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Abstract 

 

Here I consider the effect of land-use change by urbanisation on organic carbon (C) 

storage within three study areas in north-east England. I found that the contiguous urban 

extent of Darlington, Durham and Newcastle had increased by 67%, 229% and 65% 

respectively between 1945 and the present, and that the total C stored within the land 

occupied had decreased by around one-third. Decreases in C storage have occurred due to the 

replacement of agricultural land with urban land-uses of lower C storage value; notably, there 

have been large gains in low- to moderate-density residential areas and commercial land-uses. 

The greatest loss of C has been from the soil C pool, as the surface area occupied by soil, and 

soil depth, are greatly reduced in built urban land-uses compared to agriculture. Next, I 

investigated the spatial congruence between C storage and biodiversity in an urbanised area, 

using birds as a biodiversity indicator taxon. I found that land-uses with greatest C storage 

value per unit area also had the highest bird species richness and diversity, whilst land-uses 

with lowest C storage value had among the lowest bird species richness and diversity. 

However, the relationship was not straightforward; most notably, species richness and 

diversity were high in low- to moderate-density housing, despite these land-uses having low C 

storage value. Beta-diversity increased among land-uses, further highlighting the biodiversity 

value of some moderate to low C storage land-uses within the urban matrix. When not 

categorised by land-use, the overall spatial relationship between C storage and species 

richness and diversity was positive, and tree and woody vegetation C pools had the strongest 

positive relationship with bird species richness and diversity. I discuss the results with respect 

to UK urban planning options aimed at meeting both C emissions and biodiversity 

conservation targets, whilst also considering the continued well-being of increasing urban 

human populations.  
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Chapter 1: 

Introduction 

 

1.1 Ecosystem services: what, when and why? 

Humanity has always been dependent upon the services provided by Earth’s biosphere, 

and it has long been recognised that populations are limited by restrictions imposed upon them 

by nature. As long ago as 1798, Thomas Robert Malthus (1798, reprinted 2008) warned of an 

impending food shortage brought about by human population growth (Johnson, 2000), and 

one-hundred and sixty years later, Rachel Carson’s Silent Spring (1962) epitomised the 

impairment to human psychological well-being as nature and the environment succumbed to 

humanity’s endeavours to nourish a burgeoning population. A continued assault on 

ecosystems in a quest for food and fuel has damaged  the public service functions of those 

systems (Ehrlich and Mooney, 1983). These functions are now widely referred to as 

ecosystem services, and simply put, are the outputs from ecosystems from which humans 

derive benefits (Costanza et al., 1997).  

Gretchen Daily’s (1997) Nature’s Services is considered a landmark publication 

representing modern-day ecosystem service science, and its arrival coincided with increasing 

political concern for loss of global service delivery; concern that resulted in the production of 

the Millennium Ecosystem Assessment (MA; 2005a). The MA was requested in 2000 by the 

United Nations (UN) and completed in 2005 with input from over 1300 scientists worldwide. 

Its most powerful statement is that 60% of the ecosystem services it examined are being 

degraded or lost, largely at the expense of human activities. The MA provided a scientific 

basis for the necessary actions to encourage the conservation and sustainable use of 

ecosystems and their contributions to human well-being. Furthermore, by emphasising the 
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importance of environmental accounting, the MA transported ecosystem service science into 

the field of economics (Barbier et al., 2009).  

 The MA distinguishes four broad headings under which ecosystem service 

contributions to human well-being might be ordered: provisioning services, supporting 

services, regulating services and cultural services. This categorisation has since been criticised 

for being overly generic and open to ambiguity, and as such, is of limited use to both 

economists (Boyd and Banzhaf, 2007) and landscape managers (Wallace, 2007) for providing 

assistance in placing value on ecosystem services. Fisher and Turner (2008) went on to 

separate the MA’s headings into intermediate and final ecosystem services. This structure is 

adopted by the UK’s response to the MA, the UK National Ecosystem Assessment (UKNEA; 

2011), and is presented here in Table 1.1. Despite its potential shortcomings, the MA’s 

categorisation emphasised, for the first time (Barbier et al., 2009), regulating services; 

services that regulate the earth’s ability to react to environmental shock and stress.  
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Table 1.1 A classification system for ecosystem services derived from the Millennium Ecosystem 

Assessment (MA), with modifications by Fisher and Turner (2008) and the UK National Ecosystem 

Assessment (UKNEA; 2011). Final ecosystem services contribute directly to goods and services 

valued by people; intermediate services and ecosystem processes underpin final ecosystem services, 

but are not directly linked to goods and services. Provisioning and cultural services are always final 

ecosystem services, regulating services may be final or intermediate, and supporting services are 

always intermediate services/ecosystem processes (taken from UKNEA, 2011). 

Supporting services Primary production Provisioning services Crops, livestock, fish (food)

Soil formation

Water cycling Water supply (domestic and 

industrial)

Pollination Pollination

Climate regulation (equable climate)Regulating services

Nutrient cycling

Decomposition

Weathering

Climate regulation

Environmental settings (recreation, 

tourism, spiritual)

Final ecosystem services (example of goods)Intermediate services/ecosystem processes

Wild species diversity 

(bioprospecting and medicines)

Trees, standing vegetation, peat 

(fibre, fuel, carbon sequestration)

Wild species diversity (recreation)Cultural services

Disease and pest regulation

Noise regulation

Hazard regulation (erosion control, 

flood control)

Purification in soils, air and water 

(pollution control)Ecological interactions

Evolutionary processes

Wild species diversity

Disease and pest regulation

 

 

1.2 Carbon storage: a regulating ecosystem service 

Human activities have contributed, and continue to contribute, to the increasing 

greenhouse gas (GHG) concentrations in the atmosphere. The Intergovernmental Panel on 

Climate Change (IPCC; 2013) states with very high confidence that anthropogenic GHG 

emissions have substantially increased radiative forcing, with effects on global temperatures 

and extreme weather and climate events, since the pre-industrial era. The majority of the 

increase in radiative forcing is due to increases in atmospheric carbon dioxide (CO2). These 
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changes to the earth’s climate are intensifying the impact of various other stressors on 

ecological systems, such as habitat-loss and degradation, pollution, and invasive species. The 

combination of impacts is causing changes to ecosystem processes, with potentially adverse 

implications for people (IPCC, 2007; Grimm et al., 2013). Therefore, any natural process that 

alleviates or buffers the rate of climate change can be viewed as a regulating ecosystem 

service. Carbon (C) storage is one such service.  

The most influential international agreement concerning mitigation against the 

ecological impacts of climate change is the Kyoto Protocol to the United Nations Framework 

Convention on Climate Change (UNFCCC). This agreement is intended to reduce the pace of 

anthropogenic contributions to atmospheric CO2
 
concentrations by committing its parties to 

set internationally binding emissions targets (Diaz et al., 2009). Aside from enhancement of 

energy efficiency and direct emissions reductions from industrial processes, agriculture and 

waste, the Kyoto Protocol calls for protection and enhancement of GHG sinks and reservoirs, 

making a provision for Annex I parties (i.e. industrialised countries that were members of the 

Organisation for Economic Co-operation and Development in 1992 [OECD parties], plus 

countries with economies in transition [EIT parties]) to account for afforestation, 

reforestation, and deforestation (ARD), and other land use, land-use change, and forestry 

(LULUCF) activities in meeting their commitments to the agreement (United Nations [UN], 

1998; IPCC, 2000). 

 

1.3 Land use, land-use change and forestry 

The major natural mechanisms driving C release into the atmosphere in terrestrial 

ecosystems include plant respiration and decay of organic matter, and the major natural 

mechanism of C uptake from the atmosphere is photosynthesis by vegetation (Churkina, 



6 
 

2013). Perennial or woody vegetation may retain C within relatively long-lived sinks, thus, 

stalling its eventual release into the atmosphere, and the C within detritus may accumulate as 

an organic component of soils. The balance between C release and uptake within a given area 

of the earth’s surface is therefore, dependent upon its land cover, as the function of a 

particular land-cover type depends upon the amount of C that it sequesters and stores, and the 

magnitude of its C exchange with the atmosphere (Churkina, 2013). By altering the balance 

and composition of land-cover types, humanity is changing the natural rate of exchange of 

atmospheric C with the terrestrial biosphere through land-use change (Meyer and Turner, 

1992; Dale, 1997; Bolin and Sukumar, 2000; IPCC, 2000; Robinson et al., 2013).  

Land use is defined by the Food and Agriculture Organization of the UN (2005) as the 

arrangements, activities and inputs people undertake in a certain land-cover type to produce, 

change or maintain it. Up until the 1950s, land-use change was the primary source of human-

induced CO2 (Houghton and Skole, 1990). Contributions made by fossil fuel burning 

increased rapidly after this period, but at the turn of the century, emissions attributable to 

land-use change activities remained responsible for approximately 20% of the 7.9 Gt of C 

released annually within global human-induced GHG emissions (IPCC, 2000; Schlamadinger 

et al., 2007). Of the total annual C emissions, it is estimated that nearly 30% is taken up by 

terrestrial ecosystems (IPCC, 2000). An equal amount is taken up by the earth’s oceans, and 

the remainder remains stored in the atmosphere (IPCC, 2000), thus, contributing to radiative 

forcing and global climate change. 

The potential for terrestrial photosynthesis and soil respiration to buffer C emissions 

release, and the importance of vegetation and soil C sinks in the regulation of global warming 

and climate change, are recognised in the Kyoto Protocol. Considering the influence that land-

use activities have upon C emissions and removals, and in turn, their potential to be 
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influenced by policy measures, it is vital to understand how C stocks fluctuate in response to 

land-use change activities (IPCC, 2000; Schlamadinger et al., 2007). 

 

1.4 Land-use change by urbanisation 

At present, urban areas occupy only a small proportion of the earth’s total land surface 

area. Current estimates vary from less than 1% up to 3%, depending on the set of standards 

used for urban characterisation (Liu et al., 2014). However, global urban human populations 

have increased dramatically during the past 100 years (Alberti and Hutyra, 2013), and now 

more than half of the world’s population live within towns, cities and urban agglomerations 

(UN, 2012). Consequently, in recent decades, the urban environment has become the fastest 

growing land-use type (Antrop, 2000; Hansen et al., 2005; Radford and James, 2013). 

Furthermore, because it results in changes to hydrology, biogeochemistry, climate and 

biodiversity (Grimm et al., 2008), and because of its level of permanence (Seto et al., 2012), 

urbanisation has become one of the most important land-use change processes in the world 

today (Berland, 2012), and next to climate change, the biggest environmental challenge of our 

time (United Nations Secretariat, 2012). 

Despite their small area of land surface occupation, urban areas have high C footprints 

(Svirejeva-Hopkins et al., 2004; Trusilova and Churkina, 2008). Indeed, it is estimated that 

70% of all anthropogenic C releases are attributable to urban environments (International 

Energy Agency [IEA], 2008; Churkina et al., 2010). The process of urbanisation also 

contributes to emissions release through loss or reduction of longer-term C stocks made by 

radical changes to land cover (Hutyra et al., 2011). This is particularly so in temperate 

forested regions (Imhoff et al., 2004; Pouyat et al., 2006), where the establishment or 

expansion of urban environments involves the replacement of natural vegetation or 
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agricultural habitat with impervious artificial surfaces, turf, gardens and scattered trees 

(Churkina et al., 2010; Berland, 2012).  

Until recently, urban areas have been omitted from estimates of emissions release by 

land-use change (Houghton, 2013). However, as urban human populations are set to continue 

rising into the foreseeable future, with a forecasted 67% of the world’s estimated 9.6 billion 

people living in towns and cities by 2050 (United Nations [UN], 2012, 2013), and with global 

expansion of urban areas currently being twice as rapid as their population growth (Angel et 

al., 2011; Seto et al., 2011), understanding the impact of urban land-use and the process of 

urbanisation on global and regional C stocks and cycles is an increasingly important area of 

research. 

 

1.5 Post-war urbanisation in the United Kingdom 

The inter-war years experienced a dramatic 40% increase in urban extent in the UK 

(Ward, 1994), and this trend continued following the end of the Second World War. Inner-city 

housing was cleared and rebuilt at lower densities, and council estates were created at the 

periphery of towns and cities to accommodate the cleared dwellers (Couch and Karecha, 

2006). This coincided with a surge in the development of privately occupied dwellings (Couch 

and Karecha, 2006), creating the sprawling housing estates of suburbia, which came largely at 

the expense of agricultural land (Best, 1981).  

Estimates of the extent of urbanised area in England and Wales were assisted upon the 

introduction of the 1947 Town and Country Planning Act. Under the Act, planning authorities 

were required to produce a comprehensive account of existing and proposed acreages under 

various forms of land-use, including any significant urban areas, which were defined as cities 

and towns with populations of over 10,000 people (Best, 1981). Initial estimates of urban land 
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area in the early 1950s were approximately 1,458,000 ha in England and Wales and 

190,000 ha in Scotland (Best and Coppock, 1962; Best, 1981). In the ensuing decades, at least 

up until the early-1970s, the London region, the central urban region (notably, Lancashire and 

Cheshire) and outliers in Durham and parts of South Wales, maintained a relatively high rate 

of agricultural land conversion to urban uses (Best, 1981). 

Although the inefficiencies of urban sprawl were recognised early, resulting in the 

Green Belt policy for England in 1955, it was not until the late-1980s that policy was 

reinforced in response to environmental concern over the loss of greenfield land (Couch and 

Karecha, 2006) and the belief that sprawling urban settlements promote fuel consumption and 

C emissions (Echenique et al., 2012). By the mid-1990s, UK government had set targets 

stating that at least half of all new housing would be built on previously developed urban land 

(Couch and Karecha, 2006), the so-called brownfield sites. Hence, since 2000, UK policy has 

actively promoted the process of urban densification (Office of the Deputy Prime Minister 

[ODPM], 2005, 2010; Dallimer et al., 2011; UKNEA, 2011). 

Today, the area under urban and developed land-use in the UK is estimated at 

2,748,000 ha, and accounts for approximately 10% of the total land area (Khan et al., n.d.). 

The conversion of greenfield land to urban land-uses accounts for around 5,000 ha per year, 

which is about one-third that of the post-war years leading up to 1975 (Bibby, 2009; cf. Best, 

1981). Furthermore, of the greenfield land developed between 2000 and 2006, approximately 

20% was lost from within the urban matrix, and consisted mainly of recreation (Bibby, 2009). 

Indeed, in 2011, 68% of new residential dwellings within England were built on brownfield 

sites, and 53% of the land utilised was brownfield (Department for Communities and Local 

Government [DCLG], 2013). Consequently, growth in urban extent has slowed over the last 

two decades, and is now less than at any time in the inter-war years and the first three decades 

following the end of the Second World War (Bibby, 2009). However, concerns have been 
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raised over the economic and technical feasibility of continued urban densification, as well as 

over its social acceptability (Breheny, 1997; Couch and Karecha, 2006; Echenique et al., 

2012). Indeed, the introduction of the National Planning Policy Framework (NPPF; DCLG, 

2012), which sets out UK government’s revised planning policy for England, has initiated 

debate over policy protection of Green Belt land (Smith, 2014), and further raises concern 

over the sustainability of urban densification leading into the future. 

 

1.6 Carbon storage in urban environments 

The role of urban vegetation and soils as C sinks in global and regional C cycles has, 

until recently, remained largely neglected (Churkina, 2008), and urban areas have been 

recognised only as a source of emissions (Hutyra et al., 2011). Within early national 

inventories of C stored within the vegetation and soils of the UK, Milne and Brown (1997) 

reported a C density of zero tonnes per ha for urban and suburban land-use, and Bradley et al. 

(2005) assumed a soil C content of zero tonnes per ha for built-over urban areas, and that 

suburban soils store half that of adjacent pasture. However, these assumptions about urban C 

stores were made whilst mapping the land on a coarse-scale 1 km
2
 grid, and further studies 

based upon finer-scale land-cover data in the United States (Nowak and Crane, 2002; Pouyat 

et al., 2006; Churkina et al., 2010; Hutyra et al., 2011), Germany (Strobach and Haase, 2012) 

and the United Kingdom (Davies et al., 2011; Edmondson et al., 2012; Edmondson et al., 

2014a, 2014b), have produced estimates indicating that a substantial store of C exists within 

urban vegetation and soils. This contradiction arises because urbanisation typically results in a 

matrix of high- and low-density built-up areas, often mixed with patches of fragmented 

natural or semi-natural habitat and other greenspace (Cadenasso et al., 2007; Hutyra et al., 

2011). Fine-scale studies produce greater C storage estimates, as they identify patches of high 

C storage within the urban matrix that coarse-scale studies are prone to overlook (Davies et 
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al., 2013). However, comparisons between studies, and between their respective study sites, 

are rarely possible, because variation within factors such as climate, soil-type, population 

density, land management and history of urbanisation influence the C storage capacity of 

settlements (Davies et al., 2013), as will the author’s definition of urban land-use (Raciti et 

al., 2012) and the classification in how they combine social, physical and biotic components 

(Davies et al., 2013). 

Although the process of urbanisation may initially reduce the C storage of an area of 

land, the urban environment may regain C stocks over time as the vegetation recovers (Zhao 

et al., 2007; Berland, 2012), until eventually, stores within certain areas of the urban matrix 

may surpass those of the land cover they have replaced. This is said to be especially so of tree 

cover following urbanisation of former agricultural land (Berland, 2012); the latter has been 

reported to be both less productive in terms of primary productivity (Zhao et al., 2007; but see 

Imhoff et al., 2004) and to contain less soil organic carbon (SOC; Edmondson et al., 2014b) 

than some land-cover types within adjacent urban areas. Ultimately however, the outcome of 

such comparison may be dependent upon the scale of analysis, and the areal extent of patches 

of high C storage within the urban matrix. For example, although Edmondson et al. (2014b) 

found that urban greenspace soils in Leicester, UK contained greater SOC per unit area than 

adjacent agricultural land, when totalled across the full extent of the city, so as to incorporate 

the entire matrix of urban land-cover types, greenspace or otherwise, the area occupied by the 

city would in fact store less SOC than had the area remained in agricultural use
1
. As such, it 

remains unclear whether the C storage capacity of the entire area occupied by a matrix of 

urban land-use types is greater, or less, than had it remained in non-urban use. 

1
Edmondson et al. (2014b) estimated the average soil organic carbon (SOC) in the greenspace of Leicester, UK 

to be 9.9 kg m
-2 

(to 21 cm depth). When multiplied by the area of greenspace within the city reported by the 

study (41.5 km
2
), this amounts to 410.8 million kg SOC across the city (soil capped by artificial surfaces was 

excluded from their estimate). The same study estimated SOC within arable land surrounding Leicester to be 

7.1 kg m
-2

.
 
When multiplied by the total area of the city as reported by the study (73 km

2
), this amounts to 

518.3 million kg SOC. 
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With the extent of urban area set to continue increasing into the foreseeable future, 

understanding the historical impact of land-use change by urbanisation on C storage can help 

inform planning decisions and aid efforts to meet with UK climate change mitigation policy 

aimed at delivering an 80% reduction in GHG emissions (relative to the 1990 baseline) by 

2050 (Climate Change Act 2008; Ostle et al., 2009). 

 

1.7 Aims and objectives 

In Part 1 of this thesis, I will estimate historical land-use change by urbanisation in three 

study areas in north-east England between 1945 and the present, and take this as a proxy for 

changes in the vegetation C and SOC storage of the study areas. This was a period of major 

expansion in the towns, cities and infrastructure of the country, which coincided with major 

reform in, and intensification of, agricultural practices (Robinson and Sutherland, 2002; 

UKNEA, 2011), leading to a loss of agriculture at the expense of urban land-use types. Few 

studies have attempted to map such long-term changes in C storage as a consequence of land-

use change. A recent exception is provided by Jiang et al. (2013), who recorded changes in 

the extent and spatial pattern of C stores across the county of Dorset, UK between the 1930s 

and 2000. However, at a resolution of 1 ha, their study is too broad to detect the fine-scale 

changes caused by increases in the extent of urban land-use types. This present study 

therefore, is unique in this respect. 

The aims of the study will be achieved under the following objectives: 

1) Utilising high resolution satellite imagery and newly digitised historical photography, 

I will produce land-use maps of the contiguous urban extent of three representative 

urban study areas, Darlington, Durham and Newcastle, in north-east England, which 
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show the extent and distribution of assigned urban and non-urban land-use categories 

in 1945 and the present. 

2) I will estimate the mean vegetation C and SOC storage per unit area of each of the 

assigned land-use categories from vegetation and soil samples collected from the field, 

and will estimate the total historical and contemporary C storage capacity of the study 

areas using the contemporary and historical land-use maps. 

3) I will calculate the change in contiguous urban extent, and in the C storage capacity of 

the land within the historical and contemporary land-use maps of the study areas.  

4) I will discuss the results and findings in terms of historical and current policy 

regarding land-use change by urbanisation, and their implications for the future. 

 

 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 2: 

Urbanisation and carbon storage in north-east England  

 

ABSTRACT 

Context: Human land-use change is affecting the rate of exchange of atmospheric 

carbon (C) with the terrestrial biosphere, with impacts on climate. Urbanisation is one of the 

most important land-use change processes worldwide today, and the urban environment is the 

fastest growing land-use type. As urban human populations are set to continue rising into the 

foreseeable future, understanding the impact of urban land-use and the process of urbanisation 

on C stocks is an increasingly important area of research.  

Aims: I measured the areal change in i) contiguous urban extent, and ii) different urban 

land-use categories in three towns and cities in north-east England between 1945 and the 

present, a period of major expansion in the urbanised areas of the UK.  

Methods: I combined contemporary satellite imagery with historical aerial photography 

to categorise urban and non-urban land-uses. C storage values were calculated from data 

collected in the field and applied to land-use categories. The effect of urban expansion and 

fine-scale land-use change within the urban matrices on the C storage value of the land 

occupied was then evaluated.  

Results: The urban extent of Darlington, Durham and Newcastle increased by 67%, 

229% and 65% respectively between 1945 and the present, and consequently, the C storage 

value of the land occupied decreased by 34%, 33% and 31% respectively. Decreases in the C 

storage of the study areas occurred through loss of surrounding agricultural land and 

replacement with urban land-uses of lower C storage value; notably, there were large gains in 

low- to moderate-density residential and commercial land-uses. Loss of soil organic carbon 
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(SOC) was the dominant driver of decreases in C storage, as the surface area occupied by soil, 

and soil depth, were reduced in many urban land-use categories compared to agriculture. 

Increases in the area of urban woodland off-set some C losses. Indeed, increases in urban tree 

cover more than compensated for loss of hedgerow trees in the former agricultural 

landcscape, emphasising the mitigation value of urban trees. However, gains from urban trees 

were small in comparison to SOC losses.  

Conclusion: The contiguous extents of the three urban study areas increased 

dramatically between 1945 and the present, and the associated changes to land-cover reduced 

C storage within the vegetation and soils of the land occupied by approximately one-third. 

Modification to UK planning policy, implemented in recent decades, has promoted urban 

densification, which has succeeded in slowing the outward growth of towns and cities, with a 

potential incidental reduction in the rate of C storage loss. However, there are economic, 

technical and social concerns over continued densification. The way we choose to grow our 

cities leading into the future will have implications for national and international C emissions 

targets 
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2.1 INTRODUCTION 

Anthropogenic processes, notably land-use change, are changing the natural rate of 

exchange of atmospheric carbon (C) with the terrestrial biosphere, with impacts on climate 

(Meyer and Turner, 1992; Dale, 1997; Bolin and Sukumar, 2000; Intergovernmental Panel on 

Climate Change [IPCC], 2000; Robinson et al., 2013). In 1945, land-use change was the 

primary source of human-induced carbon dioxide (CO2) release (Houghton and Skole, 1990). 

Emissions by fossil fuel burning increased dramatically after this time, but at the turn of the 

century, emissions attributable to land-use change activities remained responsible for 

approximately 20% of the annual CO2 within global human-induced greenhouse gas (GHG) 

emissions (IPCC, 2000; Schlamadinger et al., 2007). Land-use change also influences the 

spatial distribution of terrestrial C sources and sinks within the landscape (Canadell, 2002; 

Müller et al., 2007). The Kyoto Protocol to the United Nations Framework Convention on 

Climate Change (UNFCCC) calls for protection and enhancement of GHG sinks and 

reservoirs, making a provision for Annex I parties (industrialised countries that were members 

of the Organisation for Economic Co-operation and Development in 1992 [OECD parties], 

plus countries with economies in transition [EIT parties]) to account for land use, land-use 

change, and forestry (LULUCF) activities in meeting their commitments to the agreement 

(United Nations [UN], 1998; IPCC, 2000; Dyson and Mobbs, 2009). 

One of the most important land-use change processes worldwide today is urbanisation 

(Berland, 2012); a highly dynamic process causing rapid alteration of the landscape (Antrop, 

2000) with a high degree of permanence (Seto et al., 2012). Globally, urban human 

populations have increased dramatically over the past 100 years (Alberti and Hutyra, 2013), 

and the urban environment has become the fastest growing land-use type (Antrop, 2000; 

Hansen et al., 2005; Radford and James, 2013). Urbanisation results in changes to local and 

regional hydrology, biochemistry, climate and biodiversity (Grimm et al., 2008), and despite a 
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small area of land surface occupation, urban areas have disproportionately high C footprints 

(Svirejeva-Hopkins et al., 2004; Trusilova and Churkina, 2008). Indeed, it is estimated that 

70% of all anthropogenic C releases are attributable to urban environments (International 

Energy Agency [IEA], 2008; Churkina et al., 2010). The process of urbanisation also 

contributes to emissions release through loss or reduction of longer-term C stocks made by 

radical changes to land cover (Hutyra et al., 2011), where the establishment or expansion of 

urban environments involves the replacement of natural vegetation or agricultural habitat with 

impervious artificial surfaces, turf, gardens and scattered trees (Churkina et al., 2010; 

Berland, 2012). As urban human populations are set to continue rising into the foreseeable 

future, with a forecasted 67% of the world’s estimated 9.6 billion people living in towns and 

cities by 2050 (UN, 2012, 2013), and with global expansion of urban areas being twice as 

rapid as their population growth (Angel et al., 2011; Seto et al., 2011), understanding the 

impact of urban land use and the process of urbanisation on global and regional C stocks and 

cycles is an increasingly important area of research. 

There was a period of major expansion in the towns, cities and infrastructure of the UK 

in the decades following the end of the Second World War. This coincided with major reform 

in, and intensification of, agricultural practices (Robinson and Sutherland, 2002; UK National 

Ecosystem Assessment [UKNEA], 2011), and led to loss of agricultural land at the expense of 

outwardly expanding urban areas. Early environmental concern over the loss of greenfield and 

rural landscapes led, in 1955, to the Green Belt policy for England. More recently, in the 

1990s, UK government set targets stating that at least half of all new housing should be built 

on previously developed urban land (Couch and Karecha, 2006); so-called urban 

densification. These policies have served to slow the rate of urban expansion, especially in 

recent years, when conversion of greenfield into urban land-uses reduced to approximately 

one-third the annual rate of the post-war years leading up to 1975 (Bibby, 2009). However, 
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concerns have been raised over the economic and technical feasibility of continued urban 

densification, as well as over its social acceptability (Breheny, 1997; Couch and Karecha, 

2006; Echenique et al., 2012). Indeed, the introduction of the National Planning Policy 

Framework (NPPF; Department for Communities and Local Government [DCLG], 2012), 

which sets out UK government’s revised planning policy for England, has initiated debate 

over policy protection of Green Belt (Smith, 2014), and raises further concerns over the 

sustainability of urban densification leading into the future. Little is known of the change to C 

stores within the vegetation and soils of urban and non-urban land-uses during phases of rapid 

outward urban growth. However, such information may influence decisions regarding 

potential reinforcement or relaxation of densification policy. 

Early national inventories of biological C stored within the vegetation and soils of Great 

Britain report a C density of zero tonnes per hectare for urban areas (Milne and Brown, 1997), 

or assume a soil organic carbon (SOC) content of half that of adjacent pasture (Bradley et al., 

2005). However, these assumptions about urban C stores were made using a coarse-scale 

1 km
2
 grid, and further studies based upon finer-scale land cover data in the United States 

(e.g. Nowak and Crane, 2002; Pouyat et al., 2006; Churkina et al., 2010; Hutyra et al., 2011), 

Germany (e.g. Strobach and Haase, 2012) and the United Kingdom (e.g. Davies et al., 2011; 

Edmondson et al., 2012, 2014a, 2014b), have produced estimates indicating that substantial C 

stores currently exist within urban areas. This is because urbanisation typically results in a 

matrix of high- and low-density built-over areas, often inter-mixed with patches of 

fragmented natural or semi-natural habitat and other greenspace (Cadenasso et al., 2007; 

Hutyra et al., 2011). Fine-scale studies produce greater C storage estimates, as they identify 

patches of high storage within the urban matrix that coarse-scale studies are prone to overlook 

(Davies et al., 2013). Moreover, the C storage value of some land covers within the urban 

matrix may surpass those of the land cover they have replaced. This is said to be especially so 
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of tree cover following urbanisation of former agricultural land (Berland, 2012); the latter has 

been reported to be less productive in terms of primary productivity (Zhao et al., 2007; but 

see Imhoff et al., 2004) and to contain less SOC (Edmondson et al., 2014b) than some land-

cover types within adjacent urban areas. However, when considering C storage within the 

entire urban area, one needs to account for impervious surfaces and buildings.  These features 

are largely devoid of organic C-containing vegetation and topsoil, and comprise a 

considerable proportion of the urbanised area. Therefore, even if certain land covers within 

the urban matrix contain equal or greater vegetation C and/or SOC stores per unit area than 

some of the non-urban land covers they have replaced, when considered in its entirety, it is 

unclear whether the area occupied contains a greater or lesser C stock than had it remained in 

non-urban use. 

Few studies have attempted to map long-term changes to C storage as a consequence of 

land-use change. A recent exception is provided by Jiang et al. (2013), who recorded changes 

in the extent and spatial pattern of C stores across the county of Dorset, UK between the 

1930s and 2000. However, at a resolution of 1 ha, their study is too broad to detect the fine-

scale changes caused by increases in the extent of urban areas. Here, I use high resolution 

satellite imagery and newly digitised historical aerial photography to recognise and categorise 

urban and non-urban land-uses. I aim, firstly, to measure the change in contiguous areal extent 

of three major towns and cities in north-east England between 1945 and the present, and, 

secondly, to determine the effect that this, and land-use change within the urban matrices, has 

had on the vegetation C and SOC stores of the land occupied. 
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2.2 METHODOLOGY 

2.2.1 Study areas 

To provide a reasonable representation of urban areas within the north-east region of 

England, three study areas were sampled: Darlington, Durham City (hereafter Durham) and 

Newcastle-upon-Tyne (hereafter Newcastle; Figure 2.1). The study area for Newcastle 

consisted of a 40.4 km
2 

portion of the city to the west of the B1318 Great North Road, and 

accounted for approximately one quarter of the current total area of the city. This portion was 

selected to reflect the partial coverage of the city by historical imagery, and also provided a 

study area comparable in extent to Darlington and Durham. The entirety of the urban areas of 

both of the latter was considered.  

Latitude, and climatic variables such as mean annual precipitation and temperature, 

have the potential to indirectly affect regional carbon (C) budgets by influencing the 

vegetation type and vegetation growth rates (Bachelet et al., 2001). In addition, mean annual 

precipitation, along with the clay content of soils, correlate positively with regional soil 

organic carbon (SOC) content, whilst, in general, mean annual temperature correlates 

negatively with SOC (Jobbagy and Jackson, 2000). Information on the location, current areal 

extent, population size and climate of the three study areas is presented in Table 2.1, and a 

description of soil types is presented in Table 2.2.  
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Figure 2.1 Outline map of the United Kingdom (excl. Shetland Isles) highlighting the north-east 

region of England and the location of the urban study areas of Darlington, Durham and Newcastle 

within this region (inset). Map outlines taken from d-maps.com. 
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Table 2.1 Selected attributes of the three study conurbations of Darlington, Durham and Newcastle. 

Study area extent is based upon boundaries defined by the present study. Mean annual precipitation 

and mean annual daily temperatures are based upon the period 1981-2010, as measured by the nearest 

climate station to the respective study area. Population estimates are for the entire conurbations, and 

are based on the parliamentary constituency population estimates for mid-2012.   

Darlington Durham Newcastle

Co-ordinates 54°31'25.66 ̎ N, 

01°33'34.11 ̎ W

54°46'32.70 ̎ N, 

01°35'06.23 ̎ W

54°59'21.20 ̎ N, 

01°39'35.81 ̎ W

Study area extent (km
2
) 24.6 15.3 40.4

Population
a 91,100 95,000 282,500

574 651 597

Minimum 5.2 5.4 6.7

Maximum 13.1 12.9 12.1

b 
Met Office (n.d.)

Study area

Mean annual precipitation (mm)
b

Attribute

Mean annual daily temperature (°C)
b:

a 
Office for National Statistics (ONS; 2013)

 

 

Table 2.2 The soil characteristics of Darlington, Durham and Newcastle. Data taken from Cranfield 

Soil and Agrifood Institute (http://www.landis.org.uk). 

Study area Description of soil

Darlington Freely draining, slightly acid loams in centre of urban area; slowly permeable, 

seasonally wet, slightly acidic but base-rich loams and clays elsewhere

Durham Freely draining, slightly acid sandy soils through centre of urban area; slowly 

permeable, seasonally wet, acidic loams and clays to west; slowly 

permeable, seasonally wet, slightly acid but base-rich loams and clays to east

Newcastle Slowly-permeable, seasonally wet, slightly acid, but base-rich loams and clays
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2.2.2 Land-use mapping and categorisation 

Contemporary land-use categorisation within the three study areas was determined 

using Google Earth (GE) v7.1.2 software (Google Inc., Mountain View, CA, USA), which 

combines high resolution contemporary satellite imagery and aerial photography to create a 

three-dimensional globe. GE also incorporates digitised historical aerial photography, making 

it possible to assess land-use change within an area at two points in history. GE included 

historical photography dating from 1945 for all three study areas. Contemporary satellite 

imagery was dated 2009 for Darlington and Durham, and 2012 for Newcastle. 

Defining urban extent is ambiguous (Raciti et al., 2012), as urban areas invariably 

consist of a heterogenous mix of various land-cover types, and as such, are a matrix of small-

scale vegetated and artificial surfaces (Cadenasso et al., 2007; Hutyra et al., 2011). In this 

study, the contemporary boundaries of the study areas were defined by the delineation 

between what was classified as an urban land-use category (see Table 2.3) and contiguous 

non-urban land-use (e.g. agriculture) or semi-natural land-cover (e.g. woodland or scrub). If 

these latter land-uses or land-covers were not contiguous, and were set within the matrix of 

urban land-use categories, the area was considered urban, and included within the boundary of 

the study area. For simplicity, the term land-use was applied to all categories, although 

strictly, grassland, scrub, woodland and no vegetation describe land cover. 

Each study area was divided into urban land-use categories as defined in Table 2.3. The 

criteria distinctive to each category needed to be discernible within historical photography as 

well as in contemporary satellite imagery. Example satellite imagery of each of the land-use 

categories is provided in Figure 2.1. The extent of each category was defined using GE’s 

polygon tool and each was colour-coded to produce a visual matrix of land use within the 

boundary of each study site. This process was repeated for contemporary and 1945 maps. 
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Contemporary land-use polygons were ground-truthed using GE street-view and by site 

visitation. Although this was not possible for the historical land-use polygons, all land-uses 

were categorised easily, and there were no areas omitted due to ambiguity. The land surface 

area of each polygon was calculated by importing the KML-encoded data from GE into KML 

Toolbox (Zonum Solutions, Tucson, AZ, USA, http://zonums.com/online/kmlArea/). 
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Table 2.3 The land-use categories of Darlington, Durham and Newcastle, and their qualifying criteria. 

The density of buildings within residential land-use categories was based upon figures obtained by 

Gill et al. (2008). School and university buildings were assigned to a land-use category best matched 

by their vegetative structure and building density. 

Land-use category Criteria

Agriculture Land used for livestock grazing or for production of arable crop. Includes

boundary hedgerows, field margins and farm buildings.

Allotment Community garden areas; typically used for individual or non-commercial

food production and horticulture.

Amenity grassland Mown turf; typically sporting facilities (including those belonging to

schools and universities) or parks without mature trees.

Commercial Industry, commerce or retail including areas of greenspace and/or lawn

within the infrastructure. Includes hospitals and fire stations.

Grassland Semi-natural or rough grassland. Includes pasture for horses.

Parkland Large (>4 m), sparsely distributed, mature trees within open grassy

areas. Includes parks and cemeteries.

Residential:

Urban no garden High housing density (>45 buildings ha
-1

). Typically terraced buildings

with small backyards, an absence of vegetated garden areas, and often

few or no trees.

