

 

Sty_STM1627      201 AVIQGAVQAKAGRILAVDTNPEKFTLAGEMGATDFINPNDYDKPIQDVIV    250 

                     ||:|||.|||||||:|:||||:||.||...||||.||||||||||:||:: 

Ecoli_FrmA       201 AVVQGARQAKAGRIIAIDTNPKKFDLARRFGATDCINPNDYDKPIKDVLL    250 

 

Sty_STM1627      251 ELTDGGVDFSFECIGNVNVMRAALECCHKGWGESIIIGVAGAGQEIKTRP    300 

                     ::...|:|.:|||||||||||||||..|:|||:|:|||||.|||||.||| 

Ecoli_FrmA       251 DINKWGIDHTFECIGNVNVMRAALESAHRGWGQSVIIGVAVAGQEISTRP    300 

 

Sty_STM1627      301 FQLVTGRVWRGSAFGGVKGRTQLPGMVEDAMNGKIRLDPFITHRLPLEQI    350 

                     |||||||||:||||||||||:||||||||||.|.|.|:||:||.:.|::| 

Ecoli_FrmA       301 FQLVTGRVWKGSAFGGVKGRSQLPGMVEDAMKGDIDLEPFVTHTMSLDEI    350 

 

Sty_STM1627      351 NDAFELMHQGKSIRTVIHFGDN    372 

                     ||||:|||:||||||||.:    

Ecoli_FrmA       351 NDAFDLMHEGKSIRTVIRY---    369 

Figure 7. 1 Alignments of S. Typhimurium STM1627 (Sty_STM1627) with E. coli FrmA 

(Ecoli_FrmA) by Clustalw2. 

 

S. typhimurium 

STM1627 

Similarity (%) Identity (%) 

E. coli FrmA 90.6 80.1 

Table 7. 1 Similarity and identity of amino acid sequence of E. coli FrmA compared to S. 

Typhimurium STM1627 using EMBOSS NEEDLE. 
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Figure 7. 2 Dissociation of pre-formed FrmR:DNA complexes in the presence of HCOH and/or 

Zn(II) was monitored by fluorescence anisotropy (TIME drive software). frmRAPro (10 nM) 

was pre-incubated with FrmR (2 µM) before addition of HCOH (20 µM) (A),  HCOH (20 µM) 

and Zn(II) (0.4 µM) (B), Zn(II) (0.4 µM) (C), or nothing (D). Experiments shown in A and D 

were conducted in the presence of 5 mM EDTA. Experiments were performed anaerobically at 

pH 7.0. The total anisotropy change is normalised to the apo-FrmR value (Δrobs
max

). Inset in 

Figure B shows Zn(II) enhancing the electrophilic character of the carbonyl C, aiding attack 

from a nucleophilic species (Nu
-
). The charge of the metal ion is highly concentrated because of 

its small ionic radius (0.65 Å) (Frausto Da Silva & Williams 2001), and, in addition to a high 

ionization potential, it makes Zn(II) a strong Lewis acid.  
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possible site of formaldehyde modification. Furthermore, the gene encoding for Salmonella 

RcnR was identified and the protein, belonging to the same family of transcriptional regulators 

of FrmR, was used to test the specificity of FrmR formaldehyde responsiveness. By a single 

point-mutation (Ser2  Pro) we successfully switched the Ni(II)/Co(II) sensor RcnR into a 

formaldehyde sensor in vitro, further endorsing our proposed mechanism. 

Investigation of FrmR structure was pursued by producing crystals of apo- and Zn(II)-FrmR and 

E64HFrmR forms, which were then analysed at the Diamond Light Source. The best dataset 

(apo-E64HFrmR, resolution 2.19 Å) is currently being processed by Dr. Ehmke Pohl (Durham 

University) in order to produce a 3D-model. 

In the following sections, selected topics from this work will be further discussed and 

developed. 

7.2 Formaldehyde-sensing Salmonella FrmR is capable of 

binding metals 

Zn(II) and Co(II) share the same binding site and are coordinated by FrmR with a tetrahedral 

geometry and a 1:1 stoichiometry (Figures 3. 4 - 3. 5 - 7. 4A). FrmR also binds at least one 

Cu(I) ion per protomer adopting a trigonal planar geometry and one Ni(II) ion with a square 

planar geometry (Figures 3. 8 - 3. 9- 7. 4 A).  

E. coli RcnR, which shares a high degree of similarity with Salmonella FrmR, uses the primary 

amine group of the amino terminus region and the side chains of His3, Cys35, His60 and His64 

(E. coli RcnR notation) to detect Co(II) (Iwig et al. 2008). The same residues are used to 

coordinate Ni(II), with the exception of His60. (Iwig et al. 2008). These residues (WXYZ 

motif) constitute plausible candidates for metal-binding ligands in FrmR and were therefore 

tested by site-directed mutagenesis (Section 3.8). 

Cys35 (residue X) is the only cysteine in the FrmR sequence and spectral features attributable to 

LMCTs transitions between a thiol group and the metal ion have been observed with all the 

spectrally-active tested metals (Sections 3.4.1-3.4.2). Mutation of Cys35 to Ala abolished 

Zn(II)-binding ability as monitored using size-exclusion chromatography and fluorescence 

anisotropy (Figures 3. 27A-B, 3. 28B-C) confirming that the side chain of this residue acts as a 

zinc ligand in FrmR. 

His60 (residue Y) was also tested via a His60  Leu mutation. H60LFrmR appears to possess a 

diminished Zn(II)-binding affinity compared to that of wild type as it is able to retain 1 molar 

equivalent of Zn(II) when applied to size-exclusion column only if 20 µM of Zn(II) is present in 

the elution buffer (Figure 3. 30). Quenching of the intrinsic fluorescence of Tyr89 in 

H60LFrmR upon zinc titration reports of a 1:1 protein:metal stoichiometry and of an unaltered 
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tyrosine environment, suggesting that His60 may have been replaced by a nearby ligand (e.g. 

Glu58) in the metal coordination. Alternatively, His60 may not be a coordinating ligand in wild 

type FrmR, but its substitution with a Leu may cause a local rearrangement determining a 

weakened zinc affinity. In fact, unlike the hydrophobic amino acid Leu, which is usually buried 

in the protein core, His has a side-chain with a pKa (~ 6.5) close to the physiological pH, hence 

it may prefer a more hydrophobic or hydrophilic (solvent-exposed) environment depending on 

the local pH (Betts & Russell 2003). 

Position Z of FrmR is occupied by a glutamate (Glu64), which was mutated to a His during the 

course of this work in order to investigate other protein features (see Section 7.4). The resulting 

E64HFrmR variant showed a tighter KZn(II) of the tightest site (Appendix, Table 8. 3), suggesting 

that residue Z is in the correct position to coordinate the metal ion, in accord to what was 

observed for E. coli RcnR (Iwig et al. 2008). Metal-binding properties of E64HFrmR mutant 

will be extensively discussed in Section 7.4. However, there is not sufficient evidence to 

indicate that Glu64 contributes to Zn(II)-binding in wild type FrmR. 

A possible role in metal-binding of the N-terminus region (amino terminal and residues W) was 

not explored, although probable since His3 coordinates cognate metals in E. coli RcnR, as 

discussed in Section 1.2.1.1 (Iwig et al. 2008; Higgins et al. 2012). Investigation by site-

directed mutagenesis and X-ray crystallography analyses would be advisable. In fact, the 

allosteric rearrangement observed upon formaldehyde-binding (discussed in Section 7.5) 

appears to be triggered by an inter-subunit cross-link between Cys35 and Pro2 (the first residue 

of the N-terminus region). An intriguing hypothesis may relate to FrmR, which shares an 

evolutionary clade with E. coli Ni(II)/Co(II)-sensing RcnR (Figure 7. 6), modifying its function 

in the cell while evolving from a metal- to a formaldehyde-sensing protein exploiting a similar 

allosteric mechanism upon binding of the effector. This may have occurred as a consequence of 

the spontaneous mutation of His64 (residue Z, present in E. coli RcnR) to a Glu, since during 

the course of this work we proved that E64HFrmR mutant is capable of detecting Zn(II) and 

Co(II) in vivo (see discussion in Section 7.4).  

Figure 7. 3 shows a preliminary model of the electron density of apo-E64HFrmR metal-binding 

site produced by Dr. Ehmke Pohl from crystals produced in this project. Putative Zn(II)-binding 

ligands (His3, His60, His64, and Cys35) are labelled. These residues are in the correct position 

to coordinate a metal ion, upon a small spatial rearrangement. It is possible to identify the 

imidazole of His3 (helix α1) pointing toward the residues from helices α2 (His60, His64) and 

α2’(Cys35), endorsing the hypothesis that a residue from the N-terminus region, presumably 

His3, may be involved in metal-binding. 

Figure 7. 4B shows the coordination geometries and the ligands used by some of RcnR/CsoR 

sensors to bind their cognate metals. Complexes of Zn(II)- and Cu(I) have been included in the 

set since these ions are able to elicit an allosteric response in FrmR in vitro. 
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His3 

His64 His60 

Cys35’ 

 

Figure 7. 3 Putative E64HFrmR metal binding site.  

(Å) His3 Cys35 His60 Asp63 His64 

His3 / 3.1 6.9 3.3 7.6 

Cys35 3.1 / 3.7 3.5 5.6 

His60 6.9 3.7 / 6.0 2.8 

Asp63 3.3 3.5 6.0 / 5.8 

His64 7.6 5.6 2.8 5.8 / 

Table 7. 2 The table lists the shortest approximate distances (in Å) between the side chain atoms 

of E64HFrmR putative metal ligands shown in Figure 7. 3. Asp63 has been added to the set as it 

is located at an appropriate distance from the other ligands to potentially allow participation to 

metal-binding, upon small rearrangement. 
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A.

RcnRCsoR RcnR

InrS FrmR FrmRB.

Tetrahedral                Tetrahedral Trigonal planar      Square planar

 

Figure 7. 4 A FrmR can adopt several coordination geometries depending on the nature of the 

metal ion. The His60 residue is in brackets as its role in metal coordination has not been 

univocally demonstrated. B Coordination geometries adopted by RcnR/CsoR family members 

while binding their cognate metals. FrmR complexes of Zn(II) and Cu(I) have been included in 

the scheme since these metals are able to elicit the allosteric mechanism in vitro.  Letters in red 

indicate the position occupied by specific amino acid residues in the W-X-Y-Z motif. 
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7.3 Salmonella FrmR allosteric regulation of transcription 

7.3.1 Salmonella FrmR (and RcnR) bind(s) type-1 operator promoter regions  

The palindromic motif recognized by FrmR, ATAGTATAC6TATAGTAT, is located in the 

region upstream frmRA (Figure 3. 1). 

As previously discussed in Chapter 1, transcriptional factors belonging to the RcnR/CsoR 

family have been grouped by Iwig and Chivers according to the recognized promoter region 

(Iwig et al. 2009; Tan et al. 2014). E. coli RcnR protein binds a tandem of type 1 DNA regions, 

characterized by a single G/C tract (3-8 bp) flanked by inverted repeats rich in A/T (Figure 7. 

5A) (Iwig et al. 2009). CsoR homologues recognize sequences with two shorter G/C tracts 

separated by 2-4 bp and A/T rich inverted repeats outside the G/C tracts (Figure 7. 5B) (Tan et 

al. 2014). The region recognized by FrmR comprises T/A tracts slightly longer than those 

observed in E. coli RcnR and CsoR homologues and, with the exception of one nucleotide (G), 

contains only thymines and adenosines. Fluorescence anisotropy analyses revealed that two 

FrmR tetramers interact with this sequence (Figure 7. 5C). The spacing between the centres of 

the inverted repeats (approximately coincident with the only G base) is 14 bp, while in the 

region recognized by B. subtilis CsoR is 13 bp (Ma et al. 2009a) and for E. coli RcnR is 9 bp 

(Iwig et al. 2009). Considering a rotation per bp ~ 34.3ᵒ in the T/A tracts (B-DNA) and ~ 32.7ᵒ 

in the G/C tract (A-DNA), we can assume that the T/A tracts are placed on opposite sides in 

FrmR and CsoR recognition sites and on the same side in RcnR recognition site (Figure 7. 5A-

C). Modification of one of the T/A rich tracts (ATAGTATA  GTTCAACA) resulted in the 

loss of a tight DNA-binding affinity, suggesting that these regions play a determinant role in 

DNA recognition by FrmR.  

