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Abstract 

Chemokines such as CCL2 are small proteins with molecular weights between 8-10 

kDa. They promote chemotaxis and play a vital role in the recruitment of leukocytes to 

the site of inflammation. Given their key biological functions, understanding their 

mechanism of action and inhibiting their action has therapeutic potential in a range of 

diseases.  

Selective inhibitors of CCL2 induced chemotaxis based on the diketopiperazine (DKP) 

natural product, cyclo(13,15-dichloro-L-Pro-L-Tyr) were recently reported by the Cobb 

group. In order to develop this work further and to produce an expanded library, we 

optimised an on-resin DKP synthesis. In collaboration with researchers at Newcastle 

Medical School, chemotaxis assays were performed in an attempted to define the 

structural features (required for inhibition) of the DKPs. To faciliate the aforementioned 

work, facile synthetic routes to a number of novel heteraromatic and proline derivatives 

were developed.  

The posttranslational nitration of CCL2 is used as a mechanism to a modulate CCL2. 

However, in all previous studies nitrated CCL2 was utilised as a heterogeneous mix of 

protein. Having access to single site nitrated CCL2 will enable the mechanism of 

abrogration to be pinpointed to a specific residue. Therefore, the total chemical 

synthesis of both native CCL2 and site-specifically nitrated CCL2 via solid phase 

peptide synthesis (SPPS) was undertaken. The work focused on the potential application 

of microwave assisted SPPS as a means to rapidly access the target proteins. 
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1.1 A General Introduction to Proteins 

Proteins are naturally occurring macromolecules that perform a wide range of critical 

cellular functions in all living organisms. Protein functions range from structural and 

mechanical roles to potent and specific enzyme catalysts. Proteins are polypeptides that 

consist of a linear sequence of amino acids joined together with multiple peptide bonds 

and they can vary in length from tens to thousands of amino acids. The diversity and 

specificity of a given protein derives from its sequence and folding. 

In general, naturally occurring amino acids adopt an L configuration, in which, the α-

carbon has the S stereochemistry (Figure 1.1). The exceptions are cysteine (R-

configuration) and glycine (no chiral centre).  

 

Figure 1.1: Naturally occurring α-amino acids: L-alanine, glycine, L-cysteine and L-
phenylalanine. 

 

At the most basic level the structure of a protein is defined by the linear sequence of 

amino acids: known as its primary structure. The long linear sequence of amino acids 

can interact with one another and form localised regions of defined secondary structure. 

The most common secondary structural motifs are the α-helix and the ȕ-sheet (Figure 

1.2).  
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Figure 1.2: Protein secondary structural motifs: ß-sheet (left) and α-Helix (right). Amide 
hydrogen bonds are indicated by a dashed line (- - -). 

 

In larger proteins a tertiary structure is formed whereby the interactions between 

secondary structures cause the protein to retain a highly specific shape. The shape 

adopted allows the protein to function in a very effective and specific manner, e.g. a 

structurally protein, enzyme or receptor (Figure 1.3).1 

 

Figure 1.3: The crystal structure of human protease activated receptor 1.1
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1.2 Chemokines 

1.2.1 Introduction to Chemokines 

Chemokines (chemoattractant cytokines) are a family of small heparin-binding proteins 

of 8-10kDa (~60-100 amino acids) in size.2 The first chemokine was discovered in 

1977, CXCL43 and to date over 45 distinct chemokines (ligands) and 20 chemokine 

receptors are known.4 Chemokines are structurally related to cytokines (derived from 

the Greek: “cyto” meaning cell and “kinos” meaning movement) and they are secreted 

from many cell types/tissues. Chemokines play a role in directing the inflammatory 

response by selectively coordinating the migration of immune system cells (monocytes, 

T-lymphocytes, mast cells, eosinophils and neutrophils)5 (Section 1.2.3).6  

Chemokine ligands and receptors are targets for anti-inflammatory therapy (Section 1.4 

and Chapter 4) due to their key involvement in a variety different inflammatory and 

autoimmune conditions including multiple sclerosis, psoriasis and rheumatoid arthritis 

as well as in tissue transplantation and graft versus host disease (GVHD):4 Where the 

cells of transplanted tissue are capable of chemokine production and prone to 

disadvantageous lymphocyte recruitment, host attack and chronic inflammation.6,7 

Table 1.1 shows the organs affected and the network of chemokine ligands and 

receptors expressed during the timeline of GVHD. 

 

Organ Chemokine Receptor Expression Chemokine Ligand Expression 

Lungs CXCR3, CXCR6, CCR1, CCR2, 
CCR5, XCR1 
 

CXCL1, CXCL2, CXCL9, CXCL10, 
CXCL11, CCL2, CCL3, CCL3, CCL4, 
CCL5, CCL8, CCL12, XCL1 

Liver CXCR2, CXCR3, CXCR6, CCR1, 
CCR2, CCR5, XCR1 
 

CXCL1, CXCL9, CXCL10, CXCL11, 
CXCL16, CCL2, CCL3, CCL4, CCL5, 
CCL12, CCL20, XCL1 

Intestines CXCR3, CXCR6, CCR1, CCR2, 
CCR5, CCR6, CX3CR1 

CXCL9, CXCL10, CXCL11, CXCL16, 
CCL2, CCL3, CCL5, CCL20, XCL1, 
CX3CL1 

Skin CXCR3, CCR1, CCR2, CCR4, 
CCR5, CCR10, XCR1 

CXCL1, CXCL2, CXCL9, CXCL 10, 
CXCL11, CCL2, CCL5, CCL6, CCL7, 
CCL8, CCL9, CCL11, CCL12, CCL17, 
CCL19, CCL20, CCL27, XCL1 

Lymphoid 
Organs 

CXCR3, CCR2, CCR5 CXCL9, CXCL10, CXCL11, CCL2, 
CCL3, CCL4, CCL5, CCL19, CCL21 

Table 1.1: The important organs in relation to GVHD and the various chemokine and 
chemokine receptors that they express during the timeline of the disease.8 
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Chemokines ligands and receptors have also been implicated in playing a key role in 

diseases such as: asthma, chronic obstructive pulmonary disease (COPD), HIV/AIDs, 

types of vascular disease and more recently cancer.9 A variety of cancer cell types 

express a non-random set of chemokine receptors and it is thought that the chemokine 

transport network plays a significant role in metastasis.10 

 

1.2.2 Classification of Chemokines 

Chemokines are classified in two ways, based on either their (primary) structure 

similarities or biological function. The primary sequence of amino acids can vary from 

between 20% to 90%. However, classification of chemokine proteins is based on the 

conserved cysteine residues in the N-terminal section which leads to four distinct sub-

classes with shared structural similarity between family members.9 For example, CCL2 

shares 61% sequence homology with CCL4 and CCL8 and 71% for CCL7.11 Although 

members of each class have structural similarities, a diverse chemotactic ability is 

observed. For example in the CC subset; CCL2, CCL4, CCL5 are chemotactic for 

monocytes but interact through two different receptors.5 CCL2 and CCL5 are 

chemotactic to memory T-cells12 whereas CCL4 interacts with naïve T-cells.13 Of the 

aforementioned chemokines, CCL5 is the only ligand that shows chemotactic activation 

of eosinophils.14 

The modern nomenclature of the four chemokine classes describes the subset by its type 

and relation of N-terminal cysteine residues: XC (or C), CC, CXC and CX3C (Table 

1.2).15  
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Structure Type Class Name Description 

 

α CXC 

The first two cysteines (C) are separated 
by one amino acid (X), and form two 
disulfide bonds between their 1st and 3rd 
Cys and between the 2nd and 4th. 

 

ȕ CC 

The first two cysteines are positioned 
next to each other, and form two disulfide 
bonds between their 1st and 3rd Cys and 
between the 2nd and 4th. 

 

Ȗ XC 
This class has only one cysteine in the N-
terminus and hence only one disulfide 
bond. 

Table 1.2: The simplified structures of 3* major classes/families of chemokine, indicating 
cysteine residue (C), disulfide bonds (│) and general amino acid (X). *A fourth category of 
chemokine that only contains only 1 member, Fractalkine (CX3CL1, 373 AAs), is denoted 
CX3C.16

 

 

Chemokines are further classified based on their physiological features/role into either 

homeostatic or inflammatory.17 These features include the cellular distribution of their 

receptors as well as the location and condition of their production.17 Homeostatic or 

“housekeeping” chemokines are involved in immune surveillance and cell migration 

under the normal processes of tissue maintenance or development e.g. directing cells to 

secondary lymphoid organs, the bone marrow and thymus during hematopoiesis.18 

Therefore, no source cell stimulation is required for the secretion of homeostatic 

chemokines.9 Inflammatory or “inducible” chemokines are expressed by stimulated 

cells in inflamed tissues and thus, direct immune system cells to the site of injury. 

Stimulation can be in response to interaction with pro-inflammatory cytokines or 

pathogens.4,17 
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1.2.3 The Simplified Mode of Action of Inflammatory Chemokines 

Generally, inflammatory chemokines are produced locally within a tissue and attract 

different types of leukocytes to sites of inflammation and infection. The mode of action 

of chemokines are reasonably homogenous between the different classes/subsets:19  

Upon injury an up-regulation of selectin and actin (adhesion) molecules on immune 

system cell surfaces is observed. The binding of these adhesion molecules with their 

ligands such as fibronectin, collogen and laminin mediates transendothelial chemotaxis 

(TEC) and causes selectin mediated “rolling” of the leukocytes along the endothelial 

membrane.20 The “rolling” decelerates immune system cells as they circulate in the 

blood stream. Following inflammation/injury chemokines are also released from 

numerous different cells at the site of injury and they then diffuse into the vascular 

space creating a concentration gradient. Leukocytes are attracted to higher concentration 

and thus the origin of chemokine release (site of injury). See Figure 1.4.  

 

Figure 1.4: Shows the movement of a leukocyte cells (leukocyte extravasation) towards a 
greater chemokine concentration and thereby to the site of inflammation or infection.  At the site 
of inflammation/infection the moving cell initially rolls along the endothelium surface 
(mediated by selectin interactions) before adhering more strongly upon chemokine binding. Cell 
adhesion from integrin/CAM interactions leads to transmigration of the leukocyte through the 
endothelium. 

 

The concentration gradient is maintained by interactions of chemokines with endothelial 

cell surface glycosaminoglycans (GAGs), this effectively anchors chemokine proteins to 

the endothelial cell lining. The selectin mediated “rolling” of leukocyte cells along the 

lining allows for leukocyte receptors to come into contact and bind with the anchored 
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chemokines (that are in highest concentration) at the site of injury. This binding is 

mediated by seven-transmembrane domain (7TM) receptors coupled to guanosine-5'-

triphosphate (GTP)-binding proteins able to respond to extracellular molecules, initiate 

intracellular signal transduction pathways and perform cellular responses. Upon binding 

of the chemokine ligand to a chemokine receptor a number of drastic and fast effects 

take place e.g. the stimulation produces appendages on the leukocytes that act to 

grasp/adhere to endothelial cells before finally migration inside tissues as seen in the 

Figure 1.5.19  

 

 

Figure 1.5: The shape change (production of appendages) of leukocyte cells upon 
chemokine addition.19 

 

1.2.4 The Specific and Non-Specific Nature of Chemokines 

In general each chemokine family interacts specifically with certain immune system 

cells.  For example, CXC interacts with granulocytes or polymorphonuclear leukocytes 

(of note: CXCL8 and CXCL10 are members of this subset yet they are also chemotactic 

to T-lymphocytes). The CC family are chemotactic to mononuclear cells (e.g. 

monocytes and lymphocytes) and the XC family to lymphocytes.21 This specificity is 

granted by the makeup of receptors on the leukocyte cell surface; a list of selected 

chemokines, alternative names, protein length and the receptor/receptors to which they 

interact is given in Table 1.3. 
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Chemokine Functional Name Protein Length Chemokine Receptor 

CCL1 I-309 74 CCR8 
CCL2 MCP-1 76 CCR2 
CCL3 MIP-1α 70 CCR1/CCR5 
CCL4 MIP-1ȕ 69 CCR5 
CCL5 Eotaxin 68 CCR1/CCR3/CCR5 
CCL11 RANTES 74 CCR3 
CCL17 TARC 71 CCR4 
CCL19 MIP-γȕ / ELC 77 CCR7 
CCL20 MIP-γα 70 CCR6 
CCL22 MDC 69 CCR4 
CCL25 TECK 127 CCR9 
CCL26 Eotaxin-3 71 CCR3/CCR10 
CXCL8 IL-8 77 CXCR1/CXCR2 
CXCL10 IP-10 77 CXCR3 
CXCL11 I-TAC 73 CXCR3 
CXCL12 SDF-1 68 CXCR4 
CXCL13 BCA-1 87 CXCR5 
CX3CL1 Fractalkine 76 CX3CR1 
XCL1 Lymphotacin 92 XCR1 

Table 1.3: Selected chemokines ligands and their known receptors. The inflammatory 
chemokines shaded. 

 

Chemokine ligand to chemokine receptor interactions can be both specific and non-

specific with many chemokine receptors able to bind different ligands with high-

affinity. The ligands themselves also show specific and non-specific affinity to 

receptors leading to the complex set of protein-protein interactions seen in Figure 

1.6.22,23 This specific and non-specific nature of binding is a property of both ligand and 

receptor. However, at present this property is only partially understood. Hence, research 

into the detailed structural basis of these specific protein-protein interactions is vital. 
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Figure 1.6: The specific and non-specific nature of the relationship between 18 chemokine 
receptors (inner circle) and 40 ligands (outer circle).23 The members of a family often 
competitively bind to the same receptor. However, there is no overlap between families e.g. no 
CC chemokine interacts with a CXC receptor.9 

 

Chemokine ligands can often competitively bind to the same receptor if they are within 

same family (e.g. C, CC or CXC) and analysis of every known chemokine ligand 

structure (using NMR studies and crystal structures) has shown a remarkable similarity 

in their overall three dimensional (tertiary) structure (Figure 1.7). This is perhaps 

surprising due to the considerable differences in primary structure exhibited by 

chemokines ligands.  
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1.  A short N-terminal domain that is highly 
flexible yet constrained by disulfide bonding 
between the N-terminal cysteine(s). 
 

2. An irregular loop at the beginning of 
three antiparallel ȕ-sheets 
 
 

3. An overlaying α-helix (with respect to the 
ȕ-sheets). 

 

 

Figure 1.7: General structure of chemokines with ȕ-sheets indicated as arrows, α-helices as 
cylinders, cysteines as © and disulfide bonds as a dashed line. This general peptide motif is 
referred to as a greek key or the chemokine fold.9 The major domains are present throughout 
chemokines: 1, 2, 3.23,24 

 

Modified chemokine ligand analogues have shown that the major interaction sites for 

binding and subsequent activation of chemokines with their chemokine receptors are 

contained in the flexible (disordered) N-terminal region. Specifically, the short N-

terminal domain (1, Figure 1.7) and the exposed backbone loop in-between the 2nd and 

3rd cysteine (2, Figure 1.7).25 The loop is thought to be recognised and bound first. This 

in turn presents the N-terminal domain for function.25  

CXCL8 analogues can be produced that can still bind the receptor but do not retain 

function where the N-terminal domain is modified. The deletion or substitution of the 

terminal sequence: Glu-Leu-Arg (ELR) leads to potent antagonists.26,27 This is also 

visualised in vivo as a chemokines N-terminal domain is susceptible to cleavage via 

proteolytic digestion. In the late stages of inflammation macrophage specific matrix 

metalloproteinase-12 (MMP-12) inactivates CXC type chemokines via cleavage of the 

aforementioned ELR to form receptor antagonists. Macrophage recruitment is then 

inhibited and the cell returns to normal structure and function.28 

The complete scope of modified analogues of CCL2 and their significance to the 

mechanism of action of CCL2 is shown in Table 1.4.  
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Q1PD3AI5N6AP8V9T10CCY13NFTNR18K19ISVQR24LASY28RR30ITSSK35CPK38EAVIFKTIVAK49EICADPKQK58WVQDSMDH66LD68KQTQTPKT 

Table 1.4: CCL2 primary sequence and residue profiling. *Glutamine (Q1) (The N-terminal amino acid of CCL2) is converted modified to pyroglutmatic 
acid (<E) via a posttranslational modification. The pyroglutamic acid form offers increased in vivo stability against degradation.37 **Agonist activity: 
Stimulates cytosolic Ca2+ influx and inhibits adenylyl cyclase. 

Residue Binding Change Outcome Ref  Residue Binding Change Outcome Ref 

Gln/Glp* - 
Q1 or <E1 

 Removal -reduced in vitro activity 29  Lys – K19 GAG K to A  -reduced GAG binding 
-unaffected in vitro activity 
-no in vivo activity 

30,
31 

PDAINAP  Removal -reduced CRR2 binding 
-reduced signalling 
-reduced in vitro activity 

29,32  Arg – R24 CCR2 
GAG 

R to A -reduced CCR2 binding 
-reduced GAG binding 

30,
33,
34 

DAIN  D/I/N to A -reduced in vitro activity 32  Tyr – Y28  Y to D -reduced in vitro activity. 33 

Pro – P8 dimer P to A -loss of dimerization 
-retained in vitro activity  
-no in vivo activity 

31,32,

35 
 Arg – R30  R to V/ L -R30V retained activity 

-R30L reduced activity 
33 

Val – V9  V to A -slightly reduced activity 32  Lys – K35 dimer SPK 
insertion 
K to E 

-no in vitro activity 
-reduced CCR2 binding 

34,
36 

Thr – T10  T to R -reduced activity 
-reduced CCR2 binding 

36  Lys – K38 dimer K to E -reduced CCR2 binding 34 

Tyr – Y13 CCR2 
dimer 
signalling 

Y to A/I -no in vitro activity 
-reduced dimerization 
-slight agonist activity** 

35,36  Lys – K49 CCR2 
GAG 

K to A -reduced CCR2 binding 
-reduced GAG binding 

30,
34 

Tyr – Y13 CCR2 
dimer 
signalling 

Y to F -unaffected CCR2 binding 
-unaffected in vitro activity 

34  Lys – K58 GAG K to A -reduced GAG binding 
-reduced in vivo activity 

30 

Tyr – Y13 CCR2 
dimer 
signalling 

Y to 
W/L/H  

-reduced in vitro activity 
-agonist activity** 
-reduced CCR2 binding 

34  His – H66 GAG H to A -reduced GAG binding 
-reduced in vivo activity 

30 

Arg – R18  GAG K to A  -reduced GAG binding 
-unaffected in vitro activity 
-no in vivo activity 

30,31  Asp – D68  D to L -reduced in vitro activity. 33 
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Modified analogues have enabled the sites of various chemokine ligand interactions to 

be found e.g. with GAGs or other chemokine ligands. 

In relation to CCL2, it is known that the “positively” charged residues: Arg18, Lys19, 

Arg24 Lys38, Lys49 and His66 are important in GAG binding30 (Figure 1.8) and the 

Pro8 residue in the N-terminal section is vital to dimerization.35 However, mutant 

analysis has shown failings in translating in vitro activity to in vivo activity which is 

exemplified by the Pro8 to Ala8 mutation. The Pro8 to Ala8 mutant retained in vitro 

activity yet showed an inability to form homodimers.35 The retention of activity did not 

translate into an in vivo model, emphasising the importance of dimerization in a more 

complex system. 

 

Figure 1.8: GAG binding residues Arg18, Lys19, Arg 24 and Lys49 (blue) mapped on the 
monomer unit of CCL2. Structure generated by PyMol.30

 

 

Chemokine ligands gain an additional level of vast complexity from the various and 

complex array of quaternary structures they can form: such as heterodimers, 

homodimers and oligomers38 and in many cases these structures are known to be critical 

to in vivo function.39,40 Two distinct dimerization motifs and they are attributed to the 

two major families, CC and CXC.40,41 CXC dimers share a motif that is formed by the 

interactions of amino acids in the first ß-sheet strand and gives rise to a six-stranded ß-

sheet overlapped by two α-helices.42 CC dimers form an elongated structure using 

interactions between residues in the N-termini (Figure 1.9).43 The CC chemokine: 

CCL20 is known to form a “CXC-like” dimer.44 
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Figure 1.9: The homodimeric structures of CXCL8 (left) and CCL2 (right). The CXCL8 
structure was solved by X-ray crystallograply (2.00 Å).45 The CCL2 structure was solved by X-
ray crystallograply (1.90 Å).43 Subunits are indicated. 

 

As well as ligand dimerization, over half of chemokine receptors are known to exist in 

heterodimer-, homodimer- or oligo-merization motifs. The varied motifs alter the 

properties of the receptor (when compared to its monomeric form)46 in agonist 

activation, antagonist inhibition, G-protein coupling/signaling and 

internalization/desensitization of GPCRs.46 However, the stimulation and the 

consequences of stimulation of these dimers are poorly understood. Extensive research 

on CCR5 and CCR2 hetero- and homo-dimers has not led to a consensus on either front. 

Some evidence suggests that stimulation of receptor-dimer formation requires a ligand 

interaction47-49 while other evidence suggests dimerization is ligand independent.49-52 In 

terms of activity, E-Asmar et al. found trans-inhibition by the ligand to the opposite 

receptor partner to be a competitive cross-inhibition.51 Mellado et al. found that 

CCR5/CCR2 heterodimers mediated cell adhesion but not chemotaxis and activity 

required lower chemokine concentrations.49 The difficulties in forming an extensive 

description even in this simplified 2-receptor system perhaps illustrate the challenge of 

in depth analysis of chemokine ligand/receptor interactions as a whole. 

 

1.3 Chemokine Mediated Immune Response 

1.3.1 Inflammation 

Inflammation is a complex immunovascular response that heavily involves the 

chemokine directed movement of immune system cells to damaging stimuli. The 
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purpose of inflammation is to eliminate the cause of cell injury, prevent the spread of 

infectious agents, remove necrotic/damaged cells and pathogens as well as initiate tissue 

repair processes. When inflammation is a short-term, positive, self-limiting, protective 

response it is termed acute inflammation.53  

 

1.3.2 Chronic Inflammation 

In certain circumstances the inflammatory process becomes continuous and chronic. 

Chronic inflammation is known to contribute a number of diseases e.g. cancer,54 heart 

disease,55 kidney disease,56 bone disease,57 diabetes,58 pancreatitis59 and anemia.60 

Aging, poor diet, smoking, low-levels of sex hormones, sleep disorders, physical stress 

and emotional stress are known as external factors that trigger chronic inflammation.  

A variety of opportunities for problematic cellular stress and chronic inflammation arise 

during organ transplantation (from the donor brain death to host reperfusion) as well as 

throughout the lifetime of the graft. Chemokines; CCL2, CXCL8 CXCL9, CXCL10 and 

CXCL11 and their corresponding receptors have been implicated at different stages of 

transplantation.61 The production of donor and host chemokines and the inflammatory 

response are an issue that contributes to the rejection of allografts and host death e.g. 

fatal ischemia - reperfusion injury.62  

 

1.3.3 Oxidative Stress 

The most significant effect of chronic inflammation is associated with the excessive 

production of free radicals such as reactive oxygen (ROS) and nitrogen species (RNS) 

and the depletion of their scavengers (anti-oxidants).63 This imbalance is termed 

oxidative stress.64 The excess of reactive species cause biological damage that alters the 

normal function of lipids, DNA and proteins, notably chemokines.65 However, under 

normal physiological conditions the low-level production of ROS or RNS is beneficial 

and acts as defence against pathogens. E.g. in macrophages superoxide (O2
.- from 

NADH oxidase) and nitric oxide (NO from nitric oxide synthase) help kill invading 

microbes in phagocytes.66 
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It is known that chemokine activity is significantly affected by post-translational 

modifications and that chemokines are up-regulated and play an important role in areas 

of oxidative stress.67 Specifically, CCL2 (and other chemokines) directing leukocytes to 

the site of allografts.68 The inflammatory response and up-regulation of chemokines is 

known to have significant effects in transplantation and transplantation rejection. 

The sources of ROS/RNS molecules range from mitochondrial electron leakage, 

preioxisomes, NADPH oxidase, amino oxidase, nitric oxide synthase. The types of 

reactive species that are produced depend on their concentration (of other reactive 

species), cell environment and cell type. Table 1.5 shows the structure, source and 

outcome of selected ROS/RNS species. 

 

Table 1.5: Selected ROSs and RNSs.69,70 

 

Name Structure Source Outcome 

Superoxide O2
.- -enzymatic processes 

-autooxidation 
-nonenzymatic electron 
transfer.  
(Predominately produced 
in mitochondria). 

O2
.- is a source of other reactive 

species and is able to act as an 
oxidising agent (Fe complexes) 
and a reducing agent (ascorbic 
acid and tocopherol). However, 
O2

.- has low intrinsic bioreactivity. 
Hydrogen 
peroxide 

H2O2 -dismutation reaction 
(catalyzed via superoxide 
dismutase) 

H2O2 can deactivate enzymes (e.g. 
glyceraldehhyde-3-phosphate 
dehydrogenase) and forms HO. In 
the presence of transition metals. 

Hydroxide 
radical 

HO. -Fenton reaction (H2O2 In 
the prescence of transition 
metals: Fe2+ and Cu+). 
-Haber-Weiss reaction 
(O2

.-and H2O2) 

Highly reactive species that 
affects DNA, proteins, lipids, and 
carbohydrates. e.g. oxidation of 
Phe to Tyr.  

Nitric oxide .NO Nitric oxide synthases 
(conversion of L-Arg to 
L-Cit) 

Regulates enzyme activity (e.g. 
guanylate cyclase and protein 
kinases stimulation) and cellular 
redox processes. Mediates 
vascular responses (e.g. blood 
vessel smooth muscle relaxation). 

Peroxynitrate OONO- The rapid reaction of  O2
.- 

and .NO 
Oxidises DNA, proteins, lipids 
reacts with CO2 to form 
ONOOCO2

- and is protonated to 
form OONOH. 