Urban with garden Moderate housing density (25-45 buildings ha
-1

). Typically semi-detached

or terraced buildings with front and/or rear vegetated gardens, and, in

general, a significant number of trees.

Suburban Low (<25 buildings ha
-1

) to moderate housing density. Detached or semi-

detached buildings, with front and/or rear vegetated gardens, and often

many trees.

Scrub Mixed semi-natural vegetation, dominated by shrubs, small trees (<4 m)

and rough grassland. Often includes railway embankments and

embankments to major through-roads (e.g. A1). 

Woodland Large (>4 m), mature trees in dense stands; typically with an

understorey/shrub-layer and leaf litter.

No vegetation Non-vegetated areas that do not fit the description of other land-use

categories; typically construction sites, brownfield and substrate

extraction. Also includes the surfaces of major through-roads (e.g. A1).
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Figure 2.2 Examples of each of the land-use categories from contemporary satellite imagery: A) 

agriculture, B) allotment, C) Commercial, D) Grassland, E) Parkland, F) Recreation, G) Scrub, H) 

Urban no garden, I) Urban with garden, J) Suburban, K) Woodland, L) No vegetation. Imagery taken 

from Google Earth
TM

. 



27 
 

2.2.3 Selection of sample-points for carbon storage data collection 

Sample points for C storage data collection within urban land-uses were selected using a 

stratified random sampling design. The KML-encoded data generated by GE, describing the 

co-ordinates of polygons, was imported into Quantum GIS v2.4.0 (QGIS Development Team) 

software and the co-ordinates generated for random points within the polygons. The process 

was repeated for all sets of polygons pertaining to an urban land-use category within each 

study area, with the exception of no vegetation; which was assumed from the outset to possess 

zero C storage value. The number of samples within each land-use category reflected the area 

occupied by each within contemporary maps, and as such, the stratified random sampling 

design was only valid for the contemporary land cover. Quadrats of 50 x 50 m were centred 

upon the co-ordinates of the random points. This size was chosen as it provided sufficient area 

for a representative sample of surface cover, even in areas dominated by buildings or large 

trees (Butler, 1996), but was not so large as to repeatedly fall across more than one land-use 

category. If, on occasion, this did occur, the quadrat was classified according to the central co-

ordinates, and its position adjusted manually until the entire quadrat was included within that 

land-use category. In total, 198 quadrats across the three study areas were selected in this way 

(Table 2.4). All quadrats were located in the field using a handheld global positioning system 

(GPS) device (Garmin e Trex 20, Olathe, US) and aided by maps printed from GE. 

Agriculture sample points were selected manually by viewing the landscape on GE, and 

were limited to areas accessible by public rights of way. This prevented the selection of points 

with limited or prohibited access, which may have occurred using random-point generation. 

Quadrats were centred on the co-ordinates of the sample points as for the other land-use 

categories, and the number of samples taken provided a fair representation of the areas 

covered by different crop varieties within the north-east region of England, as reported in the 

provisional arable crop areas of England as at June 2013 (Department for the Environment 
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Food and Rural Affairs, 2013), as well as providing an arable/pasture mix. Hedgerows 

potentially constitute an important store of C within agricultural landscapes (Falloon et al., 

2004). However, their small size relative to crop or pasture, and their linear rather than 

evenly-scattered distribution within the landscape, would have resulted in under-

representation by randomly-selected points; whilst their value would have been over-

estimated if they were included within every manually-selected point. Therefore crop/pasture 

and hedgerows were sampled separately in the field and later amalgamated to provide a single 

C storage value for agriculture (see section 2.2.4.5). Hedgerows were sampled as 50 m 

lengths, and were selected as those closest to the pre-selected crop/pasture quadrat. As points 

where chosen along rights of way, and therefore, along the boundaries of fields, hedgerows 

were usually, but not always, present.  
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Table 2.4 The number of 50 x 50 m quadrat samples 

(50 m linear samples for hedgerows) taken from each of 

the land-use categories across Darlington, Durham and 

Newcastle. Sample size (n) reflects the area occupied 

by the land-use categories in contemporary maps; n is 

low for pasture as this sub-category was rarely 

represented in the study areas. 

15

3

14

8

20

25

21

19

Urban no garden 14

Urban with garden 20

Suburban 30

20

21

230Total

Scrub

Woodland

Land-use category Sample size (n )

Commercial

Grassland

Parkland

Residential:

Agriculture:

Arable

Pasture

Hedgerow

Allotment

Amenity grassland

 

 

2.2.4 Vegetation and soil survey, preparation and carbon analysis 

2.2.4.1 Tree (4 m+) carbon pool 

Above-ground vegetation C pools were categorised by minimum and maximum 

vegetation height. Prior studies typically define trees as woody vegetation >5 m tall (see 

Davies et al., 2013), but experience in the field during the present study revealed that trees in 

urban environments, particularly heavily-managed trees and ornamental trees in residential 

and commercial land-uses, are often shorter than free-growing native specimens in semi-
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natural environments. Therefore, a minimum height of 4 m was applied in this study. All trees 

present within each 50 x 50 m quadrat were identified to species- or genus-level, and the 

diameter at breast height (dbh) was measured at 1.3 m (following Bruce and Schumacher, 

1950). Where close access to trees was not possible in the field (e.g. within residential or 

other privately-owned land-uses with no ability to request access), they could not always be 

identified to species- or genus-level, and instead, were identified as broadleaf or coniferous. 

Their dbh and height was estimated, based upon trained observations of accessible trees in the 

field. Such estimations were frequently applied to the residential land-use categories, and as 

such, may constitute a source of bias if they were regularly inaccurrate.  

Tree dry-weight biomass was calculated using species-specific allometric equations 

from the literature (Appendix 1). These equations mathematically describe the relationship 

between the above-ground biomass of a tree and other variables that can be easily measured in 

the field, such as dbh and/or canopy height (Snorrason and Einarrson, 2006). For the majority 

of trees, dbh alone was sufficient to calculate biomass. However, equations for some species 

required that tree height was also recorded. If a species-specific equation was not found, an 

equation for the genus or family was substituted. For trees that were identified as broadleaf or 

coniferous, a broad equation for each, as derived by Davies et al. (2011; Appendix 1), was 

applied.  

Tree biomass allometric equations are typically derived from individuals growing 

within natural stand conditions, and may not accurately represent open-grown, maintained 

trees within urban environments, which tend to have reduced above-ground biomass 

compared to woodland trees of the same dbh (Nowak, 1994; McHale et al., 2009). In light of 

this, the biomass of trees recorded within the human-dominated agriculture, allotment, 

amenity grassland, commercial and residential land-use categories were multiplied by a factor 

of 0.8 to correct for allometric overestimation (following Nowak and Crane, 2002; Hutyra et 
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al., 2011; Strobach and Haase, 2012). The total above-ground biomass of each tree was then 

converted to C mass by applying a conversion factor of 0.46 for broadleaf species and 0.42 

for coniferous species, which is the approximate fraction of wood mass that is C (following 

Milne and Brown, 1997). The total above-ground tree C storage was summed for each 

quadrat, and a mean value per unit area (Mg C ha
-1

) across all quadrats within each land-use 

category was calculated. 

Measurement of the below-ground biomass of trees was not possible within the field. 

Prior studies have estimated this by applying a conversion factor based upon root-to-shoot 

ratios (e.g. Jo and McPherson, 1996; Nowak and Crane, 2002; Mokany et al., 2006). 

However, there is considerable uncertainty in estimates provided by the application of such 

factors (Strobach and Haase, 2012), especially in urban areas, where roots may comprise 

anything between 16% and 41% of a tree’s biomass (Johnson and Gerhold, 2003). 

Furthermore, there is uncertainty in estimating the volume of topsoil displaced by root 

systems, as an unknown proportion of the roots are likely to penetrate deeper than this 

layer.  Considering these uncertainties, the approach taken by Hutyra et al. (2011) and 

Strobach and Haase (2012) was adopted, and below-ground tree biomass was omitted from 

the study, despite the potentially large C stores here. 

2.2.4.2 Woody vegetation (1-4 m) carbon pool 

Woody bushes, hedgerows, woodland understory and small trees with a height of 1-4 m 

were defined as woody vegetation. Difficulties in harvesting woody vegetation within the 

field meant that representative samples could not be collected. Therefore, the ground coverage 

of woody vegetation within each quadrat was measured by viewing the quadrats on GE, and 

using the polygon tool to outline the extent of woody vegetation before importing the KML-

encoded data into KML Toolbox to calculate the area covered. This method was more 
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objective and reliable than estimating by eye within the field, especially for residential land-

use categories, where cover within private gardens was often obscured by housing. For 

woodland and parkland however, views of the woody understory were obscured on GE by the 

canopy, so the proportion of cover was estimated in the field. 

Owing to the method used to collect woody vegetation data, the high diversity of 

species, and the often heavily maintained form of hedgerows, the use of species-specific 

allometric equations was not practicable. Therefore, a process similar to that used by Davies 

et al. (2011) was adopted. Specifically, a broad C value of 18 Mg C ha
-1

, taken from a study 

by Patenaude et al. (2003), was applied. However, it should be noted that Patenaude et al. 

obtained this value by sampling woodland understory trees (>7 cm and <18 cm dbh) only, and 

therefore, may not so reliably represent C stores within woody bushes and hedgerows. The 

total woody vegetation C store was summed for each quadrat, and a mean value per unit area 

(Mg C ha
-1

) across all quadrats within each land-use category was calculated. 

2.2.4.3 Herbaceous vegetation carbon pool 

Herbaceous vegetation, defined as grasses, non-woody plants and litterfall, was sampled 

during the months of June and July, when biomass was at a peak. All 50 x 50 m quadrats were 

visited, from which a 30 x 30 cm sample of herbaceous vegetation was selected whilst in the 

field. This sample was assumed to be representative of the herbaceous vegetation within the 

quadrat. If all the herbaceous vegetation within a quadrat was located within private gardens, 

an equivalent vegetation-type (e.g. mown grassland or perennial flower-bed) was sampled 

from an adjacent area. The standing crop within a 30 x 30 cm frame quadrat was cut at ground 

level, and the entire sample, including litterfall, was harvested and returned to the laboratory 

for further analysis.  
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Each sample underwent a 24-hour drying process at 80°C, before its dry-weight was 

recorded.  A sub-sample of each was then taken and weighed. The sub-sample was placed in a 

muffle furnace at 550°C for four hours (following Christensen and Malmros, 1982), before 

being re-weighed and loss on ignition (LOI) calculated. The LOI value was applied to obtain 

the C mass within each 30 x 30 cm sample as follows:  

  
 

 

    
 

 
 

 
 

 (Equation 1) 

Where x is the C mass per 30 x 30 cm sample of herbaceous vegetation (g), a is the LOI value 

(g), 2.05 is a constant that converts LOI to C-content in herbaceous vegetation (including 

litterfall; following Christensen and Malmros, 1982), b is the dry-weight of the vegetation sub-

sample (g), and c is the dry-weight of the 30 x 30 cm sample from which the sub-sample was 

taken (g). 

To estimate the C mass within the herbaceous vegetation of each 50 x 50 m quadrat, the 

value obtained for the 30 x 30 cm sample was scaled-up before being multiplied by the 

proportion of the quadrat with herbaceous vegetation cover. This proportion was measured by 

viewing each quadrat on GE and using the polygon tool to outline the area of herbaceous 

cover. The KML-encoded data was imported into KML Toolbox, where the area of 

herbaceous cover was calculated. As explained by the methodology for estimating woody 

vegetation cover (see section 2.2.4.2), views of the herbaceous layer in woodland and 

parkland were obscured on GE by canopy-cover, so the proportion of herbaceous cover in 

these land-uses was estimated in the field. The mean herbaceous vegetation C mass per unit 

area (Mg C ha
-1

) across all 50 x 50 m quadrats within each land-use category was then 

calculated. 
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2.2.4.4 Soil carbon pool 

Much of the soil sampling and measurement of SOC within this study was carried out 

by a second researcher prior to this study’s commencement. As such, to allow for comparison, 

the same methodology used prior was initially followed when collecting and analysing further 

samples. This involved estimating the depth of the organic layer within the sample soil cores, 

and using this depth in subsequent SOC density calculations, as it was considered that the 

organic layer included the major C-component of the soil. However, there is a level of 

practice required, and some ambiguity involved, in estimating the organic layer depth of soils. 

Therefore, it was decided to use a capped soil depth to ensure that SOC density measured 

within all soil core samples were directly comparable.  

In their study of SOC within Leicester, UK, Edmondson et al. (2012) found that land-

use effects on SOC concentrations are most important in the topsoil, which they defined as 0-

21 cm depth. Beyond this depth, down to 1 m, they found that C concentrations decreased 

significantly, and those beneath different land-uses, including beneath impervious surfaces, 

converged. The view that the majority of land-use effects on SOC occurs within the topsoil is 

widespread. For example, Emmett et al. (2010) sampled soils within multiple land-uses to 15 

cm depth, Smith et al. (1997, 1998, 2000) sampled agricultural soils to 30 cm depth, and 

Edmondson et al. (2014b) sampled urban soils to 21 cm depth, following the data obtained by 

Edmondson et al. (2012). Therefore, this present study concentrated on the topsoil of the 

study areas, defined as 0-22 cm depth. Capping at this depth is suggested if SOC densities 

were significantly reduced at depths below 22 cm. To show this, soil cores were extracted to a 

depth of 27.5 cm from within a sub-sample of quadrats, which were manually selected by 

viewing land-use maps of the study areas previously created (see section 2.2.2). It was 

considered that the quadrats chosen for this purpose were evenly distributed and represented a 

fair sub-sample of each land-use category. Cores were divided into the following depth 
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intervals determined by the specifications of the coring equipment: 0-5.5 cm, 5-11 cm, 11-

16.5 cm, 16.5-22 cm and 22-27.5 cm; the volume of each division measured 5.5 cm
3
. All 

samples were returned to the laboratory to begin analysis on the day of collection. 

Soil samples were dried in a drying oven at 80°C for 24 hours and their dry-weight 

recorded. Samples were then placed in a muffle furnace at 550°C for 4 hours (following 

Christensen and Malmros, 1982) before being re-weighed, and LOI calculated. The LOI value 

was then applied to obtain the SOC density per cm
3
 of each sample as follows:  

   
 

 

    
 

 
 (Equation 2) 

Where y is the SOC density per cm
3
 of soil (g C cm

-3
), a is the LOI value (g), 2.25 is a 

constant that converts LOI to C-content in soils to 20 cm depth (following Christensen and 

Malmros, 1982), and d is the volume of soil within the sample (cm
3
). 

To test whether SOC density decreases at depths below the topsoil (0-22 cm) of the 

study areas, SOC density values obtained by the above process were subjected to a two-way 

ANOVA, testing for difference in  SOC density i) among land-use categories, and ii) among 

soil depth intervals. Results showed that i) SOC density did not differ among land-use 

categories (F10=0.748, P=0.679),  and ii) SOC density of the soil samples differed 

significantly between depth intervals (F4=9.010, P<0.001). Tukey HSD tests showed that 

SOC density of soil samples taken from 22-27.5 cm depth intervals was significantly lower 

than that of samples taken from each of the shallower depth intervals (Table 2.5). All analyses 

were conducted using R v2.15.3 (R Development Core Team, 2008) software, and results 

suggested the use of 22 cm as a suitable capping depth for further SOC analyses of all land-

use categories. 
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Table 2.5 Results of Tukey HSD post-hoc tests on ANOVA testing for 

difference in soil organic carbon (SOC) densities of soil cores taken from 

varying depth intervals in different urban and agricultural land use 

categories. Bold p-values denote significant differences. 

0-5.5 5.5-11 0.0015 0.993

11-16.5 5.5-11 -0.0025 0.952

16.5-22 5.5-11 -0.0051 0.598

22-27.5 5.5-11 -0.0226 <0.001

0-5.5 11-16.5 0.0039 0.783

16.5-22 11-16.5 -0.0027 0.945

22-27.5 11-16.5 -0.0266 <0.001

0-5.5 16.5-22 0.0066 0.344

22-27.5 16.5-22 -0.1746 0.001

0-5.5 22-27.5 0.0241 <0.001

Difference PSoil depth interval (cm)

 

 

Following the above analysis on a sub-sample of quadrats across the land-use 

categories, the topsoil depth of the remaining 50 x 50 m quadrats was measured. Six soil cores 

were extracted from within each quadrat to a maximum depth of 27.5 cm, as determined by 

the specifications of the coring equipment, or to the depth at which rock or other impenetrable 

surface was reached. The locations of the soil cores were chosen to capture the potential range 

of soil depths, which may have fluctuated with microhabitat, within each quadrat. The mean 

depth of the six soil cores was calculated. An additional soil core was then taken from a 

representative area of each quadrat, and the top 0-5.5 cm division was extracted and returned 

to the laboratory to undergo the process of measuring SOC density cm
-3

 as detailed above. As 

prior analysis showed that SOC density cm
-3

 did not differ with depth to 22 cm, the SOC 

density cm
-3

 values of these 0-5.5 cm samples were multiplied by the mean soil depth of the 

quadrat from which they were taken, or to the capped depth of 22 cm if the mean exceeded 

this. This value was then multiplied by the area of the quadrat surface with topsoil cover. For 

this, it was assumed that topsoil occurred to the same depth as the core mean values for all 
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areas of bare soil, and all areas of vegetation cover. It was assumed that there was no topsoil 

beneath buildings or impervious surfaces, as this would have been removed by excavation 

during the construction process, to a depth of at least 15 cm under pavements and 40 cm 

under roads (Edmondson et al., 2012). The mean SOC mass stored per unit area (Mg C ha
-1

) 

to the capped depth of 22 cm across all 50 x 50 m quadrats for each land-use category was 

then calculated. 

2.2.4.5 Agriculture land-use category 

As mentioned within section 2.2.3, the agricultural components of crop/pasture and 

hedgerow were sampled separately within the field to provide a mean C storage value per unit 

area for each component. Consequently, the agriculture land-use category was processed 

differently to other land-uses. Initially, from the historical imagery on GE, all hedgerows 

within the boundary of each study area were outlined using the polygon tool, and their area 

measured by importing the KML-encoded data into KML Toolbox. The total area occupied 

by hedgerows was then calculated as a proportion of the historical area of the agriculture 

land-use category (defined as per Table 2.3). To obtain a single C storage value for each of 

the four C pools (trees, woody vegetation, herbaceous vegetation and soils) per unit area 

(Mg C ha
-1

), the mean crop/pasture and hedgerow C storage values across the samples were 

amalgamated, consisting of data proportional to the area of each component within the 

boundary of the study site in historical maps. The amalgamated C storage values were applied 

to further analyses of changes to C storage due to urbanisation and land-use change.  

 

2.2.5 Analysis of carbon storage among land-use categories 

The C storage values obtained for each of the four C pools within each 50 x 50 m 

quadrat were summed to provide a total vegetation C and SOC storage value for each quadrat. 
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The quadrat C data did not meet the assumptions of parametric tests, and could not be 

transformed to do so. Therefore, Kruskal-Wallis non-parametric ANOVA was used on 

untransformed data to test for differences between the land-use categories in the C storage per 

unit area (Mg C ha
-1

) of i) total vegetation and soils, ii) trees (4 m+), iii) woody vegetation (1-

4 m), iv) herbaceous vegetation, and v) soils. For the purpose of these analyses, the two 

components of crop/pasture and hedgerow within agriculture were treated separately. All 

analyses were conducted using R v2.15.3 software. 

The total C storage for each land-use category was calculated by multiplying the area 

occupied by each land-use category with the corresponding combined C storage value per unit 

area (Mg C ha
-1

) for each C pool (trees + woody vegetation + herbaceous vegetation + soils). 

Total C storage values for land-use categories were then summed to provide a C storage value 

for the entire study area. This was repeated for contemporary and 1945 land-use maps. 

 

2.3 RESULTS 

2.3.1 Change in land use between 1945 and the present 

The contiguous urban extent of Darlington, Durham and Newcastle (i.e. their 

boundaries as defined in section 2.2.1 of the methodology) increased by 987 ha (+67%), 1,049 

ha (+229%) and 1,581 ha (+65%) respectively, between 1945 and the present. The majority of 

the increase in each study area was in low-density suburban residential land-use (Figure 2.1a). 

However, there were also notable increases in commercial land-use in all three study areas. In 

Newcastle, the increase in moderate-density urban with garden residential land-use was 

comparable with increases in suburban land-use, but was far lower in Darlington and 

Durham. Other land-use categories that increased in areal extent within all three study areas 
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were amenity grassland, scrub and, to a lesser extent, woodland. The area of no vegetation 

increased most notably in Newcastle (Figure 2.1). 

The increase in the urban extent of the three study areas came entirely at the expense of 

agriculture, which surrounded the urban boundaries of the study areas in 1945 (Figure 2.2). 

Within the expanding urban matrices of all three study areas, the area occupied by allotment 

decreased, as did the high-density urban no garden residential land-use in Darlington and, in 

particular, in Newcastle (Figure 2.1). 

Percentage change in area of land-use categories between 1945 and the present may 

highlight trends not apparent from areal change; for example, although increases in woodland 

were small in areal extent (Figure 2.1a), woodland cover actually increased by 111%, 90% 

and 78% in Darlington, Durham, and Newcastle respectively (Figure 2.1b). In Durham, the 

percentage increases of many land-use categories were particularly high compared to those in 

Darlington and Newcastle. This was to be expected, owing to the far higher percentage 

increase in the contiguous urban extent of Durham. However, the percentage increase in scrub 

was far more pronounced in Darlington and Newcastle (Figure 2.1b), highlighting a 

particularly high rate of increase of this land-use category in these study areas. Figure 2.2 

provides a spatial visualisation of the increases to contiguous urban extent, and changes to 

land use in the three study areas. 
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Figure 2.1 The a) change in area, and b) percentage change in area of land-use categories within 

Darlington and Durham between the years 1945 and 2009, and within Newcastle between the years 

1945 and 2012. The total areal extent of each study area in both years is defined by its contemporary 

contiguous urban extent. 
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Figure 2.2 Continued overleaf 
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Figure 2.2 Land-use maps of a) Darlington and b) Durham, in 1945 and 2009, and c) Newcastle in 

1945 and 2012, showing the change in land-use categories and expansion in urban extent between the 

two years. 
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2.3.2 Carbon storage per unit area of land-use categories 

Carbon (C) storage per unit area within the vegetation and soils was significantly 

different among the contemporary land-use categories. This was the case for total vegetation 

C and soil organic carbon (SOC; χ
2

11,220=195.56, p<0.001), and for the component C pools of 

trees (4 m+; χ
2

11,220=168.28, p<0.001), woody vegetation (1-4 m; χ
2

11,220=130.68, p<0.001), 

herbaceous vegetation (χ
2

11,220=190.89, p<0.001) and soils (χ
2

11,220=173.28, p<0.001; see 

Appendix 2 for post-hoc test results). Woodland contained the greatest mean total C store per 

unit area (296 Mg C ha
-1

) and urban no garden contained the lowest (1.54 Mg C ha
-1

). Indeed, 

three of the four lowest values for C storage were residential sub-categories; the fourth was 

commercial (Figure 2.3). When C pools were analysed separately (Figure 2.4), it was apparent 

that total vegetation C and SOC stores were heavily influenced by the tree and soil pools 

respectively, and as a result, the values of C per unit area for these pools closely matched that 

of the total stores (compare Figures 2.3 and 2.4). Tree C pools were largely determined by the 

number and size of trees within a land-use category, although species composition also played 

a role. Woodland had the greatest number of trees recorded per sample, as well as having 

greater proportions of trees within larger size classes than most other land-use categories; only 

parkland had a more even spread of trees across different size classes (Table 2.6).  

When hedgerow and crop/pasture were combined according to their relative area within 

agriculture, a total vegetation C and SOC storage value of 134 Mg C ha
-1

 was attained. Only 

woodland, parkland (197 Mg C ha
-1

) and allotment (158 Mg C ha
-1

) had greater total C values 

per unit area. 
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Figure 2.3 The median total vegetation carbon (C) and soil organic carbon (SOC) storage per unit area 

of land-use categories in Darlington, Durham and Newcastle, calculated from 50 x 50 m quadrat 

samples. Boxes show where the middle 50% of data lie, black bars show the median value, whiskers 

show maximum and minimum values, and open circles represent outliers. Land-use categories are 

colour-coded as Figure 2.2, and presented in order of decreasing mean C storage value per unit area 

(means shown in parentheses).  
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Figure 2.4 The median log carbon storage within a) trees (4 m+), b) woody vegetation (1-4 m), c) 

herbaceous vegetation, and d) soils per unit area of land-use categories in Darlington, Durham and 

Newcastle, calculated from 50 x 50 m quadrat samples and presented in order of the decreasing mean 

total vegetation and soil carbon storage value (see Figure 2.3). Boxes show where the middle 50% of 

data lie, black bars show the median value, whiskers show maximum and minimum values, and open 

circles represent outliers. Land-use categories are colour-coded as Figure 2.2. Log transformation of 

data applied to aid visualisation only. Note different scales on y-axes. 
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Table 2.6 The median number of trees (4 m+) and the inter-quartile range (Q1-Q3), recorded within 

50 x 50 m quadrat samples of land-use categories within Darlington, Durham and Newcastle, and the 

proportion of the total number of trees within size classes according to their diameter at breast height 

(dbh). Land-use categories are presented in order of decreasing median number of trees per sample. 

Proportions are colour-coded in shades of green through yellow to red, with true green denoting 

highest proportions, yellow denoting moderate proportions, and true red denoting lowest proportions. 

Woodland 0.59 0.24 0.12 0.03 0.01 0.01

Parkland 0.39 0.33 0.18 0.08 0.02 0.01

Agriculture: hedgerow 0.90 0.06 0.01 0.02 0.01 0.00

Scrub 0.96 0.04 0.00 0.00 0.00 0.00

Suburban 0.74 0.23 0.03 0.00 0.00 0.00

Urban with garden 0.76 0.20 0.02 0.01 0.01 0.00

Commercial 0.91 0.09 0.00 0.00 0.00 0.00

Urban no garden 0.92 0.08 0.00 0.00 0.00 0.00

Amenity grassland 0.53 0.41 0.06 0.00 0.00 0.00

Grassland 0.93 0.00 0.00 0.07 0.00 0.00

Allotment 1.00 0.00 0.00 0.00 0.00 0.00

Agriculture: crop/pasture n/a n/a n/a n/a n/a n/a

Land-use category Median no. 

trees per 

sample (IQR)

Proportion of total number of trees within size class (dbh)

Up to 25 

cm

>25 to 50 

cm

>50 to 75 

cm

>75 to 

100 cm

>100 to 

125 cm

>125 cm

0 (0-0)

49 (35-89)

14 (3.5-33.3)

18 (2.3-34.3)

18 (13-24.5)

9 (5.5-12.5)

3 (1-6.3)

0 (0-5.5)

0 (0-1)

0 (0-0)

0 (0-0)

0 (0-0)

 

 

2.3.3 Change in carbon storage between 1945 and the present 

The total vegetation C and SOC storage of Darlington, Durham and Newcastle 

decreased by an estimated 75,615 Mg (-34%), 63,326 Mg (-33%) and 115,123 Mg (-31%) 

respectively, between 1945 and the present. These decreases were largely due to the loss of 

agriculture and its replacement by land-uses with lower mean C storage values per unit area; 

most notably, suburban, commercial and urban with garden. Loss of the moderately high C 

value allotment led to further C losses within the urban matrices. Losses were offset slightly 

by increases, however small, in high C storage value woodland, and in Durham and 

Newcastle, parkland. Increases in area of moderate C value scrub and amenity grassland also 

helped to offset some of the C losses caused by increases in low value residential and 
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commercial land-uses. Loss of the lowest C value urban no garden category in Darlington 

and Newcastle (Figure 2.1) benefitted C storage, as its replacement with any other land-use 

category would have increased the C value of that parcel of land. Of the four C pools, the 

largest C loss was made from the soil pool in all study areas, which decreased by an estimated 

73,585 Mg (-63%) 69,640 Mg (-58%) and 113,515 Mg (-67%) within Darlington, Durham 

and Newcastle, respectively. There were also large percentage losses in the herbaceous 

vegetation C pools of the three study sites, largely owing to the loss of crop from agriculture. 

However, gains were made in the C stores of trees and woody vegetation, as increases in the 

area of woodland, parkland, suburban and scrub land-uses more than compensated for loss of 

hedgerows and hedgerow trees from agriculture. A detailed analysis of the estimated changes 

to C storage within all land-use categories and C pools between 1945 and the present is 

provided in Appendix 3. 

 

2.4 DISCUSSION 

A requirement of the Kyoto Protocol is that Annex I countries must consider carbon (C) 

emissions and sequestration pertaining to land use, land-use change and forestry (LULUCF) 

activities in meeting their commitments to the agreement. This includes land-use change 

through the process of urbanisation. Although detailed inventories of C storage within 

contemporary urban areas exist, there remains scant information on the effect of urbanisation 

on the C storage of the area of newly occupied land.  Mapping C storage at a reference point 

in the past can provide an understanding of how it has changed over time and can indicate 

where action might be targeted. In this study, I measured the change in land use and 

contiguous urban extent of three towns and cities in north-east England over a period of major 

urban expansion between 1945 and the present, and analysed the subsequent effect on the 

vegetation C and soil organic carbon (SOC) storage of the study areas. The major finding was 
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that the contiguous urban extent of Darlington, Durham and Newcastle increased by 67%, 

229%, and 65% respectively, which decreased the C storage value of the areas occupied by 

34%, 33% and 31% respectively. Here I discuss the results in relation to three broad themes: 

1) the change in land use between 1945 and the present, 2) C storage per unit area of land-use 

categories, and 3) the change in C storage between 1945 and the present. 

 

2.4.1 Change in land use between 1945 and the present 

The three study areas increased in contiguous urban extent between 1945 and the 

present, reflecting post-war national trends, whereby inner-city housing was cleared and 

rebuilt at lower densities, whilst the creation of council estates at the periphery of towns and 

cities accommodated the cleared dwellers (Couch and Karecha, 2006). This coincided with a 

surge in the development of privately-owned dwellings, and the creation of the sprawling 

housing estates of suburbia (Best, 1981), ultimately resulting in outward urban growth and 

increasing urban populations residing within lower-density housing (Antrop, 2000; Couch and 

Karecha, 2006).  

Other land-use categories that increased notably within all three study areas were 

commercial, amenity grassland and scrub. The area of central commercial districts remained 

reasonably unchanged; rather, new agglomerations of commerce and industry towards the 

urban fringes were responsible for increases. This has been a characteristic of towns and cities 

in the UK and Europe in recent decades, and has arisen as a consequence of retailer demand 

for greater floorspace and improved transport links (Monheim, 1992). Like the increase in 

suburban land-use, much of the commercial gain replaced agriculture. The area occupied by 

amenity grassland, relative to its historical extent, increased markedly. This is surprising, as 

amenity grasslands for recreation and sports are reported to have decreased considerably in 

recent decades, as enforcement of UK urban densification policy has resulted in the loss of 
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this land-use type in particular, to residential development within the urban matrix (Bibby, 

2009). The exceptionally large percentage increase in Durham however, was sustained by 

increased provision of sports facilities for university students, and as such, should not be 

considered typical in this respect for UK towns and cities. Increases in scrub were largely 

confined to the urban fringes (Figure 2.2). This could be the result of succession within 

redundant arable fields claimed by urban expansion. Succession may also account for some 

losses of grassland, especially in Newcastle, where historical tracts have become scrub or 

woodland within the contemporary urban matrix (Figure 2.2c). Alternative areas where scrub 

had increased, within Darlington and Newcastle in particular, are the embankments of 

railways and major roads. For example, alongside the A1, which dissects the entire 

contemporary Newcastle study area, but which was absent in 1945. 

In terms of areal extent, the increases in woodland within Darlington and Newcastle 

were minor (Figure 2.1a). However, the area of woodland in these study areas was small in 

1945, so small increases in extent have still produced reasonably high percentage increases 

(Figure 2.1b). Percentage increases may reflect a shift in societal and political demand for 

increased urban woodland and greenspace (Moffat, 2001; Koninendijk, 2003). Indeed, 

forestry and woodland have more than doubled in area in the UK from 1.4 million ha in 1947 

to 3.1 million ha in 2014 (Forestry Commission, 2014), although the majority of this has been 

established within agricultural holdings rather than in urban areas (Bibby, 2009). The area of 

woodland in Durham doubled from what was already a relatively high cover in 1945. 

Durham’s topography, World Heritage Site designation and level of university ownership 

have undoubtedly aided the protection of existing wooded areas in the centre and to the east 

of the city. However, much of the increase in woodland occurred in the west of the study area 

(Figure 2.2b).  
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Aside from losses in agriculture, the other land-use loss common to all three study areas 

was in allotment. This is logical, as following peak allotment provision during the Second 

World War (Martin and Marsden, 1999), the requirement for self-sustainability fell 

throughout the ensuing decades. A recent resurgence in allotment demand in the UK 

(Edmondson et al., 2014a), may have prevented further loss in the extent of this land-use 

category. 

 

2.4.2 Carbon storage per unit area of land-use categories 

The total vegetation C and SOC storage per unit area (Mg C ha
-1

) differed significantly 

between land-use categories, as did the constituent C pools of trees (4 m+), woody vegetation 

(1-4 m), herbaceous vegetation, and soils. Soils contributed the greatest proportion towards 

the total C storage per unit area in all land-use categories with the exception of woodland, 

where trees contributed a little over half (52%). As there were no differences in SOC density 

(g C cm
-3

 soil) between any of the land-use categories (Table 2.5), differences in SOC per unit 

area (Mg C ha
-1

; Figure 2.4d) reflected the proportion of impervious surface among land-use 

categories, whereby artificial surfaces and buildings have replaced the topsoil excavated 

during the construction process (Edmondson et al., 2012). It also reflected soil depth, as some 

samples did not reach the capped sampling depth of 22 cm. The woody vegetation and 

herbaceous vegetation C pools contributed somewhat less (cf. Davies et al., 2011); this is not 

to say that these are unimportant, as their contribution may determine whether a land-use acts 

as a C source or sink. These smaller pools were also of relative importance in agriculture, and 

the semi-natural land-use categories of grassland and scrub, where lack of impervious 

surfaces and low-level management increase the surface cover and biomass of vegetation.  

Woodland C values were high, relative to other land-use categories, within all four C 

pools (Figure 2.4), reflecting the three-dimensional vegetation structure and relatively deep 
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topsoil; which often, but not always, reached the capped sampling depth of 22 cm. There were 

also relatively high C stores in all pools within parkland (Figure 2.4), although herbaceous 

vegetation within many of the sample quadrats (most notably within cemeteries) was 

managed. Parkland trees were sparsely distributed compared to those of woodland, but 

parkland contained over a quarter (26%) of all trees sampled with a diameter at breast height 

(dbh) of 100 cm or more, and contained a greater proportion of trees in larger size classes than 

any other land-use category (Table 2.6).  Hedgerows within agriculture also had high total 

vegetation C and SOC storage value per unit area. However, there was much variation in the 

C stores of hedgerows (Figure 2.4), because their form and structure ranged from contiguous 

runs of trees (with relatively high C value), to hedges that completely lacked trees, and were 

highly managed rectilinear strips of homogenous woody vegetation. Just two or three large 

trees within a 50 m length of hedgerow were sufficient to increase considerably its overall C 

storage value. These results differ from those of Strobach and Haase (2012), who report an 

above-ground C store of zero for agricultural land in their study of Leipzig, Germany. It is 

assumed therefore, that hedgerow trees were either not present within their sampling area, or 

were omitted by their sampling design. The methodology used in this present study, which 

produced a detailed quantification of the area of land covered by hedgerows within the 

historical landscape (see Methodology section 2.2.4.5), ensured that hedgerow loss due to 

land-use change was captured within C loss estimates for the three study areas. The C 

mitigation potential of hedgerows and other boundary features of arable fields have been 

recognised previously (e.g. Falloon et al., 2004). 

Agricultural land, especially arable crop fields, has previously been found to be depleted 

in SOC when compared to other land-use types, including urban land-uses. This applies to 

both C storage density per unit area (Edmondson et al., 2012; Edmondson et al., 2014b) and 

C concentration (g C g
-1

 soil; Lal, 2010; Edmondson et al., 2014b). Several factors contribute 
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to this depletion, including removal of potential inputs of C with harvested products, and 

tillage practices, which expose otherwise protected C to weathering and microbial breakdown, 

as well as modifying the temperature regime of the soil (Post and Kwon, 2000; Smith, 2007). 

However, this study did not detect depletion in SOC density per unit area of agricultural soils 

compared to other land-use categories (Table 2.5). As such, the SOC storage of 124 

(interquartile range, 89-163) Mg C ha
-1

 (0-22 cm) recorded by this study (Figure 2.4d) is 

greater than figures reported by prior studies; for example, 84 Mg C ha
-1

 (UK, 0-30 cm; Smith 

et al., 2000), 73 Mg C ha
-1

 (Leicester, 0-21 cm; Edmondson et al., 2014b), 70 Mg C ha
-1

 

(England, 0-30 cm; Bradley et al., 2005), and 47 Mg C ha
-1

 (Great Britain, 0-15 cm; Emmett 

et al., 2010). 