Like E. coli RcnR, also the Salmonella homologue interacts with two TACT-N-G6-AGTA type 

1 sites, which are located in the region within rcnA and rcnR (Section 5.5). However, unlike the 

homologue in E. coli, this protein binds DNA very weakly when only one site is available 

(Figure 5.14B), suggesting positive cooperativity between the two RcnR tetramers, which was 

previously observed in E. coli RcnR foot printing experiments involving large DNA duplex (~ 

300 bp) but not for short fragments (Iwig et al. 2009). 

7.3.2 Zn(II) and Cu(I) negatively regulate in vitro binding of frmRA promoter 

by Salmonella FrmR 

Zn(II) and Cu(I) were shown by fluorescence anisotropy to impair FrmR binding to DNA 

(Section 3.6.6). Although these metals adopt different geometries when coordinated to the 

protein, they share the Cys35 ligand, suggesting that this residue may be involved in the 

allosteric mechanism. This result is perhaps not surprising as FrmR and E. coli metal-sensor
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G/C tractA/T

FrmR

FrmR

A/T

G/CA/T A/T

CsoR

CsoR

G/C

G/C tract A/TG/C tractA/T A/T

RcnRRcnR

A.

B.

C.
 

Figure 7. 5 Proposed scheme of RcnR homologues (A) S. lividans CsoR (B) and S. typhimurium 

FrmR (C) binding to their respective operators. G/C tract is depicted in blue and sites rich in 

T/A in yellow. 
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RcnR have 64.1 % of sequence similarity (Table 3. 1), and share a common evolutionary origin 

as shown by Chang and colleagues (Chang et al. 2014). A phylogenetic analysis on DUF156 

(RcnR/CsoR) proteins, analyzed the characterized proteins belonging to this family plus the 

uncharacterized homologues, associating the sequences to clades (Figure 7. 6). ConSurf (Glaser 

et al. 2003) was used to estimate the evolutionary variation rates of specific amino acids. Seven 

distinct clades were identified within the RcnR/CsoR family, with CsoR proteins distributed 

over four. E. coli FrmR and RcnR proteins belong to the same clade (II) and share two of the 

four ligands of the WXYZ motif (Figure 7. 6- 3. 2). It was also hypothesized that proteins in the 

same clade may share residues involved in DNA-binding or in ion-pairing interactions (Chang 

et al. 2014).  

The mechanism that drives the disassembly of the protein:DNA complex upon metal-binding 

was explored in RcnR/CsoR family members. For instance, Cu(I) ion is detected by Geobacillus 

thermodenitrificans (Gt) CsoR by coordinating Cys79 and His75 from one protomer and Cys50` 

from a different protomer (Chang et al. 2014). In the Cu(I)-bound form, a kink in the α2 helix 

(between Ala76 and His78) moves Cys79 closer to His75, allowing the coordination of Cu(I). 

Folding of one CsoR dimer over the other one in the tetramer upon Cu(I)-binding was described 

as resembling a “bow-tie” (Chang et al. 2014). Cu(I)-binding to GtCsoR remodels the protein 

conformation, perturbing a large number of residues, including those directly involved in DNA 

binding (such as Lys101 and Arg65), causing the release of the DNA. His61 plays a 

fundamental role in M. tuberculosis (Mtb) CsoR, where it is involved in both Cu(I)-coordination 

(through Nδ1) and in the propagation of the conformational change elicited by Cu(I) binding 

(through Nε2) (Liu et al. 2007; Ma et al. 2009b). Examination of MtbCsoR structure revealed a 

hydrogen-bond network amongst His61 (donor), Tyr35 and Glu81 (acceptors) (Liu et al. 2007; 

Eiamphungporn et al. 2009). When His60 is mutated to Ala, the DNA-binding affinity is 

drastically impaired, although CsoR maintains the original folding (Liu et al. 2007). In order to 

further explore the specific role of Nε2 in the stabilization of the Cu(I) bound-form of CsoR, 

His61 was substituted in vitro with Nε2-methyl-histidine (MeH) or (thiazolyl)-L-alanine (Thz) 

amino acids (Ma et al. 2009b).  

Both these CsoR variants retain wild-type’ Cu(I)- binding affinity and coordination geometry, 

but Cu(I) coordination is no longer coupled with DNA release (ΔGc
MeH-CsoR

 = 0.0 ± 0.4 kcal mol
-

1
 and ΔGc

Thz-CsoR
 = 0.5 ± 0.2 kcal mol

-1
). Moreover, site-directed mutagenesis was adopted to 

create Tyr35Phe and several Glu81 mutants, showing impairment of the propagation of the 

allosteric signal. Since double mutant Y35F/E81QCsoR presented a decrease in ΔGc that 

approximately corresponds to the sum of the decrease for the single mutants, it was suggested 

that Glu81 and Tyr35 do not interact with each other, but simply accept the hydrogen-bond 

from His61 (Ma et al. 2009b). 
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Chang et al. (2014)

©2014 by American Society for Biochemistry and Molecular Biology

Chang et al. (2014)

©2014 by American Society for Biochemistry and Molecular Biology

 

Figure 7. 6 Phylogenetic tree and group-specific amino acid signatures of functionally 

characterised DUF156 (RcnR/CsoR) proteins. This research was originally published in Journal 

of Biological Chemistry. Chang F. M. J., Coyne H. J., Cubillas C., Vinuesa P., Fang X., Ma Z., 

Ma D., Helmann J. D., Garcia-de los Santos A., Wang Y. X., Dann C. E. & Giedroc D. P., 

Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J. Biol. 

Chem. 2014; 289:19204-19217. © the American Society for Biochemistry and Molecular 

Biology. 
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Similarly, a histidine residue plays an analogous role in CzrA, member of the ArsR family, 

where Nδ1 and Nε2 are involved in Zn(II) coordination and in the propagation of the allosteric 

signal, respectively (Arunkumar et al. 2009). 

Synechocystis InrS possesses a similar hydrogen-bond network involving His78 and Glu98 

(Foster et al. 2014a). However, this interaction was shown to be not absolutely required for 

allostery, presumably due to an additional connection between the α2 and α3 helices, the salt 

bridge between Arg85 and Glu95 (Foster et al. 2014a) (Figure 3. 23B). 

In light of these studies, we investigated the role of two conserved residues in Salmonella FrmR, 

His60 (Y) and Glu81 (B), in DNA-binding in order to study the propagation of the allosteric 

mechanism. Based on the proximity of the two helices a connection between His60 (helix α2) 

and Glu81 (helix α3) is plausible. FrmR also lacks the Tyr residue in position A of the 

secondary coordination shell, as InrS (Foster et al. 2014a). H60L and E81AFrmR mutants were 

therefore produced to test the effects of these mutations on the DNA-binding affinity by 

fluorescence anisotropy. As shown in Figure 3. 25A-B, in the absence of the only identified 

connection between helices α2 and α3 mediated by Y and B residues, KDNA is significantly 

impaired (Table 8.2, Appendix). Therefore, it was not possible to gather evidence of the 

connection between metal-binding and DNA-binding as both mutations H60L and E81A 

already affected the KDNA. 

Since His60 is believed to be a putative ligand in FrmR (Section 7.2), upon metal binding it 

presumably undergoes a local rearrangement in order to orientate its side chain toward the metal 

ion. This rearrangement may cause the disruption of the hydrogen bond with Glu81, resulting in 

a reciprocal misalignment of helices α2 and α3. A set of basic and polar residues involved in 

DNA-binding in E. coli FrmR have been identified by bioinformatics analyses and tested in vivo 

(Law 2012). These residues (Arg14, Arg46, Gly47, Lys91) are conserved in Salmonella FrmR 

(Figure 3. 2) suggesting that they play a similar role. The location of these residues (Arg46 and 

Gly47 on helix α2, Lys91 on α3) may explain why the reciprocal orientation of helices α2 and 

α3 may be important in preserving a conformation with a tight DNA-binding affinity since a 

local rearrangement of His60 would cause an overall modification of helices α2 and α3 spatial 

position, as can be deduced by the preliminary X-ray 3D model in Figure 7. 7A-B. 

Least-square superposition methodology was adopted to compare apo-E64HFrmR preliminary 

structure with that of Streptomyces lividans (Sli) apo-CsoR (PDB ID: 4ADZ) (Dwarakanath et 

al. 2012), revealing that the two structures differ for the position of helix α3 (Figures 7. 8A-B). 

Further investigation of His60 and Glu81 positions in FrmR shows that, unlike in CsoR, the 

distance (> 7 Å) between the two residues is not compatible with a chemical reaction. If even in 

the absence of an effector the two helices are not linked via this connection, other reasons must 

be found to understand the weakened KDNA observed in H60LFrmR and E81AFrmR mutants. It 

is possible that the reciprocal disposition of the two helices is not vital in FrmR and that an 
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Figure 7. 7 A-B show different orientations of E64HFrmR dimer (chains A,B depicted in 

cyan/green, respectively). The second dimer (chains C,D) is omitted for clarity. The three 

helices per chain are labelled. 
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B. 
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Figure 7. 8 Least-squares superposition of E64HFrmR (from this work) with apo-CsoR from 

Streptomyces lividans (PDB ID: 4ADZ) produced by Dr. Ehmke Pohl. A-B show different 

orientations. Only one chain of CsoR is shown (in red) to illustrate how the first two helices fit 

very well, whereas the third helix occupies a very different position. The A,B dimer of 

E64HFrmR is shown in cyan/green. The second dimer (C,D) is omitted for clarity but shows the 

same difference.  

A. 

 

 

 

 

 

 

 

 

B. 
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impaired DNA-binding may result from the substitution of two charged residues (Glu is 

negatively charged, whereas His is positively charged) with neutral residues such as Ala and 

Leu, causing an alteration of the charged patch that recognize DNA double helices. 

Figures 7. 9A-B show the least-square superposition of apoE64HFrmR preliminary structure 

with the Cu(I)-bound form of CsoR from Mycobacterium tuberculosis (PDB ID: 2HH7) (Liu et 

al. 2007). Superposing helices α1 of the two proteins resulted in an overall body motion where 

each E64HFrnR molecule moves with respect to each other (~ 5 Å movement between chains A 

and C). Interestingly, the position of E64HFrmR’ helix α3 resembles more that of helix α3 in 

the Cu(I)-bound form of MtbCsoR (Figure 7. 9B) rather than that of the apo-SliCsoR (Figure 7. 

8B).  

7.4 One single point mutation allows Salmonella FrmR to sense 

Zn(II) and Co(II) in vivo 

During the course of this work we showed that substitution of one amino acid created a metal-

sensor from the formaldehyde-responsive, DNA-binding, transcriptional de-repressor, FrmR 

(Figure 4. 2B). The substitution (Glu64  His), was originally designed as part of sub-project 

intended to enhance the Ni(II)- and Co(II)-affinity of FrmR. In fact, FrmR shares with E. coli 

RcnR and CsoR homologues some of the ligands used by these proteins in Ni(II)/Co(II) and 

Cu(I) recognition, although with weaker affinity (Table 8.3, Appendix). FrmR’ WYXZ 

fingerprint (H-C-H-E, Section 3.2) includes a glutamate in position Z, which is not present in 

either E. coli RcnR (Z = His) nor in the majority of CsoR homologues (Z = Cys). Hence, by 

substituting the Glu64 with a His, it was our intention to create an RcnR-like metal binding site. 

An analogous substitution, aimed at creating a CsoR-like site (Glu64  Cys), was planned 

although not pursued due to the interesting outcomes achieved with E64HFrmR.  

In contrast with our assumptions, E64HFrmR variant did not appear to possess an improved 

Ni(II)-binding affinity as suggested by the results presented in Section 4.4.3, where it is shown 

that the mutant is not capable of retaining Ni(II) ions when resolved on a size exclusion column 

(Figure 4. 8B). Measurement of the Ni(II)-binding affinity was therefore abandoned as 

presumably it is very weak.  

Co(II)-binding affinity of E64HFrmR was shown to be enhanced by ~ 10-fold (K1 = 2.56 ± 0.4 

x  10
-7

, Table 8.3, Appendix), however it is still significantly weak if compared to E. coli RcnR 

Kapp   < 5 nM (Iwig et al. 2008). 

In an attempt to fully characterize E64HFrmR in order to understand if any other property may 

have been altered by the substitution, in vivo studies were carried out on the mutant (Section 

4.2.2, Figure 4. 2B). Surprisingly, E64HFrmR is now able to detect cellular Zn(II) and Co(II). 
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Figure 7. 9 Least-squares superposition of E64HFrmR (from this work) with Cu(I)-bound form 

of CsoR from Mycobacterium tuberculosis (PDB ID: 2HH7) produced by Dr. Ehmke Pohl. 