Peroxynitrous 
acid 

OONOH Protonation of   OONO- Oxidising and nitrating agent that 
affects proteins, lipids and DNA. 
Undergoes homolytic fission 
yielding .NO2  and  HO. radicals. 
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1.3.4 Peroxynitrate 

Of the ROS/RNS in Table 1.5 our focus is on the role of peroxynitrate (Scheme 1.1) in 

inflammation and the possible post translational modifications of human chemokine 

CCL2. Peroxynitrate is a short-lived species (~10 ms at physiological pH) and is 

therefore, only detected indirectly through the presence of the biomarker: 3-

nitrotyrosine. Peroxynitrate is formed in a diffusion-controlled reaction between NO. 

and O2
.- at a rate of ~1×1010 M–1s–1 and due to the restricted membrane diffusion and 

short lifetime of O2
.- is often found at sites of O2

.
 production.71 e.g. NADPH oxidases in 

the plasma membrane or in mitochondrial respiratory complexes.71 During the 

inflammatory processes, cells produce high levels of NO. and O2
.- and in turn increased 

levels of peroxynitrate. 

 

Scheme 1.1: An in vivo route to the production of the reactive species: peroxynitrate. 

 

Peroxynitrate exists as a complex set of ionic and radical species (e.g. peroxynitrous 

acid and nitrosoperoxycarbonate) at different pH and concentrations. It is a potent and 

versatile oxidizing and nitrating agent72* able to modify bioactive molecules (e.g. 

sulfydryls, ascorbate, DNA, lipids and proteins) and effect pathways 

(blocking/activation), cell signalling, feedback cycles and ion balance.73,74
 

In relation to protein chemistry, the residues that are susceptible to peroxynitrate 

posttranslational modification in the form of oxidation and/or nitration are: Tyr, Trp, 

Phe, His, Cys and Met. Figure 1.10 shows selected examples of modified amino acids. 

For a review on this topic see: “Peroxynitrite reactivity with amino acids and proteins.75 

                                                           
*Gunaydin and Houk modelled (via CBS-QB3 calculations on a para-methyphenol system) the 
mechanisms by which nitration of tyrosine occurs. Their evidence supports a stepwise radical mechanism 
where the rate limiting step is decomposition of peroxynitrous acid or nitrosoperoxycarbonate. 
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Figure 1.10: Selected protein residue posttranslational modifications carried out by transient 
peroxynitrate anions/radicals. 

 

The peroxynitrate mediated nitration of tyrosine is a common posttranslational 

modification and it significantly alters the steric and electronic (hydrogen bonding 

character, charged state and π-stacking) properties of the residue.76 When compared to 

tyrosine, drastic changes are observed (Figure 1.11): lowering phenol pKa (in water: 

10.3 to 7.3),76 increasing spatial volume (ring surface area: ~30Å2 to ~50Å2),77 

increasing hydrophobicity78 and altering redox potential.79 

 

Figure 1.11: A tyrosine residue in a polypeptide. Charged states (+/-), inductive effects (→), 
steric effects (∩), hydrogen bonding (≡) and π-stacking (≡) are indicated. 

 

Peroxynitrate is also implicated to have a progressive role in transplantation rejection: 

MacMillan-Crow et al. showed that significant peroxynitrate mediated tyrosine nitration 

of manganese superoxide dismutase (a mitochondrial anti-oxidant enzyme) occurs in 

human renal allografts.80 Whereby, peroxynitrate mediated tyrosine nitration deactivates 
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the anti-oxidant enzyme and this was inferred to have negative extenuating effect 

leading to increased concentrations of reactive species and in turn, irreversible injury. 

 

1.3.5 Nitration of Chemokine: CCL2 

The chemokine: CCL2 is up-regulated at areas of oxidative stress.67 Therefore, the 

effect of posttranslational modifications by the reactive nitrogen species: peroxynitrate 

on the function of CCL2 is of interest.  

In model systems, CCL281,82 and other chemokines (CCL581) are known to undergo 

peroxynitrate mediated modifications (in the form of nitration) that abrogate their in 

vitro function (Figure 1.12). Sato et al. showed that increasing peroxynitrate 

concentration lowered monocyte chemotactic activity, although Tyr13 nitration was 

implicated as the cause, no residue analysis was undertaken.81 In a similar study Molon 

et al. showed that incubation of CCL2 with peroxynitrate followed by MSMS analysis 

resulted in identification of a nitrated-Trp59 species and that nitrated CCL2 had 

diminished activity.82
 

 

Figure 1.12: Dose-response inhibition of CCL2 mediated monocyte chemotactic activity by 
peroxynitrate.81 

 

Following the aforementioned nitration studies, Dr. C. Barker at Newcastle University 

recently showed that basic aqueous peroxynitrate was able to nitrate the native 

chemokine CCL2 in a PBS buffer or H2O. Mass spectra analysis indicated the presence 
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of triply nitrated products specifically at Tyr13, Tyr28 and/or Trp59, each nitration 

giving a mass increase of 45 Da (Figure 1.13).  

 

 
Figure 1.13: Nitrated Tyr13, Tyr28 and Trp59 residues in native human CCL2 (written from N- 
to C- terminus). Disulfide bonds between C11 - C36 and C12 – C52 indicated. 

 

In agreement with Molon et al.
82 and Sato et al.

81 the nitrated CCL2 was shown to have 

decreased biological activity. Nitration of CCL2 decreased CCR2 binding ability and 

the ability of CCL2 to recruit monocytes in a bare-membrane chemotaxis assay. The 

nitration of CCL2 also abrogated its ability to interact with GAGs, such as heparin 

sulfate. GAG binding is vital to in vivo function as it allows chemokines to concentrate 

at the site of inflammation and thus, is crucial for the recruitment of leukocytes. 

Therefore, in both in vitro and in vivo chemotaxis assays requiring GAG binding, 

leukocyte recruitment was prevented. Although much more work is needed, these 

findings suggest that CCL2 nitration, a modification which could occur during 

inflammation and oxidative stress could potentially be an important in vivo anti-

inflammatory mechanism. 

However, in this study the nitrated CCL2 was created by rapid reaction with 

peroxynitrite and the reaction did not go to completion. The chemokine used for the 

biological assays was therefore a heterogenous mix of protein, with one, two or three of 

the potential nitration sites being modified on each protein. In order to determine the 

importance of each of the three residues in the loss of CCL2 biological activity, site-

specific synthesis of individually nitrated CCL2 is needed (Chapter 5). 
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1.4 Chemokines as Biological Targets 

1.4.1 Therapeutics to Target Chemokine/Chemokine Receptor Interactions 

Chemokine/Chemokine receptor interactions are new targets for therapeutics due to 

their aforementioned role in a variety of conditions: anti-inflammation, growth 

regulation, HIV-1 infection, embryologic development and angiogenesis (growth of 

new blood vessels from existing ones).83 Table 1.6 shows selected examples of the roles 

of chemokines in clinical conditions.84 

 

Type Disease Chemokine Chemokine Receptor 

Inflammatory Arthritis; colitis CCR, CXCR Inflammatory CC, CXC 

Infectious Bacterial/viral 
Infection; sepsis 

CXCR4, CCR5 Inflammatory CC, CXC 

Autoimmune Rheumatoid 
arthritis, systemic 
lupus erythematosus 

CCR Inflammatory CC 

Allergic Asthma CCR3, CCR4, 
CCR8 

CCL11, CCL22, CCL1 

Neoplasia Metastasis; 
angiogenesis 

CXCR4, CCR7 CXCL12, CCL19 

Graft 
rejection 

Heart, kidney, lung 
allograft 

CCR5, CXCR1, 
CXCR3 

CCL2, CCL3, CCL5, 
CXCL8, CXCL9, 
CXCL10, CXCL11 

Vascular Atherosclerosis; 
ischemia-reperfusion 

CCR2, CXC3R1 CCL2, CX3CL1 

Table 1.6: The involvement of chemokine and chemokine receptors in various deseases.84 

 

Table 1.6 shows data compiled in 2005 and at the time, 7 chemokine receptors (CCR1, 

CCR2, CCR3, CCR5, CXCR1, CXCR3 and CXCR4) had at least one inhibitor 

undergoing clinical trials to target them.84 In recent years chemokines have become 

successful pharmaceutical drugs.  

Maraviroc (Pfizer) an antiretroviral and Plerixafor an immunostimulant (Genzyme) 

were granted FDA approval to target the chemokine receptors CCR5 and CXCR4 

respectively (Figure 1.14).9,85,86  
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Figure 1.14: CCR5 and CXCR4 inhibitors and registered drugs: Maraviroc and Plerixafor, 
respectively.9,87 Presumed bindings between functional groups and the respective receptor 
residues on are shown. 

 

Small molecule chemokine inhibitors are also an important tool to understand the 

mechanism of action/binding in these complex protein-protein interaction networks. 

E.g. UCB35625 showed nanomolar activity (IC50 9.6 nM and 92.7 nM for CCR1-

MIP1α and CCR3-eotaxin respectively) as an antagonist to eosinophil chemokine 

receptors (CCR1 and CCR3) in vivo.88 Although UCB35625 has not fulfilled its 

potential as an asthma (an eosinophil-mediated inflammatory disorder) therapeutic, it 

has provided evidence towards elucidating a multi-subsite mechanism of selectivity and 

action.88 

The antagonists of chemokine receptors are an important field of medicinal chemistry 

and knowledge gained is beneficial (Section 1.5 and Chapter 3).83 Moreover, research 

in small molecule inhibitors has resulted in numerous compounds reaching clinical 

trials.89  
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1.4.2 Small Molecule Chemokine Inhibitors: Acylamino-lactams 

Oligopeptides (peptide segments) from monocyte chemoattractant protein-1 (CCL2) are 

known to inhibit chemokine induced cell migration. Figure 1.15 shows the full primary 

sequence of CCL2 and the most active peptide segment found in an in vitro study by 

Grainger in 1999.90 The segment indicated (EICADPKQKWVQ) showed broad 

inhibition but little selectivity between the CC and CXC families of chemokine with 

ED50 values ranging from 8-14 μM.90  

  

Figure 1.15: The primary structure of CCL2. ß-sheets (arrow) and α-helices (cylinder) are 
indicated.43 The 12-residue peptide segment outlined was synthesised via SPPS.90 

 

The Fox group have synthesised numerous broad-spectrum chemokine inhibitors91 with 

research originating from the peptide fragment mentioned above. As the oligopeptides 

have poor bioavailability and short plasma lifetimes, a structure activity relationship 

study was undertaken to elucidate the essential structural motifs and to help develop 

small molecule inhibitors.92 The in vitro activity of a 3 amino acid segment (WVQ) was 

found to be as potent as the 12 residue oligopeptide (Scheme 1.2).92 

 

Scheme 1.2: The key structures summarising the work of Fox’s group.93 

 

A library of compounds originating from this WVQ tripeptide were synthesised and the 

acyl-3-aminoglutarimides were found to be the best candidates as small molecule 
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chemokine inhibitors.93 Further structural refinement led to inhibitors in the form of 

branched side-chain acylamino-lactams with much improved potency, stability and oral 

availability (Scheme 1.2). The most potent acylamino-lactam has an ED50 of 40pM 

against CCL2 mediated chemotaxis.91 For more detail on this topic see “Chemokine 

Receptor Antagonists” by Pease and Horuk.83,89 

 

1.4.3 Diketopiperazine Chemokine Inhibitors from Natural Products 

In 2009 another class of chemokine inhibitor was discovered and isolated from 

biological screening of an extract from the fungus: Leptoxyphium sp.94 The inhibitor 

found: cyclo(13,15-dichloro-L-Pro-L-Tyr) (Figure 1.16) is a diketopiperazine (DKP) 

containing an unnatural dichloroinated tyrosine amino acid. The DKP was tested for 

inhibition of CCL2 mediated chemotaxis against the de-chlorinated analogue: cyclo(L-

Pro-L-Tyr) (Figure 1.16). The structure activity relationship study emphasised the 

importance of the functional groups on the aromatic ring as a 10 to 20 fold drop in 

activity was observed in the case of cyclo(L-Pro-L-Tyr).94 

 

Figure 1.16:  The chlorinated and non-chlorinated DKP structures. 

 

This led the Cobb group to synthesise a small library of analogues (Figure 1.17) that 

included a significant number of unnatural (yet commercially available) aromatic amino 

acids in order to try and enhance activity and to gain knowledge of the mode of 

chemotaxis inhibition. The DKPs were synthesised using solution phase peptide 

synthesis and high temperature cyclisation (Chapter 4). Chemotaxis assays confirmed 

their inhibitory effect on CCL2 induced chemotaxis in an extension of the work by 

Klausmeyer et al.
94  
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Figure 1.17: The diketopiperazine inhibitors previously synthesised and tested by: Cobb, Ali 
and Kirby. 

 

1.4.4 Results of the In Vitro Studies of the Chemokine Inhibitors 

The results from in vitro testing of the DKP library show both specificity and efficacy. 

A summary of the studies undertaken on the six compounds (Figure 1.18) can be 

visualised below. The bare membrance chemotaxis (BMC) assays measure the 

inhibition of the compounds against CCL2 induced chemotaxis. Three inhibitors 

reduced cellular migration by <40% at a concentration of 100 μM (marked with *, 

Figure 1.18). 
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Figure 1.18: Shows the inhibition of all inhibitor compounds at three different concentrations 
10, 50 and 100 μM, each with 10nM CCLβ. Control contains no CCLβ or inhibitor. The data is 
normalised to 100% with 10nM CCL2 in the absence of inhibitor  

 

As previously mentioned, chemokine ligand to receptor binding is complicated and a 

ligand (or ligand complex) can interact with numerous receptors as well as a single 

receptor binding with various ligands. In relation to CCL2, the ligand-receptor 

interactions that are known are indicated in Figure 1.19. Therefore, To gain information 

about specificity and the mechanism of inhibition of these DKP molecules a known 

inhibitor (cyclo(p-fluoro-L-Phe-L-Pro)) was tested against CCL7 and CCL5 (RANTES) 

induced chemotaxis at 100 μM.  

 

Figure 1.19: Receptor-ligand interaction network for the three chemokines.23
  

 

CCL7 and CCL5 are known to bind to the CCR2 receptor and induce chemotaxis. 

However, this process was completely uninhibited in the presence of the DKP (Figure 

1.20). The compound showed effective in vitro inhibition against CCL2 (reduced by 
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40%, * in Figure 1.20), but CCL7 and CCL5 (RANTES) mediated monocyte migration 

remain uninhibited at a concentration of 100 μM.24  

 

 

 

Figure 1.20: The % inhibition of monocyte cell migration by cyclo(p-fluoro-L-Phe-L-Pro) 
against three different chemokine proteins CCL2, CCL7 and CCL5 (RANTES). 

 

The initial results are promising and they confirm the inhibition of CCL2 induced 

chemotaxis for the DKP natural product and several analogs as well as offering the 

posibility of this scaffold to be used as a very specific inhibitor of CCL2 induced 

chemotaxis without any effect on other CCR2 ligands: CCL7 or CCL5.  

Although the activity of all compounds is below what is required for theraupeutic 

applications, the specificity could enable aspects of unknown chemokine function to be 

more easily studied by effectively simplifying the complex network of chemokine 

interactions (Figure 1.6) via “knockout” of CCL2 induced chemotaxis.  

 

1.5 Aims 

1.5.1 Site-Selective Studies of the Post Translational Nitration of CCL2 

The posttranslational nitration modification of CCL2 (outlined in Section 1.3) is a 

biologically relevant route to abrogate the function of CCL2. However, in the 

aforementioned studies nitrated CCL2 was synthesised via a rapid reaction with 

peroxynitrite (and the reaction did not go to completion). Therefore, the chemokine used 
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for the biological assays was a heterogenous mix of protein, with one, two, or three of 

the potential nitration sites being modified on each protein.  

Our aim is to determine which nitration site is responsible for loss of function and help 

study the role of CCL2 in oxidative stress. Thus, a total chemical synthesis (via solid 

phase peptide synthesis (SPPS)) of site-specifically nitrated CCL2 analogues (Figure 

1.21) is a major goal (Chapter 3 and Chapter 5).  

 

Figure 1.21: Site-specifically mono-nitrated analogues of human chemokine: CCL2 

 

The first step is to develop a total chemical synthesis of native CCL2 and subsequently 

modify this synthesis to allow incorporation of nitro-aromatic building blocks. 

Chemotaxis assays would then show which specific nitration has the largest inhibitory 

effect. 

If either of the nitrated tyrosines are found to abrogate function then, to advance this 

work a series of fluorinated CCL2 analogues would be investigated. This would show 

the effect of phenolic pKa modulation (Figure 1.22). However, 2-fluorotyrosine and 

2,3-difluorotyrosine are not commercially available. Thus, our aim is develop a facile 

synthetic route to these building blocks (Chapter 2). 
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Figure 1.22: The hydroxyl pKa of  several fluorotyrosine derivatives95 and 3-nitrotyrosine. The 
pKa of 3-nitrotyrosine is known to be significantly affected by the specific peptide environment 
(e.g. intramolecular π-stacking and hydrogen bonding) and also perturbed due to substrate 
binding. 

 

Moreover with CCL2 in hand, a series of biophysical studies could be undertaken to 

help elucidate the mechanism of action (and source of specificity) of the inhibitory 

DKPs. 

 

1.5.2 Increased Studies on DKP Based CCL2 specific Inhibitors 

The selective inhibitors (based on the DKP natural product: cyclo(13,15-dichloro-L-Pro-

L-Tyr)) of CCL2 induced chemotaxis described in Section 1.4 show potential. 

However, the limited library (Figure 1.17) studied provided no clear structure activity 

relationship and only explored the effect of aromatic ring substiution on activity. Hence, 

it is our aim is to extend this work by synthesizing and testing a larger library of DKPs 

with variations in stereochemistry, N-methylation, proline substitution and 

heteroaromatic substitutents (Figure 1.23). 

 

Figure 1.23: A model DKP with variations in stereochemistry (*), N-methylation (R1), proline 
substitution (R2) and heteroaromatic substitutents (R3). 

 

To do this we envisage optimising the DKP synthetic strategy so that the library can be 

rapidly expanded. This would enable us to perform the relevant chemotaxis assays to 

define active structural features and provide more insights into the mode of inhibition 

(Chapter 4). To faciliate this work a number of unnatural amino acids are desired, 

including heteraromatic (Chapter 2) and proline substituted (Chapter 3). Therefore, 

another major aim is develop a facile synthetic route to these building blocks. 
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Chapter 2 : The Synthesis and Applications of Novel 

Aromatic & Heteroaromatic Amino Acids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

2.1 Introduction 

2.1.1 Expanding Nature’s “Tool-box” of Amino Acids 

Novel (or unnatural) amino acids expand nature’s “tool-box” and increase the scope of 

functionality available for the preparation of peptides, proteins and other related 

biological molecules. This has led to their extensive use in both biology and chemistry, 

for example to improve the properties of peptide/protein therapeutics or to investigate 

biological systems (Table 2.1).
1,2

 Some selected examples of the applications of novel 

amino acids include mechanistic probes,
3
 structure modulation,

4,5
 conformational 

stability,
6-8

 protein complex mapping,
9-11

 
19

F NMR
11,12

  and UV Raman probes.
13,14

  

Given the aforementioned applications the developments of efficient methods for the 

syntheses of novel unnatural amino acids is vital. In relation to the work reported 

herein, novel amino acids are being used to facilitate rational bioactive peptide design 

(e.g. Chemokine inhibitors: Section 2.5.4 and Chapter 4) and in the full total chemical 

SPPS of protein analogues (e.g. human chemokine CCL2: Chapter 5). 

For more detailed review articles on the synthesis of novel amino acids and related 

topics see: “Recent Advances in the Synthesis of Unnatural α-Amino Acids - An 

Updated Version”15
 and  “Unnatural Amino Acids in Enzymes and Proteins”16
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Structure Biological Relevance Refs 

 

Utilising steric effects to 

modulate the coordination 

number of metal co-factor. 

4 

 

Tyrosine hydroxyl 

hydrogen bond modulation 

via introduction of ring 

fluorines. 

5 

 

Structural enforcement to 

increase peptide 

stability/activity via ring 

closing metathesis (RCM) 

cyclisation 

6,7 

 

Protein-protein interaction 

mapping via photo cross-

linking and subsequent 

digest/MSMS. 

10 

 

Characteristic 

spectroscopic (NMR & 

Raman) probe amino acids 

that are responsive to the 

local chemical 

environment. 

12,14  

 

To help elucidate the 

mechanism of action in 

protein (intien) splicing 

3 

Table 2.1: Unnatural amino acids and a relevant selected biological use. 
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2.1.2 Incorporation of Novel/Unnatural Amino Acids into Peptides and Proteins 

If the target protein/peptide can be accessed by solid phase peptide syntheses (SPPS) 

then the site-specific incorporation of any available unnatural amino acid is relatively 

straightforward. Challenges arise if the amino acid is not commercially available or if 

the novel amino acid building block (and protection) is unstable to the reaction 

conditions involved in SPPS. In addition it should be noted that sequential linear SPPS 

is only feasible for the preparation of peptides of up to 50 amino acids. The upper 

boundaries are being pushed by new developments in reagents and synthesisers but 

typically for longer peptides and proteins a ligation approach must be adopted. For a 

description of the reaction steps, product scope and limitations of ligation strategies in 

peptide synthesis, see Chapter 5. 

When the total chemical synthesis of peptides/proteins is not feasible the incorporation 

of unnatural amino acids may be possible by utilising a biological organism/system. 

Residue-specific
17

 and site-specific methods exist, whereby genetic engineering and 

thus modifications of a biological organisms synthetic pathways lead to unnatural amino 

acid incorporation. Certain unnatural amino acids (e.g. norleucine,
17

 fluoroproline,
18

 and 

azidohomoalanine,
19

 Figure 2.1) are isostructural to the canonical amino acids and can 

be tolerated and recognized by the host cells machinery and in turn and incorporated 

into peptide/proteins. In this biosynthetic route the growth medium of the organism 

producing the peptide/protein of interest is supplemented with an unnatural amino acid. 

This strategy has been effectivity utilised in Section 2.5 to attempt to incorporate the 

unnatural amino acids: 2-fluorotyrosine, 2,3-difluorotyrosine and cis-fluoroproline into 

lipopeptides from Bacillus sp. CS93.
20
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Figure 2.1: Isostructural amino acids: Fluoroproline and azidohomoalanine. Orthogonal amino 

acids: Azidophenylalanine and phosphoserine. 

 

A significant number of unnatural amino acids (e.g. 4-azidophenylalanine
21

 and 

phosphoserine
22

 in Figure 2.1) are not tolerated by the host cells translation pathways 

(orthogonal)  and require incorporation via a more elaborate technique: Stop codon 

suppression (SCS). SCS utilises orthogonal aminoacyl-tRNA synthetase/tRNA pairs (o-

pairs).
23

 A variety of o-pair systems exist with the two most proliferant being 

Methanocaldococcus jannaschii TyrRS (mjTyrRS) and Methanosarcinaceae PylRSs 

(PyIRS). mjTyrRS  have been responsible for incorporation of around 40 unnatural 

AAs, mostly orthogonal aromatic derivatives of phenylalanine or tyrosine.
24

 PyIRS 

systems are a recent development but they have already shown remarkable tolerance 

with respect to both orthogonal aliphatic and aromatic amino acids.
23

 

The aforementioned biosynthetic approaches have significant disadvantages. These 

include; inefficient uptake, toxicity and non-specific inclusion of amino acids that can 

give unwanted cumulative protein/peptide perturbations.
11

 For a recent review of this 

area see: “Incorporation of unnatural amino acids for synthetic biology“25
 and 

“Unnatural amino acids in enzymes and proteins”.
16
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2.1.3 Previous Syntheses of Unnatural α-Amino Acids 

Unnatural amino acids can be categorised by the carbon to which the amine group is 

attached (i.e. α-, ß-, Ȗ- or δ-) relative to the carboxylic acid. Although, synthetic routes 

for all of these categories exist, this work will focus on the preparation of α-amino 

acids. 

Biological/enzymatic syntheses and resolutions are the viable routes for the production 

of natural L-α-amino acids. Unnatural α-amino acids are not always well tolerated by 

biosynthetic processes as their structure varies from the 20 proteogenic L-amino acids 

by the side chain functionality and/or the stereochemistry at the α-carbon. Thus, 

synthetic routes to access optically pure unnatural α-amino acids are a necessity. The 

synthetic routes fall broadly into three general categories: i) The use of achiral 

molecules with diastereoisomer/chiral resolution; ii) auxiliaries/catalysts to define the 

stereochemistry at the α-carbon; and iii) the modification of cheap and available natural 

amino acids. 

The synthesis of amino acids originates in 1850 when Adolf Strecker developed his 

three-component reaction (Scheme 2.1)
26

 and efforts to find high-yielding, atom 

efficient, asymmetric and functional group tolerant routes has been an important area of 

research ever since.
15

  

 

Scheme 2.1: The Strecker synthesis. The formation of an amino nitrile from an aldehyde, amine 

and hydrogen cyanide. The amino nitrile is subsequently hydrolysed to give an amino acid. 

 

Recently, asymmetric versions of the Strecker reaction have been developed using a 

variety of chiral auxiliaries
27

 or chiral catalysts
28

 giving a broad product scope with 

yields and enantiomeric excesses regularly above 90%.
28

 However, the reaction is 

limited as the cyanide nucleophile source (TMSCN) generates volatile and toxic HCN 

in-situ.  Recent advances have shown that cheaper and safer alternatives can be used: 

CNCOOEt
29

 and KCN
30

 but these strategies elongate the synthesis as an imine (or imine 

equivalent) must be pre-formed and isolated. 
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The Strecker reaction is just one of many strategies for α-amino acid syntheses and 

Table 2.2 shows three other selected approaches commonly reported in the literature. 

Entry 1: The asymmetric addition of hydrogen across a pro-chiral α-carbon of a 

dehydroamino acid. Entry 2: The derivatization of glycine by formation of a nucleophile 

or electrophile at the α-carbon centre and then the subsequent asymmetric R-group 

addition. Entry 3: Palladium catalysed cross-coupling reactions (Suzuki,
31

 Negishi,
32,33

 

and Heck
34

)  can access libraries of  unsaturated amino acids from single chiral amino 

acid starting materials (e.g. serine
32

 and methionine
34

). The Cobb group has focused on 

developing the synthesis of unnatural amino acids via Pd-catalysed cross-coupling, 

specifically, the Negishi reaction. 