Commercial and urban no garden land-uses had relatively low C storage values per unit 

area across all four C pools (Figure 2.4), reflecting the high proportion of impervious surface 

cover, a scarcity of large trees, and, where it existed, shallow topsoil. Of the residential land-

use categories, suburban had the greatest total C storage value per unit area. This arose 

largely due to C stored within a greater number of trees than urban with garden, and was not 

due to a greater size-class of trees (Table 2.6). It is recognised that the approach taken by this 

study, to define land-use categories, in part, based upon vegetation and tree cover, especially 

in residential categories, introduces some circularity into the claims made by the study, as 

greater vegetation and tree cover should inherently lead to greater C storage within these C 

pools. In addition, any comparison concerning residential land-use categories should be 

viewed with some caution, as many of the tree dimensions reported were estimated from 

distance, due to prohibited access to domestic gardens (see Methodology, section 2.2.4). 

Nevertheless, results contrast with a national survey of England’s urban trees (Britt and 

Johnston, 2008), which stated that low-density residential areas have a greater proportion of 
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larger trees than moderate-density areas. However, the national report also served to highlight 

variability, not only between urban areas in England, but also between regions of England.  

Differences in methodology and urban land-use categorisation often make direct 

comparison with prior studies unfeasible. This is especially so of herbaceous vegetation C and 

SOC in the highly-modified residential and commercial land-use categories, as the values per 

unit area reported in this study are a function of the proportion of impervious surface within 

the category. Where comparison can be attempted, conformity with prior studies is mixed. For 

example, the tree C pool per unit area of residential and commercial land-uses is considerably 

less than values reported for equivalent land-use categories in Seattle, US (Hutyra et al., 

2011), and Leipzig, Germany (Strobach and Haase, 2012). The opposite is true for woodland 

and parkland trees: the present study recorded approximately 50% and 100% greater C 

storage per unit area than the equivalent land-uses in Seattle and Leipzig respectively. 

However, the figure of 121 Mg SOC ha
-1

 (0-22 cm) recorded within grassland accords with 

120 Mg SOC ha
-1

 (0-30 cm) obtained by Bradley et al. (2005). Variability between studies 

emphasises the differing interactions that respective study areas have with biotic and abiotic 

factors, including prevailing climate, geology, history of urbanisation, human population, land 

management (Davies et al., 2013) and vegetation-type (Jobbagy and Jackson, 2000). This 

suggests further studies are necessary to better understand variation in urban C storage, and 

that adaptation of a uniform methodology to facilitate comparisons would be beneficial 

(Davies et al., 2013). 

 

2.4.3 Change in carbon storage between 1945 and the present 

Changes in the extent of land-use categories due to urbanisation within the three study 

areas between 1945 and the present resulted in decreases in total vegetation C and SOC of 

around one-third within all three study areas (see Appendix 3 for a detailed analysis among 
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land-uses and C pools). Overall decreases were very similar among the three study areas 

despite the very different growth rate of Durham, which is due to the different combination of 

land-use changes that took place here. With the exception of allotment, all urban land-use 

categories with moderate to high C storage value increased in area within Durham, most 

notably, woodland and parkland. Whereas Darlington and Newcastle experienced greater 

increases in low C storage value residential land-uses. Decreases in all three study areas were 

largely due to the loss of agriculture and its replacement with urban land-use categories of 

lower mean C storage value per unit area.  Largest C losses were from the SOC pools of the 

study areas, caused by increases in impervious surface cover and reductions in soil depth 

when suburban, urban with garden and commercial land-uses replaced agriculture.  

Agricultural hedgerows, specifically those with large trees, held significant and 

important stores of C (Figures 2.3 and 2.4), and their above-ground biomass presents 

significant opportunity for mitigation against C loss in arable fields and pasture (Falloon et 

al., 2004), and should be preserved within the landscape. However, their sparse distribution 

meant that their C value was diluted when considered, as they were, as a component of the 

wider, and largely treeless, agricultural landscape. Their loss therefore, was compensated for 

by relatively small gains in woodland and/or parkland within the expanding urban matrices. 

In Darlington, although woodland increased only slightly and parkland decreased, there was 

still an overall increase in the tree and woody vegetation C pools, emphasising the potential 

for urban woodland to mitigate C emissions through land-use change by urbanisation. Indeed, 

the tree and woody vegetation C pools increased overall across all three study areas. Increases 

in scrub also contributed to the increase in the woody vegetation C pool. Although scrub that 

has formed alongside road and railway embankments may be relatively safe from further 

development, patches at the urban fringe are perhaps more likely to be lost to future 
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development than to experience succession through to woodland, as around a third of 

developed greenfield  is within such areas (Bibby, 2009).  

The herbaceous vegetation C pool experienced greater proportional loss than the soil 

pool within all three study areas between 1945 and the present. The large proportional 

decrease in this C pool was due to the loss of agriculture and the area occupied by crop. 

However, the inclusion of crop within C storage estimates is arguable, as it will be removed 

from the system at harvest (Post and Kwon, 2000), and its C store quickly released back into 

the atmosphere (Gitz and Ciais, 2004). Whilst some studies may include crops within C 

storage estimates (e.g. Milne and Brown, 1997) others omit them entirely (e.g. Strobach and 

Haase, 2012). Nonetheless, the herbaceous vegetation C pool was small compared to that of 

trees and soils, and if crop were omitted from the C storage estimate for agriculture, it would 

have made little difference to the overall loss of stored C between 1945 and the present, and 

the decreases in contemporary C stores stated above would have been reduced by a mean of 

just 1.7% across the three study areas. 

An important assumption of this study is that the C storage value of the land-use 

categories was the same in the past as it is today, since the C storage value per unit area of 

each C pool within each land-use category was calculated from contemporary field data. As 

such, C values reported may not accurately represent the land-use categories as they were in 

1945. For example, intensification of farming methods since 1945 (Robinson and Sutherland, 

2002) has led to depletion of SOC stocks in agricultural soils (Matson et al., 1997; Stoate et 

al., 2001; Edmondson et al., 2014a), and Emmett et al. (2010) report that the mean SOC 

density of arable soils in Great Britain decreased by 3.8 Mg ha
-1

 between 1978 and 2007 

(2.2 Mg ha
-1

 in England over the same period), equivalent to losses of 0.13 Mg SOC ha
-1

 yr
-1

. 

Therefore, the value of 124 Mg SOC ha
-1

 reported for arable fields is likely to be an 

underestimate of its 1945 value, and consequently, the estimated losses of SOC from 
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agriculture are somewhat conservative. In another example, Díaz-Porras et al. (2014) 

estimate that tree C stocks at locations within Sheffield, UK have doubled between the 1950s 

and 2010, due to significant increases in the number and size of trees during the period. This 

is likely to be a result of maturation of existing trees and recent urban tree planting and 

management schemes. Further, major afforestation from 1950 to the late-1980s resulted in an 

overall change to the species composition of UK woodland, from one of even deciduous-

coniferous mix, to one dominated by conifers (Mason, 2007), which, individually, tend to 

have less biomass and store less C for a given tree diameter than deciduous species (see 

Zianis et al., 2005). However, C losses caused by the introduction of coniferous species may 

have been countered somewhat, by an almost complete cessation of deciduous coppice 

management over the same period (Mason, 2007). This has allowed for the development of 

regularly-structured, closed-canopy woodland (Rackham, 1986) with potentially greater C 

storage value than the coppice it replaced. Nevertheless, these changes to woodland 

management may have led to over-estimation of woodland, parkland and other tree-

containing land-use categories in 1945. However, within urban areas, any changes to tree C 

stocks during this period would largely be applicable to mature development closer to the 

urban core (cf. Berland, 2012). The process of urbanisation results in immediate vegetation 

loss when the land is initially cleared (Berland, 2012), and as such, areas of new development 

will have particularly low vegetation cover.  As 1945 pre-dates the post-war surge in urban 

development, one would expect a greater extent of new development within the contemporary 

urban matrices than in the historical ones; and given the stratified-random sampling design of 

this study, the inclusion of sample-points that have increased in vegetation cover between 

1945 and the present would have been countered, to some degree, by selection of sample-

points within new development of particularly low vegetation cover.  
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2.4.4 Conclusions 

The contiguous urban extent of Darlington, Durham and Newcastle increased considerably 

between 1945 and the present, and reflected the national trend towards outward urban 

expansion during this period. When used as a proxy for C storage change, this land-use 

change had considerable negative effect on the C storage of the areas occupied, as 

surrounding agricultural land was replaced by urban land-uses of lower C storage value. Loss 

of soils was the dominant driver of C loss in these urbanising areas, with 113,515 Mg C lost 

from soils in Newcastle alone between 1945 and the present. Although C gains were made 

through small increases in the extent of woodland and trees within the urban matrices (e.g. 

+5,279 Mg C in Newcastle), these were far too small to mitigate effectively against losses 

made from soils. Modification to UK planning policy has encouraged the development of 

brownfield sites and slowed the outward growth of towns and cities in recent decades, but 

with urban human populations set to increase into the foreseeable future, the viability of 

continued urban densification has been called into question. The choices made now on how 

towns and cities are developed in the future will have implications for national and 

international emissions obligations and for provision of other ecosystem services in urban 

environments, including those relating to the well-being of human urban dwellers and 

conservation of urban biodiversity. This study has shown that choices made in the past can 

serve as our guide. 
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Part 2: 

Carbon storage and biodiversity in the urban 

environment 
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Chapter 3:  

Introduction 

 

3.1 Biodiversity and ecosystem services: trade-offs and opportunities   

Biodiversity is being lost worldwide through a combination of factors, including climate 

change, habitat loss and fragmentation, spread of invasive alien species and diseases, 

pollution and over-exploitation (Pullin, 2002; MA, 2005b; Butchart et al., 2010; Bellard et al., 

2012). In response, by 2010, world leaders committed to achieving a significant reduction in 

the rate of biodiversity-loss at global, regional and national scales through the Convention on 

Biological Diversity (CBD; Secretariat of the CBD, 2003). These targets were not met 

(Butchart et al., 2010; Mace et al., 2010; Perrings et al., 2010; Secretariat of the CBD, 2010; 

Jones et al., 2011).  

The collective failure to meet the CBD 2010 biodiversity targets can principally be 

attributed to limited funding, policy inaction and a lack of appreciation of biodiversity by 

governments (Adenle, 2012). In turn, this was fuelled by a general lack of incentive, as the 

short-term opportunity costs of biodiversity conservation are often seen to be too high 

(Balvanera et al., 2001; Balmford et al., 2003; Chan et al., 2007; Balmford et al., 2011). With 

this in mind, the revised targets set out within the Strategic Plan for Biodiversity 2011-2020, 

including the Aichi Biodiversity Targets (CBD, https://www.cbd.int/sp/), incorporate a 

requirement that, by 2020, the financial resources for effectively implementing the plan are 

made available, and that evaluation of biodiversity within national accounting and reporting 

systems is made. As such, the revised strategic plan encourages an approach to biodiversity 

conservation centred upon socio-economics and the benefits that biodiversity provides for 
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people (Perrings et al., 2011). There are fears however, that this approach could lead to the 

elements of biodiversity that deliver the services that society desires most being conserved at 

the expense of functionally redundant species, or those with intrinsic value only (Chan et al., 

2007; Perrings et al., 2011). Indeed, some authors challenge the ecosystem services approach 

to conservation by emphasising the trade-offs between this rationale and what they believe to 

be the conservationist’s primary objective, which is to conserve biological diversity for its 

intrinsic value (McCauley, 2006; Chan et al., 2007; Ghazoul, 2007; Redford and Adams, 

2009). Therefore, it is vital that the trade-offs and opportunities that stem from the inclusion 

of ecosystem services in biodiversity conservation efforts are realised (Cimon-Morin et al., 

2013).   

Identifying spatial congruence between habitats important for biodiversity and provision 

of ecosystem services is critical to conservation and land-management strategies under the 

revised global and regional biodiversity policies (Chan et al., 2006; Nelson et al., 2009). To 

date however, scientific guidance on how to proceed has been challenged by a difficulty in 

mapping many ecosystem services (Egoh et al., 2009). Despite several reports of positive 

relationships between biodiversity and selected ecosystem services (e.g. Balvanera et al., 

2006; Turner et al., 2007; Strassburg et al., 2010; Bai et al., 2011; Larsen et al., 2011, 2012; 

Maes et al., 2012; Polasky et al., 2012), synergies may not apply in every region and at every 

scale. Whereas large- or global-scale analyses might suggest spatial unity, fine- or local-scale 

analyses may reveal weaker associations, or indeed, trade-offs (Naidoo et al., 2008; Cimon-

Morin et al., 2013). If the potential for spatial congruence between biodiversity and 

ecosystem service delivery can be addressed, the ecosystem service approach to conservation 

could provide benefits to biodiversity by broadening the funding base and increasing the 

diversity of support (Chan et al., 2006; Goldman et al., 2008; Skroch and López-Hoffman, 

2010).  
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Studies investigating multiple ecosystem service delivery have shown that no single 

habitat or biome performs optimally for all services under investigation (e.g. Rodriguez et al., 

2006; Maskell et al., 2013), not least because provisioning services (e.g. crop and livestock 

production) often create trade-offs with regulating services (Maes et al., 2012). Carbon (C) 

storage is a regulating service commonly considered within such studies. However, although 

organic C stores in nature are well understood and C-rich biomes and habitats can be mapped 

(e.g. Reusch and Gibbs, 2008), their level of spatial congruence with biodiversity can be 

dependent upon the proxy used for biodiversity. Many globally- or internationally-based 

studies have used biodiversity priority areas as their biodiversity metric (e.g. Turner et al., 

2007; Larson et al., 2012; Maes et al., 2012), whereas others have used species distributions 

(e.g. Strassburg et al., 2010). Likewise, national- and regional-scale studies have used 

protected area networks (e.g. Eigenbrod et al., 2009), biomes, habitats (e.g. Egoh et al., 2009; 

Bai et al., 2011), or the distribution of threatened or declining species (e.g. Anderson et al., 

2009) as a biodiversity measure. As a result, there is ambiguity in the conclusions of existing 

studies, with reports of both positive and negative relationships between C storage and 

biodiversity. Furthermore, there remains a lack of spatially explicit assessments on a scale at 

which land is typically managed, or at which conservation investments usually occur (MA, 

2005a; Naidoo et al., 2008; Nelson et al., 2009; Izquierdo and Clark, 2012). In this respect, 

urban areas offer small-scale and unique insights into how organisms react with their 

environment, and whether, or how, they can co-habit with people (Gil and Brumm, 2014). 

Those organisms that can, may offer cultural ecosystem services (see Part 1, Table 1.1), and 

make a vital contribution to the continued well-being of increasing urban human populations. 
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3.2 Biodiversity in urban environments   

Of the various anthropogenic origins of habitat-loss and degradation, land-use change 

by urbanisation is responsible for some of the highest local extinction rates, and often results 

in eradication of a large majority of native species within numerous taxa (Vitousek et al., 

1997; McKinney, 2002, 2006). It is the degree of habitat transformation, its permanence, and 

the density of human occupation that makes urbanisation so detrimental to local biodiversity 

(McKinney, 2006). The removal or simplification of natural vegetation through landscaping 

and maintenance of residential and commercial areas in particular, and its replacement with 

impervious surfaces, turf, and non-native species (Fahrig, 1999 cited by Marzluff and Ewing, 

2001; Er et al., 2005; Burghardt et al., 2009) results in reduction and fragmentation of habitat 

available for native species (McKinney, 2008). Consequently, urban environments typically 

comprise of a highly modified, scattered matrix of habitats, with some small patches of 

remnant natural vegetation or other natural features mixed with built-up areas (Breuste et al., 

2008).  

The complex nature of urban land-use can have complicated influence on local 

biodiversity (McKinney, 2008). Urban-rural gradients are commonly adopted to uncover the 

effects of increasing urbanisation on biodiversity from the surrounding landscape through the 

urban matrix and into the urban core (McDonnell and Pickett, 1990). Several such studies 

have revealed a hump-shaped curve rather than a linear relationship between the intensity of 

urbanisation and diversity within animal taxonomic groups (e.g. Blair, 1996; Blair and 

Launer, 1997; Blair, 1999; Germaine and Wakeling, 2001), implying that species richness is 

favoured by low to moderate levels of urbanisation over the surrounding landscape, although 

this may be dependent upon the habitat that lies at the rural end of the gradient (see Verboven 

et al., 2014). However, such patterns are more commonly observed in plants (McKinney, 

2008), which has been attributed to the introduction of exotic species (McKinney, 2002; Tait 
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et al., 2005; McKinney, 2006; Wania et al., 2006; McCune and Velland, 2013) and high 

spatial habitat heterogeneity within urban areas, whereby species communities vary between 

habitat patches, resulting in high beta-diversity (Rebele, 1994; Niemelä, 1999; Kühn et al., 

2004; Wania et al., 2006; but see McCune and Velland, 2013). These patterns have also been 

linked to relationships with the intermediate disturbance hypothesis (Niemelä, 1999; Porter et 

al., 2001; McKinney, 2008), or as a consequence of human settlement being prone towards 

areas of naturally high geological and biological diversity (Marzluff et al., 1998; Kühn et al., 

2004; Pautasso, 2007). In a meta-analysis of urban-rural gradient studies, McKinney (2008) 

found that non-avian animal groups, vertebrates in particular, are less likely to show 

increasing species richness and diversity with moderate levels of urbanisation than are plants, 

and Marzluff (2001) found that 61% of avian studies indicate a linear decline in species 

richness with increasing urban intensity; other reviews support these findings (e.g. Chase and 

Walsh, 2006; Faeth et al., 2011). In fact, even low levels of urbanisation may eliminate many 

animal species found in rural habitats. It has been argued that this is because humans maintain 

direct control over much of the urban plant community, including the introduction of alien 

species, but that ecological and evolutionary drivers remain dominant in the response of 

native consumer communities to urbanisation (Faeth et al., 2011). Nonetheless, species 

richness in all taxa, whether plant or animal, declines when an urban-intensity threshold is 

exceeded (McKinney, 2008). Consequently, within the bounds of the urban matrix, 

biodiversity tends to be highest in suburban areas, or at the urban fringes, and lowest at the 

urban core. This has been reported for invertebrates (Blair and Launer, 1997; Sadler et al., 

2006; Clark et al., 2007), amphibians (Beebee, 1979), reptiles (Germaine and Wakeling, 

2001), birds (Blair, 1996; Savard et al., 2000; Sandström et al., 2006), and mammals (Isaac et 

al., 2014; Łopucki et al., 2013; Luck et al., 2013).  
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The local gradient of disturbance produced by urban areas as they accrete outwards also 

produces a gradient of biotic homogenisation (Knight, 1999; McKinney, 2006; Isaac et al., 

2014). Despite the heterogeneity within urban areas, there is a degree of uniformity between 

urban areas in the set of physical conditions, functions and constraints that they create (Savard 

et al., 2000; McKinney, 2006), and as such, a simplified and cosmopolitan community of 

urban exploiters (sensu Blair and Launer, 1997) emerges that have become adapted to intense 

urbanisation (McKinney, 2006). The landscape surrounding the urban area will greatly 

influence the supplement of additional species found at the urban-rural interface and within 

land-use types of low to moderate levels of urbanisation (Blair and Launer, 1997; Savard et 

al., 2000); such species have been referred to as suburban adaptors (e.g. Blair and Launer, 

1997). Those species that can adapt, often achieve higher population densities than 

conspecifics in natural or semi-natural habitats (Marzluff, 2001; Chace and Walsh, 2006; 

Rodewald and Shustack, 2008; Shochat et al., 2010; Møller et al., 2012), whilst those that 

cannot, often specialist or rare species, are progressively filtered from the community as 

urbanisation intensifies (Blair 1996; Blair and Launer, 1997; Deichsel, 2006; Clark et al., 

2007; DeVictor et al., 2008). As unique roles and traits are lost over space and time, there 

becomes high redundancy in those of the remaining species, and functional, as well as biotic, 

homogenisation occurs within the community (Olden and Rooney, 2006). 

  

3.3 Meeting carbon emissions and biodiversity targets in urban environments  

The dramatic shift towards urbanisation is set to continue into the foreseeable future, 

both globally and nationally, and the environmental impact of expanding urban areas will 

become ever more severe. The harmful effect that this will have on emissions and biodiversity 

conservation obligations will be of great concern to governments and decision-makers. 

Therefore, there is a responsibility to implement policy that controls urban development in a 
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way that it provides environmental needs whilst maintaining human well-being under 

increasing land-use constraints (Grimm et al., 2008; Seto et al., 2012). One strategy to reduce 

the impact of further urbanisation is to adopt planning policy that increases the compaction, or 

density, of existing settlements (Pauleit et al., 2005; Tratalos et al., 2007). This contrasts with 

the sprawl scenario, whereby low-density urban development extends beyond the urban 

periphery. The contrast has been likened to the land-sharing versus land-sparing debate in 

relation to agriculture (e.g. Lin and Fuller, 2013), whereby land-sharing, analogous to urban 

sprawl, favours species populations on farmland, but decreases agricultural yield per unit 

area; and land-sparing, in parallel with urban densification, minimises demand for farmland 

by increasing yield and leaving more intact habitat for species (Green et al., 2005). The 

densification approach may be preferable when considering regional C storage (Eigenbrod et 

al., 2011; but see Churkina et al., 2010) and biodiversity (Seto et al., 2012), as urban 

disturbance will be confined to small, explicit areas, but it may come at a cost to local 

ecosystem services within the urban environment itself, as well as to urban greenspace, urban 

biodiversity and ultimately, the well-being of urban human populations (Pauleit et al., 2005; 

Tratalos et al., 2007; Davies et al., 2009; Dallimer et al., 2011; Echenique et al., 2012).   

Many of the factors that are detrimental to urban biodiversity also impact negatively 

upon urban C storage capacity. This is because there is often strong correlation between 

species richness and the productivity and structure of native vegetation (Emlen, 1974; Mills et 

al., 1989; Chace & Walsh, 2006; Savard et al., 2000). Increasing productivity increases 

biodiversity (Shochat et al., 2006) and C sequestration and storage, at least up until a point. 

Additionally, the loss of vegetation to impervious surfaces will reduce species richness and 

diversity by the loss of habitable area (McKinney, 2008), which may remain as isolated 

islands within the urban matrix (sensu MacArthur and Wilson, 1967). The construction of 

impervious surfaces and buildings also facilitates removal of soil organic carbon (SOC), and 
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once in place, may hinder or prevent further accumulation of organic C, depending on the 

type and extent of the impervious cover (Edmondson et al., 2012). However, if the areas of 

highest biodiversity within the urban matrix are spatially congruent with areas of high C 

storage, there could be potential for urban areas to off-set some of the emissions and 

biodiversity-loss from elsewhere within the urban matrix by maintaining or increasing the 

extent of the most valuable land-use types, although it is appreciated that the effect of 

increasing tree cover would be minimal relative to the magnitude of emissions from urban 

areas (Nowak, 1994). 

The UK experienced a period of urban sprawl following the end of the Second World 

War (Best, 1981; Williams, 2004; Couch and Karecha, 2006), and although current policy 

promotes urban densification (Office of the Deputy Prime Minister [ODPM], 2005, 2010; UK 

National Ecosystem Assessment [UKNEA], 2011), towns and cities, as they stand today, bear 

the influence of earlier policies that produced new peripheral estates, expanded towns and 

new towns (Couch and Karecha, 2006). Could there be an argument in favour this planning 

design if the matrix of urban land-uses that it creates optimises urban C storage and 

biodiversity? Or should the trend towards urban densification proceed, thus, sacrificing the C 

stores and modified biological communities in urban areas in favour of greater opportunities 

within the surrounding landscape? 

 

3.4 Aims and objectives 

In Part 1 of this thesis, I discovered that the urban extent of Durham, like many urban 

areas in the north-east region of England, has increased rapidly over the past six to seven 

decades, and that the city now exhibits the large expanse of low- to moderate-density 

residential and commercial land-uses typical of urban sprawl. I also explored the variation in 

C storage among the different urban land-uses within the city. In Part 2, I go on to investigate 
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whether there is variation in biodiversity among the urban land-use categories, and then test 

for co-variation between biodiversity and C storage. If land-uses with greater C storage 

capacity are also those with greater biodiversity, then this spatial congruence may have 

positive implications when addressing C emissions reduction and biodiversity conservation 

targets within urban areas. I will employ birds as a biodiversity indicator taxon, as they 

respond both positively and negatively to human disturbances (Clucas and Marzluff, 2012), 

they frequently colonise urban areas throughout the world, and are commonly used to assess 

the conservation value of semi-natural habitats within urbanised landscapes (Chiari et al., 

2010). Indeed, Blair (1999) concludes that birds meet the criteria of useful biological 

indicators (cf. Noss, 1991), and that responses of bird communities to urbanisation are similar 

to those of other animal groups.  

The study will address the following questions: 

1) What is the wintering and breeding bird species richness and diversity (as assessed by 

applying the Shannon-Wiener Diversity Index [H']) within each of the urban land-use 

categories identified within the city of Durham? To answer this, I will sample bird 

communities by carrying out point-count surveys at all sample points within which 

prior vegetation C and SOC samples were collected (see methodology Part 1, Chapter 

2).  

2) Is there a spatial relationship between bird i) species richness and ii) diversity and C 

storage within the city? I will use the C storage values per unit area from prior C 

sampling surveys of Durham, and data from the bird point-counts to model these 

relationships.  

3) Are there differences in bird species richness and diversity among the different land-

use categories, each with a varying C storage value per unit area. 
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4) Are there differences in the occurrence and abundance of species within the bird 

communities of the different urban land-use categories, and if so, does the matrix of 

land-uses contribute towards the overall species diversity within the city? I will use 

Principal Components Analysis (PCA) to show the similarity/dissimilarity among 

land-uses.  
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Chapter 4:  

Spatial relationships between carbon storage and bird 

species richness and diversity in an urban environment 

 

ABSTRACT 

Context: Both major land-use change and human-induced climate change have been 

implicated in recent global biodiversity declines. Nowhere is this more evident than in urban 

areas, where patches of remnant habitat have become enclosed within a matrix of urban land-

uses, many of which are unsuitable for the persistence of species. With urban human 

populations continuing to increase, there is a specific call for urban areas to increase their role 

in the implementation of the Convention on Biological Diversity (CBD) and the Kyoto 

Protocol for emissions reduction.  

Aim: I aim to assess the relationship between carbon (C) storage and bird species 

richness and diversity in an urban matrix.  

Methods: I used satellite imagery to categorise urban land-uses within the city of 

Durham, north-east England. C storage and bird species richness and diversity data were 

collected from the field for the different urban land-uses.  

Results: Total C storage value per unit area differed significantly between different 

urban land-use categories, as did wintering and breeding bird species richness and diversity. 

The highest C storage value land-uses in woodland and parkland were associated with highest 

species richness and diversity, while land-uses with lowest C storage value (commercial and 

high-density housing without gardens) had among the lowest species richness and diversity. 
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However, the relationship was not straightforward between these two extremes. Beta-diversity 

among land-use categories highlighted the importance of some moderate- to low-C value 

land-uses to biodiversity throughout the urban matrix, although there was also some 

redundancy amongst certain land-uses in the assemblage of species that they supported. The 

overall relationship between C storage and species richness and diversity was positive, and 

the tree and woody vegetation C pools had stronger positive relationships with species 

richness and diversity than did the herbaceous vegetation and soil C pools.  

Conclusions: Despite the generally positive relationships detected, this study also 

highlights  difficulties in maximising C storage and biodiversity within urban environments, 

as a mix of both higher and lower C-containing land-uses are required to maintain 

biodiversity across the entire city. The study considers these results with reference to future 

planning strategies under continuing urban human population growth, warning that 

compromises are inevitable given the spatial restrictions within the bounds of existing urban 

areas.  
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4.1 INTRODUCTION 

Identifying spatial congruence between habitats important for biodiversity and for the 

provision of ecosystem services is critical to conservation and land-management strategies 

under the revised biodiversity targets set out within the Convention on Biological Diversity’s 

(CBD) Strategic Plan for Biodiversity for the period 2011-2020 (https://www.cbd.int/sp/; 

Chan et al., 2006; Nelson et al., 2009). To date however, scientific guidance on how to 

identify sites of dual importance has been challenged by difficulties in mapping many 

ecosystem services (Egoh et al., 2009). Despite reports of positive relationships between 

biodiversity and selected services (e.g. Balvanera et al., 2006; Turner et al., 2007; Strassburg 

et al., 2010; Bai et al., 2011; Larsen et al., 2011; Larsen et al., 2012; Maes et al., 2012; 

Polasky et al., 2012), synergies may not apply in every region and at every scale. Whereas 

large- or global-scale analyses might suggest spatial unity, fine- or local-scale analyses may 

reveal weaker associations, or indeed, trade-offs (Naidoo et al., 2008; Cimon-Morin et al., 

2013). If the potential for spatial congruence between biodiversity and ecosystem service 

delivery can be addressed, the ecosystem service approach to conservation could benefit 

biodiversity by broadening the funding base and increasing the diversity of support (Chan et 

al., 2006; Goldman et al., 2008; Skroch and López-Hoffman, 2010). 

Studies investigating multiple ecosystem service delivery have shown that no single 

habitat or biome performs optimally for all services under investigation (e.g. Rodriguez et al., 

2006; Maskell et al., 2013), not least because provisioning services often create trade-offs 

with regulating services (Maes et al., 2012). Carbon (C) storage is a regulating service 

commonly considered within such studies. However, although organic C stores in nature are 

well understood and C-rich biomes and habitats can be mapped (e.g. Reusch and Gibbs, 

2008), their level of spatial congruence with biodiversity can be dependent upon the proxy 
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used for biodiversity. Many globally- and internationally-focused studies have used 

biodiversity priority areas as their biodiversity metric (e.g. Turner et al., 2007; Larson et al., 

2012; Maes et al., 2012), though others have used species distributions (e.g. Strassburg et al., 

2010). Likewise, national- and regional-scale studies have used protected area networks (e.g. 

Eigenbrod et al., 2009), biomes, habitats (e.g. Egoh et al., 2009; Bai et al., 2012), or the 

distribution of threatened or declining species (e.g. Anderson et al., 2009) as a biodiversity 

measure. As a result, there is ambiguity in the conclusions of existing studies, with reports of 

both positive and negative relationships between C storage and biodiversity. Furthermore, 

there remains a lack of assessments on a scale at which land is typically managed, or at which 

conservation investments usually occur (MA, 2005b; Naidoo et al., 2008; Nelson et al., 2009; 

Izquierdo and Clark, 2012). 

A dramatic shift towards urbanisation in recent decades has led to more than 50% of the 

world’s human population living within towns and cities (United Nations [UN], 2012). As a 

consequence, despite their small area of land surface occupation, urban areas have 

disproportionately high C footprints (Svirejeva-Hopkins et al., 2004; Trusilova and Churkina, 

2008). Aside from direct emissions release through energy consumption, urban areas and the 

process of urbanisation can reduce the C storage value of a parcel of land when compared to 

its former land-use. However, the urban environment may regain C stocks over time as 

vegetation recovers, until eventually, stores within certain parts of the urban matrix may 

surpass those of the land-use they have replaced (Zhao et al., 2007; Berland, 2012). Urban 

areas may also retain patches of remnant semi-natural habitat, such as woodland, which can 

make a vital contribution to the C storage value of towns and cities. Indeed, studies based 

upon fine-scale land-use data have produced estimates indicating a substantial C store exists 

within urban vegetation and soils (e.g. Nowak and Crane, 2002; Pouyat et al., 2006; Churkina 



74 
 

et al., 2010; Davies et al., 2011; Hutyra et al., 2011; Edmondson et al., 2012; Strobach and 

Haase, 2012; Edmondson et al., 2014b).  

Urbanisation is responsible for severe local biodiversity loss, and often results in 

elimination of a majority of native species across numerous taxa (Vitousek et al., 1997; 

McKinney, 2002, 2006). As such, urban areas offer small-scale and unique insights into how 

organisms react with their environment, and whether, or how, they can live alongside people 

(Gil and Brumm, 2014). The complex nature of urban land-use however, can complicate its 

influence on local biodiversity (McKinney, 2008). Urban-rural gradients are commonly 

studied to uncover the effects of increasing urbanisation on biodiversity (McDonnell and 

Pickett, 1990). In a meta-analysis of such studies, McKinney (2008) found that plants may 

show increased species richness and diversity with moderate levels of urbanisation, but that 

animal groups, vertebrates in particular, are less likely to respond in such a manner. Indeed, 

Marzluff (2001) found that 61% of avian studies reviewed, showed a decline in species 

richness with increasing urban intensity; other reviews have revealed similar declines (e.g. 

Chase and Walsh, 2006; Faeth et al., 2011). In fact, even low levels of urbanisation can 

eliminate many animal species found in rural habitats. It has been argued that this is because 

humans directly control much of the urban plant community, including the introduction of 

alien species, but that ecological and evolutionary drivers remain dominant in the response of 

native consumer communities to urbanisation (Faeth et al., 2011). Nonetheless, species 

richness in all taxa, whether plant or animal, declines when an urban-intensity threshold is 

exceeded (McKinney, 2008). Consequently, within the bounds of the urban matrix, diversity 

within taxonomic groups tends to be highest in suburban areas, or at the urban fringes, and 

lowest at the urban core (e.g. Blair and Launer, 1997; Sadler et al., 2006; Clark et al., 2007; 

Beebee, 1979; Germaine and Wakeling, 2001; Blair, 1996; Savard et al., 2000; Sandström et 

al., 2006; Isaac et al., 2014; Lopucki et al., 2013; Luck et al., 2013). 
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The gradient of disturbance produced by urban areas as they accrete outwards also 

produces a gradient of biotic homogenisation (Knight, 1999; McKinney, 2006; Isaac et al., 

2014). Despite the inconsistent mix of land-uses within different urban areas, there is a degree 

of uniformity between urban areas in the set of physical conditions, functions and constraints 

that they create (Savard et al., 2000; McKinney, 2006), and consequently, a simplified and 

cosmopolitan community of urban exploiters (sensu Blair and Launer, 1997) emerges, that 

has become adapted to intense urbanisation (McKinney, 2006). The landscape surrounding 

the urban area will greatly influence the supplement of additional species found at the urban-

rural interface and within land-uses of low to moderate levels of urbanisation (Blair and 

Launer, 1997; Savard et al., 2000). Those species that can adapt, often achieve higher 

population densities than conspecifics in natural or semi-natural habitats (Marzluff, 2001; 

Chace and Walsh, 2006; Rodewald and Shustack, 2008; Shochat et al., 2010; Møller et al., 

2012), whilst those that cannot, often specialist and rare species, are progressively filtered 

from the community as urbanisation intensifies (Blair, 1996; Blair and Launer, 1997; 

Deichsel, 2006; Clark et al., 2007; DeVictor et al., 2008). 

Many of the factors that are detrimental to urban biodiversity also impact negatively 

upon urban C storage. This is because there is often strong correlation between species 

richness and the productivity and structure of native vegetation (Emlen, 1974; Mills et al., 

1989; Chace & Walsh, 2006; Savard et al., 2000). Increasing productivity increases 

biodiversity (Shochat et al., 2006) and C sequestration and storage, at least up until a point. 

Additionally, the loss of vegetation to impervious surfaces will reduce species richness and 

diversity by the loss of habitable area (McKinney, 2008); isolated areas of the latter perhaps 

remaining as islands within the urban matrix (sensu MacArthur and Wilson, 1967). The 

construction of impervious surfaces and buildings also results in the removal of soil organic 
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carbon (SOC), and once in place, further C sequestration may be impeded or prevented, 

depending upon the type and extent of the impervious cover (Edmondson et al., 2012). 

The UK experienced decades of urban sprawl following the end of the Second World 

War (Williams, 2004), and although current policy promotes urban densification (Office of 

the Deputy Prime Minister [ODPM], 2005, 2010; UK National Ecosystem Assessment 

[UKNEA], 2011), towns and cities, as they stand today, bear the influence of earlier policies 

that produced new peripheral estates, expanded towns and new towns (Couch and Karecha, 

2006). Here, I question whether there is an argument in favour this sprawl if the matrix of 

urban land-uses that it creates optimises urban C storage and biodiversity conservation. Or 

should the trend towards urban densification proceed at the expense of C storage and 

biological communities in urban areas, addressing emissions and biodiversity targets in the 

surrounding landscape? This contrast has been likened to the land-sharing versus land-sparing 

debate in relation to agriculture (e.g. Lin and Fuller, 2013), whereby land-sharing, analogous 

to urban sprawl, favours species populations on farmland, but decreases agricultural yield per 

unit area; and land-sparing, in parallel with urban densification, minimises demand for 

farmland by increasing yield and leaving more intact habitat for species (Green et al., 2005).  