E64HFrmR tetramer is shown in cyan, whereas CsoR, which has been deposited in the PDB as 

a  monomer, was converted to a tetramer (chain A in pink, chain B in pale orange, chain C in 

orange, chain D in yellow) using the crystallographic symmetry with the program COOT 

(Emsley & Cowtan 2004; Emsley et al. 2010). A-B show different orientations.  
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In 2012 Higgins and collaborators created a Zn(II) site in E. coli RcnR through a His3  Glu 

mutation (Higgins et al. 2012). Zn(II) was able to elicit modifications in the conformation of 

H3ERcnR by binding to the same positions as Ni(II) and Co(II) would do in the wild-type. 

However, the result described in this work does not have a precedent as it is the first time that a 

non metal-sensing transcriptional regulator is converted in a metal-sensor. 

The following sections will further analyse Zn(II)- and Co(II)-recognition by E64HFrmR. The 

inability of FrmR to detect these metals in vivo will also be exploited in order to recognize the 

determinants behind E64HFrmR’ Zn(II) and  Co(II) gain of function. 

As previously mentioned in Section 7.2, the residue W (His3) points toward the other putative 

metal ligands (Cys35’, His60 and His64) even if the model describes the apo-form of the 

protein (Figure 7. 3). Since E64HFrmR possesses a weakened KDNA and a tightened KZn(II) when 

compared to wild-type, it is possible to suppose that His3 is somehow constrained, maybe by 

interacting with His64, in a location more favorable to bind the metal, even in the absence of the 

latter. In fact, a histidine has a bulkier side chain and could be in a more suitable position to 

interact with the other residues in the metal-binding pocket. This would cause a local 

rearrangement of helix α1, similar to that induced by the effector-binding. Hence, E64HFrmR 

may have a tighter affinity for metals, as less energy is needed in order to rearrange the ligands 

to form a pocket, and a weakened affinity for DNA, as the protein conformation is already 

partially reorganized toward a metal-bound form. These are merely speculations that need to be 

tested by X-ray crystallography on apo-FrmR, and Zn(II)-bound forms of both FrmR and 

E64HFrmR. 

7.4.1 FrmR and E64HFrmR cannot compete for metal-binding with 

Salmonella cognate metal sensors 

As introduced in Section 1.3.1, relative effector-binding affinity is an important parameter 

which may determine which effector is detected by which sensor. Salmonella FrmR is able to 

coordinate various metals (Zn(II), Co(II), Ni(II) and Cu(I)) (Section 3.3) and some of them 

(Zn(II) and Cu(I)) have been shown to elicit the conformational change coupled with DNA 

release (Section 3.6.6).  

Salmonella possesses two zinc sensors ZntR (MerR-family) and Zur (Fur-family), a copper 

sensor, CueR (MerR-family), and the Ni(II)/Co(II) sensor RcnR (RcnR/CsoR family). Since it is 

possible that FrmR is never able to access Zn(II), Cu(I) or Co(II) ions because the 

corresponding cognate metal sensor maintains the cellular level below FrmR metal-binding 

affinity, whereas E64HFrmR may have an enhanced Zn(II)-binding affinity that allows this 

protein to compete with zinc sensors. In order to test these hypotheses, cognate metal affinities 

of Salmonella ZntR, RcnR and CueR were measured by competition assays performed by Dr. 

Osman and published in recent work (Osman et al. 2015). Findings will be briefly summarised 
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in this section because comparison with values calculated for FrmR and E64H mutant with the 

same assays may elucidate why E64HFrmR, but not wild-type FrmR, responds to metals in 

vivo. 

Salmonella ZntR binds two Zn(II) ions per dimer (KZn1 = 3.20 ± 0.73 x 10
-12

 M, KZn2 = 2.68 ± 

0.73 x 10
-11

 M, Osman et al. 2015). E. coli ZntR has been structurally characterised with a 

binuclear Zn(II)-site across the dimer interface giving a total Zn(II) binding stoichiometry of 2:1 

in contrast to that observed for Salmonella ZntR (1:1, Zn(II):ZntR monomer) (Changela et al. 

2003; Osman et al. 2015).  

In common with other Fur-family members, Salmonella Zur exists as dimers. Moreover it has at 

least three exchangeable sites per dimer which are accessible to both Co(II) and Zn(II) (Osman 

et al. 2015). E. coli Zur has been structurally characterised with four Zn(II) ions per dimer, 

assigned to two structural sites and two sensory sites (whose residue are conserved in 

Salmonella Zur) (McGuire et al. 2013). Six Zn(II)-binding sites have been observed in other 

Zur-family members and E. coli Zur purifies with three molar equivalents of Zn(II) per dimer, 

one of which is lost during crystallisation (McGuire et al. 2013; Foster et al. 2014; Ma et al. 

2009). Affinities for Zn(II) binding to Salmonella Zur (KZn1-2 = 6.36 ± 0.41 x 10
-13

 M, KZn3 = 

8.04 ± 2.92 x 10
-11

 M, KZn4 > 5 x 10
-7

 M) were determined by Dr. Osman considering Zn(II) 

binding to three sites (KZn1-2 and KZn3) on a Zur dimer (with the structural site already filled) 

(Osman et al. 2015). Since Salmonella ZntR has a weaker zinc affinity than Zur, competition 

for zinc binding was conducted only with ZntR. 

Salmonella RcnR, like the E. coli homologue, exists as a tetramer containing one Co(II) site per 

monomer (Iwig et al. 2008; Osman et al. 2015). Two of the four sensory sites per RcnR 

tetramer have a tighter affinity, which has been measured by Dr. Osman to be KCo1-2 = 5.06 ± 

0.86 x 10
-10

 M, where only lower and upper range for the third site could be determined (3 x 10
-

5
< KCo3 < 10

-7
 M) (Osman et al. 2015).  

Salmonella CueR was previously shown to outcompete a ten-fold molar excess of BCS (Osman 

et al. 2013) therefore a 100-fold and then a 75-fold excess of BCS was used to estimate KCu1 = 

3.25 ± 0.66 x 10
-19

 M (Osman et al. 2015). 

These findings show that the tightest exchangeable sites of the endogenous metal-sensors are 

tighter for their cognate metals than either FrmR or E64HFrmR in every case (Table 8.3, 

Appendix) (Osman et al. 2015). However, the difference in KZn(II) between E64HFrmR and 

cognate Zn(II) sensors is the smallest. To directly investigate whether metal-binding affinities of 

FrmR and E64HFrmR are too weak to allow the proteins to access metal ions in cells we carried 

out pair-wise competitions between FrmR and Salmonella cognate metal-sensors ZntR, RcnR 

and CueR (Section 4.6.1), and E64HFrmR and Salmonella ZntR (Section 4.6.2). Results show 

that in each competition both metal-loaded FrmR proteins failed to retain the metal, confirming 
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that their metal-binding affinities are not tight enough to allow competition with cognate metal 

sensors (Figure 7. 10, Table 7. 3). However, it must be noted that the competition experiment 

between E64HFrmR and ZntR was performed only once and experimental replicates are needed 

to confirm, or otherwise, the result. 

This outcome explains why FrmR does not detect any cellular metal, as shown in Figure 4. 1A 

(Section 4.2.1) and supports the belief that the behavior of a group of metal sensors is 

determined by a combination of parameters, which allow the best (thermodynamically or 

kinetically favored) sensor to detect the cognate metal. In vivo Zn(II)-sensing by E64HFrmR 

(Figure 4. 2B, Section 4.2.2) cannot solely be explained by Zn(II) affinity. In fact, tightening of 

KZn(II)
E64HFrmR

 by ~ one order of magnitude compared to KZn(II)
FrmR

 appears insufficient to allow 

competition with Salmonella ZntR, as shown by preliminary experiments, hence other 

parameters must be involved. 

7.4.2 Combination of relative affinity and relative-allostery explains Zn(II) 

gain of function  

In chapter 4 the biochemical properties of FrmR and the E64H mutant were compared in order 

to identify how such a small modification can have a great impact on the protein behavior. As 

summarized in Tables 8.2 and 8.3, E64HFrmR possesses a tighter Zn(II) affinity (variation of ~ 

10 fold). Although this difference would not be enough to explain how FrmR mutant can now 

detect cellular zinc, in combination with a ~ 10 fold weakened apo-KDNA, it enhances the zinc-

sensitivity by a sufficient degree to match the endogenous zinc-sensors in Salmonella, ZntR and 

ZuR. This result is counterintuitive as a smaller apo-KDNA results in Zn(II) being less 

allosterically effective upon binding to E64HFrmR, since the associated ΔGC is smaller (Table 

8.2). As previously discussed in Section 1.3.2, an opposite result (a greater ΔGC) might be 

expected for a de-repressor sensor with an enhanced sensitivity. However, a weaker apo-KDNA 

implies that a greater number of apo-protein molecules will be in the unbound-form, and a 

smaller concentration of Zn(II) will be needed to dissociate the fewer protein molecules bound 

to the operator region (Figure 7. 11). 

The previous findings help to explain the higher base line observed in β-galactosidase assays 

carried out in ΔfrmR cells containing PfrmRA-frmRE64H when compared to the same assay 

performed in ΔfrmR cells containing PfrmRA-frmR (Figures 4. 1A-4. 2B). Since the DNA 

occupancy of E64HFrmR is lower than FrmR, at a fixed concentration of zinc ions, the 

repression of frmR by E64HFrmR is also smaller. 

In a recent paper by our group, (Osman et al. 2015), we also suggest that since the allosteric 

coupling scheme reported by Grossoehme and Giedroc (2012) (Figure 3. 21) refers to a closed 

system, each constant would have a reciprocal effect on the opposite one. In fact: 
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Figure 7. 10 Scheme showing metal affinities of Salmonella Zn(II), Co(II) and Cu(I) sensors 

plus FrmR and E64HFrmR. Values regarding ZuR, ZntR, RcnR, and CueR have been obtained 

from Osman et al. 2015 and are summarised in Table 7.3. 

Sensor Metal Kmetal (M) 

ZuR Zn(II) K1-2 = 6.36 ± x 10
-13

;  

K3 = 8.04 ± 2.92 x 10
-11

; 

K4 ≥ 5 x 10
-7

 

ZntR Zn(II) K1 = 3.2 ± 0.73 x 10
-12

;  

K2 = 2.68 ± 0.73 x 10
-11

 

RcnR Co(II) K1-2 = 5.06 ± 0.86 x 10
-10

;  

3 x  10
-5 

≥ K3 ≥ 10
-7

 

CueR Cu(I) K1 = 3.25 ± 0.66 8 x 10
-19

 

Table 7. 3 Metal affinities of ZuR, ZntR, RcnR and CueR determined by Osman and colleagues 

(adapted from Osman et al. 2015). 
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Figure 7. 11 Scheme representing the effects that the weaker KDNA and tighter KZn(II) of 

E64HFrmR (bottom box), compared to wild-type FrmR (upper box), have in the cell. Zinc ions 

are represented by red circles. Arrows width represents the different off-rates for each described 

process (the greater the width, the faster the rate). On-rates are likely diffusion-limited and, 

hence, faster than off-rates. Since E64HFrmR has a tighter KZn(II)
apo-protein

 (K1), and  a weaker 

KDNA
apo-protein

 (K3), compared to wild-type FrmR, at a given concentration of Zn(II) DNA-

occupancy of E64HFrmR is lower. Expression of frmRA regulated by E64HFrmR is therefore 

permitted at lower [Zn(II)].  
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Equation 8 

and:  

 

The tightening of K1 (KZn(II)
protein

) and the weakening of K3 (KDNA
protein

) in E64HFrmR reflects on 

K2 (KZn(II)
DNA·protein

), which was calculated to be 1.9 × 10
−10

 M  knowing that K4 is 

KDNA
Zn(II)

·protein. For a rigorous analysis of FrmR and E64HFrmR ability as de-repressors, we 

should compare KZn(II)
DNA·protein

 (K2) values, since the gene transcription is activated upon 

binding of the effector (here Zn(II)) to the DNA-bound protein). Thus, K2 was calculated also 

for wild-type FrmR (5.3 × 10
−9

 M), showing a greater differentiation between the two protein 

species (Osman et al. 2015). Therefore, in E64HFrmR the contribution toward Zn(II)-sensitivity 

is achieved by a tighter KZn(II) and, surprisingly, a weaker KDNA. It must be noticed that this 

outcome is valid under the assumption that the described system is closed. It may be not 

absolutely true if metal ions are in exchange with the buffer, or if dissociation of the DNA-

bound form is not the regulatory step. 