 

Entry Reaction  Key Intermediate(s) Example Products Refs 

1 Asymmetric 

hydrogenation of 

dehydroamino 

acids 
 

 

 

35-37 

2 Nucleophilic 

glycine  

derivatization  

(Ni(II) complex 

Schiff base) 

 

 

 

 

 

38-40 
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3 Pd-catalysed 

cross-coupling 

 

  

31,33,

34 

Table 2.2: Methods of amino acid synthesis 

 

2.1.4 Unnatural Amino Acid Synthesis via Pd-Catalysed Negishi Cross-Coupling 

Synthesis 

In general, Pd-catalyzed cross-coupling reactions are one of the most useful methods for 

C-C bond formation. Amongst them, the Negishi reaction is a mild reaction that has 

been shown to be well suited for the coupling of alkyl substuents.
41

 Therefore, a variety 

of highly functional aromatic α-, ȕ- and Ȗ-heteroaromatic amino acids
42

 have been 

synthesised via the coupling of simple iodo-amino acid building blocks and halogenated 

aromatics.
32

 In general, the iodo-amino acids are readily synthesised in one step from 

natural hydroxyl-amino acids (e.g. Ser, Thr and Hyp). However, the Negishi reaction is 

moisture sensitive, limited to moderate functional group tolerance and the use of 

undesirable excess Zinc.
43

 Selected examples of the amino acids that have been 

synthesised from L-serine using the Pd-catalysed Negishi cross-coupling approach by 

the Cobb group and others are shown in Scheme 2.2.
33,44
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Scheme 2.2: i: Zn, I2, R1-X, Pd
(0)

, LnP, DMF. A selection of heteroaromatic/aromatic amino 

acids containing interesting functional groups (R1).  All Compounds were synthesised from a 

common protected (P1 and P2 as t-butyloxycarbonyl (Boc) and benzyl (Bzl) protection, 

respectively) ȕ-iodo amino acid using a Pd-catalysed Negishi cross-coupling.  

 

The Negishi cross-coupling reaction combines organo-zinc reagents with unsaturated 

bromides or iodides to form a carbon–carbon bond under mild conditions using a 

catalytic metal from the Ni triad (Ni, Pd and Pt).
32

 However, the metal of choice in 

Negishi chemistry is generally a Pd
(0)

 species. Pt as a catalyst is not synthetically useful 

as the stability of the R’RPt
(II)

Ln state is high and thus, the subsequent reductive 

elimination step is significantly slow.
45

 Ni is the least expensive member of the triad 

and readily used as a catalyst in Negishi cross-couplings as Ni is particularly active in 

the formation of alkyl-alkyl bonds.
46

  However, the Ni reactions are notably less clean 

with lower levels of regio- and stereo-control than the Pd catalysed reactions. This is 

due to the ability of Ni to access one electron redox processes (unlike Pd that heavily 

favours +2 and 0 oxidation states)
47

 which leads to various/unusual mechanisms that are 

not yet fully understood.
46

  

The Pd-catalysed Negishi cross-coupling reaction has two major steps; the formation of 

the organo-zinc (R–Zn–X) intermediate from an alkyl halide and then usage of this 

intermediate in the subsequent sequence of oxidative addition, transmetallation and 

reductive elimination that form the catalytic cycle (Scheme 2.3). 
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Scheme 2.3: The sequence of oxidative addition of R’–X’ to the Pd(0)
 metal centre, 

transmetallation with the organo-zinc intermediate and finally reductive elimination to yield the 

R–R’ bond and regenerate LnPd. 

 

The Pd-catalysed Negishi cross-coupling reaction is tolerant to a broad range of 

functional groups; ketones, esters, nitriles, aldehydes, alkynes, amides, amines and 

phenols. However, phenolic
48

 and amino
49

 functions can significantly reduce the 

efficiency and yield. Acidic groups (e.g. carboxylic acids) are unfeasible as the pKa of 

the acidic hydrogen is sufficient to quench of the organo-zinc reagent (R-Zn-X).
49

 

Therefore, in the synthesis of unnatural amino acids an appropriate orthogonal 

protection strategy for the amino and carboxylic acid would be beneficial. In addition, it 

would be advantageous if this strategy is compatible with standard Fmoc SPPS.  

The pioneering efforts of the Jackson group
32

 has led to the optimisation of the reaction 

conditions and the synthesis of large libraries of α-, ȕ- and Ȗ-substituted amino acids
50

 

from halo-iodides
51

 and bromides.
52

 Despite this work, the application of the Negishi 

reaction does still have limitations and certain compounds have proven difficult and/or 

not widely reported: 1. The preparation of 5-membered heteroaromatic (furyl-/thienyl-) 

amino acids (Section 2.3). 2. The preparation of fluorinated tyrosine amino acid 

derivatives (Section 2.5). 
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2.2 Bioactive 5-Membered Heteroaromatic Molecules 

2.2.1 Furyl and Thienyl Moieties in Drug Molecules and Natural Products 

The synthesis of 5-membered thienyl- and furyl- amino acids became a point of interest 

as these “unnatural” moieties are frequently found in drug molecules (Figure 2.2) and 

as ß–substituted amino acids in peptide natural products (Figure 2.3). 

 

Figure 2.2: The chemical structures of the drug molecules that contain the furyl or thienyl 

moiety: Furosemide,
53,54

 Ethylmethylthiambutene
55,56

 and Ceftiofur.
57,58

 

 

Furosemide is an antihypertensive agent used to treat congestive heart failure and 

edema,
54,59

 Emethibutin is an opioid analgesic
56,60

 and Ceftiofur is a third generation 

antibiotic used in veterinary medicine.
57,58

 

 

Figure 2.3: The chemical structures of the peptide natural products that contain the furyl 

moiety: Ȗ-glutamyl-2-furylalanine and Rhizonin. 
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Ȗ-Glutamyl-2-furylalanine
61

 and rhizonin are examples of peptide natural products that 

contain the 2-furyl or 3-furyl moiety respectively.
62

 Ȗ-Glutamyl-2-furylalanine is 

produced by leaf beetle larvae as a chemical defence/feeding deterrent against insects 

and rhizonin is a hepatotoxic cyclo-peptide produced by the fungal strain Rhizopus 

microsporus. The bioactivity of the aforementioned non-natural aromatic amino acid 

containing molecules led us to investigate if these amino acids could be easily 

synthesised and incorporated into bioactive scaffolds. For example, as the aromatic 

residue in the selective CCL2 induced chemotaxis inhibiting DKPs (Chapter 4). To 

facilitate this, we attempted to access a small library of orthogonally protected thienyl- 

and furyl-amino acids (Figure 2.4) 

 

Figure 2.4: Target 5-membered ȕ-furyl and ȕ-thienyl amino acids 

 

 

2.3 Synthesis of 5-Membered Heteroaromatic Amino Acids via Pd-

Catalysed Negishi Cross-Coupling. 

2.3.1 Previous Syntheses of 5-Membered Heteroaromatic Amino Acids 

Reports of the preparation of 5-membered heteroaromatic amino acids via a Negishi 

cross-coupling are almost non-existent in the literature. Prior to this work, no published 

reports of the Negishi cross-coupling synthesis of furyl-amino acids exist. The only 

literature example was published in 1989 by the Jackson group. The report shows the 

synthesis of 2-thienylalanine 2 in a very poor yield (Scheme 2.4).
51
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Scheme 2.4: i: Zn/Cu couple, 1. sonication, benzene/DMF (15:1); [P(o-tol)3]2PdCl; 2-

iodothiophene, 50 °C, 1 h.
51

 

 

Heteroaromatic amino derivatives have previously been synthesised via asymmetric 

hydrogenation (Scheme 2.5 and Entry 1, Table 2.2) of dehydroamino derivative acids. 

Each dehydroamino acid was first synthesised via a Horner-Wadsworth-Emmons using 

furfurals and thiophene aldehydes.
63

 The final asymmetric hydrogenation step yields 

furyl-/thienyl- alanine in excellent yield and in an enantiomeric excess of over 80% 

under optimised conditions.
64

 Optimisation includes: H2 pressure, temperature, catalyst 

makeup (metal and ligands), catalyst loading and N- (P1) and C-(P2) substrate protecting 

groups.
36,63

 

 

Scheme 2.5: i: KOtBu, DCM, -78° to RT. ii: H2 (5 bar), [Rh], MandyPhos, MeOH, toluene 

(1:1)  

 

This hydrogenation synthetic route is viable. However, the development of Negishi 

cross-coupling method would be beneficial as the strategy is shorter, does not use 

elevated H2 pressure, requires no chiral purification and large libraries can be 

synthesised from a common iodo-amino acid building block (Section 2.3.2.2) and 

commercially available halo-aromatics (Section 2.3.2.1). 
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2.3.2 Preparation of Starting Materials 

2.3.2.1 Halo-Aromatic  

A variety of affordable commercially available 5-membered halo-iodide/bromide 

reagents are readily available and libraries of heteroaromatic amino acids could easily 

be produced. Figure 2.5 shows the broad range of commercially available reagents 

(Sigma-Aldrich
® 

and Maybridge Chemical Co.) 

 

 

Figure 2.5: Selected examples of commercially available (Sigma-Aldrich
®
 and Maybridge 

Chemical Co.) bromo or iodo substituted 5-membered heteroaromatics.  

 

To investigate the scope of the Negishi cross-coupling reaction in relation to the 

synthesis of furyl- or thienyl- amino acids we selected a small set of six different halo-

aromatic starting materials (Figure 2.6).   

 

Figure 2.6: Selected commercially available halo-aromatic starting materials used in this study. 
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The 2-bromofuran (3), 3-bromofuran (4), 2-bromothiophene (5) and 3-bromothiophene 

(6) aromatics are a simple set of derivatives that will offer information on both how 

substitution position (2 versus 3) and heteroatom identity (O versus S) affects the cross-

coupling. The effect of the halogen identity (Br versus I) will also be investigated by 

comparing the cross-coupling of 2-iodothiophene (7) with 6. 2-bromofuraldehyde (8) 

will show the effect of an electron withdrawing aromatic substituent.  

 

β.γ.β.β ȕ-Iodo Amino Acid 

ȕ-Iodo amino acids are routinely and efficiently synthesised from ȕ-hydroxyl amino 

acids (Ser, Thr) with various protection strategies.
65

 The protection strategy of choice is 

guided to afford products that are usable in SPPS with minimal subsequent 

transformations. The two major SPPS strategies are defined by their N-terminal 

protection: Boc or Fmoc. Therefore, the iodoalanine building blocks that we synthesised 

combined either N-terminal Boc or Fmoc protection with orthogonal carboxylic acid 

protection (e.g. benzyl (Bzl) and t-butyl (tBu), respectively). Figure 2.7. The syntheses 

of Boc-ȕ-iodo-Ala-OBzl (1) and Fmoc-ȕ-iodo-Ala-OtBu (9) are described in Scheme 

2.6 and Scheme 2.7, respectively. 

  

Figure 2.7: Boc-ȕ-iodo-Ala-OBzl (1) and Fmoc-ȕ-iodo-Ala-OtBu (9) 

 

 

Scheme 2.6: Synthesis of 1. i: Benzyl bromide, K2CO3, DMF, RT, 18 h. ii: I2, PPh3, imidazole, 

DCM, RT, 18 h. 
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Scheme 2.7: Synthesis of 9. i: TBTA, ethyl acetate, RT, 18 h. ii: I2, PPh3, imidazole, DCM, RT, 

18 h. 

 

The Negishi cross-coupling has been used to synthesise aromatic amino acids since 

1989 and the vast majority of cases utilise N-Boc protection.
32,44,51,52,66-68

 Negishi cross-

coupling with N-Fmoc protected starting materials is a recent development in the 

literature and there is only a small selection of examples that exist.
69-72

 Most reports 

show minimal differences in coupling efficiency (% yield) between N-Fmoc and N-Boc 

protection under the same conditions and Jackson states that “Fmoc protection is not a 

limiting factor in the coupling process” regarding Entry 1 in Table 2.3.
70

 However, 

some of the few comparative reports show a significant lowering of the yield when N-

Fmoc protection is used (Entries 2, 4 and 7 in Table 2.3).
73,74
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Entry Product Structure Sub
n 

R1 R2 
Yield 

(%) 
Ref 

1 

 

- 
Boc 

Fmoc 

Bzl 

tBu 

57 

59 

66,

70 

2 

 

- 
Boc 

Fmoc 

Bzl 

tBu 

57 

31 

66,

70 

3 

 

- 
Boc 

Fmoc 

Me 

Me 

40 

42 
75 

4 

 

- 
Boc 

Fmoc 

Me 

Me 

56 

32 
73 

5 

 

2,6 
Boc 

Fmoc 

Me 

Me 

52 

57 

72 

6 2,5 
Boc 

Fmoc 

Me 

Me 

45 

60 

7 

 

- 
Boc 

Fmoc 

tBu 

Hept 

90 

69 
74 

Table 2.3: A comparison of the effects of N-protection (R1) on a Negishi cross-coupling. 
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It should be noted that in modern SPPS chemistry the Fmoc strategy is more prevalent. 

Hence, aromatic amino acids obtained from 9 are the focus of our work. However, 

Section 2.3.5 describes a small comparative study of the syntheses of two alternatively 

protected 2-furyl heteroaromatic amino acid derivatives to investigate the effects of 

Boc/Bzl and Fmoc/Otbu amino acid protection. 

 

2.3.3 Syntheses of Heteroaromatic N-Fmoc Amino Acids via Pd-Catalysed Negishi 

Cross-Coupling. 

With the β-iodo amino acids and selected halo-aromatics in hand, the Negishi cross-

coupling reactions were undertaken. Previous work in our group developed working 

conditions for the cross-coupling reaction (Scheme 2.8).
33

 

 

Scheme 2.8: a: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 1, 

50 °C, 20 min; ArX (1.00 eq), Pd2(dba)3 (0.03 eq), P(o-tol)3 (0.10 eq), DMF, 50 °C, 5 h; RT, 18 

h. 

 

The conditions stated above (a in Scheme 2.8) became a starting point to attempt to 

access the desired N-Fmoc 5-membered furyl- and thienyl-amino acids (Figure 2.8).  

 

Figure 2.8: Target furyl- and thienyl- amino acids. 
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However, under reactions conditions: (a) (Scheme 2.8 and Scheme 2.9) the only 

reactions that led to purified product were with 13 and 15. Compounds 14, 16 and 17 

were visible as product peaks in crude ESI+ mass spectrum but extensive purification 

did not lead to isolatable product and in every case a good yield of an impurity: Fmoc-

Ala-OtBu (18) was isolated (<70%). 

 

Scheme 2.9: a: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 9, 

50 °C, 20 min; ArX 3, 4, 5, 6  or 8 (1.00 eq), Pd2(dba)3 (0.03 eq), P(o-tol)3 (0.10 eq), DMF, 50 

°C, 5 h; RT, 18 h. *Denotes isolated yield of pure product. 

 

Previous studies have found the formation of the alanine (product of protonation of the 

organo-zinc intermediate) as well as a ȕ-alkenyl amino acid (product of ß-hydride 

elimination) to be common reaction impurities.
66,76

 In the above examples the alanine 

impurity was the major by-product and the ȕ-alkenyl amino acid formation was not 

observed in any case. 

The significant formation of the alanine impurity could stem from the slow reaction 

rates of the halo-furan and halo-thiophene derivatives with the Pd metal catalyst.  

Hence, when the uncompleted reaction is worked up it is in contact with moisture from 

air and silica and any residual organozinc amino acid would be quickly quenched, 

forming alanine: 18 in Scheme 2.10.  
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Scheme 2.10: The quenching of the organo-zinc intermediate to form 18. 

 

Another plausible explanation for the limited yields are that the rate of formation of 18 

is on a similar or faster timescale to the product formation and thus a mixture of these 

compounds are synthesised during the reaction.
66

 This would be the case if external 

proton sources entered the reaction vessel e.g. H2O. However, in all reactions attempts 

were made to reduce moisture content: the reaction was carried out with anhydrous 

solvents and in an argon atmosphere. No experiments have been undertaken to identify 

the specific pathway(s) to impurity formation. However, numerous attempts have been 

made to optimise the reaction conditions to enable the synthesis of all target molecules 

(Section 2.3.4). 

 

2.3.4 Optimisation of the Synthesis of Heteroaromatic N-Fmoc Amino Acids 

Jackson’s group showed that a significant increase in yields as well as a wider scope of 

starting materials could be achieved on switching phosphine ligands from P(O-tolyl)3 to 

SPhos, the structures of which are shown below in Figure 2.9.
32

 SPhos is a very bulky 

biaryl ligand that is known to improve various Pd cross-coupling reactions, as seen with 

the Suzuki-Miyaura reaction.
77,78

 SPhos enabled the synthesis of extremely hindered 

aryl boronic acids and aryl halides and also allowed for reduced catalyst loading.
32,77

 

 

Figure 2.9: The chemical structures of P(O-tolyl)3 to SPhos phosphine ligands. 
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Literature suggests that in the cross-coupling catalytic cycle (Scheme 2.3) the 

monoligated phosphine palladium species is the most reactive.
79

 Biarylphosphines like 

SPhos have the ability to stabilise both Pd
(0)

 and Pd
(II)

 monoligated species. The 

stabilisation of the Pd
(0)

 species is due to interactions between the Pd
(0)

 centre and the π-

aromatic system (specifically the ipso-carbon (i in Figure 2.9). The stabilisation of the 

Pd
(II)

 species is via coordination of the alkoxy (OMe) substituent. 

The rate limiting step in the analogous Suzuki-Miyaura reaction is believed to be the 

transmetallation step.
80

 Therefore, a huge benefit is gained by the stabilisation of the 

product from the oxidative addition step (The monoligated Pd
(II)

 species) as this 

subsequently performs the “rate-limiting” transmetallation.
78

 SPhos is a bulky ligand 

with excellent properties for Pd cross-coupling chemistry.
32

 Hence, the synthesis of low 

yielding compounds 13, 14, 16 and 17 was undertaken using reaction conditions (b) that 

made use of the SPhos ligand (Scheme 2.11). 

 

Scheme 2.11: b: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 

9, 50 °C, 20 min; ArX 3, 4, 5 or 6 (1.00 eq), Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), DMF, 50 °C, 

5 h; RT, 18 h. *Denotes isolated yield of pure product. 

 

Reaction conditions (b) showed significant improvement over conditions (a), allowed 

access to compounds 14, 16 and 17 and improved the yield of 13. However, the yields 

are still only moderate (24 - 42%). Therefore, further efforts were made to increase 

yield: the use of aromatic iodides and temperature lowering. 
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In general, aromatic iodides are found to be better reagents for cross-coupling reactions 

than the corresponding aromatic bromides.
52

 An increase in yield when using iodo-

aromatics is generally expected as they typically have lower bond dissociation energies 

than bromo-aromatics. This leads to an increased reactivity in the oxidative addition 

step of the catalytic cycle.
52

 The severity of the effect can vary significantly and has 

shown to be more pronounced with sterically hindered or phenolic halo-aromatics.
52

 

Therefore, to further improve yields we attempted a trial reaction with commercially 

available 2-iodothiophene (7), under conditions; b in Scheme 2.12.  

 

 

 

Scheme 2.12: b: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 

9, 50 °C, 20 min; ArX 6 or 7 (1.00 eq), Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), DMF, 50 °C, 5 h; 

RT, 18 h. *Denotes isolated yield of pure product. 

 

As indicated in Scheme 2.12 the observed yield increase when using iodothiophene was 

small (24% to 26%) and due to the restricted set of commercially available iodo-furans 

further investigations were not carried out. 

The final attempt to optimise the cross-coupling was to conduct a trial reaction at lower 

temperature as the temperatures used in conditions a and b could possibly contribute to 

a lowering of yields via compound breakdown. However, previous studies found a 

balance between increasing reaction rates and thermal decomposition was needed. 

Generally, reactions conducted at 50 °C yielded optimal results.
52,66

 

This trial was undertaken using 2-iodothiophene with the reaction temperature for the 

first 5 hours of the reaction lowered from 50 °C to room temperature: conditions c 

(Scheme 2.13). 
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Scheme 2.13:Synthesis of 16 under conditions a, b and c. a: Zn (4.00 eq), 100 °C, 20 min, in 

vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 9, 50 °C, 20 min; Pd2(dba)3 (0.03 eq), P(o-tol)3 

(0.10 eq), 7 (1.00 eq),  DMF, 50 °C, 5 h; RT, 18 h. b: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 

(cat.), DMF, 70 °C, 20 min, argon; 9, 50 °C, 20 min; Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), 7 

(1.00 eq), DMF, 50 °C, 5 h; RT, 18 h. c) Zn dust (4.00 eq), 100 °C, 20min, in vacuo; I2 (cat.), 

DMF, 50 °C, 20min, argon; 9, RT, 20 min; Pd2(dba)3 (0.03 eq), SPhos (0.10 eq), 7 (1.00 eq), 

argon, DMF, RT, 24 h. *Denotes isolated yield of pure product. 

 

The trail reaction at lower temperature gave rise to a slightly lower yield (22%). This 

agrees with previous findings.
52

 This is evidence that thermal decomposition during the 

reaction is not a significant yield limiting factor. Table 2.4 summarises the entire work 

in this area. 

 

 

 

 

 

 

 

 

 

 



57 

 

Entry 
Halo-aromatic 

(ArX) 
Product 

Conditions Yield (%)* 

a: b: c: 

1 

 

 

11 42 - 

2 

 

 

0 27 - 

3 

 

 

0 24 - 

4 

 

 

0 24 - 

5 

 

 

0 26 22 

6 

 

 

46 - - 

Table 2.4: Summary of Negishi cross-coupling reactions to form thienyl- or furyl-alanines 

under conditions: a, b and c. a: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 

min, argon; 9, 50 °C, 20 min; Pd2(dba)3 (0.03 eq), P(o-tol)3 (0.10 eq), ArX (1.00 eq),  DMF, 50 

°C, 5 h; RT, 18 h. b: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, 

argon; 9, 50 °C, 20 min; Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), ArX (1.00 eq), DMF, 50 °C, 5 h; 

RT, 18 h. c: Zn dust (4.00 eq), 100 °C, 20min, in vacuo; I2 (cat.), DMF, 50 °C, 20min, argon; 9, 

RT, 20 min; Pd2(dba)3 (0.03 eq), SPhos (0.10 eq), ArX (1.00 eq), argon, DMF, RT, 24 h. 

*Denotes isolated yield of pure product. 

 



58 

In the Pd-catalysed cross-coupling reaction to form compounds 13 – 17 in Table 2.4 a 

major difference in the isolatable yields was observed by switching phosphine ligands. 

However, the yield was also dependant on the halo-aromatic and the substitution 

positions. The synthesis of the furan (13 and 14) and thiophene (16 and 17) amino acid 

derivatives gave yields ranging from 22 to 46%. This is potentially due to the electronic 

properties of the aromatic rings and can be visualised by their NMR spectra Figure 

2.10.  

 

Figure 2.10: The chemical shift in ppm (in CDCl3) of the heteroaromatic functional group in 

furan and thiophene. In both cases the electron density is lower at the 2 position (less 

deshielded). 

 

Hydrogen atoms at positions 2, 5 have decreased electron density over the 3, 4. The 

electron withdrawing inductive effect of the significantly more electronegative oxygen 

or slightly more electronegative sulphur atom is pronounced at the 2 position. The 

electron deficiency at the 2 position (Figure 2.10) translates to the increased yields 

compared to the 3 position. The yield of 13 (42%) is increased compared to 14 (27%) 

under the same conditions. The effect is more pronounced for the furan than the 

thiophene derivatives because the oxygen atom is more electronegative than sulphur. 

These results agree with the literature surrounding the Suzuki-Miyaura reaction as 

evidence suggests that the effect of an electron withdrawing groups (EWG) is to 

increase the reactivity of Pd-catalysed cross-coupling due to an enhancement of the 

oxidative addition step.
78

  Therefore, an improvement in the cross-coupling reaction of 

halo-aromatics would be observed at positions on the ring with lower electron density 

(e.g. position 2) or when EWGs are present (e.g. an aldehyde). 15 was synthesised in 

moderate yield (46%) without using the SPhos ligand as the aldehyde EWG increases 

the reactivity of the halo-heteroaromatic (Entry 3, Table 2.4).
81

 

However, in the synthesis of 6-membered aromatic amino acids via the Pd-catalysed 

Negishi cross-coupling an electrostatic trend based on the halo-aromatic is not 
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observed. The literature shows only that electron withdrawing (R1 = F) and electron 

donating (R1 = OMe) halo-aromatic substituents lower the yield compared to halo-

benzene (Table 2.5).
82

 

 

 

Entry X R1 
Conditions Yield (%)* 

d:
32

 e:
52

 f:
32

 

1 I H 80   

2 I F 77   

3 I OMe 65   

4 Br H  60  

5 Br F  40  

6 Br OMe  48  

7 Br H   77 

8 Br F   69 

9 Br OMe   65 

Table 2.5: The effect of p-fluoro (EWG) and p-methoxy (EDG) groups on the Pd-catalysed 

Negishi cross-coupling of 6-membered halo-aromatics. (adapted from Ross et al.
32

 and Oswald 

et al.
52

). Conditions: d: Pd2(dba)3 (0.25 mol %), SPhos (0.5 mol %), DMF, RT, overnight.
32

 e: 

Pd(OAc)2 (5.0 mol %), P(o-tol)3 (10 mol %), DMF, 50 °C, 2 h.
52

 f: Pd2(dba)3 (2.5 mol %), 

SPhos (5.0 mol %), DMF, 50 °C, 3 h.
32
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2.3.5 Synthesis of Heteroaromatic N-Boc Protected 2-Furyl Alanine 

Given the low yields observed in the synthesis of N-Fmoc amino acids, we decided to 

synthesise the N-Boc-2-furylalanine-OBzl (19) building block as a small comparative 

study to probe the effect of changing the protecting groups on the Negishi cross-

coupling reaction. The synthetic conditions (b in Scheme 2.13 and Scheme 2.14) were 

applied to an N-Boc starting material (1) and 2-bromofuran (3). 

 

Scheme 2.14: Synthesis of the N-Boc and N-Fmoc furylalanines 19 and 13. b: Zn (4.00 eq), 100 

°C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 1 or 9, 50 °C, 20 min; 3 (1.00 eq), 

Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), DMF, 50 °C, 5 h; RT, 18 h. *Denotes isolated yield of 

pure product. 

 

This synthesis outlined in Scheme 2.14 shows that Boc/OBzl protected amino acids are 

readily synthesised and show significantly higher yields when compared to the 

Fmoc/OtBu derivative. The N-Boc protected product (19) was then used in an attempt 

to synthesise Ȗ-glutamyl-2-furylalanine.  