I use birds as an indicator taxon as they are considered particularly suited to studies 

concerning urban biodiversity. Birds are ubiquitous to urban environments worldwide, and 

they respond both positively and negatively to human disturbances (Clucas and Marzluff, 

2012). Additionally, the presence of birds enhances the well-being of people living in towns 

and cities (Fuller et al., 2007; Clucas et al., 2011). 

Using empirical data collected in the field, I explore C storage and biodiversity amongst 

urban land-use types, and test for co-variation between C storage and biodiversity. Knowing 

the features of urban environments that are important to a wide set of species can assist 
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planning decisions in an increasingly urbanised world (Richter and Weiland, 2011; Gil and 

Brumm, 2014). 

 

4.2 METHODOLOGY 

4.2.1 Study area 

Durham City (hereafter Durham) is a relatively small UK city situated within north-east 

England, UK (54°46'32.70 ̎ N, 01°35'06.23 ̎ W). It has a human population of 95,000 within 

the city limits (Office for National Statistics [ONS], 2013). The mean annual precipitation is 

651 mm, and the mean minimum and maximum daily temperatures are 5.4°C and 12.9°C 

respectively. This study focused on the urbanised area of the city, defined by the delineation 

between what was classified as an urban land-use category (see Chapter Two, Table 2.3) and 

contiguous non-urban land-use (e.g. agriculture) or semi-natural land-cover (e.g. woodland or 

scrub). If the latter two land-use or land-cover categories were not contiguous, and were set 

within the matrix of urban land-use categories, they were considered urban, and included 

within the boundary of the study area. For simplicity, the term land-use was applied to all 

land-use categories, although strictly, grassland, scrub, woodland and no vegetation describe 

land cover. 

 

4.2.2 Land-use mapping and categorisation 

Land-use categorisation was determined using Google Earth (GE) v7.1.2 software 

(Google Inc., Mountain View, CA, USA) as described in Chapter Two of this thesis, where 

the reader should refer to the methodology concerning contemporary land-use mapping in 

section 2.2.2. The study area was divided into the urban land-use categories as defined in 
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Chapter Two, Table 2.3; with the exception of agricultural land-use, which was not applicable 

to the research within this chapter. 

 

4.2.3 Sample-point selection 

Sample points within urban land-uses were selected using the stratified random 

sampling process described in Chapter Two, and the reader should refer to section 2.2.3 for a 

detailed methodology. In total, 93 quadrats across the study area were selected in this way 

(Table 4.1). All quadrats were located in the field using a handheld global positioning system 

(GPS) device (Garmin e Trex 20, Olathe, US) and aided by maps printed from GE. 

 

Table 4.1 The number of 50 x 50 m quadrat samples 

taken from each urban land-use category within 

Durham, UK.  

6

11

10

12

10

Urban no garden 4

Urban with garden 10

Suburban 12

8

10

93Total

Scrub

Woodland

Land-use category Sample size (n )

Commercial

Grassland

Parkland

Residential:

Allotment

Amenity grassland
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4.2.4 Vegetation and soil survey, preparation and analysis 

C storage data were collected from the following four C pools within each 50 x 50 m 

quadrat: i) trees (4 m+), ii) woody vegetation (1-4 m), iii) herbaceous vegetation, and iv) soils. 

The methodology for collecting this data, and for preparing and analysing vegetation and soil 

samples, is described in detail in Chapter Two, where the reader should refer to section 

2.2.4.1 through to 2.2.4.4. It should be noted however, that the research covered in this 

chapter is concerned only with C data collected from quadrats in Durham, and therefore, the 

two-way analysis-of-variance (ANOVA) within section 2.2.4.4, that was applied to justify the 

use of 22 cm as a cut-off depth for further soil organic carbon (SOC) analysis, was repeated 

here omitting any soil sub-samples collected in Darlington and Newcastle. This did not alter 

the significance of the test, and the use of 22 cm as a cut-off depth for further SOC analysis 

within this chapter was justified. The results of the two-way ANOVA and Tukey HSD tests 

carried out on soil sub-samples collected within Durham quadrats are included in Appendix 4.  

 

4.2.5 Bird survey 

Bird point-count surveys involved standing at, or as close as possible to, the same 

stratified random sample co-ordinates generated for C data collection, and following a two-

minute settling-down period, recording all birds seen and heard over a ten-minute period 

(following Fuller and Langslow, 1984) in the land-use category within which the sample point 

co-ordinates were situated. Birds flying over and not seen to alight were excluded from the 

survey. All individuals were recorded to species level. Additional parameters recorded in the 

field were i) the estimated distance, to the nearest 5 m, and ii) the bearing of the bird from the 

observer where it was initially located. If a bird was initially seen flying but was then 

observed to alight within the focal land-use category, the distance and bearing of the landing 
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point from the observer was recorded. All sample points were surveyed in winter (December 

and January) 2013/14, and repeated in spring (April and May) 2014, and all point-counts were 

carried out within a two-hour period following sunrise. It is appreciated that bias introduced 

by detectability interactions with habitat is potentially serious (Bibby et al., 2000), especially 

as the effects of habitat within different land-use categories was an objective of this study. As 

such, although it is considered that the majority of all species present within all point-count 

samples, regardless of land-use, were duly recorded, it is possible that, on occasion, the exact 

abundance of indiviuals within species was not clear in land-uses with dense vegetation (e.g. 

woodland and parkland) or tall buildings (e.g. residential and commercial land-uses). On these 

occasions, only the individuals seen were recorded, or, if unseen birds were vocalising, 

abundance was estimated based upon vocalisations. Following a set of point-counts, the 

observer’s position was located on the map of land-use polygons created in GE (see section 

4.2.2), and using the information obtained in i) and ii) above, the location of each bird 

sighting and its position within the land-use category was verified. The species richness 

within each survey was recorded, and species diversity was calculated using the Shannon-

Wiener Diversity Index (H'; Equation 3). 

H' = -∑ (pi) (lnpi) (Equation 3) 

Where: pi = the proportion of the total sample belonging to the ith species. 

 

4.2.6 Statistics and further analysis 

4.2.6.1 Analysis of carbon storage among land-use categories 

For further analysis, the C storage values obtained for each of the C pools within each 

50 x 50 m quadrat were summed to provide a total vegetation C and SOC storage value for 

each quadrat. The quadrat C data did not meet the assumptions of parametric tests, and could 
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not be transformed to do so; therefore, Kruskal-Wallis non-parametric ANOVA was used on 

untransformed data to test for differences between the land-use categories in the C storage per 

unit area (Mg C ha
-1

) of the i) total vegetation and soils, ii) trees (4 m+), iii) woody vegetation 

(1-4 m), iv) herbaceous vegetation, and v) soils.  

4.2.6.2 Analysis of bird species richness and diversity among land-use categories 

Data collected from the point-count surveys for i) wintering, ii) breeding, and iii) 

aggregated total (wintering plus breeding) bird species richness by land-use category did not 

meet the assumptions of parametric tests, and therefore, differences between the land-use 

categories were tested using Kruskal-Wallis non-parametric ANOVA. Likewise, bird 

diversity data by land-use category, calculated from the point-count survey data, did not meet 

the assumptions of parametric tests and differences between the land-use categories for iv) 

wintering, and v) breeding bird diversity was tested using Kruskal-Wallis non-parametric 

ANOVA.  

4.2.6.3 Relationships between carbon storage and bird species richness and diversity 

The relationships between total vegetation C and SOC storage per unit area and i) bird 

species richness, and ii) bird diversity, were tested using generalised linear models (GLMs). 

GLMs were run with species richness and diversity as response variables, and C storage per 

unit area and land-use category as continuous and categorical explanatory variables 

respectively. The GLMs were then repeated using C storage per unit area for each of the four 

constituent C pools in turn (herbaceous vegetation, woody vegetation, trees and soils). 

However, there was no significance in the slopes of any of these models, and no significant 

interactions were found between C storage and land-use category. Therefore, the data were 

pooled and GLMs were re-run omitting land-use as an explanatory variable. Models 

containing response variables using count data (i.e. bird species richness) were fitted with a 
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quasipoisson distribution. All of the above analyses were conducted using R v2.15.3 (R 

Development Core Team, 2008) software. 

4.2.6.4 Multi-variate statistical analysis of bird communities 

Similarity in the occurrence and abundance of bird species within land-use categories 

was evaluated using Principal Components Analysis (PCA), which was performed on log10+1 

transformed point-count data to a maximum of five principal components (PCs). Logging of 

data assisted in the interpretation of results by increasing the dispersal of clustered data in the 

PCA plots. Cluster Analysis (CA) of the samples using the Group Averaging fusion strategy 

was then performed on a Euclidean Distance (ED) dissimilarity matrix calculated from the 

log10+1 data matrix. The resultant clusters were then imposed on the PCA plots with a 

dissimilarity distance of 1.35. PRIMER (v6.1.5) software (Clark and Gorley, 2006) was used 

for all PCA and CA analyses. 

 

4.3 RESULTS 

4.3.1 Carbon storage per unit area of land-use categories 

The spatial extent of each land-use category is shown by the urban land-use map of 

Durham in Figure 4.1. Carbon (C) storage per unit area, as calculated from 50 x 50 m quadrat 

samples, within the vegetation and soils of Durham was significantly different between land-

use categories. This was so of the total vegetation C and soil organic carbon (SOC; 

χ
2

9,83=81.46, p<0.001), and of the component C pools of trees (4 m+; χ
2

9,83=72.51, p<0.001), 

woody vegetation (1-4 m; χ
2

9,83=59.18, p<0.001), herbaceous vegetation (χ
2

9,83=79.79, 

p<0.001), and soils (χ
2
9,83=70.42, p<0.001; see Appendix 5 for post-hoc test results). 

Woodland contained the greatest total C (vegetation and SOC) storage per unit area (253.20 

Mg C ha
-1

) and urban no garden contained the lowest (1.74 Mg C ha
-1

; Figure 4.2). Indeed, 
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three of the four lowest figures for total C storage were associated with residential sub-

categories; the fourth was commercial (Figure 4.2). Woodland had high C storage value in all 

pools, relative to other land-use categories, whilst commercial and urban no garden land-uses 

had low C storage value in all pools (Figure 4.3). The soil pool held the greatest C store 

within all land-use categories (Figure 4.3), although in woodland, this was only slightly 

greater than the tree C pool. The tree C pool was also important in parkland, scrub and 

suburban land-uses. The woody vegetation and herbaceous vegetation C pools were of 

relatively high importance in scrub and grassland respectively (Figure 4.3).  

 

 

Figure 4.1 Land-use map of the urbanised area of Durham, UK as at 2009. Each colour-coded urban 

land-use category has an associated carbon (C) storage value (see Figure 4.2), and as such, the map 

also shows the distribution of C stored throughout the city. The land-use category no vegetation was 

assumed to have no C storage value. 

 

Allotment

Amenity grassland

Commercial

Grassland

Parkland

Urban no garden

Urban with garden

Suburban

Scrub

Woodland

No vegetation

Legend
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Figure 4.2 The median total vegetation carbon (C) and soil organic carbon (SOC) storage per unit area 

of urban land-use categories in Durham, UK. Boxes show where the central 50% of data lie, black bars 

show the median value, whiskers show maximum and minimum values, and open circles represent 

outliers. Land-use categories are colour-coded as Figure 4.1, and are presented in order of decreasing 

median C storage value per unit area.  
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Figure 4.3 The median log carbon (C) storage within a) trees (4 m+), b) woody vegetation (1-4 m), c) 

herbaceous vegetation, and d) soils per unit area of urban land-use categories in Durham, UK. Boxes 

show where the central 50% of data lie, black bars show the median value, whiskers show maximum 

and minimum values, and open circles represent outliers. Land-use categories are colour-coded as 

Figure 4.1, and presented in order of decreasing median total vegetation C and soil organic carbon 

value (see Figure 4.2). Log transformation applied to data to aid visualisation only. Note differing 

scales on y-axes.  
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4.3.2 Bird species richness and the spatial relationship with carbon storage 

The number of wintering, breeding and aggregated total (wintering plus breeding) bird 

species recorded throughout the urban matrix of Durham was 37, 46 and 51 respectively (see 

Appendix 7 for species lists). Mean species richness per point census differed significantly 

among land-use categories. This was the case for both the wintering (χ
2

9,83=50.50, p<0.001) 

and breeding (χ
2

9,83=53.42, p<0.001) bird communities, and also for the aggregated total 

species richness (χ
2

9,83=46.92, p<0.001). Figure 4.4 shows the median bird species richness 

per point census within each land-use category arranged in order of decreasing total 

vegetation C and SOC storage value per unit area (see Figure 4.2). Woodland and parkland 

had highest wintering, breeding and aggregated total bird species richness per point census, 

and were also those with the two highest total C storage values per unit area (see section 

4.3.1). The land-use categories with lowest aggregated total bird species richness, commercial 

and urban no garden, had lowest total C storage values per unit area (see section 4.3.1). 

Between these extremes, the relationship between bird species richness and C storage was less 

clear. For example, suburban and urban no garden had relatively high wintering and breeding 

bird species richness, but low total vegetation C and SOC storage value per unit area; and 

amenity grassland and grassland had low wintering and breeding bird species richness but 

moderate total C storage values per unit area. Further, allotment and in particular, scrub had 

relatively high bird species richness, but had moderate total C storage value per unit area only. 
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Figure 4.4 The median a) wintering, b) breeding, and c) aggregated total bird species richness of 

urban land-use categories in Durham, UK. Boxes show where the central 50% of data lie, black bars 

show the median value, whiskers show maximum and minimum values, and open circles represent 

outliers. Land-use categories are colour-coded as Figure 4.1, and presented in order of decreasing total 

vegetation carbon and soil organic carbon storage value per unit area (see Figure 4.2). Note differing 

scales on y-axes. 
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Figure 4.5 shows that, up to a point, the addition of progressively lower total C storage 

value categories continued to increase overall bird species richness (i.e. beta-diversity 

increased). Of note, a number of wintering and breeding bird species were recorded 

exclusively in grassland and, in particular, in scrub, although these land-use categories had 

only moderate C storage value per unit area, and two breeding species were recorded 

exclusively in the low C storage value commercial land-use (see Appendix 7 for species lists). 

On the other hand, not only was urban no garden land-use of particularly low C storage 

value, there were also no species unique to this land-use category, and it did not contribute 

towards beta-diversity.  
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Figure 4.5 The cumulative number of i) wintering, ii) breeding, and iii) aggregated total bird species 

recorded in point-counts with each additional urban land-use category in Durham, UK. Land-use 

categories are presented in order of decreasing median total vegetation carbon and soil organic carbon 

storage value per unit area (see Figure 4.2). Figures in parentheses are the number of wintering, 

breeding and aggregated total bird species exclusive to the respective land-use category. 
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Figure 4.7). Colour-coding of the plotted points in Figures 4.6 and 4.7 emphasises the absence 

of correlation between C storage and species richness within land-use categories. 

 

Table 4.2 Results of generalised linear models (GLMs) with Poisson errors testing the relationship 

between i) wintering, ii) breeding, and iii) aggregated total bird species richness and carbon (C) 

storage per unit area (Mg C ha
-1

) in different C pools in Durham, UK. Parameter estimates and 

predictions of the GLM are in logs. Bold p-values denote significant effects at p<0.05. 

Bird community/carbon pool Intercept t (91) p Slope t (91) p

Wintering birds

Total vegetation and soils 1.6241 20.368 <0.001 0.0015 2.812 0.006 0.0695

Trees (4 m+) 1.7345 32.304 <0.001 0.0025 2.711 0.008 0.0624

Woody vegetation (1-4 m) 1.6806 29.398 <0.001 0.0922 3.841 <0.001 0.1164

Herbaceous vegetation 1.7597 27.854 <0.001 0.0236 0.945 0.347 0.0084

Soils 1.6407 17.211 <0.001 0.0018 1.946 0.055 0.0355

Breeding birds

Total vegetation and soils 1.9406 29.805 <0.001 0.0017 3.974 <0.001 0.1292

Trees (4 m+) 2.0605 46.883 <0.001 0.0031 4.192 <0.001 0.1375

Woody vegetation (1-4 m) 2.0059 44.006 <0.001 0.1040 5.563 <0.001 0.2151

Herbaceous vegetation 2.0963 39.547 <0.001 0.0271 1.303 0.196 0.0157

Soils 1.9809 24.997 <0.001 0.0018 2.374 0.020 0.0516

Total birds

Total vegetation and soils 2.2636 38.683 <0.001 0.0011 2.802 0.006 0.0682

Trees (4 m+) 2.3415 59.355 <0.001 0.0020 2.909 0.005 0.0711

Woody vegetation (1-4 m) 2.2923 55.391 <0.001 0.0794 4.456 <0.001 0.1501

Herbaceous vegetation 2.3595 50.504 <0.001 0.0200 1.074 0.286 0.0106

Soils 2.2886 32.843 <0.001 0.0012 1.737 0.086 0.0279

R
2
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Figure 4.6 The relationship between a) wintering b) breeding, and c) aggregated total bird species 

richness and total carbon (vegetation plus soil organic carbon) storage per unit area. Plot points are 

colour-coded by land-use category as Figure 4.1. Lines show the fit of the model to the data points. 

Note differing scales on y-axes. 
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Figure 4.7 The relationship between bird species richness and tree (4 m+; filled circle, left plots), woody vegetation (1-4 m; open circle, centre-left plots), 

herbaceous vegetation (open triangle, centre-right plots), and soil organic (filled triangle, right plots) carbon storage. Top row shows results for wintering 

species richness, middle row for breeding species richness and bottom row for aggregated total species richness. Plot points are colour-coded to show land-use 

categories (as Figure 4.1). Model best fit lines are included for significant interactions only. Note differing scales on axes.
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4.3.3 Bird diversity and the spatial relationship with carbon storage 

Wintering (χ
2

9,83=48.44, p<0.001) and breeding (χ
2

9,83=47.46, p<0.001) bird diversity 

differed significantly between land-use categories. Figure 4.8 shows the median bird species 

diversity within each land-use category, with land-use categories presented in order of 

decreasing total C and SOC storage value per unit area (see Figure 4.2). As with bird species 

richness, the highest total C storage value land-use categories of woodland and parkland also 

had highest wintering and breeding bird diversity (although this was comparable in scrub and 

allotment), and the low total C storage land-use categories commercial and urban no garden 

land-use categories had relatively low winter bird diversity. However, the moderate C storage 

amenity grassland had the lowest winter bird diversity, which was significantly lower than all 

but urban no garden (see Appendix 9 for post-hoc test results). Along with grassland, 

commercial and urban no garden, amenity grassland also had one of the lowest breeding bird 

diversity values, but these were significantly less than woodland and parkland only. As with 

bird species richness, suburban and urban with garden residential land-uses had relatively 

high bird diversity, despite having relatively low total C storage value per unit area. 
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Figure 4.8 The median a) wintering, and b) breeding bird diversity, assessed by applying the 

Shannon-Wiener Diversity Index (H'), of urban land-use categories within Durham, UK. Boxes show 

where the central 50% of data lie, black bars show the median value, whiskers show maximum and 

minimum values, and open circles represent outliers. Land-use categories are colour-coded as Figure 

4.1, and presented in order of decreasing total vegetation carbon and soil organic carbon storage value 

per unit area (see Figure 4.2).  
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breeding bird diversity correlated positively with C storage in all four individual C pools 
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relationship with wintering bird species richness only. Bird diversity responded most rapidly 

to increases in C within the woody vegetation C pool (Table 4.3; Figure 4.10). Colour-coding 

of the plotted points in Figures 4.9 and 4.10 emphasises an absence of correlation between C 

storage and bird diversity within land-use categories. 

 

Table 4.3 Results of generalised linear models testing the relationship between i) wintering, and ii) 

breeding bird diversity, assessed by applying the Shannon-Wiener Diversity Index (H'), and carbon 

(C) storage per unit area (Mg C ha
-1

) in different C pools in Durham, UK. Bold p-values denote 

significant effects at p<0.05. 

Bird community/carbon pool Intercept t (91) p Slope t (91) p

Wintering birds

Total vegetation and soils 1.1828 11.824 <0.001 0.0020 2.739 0.007 0.0762

Trees (4 m+) 1.3265 19.511 <0.001 0.0033 2.484 0.015 0.0635

Woody vegetation (1-4 m) 1.2370 17.610 <0.001 0.1453 4.121 <0.001 0.1573

Herbaceous vegetation 1.3210 16.272 <0.001 0.0515 1.529 0.130 0.0251

Soils 1.1991 10.127 <0.001 0.0024 1.996 0.049 0.0419

Breeding birds

Total vegetation and soils 1.5969 17.691 <0.001 0.0021 3.247 0.002 0.1038

Trees (4 m+) 1.7310 28.910 <0.001 0.0044 3.760 <0.001 0.1345

Woody vegetation (1-4 m) 1.6642 26.412 <0.001 0.1471 4.652 <0.001 0.1921

Herbaceous vegetation 1.7673 23.682 <0.001 0.0405 1.307 0.194 0.0184

Soils 1.6698 15.310 <0.001 0.0019 1.720 0.089 0.0315

R
2
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Figure 4.9 The relationship between a) wintering, and b) breeding bird diversity, assessed by applying 

the Shannon-Wiener Diversity Index (H'), and the total carbon (C; vegetation C plus soil organic 

carbon) storage per unit area. Plot points are colour-coded by land-use category as Figure 4.1. Lines 

show the fit of the model to the data points. 
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Figure 4.10 The relationship between bird diversity, assessed by applying the Shannon-Wiener Diversity Index (H'), and tree (4 m+; filled circle, left plots), 

woody vegetation (1-4 m; open circle, centre-left plots), herbaceous vegetation (open triangle, centre-right plots), and soil organic (filled triangle, right plots) 

carbon storage. Top row shows results for wintering bird diversity and bottom row for breeding bird diversity. Plot points are colour-coded to show the land-

use categories as Figure 4.1, which were not included in models but are shown here to illustrate trends within them. Model best fit lines are shown for 

significant interactions only. Note differing scales on x-axes.  
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4.3.4 Principal Components Analysis and Cluster Analysis of bird communities 

A Principal Components Analysis (PCA) with a specified maximum output of five 

Principal Components (PCs) on the correlation matrix of i) 37 wintering bird species and ii) 

46 breeding bird species recorded in Durham (see Appendix 7 for a full species list), 

explained 61.3% and 54.2% of the variation among bird assemblages within point-count 

samples respectively (Appendix 10). The first two PCs, explained 35.7% and 33.3% of the 

variation in wintering and breeding bird assemblages respectively, and are plotted in 

ordination space in Figure 4.11. Many species formed dense clusters towards the centre the 

PCA plots, indicating that they were either equally distributed amongst land-use categories, or 

that they were infrequently recorded, and hence, had little influence over the first two PCs. 

Nevertheless, a number of species stood out as being particularly abundant within certain 

land-use categories. In winter, PC1 was characterised by occurrence and abundance of black-

headed gull Chroicocephalus ridibundus, which largely reflected point-counts carried out in 

the amenity grassland and, to a lesser extent, commercial land-use categories (note the 

numerous samples representing these land-uses clustered around black-headed gull in Figure 

4.11a). As such, these land-uses both provided important winter habitat for black-headed gull, 

which was infrequent elsewhere within the urban matrix. PC2 was mainly influenced by 

occurrence and abundance of common starling Sturnus vulgaris and Eurasian jackdaw Corvus 

monedula, and, to a lesser extent, by house sparrow Passer domesticus and Eurasian collared 

dove Streptopelia decaocto. This reflected point-counts carried out within the suburban and 

urban with garden land-uses. A second group of suburban and urban with garden point-count 

samples were clustered around blackbird Turdus merula, winter wren Troglodytes 

troglodytes, great tit Parus major and blue tit Cyanistes caeruleus, and hence, were closer to 

woodland and parkland point-count samples in ordination space, with many samples from the 

latter two land-use categories also clustered around Eurasian blackbird, winter wren and great 
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tit. A further group of samples was clustered around carrion crow Corvus corone and long-

tailed tit Aegithalos caudatus, and included all point-counts within the grassland land-use 

category, along with samples from other relatively open habitats, such as the amenity 

grassland, scrub and commercial land-uses.  

Concerning the PCA carried out on breeding bird data (Figure 4.11b), PC1 was largely 

influenced by occurrence and abundance of common woodpigeon Columba palumbas, winter 

wren, great tit and blue tit, which were most frequently recorded in woodland and parkland 

relative to other land-use categories. Indeed, all point-count samples carried out within these 

land-use categories were clustered around these species, highlighting the similarity among 

samples, and the importance of the land-uses as breeding habitat for the species. PC2 was 

mostly influenced by common starling, house sparrow, Eurasian blackbird and Eurasian 

collared dove, which were most strongly associated with suburban and/or urban with garden 

land-use categories. Eurasian jackdaw was strongly negatively associated with both PC1 and 

PC2, reflecting the species’ relatively low abundance in woodland, parkland and suburban 

land-use categories relative to other land-use categories, most notably, amenity grassland, 

commercial, grassland and urban no garden. See Appendix 10 for a full list of eigenvectors 

relating to these PCA. 
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Figure 4.11 Continued overleaf 
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Figure 4.11 Principal Components Analysis (PCA) plot of a) wintering, and b) breeding bird 

communities within the city of Durham, UK, as defined by Principal Component (PC) 1 versus PC 2, 

which together account for 35.7% and 33.3% of the total variation in species occurrence and 

abundance in wintering and breeding bird communities respectively. Labelled point-count samples 

carried out in different land-use categories are shown in ordination space. Labels with prefix 

Al=allotment; AG=amenity grassland; C=commercial; G=grassland; P=parkland; Su=suburban; 

UNG=urban no garden; UWG=urban with garden; Sc=scrub; W=woodland. Species names are shown 

as the standard British Trust for Ornithology (BTO) codes. A complete list of codes for the species 

recorded in this study are included in Appendix 7. Results of Cluster Analysis (CA; group-averaging) 

performed on a dissimilarity matrix (Euclidean Distance [ED]) of the sample data are shown as 

coloured groupings of similar samples (dissimilarity level=1.35). 
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4.4 DISCUSSION 

4.4.1 Carbon storage and bird species richness and diversity 

The relationship between carbon (C) storage and bird species richness and diversity 

within the city of Durham was generally a positive one. Of the urban land-use categories, 

woodland and parkland stored the greatest total vegetation C and soil organic carbon (SOC) 

per unit area, owing to the many large trees, deep topsoils and a lack of impervious surfaces. 

Significantly, woodland and parkland were also two of the most valuable land-use categories 

for wintering and breeding bird species richness and diversity; indeed, Principal Components 

Analysis (PCA) and Cluster Analysis (CA) showed that the assemblage of birds within these 

two land-uses were very similar (Figure 4.11). The spatial heterogeneity of woodland in 

particular, with its typically complex vertical structure and diverse species composition of 

vegetation, is associated both with high bird species richness (Tilghman, 1987; Savard et al., 

2000) and organic C storage (Díaz et al., 2009; Cavanaugh et al., 2014). Whilst trees were not 

as numerous within parkland, this land-use category contained many of the largest trees 

recorded within the study, and a greater proportion with a diameter at breast height (dbh) of 

100 cm or more, and a lesser proportion of less than 25 cm, than any other land-use category 

(54% of all trees >100 cm dbh were recorded in parkland; Appendix 6). Besides being 

important stores of C within urban areas, large, old trees contribute disproportionately 

towards the high biodiversity value of urban parkland (Cornelis and Hermy, 2004; Stagoll et 

al., 2012; Le Roux et al., 2014; Nielsen et al., 2014). Older and larger trees are more likely 

than smaller trees to develop cavities (Carlson et al., 1998; Le Roux et al., 2014), from which 

hole-nesting bird species profit (Sandström et al., 2006). Biaduń and Zmihorski (2011) 

argued, in a study in Poland, that parkland tree age was more important than parkland area 

and degree of isolation for determining bird species richness.  
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Allotment and, in particular, scrub land-uses also contained high bird species richness 

and diversity in Durham, as well as containing relatively high total C storage (vegetation C 

plus SOC) per unit area; although far less C was stored in these land-uses than in either 

woodland or parkland, principally a result of there being fewer large trees in the former land-

uses. Allotments were a valuable habitat for wintering birds, relative to other land-use 

categories, whereas they were relatively less important for breeding birds in the spring. This 

may reflect better foraging conditions and supplemental food supplies in winter, but a general 

lack of nesting sites in spring, when food is more widely available in other land-uses.  

The highly human-modified land-use categories urban no garden and commercial had 

lowest total C storage values per unit area, and had consistently low C values across all C 

pools. This was attributable to a combination of the high proportion of impervious surfaces 

and built-up cover, a lack of large trees, and where they existed, shallow topsoils. These two 

land-use categories also had among the lowest species richness and diversity of both 

wintering and breeding birds, and had the two lowest aggregated species richness values. 

Notwithstanding the lower sampling effort relative to other land-use categories, which may 

have inherently lead to fewer species being detected within the urban no garden land-use 

category (see Table 4.1 for sample sizes),  for those land-use categories with the highest and 

lowest C storage values per unit area, there was a positive correlation between C storage and 

bird species richness and diversity. However, the relationship was not clear-cut throughout the 

entire matrix of urban land-use categories.  

Perhaps the most obvious contradiction in the relationship between C storage and bird 

species richness and diversity was in the suburban and urban with garden land-use categories. 

Despite being of relatively low total C storage value, these land-use categories had more or 

less equal wintering and breeding bird species richness and diversity to the higher C storage 

value woodland and parkland categories. Indeed, there was no significance in the differences 
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between them (see Appendices 8 and 9 for Kruskal-Wallis post-hoc test results). However, 

this is consistent with the theory that, within the bounds of the urban matrix, bird diversity is 

often high at low to intermediate levels of urbanisation (Blair, 1996; Chase and Walsh, 2006). 

The collection of domestic gardens in residential land-uses offers a high level of structural 

diversity and micro-habitat heterogeneity, and as such, is important for urban biodiversity 

(Gaston et al., 2005; Davies et al., 2009; Goddard et al., 2010). In addition, there is a high 

prevalence of supplementary feeding by humans within residential areas of the UK (Cowie 

and Hinsley, 1988; Davies et al., 2012; Amrhein, 2014). The availability of supplemental 

food is particularly important to birds in winter, when it may strongly increase the range of 

species and number of individuals that visit a garden (Chamberlain et al., 2005; Daniels and 

Kirkpatrick, 2006). The potential for a subsequent increase in overwinter survival (e.g. 

Brittingham and Temple, 1988) could manifest in a more populous and speciose community 

of breeding birds the following spring (Chamberlain et al., 2009). Another food source in 

such areas is litter and edible garbage (Sandström et al., 2006), which is often exploited by 

corvids and wintering gulls (Laridae; Rock, 2005; Maciusik et al., 2010). Further, nest-boxes 

in domestic gardens provide nesting sites that would otherwise not be available for hole-

nesting species (Newton, 1998; Davies et al., 2009), and residential architecture often 

provides nesting opportunities for species such as barn swallow Hirundo rustica (Nizynska-

Bubel and Kopij, 2007), Eurasian jackdaw Corvus monedula (Röell, 1978), common starling 

Sturnus vulgaris and house sparrow Passer domesticus (Siriwardena et al., 2002; Evans et al., 

2009). The latter two are species of national conservation concern (Eaton et al., 2009) that 

were infrequently recorded outside of residential land-use categories in the current study (see 

Appendix 7 for species lists). Indeed, the high importance of the suburban and urban with 

garden land-uses to common starling and house sparrow, relative to other urban land-uses, 

was highlighted by PCA (Figure 4.11). As supplemental feeding and provision of artificial 
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nest sites are independent of vegetation diversity and structure, and because they are peculiar 

to the residential land-use categories, these factors complicate the spatial relationship between 

C storage and bird species richness and diversity in urban environments. However, it should 

be noted that within the group of residential land-use categories, with the exception of winter 

diversity, the relationship between C storage and bird species richness and diversity was 

positive (i.e. bird species richness and diversity, and total C storage per unit area were highest 

in suburban and lowest in urban no garden).  

The benefits to urban birds provided by supplemental feeding and provision of artificial 

nest sites prevail in residential areas despite the potential for increased predation pressure 

from introduced species. The density of domestic cat Felis catus in urban residential areas far 

exceeds the maximum density of similarly-sized native carnivores in urban areas of the UK, 

such as red fox Vulpes vulpes and Eurasian badger Meles meles (Baker et al., 2008). 

Therefore, predation by cats is potentially a significant cause of mortality in urban bird 

populations. Indeed, van Heezik et al. (2010) have estimated that predation rates on some bird 

species exceed their estimated urban population sizes, and urban populations of these species 

persist only because they draw upon source populations located at the urban fringe. Further, 

over-abundance of predators may incite a fear factor, whereby prey behaviour, including 

foraging and habitat-use, is altered, resulting in reduced fecundity and marked decreases in 

abundances of some birds (Lima, 1987; Beckerman et al., 2007).  

The correlations between C storage and biodiversity were relatively weak for the land-

use categories of amenity grassland and grassland. Despite these land-use categories having 

moderate C storage value, they supported only low levels of bird species richness and 

diversity. In winter, these land-uses provide limited foraging for what, in northern Europe, is 

largely a woodland-adapted assemblage of species (Jokimäki et al., 2014). Indeed, many of 

the species recorded within these categories were associated with small patches of woody or 



106 
 

scrubby vegetation. Exceptions to this were gulls, some corvids and common starling, which 

were often seen to forage on the turf of sports fields and other intensively-managed 

grasslands, often in large numbers. Indeed, PCA highlighted the occurrence and abundance of 

black-headed gull Chroicocephalus ridibundus in amenity grassland as a major source of 

dissimilarity in bird assemblages among point-count samples and land-use categories. Such 

disproportionate numbers in few species contributed towards the low Shannon-Wiener 

Diversity Index score of amenity grassland. In spring, these two land-use categories, amenity 

grassland in particular, offer limited nesting opportunities for most species. That said, 

grassland was important for breeding Afro-Palaearctic migrant warblers, many species of 

which have undergone population declines over recent decades (Sanderson et al., 2006; 

Ockendon et al., 2012), and as such, are of conservation concern. Five of the six migrant 

warblers recorded by this study were observed utilising this land-use category, and the UK 

red-listed common grasshopper-warbler Locustella naevia was exclusive to it. In the US, the 

presence of such migrant insectivorous species is considered a measure of avifaunal quality 

(see Walcott, 1974). 

Although remnant natural habitat patches are often small, the matrix of land-use types 

and the associated small-scale changes to land cover, may promote high levels of beta-

diversity in urban areas (Rebele, 1994; Niemelä, 1999). Therefore, towns and cities could 

potentially accommodate a greater number of bird species than equivalent-sized patches of 

high C storage value woodland or parkland. Indeed, although woodland and parkland together 

recorded 65%, 63% and 61% of all the wintering, breeding and aggregated total bird species 

recorded in Durham respectively, the remaining land-use categories, in decreasing order of C 

storage value, continued to add additional species (Figure 4.5). This was particularly true of 

scrub, which, like grassland, provided important habitat for breeding migratory warblers. 

Only when the lowest C storage value land-use categories commercial and urban no garden 
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were reached, did species richness cease to increase; thus, implying that not only are these 

land-uses of lowest C storage value, but they also add little or nothing to beta-diversity. 

Indeed, there were no wintering or breeding species recorded exclusively within the urban no 

garden land-use category (Figure 4.5). In order to maximise C storage within the urban 

matrix, retention of urban land-use categories with higher C storage value per unit area should 

be preferred over that of categories with lower C storage value. However, increasing urban C 

storage through increasing woodland habitat may not be beneficial to overall urban bird 

species richness if this is achieved at the expense of lesser C storage value scrub and 

grassland habitats. 

On a regional scale, the abundance of individuals within species recorded by the point-

count samples across the city of Durham were unremarkable, and, in general, reflected 

relative regional abundances (cf. Westerberg and Bowey, 2000; Bowey and Newsome, 2012). 