7.4.3 Glutathione enhanced metal-detection by E64HFrmR may explain 

Co(II)-sensing  

While a tighter Kmetal and a weaker KDNA may explain the gain of zinc-sensing by E64HFrmR, as 

discussed in Section 7.4.2, this is not sufficient to understand why the FrmR variant is now able 

to detect cellular Co(II) as KCo(II)
E64HFrmR

 is very weak compared to that of Salmonella 

Ni(II)/Co(II) sensor RcnR. The possibility that an additional factor may be involved in cobalt 

delivery to the protein was therefore investigated. In Section 1.3.3 we discussed the factors 

behind cobalt-sensing by Synechocystis PCC 6803 CoaR, which possesses a weaker Co(II) 

affinity than other metal-sensors from the same organism (ZiaR and Zur). Co(II) is also able to 

trigger the allosteric mechanism that leads to the activation of transcription in ZiaR and Zur, 

however CoaR has evolved to selectively respond to cobalt. Co(II) appeared to be channeled 

directly to its precorrin isomerase-like domain (Patterson et al. 2013). 

A hypothesis to explain why a variant of the formaldehyde-sensor FrmR should have a 

preferential access to Co(II), may refer to the common origin with Co(II)-sensing RcnR and to a 

consequent interaction with a Co(II) donor. Although FrmR has, somehow, cobalt ions 

channeled to its binding sites, the affinity for the metal is still too weak to allow detection. 

However, E64HFrmR has a KCo(II) enhanced enough to allow the response to the metal (Table 8. 

3, Appendix). A plausible candidate as a cobalt-donor may be glutathione and/or its adducts as 
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FrmA (the formaldehyde dehydrogenase regulated by FrmR) acts on the substrates S-

(hydroxymethyl)glutathione and S-nitrosoglutathione (Osman et al. 2015; Gutheil et al. 1992; 

Liu et al. 2001). 

Glutathione is the most abundant low molecular weight molecule carrying a thiol functional 

group in the cell and is widespread amongst bacteria, animals and plants. Its intracellular 

concentration is estimated to be in the mM range (0.5 mM < [GSH] < 10 mM) (Maher 2005; 

Halliwell & Gutteridge 1989; Lushchak 2012). It is a tripeptide (L-glutamyl-L-cysteinyl-

glycine) characterized by an unusual bond between the amino group of the cysteine residue and 

the Cγ of the glutamate residue instead of the Cα, as typically observed in proteins. This feature 

protects it from the intracellular peptidases action which usually cleaves the Cα-NH bond.  

The primary biological function of glutathione is as an antioxidant, reacting with ROS/RNS 

(reactive oxygen and nitrogen species) or during peroxidase-catalysed reactions (Lushchak 

2012; Halliwell & Gutteridge 1989). Moreover, it acts as a cysteine reserve and in the storage 

and transport of nitric oxide (NO), and many others (Lushchak 2012; Halliwell & Gutteridge 

1989). For example, it is involved in the detoxification of endogenously produced toxic 

substances, such as formaldehyde (as discussed in Chapter 1) and methylglyoxal (Inagi et al. 

2010; Kalapos 1999; Yadav et al. 2008), by reducing the reactivity of these molecules and, in 

some cases, aiding the transport across the cellular membrane (Wang & Ballatori 1998). 

Since glutathione can coordinate various metals, including copper, zinc, cadmium, mercury, 

lead and gold (Ballatori 1994), it also plays a major role in metal homeostasis by aiding transfer 

of cations from one ligand to another, transporting cations through the membranes, acting as co-

factor in redox processes and as cysteine source (Wang & Ballatori 1998; Lushchak 2012). 

Within this tripeptide it is possible to identify six potential sites for metal coordination, with 

cysteine thiol being the most reactive group in the set (Figure 7. 12). Glutathione’ metal 

coordination is a spontaneous process and some of the most stable metal complexes are 

achieved with divalent cations adopting a 2:1 GSH:metal stoichiometry (Lushchak 2012). 

Biological roles for glutathione in iron and copper metabolism have been studied in detail. 

Glutathione is involved in Cu(II) reduction to Cu(I), in its mobilization from storage sites and in 

the insertion of Cu(I) during the biosynthesis of copper-containing proteins, such as Cu,Zn-

superoxide dismutase (Cu,Zn-SOD), (Lushchak 2012; Freedman et al. 1989, Ciriolo et al. 1990; 

Brouwer & Brouwer-Hoexum 1992; Suzuki et al. 1989). Moreover, glutathione is believed to 

play a similar role in the metabolism of iron. Its contribution to the maturation of extra 

mitochondrial Fe,S-proteins in S. cerevisiae has been documented by Sipos and collaborators 

(Sipos et al. 2002). 

A putative role for glutathione in Co(II)- and Zn(II)-sensing by FrmR and E64HFrmR was 

investigated by β-galactosidase assays by Dr. Deenah Osman and published in a recent work  

http://intl.pharmrev.org/content/50/3/335.full#ref-10
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Figure 7. 12 Glutathione possesses at least six possible sites (highlighted in red) to coordinate 

metals. Shankar and colleagues showed that zwitterionic glutathione forms tri- and tetradentate 

complexes, highly stabilizing the metal cation (Shankar et al. 2012). 
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(Osman et al. 2015). Cells lacking gshA, the glutathione synthetic enzyme, after 2 h of exposure 

to Zn(II) and Co(II), showed a significantly decreased E64HFrmR- mediated expression 

compared to that obtained with constructs including gshA (Osman et al. 2015). 

The effect that the presence of glutathione has on ZntR and RcnR-mediated gene-expression, 

upon incubation with Zn(II) and Co(II) respectively, was also tested. Regulation controlled by 

RcnR showed a dependency for glutathione similar to that observed with E64HFrmR (Osman et 

al. 2015), suggesting that glutathione assists cobalt-sensing by both proteins. However, ZntR-

mediated expression in ΔgshA cells upon Zn(II) incubation did not differ from wild-type 

(Osman et al. 2015). Therefore glutathione helps the detection of Co(II) by both E64HFrmR 

and RcnR, while the effect on Zn(II)-sensing seems more controversial (glutathione competes 

with ZntR whereas assists E64HFrmR).  

In light of these findings, here we further explored metal detection by E64HFrmR in vitro. Since 

FrmR and E64HFrmR possess a weak cobalt affinity (Table 8.3, Appendix), it was possible to 

assess only the contribution of glutathione to Zn(II) binding under the experimental conditions 

described in Section 4.7.1. The experimental asset involves evaluating the rate of zinc extraction 

by the protein from mag-fura-2 in the presence or absence of glutathione, by inspection of curve 

slope (Figure 4. 19A-B). However, it was not possible to detect any significant difference 

suggesting that glutathione is involved in zinc delivery to FrmR or E64HFrmR in this 

experimental setup. It appears that these proteins receive Zn(II) directly from the chelator. The 

reason for the different behaviour observed in vitro and in vivo in zinc detection remains 

unclear. It may be ascribed to a suboptimal glutathione/zinc ratio adopted for the in vitro 

competition. Glutathione could readily react with a small amount of zinc, competing with mag-

fura-2 and FrmR/E64HFrmR, and form a stable zinc complex failing to deliver the metal to the 

protein. This hypothesis may be supported by the different intensity of the spectral feature at 

366 nm at the end of the competition experiment whether this was conducted in the presence or 

absence of glutathione. Support to this thesis is also provided by a recent study by Ma and 

colleagues that demonstrates that low molecular weight thiols and bacillithiols can compete for 

zinc binding with zinc-sensors (Ma et al. 2014) (see Section 7.8). 

7.4.4 Detection of two distinct E64HFrmR conformations 

During the course of this work two distinct conformations of E64HFrmR were identified. An 

additional absorbance spectral feature at around ~ 300 nm and a different DNA-binding affinity 

of the apo-state (Table 8.2, Appendix) allow differentiation between the two protein forms.  

In order to investigate the nature of this spectral feature, UV-vis absorbance spectra of both 

E64HFrmR variants were recorded under aerobic conditions or upon treatment with 

formaldehyde and glutathione (Figure 8. 4BC, Appendix). However these treatments did not 

induce any change in the absorbance spectra suggesting that the feature at ~ 300 nm is not due 
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to oxidation of the cysteine residue caused by inter/intra- subunit cross-linking or formation of 

adduct with formaldehyde or glutathione. 

The two preparations showing a UV-vis spectrum indistinguishable from wild-type, were 

produced amongst the very first batches of E64HFrmR. The first experiments carried out to 

assess metal- and DNA-binding properties were then carried out with both types of preparations 

since, initially, we did not discern between the two. The experiments performed with 

E64HFrmR lacking the spectral feature at 300 nm (E64HFrmR*), include fluorescence Zn(II)-

titration (Figure 8. 5, Appendix), and protein:DNA interaction studied in the absence and 

presence of Zn(II) by fluorescence anisotropy (Figure 8. 9AB, Appendix). Interestingly, 

KDNA
E64HFrmR*

 and KDNA
Zn(II)-E64HFrmR* were very close to the corresponding values obtained with 

FrmR. Moreover, Zn(II) titration of E64HFrmR* quenches Tyr89 intrinsic fluorescence (Figure 

8. 5, Appendix) whereas the same experiment performed with E64HFrmR shows an increase of 

the fluorescence intensity at 304 nm (Figure 4. 6A). 

These outcomes may suggest that the mutant displaying the extra spectral feature may have a 

different spatial disposition compared to E64HFrmR* and, possibly, to FrmR. 

Although the nature of this additional spectral feature remains unclear, understanding the 

thermodynamics of protein folding may help to elucidate the origin of the two stable 

conformations of E64HFrmR. To acquire its native three-dimensional structure a protein 

undergoes a folding process which involves the formation of protein domains (α-helices, β-

sheets, loops, etc.) from a one-dimensional linear chain of amino acids (Branden & Tooze 

2001). In a simplistic model every amino acid residue in a denatured protein can assume three 

different positions (α, β, L in the Ramachandran diagram) relative to each other according to its 

steric hindrance (limited freedom of rotation of the two dihedral angles, ψ and φ). A polypeptide 

chain of 150 residues may therefore undertake 3
150 

=
 
10

68
 different configurations and need ~ 

10
48

 years (~ 10
-13

 sec for each conformational transition) to explore all of them (Branden & 

Tooze 2001). This could not be compatible with cellular life and since the average folding 

process, both in vitro and in vivo, lasts 0.1 – 1000 seconds, the transition from a denatured form 

to the native state must be somehow facilitated. 

The unfolded protein assumes a filamentous state which is adopts a globular state by interaction 

with water molecules from the solvent. At this stage the protein can adopt various high energy 

forms and identification of secondary structure elements is not yet possible. Under appropriate 

conditions the protein will undergo the folding reaction which can involve the formation of 

intermediates such as the molten globule, “MG” (Creighton 1990; Richards 1991). During this 

stage secondary structure elements will form. Moreover hydrophilic amino acid residues will 

become solvent exposed whereas the hydrophobic residues will be hidden creating a 

hydrophobic core. Further rearrangements are needed to reach the folded conformation. The 

“Energy landscape theory” is often adopted to model the protein’s potential surface in order to 
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explain the thermodynamics of protein stability during the U  N (unfolded to native state) 

process (Onuchic et al. 1997). According to this theory the protein thermodynamic landscape 

resembles a rugged funnel. (Bryngelson et al. 1995; Leopold et al. 1992; Onuchic et al. 1995). 

In the early stages the unfolded protein is guided through a multiplicity of folding routes and as 

the protein proceeds in the folding the number of available conformations decreases until only 

the lowest energy state is available. However, in the late stages the protein may be trapped in 

partially unfolded conformations and need the aid of specialised proteins, called chaperonins, 

which assist the folding process providing favorable conditions.  

It is possible to hypothesise that the single point mutation introduced in FrmR may have had 

severe effects on the pathways toward the native structure undertaken by the protein. In this 

perspective E64HFrmR could possess at least two local minima on its free energy landscape 

each with a distinct structure although very close in energy.   

7.5 Specific formaldehyde-sensing by Salmonella FrmR 

7.5.1 Cys35 and Pro2 play an essential role in formaldehyde detection 

The mechanism used by E. coli FrmR to detect formaldehyde is unknown, however it has been 

suggested that a cysteine residue may react with the aldehyde to yield a S-formyl adduct, which 

will then react with an amine from the N-terminal region producing a thiazoline-like adduct 

(Higgins & Giedroc 2014). Since during the course of this work we showed that Salmonella 

FrmR is capable of binding metals, presumably using most of the residues in the WXYZ motif 

(Chapter 3), a plausible mechanism for formaldehyde-sensing, which includes residues involved 

in or nearby the metal-binding site, was delineated. Pro2 is the first residue in the amino acid 

chain (Section 5.3.1), hence it possesses a secondary amine group not involved in peptide bond. 