 

2.3.6 Synthesis of Ȗ-Glutamyl-2-furylalanine  

Ȗ-Glutamyl-2-furylalanine is a simple dipeptide natural product containing L-(2-

furyl)alanine (Figure 2.11).  

 

Figure 2.11: Dipeptide natural product: Ȗ-glutamyl-2-furylalanine. 
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The published 10 step synthesis of Ȗ-glutamyl-2-furylalanine is surprisingly long with 6 

steps devoted to the synthesis of appropriately protected L-(2-furyl)alanine via an 

alkylation, saponification, decarboxylation and subsequent chiral resolution (Route 1 in 

Scheme 2.15).
61

 The Pd-catalysed Negishi cross-coupling reaction gives access to L-2-

furylalanines commercially available iodoalanine derivatives in one step (Route 2 in 

Scheme 2.15). 

 

 

Scheme 2.15: Two routes to protected 2-furyl amino acid derivatives. i: NaOMe, reflux, 2 h. ii: 

Ba(OH)2, RT, 24 h. iii: dioxane, reflux, 24 h. iv: KOH, RT, 17 h. v: acylase I, CoCl2. vi: allyl 

alcohol,  p-TSA, benzene, reflux, 18 h. vii: Zn, 100 °C, 20 min, in vacuo; I2, DMF, 70 °C, 20 

min, argon; 1, 50 °C, 20 min; 3, Pd2(dba)3, SPhos, DMF, 50 °C, 5 h; RT, 18 h. 

 

 

Therefore, a truncated synthesis of Ȗ-glutamyl-2-furylalanine could be envisaged. We 

attempted a four step retrosynthetic pathway using commercially available building 

blocks (Scheme 2.16). 
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Scheme 2.16: Proposed four step retrosynthesis of Ȗ-glutamyl-2-furylalanine. i: Zn (4.00 eq), 

100 °C, 20 min, in vacuo; I2 (cat.), DMF, 70 °C, 20 min, argon; 1, 50 °C, 20 min; 3 (1.00 eq), 

Pd2(dba)3 (0.03 eq), SPhos (0.09 eq), DMF, 50 °C, 5 h; RT, 18 h. ii: TFA/DCM (1:1), RT, 30 

min. iii: Z-Glu-OBzl (1.0 eq), PyBOP (1.0 eq), Z-Glu-OBzl (1.0 eq), DIPEA (2.0 eq), DCM, 

RT, 20 h. iv: H2, Pd(cat), MeOH, RT, 2 h. 

  

This synthetic strategy was undertaken with the first step as the acid catalysed N-Boc 

deprotection of 19. The stability of these amino acids in synthetic procedures has been 

reported to be poor under acidic
83

 and hydrogenation
61

 conditions. In our hands, the 

furan moiety present proved stable to the acidic conditions and the desired dipeptide 

(21) was synthesised in a solution phase peptide coupling reaction (Scheme 2.17).  

 

 

Scheme 2.17: i: TFA/DCM (1:1), RT, 30 min. ii: PyBOP (1.0 eq), Z-Glu-OBzl (1.0 eq), DIPEA 

(2.0 eq), DCM, RT, 20 h. 
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Various attempts were made to carry out the global deprotection of 21 to give natural 

product Ȗ-glutamyl-2-furylalanine. However, the hydrogenation yielded a complex 

mixture of inseparable products with Ȗ-glutamyl-2-furylalanine being identified only as 

a potential product in analysis of the crude reaction mixture by mass spectrometry 

(Scheme 2.18). 

 

 
Scheme 2.18: i: H2, Pd(cat), MeOH, RT, 2 h. ii: H2, Pd(cat), EtOAc, RT, 2 h. 

 

This reaction shows that the benzyl protection strategy (prevalent in Negishi cross-

coupling amino acid synthesis) is of limited use with furyl moieties due to their 

instability to standard deprotection conditions. This emphasises the importance of the 

work in Section 2.3.3 to provide facile syntheses N-Fmoc heteroaromatic derivative 

amino acids as both furyl and thienyl amino acids are known to be stable to the SPPS 

protocols under optimised conditions.
83

 Therefore, it could be envisaged the N-Fmoc 

derivatives could be used to access the natural product via SPPS. Alternatively, future 

solution phase syntheses would use iodoalanine and glutamic acid starting materials 

with a furyl stable global deprotection step. e.g. Boc/tBu or allyl ethers.
61

  

 

2.3.7 Heteroaromatic Amino Acids Conclusions 

A small library of heteroaromatic amino acids that were previously difficult to access, 

have been prepared, Figure 2.8.
84

 The original reaction conditions (a in Scheme 2.13) 

were unsatisfactory and yielded poor results. The SPhos ligand provided a route to their 

synthesis and gave isolatable yields of orthogonally protected heteroaromatic amino 

acids of 24 - 42% see Table 2.4. These compounds are ready to be used as building 

blocks in solution and SPPS e.g. on-resin synthesis of cyclic dipeptides (see Chapter 

4). 
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2.4 Biologically Relevant Fluorine Containing Molecules 

Fluorine is an element with a high electronegativity, small atom radius, low (C-F bond) 

polarizability and the natural isotope (
19

F, 100% abundance) has a nuclear spin of ½ as 

well as a large magnetogyric ratio (83% that of 
1
H).

85
  These chemical and physical 

properties mean that the incorporation of fluorine into bioactive molecules is important 

in many areas of biological chemistry. Of relevance to the work reported here, are the 

roles that fluorine plays in medicinal chemistry (Section 2.4.1) and peptide/protein 

chemistry (Section 2.4.2). 

 

2.4.1 Organofluorine in Medicinal Chemistry 

Often when a C-O or C-H is substituted for a C-F bond in a bioactive molecule an 

increase in drug effectiveness can be observed,
86

 e.g. increased metabolic stability, 

target binding and lipophilicity/membrane permeability.
87,88

 Over the past twenty years 

fluorine has come to the forefront of medicinal chemistry and is second only to nitrogen 

as the favoured heteroatom in drug design,
87

 with 9 out of the 19 US FDA approved 

drugs contained fluorine in 2007.
86

 Figure 2.12 shows three FDA approved drugs 

including: Ornidyl , a fluoro-amino acid licensed to treat sleeping sickness.
87,89

 

 

Figure 2.12: Fluorine containing drugs:  Ornidyl for sleeping sickness, Sunitinib is licenced to 

treat  gastrointestinal stromal tumor  and renal cell carcinoma, Potiga for epilepsy and 

Roflumilast as an anti-inflammatory agent.
87
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2.4.2 Fluorine in Peptide/Protein Chemistry 

Organofluorine molecules can be utilised in peptide/protein chemistry as structural 

probes providing the required handle to carry out 
19

F NMR studies (Figure 2.13).
9,11

 

Fluorine can be site selectively incorporated into bioactive molecules and the
 19

F nuclei 

provides dynamic or topological NMR information in proteins (or protein complexes) 

which are unstable or too large for full structural analysis. 
19

F NMR spectroscopy is 

particularly useful in in vivo measurements as there is an absence of background 
19

F 

signals and the chemical shift sensitivity to the nuclei’s environment is large (around a 

100 fold increase in chemical shift dispersion over 
1
H).

85
 This translates to easier 

measurements of weak binding, folding, conformational change or reaction kinetics.
11

 

Therefore, 
19

F NMR can provide insights into folded and partly folded states of proteins 

which is vital to understanding protein-protein interactions
90

 including the mechanism 

of folding.
91,92

 

 

Figure 2.13: 3-Bromo-1,1,1-trifluoroacetone (BTFA) is commonly used to site selectively 

modify proteins in a single step reaction, e.g. in the structural elucidation of the membrane 

protein diacyl glycerol kinase. 2,2,2-trifluoroethanethiol (TFET) reacts specifically with 

cysteine thiols and has been used to measure NOEs between in the cytoplasmic domain of 

rhodopsin.
85

 3-Fluorotyrosine and 4,4,4-trifluorovaline are examples of ß-substituted amino 

acids that can be biosynthetically incorporated into bioactive molecules.
93

 

 

Organofluorines (Figure 2.14) are also incorporated into to peptides/protein molecules 

as conformational modulators
5
/stabilizers

94
 to stabilise or impart secondary structural 

motifs. These motifs are vital for peptide function and stability.  
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Figure 2.14: (2S,4R) 4-Fluoroproline is able to significantly strengthen a proline helix due to 

the fluorine gauche effect giving a high preference to an exo-position.
94

 2-Fluorotyrosine (as 

well as other fluorinated tyrosine derivatives) have been utilised as a way to modulate the 

hydrogen bonding potential and pKa of the phenolic moiety in tyrosine.
5,18,19

 

 

Due to the aforementioned applications, a number of fluorinated amino acids have 

become commercially available from multiple companies e.g. Sigma-Aldrich
®
, 

Polypeptide and High Force Research. Figure 2.15 shows all the fluorinated amino 

acids currently available from Sigma-Aldrich
®
. The synthesis of novel fluorinated 

amino acids or improved synthetic routes to their synthesis is an expanding area of 

research.  
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Figure 2.15: Commercially available amino acids from Sigma-Aldrich
® 

 

The Cobb group has previously prepared a range of fluorinated-amino acids with a 

variety of different applications: A dual IR and NMR spectroscopy probe 

(unpublished),
14,95

 structural stabilizers
8
 and in the facile synthesis of dehydroamino 

acid derivatives
82

 (Figure 2.16). 
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Figure 2.16: Previously synthesised fluorinated amino acids by the Cobb group: 3-

trifluoromethyl, 4-cyano–L–phenylalanine and tetrafluoropyridoxy–L–serine. 

 

2.4.3 Iturin A and Lipopeptides from Bacillus sp. CS93 

Research in the Murphy group
96

 at University College Dublin showed that 

commercially available 3-fluorotyrosine could be incorporated into the antimicrobial 

cyclic lipopeptide: Iturin A. Iturin A is non-ribosomally biosynthesised by Bacillus sp. 

CS93 (Figure 2.17).  

 

Figure 2.17: The structure of Iturin A and fluorinated Iturin A. 

 

The antifungal mode of action of this class of lipopeptide is to generally bind and 

increase the permeability of the cell membrane. The hydroxyl group of the tyrosine 

residue of Iturin A is thought to be responsible for an important interaction in 

membrane binding as it interacts with fungal membrane sterol.
97

 Thus, the addition of 
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an electron withdrawing ring substituent would alter the pKa of the hydroxyl and affect 

activity (Figure 2.18). 

 

Figure 2.18: The structures of: Tyrosine, 2-fluorotyrosine (22), 3-fluorotyrosine and 2,3-

difluorotyrosine (23) with the pKa of the phenol hydroxyl indicated. pKa were measured using 

spectrophotometry in aqueous buffer.
56

 

 

In collaboration with the Murphy group we were keen to explore the potential 

application of the non-commercially available unprotected amino acids 2-fluorotyrosine 

and 2,3-difluorotyrosine (31 and 32 in Figure 2.18). The aim was to use biosynthetic 

incorporation of these amino acids to access a small library of fluorinated lipopeptides 

for biological evolution. 

 

 

2.5 Synthesis of Fluoro-Tyrosine Derivative Amino Acids via Pd-

Catalysed Negishi Cross-Coupling. 

2.5.1 Previous Syntheses of Fluorinated Tyrosine Derivative Amino Acids 

The most prevalent literature route to the synthesis of fluorinated tyrosine derivatives is 

via enzymatic synthesis that utilises tyrosine phenol lyase and fluorinated phenol 

starting materials. Yields of purified (unprotected) amino acids range from low to 

moderate (10 - 42%).
19,98

 Other routes do exist, e.g. via a chiral glycine anion 

equivalent.
99

 Surprisingly, a Negishi cross-coupling method has not been utilised for the 

synthesis of fluorinated tyrosine amino acids despite the fact that a range of 

phenylalanine derivatives have been reported. 
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2.5.2 Preparation/Choice of Starting materials 

2.5.2.1 Synthesis of ȕ-Iodo Amino Acid 

Iodo-amino acid building blocks (1 and 9) were previously synthesised (Section 2.3.3 

and 2.3.5, respectively). In this study the N-Boc derivative (1) was chosen over the N-

Fmoc (9) as it was shown to give higher yields and the deprotection steps yield volatile 

by-products that do not require an additional purification. The N-Boc protection is 

removed under acidic conditions and the OBzl is generally removed by 

dehydrogenation. 

 

2.5.2.1 Preparation of Halo-Aromatic 

A number of para-substituted halo-phenols are commercially available from Sigma-

Aldrich
®
: Specifically, fluorinated derivatives: 4-bromo-3-fluorophenol (24); 4-bromo-

2-fluorophenol; and 4-bromo-2,3-difluorophenol (25) (Figure 2.19).  

 

Figure 2.19: The structure of: 4-bromo-3-fluorophenol (24); 4-bromo,2-fluorophenol; and 4-

Bromo-2,3-difluorophenol (25) 

 

4-Bromo-3-fluorophenol (24) and 4-bromo-2,3-difluorophenol (25) were chosen as 

starting materials to access the target molecules 22 and 23, respectively. The Negishi 

cross-coupling of 4-bromo-2-fluorophenol was not investigated as 3-fluorotyrosine is 

commercially available. 

There is precedence for the use of 2-, 3- or 4-halo-phenols as substrates in the Pd-

catalysed Negishi cross-coupling reaction.
48

 The reaction was found to be tolerant to the 

acidity of a phenol hydroxyl group. However, comparatively diminished yields were 

observed.
48

 Fluorine substitution is known to increase acidity of the phenol hydroxyl 

group and the tolerance of the Negishi reaction to fluorinated iodo-phenols is 
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unknown.
100

 Therefore, a more tentative strategy that utilises a hydroxyl protecting 

group was chosen. As the ȕ-iodo amino acid being used is 1 an appropriate protection of 

the hydroxyl group would match either the N-Boc or OBzl so that it could be removed 

in the same step and truncate the route to the unprotected amino acids needed to 

supplement into the growth medium of Bacillus sp. CS93. OBzl protection of the phenol 

hydroxyl was chosen and protected products (26 and 27) were obtained in good yield 

and no efforts were made to further optimise this reaction (Figure 2.20). 

 

Figure 2.20: Synthesis of 26 and 27. i: K2CO3 (1.20 eq), benzyl bromide (1.10 eq), DMF, RT, 

18 h. *Denotes isolated yield of pure product. 

 

2.5.3 Synthesis of Fluoro-Tyrosines 

A Negishi reaction was carried out using 26 and 27 with our best previous conditions (b 

from Section 2.3.3, Scheme 2.19). 

 

Scheme 2.19: Synthesis of 28 and 29. b: Zn (4.00 eq), 100 °C, 20 min, in vacuo; I2 (cat.), DMF, 

70 °C, 20 min, argon; 1, 50 °C, 20 min; 26 or 27 (1.00 eq), Pd2(dba)3 (0.02 eq), SPhos (0.07 eq), 

DMF, 50 °C, 5 h; RT, 18 h. *Denotes isolated yield of pure product. 

 

The Pd-catalysed Negishi cross-coupling reaction gave protected product (28 and 29) in 

good yield. The fluoro-tyrosines were subsequently deprotected by Dr. O’Connor at 
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University College Dublin to give target molecules 22 and 23 in 71% and 57% yields, 

respectively (Scheme 2.20). 

 

 

Scheme 2.20: i: HCl(aq), MeOH ,RT, 4 h.; ii: H2, Pd(cat), MeOH.** *Denotes isolated product 

after HPLC purification. **If steps i and ii reveal methylation of the carboxylic acid a 

subsequent basic step is undertaken: KOH, MeOH, H2O, RT, 24 h. 

 

2.5.4 Biosynthesis of Fluoro-Tyrosine Lipopeptides: Iturin A and Fengycin  

Below is a summary of the biosynthetic work that was carried out by Dr. O’Connor at 

University College Dublin and Durham University. This work has also been published in Amino 

Acids.
20

 

Amino acids 22 and 23 as well as 3-fluorotyrosine and cis-fluoroproline (30)
*
 (Figure 

2.21) were supplemented into the growth medium of Bascillus sp. CS93 and extracts 

from the cultures were analysed for fluorinated lipopeptide content. 

 

Figure 2.21: The amino acids supplemented to the growth medium of Bascillus sp. CS93. 

                                                           

 

*
 The synthesis of 30 is described in Appendix 1. 
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The analysis of culture extracts showed that fluorinated tyrosine amino acids were 

incorporated into iturin A and another lipopeptide: Fengycin (Figure 2.22) to differing 

extents (Table 2.6). 

 

Figure 2.22: Structures of C-16 fengycin and C-14 iturin A. Tyrosines are labelled in blue. 

 

 

Entry Compound No. Amino Acid 
Incorporation 

Iturin A Fengycin 

1 - 3-fluorotyrosine √ √ 

2 22 2-fluorotyrosine x x 

3 23 2,3-difluorotyrosine x √ 

4 30 cis-fluoroproline x x 

Table 2.6: Observed incorporation of fluorinated tyrosines into lipopeptides. 
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Purified fluoro-iturin and mono-fluoro-fengycin were tested for anti-fungal activity in a 

bioassay. The results showed similar but not improved potency compared to the natural 

products: Iturin A and a mixture of iturin/fluoroiturin showed a minimum inhibitory 

concentration (MIC) of 32 μg/mL against the fungus: Trichophyton rubrum. 

Whereas, Fengycin (C-16 and C-17) and the 3-flourotyrosine or 2,3-difluorotyrosine 

containing fluorinated derivatives exhibited no inhibition (at the highest 

concentration tested: 64 μg/mL).20 

 

2.5.5 Fluorinated Tyrosine Conclusions  

Two fluorinated tyrosine amino acids (22 and 23) have been efficiently synthesised via 

Pd-catalysed Negishi cross-coupling. The synthetic route is a major improvement on the 

synthetic routes previously described.
19,98,99

 The fluorinated amino acids were amenable 

(to varying extents) to incorporation via biosynthetic methods into natural products: 

fengycin and iturin A.  

 

2.6 General Conclusions on Heteroaromatic Synthesis via Pd-

Catalysed Cross-Coupling 

The Negishi cross-coupling strategy is an extremely useful “tool” in the synthesis of a 

variety of unnatural aromatic amino acids from simple building blocks (1 or 9). A series 

of previously difficult to access (via Negishi cross-coupling) furyl- and thienyl- amino 

acids (X=O and X=S, respectively) as well as previously undescribed (via Negishi 

cross-coupling) fluoro-tyrosines were synthesised. These amino acids were synthesised 

with protecting group (P1 and P2) strategies to facilitate their translation into bioactive 

products. The N-Boc (P2), OBzl (P1) strategy proved successful in the synthesis of 

fluorotyrosines and 2,3-difluorotyrosine (23) was incorporated into the fengycin via 

biosynthesis (Section 2.4.5). In the synthesis of furylalanines, the N-Boc (P2), OBzl (P1) 

strategy proved high yielding, yet the 2-furyalanine derivative (19) was not stable to 

deprotection via hydrogenation. However, the lower yielding N-Fmoc (P2) OtBu (P1) 

has enabled the 2-furyalanine (13) derivative to be incorporated into a DKP scaffold 

that will be tested for inhibitory activity against CCL2 induced chemotaxis (Chapter 4). 
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3.1 Thiol Containing Amino Acids 

3.1.1 Native Chemical Ligation (NCL) 

Since its discovery native chemical ligation (NCL) has enabled routes to the total 

chemical synthesis of numerous proteins
1
 and the semi-synthesis of even larger 

biological constructs.
2,3

 NCL originates from a reaction that has been known since 1956 

where Wieland et al. synthesised a valine-cysteine dipeptide in aqueous buffer from a 

valine-thioester and a native cysteine.
4
 In 1994 Kent et al. were able to extend this 

reaction to form a peptide chain from two fully deprotected peptide segments.
1
 

NCL relies on the chemoselective coupling of two unprotected peptides in a neutral 

aqueous solution, one bearing a C-terminal thioester and the other an N-terminal 

cysteine (Scheme 3.1). NCL is carried out under denaturing conditions (to inhibit the 

formation of secondary structures that lower peptide solubility) and typically in the 

presence of a thiol catalyst. The thiol catalyst (e.g. thiophenol) is added to the reaction 

so that a more activated thioester is formed in situ. 
5
 

 

Scheme 3.1: The general mechanism for NCL: The first step involves formation of the 

“activated” thioester on the C-terminal segment. This is subsequently attacked by the N-

terminal cysteine segment. The final step is the irreversible acyl-transfer yielding a native 

peptide bond and a cysteine thiol. 

 



81 

One of the key advantages of NCL is that the reaction can be carried out on unprotected 

peptides and peptides that contain more than one cysteine residue. An example of this 

can be seen in the preparation of Human interleukin-8 (IL-8 or CXCL8). CXCL8 is a 

72-amino acid chemokine that was synthesised from two peptide segments (of 33 and 

39 residues in length) using NCL (Scheme 3.2).
1
 The reaction proceeded regio-

selectively to give the desired product, where the N-terminal cysteine had been utilised 

in preference over the internal cysteine in the IL-8 (35-72) fragment. Tolerance to 18 of 

the 20 total natural amino acids was shown as well as the lack of interference from 

internal other cysteines.
1
 The resulting protein was purified and oxidised to give a 

folded protein that displayed the same physical and biological properties as a reference 

sample of CXCL8.
1
 

 

Scheme 3.2: The deprotected and purified peptide segments are reacted in a NCL reaction. 

Segment 1-33 contains a thioester moiety and 35-72 contains an N-terminal cysteine. 

 

The chemo-selectivity observed in the NCL reaction (i.e. cysteine over lysine or serine 

nucleophiles) is due to the chemical properties of thioesters. Thioesters are regarded as 

being more stable to hydroxide-catalysed hydrolysis than oxoesters and more reactive to 

thiolysis and aminolysis.
5
 Thus, unprotected peptides can be ligated via the N-terminal 

cysteine without the formation of by-products formed from other nucleophilic side 

chains in the peptide fragments. Generally, NCL has a wide scope and gives good yields 

with low levels of epimerisation. NCL has become a keystone in the chemical synthesis 

of proteins. Thus, numerous approaches to overcome its limitations are being 

investigated.
5,6
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3.1.3 Native Chemical Ligation Limitations 

A major limitation of NCL is that the protein must not only contain a cysteine residue 

but also one in a preferred central site for ligation.
5
 However, the first step to expand 

NCL from strictly Xaa-Cys junctions was to utilise a post-ligation desulfurisation 

reaction of cysteine to form alanine. This reaction was introduced by Yan and Dawson 

in the total chemical syntheses of various cysteine-free peptides. For example, the cyclic 

antibiotic microcin J25.
7
 An alanine was replaced by a cysteine and used in ligation. 

Upon intramolecular ligation the cysteine is specifically desulfurised by H2/metal 

catalysts (primarily Pd/Al2O3) to yield the native alanine (Xaa-Ala) (Scheme 3.3).
7
  

 

Scheme 3.3: The NCL reaction (i) and the subsequent desulfurisation reaction (ii) that yield a 

peptide: microcin J25 with a native amide bond between A and G residues. i: 0.1M tris-HCl, 6 

M Gdn, benzyl mercaptan, thiophenol pH 8.5. ii: H2, Pd/Al2O3, AcOH.
7
 

 

Advances in the field have enabled tolerance of other cysteines via orthogonal 

protection (e.g. with Acm)
8
 and metal-free strategies have been developed using a 

radical initiator as well as a trialkylphosphine.
9
 Perhaps the most important 

advancement in this field comes from the use of unnatural amino acids that can easily 

be inserted into peptide chains with SPPS.  
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The first unnatural thiol amino acid to be used in NCL was penicillamine.
6
 N-terminal 

penicillamine was used in a NCL and desulfurisation of the product yielded a Xaa-Val 

amide in the peptide sequence. Since these early investigations a variety of ȕ-thiol 

containing amino acids have been incorporated into peptides and effectively used in the 

joint NCL/desulfurisation combination reactions to yield Xaa-Leu,
10

 Xaa-Pro
11

 and 

Xaa-Phe
12

(Scheme 3.4) junctions. 

 

Scheme 3.4: The NCL reaction (i) and the subsequent desulfurisation reaction (ii) that yield a 

peptide (LYRMGFRANK) with a native amide bond between G and F residues. 0.1M tris-HCl, 

MeSNa, TCEP, pH 8. ii: 0.1M phosphate buffer, NaCl2.6H2O, NaBH4, pH 7. 

 

 

3.1.3 Multiple Ligation Strategies: N-terminal Cysteine Protection 

When a stepwise approach to ligations of numerous segments is undertaken, orthogonal 

yet conventional protecting group strategies must be used to keep terminal cysteines 

masked until they are needed. An example is the total one-pot synthesis of 

(V15A)crambin (Scheme 3.5).
13

 The first step in this strategy is the ligation of the Thz 

protected (terminal cysteine) peptide segment 16-31 to segment 32-46. The Thz 

protection is then removed (with methoxyamine.HCl) and a further ligation of this 

product to the last segment 1-V15A, yields the full peptide. The reactions are carried out 

in one-pot without intermediate purification steps.
13
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Scheme 3.5: The one-pot synthesis of (V15A)crambin from three peptide segments (1-V15A, 

16-31 and 32-46). 

 

3.1.4 Multiple Ligation Strategies: Kinetic Native Chemical Ligation 

Another major advancement in the approach to multiple NCL strategies is to tailor the 

reaction kinetics so that multiple peptide segments can be ligated together in a 

controllable and sequential manner. For example, when a normal “unreactive” alkyl 

thioester and a more reactive (pre-formed) aryl thioester are competitively ligated, the 

aryl thioester successfully outcompetes the alkyl thiol (until exogenous thiol catalyst is 

added).
14

 

New avenues for the development of kinetically controlled NCL reactions have recently 

opened up due to the application of unnatural N-terminal ȕ-thiol amino acids. The 

Danishefsky group was able to utilise a noted difference in reactivity (towards NCL) in 

two N-terminal ȕ-thiol amino acids (cystiene and (R,R)mercaptoleucine) to perform a 

kinetically controlled ligation followed by desulfurisation to yield an alanine and 

leucine residue at the ligation junctions, respectively (Scheme 3.6). 
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Scheme 3.6: A two-step kinetically controlled NCL reaction. i: 6 M Gn•HCl, 100 mM 
NaH2PO4, 50 mM TCEP, pH 7.5, 0.5 h. ii: 6 M Gdn HCl, 100 mM NaH2PO4, 50 mM TCEP, pH 

7.5, 0.5 h; MESNa, H2O:MeCN (1:1), 1 min. iii: TCEP, VA-044, tBuSH, 1h. 