Notable exceptions however, include Eurasian collared dove Streptopelia decaocto (2.8k 

pairs), house sparrow (25k pairs), common starling (20k pairs) and European goldfinch 

Carduelis carduelis (3k pairs), which were arguably recorded in greater numbers within the 

city than suggested by their estimated abundances for County Durham (shown in parentheses) 

as per Bowey and Newsome (2012). This likely reflected these species’ affinity with urban 

and man-made environments (e.g. Coombs et al., 1981; Siriwardena et al., 2002; Evans et al., 

2009). Another, and perhaps more intriguing, exception was the case with willow warbler 

Phylloscopus trochilus and common chiffchaff P. collybita, two closely-related migratory 

congeners. The willow warbler has far greater estimated county abundance than common 

chiffchaff (28k pairs vs 7.1k pairs; Westerberg and Bowey, 2000), but was recorded far less 

within Durham city during this study (8 records vs 35 records; Appendix 7). The former 

species is also reported to frequent a greater variety of habitat types (Saether, 1983; Simms, 

1985), but the opposite was found within Durham city; willow warbler was confined to scrub, 
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but common chiffchaff was recorded, in order of deceasing abundance, within the parkland, 

scrub and woodland land-uses (Appendix 7).  The reasons behind this apparent contradiction 

are not clear, but it may be that current management of parkland and woodland trees within 

the city better suits common chiffchaff, which shows a greater dependence on mature trees 

(Simms, 1985), whereas the willow warbler is principally seen in earlier seral stages (Saether, 

1983). Alternatively, as the two species are ecologically very similar and are inter-specifically 

aggressive in sympatry (Simms, 1985), the fractionally smaller common chiffchaff (Simms, 

1985) may be competitively excluded from woodland habitats in the wider landscape, and 

congregate in what could be perceived as inferior habitats within the city. 

When generalised linear models (GLMs) testing for relationships between C storage and 

i) bird species richness, and ii) bird diversity, included land-use as a categorical explanatory 

variable, there was no significance in the slopes of the relationships (see methodology, section 

4.2.6.3). That is to say, that there were no correlations between C storage and bird species 

richness and diversity within any of the land-use categories, and regardless of the C storage 

value of, for example, a woodland quadrat, it supported no more species, or had no greater 

diversity, than any other woodland quadrat. Further, these GLMs did not reveal any 

significant interactions between C storage per unit area and land-use category; thus, bird 

species richness and diversity responded similarly to increasing C storage within all land-use 

categories. However, when GLMs were run omitting land-use as a categorical explanatory 

variable, there were significant positive relationships between C storage and wintering, 

breeding and aggregated total bird species richness (Table 4.2) and diversity (Table 4.3). This 

showed that locations within the urban matrix with higher total C storage value per unit area 

were also those with greater bird species richness and diversity. These locations tended to be 

within woodland and parkland, but it was the land-use per se, rather than the variation in C 

storage within it, that promoted bird species richness and diversity. When bird species 



109 
 

richness and diversity were related to the component C pools separately, consistent positive 

relationships were found with increasing tree and, in particular, woody vegetation C storage. 

This reinforces the view that increased biomass of trees, understory, scrub and other woody 

vegetation, provides valuable habitat for birds. Relationships with herbaceous vegetation C 

and SOC were weakly positive, and often insignificant (Table 4.2 and 4.3); therefore, the 

biomass and cover of herbaceous vegetation, and soil cover and depth, had little influence 

over bird species richness and diversity. 

  

4.4.2 Conclusions and implications for urban planning 

In general, the relationship between C storage and bird species richness and diversity 

within the the city of Durham was a positive one, and provided that bird diversity does indeed 

act as a biodiversity indicator in urban areas, then a positive relationship may also hold 

between C storage and biodiversity as a whole. Sequestering and storing C, especially within 

woody vegetation and trees, should benefit biodiversity by maintaining or creating a larger 

area of habitat suitable for species. Woodland was the most beneficial land-use for C storage, 

whilst also providing habitat for a more speciose and diverse community of birds than any 

other urban land-use. However, approximately half of all species recorded within the entire 

urban matrix were not recorded in woodland (Figure 4.5), and the current diversity of land-

use types within the urban matrix of Durham is required to maintain beta-diversity amongst 

urban birds; but diversity in land-use types may compromise the C storage capacity of the 

urbanised area.  

Certain studies have argued that densification of built-up areas can benefit biodiversity 

at the city-scale rather than sprawling, low-density development (e.g. Sandström et al., 2006; 

Sushinsky et al., 2013). This works on the premise that high-density housing is clustered with 

large interstitial areas of greenspace, which maintain functional areas of habitat for 
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biodiversity and urban-sensitive species. Such spatial configuration could also optimise urban 

C storage capacity. However, in the UK, increasing greenspace patch size will be difficult to 

achieve (Evans et al., 2009), as the design and infrastructure of many towns and cities is 

already established (Breheny, 1997). Alternatively, conservation efforts could concentrate on 

those species most adapted to urban environments at the expense of those that may gain 

greater benefit from conservation efforts in rural environments (Evans et al., 2009). Perhaps 

the most notable species that could potentially gain from such a planning strategy are 

common starling and house sparrow. In north-east England, densities of the former species 

have been estimated at 243 birds and 168 birds per km
2
 of urban and suburban habitat 

respectively, compared to just 16 birds per km
2
 of arable habitat in the same region (Robinson 

et al., 2002); likewise, urban and suburban densities of house sparrow have been estimated at 

237 birds and 349 birds per km
2
 respectively, compared to 26 birds per km

2
 of arable habitat 

(Siriwardena et al., 2002). Considering results from the present study, this planning strategy 

could potentially involve retention of low- to moderate-density housing and garden space, as 

these residential land-uses support a greater abundance and diversity of suburban adaptors 

(sensu Blair and Launer, 1997) over high-density housing. New-build could take place on 

existing areas of scrub, grassland and amenity grassland, as these land-uses are of moderate C 

storage value only, whilst high C value woodland and parkland are retained to mitigate urban 

C emissions. However, given the projected increases in urban human populations, this 

approach would likely mean a prompt return to urban encroachment upon rural areas, which 

challenges current UK policy aimed at urban densification. In view of such conflicts, an 

alternative and perhaps controversial strategy could be to relinquish urban C storage and 

biodiversity conservation efforts altogether, and instead, concentrate on potentially greater 

opportunities to address these issues within the surrounding countryside.  
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The intensification of farming practices in the UK following the introduction of the 

Common Agricultural Policy (CAP) in 1947, and the consequent increases to productivity 

(Matson et al., 1997), has promoted a gradual decrease in the area of land devoted to 

agricultural production (Bibby, 2009). Although some of the decrease has accommodated the 

growth in urban land-uses, it has also released rural land for reforestation and afforestation. 

Indeed, the forested area of the UK has doubled since 1947 (Forestry Commission, 2014), and 

a considerable portion of the increase has occurred on agricultural land (Freibauer et al., 2004; 

Bibby, 2009). Therefore, compaction of urban agglomerations into small, explicit areas should 

benefit regional C stores by making yet more rural land available, where management for C 

storage can yield greater gains through its potential for reforestation and hedgerow 

preservation, with potentially positive side-effects on regional biodiversity. 

It is apparent that there is not a win-win situation (sensu Rosenzweig, 2003), whereby 

covariance between C storage and biodiversity is optimised in urban areas. Exactly where 

compromises should occur, and what the most effective and efficient conservation strategy is, 

remains unclear. Initially, biodiversity priorities in urban environments will require urgent 

assessment (i.e. should efforts concentrate on conserving the species best adapted to urban 

environments, or should they aim to maximise beta-diversity across the urban matrix?), then 

the most effective planning policy for conserving both urban biodiversity and C storage can 

be established, with results from the present study acting as a guide. Finally, the decisions 

made will also demand consideration for the continued health and well-being of urban human 

populations, and this will require additional greenspace and amenity land (see Bolund and 

Hunhammar, 1999; Fuller et al., 2007), putting further pressure on the finite area of land 

available.  
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Chapter 5: 

Final conclusions and future challenges 

 

The Millennium Ecosystem Assessment (MA, 2005a) carried ecosystem service science 

into the fore by highlighting human-induced degradation and loss of services, and the 

significance of these losses for humanity. The MA recognised that service delivery is 

intrinsically linked to biodiversity, and following failure to meet the Convention on Biological 

Diversity (CBD) 2010 targets, ecosystem services were incorporated into the revised 2020 

targets. The adoption of an ecosystem services approach to biodiversity conservation is 

intended to allow for an economic value to be placed upon biodiversity that can be recognised 

by governments and decision-makers, and should provide an incentive to protect biodiversity 

and broaden the diversity of support. One of the major mechanisms driving biodiversity and 

ecosystem service loss is land-use change by urbanisation. As global urban human 

populations are set to continue increasing into the foreseeable future, the effect of urbanisation 

on biodiversity, ecosystem services and ultimately, human well-being is an increasingly 

important area of scientific research. Land-use change is also a major source of atmospheric 

greenhouse gas (GHG) emissions and subsequent climate change forcing. Consequently, the 

Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) 

makes a provision for some signatories to report land-use change activities. Carbon (C) 

storage is considered a regulating ecosystem service, as it alleviates the rate of climate change 

by reducing atmospheric carbon dioxide (CO2), the primary GHG emitted through human 

activities. In this thesis, I have studied the effect that land-use change by urbanisation has on 

C storage, and the potential for spatial congruence between C storage and biodiversity in 

representative towns and cities of north-east England, with a view to inform on the feasibility 
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of an ecosystem services approach to conserving C and biodiversity in urban areas. The key 

results and findings were: 

 The contiguous urban extent of Darlington, Durham and Newcastle increased 

considerably between 1945 and the present, by 67%, 229% and 65% respectively. 

 The increases in contiguous urban extent reduced the C storage capacity of each of the 

study areas by approximately one third. 

 Decreases in C storage were caused by loss of agriculture and replacement with urban 

land-uses of lower C storage value per unit area, most notably, low- to moderate-density 

residential and commercial land-uses. 

 Most of the C lost was from the soils of the study areas, as the surface area occupied by 

soil, and soil depth, are reduced in urban land-uses compared to agriculture. 

 There was a degree of spatial congruence between C storage and bird species richness and 

diversity within the city of Durham. Land-uses with highest C storage value per unit area 

also tended to have highest species richness and diversity, and land-uses with lowest C 

storage value tended to have lowest species richness and diversity. However, low- to 

moderate-density residential land-uses had high species richness and diversity despite 

having relatively low C storage value. 

 The current mix of urban land-use categories, of varying C storage value, increased beta-

diversity across the urban matrix of Durham. 

 When not categorised by land-use, there were significant positive spatial relationships 

between total vegetation C and soil organic carbon (SOC) storage, and i) bird species 

richness and ii) bird diversity in Durham. 

 The C storage value of trees (4 m+) and, in particular, woody vegetation (1-4 m), had 

significant positive relationships with bird species richness and diversity. Although 
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positive, the relationships between the value of the soil and herbaceous vegetation C 

pools and bird species richness and diversity were weak. 

 Principal Components Analysis (PCA) revealed similarities between some land-use 

categories in their wintering and/or breeding bird communities; notably, commercial was 

similar to amenity grassland, suburban was similar to urban with garden, and woodland 

was similar to parkland. There appeared to be some divergence between the communities 

of built-up land-uses and those of semi-natural greenspace. 

My results and findings have highlighted trade-offs when addressing C emissions and 

biodiversity targets in urban areas. In Chapter Two I demonstrated that to revert to the 

planning policy of the decades following the end of the Second World War (thus, to promote 

expansion of low- to moderate-density housing into surrounding rural landscapes) would 

result in considerable C loss in the area occupied. However, in Chapter Four, I showed that 

low- to moderate-density housing is more beneficial for urban biodiversity than high-density 

housing. These results provoke the urban densification versus urban sprawl debate (e.g. 

Breheny, 1997; Lin and Fuller, 2013), as low-density housing (i.e. suburban) was found to 

have greater C storage capacity and biodiversity value than high-density housing (i.e urban no 

garden), which offered little or nothing in both respects; but, as low-density housing requires 

more area, it promotes urban expansion and encroachment into surrounding rural landscapes, 

and within the urban matrix, it occupies land that could otherwise accommodate greenspace 

with higher C storage and biodiversity value, such woodland, parkland or scrub.  

Of the urban land-use categories, I found that woodland and parkland had greatest C 

storage value, and increasing the area devoted to these would be the most desirable option to 

optimise urban C storage capacity, which would also benefit many species. However, 

heterogeneity within and among urban greenspaces is necessary to maintain beta-diversity 

across the entire urban landscape, and this would require retention of moderate C storage 
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value scrub and grassland, thus, compromising on the C storage potential of the urbanised 

area. In general, woodland and parkland habitat did increase within my three study areas 

between 1945 and the present, but this did not translate into increases in the percentage of the 

urbanised area occupied by these habitats. For example, in Durham, there was a 59 ha increase 

(+89.7%) in woodland between 1945 and 2009 (see Chapter 2, Figure 2.1), but the percentage 

cover of woodland in 2009 was just 8% of the land occupied by the urbanised area, compared 

to 14% in 1945. So, although the area of habitat with high C storage and biodiversity value 

may increase within urban areas over time, as urban areas expand, these semi-natural habitats 

may become smaller relative to the area of land occupied by the surrounding matrix of built 

environment. Hence, semi-natural habitat becomes increasingly vulnerable to edge-effects 

(Breuste et al., 2008; Isaac et al., 2014) and isolation, both from other urban greenspaces and 

from the rural landscape at the urban fringe (see Chapter 2, Figure 2.2). That said, prior 

studies on urban birds have shown that the spatial location and isolation of greenspace is of 

less importance to species richness and diversity than greenspace area and vegetation age and 

structure (Jokimäki, 1999; Fernández-Juricic, 2000; Chamberlain et al., 2007), and therefore, 

large, established areas of greenspace should be retained. Birds however, have reduced 

dispersal limitations relative to many other taxonomic groups, and in this instance they may 

not provide a wholly reliable proxy for biodiversity. Some animal groups, for example, large-

bodied or flightless invertebrates (Sadler et al., 2006), and small- to medium-sized mammals 

(Angold et al., 2006), may be more susceptible to isolation, and a system of corridors between 

greenspaces should be established and maintained to promote diversity among poorly 

dispersing taxa in expanding urban environments. In this respect, there is particular scope to 

increase the permeability of commercial development to wildlife. The area devoted to 

commercial land-use increased significantly within all three of my study areas (Chapter 2, 

Figure 2.1), and much of this increase took place at the urban fringe (Chapter 2, Figure 2.2). 
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Patches of greenspace within commercial areas were typically restricted to lawn and low, 

shrubby vegetation, but by incorporating more woody vegetation and trees within their design, 

the potential for commercial developments to act as wildlife refuges, corridors and areas of 

species exchange at the urban/rural interface could be vastly improved. Also, given that their 

location is often at the urban fringe, new commercial areas, as well as peripheral housing 

estates, are ideally placed to incorporate remnant semi-natural vegetation into their design. 

Our challenge now and for the future is to manage our urban areas in such a way that 

they not only continue to sequester and store C, but that they also retain, or preferably 

improve upon, current levels of biodiversity. Further to these demands, our urban areas must 

also provide the ecosystem services and set of physical conditions that maintain the well-

being of their human inhabitants, whilst also preserving our rural heritage and the area of land 

devoted to food production. This is a tall order, and if, as my thesis predicts, this is not 

achievable within the finite area of land available, we must be prepared to make compromises. 

This could include prioritising urban exploiters or suburban adaptors in urban biodiversity 

conservation strategies, or retaining urban greenspace valuable to biodiversity but with sub-

optimal C storage value, or reducing the space per capita by clustering high-density residential 

and commercial land-uses within the urban matrix. 

Ultimately, it is likely that human health and well-being will hold political sway, and 

that this will be the over-riding factor in our decisions concerning land use and land-use 

change; but we must not fail to acknowledge the roles that C storage and biodiversity play in 

achieving this. Past decisions concerning land-use change may have been made whilst 

ignorant of their consequences, but we can no longer use this argument in defence of our 

actions; we now have greater understanding of what we must and must not do. If we do not 

meet our commitment to alleviate climate change by reducing C emissions release, and if we 
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fail once more in our attempts to halt biodiversity loss, it will be because we have lacked the 

desire and the incentive to do so.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 
 

References 

Adenle, A. A. (2012) Failure to achieve 2010 biodiversity’s target in developing countries: 

how can conservation help? Biodiversity Conservation, 21, 2435-2442. 

Adhikari, B. S., Rawat, Y. S., Singh, S. P. (1995) Structure and function of high altitude 

forests of Central Himalaya I. Dry matter dynamics. Annals of Botany, 75, 237-248. 

Alberti, M., Hutyra, L. R. (2013) Carbon signatures of development patterns along a gradient 

of urbanisation. In: Brown, D. G., Robinson, D. T., French, N. H. F., Reed, B. C. (eds.) Land 

use and the carbon cycle, pp 3-23. Cambridge, Cambridge University Press. 

Amrhein, V. (2014) Wild bird feeding (probably) affects avian urban ecology. In: Gil, D., 

Brumm, H. (eds.) Avian urban ecology: behavioural and physiological adaptations, pp 29-37. 

Oxford, Oxford University Press. 

Anderson, B. J., Armsworth, P. R., Eigenbrod, F., Thomas, C. D., Gillings, S., Heinemeyer, 

A., Roy, D. B., Gaston, K. J. (2009) Spatial covariance between biodiversity and other 

ecosystem service priorities. Journal of Applied Ecology, 46, 888-896. 

Angel, S., Parent, P., Civco, D. L., Blei, A., Potere, D. (2011) The dimensions of global urban 

expansion: estimates and projections for all countries, 2000-2050. Progress in Planning, 75, 

53-107. 

Angold, P. G., Sadler, J. P., Hill, M. O., Pullin, A., Rushton, S., Austin, K., Small, E., Wood, 

B., Wadsworth, R., Sanderson, R., Thompson, K. (2006) Biodiversity in urban habitat 

patches. Science of the Total Environment, 360, 196-204. 

Antrop, M. (2000) Changing patterns in the urbanised countryside of Western Europe. 

Landscape Ecology, 15, 257-270. 

Bai, Y., Zhuang, C., Ouyang, Z., Zheng, H., Jiang, B. (2011) Spatial characteristics between 

biodiversity and ecosystem services in a human-dominated watershed. Ecological Complexity, 

8, 177-183. 

Bachelet, D., Neilson, R. P., Lenihan, J. M., Drapek, R. J. (2001) Climate change effects on 

vegetation distribution and carbon budget in the United States. Ecosystems, 4, 164-185. 



119 
 

Baker, P. J., Molony, S. E., Stone, E., Cuthill, I. C., Harris, S. (2008) Cats about town: is 

predation by free-ranging pet cats Felis catus likely to affect urban bird populations? Ibis, 

150, 86-99. 

Balmford, A., Fisher, B., Green, R. E., Naidoo, R., Strassburg, B., Turner, R. K., Rodrigues, 

A. S. L. (2011) Bringing ecosystem services into the real world: an operational framework for 

assessing the economic consequences of losing wild nature. Environmental and Resource 

Economics, 48, 161-175. 

Balmford, A., Gaston, K. J., Blyth, S., James, A., Kapos, V. (2003) Global variation in 

terrestrial conservation costs, conservation benefits, and unmet conservation needs. 

Proceedings of the National Academy of Sciences, 100, 1046-1050. 

Balvanera, P., Daily, G. C., Ehrlich, P. R., Ricketts, T. H., Bailey, S.-A., Kark, S., Kremen, 

C., Pereira, H. (2001) Conserving biodiversity and ecosystem services. Science, 291, 2047. 

Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J.-S., Nakashizuka, T., Raffaelli, D., 

Schmid, B. (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning 

and services. Ecology Letters, 9, 1146-1156. 

Barbier, E. B., Baumgärtner, S., Chopra, K., Costello, C., Duraiappah, A., Hassan, R., Kinzig, 

A. P., Lehmann, M., Pascual, U., Polasky, S., Perrings, S. (2009) The valuation of ecosystem 

services. In: Naeem, S., Bunker, D. E., Hector, A., Loreau, M., Perrings, C. (eds.) 

Biodiversity, ecosystem functioning, and human wellbeing, pp 248-262. Oxford, Oxford 

University Press. 

Beckerman, A. P., Boots, M., Gaston, K. J. (2007) Urban bird declines and the fear of cats. 

Animal Conservation, 10, 320-325. 

Beebee, T. J. C. (1979) Habitats of the British amphibians (2): suburban parks and gardens. 

Biological Conservation, 15, 241-257. 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012) Impacts of 

climate change on the future of biodiversity. Ecology Letters, 15, 365-377. 

Berland, A. (2012) Long-term urbanisation effects on tree canopy cover along an urban-rural 

gradient. Urban Ecosystems, 15, 721-738. 

Best, R. H. (1981) Land use and living space. London, Methuen & Co. Ltd. 



120 
 

Best, R. H., Coppock, J. T. (1962) The changing use of land in Britain. London, Faber and 

Faber. 

Biaduń, W., Zmihorski, M. (2011) Factors shaping a breeding bird community along an 

urbanization gradient: 26-year study in medium size city (Lublin, SE Poland). Polish Journal 

of Ecology, 59, 217-225. 

Bibby, P. (2009) Land use change in Britain. Land Use Policy, 26S, S2-S13. 

Blair, R. B. (1996) Land use and avian species diversity along an urban gradient. Ecological 

Applications, 6, 506-519. 

Blair, R. B. (1999) Birds and butterflies along an urban rural gradient: surrogate taxa for 

assessing biodiversity? Ecological Applications, 9, 164-170. 

Blair, R. B., Launer, A. E. (1997) Butterfly diversity and human land use: species 

assemblages along an urban gradient. Biological Conservation, 80, 113-125. 

Boland, P., Hunhammar, S. (1999) Ecosystem services in urban areas. Ecological Economics, 

29, 293-301. 

Bolin, B., Sukumar (2000) Global perspective. In: Watson, R., Noble, I., Bolin, B., 

Ravindranath, N. H., Verado, D., Dokken, D. (eds.). Land Use, Land-Use Change, and 

Forestry: a special report of the IPCC. Cambridge, Cambridge University Press. 

Bowey, K., Newsome, M. (2012) The birds of Durham. Durham, Durham Bird Club. 

Boyd, J., Banzhaf, S. (2007) What are ecosystem services? The need for standardised 

environmental accounting units. Ecological Economics, 63, 616-626. 

Bradley, R. I., Milne, R., Bell, J., Lilly, A., Jordan, C., Higgins, A. (2005) A soil carbon and 

land use database for the United Kingdom. Soil Use and Management, 21, 363-369. 

Breheny, M. (1997) Urban compaction: feasible and acceptable? Cities, 4, 209-217. 

Breuste, J., Niemelä, J., Snep, R. P. H. (2008) Applying landscape ecological principles in 

urban environments. Landscape Ecology, 23, 1139-1142. 



121 
 

Britt, C., Johnston, M. (2008) Trees in towns II: a new survey of urban trees in England and 

their condition and management. Wetherby, Communities and Local Government 

Publications. 

Brittingham, M. C., Temple, S. A. (1988) Impacts of supplemental feeding on survival rates 

of black-capped chickadees. Ecology, 69, 581-589. 

Bruce, D., Schumacher, F. X. (1950) Forest mensuration, New York, McGraw Hill Book 

Company Inc. 

Burghardt, K. T., Tallamy, D. W., Shriver, W. G. (2009) Impact of native plants on bird and 

butterfly biodiversity in suburban landscapes. Conservation Biology, 23, 219-224. 

Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, 

R. E A., Baille, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., 

Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., 

Galloway, J. N., Genovesi, P., Gregory, R. D., Hockings, M., Kapos, V., Lamarque, J.-F., 

Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., Morcillo, M. H., 

Oldfield, T. E. E., Pauly, D., Quader, S., Revenga, C., Sauer, J. R., Skolnik, B., Spear, D., 

Stanwell-Smith, D., Stuart, S. N., Symes, A., Tierney, M., Tyrrell, T. D., Vie, J.-C., Watson, 

R. (2010) Global biodiversity: indicators of recent declines. Science, 328, 1164-1168 

Butler, J. (1996) Plants. In: Sutherland, W. J. (ed.) Ecological census techniques, pp 111-138. 

Cambridge, Cambridge University Press. 

Cadenasso, M. L., Pickett, S. T. A., Schwartz, K. (2007) Spatial heterogeneity in urban 

ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in 

Ecology and the Environment, 5, 80-88. 

Canadell, J. G. (2002) Land use effects on terrestrial carbon sources and sinks. Science in 

China, Series C, 45, supplement, 1-9. 

Carlson, A., Sandström, U., Olsson, K. (1998) Availability and use of natural tree holes by 

cavity nesting birds in a Swedish deciduous forest. Ardea, 86, 109-119. 

Carson, R. (1962) Silent Spring. Greenwich, Connecticut, Fawcett Publications. 



122 
 

Cavanaugh, K. C., Gosnell, J. S., Davis, S. L., Ahumada, J., Boundja, P., Clark, D. B., 

Mugerwa, B., Jansen, P. A., O’Brien, T. G., Rovero, F., Sheil, D., Vasquez, R., Andelman, S. 

(2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional 

dominance on a global scale. Global Ecology and Biogeography, 23, 563-573. 

Chace, J. F., Walsh, J. J. (2006) Urban effects on native avifauna: a review. Landscape and 

Urban Planning, 74, 46-69. 

Chamberlain, D. E., Cannon, A. R., Toms, M. P., Leech, D. I., Hatchwell, B. J., Gaston, K. J. 

(2009) Avian productivity in urban landscapes: a review and meta-analysis. Ibis, 151, 1-18. 

Chamberlain, D. E., Gough, S., Vaughan. H/. Vickery, J. A., Appleton, G. F. (2007) 

Determinants of bird species richness in public green spaces: capsule bird species richness 

showed consistent positive correlations with site area and rough grass. Bird Study, 54, 87-97. 

Chamberlain, D. E., Vickery, J. A., Glue, D. E., Robinson, R. A., Conway, G. J., Woodburn, 

R. J. W., Cannon, A. R. (2005) Annual and seasonal trends in the use of garden feeders by 

birds in winter. Ibis, 147, 563-575. 

Chan, K. M. A., Pringle, R. M., Ranganathan, J., Boggs, C. L., Chan, Y. L., Ehrlich, P. R., 

Haff, P. K., Heller, N. E., Al-Khafaji, K., Macmynowski, D. P. (2007) When conservation 

agendas collide: human welfare and biological conservation. Conservation Biology, 21, 59-

68. 

Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., Daily, G. C. (2006) 

Conservation planning for ecosystem services. PLoS Biology, 4, e379, DOI: 

10.1371/journal.pbio.0040379. 

Chiari, C., Dinetti, M., Licciardello, C., Licitra, G., Pautasso, M. (2010) Urbanisation and the 

more individuals hypothesis. Journal of Animal Ecology, 79, 366-371. 

Christensen, B. T., Malmros, P., A. (1982) Loss-on-ignition and carbon content in a beech 

forest soil profile. Holarctic Survey, 5, 376-380. 

Churkina, G. (2008) Modelling the carbon cycle of urban systems. Ecological Modelling, 216, 

107-113. 



123 
 

Churkina, G. (2013) An introduction to carbon cycle science. In: Brown, D. G., Robinson, D. 

T., French, N. H. F., Reed, B. C. (eds.) Land use and the carbon cycle, pp 3-23. Cambridge, 

Cambridge University Press. 

Churkina, G., Brown, D. G., Keoleian, G. (2010) Carbon stored in human settlements: the 

conterminous United States, Global Change Biology, 16, 135-143. 

Cimon-Morin, J., Darveau, M., Poulin, M. (2013) Fostering synergies between ecosystem 

services and biodiversity in conservation planning: a review. Biological Conservation, 166, 

144-154. 

Clark, K. R., Gorley, R. N. (2006) PRIMER v6: User manual/tutorial. Plymouth, PRIMER-E. 

Clark, P. J., Reed, J. M., Chew, F. S. (2007) Effects of urbanisation on butterfly species 

richness, guild structure, and rarity. Urban Ecosystems, 10, 321-337. 

Climate Change Act 2008 (c.27). London, The Stationary Office. 

Close, R. E., Nguyen, P. V., Kielbaso, J. J. (1996) Urban vs. natural maple sugar growth: 1. 

Stress symptoms and phenology in relation to site characteristics. Journal of Arboriculture, 

22, 144-150. 

Clucas, B., Marzluff, J. M. (2012) Attitudes and actions toward birds in urban areas: human 

cultural differences influence bird behaviour. The Auk, 129, 8-16. 

Clucas, B., Marzluff, J. M., Kübler, S., Meffert, P. (2011) New directions in urban avian 

ecology: reciprocal connections between birds and humans in cities. In: Endlicher, W., 

Hostert, P., Kowarik, I., Kulke, E., Lossau, J., Marzluff, J., van der Meer, E., Mieg, H., 

Nutzmann, G., Schulz, M., Wessolek, G. (eds.), Perspectives in urban ecology: studies of 

ecosystems and interactions between humans and nature in the metropolis of Berlin, pp 167-

195, Berlin Heidelberg, Springer-Verlag. 

Coombs, C. F. B., Isaacson, A. J., Murton, R. K., Thearle, R. J. P., Westwood, N. J. (1981) 

Collared doves (Streptopelia decaocto) in urban habitats. Journal of Applied Ecology, 18, 41-

62. 

Cornelis, J., Hermy, M. (2004) Biodiversity relationships in urban and suburban parks in 

Flanders. Landscape and Urban Planning, 69, 385-401. 



124 
 

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limberg, K., 

Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., van den Belt, M. (1997) The 

value of the world’s ecosystem services and natural captital. Nature, 387, 253-260. 

Couch, C., Karecha, J. (2006) Controlling urban sprawl: some experiences from Liverpool. 

Cities, 23, 353-363. 

Cowie, R. J., Hinsley, S. A. (1988) The provision of food and the use of bird feeders in 

suburban gardens. Bird Study, 35, 163-168. 

Daily, G. C. (ed.) (1997) Nature’s services: societal dependence on natural ecosystems. 

Washinton DC, Island Press. 

Dale, V. H. (1997) The relationship between land-use change and climate change. Ecological 

Applications, 7, 753-769. 

Dallimer, M., Tang, Z., Bibby, P. R., Brindley, P., Gaston, K. J., Davies, Z. G. (2011) 

Temporal changes in greenspace in a highly urbanised region. Biology Letters, 7, 763-766. 

Daniels, G. D., Kirkpatrick, J. B. (2006) Does variation in garden characteristics influence the 

conservation of birds in suburbia? Biological Conservation, 133, 326-335. 

Davies, Z. G., Dallimer, M., Edmondson, J. L., Leake, J. R., Gaston, K. J. (2013) Identifying 

potential sources of variability between vegetation carbon storage estimates for urban areas. 

Environmental Pollution, 183, 133-142. 

Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., Gaston, K. J. (2011) Mapping 

an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. 

Journal of Applied Ecology, 48, 1125-1134. 

Davies, Z. G., Fuller, R. A., Dallimer, M., Loram, A., Gaston, K. J. (2012) Household factors 

influencing participation in bird feeding activity: a national scale analysis. PLoSONE, 7, 

e39692, doi:10.1371/journal.pone.0039692. 

Davies, Z. G., Fuller, R. A., Loram, A., Irvine, K. N., Sims, V., Gaston, K. J. (2009) A 

national scale inventory of resource provision for biodiversity within domestic gardens. 

Biological Conservation, 142, 761-771. 



125 
 

Deichsel, R. (2006) Species change in an urban setting – ground and rove beetles (Coleoptera: 

Carabidae and Staphylinidae) in Berlin. Urban Ecosystems, 9, 161-178. 

Department for Communities and Local Government (2012) National Planning Policy 

Framework. London, HMSO. 

Department for Communities and Local Government (2013) Land use change statistics in 

England: 2011. London, HMSO. 

Department for Environment, Food and Rural Affairs (2013) Farming statistics – provisional 

arable crop areas as at 1 June 2013: England. London, Office for National Statistics. 

DeVictor, V., Julliard, R., Jiguet, F. (2008) Distribution of specialist and generalist species 

along gradients of habitat disturbance and fragmentation. Oikos, 117, 507-514. 

Diaz, S., Wardle, D. A., Hector, A. (2009) Incorporating biodiversity in climate change 

mitigation initiatives. In: Naeem, S., Bunker, D. E., Hector, A., Loreau, M., Perrings, C. (eds.) 

Biodiversity, ecosystem functioning, and human wellbeing, pp 149-166. Oxford, Oxford 

University Press. 

Díaz-Porras, D. F., Gaston, K. J., Evans, K. L. (2014) 110 years of change in urban tree stocks 

and associated carbon storage. Ecology and Evolution, 4, 1413-1422. 

Dyson, K. E., Mobbs, D. C. (2009) Projections of emissions and removals from the LULUCF 

sector to 2020 (WP 1.4). In: Dyson, K. E. (ed.) Inventory and projections of UK emissions by 

sources and removals by sinks due to land use, land-use change and forestry: Annual Report 

July 2009, pp 63-77. London, Department for the Environment, Food and Rural Affairs. 

Eaton, M, A., Brown, A. F., Noble, D. G., Musgrove, A. J., Hearn, R. D., Aebischer, N. J., 

Gibbons, D. W., Evans, A., Gregory, R. D. (2009) Birds of Conservation Concern 3: the 

population status of birds in the United Kingdom, Channel Islands and Isle of Man. British 

Birds, 102, 296-341. 

Echenique, M. H., Hargreaves, A. J., Mitchell, G., Namdeo, A. (2012) Growing cities 

sustainably: does urban form really matter? Journal of the American Planning Association, 

78, 121-137. 



126 
 

Edmondson, J. L., Davies, Z. G., Gaston, K. J., Leake, J. R. (2014a) Urban cultivation in 

allotments maintains soil qualities adversely affected by conventional agriculture. Journal of 

Applied Ecology, 51, 880-889.  

Edmondson, J. L., Davies, Z. G., McCormack, S. A., Gaston, K. J., Leake, J. R. (2014b) Land 

cover effects on soil organic carbon stocks in a European City. Science of the Total 

Environment, 472, 444-453. 

Edmondson, J. L., Davies, Z. G., McHugh, N., Gaston, K. J., Leake, J. R. (2012) Organic 

carbon hidden in urban ecosystems. Scientific Reports, 2, 1-7. 

Egoh, B., Reyers, B., Rouget, M., Bode, M., Richardson, D. M. (2009) Spatial congruence 

between biodiversity and ecosystem services in South Africa. Biological Conservation, 142, 

553-562. 

Ehrlich, P. R., Mooney, H. A. (1983) Extinction, substitution, and ecosystem services. 

Bioscience, 33, 248-254. 

Eigenbrod, F., Anderson, B. J., Armsworth, P. R., Heinemeyer, A., Jackson, S. F., Parnell, 

M., Thomas, C. D., Gaston, K. J. (2009) Ecosystem service benefits of contrasting 

conservation strategies in a human-dominated region. Proceedings of the Royal Society Series 

B: Biology, 276, 2903-2911. 

Eigenbrod, F., Bell, V. A., Davies, H. N., Heinemeyer, A., Armsworth, P. R., Gaston, K. J. 

(2011) The impact of projected increases in urbanization on ecosystem services. Proceedings 

of the Royal Society Series B: Biology, 278, 3201-3208. 

Emlen, J. T. (1974) An urban bird community in Tucson, Arizona: derivation, structure, 

regulation. Condor, 76, 184-197. 

Emmett, B. A., Reynolds, B., Chamberlain, P. M., Rowe, E., Sprugeon, D., Brittain, S. A., 

Frogbrook, Z., Hughes, S., Lawlor, A. J., Poskitt, J., Potter, E., Robinson, D. A., Scott, A., 

Wood, C., Woods, C. (2010) Countryside Survey Soils Report from 2007: CS Technical 

Report No. 9/07. Wallingford, Centre for Ecology and Hydrology. 

Er, K. B. H., Innes, J. L., Martin, K., Kinkenberg, B. (2005) Forest loss with urbanization 

predicts bird extirpations in Vancouver. Biological Conservation, 126, 410-419. 



127 
 

Evans, K. L., Newson, S. E., Gaston, K. J. (2009) Habitat influences in urban avian 

assemblages. Ibis, 151, 19-39. 

Faeth, S. H., Bang, C., Saari, S. (2011) Urban biodiversity: patterns and mechanisms. Annals 

of the New York Academy of Sciences, 1223, 69-81. 

Fallon, P., Powlson, D., Smith, P. (2004) Managing field margins for biodiversity and carbon 

sequestration: a Great Britain case study. Soil Use and Management, 20, 240-247. 

Fernández-Juricic (2000) Bird community composition patterns in urban parks of Madrid: the 

role of age, size and isolation. Ecological Research, 15, 373-383. 

Fisher, B., Turner, R. K. (2008) Ecosystem services: classification for valuation. Biological 

Conservation, 141, 1167-1169. 

Food and Agriculture Organization of the United Nations (2005) Land cover classification 

system: classification concepts and user manual, software version 2. Rome, Food and 

Agriculture Organization of the United Nations. 

Forestry Commission (2014) Forestry Statistics 2014: a compendium of statistics about 

woodland, forestry and primary wood processing in the United Kingdom. 

http://www.forestry.gov.uk/pdf/ForestryStatistics2014.pdf/$FILE/ForestryStatistics2014.pdf. 

last accessed 03.11.2014. 

Freibauer, A., Rounsevell, M. D. A., Smith, P., Verhagen, J. (2004) Carbon sequestration in 

the agricultural soils of Europe. Geoderma, 122, 1-23. 

Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H., Gaston, K. J. (2007) 

Psychological benefits of greenspace increase with biodiversity. Biology Letters, 3, 390-394. 

Fuller, R. J., Langslow, D. R. (1984) Estimating bird numbers by point counts: how long 

should counts last? Bird Study, 31, 195-202. 

Gaston, K. J., Warren, P. H., Thompson, K., Smith, R. M. (2005) Urban domestic gardens 

(IV): the extent of the resource and its associated features. Biodiversity and Conservation, 14, 

3327-3349. 

Germaine, S. S., Wakeling, B. F. (2001) Lizard species distributions and habitat occupation 

along an urban gradient in Tucson, Arizona, USA. Biological Conservation, 97, 229-237. 



128 
 

Ghazoul, J. (2007) Challenges to the uptake of the ecosystem service rationale for 

conservation. Conservation Biology, 21, 1651-1652. 

Gil, D., Brumm, H. (eds.) (2014) Avian urban ecology: behavioural and physiological 

adaptations. Oxford, Oxford University Press. 

Gill, S. E., Handley, J. F., Ennos, A. R., Pauleit, S., Theuray, N., Lindley, S. J. (2008) 

Characterising the urban environment of UK cities and towns: a template for landscape 

planning. Landscape and Urban Planning, 87, 210-222. 

Gitz, V., Ciais, P. (2004) Future expansion of agriculture and pasture acts to amplify 

atmospheric CO2 levels in response to fossil-fuel and land-use change emissions. Climatic 

Change, 67, 161-184. 

Goddard, M. A., Dougill, A. J., Benton, T. G. (2010) Scaling up from gardens: biodiversity 

conservation in urban environments. Trends in Ecology and Evolution, 25, 90-98. 

Goldman, R. L., Tallis, H., Kariva, P., Daily, G. C. (2008) Field evidence that ecosystem 

service projects support biodiversity and diversify options. Proceedings of the National 

Academy of Sciences, 105, 9445-9448. 

Green, R. E., Cornell, S. J., Scharlemann, J. P. W., Balmford, A. (2005) Farming and the fate 

of wild nature. Science, 307, 550-555. 

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., Briggs, J. M. 

(2008) Global change and the ecology of cities. Science, 319, 756-760. 

Grimm, N. B., Staudinger, M. D., Staudt, A., Carter, S. L., Chapin III, F. S., Kareiva, P., 

Ruckelshaus, M., Stein, B. A. (2013) Climate-change impacts on ecological systems: 

introduction to a US assessment. Frontiers in Ecology and the Environment, 11, 456-464. 

Hansen, A. J., Knight, R. L., Marzluff, J. M., Power, S., Brown, S., Gude, P. H., Jones, K. 

(2005) Effects of exurban development on biodiversity: patterns, mechanisms and research 

needs. Ecological Applications, 15, 1893-1905. 

Houghton, R. A. (2013) The contribution of land use and land-use change to the carbon cycle. 

In: Brown, D. G., Robinson, D. T., French, N. H. F., Reed, B. C. (eds.) Land use and the 

carbon cycle, pp 3-23. Cambridge, Cambridge University Press. 



129 
 

Houghton, R. A., Skole, D. L. (1990) Chemical and radiation: carbon. In: Turner, B. L., 

Clark, W. C., Kates, R. W., Richards, J. F, Mathews, J. T., Meyer, W. B. (eds.) The earth as 

transformed by human action, pp 393-408. Cambridge, Cambridge University Press. 

Hutyra, L. R., Yoon, B., Alberti, M. (2011) Terrestrial carbon stocks across a gradient of 

urbanization: a study of the Seattle, WA region. Global Change Biology, 17, 783-797. 

Imhoff, M. L., Bounoua, L., DeFries, R., Lawrence, W. T., Stutzer, D., Tucker, C. J., Ricketts, 

T. (2004) The consequences of urban land transformation on net primary productivity in the 

United States, Remote Sensing of the Environment, 89, 434-443. 

Intergovernmental Panel on Climate Change, IPCC (2000) Summary for policymakers. In: 

Watson, R., Noble, I., Bolin, B., Ravindranath, N. H., Verado, D., Dokken, D. (eds.). Land 

Use, Land-Use Change, and Forestry: a special report of the IPCC. Cambridge, Cambridge 

University Press. 

Intergovernmental Panel on Climate Change, IPCC (2007) Climate change 2007: Impacts, 

adaptation and vulnerability. Contribution of working group II to the fourth assessment 

report of the Intergovernmental Panel on Climate Change, Parry, M. L., Canziani, O. F., 

Palutikof, J. P., van der Linden, P. J., Hanson, C. E. (eds.), Cambridge, Cambridge University 

Press. 

Intergovernmental Panel on Climate Change, IPCC (2013) Climate change 2013: The 

physical science basis. Contribution of working group I to the fifth assessment report of the 

Intergovernmental Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, 

M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (eds.). 

Cambridge, Cambridge University Press. 

International Energy Agency, IEA (2008) World energy outlook 2008. Paris, International 

Energy Agency. 

Isaac, B., White, J., Ierodiaconou, D., Cooke, R. (2014) Simplification of arboreal marsupial 

assemblages in response to increasing urbanisation. PLoS ONE, 9, e91049, 

doi:10.1371/journal.pone.0091049. 

Izquierdo, A. E., Clark, M. L. (2012) Spatial analysis of conservation priorities based on 

ecosystem services in the Atlantic forest region of Misiones, Argentina. Forests, 3, 764-786. 



130 
 

Jiang, M., Bullock, J. M., Hooftman, D. A., P. (2013) Mapping ecosystem service and 

biodiversity changes over 70 years in a rural English county. Journal of Applied Ecology, 50, 

841-850. 

Jo, H. –K., McPherson, E. G. (2001) Indirect carbon reduction by residential vegetation and 

planting strategies in Chicago, USA. Journal of Environmental Management, 61, 165-177. 

Jobbagy, E. G., Jackson, R. B. (2000) The vertical distribution of soil organic carbon and its 

relation to climate and vegetation. Ecological Applications, 10, 423-436. 

Johnson, A. D., Gerhold, H. D. (2003) Carbon storage by urban tree cultivars, in root and 

above-ground. Urban Forestry and Urban Greening, 2, 65-72. 

Johnson, D. G. (2000) Population, food, and knowledge. The American Economic Review, 90, 

1-14. 

Jokimäki, J. (1999) Occurrence of breeding bird species in urban parks: effects of park 

structure and broad-scale variables. Urban ecosystems, 3, 21-34. 

Jokimäki, J., Kaisanlahti-Jokimäki, Carbó-Ramirez, P. (2014) The importance of wooded 

urban green areas for breeding birds: a case study from Northern Finland. In: Gil, D., Brumm, 

H. (eds.) Avian urban ecology; behavioural and physical adaptations, pp 201-213. Oxford, 

Oxford University Press. 

Jones, J. P. G., Collen, B., Atkinson, G., Baxter, P. W. J., Bubb, P., Illian, J. B., Katzner, T. 

E., Keane, A., Loh, J., McDonald-Madden, E., Nicholson, E., Pereira, H. M., Possingham, H. 

P., Pullin, A. S., Rodriques, A. S. L., Ruiz-Gutierrez, V., Sommerville, M., Milner-Gulland, 

E. J. (2011) The why, what, and how of global biodiversity indicators beyond the 2010 target. 

Conservation Biology, 25, 450-457. 

Khan. J., Powell, T., Harwood, A. (n.d.) Land use in the UK. http://www.ons.gov.uk/ons/ 

guide-method/user.../land-use-in-the-uk.pdf. Last accessed 02.02.15. 

Knight, R. L. (1999) Private lands: the neglected geography. Conservation Biology, 13, 223-

224. 

Koninendijk, C. C. (2003) A decade of urban forestry in Europe. Forestry Policy and 

Economics, 5, 173-186. 



131 
 

Kühn, I., Brandl, R., Klotz, S. (2004) The flora of German cities is naturally species rich. 

Evolutionary Ecology Research, 6, 749-764. 

Lal, R. (2010) Beyond Copenhagen: mitigating climate change and achieving food security 

through soil carbon sequestration. Food Security, 2, 169-177. 

Larsen, F. W., Londoño-Murcia, M. C., Turner, W. R. (2011) Global priorities for 

conservation of threatened species, carbon storage, and freshwater services: scope for 

synergy? Conservation Letters, 4, 355-363. 

Larsen, F. W., Turner, W. R., Brooks, T. M. (2012) Conserving critical sites for biodiversity 

provides disproportionate benefits to people. PLoS ONE, 7, e36971. 

Le Roux, D. S., Ikin, K., Lindenmayer, D. B., Manning, A. D., Gibbons, P. (2014) The future 

of large old trees in urban landscapes. PLoSONE, 9, e99403, 

doi:10.1371/journal.pone.0099403. 

Lima, S. L. (1987) Clutch size in birds: a predation perspective. Ecology, 68, 1062-1070. 

Lin, B. B., Fuller, R. A. (2013) Sharing or sparing? How should we grow the world’s cities? 

Journal of Applied Ecology, 50, 1161-1168. 

Liu, Z., He, C., Zhou, Y., Wu, J. (2014) How much of the world’s land surface has been 

urbanised, really? A hierarchical framework for avoiding confusion. Landscape Ecology, 29, 

763-771. 

Łopucki, R., Mróz, I., Berliński, Ł., Burzych, M. (2013) Effects if urbanization on small-

mammal communities and the population structure of synurbic species: an example of a 

medium-sized city. Canadian Journal of Zoology, 91, 554-561. 

Luck, G. W., Smallbone, L., Threlfall, C., Law, B. (2013) Patterns in bat functional guilds 

across multiple urban centres in south-eastern Australia. Landscape Ecology, 28, 455-469. 

MacArthur, R. H., Wilson, E. O. (1967) The theory of island biogeography. Princeton, 

Princeton University Press. 



132 
 

Mace, G. M., Cramer, W., Díaz, S., Faith, D. P., Larigauderie, A., Le Preste, P., Palmer, M., 

Perrings, C., Scholes, R. J., Walpole, M., Walther, B. A., Watson, J. E. M., Mooney, H. A. 

(2010) Biodiversity targets after 2010. Current Opinion in Environmental Sustainability, 2, 3-

8. 

Maciusik, B., Lenda, M., Skórka, P. (2010) Corridors, local food resources, and climatic 

conditions affect the utilization of the urban environment by the Black-headed Gull Larus 

ridibundus in winter. Ecological Research, 25, 263-272. 

Maes, J., Paracchini, M. L., Zulian, G., Dunbar, M. B., Alkemade, R. (2012) Synergies and 

trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in 

Europe. Biological Conservation, 155, 1-12. 

Malthus, T. R. (1798, reprinted 2008) An essay on the principles of population. Oxford, 

Oxford University Press. 

Martin, R., Marsden, T. (1999) Food for urban spaces: the development of urban food 

production in England and Wales. International Planning Studies, 4, 389-412. 

Marzluff, J. M. (2001) Worldwide urbanization and its effect on birds. In: Marzluff, J. M., 

Bowman, R., Donnelly, R. (eds.) Avian ecology and conservation in an urbanizing world, pp 

19-47, Norwell, Kluwer Academic Publishers. 

Marzluff, J. M., Ewing, K. (2001) Restoration of fragmented landscapes for the conservation 

of birds: a general framework and specific recommendations for urbanizing landscapes. 

Restoration Ecology, 9, 280-292. 

Marzluff, J. M., Gehlbach, F. R., Manuwal, D. A. (1998) Urban environments: influences on 

avifauna and challenges for the avian conservationist. In: Marzluff, J. M., Sallabanks, R. 

(eds.) Avian conservation: research and management, pp 283-299. Washinton D.C., Island 

Press. 

Maskell, L. C., Crowe, A., Dunbar, M. J., Emmett, B., Henrys, P., Keith, A. M., Norton, L. 

R., Scholefield, P., Clark, D. B., Simpson, I. C., Smart, S. M. (2013) Exploring the ecological 

constraints to multiple ecosystem service delivery and biodiversity. Journal of Applied 

Ecology, 50, 561-571. 



133 
 

Mason, W. L. (2007) Changes in the management of British forests between 1945 and 2000 

and possible future trends. Ibis, 149, 41-52. 

Matson, P. A., Parton, W. J., Power, A. G., Swift, M. J. (1997) Agricultural intensification 

and ecosystem properties. Science, 277, 504-509. 

McCauley, D. J. (2006) Selling out on nature. Nature, 443, 7, 27-28. 

McCune, J. L., Velland, M. (2013) Gains in native species promote biotic homogenisation 

over four decades in a human-dominated landscape. Journal of Ecology, 101, 1542-1551. 

McDonnell, M. J., Pickett, S. T. A. (1990) Ecosystem structure and function along urban-rural 

gradients: an unexploited opportunity for ecology. Ecology, 71, 1232-1237. 

McHale, M. R., Burke, I. C., Lefsky, M. A., Peper, P. J., McPherson, E. G. (2009) Urban 

forest biomass estimates: is it important to use allometric relationships developed specifically 

for urban trees? Urban Ecosystems, 12, 95-113.  

McKinney, M. L. (2002) Urbanization, biodiversity and conservation. Bioscience, 52, 883-

890. 

McKinney, M. L. (2006) Urbanization as a major cause of biotic homogenization. Biological 

Conservation, 127, 247-260.  

McKinney, M. L. (2008) Effects of urbanization on species richness: a review of plants and 

animals. Urban Ecosystems, 11, 161-176. 

Met Office (n.d.) Climate averages. http://www.metoffice.gov.uk/public/weather/climate/. 

Last accessed 14.04.2014. 

Meyer, W. B., Turner, B. L. (1992) Human population growth and global land-use/cover 

change. Annual Review if Ecology and Systematics, 23, 39-61. 

Millennium Ecosystem Assessment, MA (2005a) Ecosystems and human well-being: 

synthesis. Washington DC, Island Press. 

Millennium Ecosystem Assessment, MA (2005b) Ecosystems and human-wellbeing: 

biodiversity synthesis. Washington DC, Island Press. 



134 
 

Miller, J. R. (2005) Biodiversity conservation and the extinction of experience. Trends in 

Ecology and Evolution, 20, 430-434. 

Mills, G. S., Dunning Jr., J. B., Bates, J. M. (1989) Effects of urbanisation on breeding bird 

community structure in south-western desert habitats. Condor, 91, 416-158. 

Milne, R., Brown, T. A. (1997) Carbon in the vegetation and soils of Great Britain. Journal of 

Environmental Management, 49, 413-433. 

Moffat, A. J. (2001) Increasing woodland in urban areas in the UK – meeting ecological and 

environmental standards. International Forestry Review, 3, 198-205. 

Mokany, K., Raison, R. J., Prokushkin, A. S. (2006) Critical analysis of root:shoot ratios in 

terrestrial biomes. Global Change Biology, 12, 84-96. 

Møller, A. P., Diaz, M., Flensted-Jensen, E., Grim, T., Ibáñez-Alamo, J. D., Jokimäki, J., 

Mänd, R., Markó, G., Tryjanowski, P. (2012) High urban population density of birds reflects 

their timing of urbanisation. Oecologia, doi 10.1007/s00442-012-2355-3.  

Monheim, R. (1992) Town and transport planning and the development of retail trade in 

metropolitan areas of West Germany. Landscape and Urban Planning, 22, 121-136. 

Müller, C., Eichout, B., Zaehle, S., Bondeau, A., Cramer, W., Lucht, W. (2007) Effects of 

changes in CO
2
, climate, and land use on the carbon balance of the land biosphere during the 

21
st
 century. Journal of Geophysical Research: Biogeosciences, 112, G02032, 

doi:10.1029/2006JG000388. 

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., Malcolm, T. R., 

Ricketts, T. H. (2008) Global mapping of ecosystem services and conservation priorities. 

Proceedings of the National Academy of Sciences, 105, 9495-9500. 

Nelson, E., Polasky, S., Lewis, D. J., Plantinga, A. J., Lonsdoef, E., White, D., Bael, D., 

Lawler, J. J. (2009) Efficiency of incentives to jointly increase carbon sequestration and 

species conservation on a landscape. Proceedings of the National Academy of Sciences, 105, 

9471-9476. 

Newton, I. (1998) The role of nest sites in limiting the numbers of hole-nesting birds: a 

review. Biological Conservation, 70, 265-276. 



135 
 

Nielson, A. B., van den Bosch, M, Maruthaveeren, S., van den Bosch, C. K. (2014) Species 

richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosystems, 17, 

305-327. 

Niemelä, J. (1999) Urban ecology and planning. Biodiversity and Conservation, 8, 119-131. 

Nizynska-Bubel, J., Kopij, G. (2007) Population density, nesting sites and breeding success in 

barn swallows in urban habitats, SW Poland. Berkut, 16, 232-239. 

Noss, R. F. (1991) Indicators for monitoring biodiversity: a hierarchal approach. Conservation 

Biology, 4, 355-364. 

Nowak, D. J. (1994) Atmospheric carbon reduction by Chicago’s urban forest. In: 

McPherson, E. G., Nowak, D. J., Rowntree, R. A. (eds.) Chicago’s urban forest ecosystem: 

results of the Chicago Urban Forest Climate Project. USDA Forest Service General 

Technical Report NE-186, pp. 83-94. Radnor, US Department of Agriculture, Forest Service, 

Northeastern Forest Experiment Station. 

Nowak, D. J., Crane, D. E. (2002) Carbon storage and sequestration by urban trees in the 

USA. Environmental Pollution, 116, 381-389. 

Ockendon, N., Hewson, C. M., Johnston, A., Atkinson, P. W. (2012) Declines in British-

breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering 

zone in Africa, possibly via constraints on arrival time advancement. Bird Study, 59, 111-125. 

Office for National Statistics, ONS (2013) Parliamentary constituency population estimates 

(experimental), mid-2012. http://www.ons.gov.uk/ons/publications/re-reference-tables.html 

?edition=tcm%3A77-328853 Last accessed 29/01/2015. 

Office of the Deputy Prime Minister, ODPM (2005) Planning Policy Statement 1: delivering 

sustainable development. London, Office of the Deputy Prime Minister. 

Office of the Deputy Prime Minister, ODPM (2010) Planning Policy Statement 3: housing. 

London, Office of the Deputy Prime Minister. 

Olden, J. D., Rooney, T. P. (2006) On defining and quantifying biotic homogenisation. 

Global Ecology and Biogeography, 15, 113-120. 



136 
 

Ostle, N. J., Levy, P. E., Evans, C. D., Smith, P. (2009) UK land use and soil carbon 

sequestration. Land Use Policy, 26S, S274-S283. 

Paker, Y., Yom-Tov, Y., Alon-Mozes, T., Barnea, A. (2014) The effect of plant richness and 

urban garden structure on bird species richness, diversity and community structure. 

Landscape and Urban Planning, 122, 186-195. 

Patenaude, G. L., Briggs, B. D. J., Milne, R., Rowland, C. S., Dawson, T. P., Pryor, S. N. 

(2003) The carbon pool in a British semi-natural woodland. Forestry, 76, 109-119. 

Pauleit, S., Ennos, R., Golding, Y. (2005) Modeling the environmental impacts of urban land 

use and land cover change – a study in Merseyside, UK. Landscape and Urban Planning, 71, 

295-310. 

Pautasso, M. (2007) Scale dependence of the correlation between human population presence 

and vertebrate and plant species richness. Ecology Letters, 10, 16-24. 

Perrings, C., Naeem, S., Ahrestani, F., Bunker, D. E., Burkill, P. E., Canziani, G., Elmqvist, 

T., Ferrati, R., Fuhrman, J., Jaksic, F., Kawabata, Z., Kinzig, A., Mace, G. M., Milano, F., 

Mooney, H., Prieur-Richard, A.-H., Tschirhart, J., Weisser, W. (2010) Ecosystem services for 

2020. Science, 330, 323-324. 

Perrings, C., Naeem, S., Ahrestani, F. S., Bunker, D. E., Burkill, P., Canziani, G., Elmqvist, 

T., Fuhrman, J. A., Jaksic, F. M., Kawabata, Z., Kinzig. A., Mace, G. M., Mooney, H., Prieur-

Richard, A. –H., Tschirhart, J., Weisser, W. (2011) Ecosystem services, targets, and indicators 

for the conservation and sustainable use of biodiversity. Frontiers in Ecology and the 

Environment, 9, 512-520. 

Polasky, S., Johnson, K., Keeler, B., Kovacs, K., Nelson, E., Pennington, D., Platinga, A. J., 

Withey, J. (2012) Are investments to promote biodiversity conservation and ecosystem 

services aligned? Oxford Review of Economic Policy, 1, 139-163. 

Porter, E. E., Forschner, B. R., Blair, R. B. (2001) Woody vegetation and canopy 

fragmentation along a forest-to-urban gradient. Urban Ecosystems, 5, 131-151. 

Post, W. M., Kwon, K. C. (2000) Soil carbon sequestration and land-use change: processes 

and potential. Global Change Biology, 6, 317-328. 



137 
 

Pouyat, R. V., Yesilonis, I. D., Nowak, D. J. (2006) Carbon storage by urban soils in the 

United States. Journal of Environmental Quality, 35, 1566-1575. 

Pullin, A. S. (2002) Conservation Biology. Cambridge, Cambridge University Press. 

R Development Core Team (2008) R: a language and environment for statistical computing. 

Vienna, ISBN 3-900051-07-0, URL http://www.R-project.org. 

Raciti, M., Hutyra, L. R., Rao, P., Finzi, A. C. (2012) Inconsistent definitions of “urban” 

result in different conclusions about the size of urban carbon and nitrogen stocks. Ecological 

Applications, 22, 1015-1035. 

Rackham, O. (1986) The history of the countryside: the classic history of Britain’s landscape, 

flora and fauna. London, J. M. Dent and Sons. 

Radford, K. G., James, P. (2013) Changes in the value of ecosystem services along a rural-

urban gradient: a case study of Greater Manchester, UK. Landscape and Urban Planning, 

109, 117-127. 

Rebele, F. (1994) Urban ecology and special features of urban ecosystems. Global Ecology 

and Biogeography Letters, 4, 173-187. 

Redford, K. H., Adams, W. M. (2009) Payment for ecosystem services and the challenge of 

saving nature. Conservation Biology, 23, 785-787. 

Reusch, A. S., Gibbs, H. (2008) New IPCC Tier-1 global biomass carbon map for the year 

2000. Available online from the Carbon Dioxide Information Analysis Center 

[http://cdiac.ornl.gov/], Oak Ridge National Laboratory, Oak Ridge, Tennessee. 

Richter, M., Weiland, U. (eds.) (2011) Applied urban ecology: a global framework. Oxford, 

Wiley-Blackwell. 

Robinson, D. T., Brown, D. G., French, N. H. F., Reed, B. C. (2013) Linking land use and the 

carbon cylcle. In: Brown, D. G., Robinson, D. T., French, N. H. F., Reed, B. C. (eds.) Land 

use and the carbon cycle, pp 3-23. Cambridge, Cambridge University Press. 



138 
 

Robinson, R. A., Siriwardena, G. M., Crick, H. Q. P. (2002) Status and population trends of 

the starling Sturnus vulgaris in Great Britain. In: Crick, H. Q. P., Robinson, R. A., Appleton, 

G. F., Clark, N. A., Rickard, A. D. (eds.) Investigation into the causes of the decline of 

Starlings and House Sparrows in Great Britain: BTO Research Report No. 290, pp 33-51. 

Bristol, Defra. 

Robinson, R. A., Sutherland, W. J. (2002) Post-war changes in arable farming and 

biodiversity in Great Britain. Journal of Applied Ecology, 39, 157-176. 

Rock, P. (2005) Urban gulls: problems and solutions. British Birds, 98. 338-355. 

Rodewald, A. D., Shustack, D. P. (2008) Consumer resource matching in urbanizing 

landscapes: are synanthropic species over-matching? Ecology, 89, 515-521. 

Rodriquez, J. P., Beard Jr., T. D., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J., 

Dobson, A. P., Peterson, G. D. (2006) Trade-offs across space, time and ecosystem services. 

Ecology and Society, 11, 28, [online] URL: http://www.ecologyandsociety.org/vol11/iss1/ 

art28/.  

Röell, A. (1978) Social behaviour of the jackdaw, Corvus monedula, in relation to its niche. 

Behaviour, 64, 1-124. 

Rosenzweig, M. L. (2003) Win-win ecology: how the earth’s species can survive in the midst 

of human enterprise. Oxford, Oxford University Press. 

Sadler, J. P., Small, E. C., Fiszpan, H., Telfer, M. G., Niemelä, J. (2006) Investigating 

environmental variation and landscape characteristics of an urban-rural gradient using 

woodland carabid assemblages. Journal of biogeography, 33, 1126-1138. 

Saether, B.-E. (1983) Habitat selection, foraging niches and horizontal spacing of willow 

warbler Phylloscopus trochilus and chiffchaff P. collybita in an area of sympatry. Ibis, 125, 

24-32. 

Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., van Bommel, F. P. J. (2006) Long-

term population declines in Afro-Palaearctic migrant birds. Biological Conservation, 131, 93-

105. 

Sandström, U. G., Angelstam, P., Mikusiński (2006) Ecological diversity of birds in relation 

to the structure of urban green space. Landscape and Urban Planning, 77, 39-53. 



139 
 

Savard, J. –P., Clergeau, P., Mennechez, G. (2000) Biodiversity concepts and urban 

ecosystems. Landscape and Urban Planning, 48, 131-142. 

Schlamadinger, B., Bird, N., Johns, T., Brown, S., Canadell, J., Ciccarese, L., Dutschke, M., 

Fiedler, J., Fischlin, A., Fearnside, P., Forner, C., Freibauer, A., Frumhoff, P., Hoehne, N., 

Kirschbaum, M. U. F., Labat, A., Marland, G., Michaelowa, A., Montanarella, L., Moutinho, 

P.,Murdiyarso, D., Pena, N., Pingoud, K., Rakonczay, Z., Rametsteiner, E., Rock, J., Sanz, M. 

J., Schneider, U. A., Shvidenko, A., Skutsch, M., Smith, P., Somogyi, Z., Trines, E., Ward, 

M., Yamagata, Y. (2007) A synopsis of land use, land-use change and forestry (LULUCF) 

under Kyoto Protocol and Marrakech Accords. Environmental Science and Policy, 10, 271-

282. 

Secretariat of the Convention on Biological Diversity (2003) Handbook on the Convention on 

Biological Diversity including its Cartogenal Protocol on Biosafety (3
rd

 edit.). Montrèal. 

Secretariat of the Convention on Biological Diversity (2010) Global Biodiversity Outlook 3. 

Montrèal.  

Seto, K. C., Fragkias, M., Güneralp, B., Reilly, M. K. (2011) A meta-analysis of global urban 

land expansion. Plos ONE, 6, e23777. 

Seto. K. C., Güneralp, B., Hutyra, L. R. (2012) Global forecasts of urban expansion to 2030 

and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of 

Sciences, 109, 16083-16088. 

Shochat, E., Lerman, S. B., Anderies, J. M., Warren, P. S., Faeth, S. H., Nilon, C. H. (2010) 

Competition, and biodiversity loss in urban ecosystems. Bioscience, 60, 199-208. 

Shochat, E., Warren, P. S., Faeth, S. H. (2006) Future directions in urban ecology. Trends in 

Ecology and Evolution, 21, 661-662. 

Simms, E. (1985) British warblers. London, Williams Collins Sons & Co. Ltd 

Siriwardena, G. M., Robinson, R. A., Crick, H. Q. P. (2002) Status and population trends of 

the House Sparrow Passer domesticus in Great Britain. In: Crick, H. Q. P., Robinson, R. A., 

Appleton, G. F., Clark, N. A., Rickard, A. D. (eds.) Investigation into the causes of the 

decline of Starlings and House Sparrows in Great Britain: BTO Research Report No. 290, pp 

33-51. Bristol, Defra. 



140 
 

Skroch, M., López-Hoffman, L. (2010) Saving Nature under the big tent of ecosystem 

services: a response to Adams and Redford. Conservation Biology, 24, 325-327. 

Smith, L. (2014) Standard Note SN/SC/934: Green Belt. London, House of Commons 

Library. Available at: http://www.parliament.uk/business/publications/research/briefing-

papers/SN00934/green-belt. Last accessed 02.02.2015. 

Smith, P. (2007) Land use change and soil organic dynamics. Nutrient Cycling in 

Agroecosystems, 81, 169-178. 

Smith, P., Milne, R., Powlson, D. S., Smith, J. U., Falloon, P., Coleman, K. (2000) Revised 

estimates of the mitigation potential of UK agricultural land. Soil Use and Management, 16, 

293-295. 

Smith, P., Powlson, D. S., Glendining, M. J., Smith, J. U. (1997) Potential for carbon 

sequestration in European soils: preliminary estimates for five scenarios using results from 

long-term experiments. Global Change Biology, 3, 67-79. 

Smith, P., Powlson, D. S., Glendining, M. J., Smith, J. U. (1998) Preliminary estimates of the 

potential for carbon mitigation in European soils through no-till farming. Global Change 

Biology, 4, 679-685. 

Snorrason, A., Einarsson, S. F. (2006) Single-tree biomass and stem volume functions for 

eleven tree species used in Icelandic forestry. Icelandic Agricultural Science, 19, 15-24. 

Stagoll, K., Lindenmayer, D. B., Knight, E., Fischer, J., Manning, A. D. (2012) Large trees 

are keystone structures in urban parks. Conservation Letters, 5, 115-122. 

Stoate, C., Boatman, N. D., Borralho, R. J., Rio Carvalho, C., de Snoo, G. R., Eden, P. (2001) 

Ecological impacts of arable intensification in Europe. Journal of Environmental 

Management, 63, 337-365. 

Strassburg, B. B. N., Kelly, A., Balmford, A., Davies, R. G., Gibbs, H. K., Lovett, A., Miles, 

L., Orme. C. D. L., Price, J., Turner, R. K., Rodrigues, A. S. L. (2010) Global incongruence of 

carbon storage and biodiversity in terrestrial ecosystems. Conservation Letters, 3, 98-105. 

Strobach, M. W., Haase, D. (2012) Above ground carbon storage by urban trees in Leipzig, 

Germany: analysis of patterns in a European city. Landscape and Urban Planning, 104, 95-

104. 



141 
 

Sushinsky, J. R., Rhodes, J. R., Possingham, H. P., Gill, T. K., Fuller, R. A. (2013) How 

should we grow cities to minimize their biodiversity impacts? Global Change Biology, 19, 

401-410. 

Svirejeva-Hopkins, A., Schellnhuber, H. J., Pomaz, V. L. (2004) Urbanised territories as a 

specific component of the global carbon cycle. Ecological Modelling, 173, 295-312. 

Tait, C. J., Daniels, C. B., Hill, R. S. (2005) Changes in species assemblages within the 

Adelaide metropolitan area, Australia, 1836-2002. Ecological Applications, 15, 346-359. 

Ter-Mikaelian, M. T., Korzukhin, M. D. (1997) Biomass equations for sixty-five North 

American tree species. Forest Ecology and Management, 97, 1-24. 

Tilghman, N. G. (1987) Characteristics of urban woodland affecting breeding bird diversity 

and abundance. Landscape and Urban Planning, 14, 481-495. 

Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G., Gaston, K. J. (2007) Urban form, 

biodiversity potential and ecosystem services. Landscape and Urban Planning, 83, 308-317. 

Trusilova, K., Churkina, G. (2008) The response of the terrestrial biosphere to urbanization: 

land cover conversion, climate, and urban pollution. Biogeosciences, 5, 1505-1515. 

Turner, W. R., Brandon, K., Brooks, T. M., Costanza, R., Da Fonseca, G. A. B., Portela, R. 

(2007) Global conservation of biodiversity and ecosystem services. Bioscience, 57, 868-873. 

UK National Ecosystem Assessment, UKNEA (2011) The UK National Ecosystem 

Assessment: Technical Report. UNEP-WCMC, Cambridge. 

United Nations, UN (1998) Kyoto Protocol to the United Nations Framework Convention on 

Climate Change. http://unfccc.int/resource/docs/convkp/kpeng.pdf. Last accessed 15.10.2014. 

United Nations, UN, Department of Economic and Social Affairs, Population Division (2012) 

World urbanization prospects: the 2011 revision. United Nations, New York.                             

http://esa.un.org/unpd/wup/pdf/WUP2011_Highlights.pdf. Last accessed 04.03.2014. 



142 
 

United Nations, UN, Department of Economic and Social affairs, Population Division (2013) 

World population prospects: the 2012 revision. Working paper no. ESA/P/WP.228. United 

Nations, New York.  

http://esa.un.org/unpd/wpp/Documention/pdf/WPP2012_HIGHLIGHTS.pdf. Last accessed 

04.03.2014. 

United Nations Secretariat (2012) World urbanization prospects: the 2011 revision. New 

York, United Nations Department of Economic and Social Affairs. 

van Heezik, Y., Smyth, A., Adams, A., Gordon, J. (2010) Do domestic cats impose an 

unsustainable harvest on urban bird populations? Biological Conservation, 143, 121-130. 

Verboven, H. A. F., Uyttenbroeck, R., Brys, R., Hermy, M. (2014) Different responses of 

bees and hoverflies to land use in an urban-rural gradient show the importance of the nature of 

the rural land use. Landscape and Urban Planning, 126, 31-41.  

Vitousek, P. M., Mooney, H. A., Lubchenko, J., Melillo, J. M. (1997) Human domination of 

Earth’s ecosystems. Science, 277, 494-499. 

Walcott, C. F. (1974) Changes in bird life in Cambridge, Massachusetts from 1860 to 1964. 

Auk, 91, 151-160. 

Wallace, K. J. (2007) Classification of ecosystem services: problems and solutions. Biological 

Conservation, 139, 235-246. 

Wania, A., Kühn, I., Klotz, S. (2006) Plant richness patterns in agricultural and urban 

landscapes in Central Germany – spatial gradients of species richness. Landscape and Urban 

Planning, 75, 97-110. 

Ward, S. V. (1994) Planning and urban change. London, Paul Chapman Publishing. 

Westerberg, S., Bowey, K. (2000) A summer atlas of the breeding birds of County Durham. 

Durham, Durham Bird Club. 

Western, D. (1992) The biodiversity crisis: a challenge for biology. Oikos, 63, 29-38. 



143 
 

Williams, K. (2004) Reducing sprawl and delivering an urban renaissance in England: are 

these aims possible given current attitudes to urban living? In: Richardson, H. W., Chang-

Hee, C. B. (eds.), Urban sprawl in Western Europe and the United States, pp 37-54, 

Aldershot, Ashgate Publishing Ltd. 

Zhao, T., Brown, D. G., Bergen, K. M. (2007) Increasing gross primary production (GPP) in 

the urbanising landscapes of Southeastern Michigan. Photogrammetic Engineering and 

Remote Sensing, 73, 1159-1168. 

Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. (2005) Biomass and stem volume 

equations for tree species in Europe. Silva Fennica Monographs, 4, 1-63. 



144 
 

Appendices 

 

List of Appendices 

Appendix 1 Allometric equations used to estimate tree biomass ........................................................................................................................ 137 

Appendix 2 Kruskal-Wallis post-hoc test results for difference in carbon storage per unit area among land-use categories in Darlington,  

 Durham and Newcastle .................................................................................................................................................................... 140 

Appendix 3 The estimated vegetation carbon and soil organic carbon storage within land-use categories in a) Darlington and b) Durham 

 in 1945 and 2009, and c) Newcastle in 1945 and 2012, calculated using the means of 50 x 50 m quadrat samples ...................... 149 

Appendix 4 Results from ANOVA and paired t-tests used on soil organic carbon densities to justify the use of 22 cm as a cut-off depth 

 for further soil organic carbon analysis in Durham ......................................................................................................................... 152 

Appendix 5 Kruskal-Wallis post-hoc test results for difference in carbon storage per unit area among urban land-use categories in the 

 different carbon pools in Durham .................................................................................................................................................... 153 

Appendix 6 The Number and size of trees recorded in the different land-use categories in Durham ................................................................. 159 

Appendix 7 The wintering and breeding bird species recorded in point-count surveys in Durham ................................................................... 160 

Appendix 8 Kruskal-Wallis post-hoc test results for difference in bird species richness among land-use categories in Durham ...................... 163 

Appendix 9 Kruskal-Wallis post-hoc test results for difference in bird diversity among land-use categories in Durham ................................. 167 

Appendix 10 Results of Principal Components Analysis (PCA): Eigenvectors .................................................................................................... 170 

 

 

 



145 
 

Appendix 1 Allometric equations used to estimate tree biomass. 