The pyrrolidine ring on the proline is a strong base and among the most basic simple amines in 

nature (its conjugate acid has pKa = 11.27) (Hall 1957), making this residue a good candidate 

for the nucleophile species involved in the second step of the hypothesized mechanism. 

The mechanism has been confirmed by testing FrmR mutants, each lacking one of these 

residues (C35AFrmR and P2SFrmR), in vitro by fluorescence anisotropy (Section 5.4). These 

experiments allowed also the determination of the order of nucleophilic additions to 

formaldehyde. Since formaldehyde detection induces a significantly larger allosteric response in 

P2SFrmR than in C35AFrmR (Figures 5. 5 - 5. 7), it is possible to assume that the first step in 

formaldehyde sensing involves the nucleophilic attack of the mercapto group from Cys35 to 

yield the tetrameric intermediate, as previously suggested for E. coli FrmR (Higgins & Giedroc 

2014). Whether, in P2SFrmR, the amino group belonging to a different residue (e.g. the 

imidazole of His3) could replace Pro2 pyrrolidine ring activity, or simply the modification on 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Onuchic%20JN%5BAuthor%5D&cauthor=true&cauthor_uid=9348663
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Cys35 is enough to partially impair the ability of the protein to bind DNA with the same affinity 

of the wild-type is not yet clear.  

The mechanism of sulphur nucleophile addition on formaldehyde has been extensively 

described in Section 1.5.1.1, however the reaction cannot proceed after the formation of the 

hemithioacetal species due to the absence of a second sulphur nucleophile nearby (here cysteine 

residue). Instead, the reaction proceeds with the nucleophilic attack of the secondary amino 

group on Pro2. As a result, helix α2 from one monomer is covalently linked to the N-terminal 

region of helix α1 from a different monomer, perturbing the local conformation of FrmR. The 

cross-link induced by formaldehyde presumably results in a weakening of KDNA in a similar 

fashion to that induced by metal-binding (Section 7.3.2). The HCOH-bound FrmR species then 

releases its operator promoter region, allowing the RNA polymerase to bind and start the 

transcription of the frmRA operon.  

Figure 7. 13 shows the electron density map of E64HFrmR were Cys35 (helix α2) and Pro2 

(helix α1) are represented in ball-and-stick model. Pro2 is located at the start of the N-terminus 

and, along with some of the residues at the C-terminus, did not show any electron density. This 

residue was therefore manually added to the model by Dr. E. Pohl using COOT (Emsley & 

Cowtan 2004; Emsley et al. 2010). Cys35 and Pro2 are located at a distance in the range of 

chemical reactions (~ 4.6 Å). Based on the proximity of the helices, the formaldehyde-mediated 

link between Cys35 and Pro2 could be possible. In order to determine an approximate distance 

between the two residues, it was necessary to add an alanine as the first residue of the N-

terminus, to minimize the Pro2 position. If Pro2 is the actual first residue of the chain, as 

previously suggested, it will possess more conformational freedom.  

7.5.2 frmRA expression is not induced by other aldehydes or alcohols 

FrmR detection of a number of alcohols and acetaldehyde was tested in vivo (by Dr. D. Osman) 

and in vitro to assess selectivity toward formaldehyde-sensing (Figures 5. 2-5. 3B). None of the 

compounds used in this work elicited a response in FrmR. Alcohol binding sites often consists 

of a loop region with hydrogen bond acceptors, for example lysines, usually located at the end 

of the N-terminal region (Bukiya et al. 2014; Dwyer & Bradley 2000). Alcohol binding can 

alter the local structure of the protein or displace solvent molecules inducing an allosteric 

response. FrmR’ N-terminus presents two lysine residues (Lys8 and Lys9) that could form 

hydrogen bonds with alcohol molecules, although this interaction is unlikely to perturb FrmR 

conformation and, therefore, DNA-binding affinity.  

Not even addition of acetaldehyde induces an allosteric response in FrmR (Figure 5. 2A). 

Acetaldehyde (CH3CHO) differs from formaldehyde for the presence of an alkyl group. As a 

consequence of the electro-donating character of this substituent, the carbonyl group is less 

polarised and therefore less reactive toward nucleophilic additions. Moreover, since  
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Pro2 
Cys35’ 

 

Figure 7. 13 Putative formaldehyde-binding site consisting of Cys35 (helix α2, monomer 1, in 

green) and Pro2 (helix α1, monomer 2, in cyan). The shortest distance between the side chains 

atoms is ~ 4.6 Å. 
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acetaldehyde is slightly bulkier than formaldehyde, the steric hindrance may prevent penetration 

of this aldehyde in the binding-site. In this case, it may be possible that acetaldehyde would still 

react with Pro2, which being located on the N-terminus loop is more flexible, yielding an 

enamine (Figure 7. 14A). Also in this scenario little, or no, perturbation of FrmR conformation 

would be expected and KDNA would remain unaltered (Table 8.2, Appendix).  

However, once the X-ray structure of one of the FrmR protein variants became available, it was 

possible to study the surface of the effector-binding site (Figure 8. 10, Appendix) which 

appeared enough accessible to allow interaction of Cys35 with substrates more sterically 

hindered than formaldehyde. It may be possible that this residue does not react with 

acetaldehyde because of inductive effects or that the Cys35-Pro2 cross-link mediated by bulkier 

molecules may not lead to a conformational rearrangement of helices α2 and α3 resembling that 

induced by formaldehyde.  

7.5.3 Glutathione-formaldehyde adducts 

During the first step of the glutathione-dependent formaldehyde detoxification pathway, 

glutathione is required to form an adduct with formaldehyde, S-hydroxymethylglutathione, 

which is then oxidised to S-formylglutathione by the formaldehyde dehydrogenase (FDH) 

FrmA.  

Sanghani and collaborators (Sanghani et al. 2000) observed a number of formaldehyde-

glutathione adducts depending on the concentration of the two species and the pH (Figure 7. 

14B-C-D). At pH = 7.5 (close to intracellular pH), if [GSH] equals or exceeds [HCOH] the 

predominant adducts will be S-hydroxymethylglutathione (Figure 7. 14B) (Sanghani et al. 

2000). However, if formaldehyde is the most abundant species two additional adducts will form 

(Figure 7. 14C-D). Moreover, pH plays a crucial role as the ionization states of mercapto and 

amino groups determine whether formation of additional adducts will occur. Since these adducts 

lack a free primary alcohol group, they cannot act as substrates for the formaldehyde 

dehydrogenase (FDH) causing either inhibition of enzyme reaction or decrease of S-

formylglutathione available (Sanghani et al. 2000). Nevertheless, cellular [HCOH] and [GSH] 

have been measured to be ~0.1 mM and ~4-5 mM, respectively (Heck et al. 1985; Osman et al. 

2015) therefore the predominant species will be S-hydroxymethylglutathione. 

As previously discussed in Section 7.5.2, sterically hindered substrates may be unable to trigger 

the conformational change which results in a weaker DNA-affinity. In this scenario, unlike 

FrmA, FrmR would react directly with formaldehyde instead of S-hydroxymethylglutathione. In 

fact, treatment of FrmR with acetaldehyde showed only a little response in vivo (Figure 5. 3B) 

and no response in vitro (Figure 5. 2A). Similar results have been obtained by Law with bulkier 

aldehydes, as furaldehyde and tribromoacetaldehyde (Law 2012). A selection performed on the 

basis of the effector size would be consistent with the hypothesis that the FrmR binding site  
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S-hydroxymethyl-glutathione

CO2H

 

 

Figure 7. 14 A Acetaldehyde reaction with secondary amine (Pro2) yields an enamine. B-C-D 

show adducts produced by glutathione reaction with formaldehyde at different pH values and 

initial [GSH] and [HCOH]. This scheme has been adapted from Sanghani et al. 2000 research 

paper. The symbol marks the carbon originated from formaldehyde. 
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evolved from one originally established to accept small species like metal ions. The same 

selection seems to not occur in the B. subtilis AdhR formaldehyde sensor, member of the 

MerR/NmlR family of transcriptional regulators (Section 1.5.5). Huyen and colleagues showed 

that, not only formaldehyde, but also methylglyoxal can trigger the transcriptional response of 

AdhR (Huyen et al. 2009). A cysteinyl residue, conserved amongst AdhR homologues (Cys52), 

is believed to be involved in the formaldehyde-binding mechanism, probably by being alkylated 

by electrophilic carbonyl groups (Huyen et al. 2009). This modification would be sufficient to 

elicit an allosteric response and activate transcription of the regulated genes. Moreover, S-

hydroxymethylglutathione is less reactive than formaldehyde towards nucleophilic additions as 

both carbonyl groups are bounded to electron-donator groups (NHR2) which decrease the 

polarization of the C=O. 

However, even if FrmR might sense only formaldehyde, the S-hydroxymethylglutathione 

synthesis occurs spontaneously, resulting in a decreased pool of free formaldehyde that could be 

detected by the protein. Since the equilibrium constant for the glutathione reaction with 

formaldehyde is in the mM range (Keq = 1.77 mM) (Sanghani et al. 2000), this could represent 

the limiting factor for the evolution of the formaldehyde detection of FrmR. 

7.6 Salmonella RcnR regulates expression of rcnRA operon  

7.6.1 Ni(II) and Co(II), but not formaldehyde, negatively regulate in vitro 

binding of rcnRAPro by Salmonella RcnR   

In order to test the specificity of the expression of the formaldehyde responsive mechanism of 

FrmR, Salmonella rcnR was identified and the encoded protein, RcnR, was produced. In a 

recent paper from our group it was shown that Salmonella RcnR binds Ni(II) and Co(II), and 

that it has KCo(II)1–2= 5.06 ± 0.86 × 10
−10

 and 3 × 10
−5

 ≥ KCo(II)3 ≥ 10
−7

 (Osman et al. 2015).  

As previously discussed in Section 7.3.1, Salmonella RcnR interacts with two TACT-N-G6-

AGTA type 1 sites located in the region within rcnA and rcnR (Section 5.5). DNA-binding 

affinity was first determined by EMSA, giving a KDNA,app of ~ 1.5 µM using an amplified region 

that contains both type 1 sites. However, this value departs considerably from the KDNA values 

determined for E. coli RcnR (KDNA-site1 = 126 nM and KDNA-site2 = 174 nM) (Iwig et al. 2009b), 

therefore we decided to use fluorescence anisotropy as this technique works under equilibrium 

conditions. Under these experimental conditions KrcnRAPro-sites1,2
RcnR

 was calculated to be 152 ± 8 

nM. The same methodology was also used to investigate in vitro Ni(II)- and Co(II)-sensing by 

RcnR, confirming that the two metals induce a large allosteric modification (Figures 5. 16- 5. 

17, Table 8.2, Appendix).  

Salmonella RcnR was then tested for in vitro formaldehyde detection by fluorescence 

anisotropy by carrying out association experiments between the protein and the labelled 
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rcnRAPro-sites1,2 DNA fragment in the presence of various concentrations of formaldehyde 

(Figure 5. 18), as previously done with FrmR proteins and frmRAPro (Figure 5. 1). A 

concentration of 100 µM of formaldehyde was needed in order to observe a ΔGC = 0.94 ± 0.21 

kcal mol
-1

, which is still much lower than the value obtained with FrmR at a five-fold lower 

[HCOH] (Table 8.2, Appendix). This result supports the hypothesis of a specific formaldehyde-

sensing mechanism in FrmR. 

7.7 Single point mutation enhances the capacity to detect low 

concentration of formaldehyde in vitro by Salmonella RcnR 

Cys35 and Pro2 are the putative formaldehyde-binding residues in Salmonella FrmR (Section 

7.5.1). Salmonella RcnR conserves a Cys at the residue 35, however it possesses a Ser in 

position 2. In order to further test the mechanism hypothesized for FrmR, a single-point 

mutation Ser2Pro was generated in RcnR, to create a FrmR-like pair of putative 

formaldehyde ligands (Cys35, Pro2). Since the cleavage of Met1 has been established by Amino 

Acid Analysis carried out on wild-type RcnR (Table 8. 5, Appendix), the inserted Pro2 in the 

S2PRcnR variant is the first residue of the N-terminus α1-helix, and hence its amino group is 

not involved in peptide bond with other residues. 

The ability of S2PRcnR mutant to detect formaldehyde in vitro was tested by fluorescence 

anisotropy showing an encouraging shift in the DNA-binding curve after only 20 µM of 

formaldehyde when compared to the same experiment carried out in the absence of 

formaldehyde (Figure 5. 20AB, Table 8.2 Appendix). These findings support a decisive role for 

Pro2 and therefore sustain the hypothesis delineated in Section 5.3.1, which sees Pro2 from one 

protein monomer cross-linked to Cys35 from a second monomer, eliciting an overall spatial 

modification which impairs the ability of the protein to bind DNA. It is plausible that this 

structural change may resemble the theorized allosteric modification induced by metal-binding. 