 

Moreover, significant differences in NCL reactivity were also noted between (R,S) and 

(R,R)-ȕ-mercaptoleucine. The ligation yields for the (R,S) and (R,R) diastereoisomers 

(under the same conditions) were 75% or 12%, respectively.
15

 Following this, the 

Danishefsky group showed the stereochemical effect to be more pronounced on cis- and 

trans- thio-proline amino acids. Under the same conditions the cis- and trans- 

diastereoisomers showed <5% and 85% conversion to ligated product, respectively.
11

  

With ȕ-thiol amino acids exhibiting major differences in reactivity (yield and/or 

reaction time) in specific NCL conditions and changes to just one stereo-centre leading 

to a large effect
11

 it is surprising that extensive biophysical studies are lacking in this 

area. Thus, more information on the nature of the thio- amino acids would be beneficial 

as detailed insights into their NCL reactions are needed in order to expand the area of 

kinetically controlled NCL reactions. A starting point to achieve this understanding is to 

measure the pKas of a series of thiol amino acids. 
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3.2 Syntheses of Thiol Containing Amino Acids 

3.2.1 Synthesis of a Small Library of Thiol Containing Amino Acids 

Many thio- amino acids are commercially available (e.g. Cys and Pen, giving Ala
7
 or 

Val
6
 ligations, respectively) or routes to their synthesis are known. Therefore, ligations 

at various sites (e.g. Phe,
12

  Thr,
16

 Leu,
10

 and Lys
17

) has been accomplished. However, 

many of the amino acid synthesis approaches reported are challenging and give poor 

control of stereochemistry. Given this, the development of more efficient syntheses of 

ȕ-thiol amino acids that also give good stereo- and regio-control would be of benefit to 

this area of research. 

In our study four thiol containing amino acids (compounds 31 – 34 in Figure 3.1) were 

chosen for the pKa studies. All amino acids contain a methyl ester substituent on the 

carbocylic acid, a free amino group and importantly a free thiol.  

 

Figure 3.1: Target library of four thiol containing amino acids, 31 - 34. 

 

Compound 31 is commercially available (Sigma) as a hydrochloride salt and it is 

inexpensive. Compound 32 was readily synthesised as a hydrochloride salt from L-

penicillamine (H-Pen-OH, Bachem) as in Scheme 3.7 below. 

 

 

Scheme 3.7: Synthesis of 32. i: L-penicillamine, thionyl chloride, methanol, reflux 48 h. 
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The majority of published syntheses of unnatural thiol-amino acids is focused around 

nucleophilic substitution chemistry on the corresponding activated hydroxyl amino acid 

derivatives e.g. mesylate,
18

 tosylate,
19,20

 chloride,
21

 iodide
19

 (Denoted as LG in Scheme 3.8). 

Moreover, a variety of thio-nucleophiles (Nu
-
 in Scheme 3.8) can be used depending on the 

desired function of the target thio-amino acid. Our focus is on obtaining the free amine/thiol 

hydrochloric acid salt of methyl ester protected amino acid. Therefore, the thio-nucleophile of 

choice would be thioacetate as the acetate protecting group (35 or 36) can be removed under 

acidic conditions in the same step as N-Boc deprotection (i in Scheme 3.8) to yield the free 

amine/thiol hydrochloric acid salt of methyl ester protected amino acid. 

 

Scheme 3.8: Proposed synthesis of 33 or 34. i: thionyl chloride, methanol, reflux 3 h. 

 

With this in mind we synthesised Boc-Hyp-OMe (38) from commercially available 

(Bachem) (2S,4R) H-Hyp-OMe.HCl (37) starting material (Scheme 3.9). 

 

Scheme 3.9: Synthesis of 38. i: di-tert-butyl-dicarbonate, MeCN, K2CO3, RT, 18 h. 
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With H-L-Hyp-OMe (37) and Boc-L-Hyp-OMe (38) in hand we attempted to synthesise 

a series of activated hydroxyl amino acid derivatives (39-42 in Figure 3.2) to 

investigate different routes to access thioproline. 

 

Figure 3.2: Potential intermediate compounds (39-42) in the syntheses thioproline.  

 

3.2.1.1 Thioproline Syntheses: Cyclic Sulfamidate 

Sulfamidate formation and subsequent ring opening with thiol nucleophiles is a highly 

stereo- and regio-specific strategy that has been shown to work on both serine and 

threonine amino acids.
22

 There are no reports in the literature of preparation of proline 

sulfamidates. Therefore, the reported reaction conditions
22

 were used in an attempt to 

prepare the bicyclic sulfamidate (39) from hydoxy-proline (37). All efforts to achieve 

this transformation failed. Analysis of the crude reaction mixture suggested that the 

reason for the lack of success was due to an ineffective ring closure step in the initial 

formation of the cyclic sulfamadite (Scheme 3.10).  

 

Scheme 3.10: Attempted syntheses of 39. i: Pyridine, DCM, -78 °C; SOCl2, -78 °C →5 °C, 1 h; 

ii: RuCl3.3H2O, NaIO4, MeCN, 5 °C, 10 min; RT, 10 min. 
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3.2.1.2 Thioproline Syntheses: Tetrafluoropyridine Leaving Group 

Previous work within the group has shown that the trans-tetrafluoropyridine containing 

serine amino acid can undergo elimination, substitution, and nucleophilic aromatic 

substitution reactions depending on the reaction condtions employed. Therefore, we 

looked to prepare the novel proline compound 40. 40 was synthesised in a 

straightforward manner in excellent yield (Scheme 3.11) from 38 with retention of 

stereochemistry. The absolute configuration was solved by X-ray diffraction (Figure 

3.3) and.  

 

Scheme 3.11: Synthesis of 40. i: pentafluoropyridine, K2CO3, MeCN, RT, 48 h. 

 

 
Figure 3.3: Molecular structure of 40 showing 50% probability anisotropic displacement 

ellipsoids. 

 

However, the conditions used in the subsequent thiol nucleophilic substitution (i or ii in 

Scheme 3.12) with thioacetate yielded no evidence of the desired attack at the Ȗ-carbon. 

Unreacted starting material as well as small amounts of nucleophilic aromatic 

substitution were observed via ESI
+/- 

LCMS. The reactions of 40 are currently being 

investigated by another member of the Cobb group. 
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Scheme 3.12: Attempted synthesis of 35. i: potassium thioacetate, DMF, RT, 18 h. ii: potassium 

thioacetate, DMF, 70 °C, 5 h; RT ,18 h. 

 

3.2.1.3 Thioproline Synthesis: Mesylate Leaving Group 

Conversion of the hydroxyl group in 38 into a leaving group via mesylation followed by 

nucleophilic attack is a widely used and broadly successful synthetic strategy. 

Mesylates are known to be unstable, however, in situ mesylate generation or use of the 

crude product by-passes any noticeable degradation and often leads to good yields of 

the final target compound. This proved to be true as the crude mesylate showed 

excellent reactivity to potassium thioacetate to the desired S-ȖC bond in good yield 

(Scheme 3.13).  

 

Scheme 3.13: Synthesis of 35. i: methanesulfonyl chloride, Et3N, DCM, 0 °C, 1 h. ii: potassium 

thioacetate, DMF, 70 °C, 1 h 30 min. 

 

The chemistry outlined in Scheme 3.13 leads to an inversion of stereochemistry at the 

Ȗ-carbon, yielding the cis proline configuration (35). To access the trans configuration 

via this route would require the (2S,4S)-cis-L-hydroxproline which can be purchased at 

£599 per gram (Sigma) or synthesised in 4 steps from trans-hydroproline. The 

published yield over 4 steps is 66% and the resulting cis-hydroxyproline would still 
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need methyl ester protection, mesylation and thiol attack.
23

 Given the associated costs 

an alternative approach was sought.  

 

3.2.1.4 Thioproline Synthesis: Iodine Leaving Group 

Literature
24,25

 shows that conversion of the hydroxyl to an iodo moiety in an “Appel” 

type reaction can be controlled to yield either pure cis or an isolatable mixture of cis- 

and trans-4-iodo-proline depending on the reaction conditions. The literature procedure 

was followed and Boc-cis-iodoproline-OMe (42) was isolated in 69% yield (Scheme 

3.14) with complete inversion of stereochemistry and no evidence of the trans-isomer 

being present. The absolute configuration of 42 was solved by X-ray diffraction (Figure 

3.4). 

 

 

 
Scheme 3.14: Synthesis of 42. i: PPh3, I2, imidazole, 4 h, RT. 

 

 

Figure 3.4: Molecular structure of 42 showing 50% probability anisotropic displacement 

ellipsoids. 
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Thiol attack of the cis-iodoproline (42) resulted in the desired product (36) being 

prepared in an excellent yield (Scheme 3.15). 

 

Scheme 3.15: Synthesis of 36.i: potassium thioacetate, DMF, 70 °C, 5 h; RT 18 h. 

 

The procedure in Scheme 3.14 was also carried out under different conditions 

(increased iodine equivalents) to yield an equilibrium mixture of cis-(42) and trans-

Boc-iodoproline-OMe (43) (Scheme 3.16). The cis (42) and trans (43) products were 

separable by column chromatography and the products were isolated in 38% and 35% 

yield, respectively. 

 

 

 
Scheme 3.16: Syntheses of cis- and trans-thioprolines: 42 and 43, respectively. i: PPh3, I2, 

imidazole, 48 h, RT. 

 

The trans-iodo proline was treated with potassium thioacetate yielding 35 in excellent 

yield (Scheme 3.17).  

 

Scheme 3.17: Synthesis of 35.i: potassium thioacetate, DMF, 70 °C, 5 h; RT 18 h. 
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The compounds 35 and 36 were treated with acidic methanol conditions to yield the 

deprotected products 33 and 34 in quantitative yields (Scheme 3.18). 

 

Scheme 3.18: Synthesis 33 and 34. i: thionyl chloride, methanol, reflux 3 h. 

 

3.2.2 Thiol Amino Acid Synthesis Conclusions  

All four compounds in the target library (31-34) were obtained in yields of over 58% 

(Figure 3.5) from commercial available starting materials. 31 was purchased (Sigma) 

and 32 was produced in 98% yield in one synthetic step from H-Pen-OH. 33 and 34 

were produced in a three step synthesis (mesylation (33)/iodoination(34), nucleophilc 

thiol attack and acidic deprotection) from Boc-Hyp-OMe (38) in yields of 58% and 

68%, respectively. The attempts to synthesize 33 via tetrafluoropyridyl (40) or cyclic 

sulfamidate amino acids were unsuccessful. However, the chemistry of 40 is being 

further investigated. Studies to determine the pKas of 31 – 34 and thus, potential 

application in kinetic NCLs were undertaken. 

 

Figure 3.5: Target library of thiol amino acids and their overall synthetic yield from 

commercial starting materials. 
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3.3 pKa Studies on Thiol Containing Amino Acids 

3.3.1 pKa Studies 

*The work reported here is a short summary of the investigation carried out by our 

collaborators Mr O. Maguire a PhD student in the O’Donoghue group within the Chemistry 

Department at Durham University. 

The four compounds (31-34) exist in one of four states of protonation depending on 

their pH environment (Figure 3.6). For example, the zwitterion species of 31, denoted 

(-)S-Cys-OMe-NH3+ in Figure 3.6 and Figure 3.7. 

 

Figure 3.6: Target library of thiol-amino acids and their varying states of protonation. 

 

The absorbance of the four species (of each amino acid) were studied in pH range of 0 – 

14 (Figure 3.7) and used to calculate dissociation constants and hence, the pKas of the 

thiol in the relative species (Table 3.1). However, the results for 34 were found to be 

erroneous (due to thiol oxidation) and are not reported.
 
Further experiments are being 

undertaken in the presence of TCEP (a reducing agent).  
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Figure 3.7: The percentage abundance in solution of each of the four species in the pH range 0 – 14 for the cysteine methyl ester (31, Cys-OMe), 

penicillamine methyl ester (32, Pen-OMe) and 4S-mercaptoproline methyl ester (33, 4SMcp-OMe) at 25 °C and ionic strength I = 0.3 M (KCl).
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Compound 

Number 
Structure 

pKA 

H3N-R-SH

H3N-R-S  

pKB 

H3N-R-SH

H2N-R-SH  

pKC 

H3N-R-S

H2N-R-S  

pKD 

H2N-R-SH

H2N-R-S  

31 

 

7.35 6.99 8.60 8.95 

32 

 
 

7.67 7.07 8.71 9.31 

33 

 

7.12 6.89 8.52 8.74 

Table 3.1: pKa estimates for the amino acids 31, 32 and 33 at 25 °C and ionic strength I = 

0.3 M (KCl). 

 

3.3.2 pKa Studies: Conclusions 

The studies show significant differences in the pKa values of 31, 32 and 33 and 

hence, abundance of ionic species at a given pH. In relation to NCL reaction the 

abundance of thiolate species (either zwitterionic or anionic) is of interest (Figure 

3.8).  

 

Figure 3.8: The abundance of thiolate species (either zwitterionic or anionic) present at pH 

6.8 and 7.2.*34 provided erroneous results due to oxidation. 

 

The thiolate species is thought to be responsible for initial nucleophilic attack upon 

the thioester in an NCL reaction. Thus, a low abundance of thiolate at a particular pH 
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could render the NCL of one amino acid negligible and whilst another (with higher 

abundance) may proceed. The correlated pKa data which leads to calculated 

abundances of thiolate species could therefore lead to facile planning and execution of 

kinetic “one-pot” ligations with these amino acids.  
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Chapter 4 : Diketopiperazines - Synthesis and Inhibitory 

Activity Against CCL2 Induced Chemotaxis. 
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4.1 An Introduction to 2,5-Diketopiperazines  

4.1.1 2,5-Diketopiperazines: A Structural Overview 

2,5-Diketopiperazines (DKPs) are cyclic dipeptides that are biosynthesised by a variety 

of organisms (including bacteria, fungi and mammals) as secondary metabolites.1 

Research interest in DKPs has recently increased due to the wide-ranging bioactivity 

that many natural occurring systems exhibit (Table 4.1):2,3 e.g. antibacterial,4-7 

antitumour,7 antifungal7,8 and antiviral.9  

 

Entry Name Structure Biological Target Refs 

1 cyclo(ΔPhe-
ΔLeu) 
(Albonoursin)  

 

antibacterial, 
antitumor (cell 
division inhibition) 

4,5 

2 cyclo(L-Arg-L-
Pro) 

 

antifungal (chitinase 
inhibition) 

8 

3 cyclo(L-Phe-L-
His) 

 

heart rate/coronary 
flow, antifungal, 
antibacterial and 
antitumor 

7 

4 cyclo(L-Phe-L-
Tyr) 

 

μ-opiod binding 10 

5 cyclo(13,15-
dichloro-L-Tyr-
L-Pro) 

 

CCL2 induced 
chemotaxis 
inhibition 

11 
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6 cyclo(DHA-L-
Leu) 

 

antihyperglycaemic 
(yeast and porcine 
α-glucosidase 
inhibition) 

12 

7 Bicyclomycin 

 

antibacterial 
(inhibition of 
transcription 
termination factor - 
Rho) 

6 

Table 4.1: The broad spectrum bioactivity of naturally occurring DKPs. 

 

DKPs contain two cis-amide bonds (hydrogen bond donors/acceptors) and with the 

exception of glycine containing DKPs, two stereo centres (chiral α-carbons,* in Figure 

4.1). The chirality combined with the rigid amide bonds specifically orientates the 

amino acid side chains in space around a cyclic core (R1 and R2 in Figure 4.1).  

 

Figure 4.1: The structure of the 2,5-diketopiperazine: cyclo(Gly-Gly) with α-carbons indicted 
with *.13 When chiral amino acid residues are present the stereochemistry defines either a trans- 
and cis- arrangement of R1/R2 side-chains. 

 

DKPs generally have a planar 6-membered ring conformation14 or a slightly distorted 

boat conformation with a small energy barrier (1-5 kcal/mol) between the forms.2 For 

example, cyclo(L-Asp-L-Asp) forms a boat conformation with pseudo C2v symmetry15 

and although cyclo(Gly-Gly) shows a planar crystalline structure16 gas phase studies 

have indicated a preference for a boat conformation.17 The core 6-membered ring is 

often distorted by specific substituents, especially aromatic and proline residues. The 

interaction between the polarizable π-electron cloud of an aromatic ring and the amide 
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bond dipoles lead to a small preference for a folded structure where the substituent 

overlaps the DKP core (e.g. cyclo(Gly-L-Phe) Figure 4.2).18 In the case of proline 

containing DKPs the cyclic nature of the amino acid imparts significant ring constraints 

that favour a boat conformation (e.g. cyclo(Gly-L-Pro) Figure 4.2).2,19 The natural 

product CCL2 induced chemotaxis inhibitor: cyclo(13,15-dichloro-L-Tyr-L-Pro) (entry 

5, Table 4.1) contains both aromatic and proline residues, yet the conformation is not 

known.  

 

Figure 4.2: folded and boat structures of cyclo(Gly-L-Phe) and cyclo(Gly-L-Pro). 1H NMR 
indicates that aromatic DKPs tend to form a folded structure18 and computational 
conformational mapping shows that bicyclic proline containing DKPs are restricted to a small 
area of conformational space and a boat conformation. 

 

The conformational aspects combined with the variety of possible side chain moieties 

give DKPs a broad bioactivity and therapeutic spectrum. This has culminated in the 

successful development of several clinically approved drug molecules containing the 

DKP core scaffold: Epelsiban20 and Plinabulin in Figure 4.3.21 Epelsiban is a selective 

oxytocin receptor antagonist and Plinabulin is a vascular disrupting agent that has 

completed phase I and phase II clinical trials for non-small cell lung cancer.22-24 

Plinabulin is an achiral analogue of the DKP metabolite: Phenylhistatin (isolated from 

Aspergillus ustus).25
 

For a comprehensive recent review of the area see: “Diketopiperazines: Biological 

Activity and Synthesis”1 or “2,5-Diketopiperazines: Synthesis, Reactions, Medicinal 

Chemistry, and Bioactive Natural Products”.2 

 

http://en.wikipedia.org/wiki/Aspergillus_ustus
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Figure 4.3: Structure of Epelsiban and Plinabulin. 

 

4.1.2 DKPs as Inhibitors of Chemokine Mediated Chemotaxis 

Chemokines are small proteins that play a huge role in a number of allergic, 

autoimmune, inflammatory, and viral diseases and in America 50 million people suffer 

from allergic diseases per year (for which treatment costs around $18 billion).26 The 

study of small-molecule chemokine receptor antagonists as anti-inflammatory agents is 

a growing field that is still very much in its infancy. Hence, a limited number of studies 

to evaluate potential efficacy of chemokine antagonists have been reported.27,28 

However, it took only 11 years from the discovery of the chemokine receptor: CCR5 to 

the FDA approval of small-molecule inhibitor: Maraviroc. A year later Plerixafor was 

FDA approved as a CXCR4 antagonist for hematopoietic stem cell mobilization.  

Previously published29 work from the Cobb group confirmed the ability of naturally 

occurring DKP: cyclo(13,15-dichloro-L-Pro-L-Tyr) (46, Figure 4.4) to act as a 

chemokine receptor antagonist and inhibit CCL2-induced chemotaxis in vitro.
11  

 

Figure 4.4: Structure of cyclo(13,15-dichloro-L-Pro-L-Tyr) 46. 46 is isolated from the fungus 
Leptoxyphium sp. 
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Based on 46, a library of 8 DKPs were successfully synthesised and tested in 

chemotaxis assays (Chapter 1, Section 1.4.3 and 1.4.4). The work indicated that the 

substituents on the aromatic ring are important for activity: The activity of the non-

chlorinated analogue: cyclo(L-Pro-L-Tyr) (47, Figure 4.5) was found to be significantly 

reduced, whereas cyclo(L-Phe-L-Pro) (48, Figure 4.5) and cyclo(p-fluoro-L-Phe-L-Pro) 

(49, Figure 4.5) showed similar levels of inhibition as the natural product 46 (Figure 

4.6). 

 
 

Figure 4.5: Structure of cyclo(L-Pro-L-Tyr) 47, cyclo(L-Phe-L-Pro) 48 and cyclo(p-fluoro-L-
Phe-L-Pro) 49. 

 

 

 

Figure 4.6: Cellular migration of THP-1 cells in the prescence 10 nM CCL2 and DKPs 46 and 
47 at concentration of 40 and 100 μM, respectively. The control contains no CCL2 or DKP. The 
data is normalised to 100% with 10nM CCL2 in the absence of inhibitor.  

 

 

 



105 

Multiple attempts were made to crystallise all compounds in the library so that 

biophysical studies (including modelling/docking) could be undertaken and future 

inhibitors could be intelligently designed. However, crystals of a good enough quality to 

solve were formed by three DKPs (47, 48 and 49, Figure 4.7) with the natural product 

46 and five other DKPs remaining undefined. Although as yet modelling/docking with 

CCL2 have not been attempted, the crystal structure of the non-active DKP 47 shows 

the typical folded structure of aromatic DKPs whereas the active* DKPs 48 and 49 have 

elongated structures where the only significant variation is in the angle that the aromatic 

ring is orientated compared to the bicycle.  

      

 

 

Figure 4.7: Molecular structures of 47, 48 and 49 showing 50% probability anisotropic 
displacement ellipsoids. The unit cell in the crystal structure of 49 contains two molecules and 
shows slight disorder in the proline ring. 

 

                                                           
*
48 and 49 were found to give significant inhibition of CCL2 induced chemotaxis at 100 μM, (reduced 

cellular migration by <40%) whereas 47 gives no significant inhibition. 



106 

Selectivity studies were also undertaken and 49 was found to selectively inhibit CCL2 

induced chemotaxis at a concentration of 50 μM but have no effect on CCL7 and CCL5 

ligands, which are also known to bind CCR2 and initiate chemotaxis (Figure 4.8).  

 

 

Figure 4.8: Cellular migration of THP-1 cells in the prescence 10 nM CCL2, CCL7 and CCL5 
(RANTES) and at concentration of 50 μM. The control contains no chemokine or DKP. The 
data is normalised to 100% with 10nM CCL5 in the absence of inhibitor. 

 

These initial results strongly suggest that the DKPs prepared do not disrupt the CCL2-

CCR2 protein-protein interaction and that the mechanism of inhibition does not involve 

binding to either the receptor (CCR2) or the receptor binding site on the ligand (CCL2, 

CCL7 and CCL5). Therefore, It is believed that the DKPs inhibit CCL2 chemotaxis by 

binding specifically to CCL2 and at non-receptor binding site. For example, the 

inhibition could originate via binding at the dimerization face or a site that causes an 

allosteric effect at the receptor binding site  

Although the acitivity of DKPs would need to be enhanced for theraupeutic use, the 

interesting CCL2 specificity could grant these molecules application as chemical 

probes. In particular, such probes would be useful as a means of shutting down CCL2 

action from the network of chemokine interactions that increase the complexitity of 

studying aspects of specific chemokine function.29 The limited number of compounds in 

the DKP library studied mean that no clear structure activity relationship could be 

determined. Hence, there is a need to further expand the library of analogs to define the 
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structural features required for activity and to provide more insights into the mode of 

CCL2 induced chemotaxis inhibition.  

 

4.2 Introduction to the Synthesis of DKPs 

The two most prevalent strategies for the chemical synthesis of 2,5-DKPS are the 

dipeptide ester cyclisation (Scheme 4.1) and the a 4-component Ugi reaction (Scheme 

4.1). However, other less prevalent strategies exist such as direct amino acid 

condensation30,31 or aza-wittig cyclisation.32  

In the dipeptide ester strategy an orthogonally protected dipeptide is synthesised using 

peptide coupling reagents then subsequently cyclised. The cyclisation step requires long 

reaction times, heating in acid, base or high boiling point solvents which can in some 

cases can cause racemisation.33-36 However, advances in microwave assisted heating36 

and solid supported synthesis37 have provided high yielding DKPs without 

racemisation.  

 

Scheme 4.1: The general scheme for dipeptide ester cyclisation leading to DKP preparation. 

 

The Ugi reaction does not require peptide coupling reagents yet the terminal amide 

formed leads to difficult cyclisation steps.38 Post condensational modification (PCM) 

Ugi reactions have overcome this and provide fast and efficient DKP synthesis in 

solution or on a solid support. Routinely an isonitrile precursor is used to form an 

activated amide that under acidic postcondensational conditions converts to a transient 

N-acylimminium ion. 38-41 This strategy is also applicable to solid supported synthesis.42 

Recently the Ugi method was used superbly in the one-pot synthesis of the natural 
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product: Thaxtomin A. The only drawback is the lack of stereocontrol inherent to the 

Ugi reaction.43 

 

Scheme 4.2: The general scheme for a 4-component PCM Ugi synthesis of a DKP. 

 

For an expansive review in this area see: “2,5-Diketopiperazines: Synthesis, Reactions, 

Medicinal Chemistry, and Bioactive Natural Products”.2 This review outlines simple 

synthetic strategies that have led to vast libraries of simple DKPs (including entries 1, 2, 

3, 4 in Table 4.1) as well as detailed synthesis of complex DKP derivatives e.g. 

gliotoxins, aspirochlorines and austamides. 

 

4.2.1 Solution Phase Dipeptide Ester Cyclisation Synthesis of DKPs 

Within the Cobb group a dipeptide ester synthesis strategy was first used for the 

synthesis of a library aromatic derivatives based on the natural product 46.29 This 

general strategy is prevalent in literature and responsible for the majority of the natural 

product 2,5-DKP syntheses.2 The major steps are outlined below (Scheme 4.3). 

 
Scheme 4.3: i: Solution phase synthesis of a DKP via a dipeptide ester. i: Acetyl chloride, 
MeOH, 5 h, reflux (>80%). ii: DIC, DIPEA, DCM, RT, 20 h (55 - 80%). iii: NH4HCO2, Pd, 
MeOH, 5 h, reflux (>95%). iv: MeOH, 48 - 96 h, reflux (>70%). 
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The synthesis enabled the production of a library of eight DKPs including the 

aforementioned DKPs 46, 47, 48 and 49 (Figure 4.9).  