Species Formula a b c d Reference

Pseudotsuga  sp. Pseudotsuga menziesii AB=aD
b 0.0808 2.5282 - - Ter-Mikaelian and Korzukhin (1997)

Acer campestre Acer saccharum AB=aD
b 0.1008 2.5735 - - Ter-Mikaelian and Korzukhin (1997)

Acer pseudoplatanus Acer saccharum AB=aD
b 0.1008 2.5735 - - Ter-Mikaelian and Korzukhin (1997)

Acer  sp. Acer saccharum AB=aD
b 0.1008 2.5735 - - Ter-Mikaelian and Korzukhin (1997)

Aesculus hippocastanum Aesculus indica ln(AB)=a+b(ln(D)) 2.6572 0.9451 - - Adhikari et al . (1995)

Alnus cordata Alnus glutinosa AB=aD
b 0.0003090 2.022126 - - Zianis et al . (2005)

Alnus glutinosa Alnus glutinosa AB=aD
b 0.0003090 2.022126 - - Zianis et al . (2005)

Betula pendula Betula pendula AB=aD
b 0.00087 2.28639 - - Zianis et al . (2005)

Betula  sp. Betula pendula AB=aD
b 0.00087 2.28639 - - Zianis et al . (2005)

Carpinus betulus Ulmus americana AB=aD
b 0.0825 2.468 - - Ter-Mikaelian and Korzukhin (1997)

Carpinus  sp. Ulmus americana AB=aD
b 0.0825 2.468 - - Ter-Mikaelian and Korzukhin (1997)

Castanea sativa Fagus sylvatica AB=aD
b 0.1143 2.503 - - Zianis et al . (2005)

Chamaecyparis  sp. Chamaecyparis nootkatensis AB=aD
b 0.2498 2.1118 - - Ter-Mikaelian and Korzukhin (1997)

Coniferous Coniferous AB=aD
b 7.295 1.395 - - Davies et al . (2011)

Corylus avellana Betula pendula AB=aD
b 0.00087 2.28639 - - Zianis et al . (2005)

Crataegus monogyna Sorbus aucuparia AB=aD
b
H

c 0.0634 2.1552 0.2877 - Snorrason and Einarsson (2006)

Cupressus leylandii Chamaecyparis nootkatensis AB=aD
b 0.2498 2.1118 - - Ter-Mikaelian and Korzukhin (1997)

Deciduous Deciduous AB=aH
b 0.566 2.315 - - Davies et al. (2011)

Eucalyptus  sp. Eucalyptus  spp. ln(AB)=a+b(ln(D)) -1.762 2.2644 - - Zianis et al . (2005)

Fagus  sp. Fagus sylvatica AB=aD
b 0.1143 2.503 - - Zianis et al . (2005)

Fagus sylvatica Fagus sylvatica AB=aD
b 0.1143 2.503 - - Zianis et al . (2005)

Fraxinus excelsior Fraxinus americana AB=aD
b 0.1063 2.4798 - - Ter-Mikaelian and Korzukhin (1997)

EquationSpecies recorded
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Species Formula a b c d Reference

Fraxinus  sp. Fraxinus americana AB=aD
b 0.1063 2.4798 - - Ter-Mikaelian and Korzukhin (1997)

Ilex  sp. Ilex dipyrena AB=a+b(ln(D)) 0.7752 0.906 - - Adhikari et al . (1995)

Laburnum  sp. Deciduous AB=aH
b 0.566 2.315 - - Davies et al . (2011)

Larix decidua Larix laricina AB=aD
b 0.1359 2.298 - - Ter-Mikaelian and Korzukhin (1997)

Laurus nobilis Deciduous AB=aH
b 0.566 2.315 - - Davies et al . (2011)

Malus  sp. Sorbus aucuparia AB=aD
b
H

c 0.0634 2.1552 0.288 - Snorrason and Einarsson (2006)

Pinus ponderosa Pinus sylvestris AB=a(D+1)
[b+c*log(D)]

H
d 0.0146 2.3868 -0.0618 0.8581 Zianis et al. (2005)

Pinus  sp. Pinus sylvestris AB=a(D+1)
[b+c*log(D)]

H
d 0.0146 2.3868 -0.0618 0.8581 Zianis et al. (2005)

Pinus sylvestris Pinus sylvestris AB=a(D+1)
[b+c*log(D)]

H
d 0.0146 2.3868 -0.0618 0.8581 Zianis et al. (2005)

Populus balsamifera Populus trichocarpa AB=aD
b
H

c 0.0717 1.8322 0.6397 - Zianis et al. (2005)

Populus canescens Salicaceae (incl. poplars) AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian and Korzukhin (1997)

Populus nigra x Salicaceae (incl. poplars) AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian and Korzukhin (1997)

Populus  sp. Salicaceae (incl. poplars) AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian and Korzukhin (1997)

Populus tremula Populus tremula AB=aD
b 0.0519 2.5450 - - Zianis et al . (2005)

Prunus avium Prunus serotina AB=aD
b 0.0716 2.6174 - - Ter-Mikaelian and Korzukhin (1997)

Prunus laurocerasus Prunus serotina AB=aD
b 0.0716 2.6174 - - Ter-Mikaelian and Korzukhin (1997)

Prunus  sp. Prunus serotina AB=aD
b 0.0716 2.6174 - - Ter-Mikaelian and Korzukhin (1997)

Quercus cerris Quercus rubra AB=aD
b 0.1130 2.4572 - - Ter-Mikaelian and Korzukhin (1997)

Quercus petraea Quercus rubra AB=aD
b 0.1130 2.4572 - - Ter-Mikaelian and Korzukhin (1997)

Quercus robur Quercus rubra AB=aD
b 0.1130 2.4572 - - Ter-Mikaelian and Korzukhin (1997)

Quercus rubra Quercus rubra AB=aD
b 0.1130 2.4572 - - Ter-Mikaelian and Korzukhin (1997)

Quercus  sp. Quercus rubra AB=aD
b 0.1130 2.4572 - - Ter-Mikaelian and Korzukhin (1997)

Rhododendron  sp. Deciduous AB=aH
b 0.566 2.315 - - Davies et al . (2011)

Robinia pseudoacacia Fraxinus americana AB=aD
b 0.1063 2.4798 - - Ter-Mikaelian and Korzukhin (1997)

Species recorded Equation
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Species Formula a b c d Reference

Salix alba Salicaceae AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian et al . (1997)

Salix capraea Salicaceae AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian et al . (1997)

Salix cinerea Salicaceae AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian et al . (1997)

Salix  sp. Salicaceae AB=aD
b 0.0616 2.5094 - - Ter-Mikaelian et al . (1997)

Sambucus nigra Deciduous AB=aH
b 0.566 2.315 - - Davies et al . (2011)

Sorbus aria Sorbus aucuparia AB=aD
b
H

c 0.0634 2.1552 0.2877 - Snorrason and Einarsson (2006)

Sorbus aucuparia Sorbus aucuparia AB=aD
b
H

c 0.0634 2.1552 0.2877 - Snorrason and Einarsson (2006)

Sorbus x intermedia Sorbus aucuparia AB=aD
b
H

c 0.0634 2.1552 0.2877 - Snorrason and Einarsson (2006)

Taxus baccata Tsuga canadensis AB=aD
b 0.0622 2.4500 - - Ter-Mikaelian et al . (1997)

Tilia sp. Tilia cordata ABW=a+b(ln(D)) -2.6788 2.4542 - - Zianis et al . (2005)

Ulmus glabra Ulmus americana AB=aD
b 0.0825 2.4680 - - Ter-Mikaelian et al . (1997)

Ulmus  sp. Ulmus americana AB=aD
b 0.0825 2.4680 - - Ter-Mikaelian et al . (1997)

AB=Total above-ground biomass (incl. foliage)

ABW=Above-ground woody biomass (excl. Foliage)

D=diameter at breast height as measured in the field

H=Canopy height as measured in the field

Species recorded Equation
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Appendix 2 Kruskal-Wallis post-hoc test results for difference in carbon stored per unit area 

among land-use categories in Darlington, Durham and Newcastle. 

a) Total vegetation carbon and soil organic carbon storage 

Land-use category 1 Land-use category 2

Agriculture: Crop/pasture Allotment 21.806 96.048 FALSE

Agriculture: Crop/pasture Amenity Grassland 15.794 73.439 FALSE

Agriculture: Crop/pasture Commercial 117.598 69.309 TRUE

Agriculture: Crop/pasture Grassland 0.087 72.606 FALSE

Agriculture: Crop/pasture Agriculture: hedgerow 51.627 80.549 FALSE

Agriculture: Crop/pasture Parkland 41.898 74.348 FALSE

Agriculture: Crop/pasture Scrub 13.694 73.439 FALSE

Agriculture: Crop/pasture Suburban 68.106 66.983 TRUE

Agriculture: Crop/pasture Urban no garden 125.944 80.549 TRUE

Agriculture: Crop/pasture Urban with garden 84.544 73.439 TRUE

Agriculture: Crop/pasture Woodland 66.008 72.606 FALSE

Allotment Amenity Grassland 37.600 94.559 FALSE

Allotment Commercial 139.404 91.388 TRUE

Allotment Grassland 21.893 93.914 FALSE

Allotment Agriculture: hedgerow 29.821 100.181 FALSE

Allotment Parkland 20.092 95.267 FALSE

Allotment Scrub 35.500 94.559 FALSE

Allotment Suburban 89.911 89.638 TRUE

Allotment Urban no garden 147.750 100.181 TRUE

Allotment Urban with garden 106.350 94.559 TRUE

Allotment Woodland 44.202 93.914 FALSE

Amenity grassland Commercial 101.804 67.230 TRUE

Amenity grassland Grassland 15.707 70.624 FALSE

Amenity grassland Agriculture: hedgerow 67.421 78.767 FALSE

Amenity grassland Parkland 57.692 72.414 FALSE

Amenity grassland Scrub 2.100 71.480 FALSE

Amenity grassland Suburban 52.311 64.830 FALSE

Amenity grassland Urban no garden 110.150 78.767 TRUE

Amenity grassland Urban with garden 68.750 71.480 FALSE

Amenity grassland Woodland 81.802 70.624 TRUE

Commercial Grassland 117.511 66.319 TRUE

Commercial Agriculture: hedgerow 169.225 74.931 TRUE

Commercial Parkland 159.496 68.222 TRUE

Commercial Scrub 103.904 67.230 TRUE

Commercial Suburban 49.493 60.111 FALSE

Commercial Urban no garden 8.346 74.931 FALSE

Commercial Urban with garden 33.054 67.230 FALSE

Commercial Woodland 183.606 66.319 TRUE

Grassland Agriculture: hedgerow 51.714 77.991 FALSE

Observation 

difference

Critical 

difference

Comparison Significant 

difference
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Land-use category 1 Land-use category 2

Grassland Parkland 41.985 71.569 FALSE

Grassland Scrub 13.607 70.624 FALSE

Grassland Suburban 68.018 63.884 TRUE

Grassland Urban no garden 125.857 77.991 TRUE

Grassland Urban with garden 84.457 70.624 TRUE

Grassland Woodland 66.095 69.757 FALSE

Agriculture: hedgerow Parkland 9.729 79.616 FALSE

Agriculture: hedgerow Scrub 65.321 78.767 FALSE

Agriculture: hedgerow Suburban 119.733 72.786 TRUE

Agriculture: hedgerow Urban no garden 177.571 85.435 TRUE

Agriculture: hedgerow Urban with garden 136.171 78.767 TRUE

Agriculture: hedgerow Woodland 14.381 77.991 FALSE

Parkland Scrub 55.592 72.414 FALSE

Parkland Suburban 110.003 65.858 TRUE

Parkland Urban no garden 167.842 79.616 TRUE

Parkland Urban with garden 126.442 72.414 TRUE

Parkland Woodland 24.110 71.569 FALSE

Scrub Suburban 54.411 64.830 FALSE

Scrub Urban no garden 112.250 78.767 TRUE

Scrub Urban with garden 70.850 71.480 FALSE

Scrub Woodland 79.702 70.624 TRUE

Suburban Urban no garden 57.839 72.786 FALSE

Suburban Urban with garden 16.439 64.830 FALSE

Suburban Woodland 134.114 63.884 TRUE

Urban no garden Urban with garden 41.400 78.767 FALSE

Urban no garden Woodland 191.952 77.991 TRUE

Urban with garden Woodland 150.552 70.624 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

b)  Tree (4 m+) carbon store 

Land-use category 1 Land-use category 2

Agriculture: Crop/pasture Allotment 7.375 96.048 FALSE

Agriculture: Crop/pasture Amenity Grassland 15.550 73.439 FALSE

Agriculture: Crop/pasture Commercial 35.096 69.309 FALSE

Agriculture: Crop/pasture Grassland 9.857 72.606 FALSE

Agriculture: Crop/pasture Agriculture: hedgerow 131.429 80.549 TRUE

Agriculture: Crop/pasture Parkland 149.842 74.348 TRUE

Agriculture: Crop/pasture Scrub 84.000 73.439 TRUE

Agriculture: Crop/pasture Suburban 98.419 66.983 TRUE

Agriculture: Crop/pasture Urban no garden 22.786 80.549 FALSE

Agriculture: Crop/pasture Urban with garden 61.375 73.439 FALSE

Agriculture: Crop/pasture Woodland 163.714 72.606 TRUE

Allotment Amenity Grassland 8.175 94.559 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Allotment Commercial 27.721 91.388 FALSE

Allotment Grassland 2.482 93.914 FALSE

Allotment Agriculture: hedgerow 124.054 100.181 TRUE

Allotment Parkland 142.467 95.267 TRUE

Allotment Scrub 76.625 94.559 FALSE

Allotment Suburban 91.044 89.638 TRUE

Allotment Urban no garden 15.411 100.181 FALSE

Allotment Urban with garden 54.000 94.559 FALSE

Allotment Woodland 156.339 93.914 TRUE

Amenity grassland Commercial 19.546 67.230 FALSE

Amenity grassland Grassland 5.693 70.624 FALSE

Amenity grassland Agriculture: hedgerow 115.879 78.767 TRUE

Amenity grassland Parkland 134.292 72.414 TRUE

Amenity grassland Scrub 68.450 71.480 FALSE

Amenity grassland Suburban 82.869 64.830 TRUE

Amenity grassland Urban no garden 7.236 78.767 FALSE

Amenity grassland Urban with garden 45.825 71.480 FALSE

Amenity grassland Woodland 148.164 70.624 TRUE

Commercial Grassland 25.239 66.319 FALSE

Commercial Agriculture: hedgerow 96.332 74.931 TRUE

Commercial Parkland 114.746 68.222 TRUE

Commercial Scrub 48.904 67.230 FALSE

Commercial Suburban 63.323 60.111 TRUE

Commercial Urban no garden 12.310 74.931 FALSE

Commercial Urban with garden 26.279 67.230 FALSE

Commercial Woodland 128.618 66.319 TRUE

Grassland Agriculture: hedgerow 121.571 77.991 TRUE

Grassland Parkland 139.985 71.569 TRUE

Grassland Scrub 74.143 70.624 TRUE

Grassland Suburban 88.562 63.884 TRUE

Grassland Urban no garden 12.929 77.991 FALSE

Grassland Urban with garden 51.518 70.624 FALSE

Grassland Woodland 153.857 69.757 TRUE

Agriculture: hedgerow Parkland 18.414 79.616 FALSE

Agriculture: hedgerow Scrub 47.429 78.767 FALSE

Agriculture: hedgerow Suburban 33.009 72.786 FALSE

Agriculture: hedgerow Urban no garden 108.643 85.435 TRUE

Agriculture: hedgerow Urban with garden 70.054 78.767 FALSE

Agriculture: hedgerow Woodland 32.286 77.991 FALSE

Parkland Scrub 65.842 72.414 FALSE

Parkland Suburban 51.423 65.858 FALSE

Parkland Urban no garden 127.056 79.616 TRUE

Parkland Urban with garden 88.467 72.414 TRUE

Parkland Woodland 13.872 71.569 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Scrub Suburban 14.419 64.830 FALSE

Scrub Urban no garden 61.214 78.767 FALSE

Scrub Urban with garden 22.625 71.480 FALSE

Scrub Woodland 79.714 70.624 TRUE

Suburban Urban no garden 75.634 72.786 TRUE

Suburban Urban with garden 37.044 64.830 FALSE

Suburban Woodland 65.295 63.884 TRUE

Urban no garden Urban with garden 38.589 78.767 FALSE

Urban no garden Woodland 140.929 77.991 TRUE

Urban with garden Woodland 102.339 70.624 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

c) Woody vegetation (1-4 m) carbon store 

Land-use category 1 Land-use category 2

Agriculture: Crop/pasture Allotment 86.625 95.677 FALSE

Agriculture: Crop/pasture Amenity Grassland 0.000 72.726 FALSE

Agriculture: Crop/pasture Commercial 31.923 68.516 FALSE

Agriculture: Crop/pasture Grassland 12.929 71.877 FALSE

Agriculture: Crop/pasture Agriculture: hedgerow 103.071 79.958 TRUE

Agriculture: Crop/pasture Parkland 112.763 73.652 TRUE

Agriculture: Crop/pasture Scrub 116.100 72.726 TRUE

Agriculture: Crop/pasture Suburban 92.516 66.142 TRUE

Agriculture: Crop/pasture Urban no garden 31.536 79.958 FALSE

Agriculture: Crop/pasture Urban with garden 83.725 72.726 TRUE

Agriculture: Crop/pasture Woodland 144.833 71.877 TRUE

Allotment Amenity Grassland 86.625 94.966 FALSE

Allotment Commercial 54.702 91.782 FALSE

Allotment Grassland 73.696 94.317 FALSE

Allotment Agriculture: hedgerow 16.446 100.612 FALSE

Allotment Parkland 26.138 95.677 FALSE

Allotment Scrub 29.475 94.966 FALSE

Allotment Suburban 5.891 90.023 FALSE

Allotment Urban no garden 55.089 100.612 FALSE

Allotment Urban with garden 2.900 94.966 FALSE

Allotment Woodland 58.208 94.317 FALSE

Amenity grassland Commercial 31.923 67.519 FALSE

Amenity grassland Grassland 12.929 70.928 FALSE

Amenity grassland Agriculture: hedgerow 103.071 79.106 TRUE

Amenity grassland Parkland 112.763 72.726 TRUE

Amenity grassland Scrub 116.100 71.787 TRUE

Amenity grassland Suburban 92.516 65.108 TRUE

Amenity grassland Urban no garden 31.536 79.106 FALSE

Amenity grassland Urban with garden 83.725 71.787 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Amenity grassland Woodland 144.833 70.928 TRUE

Commercial Grassland 18.995 66.604 FALSE

Commercial Agriculture: hedgerow 71.148 75.254 FALSE

Commercial Parkland 80.840 68.516 TRUE

Commercial Scrub 84.177 67.519 TRUE

Commercial Suburban 60.593 60.370 TRUE

Commercial Urban no garden 0.387 75.254 FALSE

Commercial Urban with garden 51.802 67.519 FALSE

Commercial Woodland 112.910 66.604 TRUE

Grassland Agriculture: hedgerow 90.143 78.326 TRUE

Grassland Parkland 99.835 71.877 TRUE

Grassland Scrub 103.171 70.928 TRUE

Grassland Suburban 79.588 64.159 TRUE

Grassland Urban no garden 18.607 78.326 FALSE

Grassland Urban with garden 70.796 70.928 FALSE

Grassland Woodland 131.905 70.057 TRUE

Agriculture: hedgerow Parkland 9.692 79.958 FALSE

Agriculture: hedgerow Scrub 13.029 79.106 FALSE

Agriculture: hedgerow Suburban 10.555 73.099 FALSE

Agriculture: hedgerow Urban no garden 71.536 85.802 FALSE

Agriculture: hedgerow Urban with garden 19.346 79.106 FALSE

Agriculture: hedgerow Woodland 41.762 78.326 FALSE

Parkland Scrub 3.337 72.726 FALSE

Parkland Suburban 20.247 66.142 FALSE

Parkland Urban no garden 81.227 79.958 TRUE

Parkland Urban with garden 29.038 72.726 FALSE

Parkland Woodland 32.070 71.877 FALSE

Scrub Suburban 23.584 65.108 FALSE

Scrub Urban no garden 84.564 79.106 TRUE

Scrub Urban with garden 32.375 71.787 FALSE

Scrub Woodland 28.733 70.928 FALSE

Suburban Urban no garden 60.980 73.099 FALSE

Suburban Urban with garden 8.791 65.108 FALSE

Suburban Woodland 52.317 64.159 FALSE

Urban no garden Urban with garden 52.189 79.106 FALSE

Urban no garden Woodland 113.298 78.326 TRUE

Urban with garden Woodland 61.108 70.928 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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d) Herbaceous vegetation carbon store 

Land-use category 1 Land-use category 2

Agriculture: Crop/pasture Allotment 49.958 96.048 FALSE

Agriculture: Crop/pasture Amenity Grassland 74.033 73.439 TRUE

Agriculture: Crop/pasture Commercial 173.449 69.309 TRUE

Agriculture: Crop/pasture Grassland 12.762 72.606 FALSE

Agriculture: Crop/pasture Agriculture: hedgerow 112.083 80.549 TRUE

Agriculture: Crop/pasture Parkland 79.754 74.348 TRUE

Agriculture: Crop/pasture Scrub 33.808 73.439 FALSE

Agriculture: Crop/pasture Suburban 130.946 66.983 TRUE

Agriculture: Crop/pasture Urban no garden 190.476 80.549 TRUE

Agriculture: Crop/pasture Urban with garden 140.583 73.439 TRUE

Agriculture: Crop/pasture Woodland 31.095 72.606 FALSE

Allotment Amenity Grassland 24.075 94.559 FALSE

Allotment Commercial 123.490 91.388 TRUE

Allotment Grassland 37.196 93.914 FALSE

Allotment Agriculture: hedgerow 62.125 100.181 FALSE

Allotment Parkland 29.796 95.267 FALSE

Allotment Scrub 16.150 94.559 FALSE

Allotment Suburban 80.988 89.638 FALSE

Allotment Urban no garden 140.518 100.181 TRUE

Allotment Urban with garden 90.625 94.559 FALSE

Allotment Woodland 18.863 93.914 FALSE

Amenity grassland Commercial 99.415 67.230 TRUE

Amenity grassland Grassland 61.271 70.624 FALSE

Amenity grassland Agriculture: hedgerow 38.050 78.767 FALSE

Amenity grassland Parkland 5.721 72.414 FALSE

Amenity grassland Scrub 40.225 71.480 FALSE

Amenity grassland Suburban 56.913 64.830 FALSE

Amenity grassland Urban no garden 116.443 78.767 TRUE

Amenity grassland Urban with garden 66.550 71.480 FALSE

Amenity grassland Woodland 42.938 70.624 FALSE

Commercial Grassland 160.687 66.319 TRUE

Commercial Agriculture: hedgerow 61.365 74.931 FALSE

Commercial Parkland 93.694 68.222 TRUE

Commercial Scrub 139.640 67.230 TRUE

Commercial Suburban 42.502 60.111 FALSE

Commercial Urban no garden 17.027 74.931 FALSE

Commercial Urban with garden 32.865 67.230 FALSE

Commercial Woodland 142.353 66.319 TRUE

Grassland Agriculture: hedgerow 99.321 77.991 TRUE

Grassland Parkland 66.992 71.569 FALSE

Grassland Scrub 21.046 70.624 FALSE

Grassland Suburban 118.184 63.884 TRUE

Grassland Urban no garden 177.714 77.991 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Grassland Urban with garden 127.821 70.624 TRUE

Grassland Woodland 18.333 69.757 FALSE

Agriculture: hedgerow Parkland 32.329 79.616 FALSE

Agriculture: hedgerow Scrub 78.275 78.767 FALSE

Agriculture: hedgerow Suburban 18.863 72.786 FALSE

Agriculture: hedgerow Urban no garden 78.393 85.435 FALSE

Agriculture: hedgerow Urban with garden 28.500 78.767 FALSE

Agriculture: hedgerow Woodland 80.988 77.991 TRUE

Parkland Scrub 45.946 72.414 FALSE

Parkland Suburban 51.192 65.858 FALSE

Parkland Urban no garden 110.722 79.616 TRUE

Parkland Urban with garden 60.829 72.414 FALSE

Parkland Woodland 48.659 71.569 FALSE

Scrub Suburban 97.138 64.830 TRUE

Scrub Urban no garden 156.668 78.767 TRUE

Scrub Urban with garden 106.775 71.480 TRUE

Scrub Woodland 2.713 70.624 FALSE

Suburban Urban no garden 59.530 72.786 FALSE

Suburban Urban with garden 9.637 64.830 FALSE

Suburban Woodland 99.851 63.884 TRUE

Urban no garden Urban with garden 49.893 78.767 FALSE

Urban no garden Woodland 159.381 77.991 TRUE

Urban with garden Woodland 109.488 70.624 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

e) Soil carbon store 

Land-use category 1 Land-use category 2

Agriculture: Crop/pasture Allotment 28.159 97.654 FALSE

Agriculture: Crop/pasture Amenity Grassland 13.356 71.228 FALSE

Agriculture: Crop/pasture Commercial 131.286 67.222 TRUE

Agriculture: Crop/pasture Grassland 2.730 70.420 FALSE

Agriculture: Crop/pasture Agriculture: hedgerow 6.319 93.156 FALSE

Agriculture: Crop/pasture Parkland 7.760 72.110 FALSE

Agriculture: Crop/pasture Scrub 20.106 71.228 FALSE

Agriculture: Crop/pasture Suburban 82.459 64.966 TRUE

Agriculture: Crop/pasture Urban no garden 139.627 78.124 TRUE

Agriculture: Crop/pasture Urban with garden 97.506 71.228 TRUE

Agriculture: Crop/pasture Woodland 13.873 70.420 FALSE

Allotment Amenity Grassland 41.514 96.278 FALSE

Allotment Commercial 159.445 93.353 TRUE

Allotment Grassland 25.429 95.681 FALSE

Allotment Agriculture: hedgerow 21.839 113.464 FALSE

Allotment Parkland 20.398 96.932 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Allotment Scrub 48.264 96.278 FALSE

Allotment Suburban 110.618 91.742 TRUE

Allotment Urban no garden 167.786 101.485 TRUE

Allotment Urban with garden 125.664 96.278 TRUE

Allotment Woodland 14.286 95.681 FALSE

Amenity grassland Commercial 117.931 65.206 TRUE

Amenity grassland Grassland 16.086 68.497 FALSE

Amenity grassland Agriculture: hedgerow 19.675 91.712 FALSE

Amenity grassland Parkland 21.116 70.234 FALSE

Amenity grassland Scrub 6.750 69.328 FALSE

Amenity grassland Suburban 69.103 62.878 TRUE

Amenity grassland Urban no garden 126.271 76.395 TRUE

Amenity grassland Urban with garden 84.150 69.328 TRUE

Amenity grassland Woodland 27.229 68.497 FALSE

Commercial Grassland 134.016 64.322 TRUE

Commercial Agriculture: hedgerow 137.606 88.637 TRUE

Commercial Parkland 139.047 66.168 TRUE

Commercial Scrub 111.181 65.206 TRUE

Commercial Suburban 48.828 58.301 FALSE

Commercial Urban no garden 8.341 72.675 FALSE

Commercial Urban with garden 33.781 65.206 FALSE

Commercial Woodland 145.159 64.322 TRUE

Grassland Agriculture: hedgerow 3.589 91.086 FALSE

Grassland Parkland 5.030 69.415 FALSE

Grassland Scrub 22.836 68.497 FALSE

Grassland Suburban 85.189 61.961 TRUE

Grassland Urban no garden 142.357 75.643 TRUE

Grassland Urban with garden 100.236 68.497 TRUE

Grassland Woodland 11.143 67.657 FALSE

Agriculture: hedgerow Parkland 1.441 92.399 FALSE

Agriculture: hedgerow Scrub 26.425 91.712 FALSE

Agriculture: hedgerow Suburban 88.778 86.939 TRUE

Agriculture: hedgerow Urban no garden 145.946 97.165 TRUE

Agriculture: hedgerow Urban with garden 103.825 91.712 TRUE

Agriculture: hedgerow Woodland 7.554 91.086 FALSE

Parkland Scrub 27.866 70.234 FALSE

Parkland Suburban 90.219 63.876 TRUE

Parkland Urban no garden 147.387 77.219 TRUE

Parkland Urban with garden 105.266 70.234 TRUE

Parkland Woodland 6.113 69.415 FALSE

Scrub Suburban 62.353 62.878 FALSE

Scrub Urban no garden 119.521 76.395 TRUE

Scrub Urban with garden 77.400 69.328 TRUE

Scrub Woodland 33.979 68.497 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Suburban Urban no garden 57.168 70.594 FALSE

Suburban Urban with garden 15.047 62.878 FALSE

Suburban Woodland 96.332 61.961 TRUE

Urban no garden Urban with garden 42.121 76.395 FALSE

Urban no garden Woodland 153.500 75.643 TRUE

Urban with garden Woodland 111.379 68.497 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Appendix 3 The estimated vegetation carbon and soil organic carbon storage within land-use categories in a) Darlington and b) Durham in 1945 

and 2009, and c) Newcastle in 1945 and 2012 calculated using the means of 50 x 50 m quadrat samples.  

a) Darlington  

Trees Woody Herbaceous Soils Total Trees Woody Herbaceous Soils Total

3,408 154 5,781 122,210 131,553 7 0 11 237 255

2 166 140 14,779 15,088 1 48 41 4,290 4,380

67 0 127 14,746 14,940 105 0 201 23,315 23,622

230 121 24 2,684 3,060 357 188 37 4,152 4,733

17 3 97 3,250 3,367 15 3 90 3,007 3,116

6,340 207 85 11,660 18,293 6,097 199 82 11,213 17,591

Urban no garden 28 30 0 187 246 21 23 0 141 186

Urban with garden 224 73 20 3,157 3,475 390 128 35 5,494 6,046

Suburban 2,282 524 152 24,812 27,770 5,213 1,197 347 56,675 63,433

71 75 54 2,347 2,547 479 505 360 15,782 17,126

1,980 40 40 1,744 3,804 4,186 85 84 3,686 8,041

14,651 1,396 6,520 201,576 224,143 16,871 2,377 1,288 127,991 148,528

2009

Carbon storage (Mg)

1945

Woodland

Scrub

Total

Land-use category

Agriculture

Residential:

Parkland

Grassland

Commercial

Amenity grassland

Allotment
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b) Durham 

Trees Woody Herbaceous Soils Total Trees Woody Herbaceous Soils Total

3,658 166 6,204 131,166 141,194 0 0 0 0 0

0 35 30 3,137 3,202 0 12 10 1,032 1,053

11 0 21 2,408 2,440 61 0 116 13,444 13,620

32 17 3 372 425 161 85 17 1,878 2,141

20 4 114 3,823 3,961 51 11 299 9,980 10,340

1,802 59 24 3,314 5,198 4,371 143 59 8,038 12,611

Urban no garden 1 1 0 4 5 1 1 0 4 5

Urban with garden 150 49 13 2,109 2,321 367 120 33 5,173 5,694

Suburban 714 164 48 7,763 8,689 2,905 667 193 31,582 35,348

93 98 70 3,047 3,307 253 266 190 8,314 9,022

10,198 207 205 8,979 19,589 19,351 393 388 17,038 37,170

16,678 799 6,732 166,122 190,331 27,521 1,698 1,304 96,482 127,005

2009

Allotment

Land-use category Carbon storage (Mg)

1945

Agriculture

Woodland

Total

Amenity grassland

Commercial

Grassland

Parkland

Residential:

Scrub
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c) Newcastle 

Trees Woody Herbaceous Soils Total Trees Woody Herbaceous Soils Total

5,476 248 9,287 196,334 211,345 0 0 0 0 0

3 202 170 17,983 18,359 1 49 41 4,330 4,421

53 0 100 11,627 11,780 150 0 287 33,202 33,639

230 121 24 2,679 3,054 401 211 41 4,668 5,321

274 57 1,595 53,253 55,178 233 48 1,360 45,408 47,050

4,237 138 57 7,792 12,224 7,395 242 99 13,599 21,335

Urban no garden 51 56 1 343 451 14 16 0 96 127

Urban with garden 1,271 417 114 17,923 19,725 2,512 823 226 35,418 38,980

Suburban 2,470 567 164 26,847 30,048 5,425 1,246 361 58,976 66,008

144 152 108 4,734 5,138 853 900 641 28,099 30,493

3,191 65 64 2,809 6,129 5,693 116 114 5,012 10,935

17,398 2,022 11,684 342,325 373,430 22,677 3,650 3,171 228,810 258,307

2012

Carbon storage (Mg)

Allotment

Land-use category

Agriculture

1945

Woodland

Total

Amenity grassland

Commercial

Grassland

Parkland

Residential:

Scrub
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Appendix 4 Results of a) two-way ANOVA and b) Tukey HSD tests 

testing for differences in the soil organic carbon (SOC) densities of soil 

cores taken from different depth intervals at different urban land-use 

categories. Samples were collected from Durham, UK. Bold p-values 

denote significant differences. 

a) 

Variable

Soil depth 4 8.704 <0.001

Land-use category 10 1.162 0.321

df F P

 

b) 

0-5.5 5.5-11 0.0029 0.943

11-16.5 5.5-11 -0.0020 0.985

16.5-22 5.5-11 -0.0046 0.775

22-27.5 5.5-11 -0.0234 <0.001

0-5.5 11-16.5 0.0049 0.707

16.5-22 11-16.5 -0.0026 0.966

22-27.5 11-16.5 -0.0214 <0.001

0-5.5 16.5-22 0.0074 0.327

22-27.5 16.5-22 -0.0189 0.001

0-5.5 22-27.5 0.0263 <0.001

Difference PSoil depth interval (cm)
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Appendix 5 Kruskal-Wallis post-hoc test results for difference in carbon stored per unit area 

among urban land-use categories in the different carbon pools in Durham. 

a) Total vegetation and soil organic carbon storage 

Land-use category 1 Land-use category 2

Allotment Amenity Grassland 9.152 44.667 FALSE

Allotment Commercial 53.233 45.448 TRUE

Allotment Grassland 10.333 44.005 FALSE

Allotment Parkland 16.867 45.448 FALSE

Allotment Scrub 1.833 47.531 FALSE

Allotment Suburban 33.500 44.005 FALSE

Allotment Urban no garden 56.833 56.811 TRUE

Allotment Urban with garden 40.933 45.448 FALSE

Allotment Woodland 21.567 45.448 FALSE

Amenity Grassland Commercial 44.082 38.455 TRUE

Amenity Grassland Grassland 1.182 36.738 FALSE

Amenity Grassland Parkland 26.018 38.455 FALSE

Amenity Grassland Scrub 7.318 40.895 FALSE

Amenity Grassland Suburban 24.348 36.738 FALSE

Amenity Grassland Urban no garden 47.682 51.387 FALSE

Amenity Grassland Urban with garden 31.782 38.455 FALSE

Amenity Grassland Woodland 30.718 38.455 FALSE

Commercial Grassland 42.900 37.684 TRUE

Commercial Parkland 70.100 39.360 TRUE

Commercial Scrub 51.400 41.747 TRUE

Commercial Suburban 19.733 37.684 FALSE

Commercial Urban no garden 3.600 52.068 FALSE

Commercial Urban with garden 12.300 39.360 FALSE

Commercial Woodland 74.800 39.360 TRUE

Grassland Parkland 27.200 37.684 FALSE

Grassland Scrub 8.500 40.171 FALSE

Grassland Suburban 23.167 35.930 FALSE

Grassland Urban no garden 46.500 50.813 FALSE

Grassland Urban with garden 30.600 37.684 FALSE

Grassland Woodland 31.900 37.684 FALSE

Parkland Scrub 18.700 41.747 FALSE

Parkland Suburban 50.367 37.684 TRUE

Parkland Urban no garden 73.700 52.068 TRUE

Parkland Urban with garden 57.800 39.360 TRUE

Parkland Woodland 4.700 39.360 FALSE

Scrub Suburban 31.667 40.171 FALSE

Scrub Urban no garden 55.000 53.895 TRUE

Scrub Urban with garden 39.100 41.747 FALSE

Scrub Woodland 23.400 41.747 FALSE

Suburban Urban no garden 23.333 50.813 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Suburban Urban with garden 7.433 37.684 FALSE