In fact, Cys35 would be exploited in both events, as well as a residue from the N-terminus 

region (Pro2 for formaldehyde, probably His3 for metals).  

7.8 Future work  

The Salmonella formaldehyde sensor FrmR has been used as a probe to investigate how metal 

selectivity is achieved by the cell. The creation of a Zn(II)/Co(II) sensor in vivo by site-directed 

mutagenesis represents an important step in understanding the determinants involved in metal-

sensing in RcnR/CsoR family members. Moreover, the work presented here highlights an 

interesting mechanism of selective formaldehyde-sensing. However, many questions still 

remain unanswered and opportunities for further investigation of FrmR’ metal- and 

formaldehyde-sensing mechanisms have now arisen. 
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At the time of writing, no DNA co-crystal structure of RcnR/CsoR family members is available, 

and only a small number of X-ray structures of DNA-bound proteins belonging to different 

metal-sensor families have been deposited in the PDB (Figure 7. 15). In addition, Arunkumar 

and colleagues studied the DNA-bound structure of the ArsR-family member CzrA by 
1
H-

15
N 

HSQC NMR spectroscopy (Arunkumar et al. 2009) (Figure 7. 15).  

Little is known about how FrmR recognizes the frmRA promoter. In the course of this work we 

showed that two protein tetramers presumably bind to opposite faces of the recognition site 

(Figure 7. 5). We also investigated the effect of the presence of Zn(II), Cu(I), and formaldehyde 

on the DNA:protein association. As previously discussed in Section 1.4.2, DNA-binding often 

implicates shape variations which may either involve a few bp or have a greater effect. 

Switching the protein to its holo-form may stabilize the protein:DNA complex in an 

energetically distinct state, as recently shown for E. coli CueR (Philips et al. 2015). X-ray 

crystallography may be applied to study the FrmR:DNA complex with 1:1 and 2:1 

stoichiometry, in the presence or absence of metals or formaldehyde, in order to investigate if 

FrmR binding on the frmRA promoter induces a local modification in the DNA shape prior 

to/upon effector binding. Moreover, small angle X-ray scattering (SAXS) analyses may be 

carried out on FrmR-DNA complexes at the Diamond Light Source facility to determine if holo-

FrmR (de-repressor-form) undergoes a similar compression to that observed by Chang and 

colleagues with GtCsoR (Chang et al. 2014), previously described in Section 7.3.2. 

The rate limiting step by which frmRA transcription is activated in the presence of 

formaldehyde- (or metal-, in the case of the E64H variant) may involve binding of the effector 

by on-DNA apo-FrmR to encourage release of the holo-protein from the DNA. By analogy with 

a recent work of P. Chen and collaborators (albeit in their case on the mechanism of de-

activation by sensors), this DNA-dissociation process might be assisted by other protein 

molecules present in the cytoplasm or weakly bound to nearby unspecific DNA regions. Chen 

and collaborators used in vivo high resolution live cell imaging methods to explore deactivation 

of transcription by MerR-family members CueR and ZntR when the concentration of metal ions 

is restored to non-toxic levels (Joshi et al. 2012; Chen P. et al. 2013; Chen T. Y. et al. 2015).  

Transcription factors belonging to the MerR-family bind to a symmetric operator promoter 

region in both their apo- and holo-forms with a tight affinity (Brown et al. 2003; O’Halloran et 

al. 1989; Newberry & Brennan 2004; Outten et al. 1999; Frantz & O’Halloran 1990). In the 

absence of metal stress they induce a local distortion in the DNA conformation which prevents 

the RNAp to bind to the -10 and -35 elements, hence blocking the expression of the 

corresponding metal resistance genes. In the presence of toxic concentrations of metal, the 

metallated-protein elicits a conformational change in the DNA shape allowing the correct 

interaction of RNAp with -10 and -35 elements which results in the transcription activation 

(Brown et al. 2003; O’Halloran et al. 1989; Newberry & Brennan 2004; Outten et al. 1999;  
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Figure 7. 15 X-ray crystal structures of DNA-bound form of metal-transcriptional regulators 

available in the PDB at the time of writing (Philips et al. 2015; Gilston et al. 2014; Schreiter et 

al. 2006; Heldwein & Brennan 2001; Newberry & Brennan 2004). The authors choose different 

colour codes to depict the DNA components as indicative of the specific modifications induced 

by protein-binding. The 
1
H-

15
N HSQC NMR structure of the DNA-bound form of apo-CzrA 

(Arunkumar et al. 2009) was added for completeness. 
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Frantz & O’Halloran 1990).  

Once the metal stress is relieved, the cell must adopt a strategy to turn off the transcription of 

metal resistance genes since these are no longer needed. Two distinct pathways, the assisted 

protein dissociation and the direct protein substitution, were postulated to describe the 

unbinding of the transcription factor from the DNA (Joshi et al. 2012). Both processes appear to 

involve the formation of a ternary complex where the incumbent holo-protein partially releases 

one half of the symmetric DNA recognition site, allowing the incoming apo-protein to contact 

the second half (Chen P. et al. 2013). In the assisted dissociation pathway the process proceeds 

with the dissociation of both proteins whereas the direct protein substitution sees the release of 

only one of the two proteins and therefore a 50 % of probability of the apo-protein (repressor) 

now being bound to the DNA (Joshi et al. 2012). These mechanisms have been investigated in 

real time in vivo using stroboscopic single molecule tracking (SMT) showing that the kinetics of 

both processes depends on the protein concentration which is inversely proportional to the 

residence time τ on the chromosome (Chen T. Y. et al. 2015). The number of direct substitution 

and assisted dissociation events were measured by fluorescence resonance energy transfer 

(FRET) showing that the former pathway is more probable at high protein concentration 

whereas the latter is likely to occur when the concentration of protein is low (Joshi et al. 2012). 

Moreover, it was determined that direct substitution mainly governs the DNA recognition of 

holo-CueR, whereas apo-CueR interacts with DNA predominantly via assisted dissociation 

(Joshi et al. 2012). 

It would be of great interest to investigate if mechanistic pathways similar to those observed for 

CueR and ZntR (Chen T. Y. et al. 2015) may occur with FrmR, or if unbinding from the frmRA 

operator (here resulting in the derepression of transcription) follows spontaneous routes. 

Notably, this becomes more likely if on-DNA FrmR proteins do have a weaker KZn(II) than off-

DNA molecules, and this may similarly be true for KHCOH. In the presence of inducer(s), off-

DNA apo-FrmRs would then be more likely to bind the effector but the resultant off-DNA holo-

FrmRs might then aid disassembly of apoFrmR-frmRAPro adduct through ternary complexes as 

observed in CueR and ZntR. The pathway could proceed with the release of both proteins from 

the DNA (assisted dissociation) or with the 50 % of probability to have the substitution of apo-

FrmR with the holo-form (direct substitution). Holo-FrmR would then spontaneously dissociate 

as it has a poor affinity for the frmRA operator. In both cases the transcription would be 

activated.  

The determination of the copy number of protein molecules in the cell appears to be a key 

parameter in order to further understand transcriptional regulation. The cellular abundances of 

apo-FrmR in logarithmic cultures growth in M9 minimal medium was measured to be 135 ± 17 

tetramer cell
-1

 (Osman et al. 2015). However, it must be noted that this value refers to FrmR 

expressed from the pET29a vector and not from the chromosome. Using an estimate of protein 
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abundance approximately 10-fold lower and a cell volume of ~ 1 fL, the concentration of FrmR 

is then calculated to be ~ 20 nM. The same methodology can be applied to measure the protein 

abundance at several time points during the cell growth. Use of stroboscopic single molecule 

tracking (SMT) to measure the in vivo residence time of apo- and holo-forms of FrmR 

molecules on the DNA would then allow determination of any dependency on protein 

concentration as observed in MerR family-members.  

 It would be interesting to determine what proportion of FrmR molecules in their activator form 

(formaldehyde-bound) versus those in the repressor state (apo-form) is necessary to allow 

formaldehyde-sensing. If formaldehyde-binding induces a substantial structural rearrangement 

in FrmR, it might be possible to use FRET to visualize the holo-proteins in the cell. Moreover, 

calculating the copy number of E64HFrmR and Salmonella cognate metal sensors RcnR, ZntR, 

and ZuR expressed from the chromosome may provide insights to determine at which extent 

this parameter affects metal-selectivity. In fact, if the apo-form of a certain metal sensor is 

greatly in excess compared to the others, this would be able to access the metal with a higher 

probability.    

Structural studies are needed to further explore some aspects of the mechanisms adopted by 

FrmR and to investigate the nature of the spectral feature at 300 nm observed with the majority 

of E64HFrmR preparations. In this regard, mass spectrometry analyses using hard ionization 

techniques may be adopted on E64HFrmR, E64HFrmR* and FrmR. Furthermore, X-ray 

diffraction may investigate the potential discrepancy in their 3D spatial disposition. In 

particular, in Section 7.3.2 we discussed the location of the helix α3 in E64HFrmR which seems 

to occupy a position approximately analogous to that of helix α3 in the copper-bound GtCsoR 

structure (Figure 7. 9). One hypothesis sees the enhanced Kmet (and, possibly, the weakened 

KDNA) observed in E64HFrmR (Table 8. 3, Appendix) as a consequence of a different spatial 

disposition of the three helices, in particular of helix α3 (compared to that of apo-wild type), 

which resembles more the effector-binding state of RcnR/CsoR family members. Since 

preliminary experiments carried out on E64HFrmR* showed a KDNA comparable to that of FrmR 

(Table 8. 3, Appendix), it is possible that these proteins share a similar 3D conformation. 

Production and superposition of apo- and holo-forms of FrmR, E64HFrmR, and E64HFrmR* X-

ray structures would be ideal.  

These studies may also provide important information regarding the ligands involved in metal-

coordination and the propagation of the allosteric mechanism connecting the effector-binding 

event with a weakened KDNA. Moreover, by producing the formaldehyde-bound structure of 

FrmR it would be possible to determine if the formaldehyde-mediated, inter-subunit cross-link 

postulated in this work induces a quaternary structure similar to that achieved by the 

conformational rearrangement elicited by metal-coordination.  
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Formaldehyde-detection by FrmR may also be investigated by mass-spectrometry to study the 

cross-linked FrmR species after exposure to appropriate formaldehyde concentrations. 

Moreover, fluorescence anisotropy can be adopted to confirm, or otherwise, that adducts of 

formaldehyde with other molecules present in high concentration in the cytoplasm (such as 

glutathione) may not be able to disrupt the protein interactions with the promoter region, as 

predicted in this work (Section 7.5.4). 

Another interesting aspect disclosed by the work carried out on FrmR and E64HFrmR is the 

mechanism of Co(II)-sensing. Although the Co(II)-binding affinity of E64HFrmR is 

significantly weaker than compared to that of Salmonella Ni(II)/Co(II) sensor RcnR (KCo(II)1-

2
RcnR

 5.06 ± 0.86 x 10
-10

 M, KCo(II)1
E64HFrmR

 = 2.56 ± 0.4 x 10
-7M; Osman et al. 2015, Table 8. 3, 

Appendix), E64HFrmR is still capable of detection of cellular cobalt. The possibility that 

glutathione may be a key contributor to Co(II)-sensing by E64HFrmR has been investigated in 

vivo by Dr. Deenah Osman (Section 7.4.4) revealing a glutathione-dependency of Co(II)- and 

Zn(II)-sensing by the protein. The hypothesis is that Co(II)-bound glutathione molecules 

interact with the protein, transferring the metal ion directly to the binding site. It is plausible to 

assume that the glutathione may, at least partially, penetrate the pocket to deliver the Co(II). 

However, the physiological purpose of a specific interaction between glutathione and FrmR 

remains enigmatic. As glutathione also appears to aid the cobalt-sensing by the Salmonella 

cobalt sensor RcnR (Osman et al. 2015), it was hypothesized that RcnR has evolved to receive 

Co(II) ions from glutathione and that the co-evolved FrmR may have retained the same ability. 

Otherwise, it is possible that FrmR is able to detect glutathione-formaldehyde adducts although 

it appears unlikely, as previously discussed in Section 7.5.4. Glutathione may also be necessary 

to maintain the reduced state of FrmR and RcnR, both thiol containing sensors, thus explaining 

the in vivo dependency of metal-sensing.  