 

Figure 4.9: The library of eight DKPs synthesised via a dipeptide ester solution phase strategy. 

 

Cyclo(L-Pro-D-Tyr) 50 was not a desired product and was formed as an isolatable 

impurity in the synthesis of 47. Therefore, notable racemisation occurred during the 

cyclisation step in this specific case. 

To expand this work and explore the results a new library of DKPs with a wider scope 

of moieties must be synthesised, tested and crystallised. However, the aforementioned 

synthesis is time consuming, required elevated temperatures, afforded incomplete 

stereocontrol and two purification steps (after ii and iv, Scheme 4.3). Therefore, an 

improved route was devised in an attempt to overcome these problems.  

The key advances in this field are the use of microwave heating and solid supports.44 

Thus, a solid supported (on-resin cyclisation) strategy was chosen where microwave 
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assisted heating could be used in the event of an inefficient step. The strategy was based 

on a successful on-resin cyclisation and release synthesis used by the Giralt group.45 

 

4.2.3 On-Resin Cyclisation and Release Synthesis of DKPs 

This strategy utilises a reactive linker that once attached to a solid support(resin) allows 

intramolecular attack in a cleavage/cyclisation step. The general method firstly attaches 

the linker to the solid support (resin) (i in Scheme 4.4) and then subsequently forms a 

dipeptide with N-Boc based SPPS chemistry (ii, ii and iv in Scheme 4.4). This resin-

bound dipeptide is then deprotected to form a protonated terminal amine (iii in Scheme 

4.4). When the terminal amine is neutralised it performs a nucleophilic attack onto the 

linker moiety. This intramolecular nucleophilic attack leads to the formation of the 

cyclic DKP (vi in Scheme 4.4). 

 

 

Scheme 4.4: General on-resin synthesis of a Cyclo (AA1-AA2) DKP. 

 

Using this strategy the Giralt group synthesised 15 N-methylated DKPs and extended 

the method to the synthesis of complex DKP based biomolecules (e.g. DKP-Dopamine 
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and DKP-Baicalin) (Figure 4.10) as potential blood-brain barrier (BBB) transport 

shuttles. In the majority of cases the crude DKP obtained after cyclisation and release 

was deemed pure enough for BBB analysis. However, the reported yields are low (5 - 

30%).45 

 

Figure 4.10: complex DKP based biomolecules synthesised by Geralt et. al.: DKP-N-MePhe-
Dopamine and DKP-N-MePhe-Baicalin. 

 

4.3 Preparation of a New Library of DKPs 

*Aspects of this work were carried out by two undergraduate students under my supervision: 

Mr Andrew Steer and Ms. Malogrzata Przeradzka. 

The previously synthesised DKP library (Figure 4.9) was specifically designed to 

investigate the effect of varying aromatic ring substituents on the efficacy of the DKPs 

in CCL2 induced chemotaxis. Hence, all compounds were structurally very similar to 

the natural product (46) scaffold and not surprisingly a number of compounds had 

comparable activity (Figure 4.11). Perhaps the most important result is the high activity 

of cyclo(L-Pro-L-Phe) (48) which is lacking in any phenyl ring substituents. This result 

initiated interest in performing experiments to further explore the structural limits 

required to retain chemotactic activity.  

 



112 

 

Figure 4.11: DKPs that showed significant inhibition of CCL2 induced chemotaxis in a BMC 
assay at a concentration of 100 μM or lower. 

 

To expand on this previous work a new library was proposed (Figure 4.12), specific 

DKPs moieties (or lack of) were chosen to help further define the important structural 

features that lead to inhibitory activity. The structural features that we will investigate 

are stereochemistry (54, 55, 56), N-methylation (57), proline substitution (58, 59, 60) 

and aromatic substitution (61, 62, 63). 
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Figure 4.12: The proposed library of DKPs to be tested against CCL2 induced chemotaxis 

 

Recently, some simple DKPs have become commercially available (Bachem) including 

two members of this library: Cyclo(Gly-L-Phe) (60) and cyclo(Gly-L-Pro) (63). 60 and 

63 will show the effect of complete removal of either the proline or aromatic side-chain, 

respectively. Therefore, they were purchased and tested. 

Cyclo(L-Tyr-L-Pro) (47) was included in the library, yet it was previously synthesised 

and proved to be a poor inhibitor when tested. The previous synthesis of this DKP did 

not control stereochemistry of the tyrosine α-carbon. Therefore, synthesis of this DKP 

will give an indication of the amount of stereocontrol in the syntheses as well as 

enabling the DKP to be used as a negative control in the assay. 
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4.4 On-Resin Synthesis of 2
nd

 Generation of DKPs 

4.4.1 Resin Loading and Synthesis of the Linker 

Following the method outlined by Geralt et al,.
45 the first step is the preparation of a 

suitable solid support to facilitate the cyclisation final step. This involves the synthesis 

of a linker (64, Scheme 4.5) and the subsequent loading of 64 onto 4-

Methylbenzhydrylamine (MHBA) resin (Scheme 4.7) to form MHBA-linker (65). 64 

was synthesised from 4-bromomethyl-3-nitrobenzoic acid via a basic aqueous reflux in 

near quantitive yield (Scheme 4.5).  

 
Scheme 4.5: Synthesis of the linker: 65. i: NaHCO3(aq), 30 min, reflux. 

 

The linker (64) carboxylic acid was coupled to an extensively washed (i, Scheme 4.7) 

MHBA resin using a peptide coupling reagent (DIC). This reaction formed an amide 

linked pre-loaded resin: MHBA-linker (65). 

Scheme 4.6: Synthesis of the MHBA- linker: 65. i: DCM, RT, x 4; TFA:DCM (40% v/v), 1 
min, RT; TFA:DCM (40% v/v), 5 min, RT, x 2; DIPEA:DCM (5% v/v), 2 min x 3; DCM, RT, x 
3. ii: DIC, DIPEA, DCM, 18 h, RT. 

 

The activated resin (65) was synthesised in gram quantities to enable a number of DKPs 

to be synthesised from commercially available N-Boc amino acids. 
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4.4.2 On-Resin Synthesis of The DKP Library 

The MHBA-linker (65) was used to synthesise the library DKPs (Scheme 4.7). Our aim 

was to produce libraries of compounds quickly, economically and in a non-labour 

intensive way. We were able to optimise and simplify the procedure used by Giralt: 

excesses of reagents were halved, colorimetric resin tests removed and triple couplings 

were replaced with double couplings.  Additionally, the optimisations had no noticeable 

effect on the yield of pure DKP (Table 4.2) and enabled the synthesis, purification and 

analysis of a particular DKP to be completed within 8 hours. 

 

Scheme 4.7: Solid phase synthesis of a DKP via the cyclisation and release strategy.  i: Boc-
AA(R1)-OH, DIC, DMAP, DCM, 30 min, RT, x 2. ii: TFA:DCM (40% v/v), 10 min, RT, x 2. 
iii: Boc-AA(R2)-OH, PyBOP, DIPEA, DCM, 1 h, RT, x 2. iv: DIPEA:DCM (10% v/v) 10 min, 
RT, x 3. 

 

Name Structure Scale / mmol 
Method (Yield %) 

Giralt
45

 Optimised 

cyclo(L-Phe-L-
Pro) 

 

0.10 40 - 

cyclo(D-Phe-D-
Pro) 

 

0.08 - 42 

Table 4.2: The yields of a DKP synthesised via the method and conditions quoted in the 
literature and a DKP synthesised using our optimised strategy. 
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The syntheses were carried out on a scale that ranged from 0.05 mmol to 0.15 mmol and 

yields of the isolated and purified DKPs ranged from moderate to excellent (31-86%) 

(47, 54 – 63 in Figure 4.13). Overall, the solid syntheses resulted in tens of milligrams 

of pure product DKP being produced in each case. Additionally, no evidence for the 

formation of diastereoisomers during the syntheses was observed in any crude product 

by 1H or 13C NMR.  

 

 

Figure 4.13: The library of DKPs synthesised to be tested against CCL2 induced chemotaxis.  

 

The DKPs were screened for CCL2 induced chemotaxis inhibition (Section 4.5.2) and 

anti-fungal activity (Section 4.5.1) alongside commercially available DKPs: Cyclo(Gly-

L-Phe) (60) and cyclo(Gly-L-Pro) (64). Cyclo(L-Phe-L-Pro) (48) (synthesised by Dr N. 

Colgin, Section 4.2.1) was also included. This completed the library of target DKPs in 

Figure 4.12. 
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4.5. Biological Studies of the New Library DKP 

4.5.1 CCL2 Induced Chemotaxis: In Vitro 

* The following experiments were carried out under the supervision of Dr. C. Barker within the 

Ali group at Newcastle University Medical School. 

Studies of in vitro chemotaxis predominately used a transwell membrane system, in one 

of two forms: bare membrane chemotaxis (BMC) assay and transendothelial chemotaxis 

(TEC). In our case, the assays measure induced THP-1 (Human acute monocytic 

leukemia cell line) cell migration. 

The simple BMC (Figure 4.14) assay uses a transwell system where medium 

supplemented with chemokine (± DKP inhibitor) is placed in the lower well and 

medium supplemented with THP-1 cells is placed in the top well. The chemokine-

chemokine receptor interactions cause a cellular response and facilitate the movement 

of cells from the upper well across a fenestrated bare transwell membrane (3 μM pore 

size) to the lower well where they are counted. 

The TEC assay (Figure 4.15) follows on from the BMC assay above, however this 

system involves more biological features: Additions of a monolayer of HMEC-1 

(endothelial) cells to the upper aspect of the membrane as well as cytokines IFN-γ and 

TNF-α to stimulate (up-regulate) adhesion molecules on the HMEC-1 (circles) and 

THP-1 cells (squares) in Figure 4.15. 

 

 

 

http://en.wikipedia.org/wiki/Leukemia
http://en.wikipedia.org/wiki/Cell_line
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Figure 4.14: A BMC assay. i: The lower well serum-free medium supplemented with CCL2 ± 
DKP. Monocytes in a solution of 1% bovine serum albumin (BSA) medium are added to the 
upper well. ii: The assay was incubated before removal of medium, methanol fixation and 
haematoxylin staining. The membrane filters dehydrated, mounted and migrant cells counted. 46 

 

 

Figure 4.15: A TEC assay A) shows the monolayer of HMEC-1 endothelial cells. B) The 
stimulation of HMEC-1 cells (circular appendages). C) Introduction of stimulated (square 
appendages) THP-1 monocytes as well as a chemokine concentration gradient (shading) to 
promote migration. The staining of cells with haematoxylin enabled counting by high resolution 
microscopy. The number of cells that had migrated through both the membrane and the 
endothelial cells was found by counting the cells adherent to the inferior aspect of the 
membrane.46 

 

The TEC assay has increased biological depth and is more applicable to how the 

compounds would behave in an in vivo setting. However, compared to the BMC assay 

the experiment is more labour intensive, difficult and less economical. Thus, the BMC 

was predominately used especially for our work i.e. to screen compounds 47, 48 and 54 

- 63. 

 

 

 

 

 

THP- 1 cells 

CCL2 +/- DKPs  

i. 

 

 

ii. 
  

 Transwell filter 

 

 

A. 
 

B. C. 
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4.5.2 Chemotaxis Library Screen via a BMC Assay 

In this case we are measuring the ability of the chemokine (CCL2) to interact with 

chemokine receptors on THP-1 white blood cells (monocytes) and induce chemotaxis. 

THP-1 monocytes are a cell line derived from the peripheral blood of a 1 year old child 

with acute monocytic leukemia (ATCC TIB-202). Cells were cultured in complete 

RPMI-1640. The assay was undertaken using a transwell filter (3 μM) system with 24-

well companion plates. Prior to the experiment each companion plate is blocked with 

1ml of 1% BSA in RPMI-1640 to prevent unwanted chemokine binding and lowering of 

effective chemokine concentration in solution.47,48 The assays were then carried out in 

triplicate as described in Figure 4.16 below. 

 

Figure 4.16:A bare membrane chemotaxis assay. i: The lower well contains 800 μL of serum-
free RPMI-1640 medium supplemented with CCL2 (10 nM) and ± DKP. 500000 monocytes in 
a 500 μL solution of 1% bovine serum albumin (BSA) in RPMI 1640 were added to the upper 
well. ii: The assay was incubated at 37 °C for 90 min before removal of medium. Non-migrated 
cells were gently removed from the upper surface of the transwell filter before fixation in cold 
100% methanol (1 h) and staining via haematoxylin. The filters were dehydrated and mounted 
to slides. In each filter the migrant cells in five high-power fields of vision were counted. 

 

It was unknown at what concentration of DKP to carry out the library screen as there is 

significant variation within the structures contained in this library and a lower 

resemblance to the natural product inhibitor originally tested (Section 1.4.3, 1.4.4 and 

4.1.2).29 Therefore, initially a smaller screen was undertaken using only selected DKPs, 

58, 61 and the previously tested 48 at 100 μM (Figure 4.17). 

 

 

 

THP- 1 cells 

CCL2 +/- DKPs  

90 min, 37°C  Direction 

of 

chemotaxis 

i. 

 

 

ii. 
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Figure 4.17: Bare membrane chemotaxis assay measuring cellular migration of THP-1 cells in 
the prescence 10 nM CCL2 and 48, 58 or 61 at concentration of 100 μM. The control contains 
no chemokine or DKP. The data is normalised to 100% with 10 nM CCL2 in the absence of 
inhibitor. 

 

This first screen showed that 58 and 61 were inhibitors of CCl2 induced chemotaxis in 

vitro to a similar extent to 48 and that a 100 μM concentration of DKP was appropriate. 

Having carried out the initial screen the chemotaxis assay was then repeated on a larger 

scale with the remainder of the library of DKPs including 48 again as a positive control 

(Figure 4.18). 
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Figure 4.18: Bare membrane chemotaxis assay measuring cellular migration of THP-1 cells in the prescence 10 nM CCL2 and 47, 48, 54, 55, 56, 57, 59, 60, 
62 or 63 at concentration of 100 μM. The control (0 nM) contains no chemokine or DKP. The data is normalised to 100% with 10 nM CCL2 in the absence of 
inhibitor.  
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The biological evaluation showed that the majority of compounds (47, 54, 55, 56, 57, 

59, 60, 62 and 63) tested are not strong inhibitors of CCL2 induced chemotaxis with 

cell migration inhibited by only <45% at 100 μM. However, the DKPs 48, 58 and 61 

showed good activity (cell migration inhibited by >62%).  The results are of benefit 

in defining the structural motifs that are of importance. The small library screen 

showed that both aromatic and prolyl moieties are necessary for significant activity 

as well as showing the importance of stereochemistry. Preliminary attempts were 

made to gain X-ray structures of the DKPs synthesised to enable rational 

explanations to the observed biological results. From the crystallisation experiments 

only 54 formed crystals of good enough quality to enable structural determinations to 

be carried out (Section 4.6). 

 

4.5.2 Anti-fungal Activity 

Bioassays of compounds 47, 48 and 54 – 63 against C. albicans, P. expansum, F. 

culmorum and A. flavus were carried out at University College Dublin (by Dr. N. 

O’Connor). Although some zones of clearing occurred after 24 h the fungus 

overgrows the zone of inhibition after 48 h which indicated that the DKPs showed no 

significant anti-fungal activity. 

 

4.6 Conclusions And Analysis of the DKP Inhibitor Library 

4.6.1 Stereochemistry 

Previous work did not explore the effect of chirality on inhibition as entirely L- 

amino acids were tested with the exception of cyclo(L-Pro-D-Tyr) (50). 50 showed 

similar poor inhibition results to cyclo(L-Pro-L-Tyr) (47) and thus, no conclusions 

could be made. In the new library 3 diastereoisomers of the type: cyclo(Pro-Phe) (48, 

54 and 55), were screened and noticeably different and relevant results were found. 

Significant inhibition was not found in the case of (S,R) cyclo(D-Phe-L-Pro) 54 and 

cyclo(D-Phe-D-Pro) (R,R) 55 whereas confirmation of the inhibitory activity of S,S 

diastereoisomers 48 was shown. This indicates that the L-L-, motif is important. The 

crystal structure of 48 and 54 are shown (Figure 4.19). 54 adopts a folded structure 
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where the aromatic ring overlaps the DKP core in a similar way to 47 (Figure 4.19). 

47 is also known to be a poor chemotaxis inhibitor. 

 

 

 

Figure 4.19: Molecular structures of 47*, 48* and 54 showing 50% probability anisotropic 
displacement ellipsoids. *Crystallised by Mr S. Lear. 

 

4.6.2 Aromatic moiety 

The aromatic moiety was found to be very important for biological function as most 

of the compounds lacking the aromatic moiety (56, 59 and 63) showed minimal 

inhibition of chemotaxis (cell migration was >75%). Cyclo(L-Val-L-Pro) (62) was 

found to be the most active non-aromatic DKP and was observed to inhibit cellular 

migration by 45%.  

The significant inhibition found in Cyclo(L-Trp-L-Pro) (61) is encouraging as it 

shows tolerance to a larger bicyclic heteroaromatic residue that can have 

significantly different biological effects to phenylalanine.49 In our study 61 has 

comparable activity to 48 at 100 μM. Of note, NMR experiments conducted by Grant 
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et al.
50 showed 61 to have preference for an elongated structure in CDCl3 (71%) and 

a folded structure in d6-DMSO (52%). X-ray crystallography observed the lowest 

energy conformations to be in a folded state.50 Thus, future libraries must synthesise 

and test a broader scope that includes multi-cyclic aromatic and heteroaromatic 

moieties. Subsequent tests at lower concentrations would need to be carried out to 

determine if 48 or 61 is the more potent inhibitor of CCL2 induced chemotaxis. 

 

4.6.3 Proline moiety 

The proline moiety is vital to function as no inhibition is observed when this group is 

either removed cyclo(Gly-L-Phe) (60) or the opposite stereochemistry is used (cyclo 

(D-Pro-L-Ala) (56) and cyclo(D-Pro-D-Phe) (55). Cyclo(L-Phe-L-Hyp) (58) showed 

significant inhibition to almost the same extent as 61 and 48. Even though the 

activity is slightly diminished this result shows the tolerance to a functional group in 

the 4-position of the 5-membered prolyl ring and perhaps substituents other than a 

hydroxyl could have a positive effect. 

 

4.7 Library Expansion Using Unnatural Aromatic and 

Heteroaromatic Amino Acids 

4.7.1 Target Molecules 

Chapter 2 and 3 describe the syntheses of numerous unnatural aromatic and proline 

derivative amino acids with protecting group strategies that can easily translate to the 

synthesis of DKPs. Thus, the synthesis of a diverse selection of DKPs could be 

envisaged (Figure 4.20). 
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Figure 4.20: Selection of DKP molecules that could be synthesised from unnatural amino 
acids prepared in Chapter 2 and 3. 

 

The testing of compounds of this type is beyond the scope of this thesis. However, a 

route to their synthesis would be beneficial in order to show the trivial nature of 

unnatural amino acid incorporation into a DKP. An aromatic derivative (2-

furylalanine) from Chapter 2 and a prolyl derivative (4-fluoroproline) from 

Appendix 1 were utilised. 
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4.7.2 Syntheses of Cyclo(flp-L-Phe) and Cyclo(L-Pro-2-furyl-L-Ala) 

The two novel target molecules are cyclo(flp-L-Phe) (66) and cyclo(L-Pro-2-furyl-L-

Ala) (67) (Figure 4.21) 

 

Figure 4.21: Structures of novel target DKP molecules 66 and 67. 

 

Our modified Giralt45 strategy of on-resin synthesis of DKPs utilised N-Boc amino 

acids. The synthesis of Boc-2-furyl-L-Ala-OBn (19) and Boc-cis-fluoroproline-OMe 

(68) is described in Chapter 2 and Appendix 1, respectively. Deprotection of the 

carboxy terminal protection would yield compounds ready for the on-resin synthesis. 

The basic deprotection of 68 yields the Boc-flp-OH (69) in quantitative yield and 

subsequent DKP formation was carried out in 84% yield (Scheme 4.8) over 5 steps. 

 

 

Scheme 4.8:i: LiOH, H2O, THF, RT, 18 h. : ii: DIC, DMAP, DCM, 30 min, RT, x 2. iii: 
TFA:DCM (40% v/v), 10 min, RT, x 2. iv: Boc-Phe-OH, PyBOP, DIPEA, DCM, 1 h, RT, x 
2. iv: TFA:DCM (40% v/v), 10 min, RT, x 2 v: DIPEA:DCM (10% v/v) 10 min, RT, x 3. 
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The benzyl deprotection of 19 is problematic (Chapter 2, Section 2.3.6) (Scheme 

4.9) and the Giralt group showed precedence for utilising N-Fmoc amino acids in 

their DKP synthesis strategy.45 Therefore, we envisaged utilising Fmoc-2-furyl-L-

Ala-OtBu (13) with acidic OtBu deprotection. 13 was deprotected (to yield 70) and 

successfully utilised in a slightly modified on-resin synthesis yielding product DKP: 

67 in 64% yield (relative to the resin) over 4 steps (Scheme 4.9) 

 

Scheme 4.9: Synthesis of 67. i: TFA:DCM (40 % v/v), 30 min ii: Boc-Pro-OH, DIC, 
DMAP, DCM, 30 min, RT, x 2. ii: TFA:DCM (40% v/v), 10 min, RT, x 3. iii: PyBOP, 
DIPEA, DCM, 1 h, RT, x 2.iv: piperidine:DMF (20% v/v) 10 min, RT, x 2. 
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4.8 General Conclusions 

The on-resin strategy used to synthesize a library of DKPs was successful as it 

enabled the rapid production of pure compound in moderate to excellent yield from 

simple Boc-amino acids. The strategy provided significant benefits over the original 

solution phase approach (Section 4.2.1) e.g. less purification steps, lowering reaction 

temperature and lowering total time.  

The only noticeable disadvantage is that solid-supported syntheses are generally less 

transferable to scale up. However, in our case the multi-milligrams of pure product 

were sufficient to carry out all screening. 

The biological testing provided two inhibitors (58 and 61) to match inhibitors from 

the previous study (46, 48 and 49). However, due to its broader scope of DKPs it has 

helped the narrow substrate scope needed to retain activity with the variety of 

inactive compounds produced. Moreover, the activity of 61 and 58 has opened 

avenues to investigate with regards to heteroaromatic L-amino acids and substituted 

L-prolines, respectively. Work to determine accurate IC50 values is ongoing. 
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Chapter 5 : Attempted Syntheses of the Native Human 

Chemokine CCL2 and its Analogues 
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5.1 Protein Synthesis 

5.1.1 Chemical Synthesis of Peptides/Proteins 

The total chemical synthesis of a protein is the complete synthesis of a protein from the 

constituent amino acids. Originally, strategies utilised fully protected peptides in 

solution phase syntheses and these early approaches resulted in the production of a 

number of bioactive molecules.
1
 For example, an active oxytocin-amide octapeptide 

amide by du Vigneaud in 1953.
1
 However, severe solubility, purification and 

characterisation limitations (of the fully protected segments) hampered development 

and narrowed the scope of accessible peptide target molecules.
2
  

A significant advancement came with the advent of solid phase peptide synthesis 

(SPPS) pioneered by Merrifield in the 1960s. SPPS provided a powerful tool to enable 

the total synthesis of fully active proteins. A landmark example in the field was 

Merrifield’s linear stepwise synthesis of ribonuclease A (1971, 124 amino acids), work 

for which he later won the Nobel prize.
3
 The boundaries were further advanced with the 

use of native chemical ligation (NCL) pioneered by Kent in the 1990s. The total 

chemical synthesis of proteins of over 200 amino is now possible, as evidenced by the 

synthesis of a HIV-1 protease enzyme (203 amino acids).
4
  

Total chemical synthesis gives chemists the precise control needed to finely tune 

bioactive peptides and proteins by incorporation of unnatural amino acids, labels and 

chelates. Chemical synthesis gives the freedom to change steric or electronic factors and 

to tailor the size, nucleophilicity, acidity, hydrophobicity and/or hydrogen bonding 

character of a specific residue, in a selective fashion.
5
  

 

5.1.2 SPPS of Peptides/Proteins 

Generally, SPPS utilises N-amino protected amino acids with orthogonally protected 

side chains and a solid support (resin) in a sequence of repetitive reactions (Scheme 

5.1).
6,7

 The sequence of reactions starts with coupling an amino acid to the linker and 

resin and then subsequent repetitions of N-amino deprotection before coupling the next 

residue. Finally, cleavage of the solid support and any amino acid side chain protection 

yields the full peptide.
8
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Scheme 5.1:  A simplified SPPS strategy to chemically synthesise a peptide. The series of 

repetitive (addition, coupling and deprotection) steps that build from C to N-terminus are 

shown.
6
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The crude peptide product produced via SPPS should be relatively pure, but a number 

of impurities can arise from incomplete peptide couplings, side-chain deprotection and 

unwanted side-reactions. Typically, RP-HPLC is used to obtain a homogenous mixture 

of the desired pure peptide after the synthesis.  