Suburban Woodland 55.067 37.684 TRUE

Urban no garden Urban with garden 15.900 52.068 FALSE

Urban no garden Woodland 78.400 52.068 TRUE

Urban with garden Woodland 62.500 39.360 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

b) Tree (4 m+) carbon storage 

Land-use category 1 Land-use category 2

Allotment Amenity Grassland 9.152 44.667 FALSE

Allotment Commercial 53.233 45.448 TRUE

Allotment Grassland 10.333 44.005 FALSE

Allotment Parkland 16.867 45.448 FALSE

Allotment Scrub 1.833 47.531 FALSE

Allotment Suburban 33.500 44.005 FALSE

Allotment Urban no garden 56.833 56.811 TRUE

Allotment Urban with garden 40.933 45.448 FALSE

Allotment Woodland 21.567 45.448 FALSE

Amenity Grassland Commercial 44.082 38.455 TRUE

Amenity Grassland Grassland 1.182 36.738 FALSE

Amenity Grassland Parkland 26.018 38.455 FALSE

Amenity Grassland Scrub 7.318 40.895 FALSE

Amenity Grassland Suburban 24.348 36.738 FALSE

Amenity Grassland Urban no garden 47.682 51.387 FALSE

Amenity Grassland Urban with garden 31.782 38.455 FALSE

Amenity Grassland Woodland 30.718 38.455 FALSE

Commercial Grassland 42.900 37.684 TRUE

Commercial Parkland 70.100 39.360 TRUE

Commercial Scrub 51.400 41.747 TRUE

Commercial Suburban 19.733 37.684 FALSE

Commercial Urban no garden 3.600 52.068 FALSE

Commercial Urban with garden 12.300 39.360 FALSE

Commercial Woodland 74.800 39.360 TRUE

Grassland Parkland 27.200 37.684 FALSE

Grassland Scrub 8.500 40.171 FALSE

Grassland Suburban 23.167 35.930 FALSE

Grassland Urban no garden 46.500 50.813 FALSE

Grassland Urban with garden 30.600 37.684 FALSE

Grassland Woodland 31.900 37.684 FALSE

Parkland Scrub 18.700 41.747 FALSE

Parkland Suburban 50.367 37.684 TRUE

Parkland Urban no garden 73.700 52.068 TRUE

Parkland Urban with garden 57.800 39.360 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Parkland Woodland 4.700 39.360 FALSE

Scrub Suburban 31.667 40.171 FALSE

Scrub Urban no garden 55.000 53.895 TRUE

Scrub Urban with garden 39.100 41.747 FALSE

Scrub Woodland 23.400 41.747 FALSE

Suburban Urban no garden 23.333 50.813 FALSE

Suburban Urban with garden 7.433 37.684 FALSE

Suburban Woodland 55.067 37.684 TRUE

Urban no garden Urban with garden 15.900 52.068 FALSE

Urban no garden Woodland 78.400 52.068 TRUE

Urban with garden Woodland 62.500 39.360 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

c) Woody vegetation (1-4 m) carbon storage 

Land-use category 1 Land-use category 2

Allotment Amenity Grassland 24.917 44.667 FALSE

Allotment Commercial 17.317 45.448 FALSE

Allotment Grassland 24.917 44.005 FALSE

Allotment Parkland 24.983 45.448 FALSE

Allotment Scrub 14.333 47.531 FALSE

Allotment Suburban 9.042 44.005 FALSE

Allotment Urban no garden 17.792 56.811 FALSE

Allotment Urban with garden 6.133 45.448 FALSE

Allotment Woodland 33.733 45.448 FALSE

Amenity Grassland Commercial 7.600 38.455 FALSE

Amenity Grassland Grassland 0.000 36.738 FALSE

Amenity Grassland Parkland 49.900 38.455 TRUE

Amenity Grassland Scrub 39.250 40.895 FALSE

Amenity Grassland Suburban 33.958 36.738 FALSE

Amenity Grassland Urban no garden 7.125 51.387 FALSE

Amenity Grassland Urban with garden 31.050 38.455 FALSE

Amenity Grassland Woodland 58.650 38.455 TRUE

Commercial Grassland 7.600 37.684 FALSE

Commercial Parkland 42.300 39.360 TRUE

Commercial Scrub 31.650 41.747 FALSE

Commercial Suburban 26.358 37.684 FALSE

Commercial Urban no garden 0.475 52.068 FALSE

Commercial Urban with garden 23.450 39.360 FALSE

Commercial Woodland 51.050 39.360 TRUE

Grassland Parkland 49.900 37.684 TRUE

Grassland Scrub 39.250 40.171 FALSE

Grassland Suburban 33.958 35.930 FALSE

Grassland Urban no garden 7.125 50.813 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Grassland Urban with garden 31.050 37.684 FALSE

Grassland Woodland 58.650 37.684 TRUE

Parkland Scrub 10.650 41.747 FALSE

Parkland Suburban 15.942 37.684 FALSE

Parkland Urban no garden 42.775 52.068 FALSE

Parkland Urban with garden 18.850 39.360 FALSE

Parkland Woodland 8.750 39.360 FALSE

Scrub Suburban 5.292 40.171 FALSE

Scrub Urban no garden 32.125 53.895 FALSE

Scrub Urban with garden 8.200 41.747 FALSE

Scrub Woodland 19.400 41.747 FALSE

Suburban Urban no garden 26.833 50.813 FALSE

Suburban Urban with garden 2.908 37.684 FALSE

Suburban Woodland 24.692 37.684 FALSE

Urban no garden Urban with garden 23.925 52.068 FALSE

Urban no garden Woodland 51.525 52.068 FALSE

Urban with garden Woodland 27.600 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

d) Herbaceous vegetation carbon storage 

Land-use category 1 Land-use category 2

Allotment Amenity Grassland 6.742 44.667 FALSE

Allotment Commercial 44.833 45.448 FALSE

Allotment Grassland 20.083 44.005 FALSE

Allotment Parkland 5.533 45.448 FALSE

Allotment Scrub 15.792 47.531 FALSE

Allotment Suburban 31.417 44.005 FALSE

Allotment Urban no garden 52.333 56.811 FALSE

Allotment Urban with garden 34.033 45.448 FALSE

Allotment Woodland 22.267 45.448 FALSE

Amenity Grassland Commercial 38.091 38.455 FALSE

Amenity Grassland Grassland 26.826 36.738 FALSE

Amenity Grassland Parkland 1.209 38.455 FALSE

Amenity Grassland Scrub 22.534 40.895 FALSE

Amenity Grassland Suburban 24.674 36.738 FALSE

Amenity Grassland Urban no garden 45.591 51.387 FALSE

Amenity Grassland Urban with garden 27.291 38.455 FALSE

Amenity Grassland Woodland 29.009 38.455 FALSE

Commercial Grassland 64.917 37.684 TRUE

Commercial Parkland 39.300 39.360 FALSE

Commercial Scrub 60.625 41.747 TRUE

Commercial Suburban 13.417 37.684 FALSE

Commercial Urban no garden 7.500 52.068 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Commercial Urban with garden 10.800 39.360 FALSE

Commercial Woodland 67.100 39.360 TRUE

Grassland Parkland 25.617 37.684 FALSE

Grassland Scrub 4.292 40.171 FALSE

Grassland Suburban 51.500 35.930 TRUE

Grassland Urban no garden 72.417 50.813 TRUE

Grassland Urban with garden 54.117 37.684 TRUE

Grassland Woodland 2.183 37.684 FALSE

Parkland Scrub 21.325 41.747 FALSE

Parkland Suburban 25.883 37.684 FALSE

Parkland Urban no garden 46.800 52.068 FALSE

Parkland Urban with garden 28.500 39.360 FALSE

Parkland Woodland 27.800 39.360 FALSE

Scrub Suburban 47.208 40.171 TRUE

Scrub Urban no garden 68.125 53.895 TRUE

Scrub Urban with garden 49.825 41.747 TRUE

Scrub Woodland 6.475 41.747 FALSE

Suburban Urban no garden 20.917 50.813 FALSE

Suburban Urban with garden 2.617 37.684 FALSE

Suburban Woodland 53.683 37.684 TRUE

Urban no garden Urban with garden 18.300 52.068 FALSE

Urban no garden Woodland 74.600 52.068 TRUE

Urban with garden Woodland 56.300 39.360 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

e) Soil organic carbon storage 

Land-use category 1 Land-use category 2

Allotment Amenity Grassland 10.076 44.667 FALSE

Allotment Commercial 63.067 45.448 TRUE

Allotment Grassland 14.750 44.005 FALSE

Allotment Parkland 5.267 45.448 FALSE

Allotment Scrub 6.042 47.531 FALSE

Allotment Suburban 44.083 44.005 TRUE

Allotment Urban no garden 66.667 56.811 TRUE

Allotment Urban with garden 49.967 45.448 TRUE

Allotment Woodland 2.567 45.448 FALSE

Amenity Grassland Commercial 52.991 38.455 TRUE

Amenity Grassland Grassland 4.674 36.738 FALSE

Amenity Grassland Parkland 4.809 38.455 FALSE

Amenity Grassland Scrub 4.034 40.895 FALSE

Amenity Grassland Suburban 34.008 36.738 FALSE

Amenity Grassland Urban no garden 56.591 51.387 TRUE

Amenity Grassland Urban with garden 39.891 38.455 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Amenity Grassland Woodland 7.509 38.455 FALSE

Commercial Grassland 48.317 37.684 TRUE

Commercial Parkland 57.800 39.360 TRUE

Commercial Scrub 57.025 41.747 TRUE

Commercial Suburban 18.983 37.684 FALSE

Commercial Urban no garden 3.600 52.068 FALSE

Commercial Urban with garden 13.100 39.360 FALSE

Commercial Woodland 60.500 39.360 TRUE

Grassland Parkland 9.483 37.684 FALSE

Grassland Scrub 8.708 40.171 FALSE

Grassland Suburban 29.333 35.930 FALSE

Grassland Urban no garden 51.917 50.813 TRUE

Grassland Urban with garden 35.217 37.684 FALSE

Grassland Woodland 12.183 37.684 FALSE

Parkland Scrub 0.775 41.747 FALSE

Parkland Suburban 38.817 37.684 TRUE

Parkland Urban no garden 61.400 52.068 TRUE

Parkland Urban with garden 44.700 39.360 TRUE

Parkland Woodland 2.700 39.360 FALSE

Scrub Suburban 38.042 40.171 FALSE

Scrub Urban no garden 60.625 53.895 TRUE

Scrub Urban with garden 43.925 41.747 TRUE

Scrub Woodland 3.475 41.747 FALSE

Suburban Urban no garden 22.583 50.813 FALSE

Suburban Urban with garden 5.883 37.684 FALSE

Suburban Woodland 41.517 37.684 TRUE

Urban no garden Urban with garden 16.700 52.068 FALSE

Urban no garden Woodland 64.100 52.068 TRUE

Urban with garden Woodland 47.400 39.360 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Appendix 6 The number and size of trees recorded in the different land-use categories in 

Durham. Proportions are colour-coded in shades of green through yellow to red, with true 

green denoting highest proportions, yellow denoting moderate proportions, and true red 

denoting lowest proportions.  

Allotment 0.83 1.00 0.00 0.00 0.00 0.00 0.00

Amenity Grassland 0.27 0.67 0.33 0.00 0.00 0.00 0.00

Commercial 5.20 1.00 0.00 0.00 0.00 0.00 0.00

Grassland 1.40 0.93 0.00 0.00 0.07 0.00 0.00

Parkland 18.10 0.38 0.33 0.18 0.08 0.03 0.01

Suburban 8.17 0.65 0.31 0.04 0.00 0.00 0.00

Urban no garden 0.50 1.00 0.00 0.00 0.00 0.00 0.00

Urban with garden 3.10 0.68 0.32 0.00 0.00 0.00 0.00

Scrub 10.10 0.91 0.08 0.01 0.00 0.00 0.00

Woodland 60.30 0.52 0.32 0.13 0.03 0.01 0.00

Land-use category Mean no. 

of trees 

per sample

Proportion of total number of trees within size class (dbh)

Up to 25 

cm

>25 to 50 

cm

>50 to 75 

cm

>75 to 

100 cm

>100 to 

125 cm

>125 cm
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Appendix 7 The wintering (Wi.) and breeding (Br.) bird species recorded in point-count surveys within Durham their standard British Trust for 

Ornithology (BTO) codes. Land-use categories are presented, from left to right, in order of declining total vegetation carbon and soil organic 

carbon value per unit area. Sample numbers (n) were repeated in winter and spring.                   

Species (BTO Code)

U
rban w

ith
 garden 

( n
=
1
0)

S
u
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1
2)

S
crub

 (n=
8
)

W
o
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Land-use category/Count

A
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6
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A
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rassland

 

( n
=
1
1)

C
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m
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1
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G
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P
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o gard
en

 

(
n=

4
)

Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br.

Eurasian Sparrowhawk Accipiter nisus (SH) 2

Common Pheasant Phasianus colchicus (PH) 2 3 1 2 2

Common Moorhen Gallinula chloropus (MH) 1 1 3

Common Coot Fulica atra (CO) 2

Black-headed Gull Chroicocephalus ridibundus (BH) 13 117 1 5 16 1

European Herring Gull Larus argentatus (HG) 1 2 1 38 4 2

Lesser Black-backed Gull L. fuscus (LB) 8 4

Common Gull L. canus (CM) 2

Stock Dove Columba oenas (SD) 1 1 1

Common Woodpigeon C. palumbus (WP) 7 28 25 45 7 10 4 12 4 5 20 12 16 39 4 16 2 25 2 3

Eurasian Collared Dove Streptopelia decaocto (CD) 2 12 11 8 11 2 5

Tawny Owl Strix aluco (TO) 2

Common Swift Apus apus (SI) 9 1

Great Spotted Woodpecker Dendrocopos major (GS) 1 3 1

Barn swallow Hirundo rustica (SL) 4 5 3 4 1 10

Pied/White Wagtail Motacilla alba (PW) 1 3 5

Winter Wren Troglodytes troglodytes (WR) 17 29 16 15 9 10 13 12 1 2 7 6 1 6 2 5 4

Hedge Accentor Prunella modularis  (D.) 3 3 12 6 7 4 15 2 1 2 6 5 14 5 11 2 3 1
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Species (BTO Code)
U

rban n
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(
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4
)

Land-use category/Count
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S
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1
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U
rban w
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( n
=
1
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C
o
m

m
ercial (n=

1
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Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br. Wi. Br.

European Robin Erithacus rubecula (R.) 8 21 15 15 8 3 16 7 4 5 7 3 12 6 7 2 5 7 3 2

Song Thrush Turdus philomelos (ST) 5 2 8 1 1 4 1 1 4 1 2

Redwing T. iliacus (RE) 16 1

Mistle Thrush T. viscivorus (M.) 2 1 1 1

Eurasian Blackbird T. merula (B.) 18 27 35 36 30 18 5 21 12 13 15 14 13 47 6 34 13 6 1 5

Garden Warbler Sylvia borin (GW) 1

Blackcap S. atricapilla (BC) 9 5 3 4 1 1 1

Common Whitethroat S. communis (WH) 8 1 7

Common Grasshopper-warbler Locustella naevia (GH) 3

Willow Warbler Phylloscopus trochilus (WW) 7 1

Common Chiffchaff P. colybita (CC) 5 12 8 3 3 2 2

Goldcrest Regulus regulus (GC) 3 2 2 4 2 1 1 2

Spotted Flycatcher Muscicapa striata (SF) 1

Great Tit Parus major (GT) 26 22 26 19 14 9 12 5 1 2 16 11 10 10 7 10 3 4

Coal Tit Periparus ater (CT) 6 4 3 4 2 8 1 5

Blue Tit Cyanistes caeruleus (BT) 48 32 43 28 8 12 22 9 6 9 10 9 33 20 22 17 1 5 4 1

Long-tailed Tit Aegithalos caudatus (LT) 8 1 3 1 2 10 1

Wood Nuthatch Sitta europaea (NH) 8 5 1 1 1

Eurasian Treecreeper Certhia familiaris (TC) 5 2 1

Black-billed Magpie Pica pica (MG) 9 2 10 3 3 4 10 7 6 11 7 7 10 5 16 8 5 3 1

Eurasian Jay Garrulus glandarius (J.) 1 1 3 1

Eurasian Jackdaw Corvus monedula (JD) 21 6 13 6 5 10 2 6 2 24 37 9 31 29 3 34 36 33

Rook C. frugilegus (RO) 1
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Carrion Crow C. corone (C.) 4 5 6 12 5 6 8 10 2 2 7 4 4 4 5 6

Common Starling Sturnus vulgaris (SG) 1 20 1 1 137 31 24 22 8

House Sparrow Passer domesticus (HS) 6 3 1 25 28 22 23 7 6 2

Eurasian Chaffinch Fringilla coelebs (CH) 9 3 8 2 1 9 7 3 3 7 8 1 1 1

Eurasian Linnet Carduelis cannabina (LI) 10 5

Lesser Redpoll C. cabaret (LR) 2

European Goldfinch C. carduelis (GO) 1 4 10 3 2 2 3 3 12 3 7 2 10 2

European Greenfinch C. chloris (GR) 3 4 1 1 5 1 6 2 3

Eurasian Bullfinch Pyrrhula pyrrhula (BF) 1 2 2 2 1

Yellowhammer Emberiza citrinella (Y.) 1

Total 191 229 227 243 122 101 117 158 174 147 111 128 324 280 172 219 70 147 54 59
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Appendix 8 Kruskal-Wallis post-hoc test results for difference in bird species richness among 

land-use categories in Durham. 

a) Wintering bird species richness 

Land-use category 1 Land-use category 2

Allotment Amenity grassland 39.644 44.667 FALSE

Allotment Commercial 42.217 45.448 FALSE

Allotment Grassland 29.833 44.005 FALSE

Allotment Parkland 9.583 45.448 FALSE

Allotment Scrub 2.417 47.531 FALSE

Allotment Suburban 1.792 44.005 FALSE

Allotment Urban no garden 39.167 56.811 FALSE

Allotment Urban with garden 1.117 45.448 FALSE

Allotment Woodland 3.833 45.448 FALSE

Amenity grassland Commercial 2.573 38.455 FALSE

Amenity grassland Grassland 9.811 36.738 FALSE

Amenity grassland Parkland 49.227 38.455 TRUE

Amenity grassland Scrub 37.227 40.895 FALSE

Amenity grassland Suburban 41.436 36.738 TRUE

Amenity grassland Urban no garden 0.477 51.387 FALSE

Amenity grassland Urban with garden 38.527 38.455 TRUE

Amenity grassland Woodland 43.477 38.455 TRUE

Commercial Grassland 12.383 37.684 FALSE

Commercial Parkland 51.800 39.360 TRUE

Commercial Scrub 39.800 41.747 FALSE

Commercial Suburban 44.008 37.684 TRUE

Commercial Urban no garden 3.050 52.068 FALSE

Commercial Urban with garden 41.100 39.360 TRUE

Commercial Woodland 46.050 39.360 TRUE

Grassland Parkland 39.417 37.684 TRUE

Grassland Scrub 27.417 40.171 FALSE

Grassland Suburban 31.625 35.930 FALSE

Grassland Urban no garden 9.333 50.813 FALSE

Grassland Urban with garden 28.717 37.684 FALSE

Grassland Woodland 33.667 37.684 FALSE

Parkland Scrub 12.000 41.747 FALSE

Parkland Suburban 7.792 37.684 FALSE

Parkland Urban no garden 48.750 52.068 FALSE

Parkland Urban with garden 10.700 39.360 FALSE

Parkland Woodland 5.750 39.360 FALSE

Scrub Suburban 4.208 40.171 FALSE

Scrub Urban no garden 36.750 53.895 FALSE

Scrub Urban with garden 1.300 41.747 FALSE

Scrub Woodland 6.250 41.747 FALSE

Suburban Urban no garden 40.958 50.813 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 



172 
 

Land-use category 1 Land-use category 2

Suburban Urban with garden 2.908 37.684 FALSE

Suburban Woodland 2.042 37.684 FALSE

Urban no garden Urban with garden 38.050 52.068 FALSE

Urban no garden Woodland 43.000 52.068 FALSE

Urban with garden Woodland 4.950 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

b) Breeding bird species richness 

Land-use category 1 Land-use category 2

Allotment Amenity grassland 10.758 44.667 FALSE

Allotment Commercial 8.117 45.448 FALSE

Allotment Grassland 14.375 44.005 FALSE

Allotment Parkland 35.583 45.448 FALSE

Allotment Scrub 28.583 47.531 FALSE

Allotment Suburban 25.542 44.005 FALSE

Allotment Urban no garden 19.667 56.811 FALSE

Allotment Urban with garden 16.433 45.448 FALSE

Allotment Woodland 35.633 45.448 FALSE

Amenity grassland Commercial 2.641 38.455 FALSE

Amenity grassland Grassland 3.617 36.738 FALSE

Amenity grassland Parkland 46.341 38.455 TRUE

Amenity grassland Scrub 39.341 40.895 FALSE

Amenity grassland Suburban 36.299 36.738 FALSE

Amenity grassland Urban no garden 8.909 51.387 FALSE

Amenity grassland Urban with garden 27.191 38.455 FALSE

Amenity grassland Woodland 46.391 38.455 TRUE

Commercial Grassland 6.258 37.684 FALSE

Commercial Parkland 43.700 39.360 TRUE

Commercial Scrub 36.700 41.747 FALSE

Commercial Suburban 33.658 37.684 FALSE

Commercial Urban no garden 11.550 52.068 FALSE

Commercial Urban with garden 24.550 39.360 FALSE

Commercial Woodland 43.750 39.360 TRUE

Grassland Parkland 49.958 37.684 TRUE

Grassland Scrub 42.958 40.171 TRUE

Grassland Suburban 39.917 35.930 TRUE

Grassland Urban no garden 5.292 50.813 FALSE

Grassland Urban with garden 30.808 37.684 FALSE

Grassland Woodland 50.008 37.684 TRUE

Parkland Scrub 7.000 41.747 FALSE

Parkland Suburban 10.042 37.684 FALSE

Parkland Urban no garden 55.250 52.068 TRUE

Parkland Urban with garden 19.150 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Parkland Woodland 0.050 39.360 FALSE

Scrub Suburban 3.042 40.171 FALSE

Scrub Urban no garden 48.250 53.895 FALSE

Scrub Urban with garden 12.150 41.747 FALSE

Scrub Woodland 7.050 41.747 FALSE

Suburban Urban no garden 45.208 50.813 FALSE

Suburban Urban with garden 9.108 37.684 FALSE

Suburban Woodland 10.092 37.684 FALSE

Urban no garden Urban with garden 36.100 52.068 FALSE

Urban no garden Woodland 55.300 52.068 TRUE

Urban with garden Woodland 19.200 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

c) Total bird species richness 

Land-use category 1 Land-use category 2

Allotment Amenity grassland 20.568 44.667 FALSE

Allotment Commercial 17.750 45.448 FALSE

Allotment Grassland 19.625 44.005 FALSE

Allotment Parkland 22.150 45.448 FALSE

Allotment Scrub 18.750 47.531 FALSE

Allotment Suburban 18.833 44.005 FALSE

Allotment Urban no garden 31.500 56.811 FALSE

Allotment Urban with garden 12.300 45.448 FALSE

Allotment Woodland 20.750 45.448 FALSE

Amenity grassland Commercial 2.818 38.455 FALSE

Amenity grassland Grassland 0.943 36.738 FALSE

Amenity grassland Parkland 42.718 38.455 TRUE

Amenity grassland Scrub 39.318 40.895 FALSE

Amenity grassland Suburban 39.402 36.738 TRUE

Amenity grassland Urban no garden 10.932 51.387 FALSE

Amenity grassland Urban with garden 32.868 38.455 FALSE

Amenity grassland Woodland 41.318 38.455 TRUE

Commercial Grassland 1.875 37.684 FALSE

Commercial Parkland 39.900 39.360 TRUE

Commercial Scrub 36.500 41.747 FALSE

Commercial Suburban 36.583 37.684 FALSE

Commercial Urban no garden 13.750 52.068 FALSE

Commercial Urban with garden 30.050 39.360 FALSE

Commercial Woodland 38.500 39.360 FALSE

Grassland Parkland 41.775 37.684 TRUE

Grassland Scrub 38.375 40.171 FALSE

Grassland Suburban 38.458 35.930 TRUE

Grassland Urban no garden 11.875 50.813 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Grassland Urban with garden 31.925 37.684 FALSE

Grassland Woodland 40.375 37.684 TRUE

Parkland Scrub 3.400 41.747 FALSE

Parkland Suburban 3.317 37.684 FALSE

Parkland Urban no garden 53.650 52.068 TRUE

Parkland Urban with garden 9.850 39.360 FALSE

Parkland Woodland 1.400 39.360 FALSE

Scrub Suburban 0.083 40.171 FALSE

Scrub Urban no garden 50.250 53.895 FALSE

Scrub Urban with garden 6.450 41.747 FALSE

Scrub Woodland 2.000 41.747 FALSE

Suburban Urban no garden 50.333 50.813 FALSE

Suburban Urban with garden 6.533 37.684 FALSE

Suburban Woodland 1.917 37.684 FALSE

Urban no garden Urban with garden 43.800 52.068 FALSE

Urban no garden Woodland 52.250 52.068 TRUE

Urban with garden Woodland 8.450 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Appendix 9 Kruskal-Wallis post-hoc test results for difference in bird diversity (as assessed 

by applying the Shannon-Wiener Diversity Index [H']) among land-use categories in Durham. 

a) Wintering bird species diversity 

Land-use category 1 Land-use category 2

Allotment Amenity grassland 48.576 44.667 TRUE

Allotment Commercial 42.667 45.448 FALSE

Allotment Grassland 29.708 44.005 FALSE

Allotment Parkland 4.433 45.448 FALSE

Allotment Scrub 0.708 47.531 FALSE

Allotment Suburban 12.042 44.005 FALSE

Allotment Urban no garden 42.917 56.811 FALSE

Allotment Urban with garden 4.767 45.448 FALSE

Allotment Woodland 1.167 45.448 FALSE

Amenity grassland Commercial 5.909 38.455 FALSE

Amenity grassland Grassland 18.867 36.738 FALSE

Amenity grassland Parkland 53.009 38.455 TRUE

Amenity grassland Scrub 49.284 40.895 TRUE

Amenity grassland Suburban 36.534 36.738 FALSE

Amenity grassland Urban no garden 5.659 51.387 FALSE

Amenity grassland Urban with garden 43.809 38.455 TRUE

Amenity grassland Woodland 47.409 38.455 TRUE

Commercial Grassland 12.958 37.684 FALSE

Commercial Parkland 47.100 39.360 TRUE

Commercial Scrub 43.375 41.747 TRUE

Commercial Suburban 30.625 37.684 FALSE

Commercial Urban no garden 0.250 52.068 FALSE

Commercial Urban with garden 37.900 39.360 FALSE

Commercial Woodland 41.500 39.360 TRUE

Grassland Parkland 34.142 37.684 FALSE

Grassland Scrub 30.417 40.171 FALSE

Grassland Suburban 17.667 35.930 FALSE

Grassland Urban no garden 13.208 50.813 FALSE

Grassland Urban with garden 24.942 37.684 FALSE

Grassland Woodland 28.542 37.684 FALSE

Parkland Scrub 3.725 41.747 FALSE

Parkland Suburban 16.475 37.684 FALSE

Parkland Urban no garden 47.350 52.068 FALSE

Parkland Urban with garden 9.200 39.360 FALSE

Parkland Woodland 5.600 39.360 FALSE

Scrub Suburban 12.750 40.171 FALSE

Scrub Urban no garden 43.625 53.895 FALSE

Scrub Urban with garden 5.475 41.747 FALSE

Scrub Woodland 1.875 41.747 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Suburban Urban no garden 30.875 50.813 FALSE

Suburban Urban with garden 7.275 37.684 FALSE

Suburban Woodland 10.875 37.684 FALSE

Urban no garden Urban with garden 38.150 52.068 FALSE

Urban no garden Woodland 41.750 52.068 FALSE

Urban with garden Woodland 3.600 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference

 

b) Breeding bird species diversity 

Land-use category 1 Land-use category 2

Allotment Amenity grassland 14.326 44.667 FALSE

Allotment Commercial 8.917 45.448 FALSE

Allotment Grassland 14.375 44.005 FALSE

Allotment Parkland 31.933 45.448 FALSE

Allotment Scrub 23.521 47.531 FALSE

Allotment Suburban 18.958 44.005 FALSE

Allotment Urban no garden 25.917 56.811 FALSE

Allotment Urban with garden 6.883 45.448 FALSE

Allotment Woodland 33.133 45.448 FALSE

Amenity grassland Commercial 5.409 38.455 FALSE

Amenity grassland Grassland 0.049 36.738 FALSE

Amenity grassland Parkland 46.259 38.455 TRUE

Amenity grassland Scrub 37.847 40.895 FALSE

Amenity grassland Suburban 33.284 36.738 FALSE

Amenity grassland Urban no garden 11.591 51.387 FALSE

Amenity grassland Urban with garden 21.209 38.455 FALSE

Amenity grassland Woodland 47.459 38.455 TRUE

Commercial Grassland 5.458 37.684 FALSE

Commercial Parkland 40.850 39.360 TRUE

Commercial Scrub 32.438 41.747 FALSE

Commercial Suburban 27.875 37.684 FALSE

Commercial Urban no garden 17.000 52.068 FALSE

Commercial Urban with garden 15.800 39.360 FALSE

Commercial Woodland 42.050 39.360 TRUE

Grassland Parkland 46.308 37.684 TRUE

Grassland Scrub 37.896 40.171 FALSE

Grassland Suburban 33.333 35.930 FALSE

Grassland Urban no garden 11.542 50.813 FALSE

Grassland Urban with garden 21.258 37.684 FALSE

Grassland Woodland 47.508 37.684 TRUE

Parkland Scrub 8.413 41.747 FALSE

Parkland Suburban 12.975 37.684 FALSE

Parkland Urban no garden 57.850 52.068 TRUE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Land-use category 1 Land-use category 2

Parkland Urban with garden 25.050 39.360 FALSE

Parkland Woodland 1.200 39.360 FALSE

Scrub Suburban 4.563 40.171 FALSE

Scrub Urban no garden 49.438 53.895 FALSE

Scrub Urban with garden 16.638 41.747 FALSE

Scrub Woodland 9.613 41.747 FALSE

Suburban Urban no garden 44.875 50.813 FALSE

Suburban Urban with garden 12.075 37.684 FALSE

Suburban Woodland 14.175 37.684 FALSE

Urban no garden Urban with garden 32.800 52.068 FALSE

Urban no garden Woodland 59.050 52.068 TRUE

Urban with garden Woodland 26.250 39.360 FALSE

Comparison Observation 

difference

Critical 

difference

Significant 

difference
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Appendix 10 Results of Principal Components Analysis (PCA): Eigenvectors (coefficients in 

the linear combinations of variables making up Principal Components [PCs]). 

a) Wintering birds 

Variable    PC1    PC2    PC3    PC4    PC5

Eurasian Sparrowhawk 0.000 -0.007 0.001 0.018 0.003

Common Pheasant 0.000 -0.011 0.000 0.021 0.010

Common Moorhen 0.002 -0.008 -0.009 -0.029 -0.002

Black-headed Gull 0.470 -0.319 -0.263 -0.687 -0.197

European Herring Gull 0.003 0.024 0.023 -0.031 -0.035

Common Gull 0.029 -0.026 -0.018 -0.054 -0.007

Stock Dove -0.005 0.011 0.023 -0.022 -0.012

Common Woodpigeon -0.170 0.012 0.257 0.017 -0.454

Eurasian Collared Dove 0.045 0.150 -0.205 -0.023 -0.013

Great Spotted Woodpecker -0.008 -0.005 0.001 -0.001 0.005

Pied/White Wagtail 0.034 -0.011 -0.006 -0.003 -0.013

Winter Wren -0.296 -0.109 -0.005 -0.184 -0.018

Hedge Accentor -0.043 -0.002 -0.122 0.047 -0.026

European Robin -0.197 0.036 -0.017 -0.085 0.129

Song Thrush -0.032 0.001 0.025 -0.013 -0.029

Redwing -0.036 -0.014 0.017 -0.009 0.010

Mistle Thrush 0.000 0.003 0.012 -0.004 -0.003

Eurasian Blackbird -0.440 -0.067 -0.232 0.030 -0.527

Goldcrest -0.062 -0.017 0.007 -0.029 -0.029

Great Tit -0.380 -0.101 -0.070 -0.084 0.136

Coal Tit -0.070 0.035 0.001 -0.084 -0.087

Blue Tit -0.447 0.184 -0.029 -0.521 0.405

Long-tailed Tit 0.016 -0.102 -0.062 -0.155 -0.103

Wood Nuthatch -0.067 -0.011 0.029 -0.064 0.027

Eurasian Treecreeper -0.017 -0.002 0.009 -0.015 0.007

Black-billed Magpie -0.151 0.066 -0.208 -0.166 -0.293

Eurasian Jay -0.024 0.004 0.020 -0.006 -0.044

Eurasian Jackdaw 0.097 0.546 0.589 -0.353 -0.190

Rook 0.007 0.018 -0.012 0.007 -0.008

Carrion Crow 0.034 -0.136 0.087 -0.049 0.304

Common Starling 0.091 0.570 -0.558 0.036 0.070

House Sparrow 0.117 0.388 -0.148 0.046 -0.081

Eurasian Chaffinch -0.081 -0.032 -0.060 0.003 0.077

Lesser Redpoll 0.004 -0.008 0.002 0.020 0.010

European Goldfinch -0.026 0.044 -0.071 0.020 -0.133

European Greenfinch -0.005 0.003 -0.024 0.059 -0.044

Eurasian Bullfinch -0.024 -0.009 -0.014 0.003 -0.026

Eigenvalue (% variation explained) 0.223 (18.6) 0.205 (17.1) 0.119 (9.9) 0.103 (8.6) 0.085 (7.1)  
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b) Breeding birds 

Variable    PC1    PC2    PC3    PC4    PC5

Common Pheasant 0.011 -0.003 0.004 -0.035 -0.001

Common Moorhen -0.002 0.023 -0.007 0.015 -0.039

Common Coot 0.005 -0.004 0.018 0.017 0.010

Black-headed Gull 0.001 -0.004 -0.008 0.000 -0.008

European Herring Gull -0.107 -0.051 0.137 -0.135 -0.268

Lesser Black-backed Gull -0.061 0.026 0.113 -0.135 -0.138

Stock Dove -0.001 -0.015 0.009 -0.026 -0.041

Common Woodpigeon 0.334 0.067 -0.550 -0.072 -0.621

Eurasian Collared Dove -0.088 0.250 -0.126 0.044 0.077

Tawny Owl 0.017 -0.004 -0.001 -0.016 0.006

Common Swift -0.040 -0.004 -0.020 0.043 0.105

Great Spotted Woodpecker 0.018 -0.021 -0.003 -0.040 0.025

Swallow -0.095 0.101 0.081 -0.181 -0.016

Pied/White Wagtail -0.029 -0.002 0.009 -0.021 -0.063

Winter Wren 0.354 -0.095 -0.005 -0.027 0.202

Hedge Accentor 0.106 0.112 -0.158 0.413 0.257

European Robin 0.263 -0.066 0.089 -0.321 -0.034

Song Thrush 0.113 0.036 -0.053 -0.043 -0.012

Mistle Thrush 0.028 -0.004 0.005 -0.026 -0.014

Eurasian Blackbird 0.211 0.394 -0.277 0.186 0.242

Garden Warbler 0.002 0.000 0.003 0.020 -0.010

Blackcap 0.153 -0.028 0.060 -0.010 0.080

Common Whitethroat -0.009 -0.057 0.066 0.136 0.044

Common Grasshopper-warbler -0.006 -0.013 0.042 0.028 0.004

Willow Warbler 0.017 -0.025 0.017 0.124 0.023

Common Chiffchaff 0.176 -0.053 -0.009 0.064 0.023

Goldcrest 0.080 0.003 -0.004 -0.023 -0.008

Spotted Flycatcher 0.007 -0.001 0.004 -0.001 -0.004

Great Tit 0.308 -0.042 -0.033 -0.144 0.203

Coal Tit 0.090 -0.006 -0.023 -0.084 0.010

Blue Tit 0.447 0.053 0.046 -0.356 0.275

Long-tailed Tit 0.016 -0.004 0.031 0.020 0.022

Wood Nuthatch 0.050 -0.011 -0.004 -0.067 -0.029

Eurasian Treecreeper 0.055 -0.020 0.002 -0.059 -0.026

Black-billed Magpie -0.059 0.023 -0.019 -0.146 0.136

Eurasian Jay 0.005 -0.005 0.002 -0.015 0.010

Eurasian Jackdaw -0.337 -0.473 -0.652 -0.219 0.336

Carrion Crow -0.017 0.008 -0.125 -0.282 -0.044

Common Starling -0.234 0.482 0.011 -0.473 0.130

House Sparrow -0.145 0.472 -0.153 0.040 0.078

Eurasian Chaffinch 0.148 -0.034 -0.052 0.147 -0.061

Eurasian Linnet 0.008 0.035 0.047 0.026 0.051

European Goldfinch -0.061 0.188 -0.196 0.004 -0.181  
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Variable    PC1    PC2    PC3    PC4    PC5

European Greenfinch 0.020 0.077 -0.087 0.058 -0.060

Eurasian Bullfinch 0.015 0.010 -0.014 0.056 -0.054

Yellowhammer 0.003 -0.007 0.000 0.003 0.012

Eigenvalue (% variation explained) 0.233 (19.4) 0.156 (13.9) 0.111 (9.2) 0.072 (6.0) 0.068 (5.7)  

 