Recently the role of another low molecular weight (LMW) thiol, bacillithiol (BSH), has been 

investigated in B. subtilis revealing a contrasting behavior to that observed in Salmonella with 

glutathione (Ma et al. 2014; Osman et al. 2015). B. subtilis does not produce glutathione but 

possesses a concentration of bacillithiol that varies from ~ 1 mM in mid-log growth phase to ~ 5 

mM in stationary growth phase (Sharma et al. 2013). Compared to that of glutathione, the thiol 

on bacillithiol is more acidic, and therefore more reactive (Sharma et al. 2013). Bacillithiol can 

form both 2:1 and 1:1 BSH:Zn(II) complexes with a tight affinity (βZn(II) 1.9 x 10
-12

 M
-2

) 

whereas glutathione has a KZn(II)
GSH

 3 x 10
4
 M

-1
 for the 1:1 complex (Ma et al. 2014).  

A higher sensitivity to thiophilic metals, such as Cd(II), Cu(II) and Zn(II), has been detected in 

cells lacking bacillithiol (Rajkarnikar et al. 2013; Ma et al. 2014). Moreover, Ma and colleagues 

observed that bacillithiol acts as a competitor for Zn(II)-binding with the Zn(II)-sensor 

BsuCzrA (StmB/ArsR family). A similar hypothesis was also inferred to explain the slightly 
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enhanced induction of copZA, regulated by BsuCsoR, in the bacillithiol null strain (Ma et al. 

2014).  

In order to discern if the effect that glutathione has on Salmonella FrmR and RcnR metal-

sensing is to be ascribed to channeling or to the maintenance of the reduced state of these 

sensors, the in vivo sensitivity to metal stress may be measured in the presence of bacillithiol in 

a glutathione null Salmonella strain. In this scenario, the cell would still possess an efficient 

reductant whereas any interaction between the protein and glutathione would be absent. 

Preservation of Co(II)-sensing, even upon substitution of glutathione with bacillithiol, would 

mean that no specific channeling occurs in the wild-type strain. On the contrary, an inhibited 

Co(II)-detection may be explained by supposing that Salmonella metal sensors have evolved 

from a common ancestor to receive the metal by ligand exchange reaction with glutathione. 

However, the insertion of the bacillithiol machinery in the Salmonella strain may be complex. 

The bacillithiol biosynthetic pathway involves BshA (a glycosyl transferase), a BshB paralog (a 

deacetylase) and BshC (a cysteine ligase) (Gaballa et al. 2010; Parsonage et al. 2010). As an 

alternative, metal-sensing by Salmonella FrmR and RcnR may be studied in wild-type B. 

subtilis (which inherently lacks the glutathione machinery), or Zn(II)-sensing by BsuCzrA may 

be investigated in a bacillithiol null B. subtilis strain with an inserted glutathione biosynthetic 

pathway (Gsh1, γ-glutamylcysteine synthetase, and Gsh2, glutathione synthetase) (White et al. 

2003) or in a wild-type Salmonella strain. 

Further understanding of the formaldehyde- and metal-sensing mechanisms adopted by FrmR 

proteins will aid a deeper comprehension of the transcriptional control accomplished by 

bacterial transcription factors. During the course of this work, many thermodynamic parameters 

have been measured (Tables 8.2 - 8.3, Appendix) and used to produce transcriptional regulation 

models. However, the extent to which these thermodynamic predictions are truly descriptive of 

what occurs in the cell remains to be evaluated. What is the contribution of kinetic factors and 

associative processes? 
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Buffer name Composition 

Buffer A 50 mM sodium phosphate pH 7.4, 300 mM NaCl,              

5 mM DTT, 1 mM PMSF, 10 mM imidazole 

Buffer B 50 mM sodium phosphate pH 7.4, 300 mM NaCl,             

5 mM DTT, 300 mM imidazole 

Buffer E 1.2 M NaCl, 40 mM Hepes pH 7.8, 8 mM EDTA, 8 mM 

DTT 

B100 100 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT  

B200 200 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT 

B300 300 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT 

B400 400 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA , 10 

mM DTT 

B500 500 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT 

B800 800 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT 

B1000 1000 mM NaCl, 10 mM Hepes pH 7.0, 10 mM EDTA, 10 

mM DTT 

C100                                              

(chelex-treated, N2-purged) 
80 mM KCl, 20 mM NaCl, 10 mM Hepes pH 7.0 

C300                                      

(chelex-treated, N2-purged) 
240 mM KCl, 60 mM NaCl, 10 mM Hepes pH 7.0 

C500                                     

(chelex-treated, N2-purged) 
400 mM KCl, 100 mM NaCl, 10 mM Hepes pH 7.0 

C1000                                  

(chelex-treated, N2-purged) 
800 mM KCl, 200 mM NaCl, 10 mM Hepes pH 7.0 

Table 8. 1 List of buffers used during the course of this work. 
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Protein Effector KDNA (M) ΔGc (kcal mol
-1

) 

FrmR 
Apo 9.94 ± 0.30 x 10

-8
 / 

 
Zn(II) 3.11 ± 0.40 x 10

-6
 2.03 ± 0.08 

 
Cu(I) 6.54 ± 1.30 x 10

-7
 1.10 ± 0.10 

 
10 µM HCOH 6.37 ± 0.16 x 10

-7
 1.10 ± 0.02 

 
20 µM HCOH 7.09 ± 0.60 x 10

-6
 2.52 ± 0.05 

 
20 µM EtOH 9.21 x 10

-8
 / 

 
20 µM C2H4O 8.56 x 10

-8
 / 

E64HFrmR 
Apo 4.26 ± 0.4 x 10

-7
 / 

 
Zn(II) 3.51 ± 0.7 x 10

-6
 1.24 ± 0.16 

E64HFrmR* 
Apo 1.06 ± 0.7 x 10

-7
 / 

 
Zn(II) 2.75 ± 0.4 x 10

-6
 1.92 ± 0.09 

C35AFrmR 
Apo 1.58 ± 0.18 x 10

-7
 / 

 
Zn(II) 1.47 ± 0.54 x 10

-7
 -0.07 ± 0.21 

 
20 µM HCOH 1.51 ± 0.22 x 10

-7
 -0.02 ± 0.01 

 
50 µM HCOH 1.29 ± 0.56 x 10

-7
 -0.15 ± 0.02 

 
100 µM HCOH 9.7 ± 0.45 x 10

-8
 -0.29 ± 0.05 

H60LFrmR 
Apo 1.92 x 10

-6
 / 

E81AFrmR 
Apo 8.71 x 10

-7
 / 

P2SFrmR 
Apo 1.47 ± 0.16 x 10

-7
 / 

 
20 µM HCOH 5.86 ± 1.30 x 10

-7
 0.81 ± 0.13 

 
50 µM HCOH 1.35 ± 0.47 x 10

-6
 1.29 ± 0.22 

 
100 µM HCOH 5.76 ± 0.46 x 10

-6
 2.18 ± 0.07 

RcnR                          

on rcnRAPro
site1

 
Apo 1.56 x 10

-6
  / 
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RcnR                            

on 

rcnRAPro
sites1,2

 

Apo 1.52 ± 0.80 x 10
-7

 / 

 
Ni(II) 5.91 ± 1.29 x 10

-6
 2.17 ± 0.15 

 
Co(II) 1.50 ± 0.18 x 10

-5
 2.72 ± 0.15 

 
20 µM HCOH 1.58 ± 0.08 x 10

-7
 0.03 ± 0.10 

 
50 µM HCOH 3.67 ± 1.10 x 10

-7
 0.51 ± 0.18 

 
100 µM HCOH 7.75 ± 2.85 x 10

-7
 0.94 ± 0.21 

RcnR                          

on frmRAPro 
Apo 7.46 x 10

-7
 –  

2.00 x 10
-6

 

/ 

S2PRcnR 
Apo 1.55 ± 0.10 x 10

-7
 / 

 
20 µM HCOH 6.96 ± 1.41 x 10

-7
 0.88 ± 0.14 

 
50 µM HCOH 1.78 ± 0.47 x 10

-6
 1.43 ± 0.18 

 
100 µM HCOH 2.62 ± 0.33 x 10

-6
 1.67 ± 0.09 

Table 8. 2 DNA-binding affinities and allosteric coupling free energies of proteins used during 

the course of this work. 
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Sensor Metal Kmetal (M) 

FrmR Zn(II) K1-3 = 1.7 ± 0.7 x 10
-10

 

 Co(II) K1-4 = 7.59 ± 0.4 x 10
-6

 

 Cu(I) K1-2 = 4.9 ± 1.6 x 10
-15

; K3-4 = 1.72 ± 0.7 x 

10
-12

; K5-8 ≥ 8 x 10
-11

 

E64HFrmR Zn(II) K1-3 = 2.33 ± 0.3 x 10
-11

 

 Co(II) K1 = 2.56 ± 0.4 x 10
-7

; 

K1-4 ≤ 10
-6

 

 Cu(I) K1-2 ~ 5 x 10
-16

; K3-4 = 7.29 ± 1.29 x 10
-15

; 

K5-6 = 5.6 ± 2.0 x 10
-12

; K7-8 ≥ 4 x 10
-10

 

Table 8. 3 Metal-binding affinities of FrmR and E64HFrmR.
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DynaFit Scripts 

Dynafit script used to determine KCo(II) in competition experiment between FrmR and 

BisTris 

 

[task] 

 

data = equilibria 

task = fit 

 

[components] 

; C = Co(II) 

; P = protein Cu(I) sites 

; B = BisTris 

[mechanism] 

 

     C + P <==> CP     :    Keq1   dissociation 

     C + B <==> CB     :    Keq2   dissociation 

 

 

[concentrations](µM) 

 

P = [protein monomer]x 4 

B = [BisTris] 

 

 

[constants] 

 

Keq1 = hypothesised value ?, Keq2 = KCo(II)
BisTris

  

 

[responses] 

 

CP = final ΔAbs336? 

 

 

[equilibria] 

 

variable C 

offset = auto 
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Dynafit script used to determine KCu(I) in competition experiment between FrmR and BCA 

 
[task] 

 

data = equilibria 

task = fit 

 

[components] 

; C = Cu(I) 

; B = BCA 

; W = 1-2 protein Cu(I) sites 

; X = 3-4 protein Cu(I) sites 

; Y = 5-8 protein Cu(I) sites 

 

[mechanism] 

 

     C + B + B <==> CB2     :    Keq1   association 

     C + W <==> CW          :    Keq2   association  

     C + X <==> CX          :    Keq3   association  

     C + Y <==> CY          :    Keq4   association  

 

[concentrations](M) 

 

B = [BCA] 

W = [protein monomer] 

X = [protein monomer] 

Y = [protein monomer]X 2 

 

[constants] 

 

Keq1 = KCu(I)
BCA

, Keq2 = hypothesised value?,  Keq3 = hypothesised 

value?,  Keq4 = hypothesised value?  

 

[response] 

 

CB2 = final ΔAbs562 ? 

 

[equilibria] 

 

variable C 

offset = auto 
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Dynafit script used to determine KCu(I) in competition experiment between E64HFrmR and 

BCA 

 
[task] 

 

   data = equilibria 

   task = fit 

 

[components] 

; C = Cu(I) 

; B = BCA 

; W = 1-2 protein Cu(I) sites 

; X = 3-4 protein Cu(I) sites 

; Y = 5-6 protein Cu(I) sites 

; Z = 7-8 protein Cu(I) sites 

 

[mechanism] 

     C + B + B <==> CB2     :    Keq1   association 

     C + W <==> CW          :    Keq2   association  

     C + X <==> CX          :    Keq3   association  

     C + Y <==> CY          :    Keq4   association  

     C + Z <==> CZ          :    Keq5   association  

 

[concentrations](M) 

B = [BCA] 

W = [protein monomer] 

X = [protein monomer] 

Y = [protein monomer] 

Z = [protein monomer] 

 

[constants] 

 

Keq1 = KCu(I)
BCA

, Keq2 = hypothesised value ?,  Keq3 = hypothesised 

value?,  Keq4 = hypothesised value?, Keq5 = hypothesised value? 

 

[response] 

 

 CB2 = final ΔAbs562 ? 

 

[equilibria] 

 variable C 

 offset = auto 
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Dynafit script used to determine KZn(II) in competition experiment between FrmR proteins 

and mag-fura-2 

 
[task] 

 

data = equilibria 

task = fit 

 

[components] 

; Z = Zn(II) 

; M = Mag-fura2  

; P = 1-3 protein Zn(II) sites                                              

 

 

[mechanism] 

 

Z + M  <==> ZM     :    Keq1   dissociation 

Z + P  <==> ZP     :    Keq2   dissociation 

Z + ZP <==> ZZP     :    Keq3   dissociation    

Z + ZZP <==> ZZZP     :    Keq4   dissociation   

 

 

 [concentrations](M) 

 

M = [mag-fura-2] 

P = [protein monomer]  

    

  

[constants] 

 

Keq1 = KZn(II)
mag-fura-2

, Keq2 = hypothesised value?, Keq3 = 

hypothesised value?, Keq4 = hypothesised value? 