The length of a peptide that can be synthesised by SPPS is variable and it is highly 

sequence dependant. Problems with efficient peptide couplings and side chain 

deprotection increase in peptides longer than 40 amino acids and in many cases there is 

a significant drop in crude purity beyond 50 amino acids. In order to access peptides of 

longer that 50 amino acids a number of strategies have been developed to overcome the 

problems and ultimately push the scope of SPPS. Of these, NCL (Chapter 3) is the 

most widely used technique in the total syntheses of proteins.
9
  

 

5.1.3 Native Chemical Ligation (NCL) 

In the NCL reaction an unprotected peptide containing an N-terminal cysteine reacts 

with a peptide chain containing a C-terminal thioester to yield a natural amide bond at 

the linkage site (junction).
2
 NCL relies on the chemoselective coupling of two 

unprotected peptides in a neutral aqueous solution, one bearing a C-terminal thioester 

and the other an N-terminal cysteine. Therefore, to reach a synthetic target there must be 

a suitable placed cysteine to form a ligation site as well as the non-trivial production of  

a C-terminal thioester containing peptide.
10

 

 

5.1.4 Thioester and Solid Support 

In terms of SPPS, the mechanistic and catalytic intricacies of the thioester and thiol 

leaving group are important. Predominantly alkyl thioesters are used and they are 

prepared via direct synthesis using different types of thioester-linked resin. For 

example, the sulfamylbutyryl was the first developed thioester resin (for Boc-SPPS
11

 

and later for Fmoc-SPPS) and it has facilitated the total synthesis of a variety of long 

peptides/proteins. The thioesters are stable to cleavage conditions, handling/purification 

as well as being fairly unreactive under NCL conditions. This low reactivity of the alkyl 

thioesters initially formed after SPPS means an exogenous thiol catalyst is normally 
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added to create an in situ “active thioester” species with superior reactivity. E.g. the aryl 

thiol 4-mercaptophenylacetic acid (MPAA).
12

 MPAA has become the thiol catalyst of 

choice due to it activity, water solubility and low odour.
12

 However, alky thioester 

resins have a number of disadvantages, including: low yields, lack of facile (test-

cleavage) reaction monitoring and the use of dangerous alkylating reagents 

(diazomethane or iodoacetonitrile).
13,14

 

 

Very recently thioester “mimic” resins (Dawson Dbz and bis(2-sulfanylethyl)amino 

(SEA)) have been developed to overcome the aforementioned problems and offer 

different properties to the sulfamylbutyryl resins. However, literature examples of both 

thioester and thioester “mimic” resins being utilised in microwave assisted SPPS are 

still relatively few. A list of Fmoc SPPS-compatible “activated” resins and their 

descriptions are given in Table 5.1. 
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Table 5.1: Properties of sulfmylbutryryl resin as well as thioester “mimic” resins (Dawson Dbz and SEA). Their use in microwave synthesis is referenced. 

 

Name Structure 
Commercial Availability 

(Novabiochem® / Iris Biotech ©) 
Notes 

Microwave Assisted SPPS 

ref(s) 

Literature Commercial  

Sulfamylbutyryl 

 

-Loading difficulties. Thus, mainly 

available in pre-loaded form. 

-varied polymer swelling and 

loading properties: high-loading 

polystyrene (PS) and low-loading 

hybrid PEG/PS). 

- Boc- and Fmoc-SPPS compatible. 

On resin alkylation and nucleophilic 

thiol cleavage gives rise to low yields 

and prevents facile synthesis monitoring 

via test-cleavage. However, recently 

new pre-loaded (Ala and Gly) hybrid-

linker resins (sulfamylbutyryl – rink 

amide) are available. The hybrid link 

enables facile test-cleavage and removes 

the need for nucleophilic thiol cleavage. 

 

Elsawy et 

al.
15

 

CEM corp.
16

 

Dawson Dbz 

 

-Facile, yet, residue specific 

loading. Therefore, resin available 

unloaded.  

-varied polymer swelling/loading 

properties: high-loading 

polystyrene (PS) and low-loading 

hybrid PEG/PS) 

 

Chain branching occurs in some cases, 

especially with glycine rich sequences. 

In these cases, pre-synthesis Alloc 

protection of the non-propagating 

aromatic amine prevents branching. 

Gunasekera 

et al.
17

 

- 

SEA 

 

-Recently released, no resin known 

loading issues. Resin available 

unloaded and pre-loaded. 

-Only available as low-loading PS 

Post-TFA cleavage the peptide C-

terminus undergoes reversible N-, S-acyl 

shift. However, reversibility is prevented 

(by oxidation of the dithiol group) to 

simplify purification and provides long-

term stability. 

- - 
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5.2 Previous Syntheses of Human Chemokine CCL2 

CCL2 is a protein of 76 amino acids in length and it contains hydrophobic regions 

prone to aggregation and secondary structure formation (a “long and difficult” 

sequence) (Figure 5.1). Thus, the development of a route to the total chemical 

synthesis and purification of CCL2 is non-trivial.  

 

  

 

Figure 5.1: Top: X-ray crystal structure of CCL2 dimer with asymmetric monomer units 

indicated (red and green).
9
 Middle: the “aggregation potential/difficult sequences” graph 

from Peptide Companion. This is a visual representation of a set of defined mathematical 

rules
18

 which assign additive difficulty values to individual amino acid couplings. This graph 

highlights the hydrophobic region 39-51 as very difficult. Bottom: The primary structure of 

CCL2 written from N-C terminus. 

 

An automated room temperature synthesis strategy was successfully completed in 

1995 by Gong and Clark-Lewis
19

 utilising N-Boc protection chemistry. One year 

later an Fmoc based strategy was developed on an automated room temperature 

synthesiser of the same model by Brown et al.
20

 Since then the development of other 

total SPPS routes has allowed access to a host of biologically relevant analogues as 

well as the native chemokine. CCL2 is therefore a suitable target on which to 

develop and test new SPPS and purification methods and reagents designed to enable 

the total chemical synthesis of proteins and protein analogues (e.g. nitrated 

chemokines). To date, no microwave assisted SPPS of CCL2 have been reported. 
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5.2.1 The First Total Chemical Synthesis of CCL2 

In 1995 Gong and Clark-Lewis published the first synthesis of native CCL2 as well 

as the synthesis of analogues containing a variety of N-terminal modifications.
19

 

Chemotaxis assays showed that the N-terminal domain was vital for protein function 

and specific emphasis was put on the integrity of residues 1-6 to retain functional 

activity and residues 7-10 for receptor desensitisation but not function.
19

 The Boc-

based automated linear synthesis had previously been applied to the synthesis of 

chemokines CXCL7 and CXCL8.
19,21

 However, no specific synthetic details of any 

of these chemokines were given and no difficulties were highlighted. Native CCL2 

and the N-terminal analogues folded spontaneously (in the absence of free thiols) and 

were purified via RP-HPLC with a retention time characteristic of other 

chemokines.
21,22

 The crude synthetic yield was stated as 99.3% per amino acid 

addition, yet the overall purified isolated yield was not given.  

As previously mentioned, N-Boc SPPS is unpopular and often unfeasible due to the 

repetitive use of strong acids (TFA) as well as the risks involved in the handling and 

usage of liquid HF required for resin cleavage. Thus, the majority of CCL2 syntheses 

have focused on N-Fmoc approaches. 

 

5.2.2 A Linear Stepwise N-Fmoc Total Chemical Syntheses of CCL2 

In 1996 the first N-Fmoc SPPS of CCL2 was published by the Welch group.
20

 The 

automated synthesis was carried out on a Wang resin (resin loading not provided) 

using an automated ABI room temperature synthesiser fitted with a UV monitor
*
. 

The strategy highlighted that acetyl-capping and a double coupling step of every 

residue (excluding glycine).
20

 An acid stable/base labile (tetrabenzo[a,c,g,i] 

fluorenyl-17 methoxycarbonyl (Tbfmoc), Figure 5.2) protecting group/probe was 

incorporated to the N-terminus pre-cleavage. This hydrophobic protection enables 

RP-HPLC and graphitized carbon affinity chromatography to give fast, simple and 

effective purification. The mild removal of the Tbfmoc yields the native (unfolded) 

chemokine (<1% yield).
20

  

                                                           
*
A UV monitor fitted to an automated synthesiser enables the user to track residue by residue Fmoc 

removal extent and can be used to help to define problematic regions in the synthesis. 
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Figure 5.2: N-Tbfmoc protected polypetide. 

 

Two N-Fmoc based linear stepwise syntheses of CCL2 were published in 2006 by 

Kruszynski et al.
23,24

 and Reid et al.
25

  

The SPPS published by Reid et al. used the product CCL2 in co-crystallisation with 

the inhibitory antibody: 11k2. This led to the key residues in antibody-CCL2 binding  

being mapped and pinpointed to antibody-Phe101 insertion into a hydrophobic 

pocket of CCL2.
25

 Although this binding does not extensively overlay the receptor 

binding site the close proximity leads to significant steric interactions that prevent 

receptor binding.  

The Kruszynski SPPS aimed to produce biotin tagged chemokine that still retains 

natural function. The synthesis of native CCL2 was carried out using 3 methods on 2 

different room temperature automated synthesisers. Surprisingly, it was found that 

the method that utilised double coupling of amino acids (DCC/HOBt) as standard 

with additional capping steps on an ABI; model 431A led to considerably lower 

purity of crude product peptide
23

 than the other two methods that were carried using 

single couplings on either a Symphony Multiple Peptide Synthesizer SMPS-110 or 

the aforementioned ABI; model 431A. The product CCL2 was purified (by RP-

HPLC), oxidised and re-purified by affinity chromatography via a monoclonal 

antibody (mouse anti-human CCL2 monoclonal antibody (mAb)). Effective post-

synthesis biotin modification of the synthetic whole protein proved difficult as it led 

to the indiscriminate biotinylation of residues important for function lysine residues 

and significantly reduced the derivatives activity.
23

 Therefore, follow-up total 

syntheses site-selectively incorporated an Fmoc-Lys(Alloc)-OH building block at 
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less “vital to function” Lys69 or Lys75.
†
 N-Alloc side-chain deprotection and 

subsequent on-resin biotinylation yielded site-specifically modified CCL2 

derivatives that retained activity comparable to the native chemokine (Figure 5.3).
24

 

 

Figure 5.3: Site selectively biotin (with PEG4 linker) labelled polypeptide. 

 

5.2.3 Total Chemical Synthesis of CCL2 via NCL 

Recently the synthesis of CCL2 via a segmented NCL approach of two peptide 

segments (AAs 1-35 and 36-76, Scheme 5.2) was reported
‡
.
9
 This strategy also 

utilised seven evenly spaced pseudo-proline
§
 dipeptide building blocks to disrupt the 

aggregation of growing peptide chains that leads incomplete coupling steps.
26

 The C-

terminal segment (AA 1–35) was synthesised at room temperature on a low-loading 

Wang resin (0.12 mmol /g). The N-terminal (AA 36–76) segment was synthesised at 

room temperature on a sulfamylbutryl resin so as to yield a C-terminal thioester. 

Post-synthesis alkylation of the thioester resin (with (trimethylsilyl)diazomethane 

(TMS-CHN2)) followed by thiol attack released the C-terminal thioester from the 

solid support (Scheme 5.2). The peptide segments were purified before the NCL 

reaction to yield native CCL2. 

                                                           
†
Native CCL2 contains nine lysine residues and Lys69/Lys75 were chosen in an attempt to minimize 

disruptions in the bioactivity. Lysine residues: 35, 38 and 49 are known to be important to activity and 

Lys 19, 44, 56 and 58 are closer to the active surface. 
‡
 This NCL approarch was reported in 2010, as work in the Cobb group was being carried out. 

§
Pseudo-prolines are serine, threonine and cysteine derivative building blocks with an acid lable cyclic 

side-chain protection. The side-chain protection is in the form of a 5-membered heteroaromatic ring 

that induces a cis-amide configuration and disrupts ß-sheet and α-helix formation. Psuedo-prolines are 

incorporated as dipeptide building blocks due to the poor reactivity and coupling efficiency of the 

secondary amine 
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Scheme 5.2: Total chemical synthesis of CCL2 via NCL. i: TMS-CHN2, THF, Hexane. ii: 

Ethyl 3-mercaptopropionate, sodium thiophenolate, DMF. iii: TFA, 1,2-ethanedithiol, 

phenol, thioanisole, water, TIPS. iv: Gdn HCl, sodium phosphate, thiophenol, water. 

 

All of the previous solid phase peptide syntheses of the chemokine CCL2 are 

summarised in Table 5.2. 
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Table 5.2: Previous room temperature solid phase peptide syntheses of CCL2. *>95% purity by RP-HPLC. 

 

Key Modification(s) Strategy Synthesizer 
Coupling 

Reagents 
Resin Year Purified* Yield Author/Ref 

Deletion of N-terminal 

residues 
Stepwise Boc-SPPS 

 

ABI; 

model 430A 

 

DIC, DCC & 

HOBt 

PAM 

(0.80 mmol/g) 
1995 0.6-1.5% 

Gong & Clark-

Lewis.
19

 

Ala substitution of Cys 

residues 
Stepwise Boc-SPPS 

 

ABI; 

model 430A 

 

DIC, DCC & 

HOBt 

PAM 

(0.80 mmol/g) 
1997 0.6-1.5% 

Gong & Clark-

Lewis.
27

 

N-Terminal Tbfmoc 

protection/probe 
Stepwise Fmoc-SPPS 

 

ABI; 

model 430A 

 

Asymmetric 

anhydrides & 

HOBt 

Wang 

(0.86 /mmolg) 
1996 0.6% Brown et al.

20
 

Native CCL2 synthesis 

followed by global 

biotinylation 

Stepwise Fmoc-SPPS 

 

ABI: 

model 431A 

 

HBTU & HOBt 

or 

DCC & HOBt 

Low-loading 

Wang 

(0.12 mmol/gl) 

2006 13-26% Kruszynski et al.
23

  

Site-specific on-resin 

biotinylation 

(Lys
69

 and Lys
75

) 

Stepwise Fmoc-SPPS 

 

ABI: 

model 431A 

 

HBTU & HOBt 

or DCC & 

HOBt 

Low-loading 

Wang 

(0.12 mmol/gl) 

2006 18-20% Kruszynski et al.
24

 

Native CCL2 synthesis and 

co-crystallisation 
Stepwise Fmoc-SPPS 

 

ABI; 

model 433A 

 

HBTU & HOBt - 2006 - Reid et al.
25

 

Segmented synthesis via 

NCL and the use of 

structure-breaking pseudo-

proline building blocks. 

NCL and Fmoc-SPPS 

 

ABI; 

model 431A 

 

DCC & HOBt 

Low-loading 

Wang 

(0.12 mmol/g) 

Sulfamylbutyryl 

(0.26 mmol/g) 

2010 

1.5% (with 

respect to 

thioester 

fragment) 

Grygiel et al.
9
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5.2.4 Preliminary Work on the Microwave Assisted Linear Synthesis of CCL2 

* The preliminary work reported here is a summary of the investigation carried out by Mr. 

S. Lear an MRes student in the Cobb group. 

CCL2 has been shown to be amenable to a complete stepwise linear peptide 

synthesis with procedures for the purification and subsequent folding into the correct 

active protein also known.
9,20

 In the previously described syntheses low-loading 

resins, double couplings and pseudo-prolines were all utilised to enable pure product 

CCL2 to be obtained. 

It was envisaged an improved (particularly in terms of synthesis time) linear stepwise 

synthesis of CCL2 that utilised microwave assisted SPPS and a low-loading resin. 

Microwave irradiation/heating can significantly reduce synthesis times and improve 

crude yields. The precise nature of heating
28**

  that can be applied has shown to be of 

specific benefit when applied to sterically hindered couplings and the synthesis of 

sequences that are prone to secondary structure formation/aggregation.
29

 It was 

postulated that microwaves provided an additional heating of peptides directly 

through interactions with amide bond dipoles which was in part responsible for the 

elevated yields over room temperature SPPS.
30-32

 However, work by the Kappe 

group comparing conventional (oil bath) and microwave heating in the synthesis of 

three difficult peptides provided evidence against this hypothesis. The syntheses 

showed near identical improvements in peptide product purity and similar (low) 

racemisation levels showing that the main effect of microwave heating (in relation to 

SPPS) is purely thermal.
33

 

The majority of the previous syntheses of CCL2 used a low-loading Wang resin. 

Therefore, a polystyrene low-loading Wang (PABA) resin (0.27 mmol/g) was 

chosen. Low loading resins are recommended for the synthesis of long or difficult 

sequences as they reduce the probability for disadvantageous steric interactions 

between peptide chains that can confine reactive sites and truncate the synthesis.
34,35

  

The resin was loaded onto a CEM liberty1 automated synthesizer and N-Fmoc amino 

acids with their appropriate side-chain protecting group were added in a stepwise 

                                                           
**

Microwave heating disposes energy to the solvent and reagents directly and their storage and 

conversion of the energy to heat varies. DMF, the common SPPS solvent has good microwave heating 

ability (loss factor: tan δ 0.161). 
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fashion until the desired polypeptide sequence was formed. The coupling conditions 

that were used are shown in Table 5.3. 

Table 5.3: Reaction details for the all SPPS steps used in this synthesis. 

 

The synthesis was monitored with a series of test-cleavages
††

 and it showed that the 

synthesis failed between amino acids 35 – 52 (Figure 5.4). This region contains 

hydrophobic residues thus, has a high aggregation potential. In the native protein this 

a section of the sequence folds into β-sheets.  

 

 

Figure 5.4: Top: The MALDI-TOF spectra of crude peptide isolated from test cleavages at 

four locations. Bottom: The native sequence of CCL2 with the relevant test-cleave locations 

indicated.  

 

                                                           
††

A test cleavage enables the progress of a solid phase synthesis to be monitored and purity of product 

peptide to be tentatively described. A very small amount of resin can be removed and treated with 

TFA cleavage “cocktail” for a set time (generally ~ 3 h). Subsequent evaporation of the TFA and ether 
washes yields a small quantity of crude peptide that can be analysed via MS and RP-HPLC. Test 

cleavages are also particularly useful in the optimisation of cleavage conditions. 

Reaction Note(s) Reagents & Equivalents Temp. Time  

General 

peptide 

coupling 

 

Microwave 

assisted  

 

PyBOP (5.0 eq), DIPEA (10 eq), 

Fmoc-AA-OH (5.0 eq). 

 

75 °C 10 min 

Specific 

peptide 

coupling 

(His) 

 

Microwave 

assisted  

 

PyBOP (5.0 eq), DIPEA(10 eq), 

Fmoc-His-OH (5.0 eq). 

 

50 °C 10 min 

Fmoc 

deprotection 

 

Microwave 

assisted 

Piperdine (20 %), DMF (80%). 

 

75 °C 3 min 

TFA 

cleavage 

- TFA (95%), TIPS (2.5%), H2O 

(2.5%). 

RT 3 h 
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The previous work guided the progress of a microwave assisted synthesis of CCL2 to 

utilise either a fragmentation or an optimised stepwise approach: 

 1. A fragmentation approach: To divide CCL2 into smaller peptide segments that 

would trivialise their synthesis and form the full native CCL2 using NCL reactions as 

in the Grygiel et al. synthesis. In this approach the synthesis of a peptide thioester C-

terminus is required, to do this a selection of “activated” resins have become 

commercially available and a set of known post-synthesis steps yield the peptide 

thioester.
9
  

2. An optimised stepwise approach: The optimisation would involve resins, reaction 

times, reaction temperatures and amino acids so that a new stepwise linear synthesis 

could progress through the aforementioned region of hydrophobic amino acids and 

form the full native CCL2. 

 

5.3 Microwave Assisted Total Chemical Synthesis of CCL2: A 

Fragmentation Approach 

5.3.1 A Fragment Approach to the Total Synthesis of CCL2 

CCL2 contains 4 cystiene residues and these residues allow various segmented 

approaches to be hypothesised (two routes are shown in Table 5.4 below). This 

synthetic approach originated from the failure of the synthesis after ~ 24 coupling 

steps. Hence, all the hypothesised routes divide the sequence at Cys52 to form 

fragment 52-76. Each route contains at least one NCL (i in Table 5.4) and the linear 

stepwise synthesis of at least two fragments. Therefore, an “activated” resin is 

required to synthesise the C-terminal thioester or thioester “mimic” segment. 
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Table 5.4: Proposed routes to the synthesis of chemokine CCL2. Route 1: fragments 1-51 

and 52-76. Route 2: fragments 1-35, 36-51 and 52-76 approach. i: Native chemical ligation 

(NCL). ii: Deprotection of thiazolidine N-terminal cysteine protection.  

 

We focused on the recently developed Dawson Dbz resin for the SPPS of the 

required thioesters. Dawson Dbz was implicated as a resin that would show 

improvements on the low yields and lack of facile (test-cleavage) reaction 

monitoring of the historically used sulfamylbutyryl resin.
14

 Preliminary work by S. 

Lear on a small peptide showed that the microwave heating conditions could not 

provide the desired peptide product as a single species. The impurities that arose 

during the synthesis were tentatively assigned as multiple amino acid additions 

propogating from the alternative aromatic amine. However, Alloc protection of the 

non-propagating aromatic amine solved this issue in a similar way to glycine rich 

peptides.
36

 

Route Fragment Approach 

1 

 

 

2 
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There is precidence for microwave assisted synthesis on a Dawson Dbz resin
17

 but, 

the synthesis was optimised and microwave heating was not used for all couplings 

e.g. the first three amino acids were coupled at room temperature with specific and 

individual coupling reagents, reagent equivalents, reaction times and repetitions. 

Therefore, our fragmented approach will utilise an Alloc protected Dawson Dbz 

resin in a complete microwave assisted synthesis of the thioester/thioester “mimic” 

fragments.  

The aforementioned Ile-Cys junction that is vital in all possible strategies has been 

shown previously to be extremely poor for NCL. Route 1 requires the synthesis of 

the longer peptide: 1-51 that could potentially be more challenging and time-

consuming. Whereas, in Route 2, the synthesis of the shorter fragment 36-51 and the 

subsequent NCL with pre-synthesised fragment 52-76 would enable valuable 

knowledge of the use of thioester/“mimic” resins as well as ligation at the Ile-Cys 

junction in a shorter time-frame. Therefore, Route 2 (Table 5.4 and Scheme 5.3) 

was chosen. 

 

Scheme 5.3: Synthesis of CCL2 from three fragments: 1-35, 36-51 and 52-76: i: NCL. ii: 

Deprotection of thiazolidine N-terminal cysteine protection . 
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5.3.1.1 Synthesis of CCL2 Peptide Fragment 52-76 

The microwave assisted Fmoc SPPS of CCL2 peptide fragment 52-76 (Figure 5.5) is 

previously described in Section 5.2.4. 

  

Figure 5.5: Primary sequence of fragment 52-76 from N-terminal amine and C-terminal 

carboxylic acid 

 

The re-synthesis was carried out as in Section 5.2.4, Table 5.3. However, PyBOP 

and DIPEA were replaced by the more commonly used in microwave assisted 

synthesis coupling reagents: DIC and HOBt see Table 5.5. DIC/HOBt (or similar) 

has been effectively used to synthesize (with microwave heating) many difficult 

sequences.
37-40

 

Table 5.5: Reaction details for the all SPPS steps used in this synthesis. 

 

The expected mass of CCL2 peptide fragment 52-76 was observed via MALDI-TOF 

analysis with a [M+H]
+
 peak being observed at 2928.8 Da. Crude peptide was 

obtained at a purity of 80% and was purified via preparative RP-HPLC. The final 

peptide was obtained in 17% yield and shown to have a purity of greater than 95% 

(Figure 5.6). 

Reaction Note(s) Reagents & Equivalents Temp. Time  

General peptide 

coupling 

 

Microwave 

assisted  

 

DIC (5.0 eq), HOBt (10 eq), 

Fmoc-AA-OH (5.0 eq). 

 

75 °C 10 min 

Specific peptide 

coupling (His) 

 

Microwave 

assisted  

DIC (5.0 eq), HOBt (10 eq), 

Fmoc-His-OH (5.0 eq). 

 

50 °C 10 min 

Fmoc 

deprotection 

Microwave 

assisted 

Piperdine (20 %), DMF 

(80%). 

 

75 °C 3 min 

TFA cleavage - TFA (95%), TIPS (2.5%), 

H2O (2.5%). 

RT 3 h 
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Figure 5.6: Analysis of the purified CCL2 peptide fragment 52-76. Left: positive ion 

MALDI-TOF spectrum. Right: Analytical RP-HPLC (230 nm). The linear gradient ranges 

from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in 

H2O (0.1% TFA) at 30 minutes.  

 

5.3.1.2 Synthesis of CCL2 Peptide Fragment 36-51 

Commercially available low-loading (PEG/PS hybrid) N-Fmoc Dawson Dbz was 

used to prepare the C-terminal N-acylurea (thioester mimic) Nbz peptide (Figure 

5.7).  

 
Figure 5.7: CCL2 peptide fragment 36-51: containing thiazolidine protected N-terminal 

Cysteine and N-acylurea (Nbz) C-terminus. 

 

0 10 20

Time (mins) 
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The first synthetic step in the preparation of peptide fragment 36-51 is loading of the 

Dbz resin with the first amino acid building block: Fmoc-Ile-OH. The standard
36

 

resin loading conditions (including; non-propagating aromatic amine Alloc 

protection) are shown in Scheme 5.4. 

 

 

Scheme 5.4: Loading the Dbz resin. i: Piperidine/DMF (1:4), RT, 10 min, x 2. ii: PyBOP (5 

eq), Fmoc Ile-OH (5 eq), DIPEA (10 eq), DMF, RT, 1 h. iii: DIPEA (1.1 eq) allyl 

chloroformate (350 nM), DCM, RT, 1 h. 

 

From the loaded Dbz resin the synthesis of CCL2 peptide fragment 36-51 was 

undertaken on a CEM liberty1 automated synthesizer (Table 5.6). The post synthesis 

N-Alloc deprotection and Dbz cyclisation that lead to the final Nbz containing CCL2 

peptide fragment 36-51 were conducted manually at room temperature (Table 5.6). 
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Reaction Note(s) Reagents & Equivalents Temp.  Time  

General peptide 

coupling 

Microwave 

assisted 

coupling 

repeated  

 

DIC (5.0 eq), HOBt (10 eq), 

Fmoc-AA-OH (5.0 eq). 

 

75 °C 10 min 

Specific peptide 

coupling (Boc-

thiazolidine-

OH) 

 

Coupling 

repeated until 

negative 

TNBS/Kaiser 

resin test result. 

 

PyBOP (2.5eq), DIPEA (5.0 

eq), Boc-thiazolidine-OH 

(2.5 eq). 

RT 1 h 30 

min 

Fmoc 

deprotection 

Microwave 

assisted 

Piperdine (20 %), DMF 

(80%). 

 

75 °C 3 min 

Alloc 

deprotection 

 

Repeated Tetrakis(triphenylphosphine)

palladium
(0)

 (0.35 eq), 

phenylsilane (20 eq), DCM. 

 

RT 30 min 

Dbz cyclisation 

(Nbz formation) 

 

Repeated 1.4-nitrophenylch-

loroformate (5.0 eq.), DCM. 

2. DIPEA, DMF. 

 

RT 1. 1 h 

2. 45 

min 

TFA cleavage - TFA (95%), TIPS (2.5%), 

H2O (2.5%). 

RT 3 h 

Table 5.6: Reaction details for the all SPPS steps used in this synthesis. 