 

 

[Response] 

 

ZM = - final ΔAbs366? 

 

 

[equilibria] 

 

variable Z 

offset = auto 
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Dynafit script used to determine KZn(II) in competition experiment between FrmR proteins 

and quin-2 

 
[task] 

 

data = equilibria 

task = fit 

 

[components] 

; Z = Zn(II) 

; Q = Quin-2  

; P = 1-3 protein Zn(II) sites                                              

 

[mechanism] 

 

Z + Q  <==> ZQ     :    Keq1   dissociation 

Z + P  <==> ZP     :    Keq2   dissociation 

Z + ZP <==> ZZP     :    Keq3   dissociation    

Z + ZZP <==> ZZZP     :    Keq4   dissociation   

 

 [concentrations](M) 

 

Q = [quin-2] 

P = [protein monomer]  

    

 [constants] 

 

Keq1 = KZn(II)
quin-2

, Keq2 = 0.002?, Keq3 = 0.002?, Keq4 = 0.002? 

 

[Response] 

 

ZQ = - final ΔAbs265? 

 

 

[equilibria] 

 

variable Z 

offset = auto 
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Dynafit script used to determine KDNA
apo-protein

 of FrmR and RcnR proteins
 
by fluorescence 

anisotropy (FA)  
 

[task] 

 

data = equilibria 

task = fit 

 

[components] 

; P = protein monomer 

; D = DNA 

 

[mechanism] 

 

P + P + P + P <==> P4     :    Keq1   dissociation 

     P4 + D <==> (P4)D     :    Keq2   dissociation 

     P4 + (P4)D <==> (P4)2D     :    Keq2   dissociation 

      

      

[concentrations](nM) 

 

D = 10 

 

[constants] 

 

Keq1 = 0.00000000001 

Keq2 = supposed KDNA
apo-protein

? 

 

   

[Response] 

 

(P4)D = (final Δrobs
apo
)/2 

 

(P4)2D = final Δrobs
apo
? 

 

[equilibria] 

variable P 

offset = auto 

 

Ref.: Liu T. et al. 2008
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Dynafit script used to determine KDNA
effector-protein

 of FrmR and RcnR proteins
 
by 

fluorescence anisotropy (FA)  
 

[task] 

 

data = equilibria 

task = fit 

 

[components] 

; P = protein monomer 

; D = DNA 

 

[mechanism] 

 

 P + P + P + P <==> P4     :    Keq1   dissociation 

      P4 + D <==> (P4)D     :    Keq2   dissociation 

      P4 + (P4)D <==> (P4)2D     :    Keq2   dissociation 

      

    

[constants] 

 

Keq1 = 0.00000000001 

Keq2 = supposed KDNA
effector-protein

? 

    

[concentrations](nM) 

 

D = 10 

   

[Response] 

 

(P4)D = (mean final Δrobs
apo
)/2 

 

(P4)2D = mean final Δrobs
apo

  

 

[equilibria] 

variable P 

offset = auto 

 

 

 

 

 

Ref.: Liu T. et al. 2008
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AA n.mole/ml ug/ml mg/ml

Cysteic acid - - -

Hydroxyproline - - -

Aspartic acid 784 90.3 0.0903

Threonine 559 56.5 0.0565

Serine 967 84.2 0.0842

Glutamic acid 2720 351 0.351

Proline 783 76.0 0.0760

Glycine 1190 67.9 0.0679

Alanine 1770 126 0.126

Cysteine, est 190 19.6 0.0196

Valine 1110 110 0.110

Methionine 513 67.3 0.0673

Isoleucine 1150 130 0.130

Leucine 2110 238 0.238

Tyrosine 181 29.6 0.0296

Phenylalanine - - -

Histidine 650 89.2 0.0892

Tryptophan - - -

Lysine 763 97.9 0.0979

Arginine 1830 286 0.286

Totals 17300 1920 1.92
 

Table 8. 1 Sample (n = 2) of Amino Acid Analysis after hydrolysis (24 hours at 110 °C) carried 

out on FrmR (AltaBioscience Ltd). Documentation provided by the company states: “Asn and 

Gln are completely converted to Asp and Glu during the acid hydrolysis of the protein. The 

values for Thr and Ser have been corrected for hydrolysis losses of 5% and 10% respectively. 

Trp usually suffers complete loss during acid hydrolysis and is not normally quantified. Cys is 

usually observed as cystine and its recovery is variable using standard hydrolysis conditions. 

The values for His are sometimes affected by co-eluting compounds from the sample. The 

reported values have been rounded off to either 2 or 3 significant figures, depending on peak 

size”. 
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AA n.mole/ml ug/ml mg/ml

Cysteic acid - - -

Hydroxyproline - - -

Aspartic acid 478 55 0.055

Threonine 210 21.2 0.0212

Serine 254 22.2 0.0222

Glutamic acid 844 109 0.109

Proline 74.9 7.27 0.00727

Glycine 279 15.9 0.0159

Alanine 524 37.3 0.0373

Cysteine, est 28.8 6.39 0.00639

Valine 367 36.3 0.0363

Methionine 124 16.3 0.0163

Isoleucine 530 60 0.06

Leucine 603 68.2 0.0682

Tyrosine 58.7 9.58 0.00958

Phenylalanine - - -

Histidine 406 55.8 0.0558

Tryptophan - - -

Lysine 605 77.6 0.0776

Arginine 387 60.5 0.0605

Totals 5770 658 0.658
 

Table 8. 2 Amino acid analysis after hydrolysis (24 hours at 110 °C) carried out on RcnR 

(AltaBioscience Ltd). Documentation provided by the company states: “Asn and Gln are 

completely converted to Asp and Glu during the acid hydrolysis of the protein. The values for 

Thr and Ser have been corrected for hydrolysis losses of 5% and 10% respectively. Trp usually 

suffers complete loss during acid hydrolysis and is not normally quantified. Cys is usually 

observed as cystine and its recovery is variable using standard hydrolysis conditions, therefore 

the value related to cysteic acid has been obtained from separate analysis. The values for His are 

sometimes affected by co-eluting compounds from the sample. The reported values have been 

rounded off to either 2 or 3 significant figures, depending on peak size”. 
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Calculations of protein experimental extinction coefficient 

Accurate extinction coefficient was calculated by using the experimental protein concentration, 

obtained from Amino Acid Analysis (Table 8.4 – 8.5), and the A280 recorded on the same 

sample adopted in the analysis (Figures 8. 1 - 8. 2), in the Lambert-Beer equation (Equation 2). 

FrmR: 

Wavelength (nm)

250 300 350 400

A
b

s

0.0

0.2

0.4

Wavelength (nm)

250 300 350 400
A

b
s

0.0

0.2

0.4I rep                                                     II rep

 

Figure 8. 1 UV-visible spectra of the apo-FrmR samples analysed for Amino Acid Analysis by 

AltaBioscience Ltd, recorded in buffer C500 at pH 7.0. 

I rep 

c = 1.92 mg/ml, equivalent to 188.5 µM (MW
FrmR

 10185.8 Da) 

A280 = 0.371075 

ε280 = 0.371075/(1cm x 0.0001885 M) = 1968.1 M
-1

cm
-1

 

 

II rep 

c = 2.24 mg/ml, equivalent to 219.9 µM (MW
FrmR

 10185.8 Da) 

A280 = 0.425267 

ε280 = 0.425267/(1cm * 0.0002199 M) = 1933.9 M
-1

cm
-1 

 

FrmR extinction coefficient used in this work, 1951 M
-1

cm
-1

, is the average of the two values 

calculated here.  
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Calculations of protein experimental extinction coefficient 

RcnR: 

Wavelength (nm)

250 300 350 400

A
b

s

0.00

0.05

0.10

0.15

 

Figure 8. 2 UV-visible spectrum of the apo-RcnR sample analysed for Amino Acid Analysis by 

AltaBioscience Ltd, recorded in buffer C500 at pH 7.0. 

c = 0.658 mg/ml, equivalent to 65.3 µM (MW
RcnR

 10207.9 Da) 

A280 = 0.158183 

ε280 = 0.158183/(1 cm * 0.0000653 M) = 2422.4 M
-1

cm
-1
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Figure 8. 3 Extracted LC-MS chromatograms of ion transitions (405.193-488.235 Da) monitored 

for the FrmR (A) and E64HFrmR (B) PHSPEDK peptide detected in trypsin digested protein 

samples. These analyses were performed by Dr. Chen and Dr. Huggins (Procter and Gamble 

Mason Business Centre, Cincinnati, Ohio; Section 2.4.10). 
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Figure 8. 4 A UV-visible spectrum of apo-FrmR (412 µM), recorded anaerobically in buffer 

C500 at pH 7.0. B UV-visible spectra of E64HFrmR (~ 12 µM), recorded anaerobically (solid 

black line) and again aerobically (left panel, red line), or upon addition of 250 µM glutathione 

(center panel, red line), or 250 µM formaldehyde (right panel, red line) after 16 h incubation. 

Buffer C500, pH 7.0. C UV-visible spectra of E64HFrmR* (~ 12 µM), recorded anaerobically 

(solid black line) and again aerobically (left panel, red line), or upon addition of 250 µM 

glutathione (center panel, red line), or 250 µM formaldehyde (right panel, red line) after 16 h 

incubation. Buffer C500, pH 7.0.  
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Figure 8. 5 Fluorescence emission at 304 nm (λex = 280 nm) of E64HFrmR* (10.21 µM) and 

following titration with ZnCl2. Fluorescence is quenched upon addition of ~ 1 molar equivalent 

of zinc. 
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Figure 8. 6 A Sample of control titration of BCA (40 µM) with CuCl [> 95% Cu(I)] monitored 

anaerobically by UV-vis spectrophotometer. System conditions: buffer C500, pH7.0. B Sample 

of control titration of BCS (10 µM) with CuCl [> 95% Cu(I)] monitored anaerobically by UV-

vis spectrophotometer. System conditions: buffer C500, pH 7.0. 
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Figure 8. 7 A Sample of control titration of mag-fura-2 (42.5 µM) with ZnCl2 monitored 

anaerobically by UV-vis spectrophotometer. System conditions: buffer C500, pH7.0. B Sample 

of control titration of quin-2 (13.4 µM) with ZnCl2 monitored anaerobically by UV-vis 

spectrophotometer. System conditions: buffer C500, pH 7.0. 
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Figure 8. 8 A frmRAPro (10 nM) was anaerobically titrated with a purified stock of E64HFrmR 

not displaying the shoulder at Abs ~ 300 nm (herein called E64HFrmR*) in the presence of 5 

mM EDTA. DNA binding was monitored by fluorescence anisotropy. Solid line represents 

simulated curves produced from the average KDNA determined across the experiment replicates 

shown. Symbol shapes represent individual experiments. Data were fit to a model describing a 

2:1 E64HFrmR* tetramer (non-dissociable):DNA stoichiometry. B frmRAPro-T/A-mod (10 

nM) was anaerobically titrated with E64HFrmR* (protein prep not displaying the shoulder at 

Abs ~ 300 nm) in the presence of 5 mM EDTA. Experiment was carried out by fluorescence 

anisotropy.     
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Figure 8. 9 A frmRAPro (10 nM) was anaerobically titrated with E64HFrmR* in the presence of 

5 µM ZnCl. The protein was incubated with 1.2 molar equivalents of ZnCl2 and EDTA was 

omitted. B Comparison of the anisotropy change upon titration of frmRAPro with apo-

E64HFrmR* (filled circles) and Zn(II)-E64HFrmR* (empty circles). DNA binding was 

monitored by fluorescence anisotropy. Symbol shapes represent individual experiments. Data 

were fit to a model describing a 2:1 E64HFrmR* tetramer (non-dissociable):DNA 

stoichiometry. Solid line represents simulated curves produced from the average KDNA 

determined across the experiment replicates shown. 
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Pro2

Cys35

 

Figure 8. 10 Surface of effector-binding site in apo-E64HFrmR crystal structure. Color-coding 

refers to different chain (chain A in green, chain B in cyan) and atoms (oxygen in red, nitrogen 

in blue and sulfur in yellow). This is not an electrostatic representation as this would not allow 

distinction between oxygen and sulphur atoms 
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