 

The expected mass for CCL2 Peptide Fragment 36-51 was observed via MALDI-

TOF analysis with a [M+H]
+
 peak being observed at 1960.4 Da. Crude CCL2 

Peptide Fragment 36-51 was obtained at a purity of 32.7% and subsequent 

purification of the crude peptide was achieved via preparative RP-HPLC. The final 

peptide was shown to have a purity of 94% (Figure 5.8) and it was obtained in 14% 

yield. The MALDI-TOF spectrum shows a clear impurity peak at 1800.4 Da that is 

attributed to the hydrolysis of the N-acylurea to yield the C-terminal carboxylic acid. 

This impurity was also visualised in the ESI+ MS (denoted * in Figure 5.8). 

However, due to the sharp analytical RP-HPLC trace it was assumed that fragment 

31-51 was prepared as a single species and that the ionisation conditions in both MS 

techniques led to the observed hydrolysis. 
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Figure 5.8: Analysis of the purified CCL2 fragment 31-51. Left: positive ion MALDI-TOF 

spectrum. Middle: ESI+ spectrum. Right: Analytical RP-HPLC (230 nm) of Fragment 31-51. 

The linear gradient ranges from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 

50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 minutes.  

 

5.3.1.3 NCL of CCL2 Peptide Fragments 36-51 and 52-76 

With two CCL2 peptide fragments in hand (36-51 and 52-76), the NCL reaction was 

carried out based on the NovaBiochem procedure
14

 on a small test scale (3 mg) (i in 

Scheme 5.5). The procedure was repeated without guanadinium hydrochloride 

(Gdn.HCl) (ii in Scheme 5.5). In either case no trace of ligation product was 

observed at 4, 8, or 24 h in MALDI-TOF or LCMS spectra. After 24 h The N-

acylurea was seen to undergo complete hydrolysis into the carboxylic acid (1823.5 

Da, [M+Na]
+
-Nbz, Figure 5.9).  

0 10 20Time (mins) 
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Scheme 5.5: Attempted NCL to form CCL2 peptide fragment 36-76. i: MPAA, sodium 

phosphate, TCEP, Gdn HCl, H2O, RT, 18 h. ii: MPAA, sodium phosphate, TCEP, H2O, RT, 

24 h. 

 

 

Figure 5.9: MALDI-TOF spectrum of the crude NCL mixture after 24 h. *denotes 

unassignable peak. 

 

It was deemed that the NCL reaction at the Ile51-Cys52 junction was going to be 

slow and thus, we focused on an optimised linear SPPS approach that would enable a 

successful synthesis beyond this junction. The hope was that by optimising the SPPS 

procedures (in Section 5.2.4 and Section 5.3.1.1) that, a full linear synthesis of 

CCL2 or a synthesis up to the next possible ligation point at Lys35-Cys36. 
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5.4 Microwave Assisted Total Chemical Synthesis of CCL2: An 

Optimised Stepwise Approach 

5.4.1 An Optimised Stepwise Approach to the Total Synthesis of CCL2 

We envisaged an “improved” strategy to enable the synthesis to progress past point 

at which the previous failed stepwise synthesis failed: Cys52 (Section 5.1.4). To do 

this a number of modifications to the original synthesis were made: 

1. Double (microwave assisted) couplings throughout. (Standard Conditions, 

Figure 5.10) 

2. Increased temperature couplings in the parts of the sequence with significant 

“aggregation” potential (where the original synthesis failed). (High 

Temperature Conditions, Figure 5.10) 

3. Replace the low-loading polystyrene based Wang resin with a low-loading 

hybrid PEG/PS tentagel resin that has increased swelling properties (leading 

to a reduction in the effects of aggregation).
41

 

4. Monitor the previously difficult stages of the synthesis (via test-cleavage) and 

utilise pseudo-proline amino acids if the synthesis was judged to be poor. 

 

Figure 5.10: Breakdown of proposed reaction conditions for optimised SPPS of CCL2. Test 

cleavage points are indicated at Ser 63, Cys52, Ile46, Cys36 and Arg24. 

 

To begin, pre-loaded (Thr(OtBu)) Tentagel resin was loaded onto a CEM liberty1 

automated synthesizer and SPPS was undertaken with reagents and conditions as in 

Table 5.7. 
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Reaction Note(s) Reagents & Equivalents Temp.  Time  

General 

peptide 

coupling 

Microwave 

assisted 

coupling 

repeated  

DIC (5.0 eq), HOBt (10 

eq), Fmoc-AA-OH (5.0 eq) 

 

75 °C 10 min 

High 

temperature 

peptide 

coupling 

(PKEAVI & 

IVAKEI) 

 

Microwave 

assisted 

coupling 

repeated 

DIC (5.0 eq), HOBt (10 

eq), Fmoc-AA-OH (5.0 eq). 

95 °C 10 min 

Specific 

peptide 

coupling 

(Cys & His) 

 

Microwave 

assisted 

coupling 

repeated 

DIC (5.0 eq), HOBt (10 

eq), Fmoc-AA-OH (5.0 eq). 

 

50 °C 10 min 

Specific 

peptide 

coupling 

(pseudo-

proline (KT)) 

 

Coupling 

repeated until 

negative 

chloranil resin 

test result. 

 

PyBOP (2.5 eq), DIPEA 

(5.0 eq), Fmoc- Lys(Boc)-

Thr(Ψpro)-OH (2.5 eq). 

RT 1 h 30 min 

Fmoc 

deprotection 

Microwave 

assisted 

Piperdine (20%), DMF 

(80%). 

 

75 °C 3 min 

TFA 

cleavage 

- TFA (95%), TIPS (2.5%) 

H2O (2.5%). 

 

RT 3 h 

Reductive 

TFA 

cleavage 

- 1. TFA (95%), TIPS (5%).  

2. add: EDT, TMSBr 

RT 1. 2 h 30 min. 

2. 30 min 

Table 5.7: Reaction details for the all SPPS steps used in this synthesis. 

 

Test cleavages were taken to monitor the synthesis as it progressed. This first test 

cleavage was carried out at Ser63 (Figure 5.11) and the test cleaved peptide showed 

a good level of purity by analytical RP-HPLC (Figure 5.12). In addition the major 

peaks observed in the MALDI-TOF spectrum corresponded to M+H
+
 (1628.8 Da) 

and M+Na
+
 (1659.8 Da) for the peptide fragment.  

 

 

Figure 5.11: Chemical structure of CCL2 peptide fragment 63-76. 
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Figure 5.12: Analysis of the crude CCL2 peptide fragment 63-76. Left: positive ion MALDI-

TOF spectrum. Right: Analytical RP-HPLC (230 nm) of Fragment 52-76. The linear gradient 

ranges from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% 

TFA) in H2O (0.1% TFA) at 30 minutes. The relatively low signal to noise ratio in the Maldi 

spectrum (positive ionisation mode) was attributed to the large number of residues that 

“prefer” a negative charged state (Ser, Thr and Asp) in this point in the sequence. 

 

The synthesis was continued up to residue Cys52 and another test cleavage was 

undertaken Figure 5.13. The test cleaved peptide showed two distinct peptide peaks 

of similar intensities in the analytical RP-HPLC and LCMS-ESI
+
 analysis confirmed 

that there was a 16 Da difference between the two main species (Figure 5.14). Initial 

observations deduced that this was due to methionine oxidation and that a reduction 

was needed. The oxidation of methionine was not observed in the previous stepwise 

synthesis (Section 5.1.4). Therefore, the prolonged reaction times (due to double 

coupling) and/or higher swelling Tentagel resin must facilitate the oxidation. An 

optimised TFA cleavage with the addition of EDT and TMSBr (reductive TFA 

cleavage conditions, Table 5.7) fully and selectively reduced the methionine, hence 

alleviating the problem. 
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Figure 5.13: Chemical structure of CCL2 peptide fragment 52-76. 

 

 
Figure 5.14: Analysis of the crude CCL2 peptide fragment 52-76. Left bottom: LCMS-ESI

+
 

spectrum of front running major peak. Left top: LCMS-ESI
+
 spectrum of late running major 

peak. Right: Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% MeCN 

(0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% 

TFA) at 30 minutes.  

 

As the Synthesis progressed into the hydrophobic “prone to aggregation” region of 

CCL2, higher temperature (95°C) couplings (Table 5.7) were used up to Ile46 

(Figure 5.15). Test cleavage (with reducing conditions to avoid Met oxidation) 

showed a major peak corresponding to the desired peptide (by LCMS, Figure 5.16). 

However, distinct yet unassignable impurity peaks in the LCMS (* in Figure 5.16) 

were visible. In addition the major peak that corresponded to the target peptide 

showed broadening in the analytical RP-HPLC. The peak broadening in the RP-

HPLC spectrum LCMS was thought to be due to aggregation/peptide folding leading 

to less effective peptide coupling steps. Therefore, the pseudo-proline KT was 

incorporated into the sequence in an attempt to “break-folding” and aid the efficiency 

of the subsequent coupling steps. 
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Figure 5.15: Chemical structure of CCL2 peptide fragment 46-76. 

 

 

Figure 5.16: Analysis of the crude CCL2 peptide fragment 46-76. Left: ESI+ spectrum. 

Right: Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% MeCN (0.1% 

TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 

minutes. *unassignable impurity peaks. 

 

After manual coupling of KT pseudo-proline dipeptide the synthesis was continued 

using higher temperature (95°C) couplings (Table 5.7) up to Cys36 (Figure 5.17) as 

this is the next possible ligation junction. The test cleaved peptide showed multiple 

peaks of very similar retention time in the analytical RP-HPLC and the LCMS of 

crude peptide showed desired product peaks ([M+5H]
5+

, [M+6H]
6+

, [M+7H]
7+

 and 
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[M+8H]
8+

) as well as a significant amount of non-product peaks (Figure 5.18). It 

was not possible to assign the non-product peaks as particular species.  

 

Figure 5.17: Chemical structure of CCL2 peptide fragment 36-76. 

 

  
 

Figure 5.18: Analysis of the crude CCL2 peptide fragment 36-76. Left: ESI+ spectrum. 

Right: Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% MeCN (0.1% 

TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 

minutes.  

 

Although the product peptide (residue 36-76) is believed to be the major product, it 

was felt that if the synthesis was continued then isolation of a single species via 

semi-preparative RP-HPLC would not be trivial. In addition, if the synthesis was 

continued the addition of more impurities would compound this problem. Therefore, 

the resin was cleaved yielding crude CCL2 Peptide Fragment 36-51 at a purity of 

32.7%. Purification via RP-HPLC afforded CCL2 Peptide Fragment 36-51 in 8% 
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yield at a purity of 96% (Figure 5.19). The synthesis of this 41 amino acid fragment 

is a significant improvement on the previous synthetic strategy (Section 5.2.4) that 

was not able to produce product peptide after amino acid Cys52  (a 25 amino acid 

fragment). 

 

Figure 5.19: Analysis of the purified CCL2 peptide fragment 36-76. Left: ESI+ spectrum. 

Right: Analytical RP-HPLC. The linear gradient ranges from 2% MeCN (0.1% TFA) in H2O 

(0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 minutes.  

 

The cleavage and purification of CCL2 peptide fragment 36-76 means that a 

fragmented approach must be used and that the N-terminal section of CCL2 peptide 

fragment 1-35 must be synthesised with a C-terminal thioester or thioester “mimic”: 

As seen in Section 5.3.1.2, a protected Dawson Dbz strategy was chosen. This leads 

to a 2-segment strategy similar to the Grygiel et al. synthesis.
9
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5.4.2 Synthesis of CCL2 Peptide Fragment 1-35 

With CCL2 peptide fragment 36-76 in hand; synthesis of CCL2 peptide fragment 1-

35 was undertaken on a Dawson Dbz resin. Firstly, the Dbz resin was loaded with 

Fmoc-Lys(Boc)-OH and protected with allyl chloroformate (as in Scheme 5.4 in 

Section 5.3.1.2). The pre-loaded and protected resin was loaded onto a CEM liberty1 

automated synthesizer and the synthesis was attempted (for conditions see: Table 

5.8). As with the previous synthesis (peptide fragment 36-76) test cleavages 

monitoring the synthesis were taken at regular intervals. 

 

Reaction Note(s) Reagents & Equivalents Temp.  Time  

General Peptide 

coupling 

Repeated  DIC (5.0 eq), HOBt (10 eq), 

Fmoc-AA-OH (5.0 eq) 

 

75 °C 10 min 

Peptide coupling 

(Cys) 

 

Repeated DIC (5.0 eq), HOBt (10 eq), 

Fmoc-AA-OH (5.0 eq). 

 

50 °C 10 min 

Peptide coupling 

(Arg) 

Repeated DIC (5.0 eq), HOBt (10 eq), 

Fmoc-AA-OH (5.0 eq). 

 

RT 1 h 

Peptide coupling 

(Boc-

pyroglutamic 

acid) 

Repeated until  

negative 

chloranil resin 

test result. 

 

PyBOP (2.5 eq), DIPEA(5 

eq), Fmoc-Lys(Boc)-

Thr(Ψpro)-OH (2.5 eq). 

RT 1 h 30 

min 

Fmoc 

deprotection 

- Piperdine (20 %), DMF 

(80%). 

 

75 °C 3 min 

Alloc 

deprotection 

 

Repeated Tetrakis(triphenylphosphine) 

palladium
(0)

 (0.35 eq), 

phenylsilane (20 eq), DCM. 

 

RT 30 min 

Dbz cyclisation 

(Nbz formation) 

 

Repeated 1.4-nitrophenylch-

loroformate (5.0 eq.), DCM. 

2. DIPEA, DMF. 

 

RT 1. 1 h 

2. 45 

min 

TFA cleavage - TFA (95%), TIPS (2.5%) 

H2O (2.5%). 

RT 3 h 

Table 5.8: Reaction details for the all SPPS steps used in this synthesis. 

 

The first test cleavage of the peptide was at Arg29 (Figure 5.20) and RP-HPLC 

analysis showed that the crude peptide had a good level of purity (Figure 5.21). In 
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addition, [M+H]
+
 and [M+Na]

+
 and [M+K]

+
 for the target peptide were the only 

species visible in the MALDI-TOF spectra of the crude product (Figure 5.21). 

 

Figure 5.20: Chemical structure of the Dbz containing CCL2 peptide fragment Section 29-

35. 

 

Figure 5.21: Analysis of the crude CCL2 peptide fragment 29-35 Left: positive ion MALDI-

TOF spectrum. Right: Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% 

MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O 

(0.1% TFA) at 30 minutes.  

 

The synthesis was continued to Arg24 (Figure 5.22) and RP-HPLC analysis showed 

that the crude peptide had a good level of purity (Figure 5.23). In addition, the 

[M+H]
+
 for the target peptide was the only species visible in the MALDI-TOF 

spectra of the crude product (Figure 5.23). 
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Figure 5.22: Chemical structure of the Dbz containing CCL2 peptide fragment Section 24-

35. It should be noted that the N-Fmoc group was not removed prior to this test cleavage. 

 

Figure 5.23: Analysis of the crude CCL2 peptide fragment 24-35. Left: positive ion MALDI-

TOF spectrum. Right: Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% 

MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O 

(0.1% TFA) at 30 minutes.  

 

A sharp major HPLC peak and MALDI-TOF signal in their respective spectra are 

observed. Thus, the remaining procedure (24 AA couplings) was carried with no 

further test cleavages to complete the synthesis of the full CCL2 peptide fragment 1-

35. The post synthesis N-Alloc deprotection and Dbz cyclisation that lead to the final 

Nbz containing CCL2 peptide fragment 1-35 (Figure 5.24) were conducted manually 

at room temperature (Table 5.8). 
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Figure 5.24: Chemical structure of the Nbz containing CCL2 peptide fragment Section 1-35. 

 

The complete the synthesis of the full CCL2 peptide fragment 1-35 resulted in one 

major peak in the RP-HPLC spectrum (retention time ≈ 19 min, Figure 5.25) and 

LCMS-ESI
+
 spectrum indicated that the peak was the correct mass with visible 

[M+3H]
3+

, [M+4H]
4+

and [M+6H]
6+

 peaks. The crude peptide purity was 20% with a 

variety of early- and late-running impurities visible in the RP-HPLC spectrum and a 

number of unassignable impurities in the LCMS-ESI
+
 spectrum. As in Section 

5.3.1.2, peaks indicative of the hydrolysis of the Nbz are visible in the LCMS 

Spectrum (-Nbz).  

 

Figure 5.25: Analysis of the crude CCL2 peptide fragment 1-35. Left: ESI+ spectrum. Right: 

Analytical RP-HPLC (230 nm). The linear gradient ranges from 2% MeCN (0.1% TFA) in 

H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 

minutes.*indicates front-running small molecule impurity from Alloc deprotection. 
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Purification of CCL2 peptide fragment 1-35 proved exceptionally difficult and the 

purest fractions yielded product peptide at 67% and 75% purity (left and right, 

respectively in Figure 5.26) in 1% yield.  

 

Figure 5.26: Analysis of the purified fragment 1-35. Left: Analytical RP-HPLC (230 nm) of 

purified fragment 1-35, integration shows 67% pure product. The linear gradient ranges from 

2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O 

(0.1% TFA) at 30 minutes. Right: Analytical RP-HPLC (230 nm) of purified fragment 1-35, 

integration shows 75% pure product. The linear gradient ranges from 2% MeCN (0.1% TFA) 

in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 

minutes. 
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Figure 5.27: Analysis of the purified* CCL2 fragment 1-35. Left: ESI+ spectrum. Right: 

positive ion MALDI-TOF spectrum. *Spectra correspond to 75% pure fraction (by analytical 

RP-HPLC (right, Figure 5.26)) 

 

The low purity was attributed to a significant amount of hydrolysis in a large number 

of fractions after purification. It was questioned whether the stability of the peptide 

fragment 1-35 (with C-terminal Lys-Nbz) in purification/analysis solvents 

(H2O/MeCN with 0.1% TFA) was low and that degradation throughout the 

purification and analysis led to this (Scheme 5.6). To investigate this, an analytical 

RP-HPLC and MS were run after the pure product peptide was stored in solution at 

RT for 4 h (0.1% TFA and 20% MeCN in H2O at RT). The RP-HPLC after solution 

storage (right, Figure 5.28) showed considerable peak broadening and the LCMS-

ESI
+
 mass spectrum (Figure 5.29) showed extensive degradation of the product 

peak. A number of unassignable peaks were observed as well as the [M+3H]
3+

 and 

[M+4H]
4+

 peaks corresponding to the hydrolysis (-Nbz) product at 1329.6 Da and 

997.4 Da, respectively.  



 

167 

 

Scheme 5.6: Hydrolysis of CCL2 fragment 1-35. 

 

 

Figure 5.28: Left Analytical RP-HPLC (230 nm) of purified fragment 1-35. Right: 

Analytical RP-HPLC (230 nm) of purified fragment 1-35 after solution storage for 4 h. The 

linear gradients range from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% 

MeCN (0.1% TFA) in H2O (0.1% TFA) at 30 minutes. 
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Figure 5.29: LCMS ESI+ spectrum of purified CCL2 peptide fragment 1-35 after solution 

storage for 4 h. 

 

Due to the low solution stability of this peptide, the purified product was stored as a 

freeze-dried powder at -20 °C and only dissolved in solution when the NCL was 

undertaken. 

 

5.4.3 NCL of CCL2 Peptide Fragment 1-35 and Fragment 36-76 

With peptide fragments 1-35 and 36-76 in hand, an NCL reaction was carried out 

based on the Novabiochem procedure
14

 on a small scale (1.5 mg) (i in Figure 5.30).  

 

Figure 5.30: Attempted NCL of CCL2 peptide fragments 1-35 and 36-76 to form CCL2. i: 

MPAA, sodium phosphate, TCEP, Gdn HCl, H2O, RT, 24 h.  
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No trace of the full length ligation product (CCL2) was observed at 4, 8, or 24 h in 

MALDI-TOF or LCMS spectra (24 h, MALDI-TOF, Figure 5.31). After 24 h the 

reaction was purified via size exclusion chromatography and RP-HPLC. No 

discernible CCL2 product peaks were observed in the MALDI-TOF and/or LCMS-

ESI
+
 spectra of any fraction. 

 

 

Figure 5.31: MALDI-TOF spectra of the crude NCL of CCL2 peptide fragments 1-35 and 

36-76 after 24 h. 

 

5.5 Synthesis of Nitrated Tyrosine CCL2 

5.5.1 Incorporation of a Nitrated Tyrosine in CCL2 

Although the nitration of CCL2 is possible and nitrated variants have been produced 

and these derivatives are known to abrogate that ability of CCL2 to initiate 

chemotaxis (Chapter 1). In all of the derivatives synthesized the nitration 

modification is not site-specific. Hence, the abrogating effect of nitration on activity 

cannot be pinpointed to a particular residue or mechanism of inhibition. Therefore it 

is our aim to adapt the strategy that was attempted for the synthesis native CCL2 to 

synthesize a small library of site-specifically nitrated CCL2 derivatives. For 
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example, the Tyr(NO2)28 nitrated CCl2 derivative would be synthesised following 

the procedure to synthesize CCL2 peptide fragment 1-35 with the Fmoc-L-3-

nitrotyrosine-OH  building block replacing the standard Fmoc-Tyr(OtBu)-OH at the 

relevant position. The use of Fmoc-L-3-nitrotyrosine-OH in microwave assisted 

SPPS is previously described.
42

 With a nitrated CCL2 fragment 1-35 in hand, a 

subsequent NCL with CCL2 peptide fragment 36-76 (already prepared in Section 

5.4.1) to yield the desired product could be envisaged (Scheme 5.7). 

 

Scheme 5.7: Proposed synthesis of site-specifically (Y28(NO2)) nitrated CCL2 via an NCL 

of CCL2 peptide fragment 36-76 and nitrated (Y28(NO2)) fragment 1-35.   

 

Whilst the synthesis of CCL2 peptide fragment 1-35 was underway a small section of 

the resin that was synthesised up to Arg29 (Figure 5.20 and Figure 5.21, Section 

5.4.2) was used in an attempt to synthesize nitrated versions of fragment 1-35 

containing Tyr28(NO2).  In part, this work was carried out to prove the Fmoc-L-3-

nitrotyrosine-OH building block was stable under our microwave assisted SPPS 

techniques.  

The 3-nitrotyrosine residue was coupled (Scheme 5.8) to Alloc protected Dbz 

peptide fragment 29-35 (pre-made in Section 5.4.2) using manual room temperature 

coupling conditions. These conditions were chosen so that colorimetric tests (TNBS, 

Kaiser and chloranil) could indicate the reaction efficiency. However, this was not 

possible as the coupling of Tyr(NO2) to the resin reaction caused severe and 

permanent discoloration of the resin beads, rendering these tests impossible. 
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Moreover, significant quantities of mono- di and tri-addition products were observed 

during the peptide coupling (i in Scheme 5.8) yet treatment with the deprotection 

conditions (ii in Scheme 5.8) yielded the desired production: nitrated (Tyr28) CCL2 

peptide fragment 28-35. The multi-addition products arise because the Fmoc-L-3-

nitrotyrosine-OH contains no protection on the phenoxy group, hence, the phenolic 

OH can attack activated acids (which are in excess) and form an ester. The ester 

formed is unstable to the basic conditions used in the Fmoc deprotection step and is 

cleaved.
37

  

 

Scheme 5.8: Manual coupling of Fmoc-L-3-nitrotyrosine(OH)-OH onto CCL2 peptide 

fragment 29-35 on resin (Section 5.4.2). i: Fmoc-L-3-nitrotyrosine(OH)-OH (5 eq), PyBOP 

(5 eq), DIPEA (10 eq), DMF, 1 h 30 min, RT, x2. ii: piperidine, DMF, RT, 5 min; 

piperidine, DMF, RT, 15 min.   

 

The synthesis was continued for a further 3 couplings up to Leu25 (Figure 5.32) and 

RP-HPLC analysis showed that the crude peptide had a good level of purity (Figure 

5.33). In addition, characteristic
43

 major peaks were observed in the MALDI-TOF 

(Figure 5.33) indicating that the synthesis of the nitro-peptide was effective. 

However, a serine deletion (again with characteristic nitro-tyrosine peak) was 

observed at 1456.8 Da (Figure 5.33). The serine deletion was not observed 

previously and thus, must arise due to incomplete coupling of serine to the N-

terminal 3-nitrotyrosine. Tentatively, we can deduce that the coupling onto a N-

terminal 3-nitrotyrosine can be deemed a difficult coupling and future syntheses 

would take this into account. For example, coupling at higher temperature or triple 

coupling as well as the preparation of a (currently non-commercially available) 

hydroxyl protected Tyr(NO2) could overcome this problem. 
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Figure 5.32: Chemical structure of the Dbz containing nitrated CCL2 peptide fragment 25-

35. 

. 

 

Figure 5.33: Analysis of the crude Dbz containing nitrated CCL2 peptide fragment 25-35. 

Left: MALDI-TOF spectrum. Right: Analytical RP-HPLC (230 nm). The linear gradient 

ranges from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 minutes to 50% MeCN (0.1% 

TFA) in H2O (0.1% TFA) at 30 minutes. 
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5.6 Conclusions  

This work aimed to develop the first microwave assisted SPPS of native CCL2 to 

enable the fast production of CCL2 and a number of site-selectively nitrated 

analogues. Previously in the Cobb group the full linear microwave assisted synthesis 

of CCL2 was attempted and only a CCL2 peptide fragment of 25 amino acids in 

length could be produced in purity. A number of problems were overcome (e.g. 

progressing through regions of aggregation and methionine oxidation) and an 

optimised synthesis was developed that pushed the synthesis of CCL2 up to a peptide 

fragment (36-76) of 41 amino acids in length. The synthesis of CCL2 peptide 

fragment 36-76 was very successful and over tens of mgs of pure peptide were 

produced in excellent purity from hundreds of mgs of crude, with only 20% of the 

material synthesised being used. However, the full microwave linear SPPS of CCL2 

was still not possible. Therefore, CCL2 peptide fragment (1-35) was synthesised and 

an NCL reaction attempted to form the full sequence.  

The syntheses of CCL2 peptide fragment 1-35 was successful and test cleavages 

throughout showed good purity by analytical HPLC and mass spectra.  However, the 

post-synthesis purification, analysis, isolation of the CCL2 peptide fragment 1-35 

(N-terminal Nbz peptide) was achieved but only a small amount of partially pure 

material was produced. The subsequent NCL with CCL2 peptide fragment 36-76 was 

attempted but analysis did not show any of the desired product. Further optimisation 

of the NCL reaction was not feasible without re-synthesis as all the partially pure 

material produced was used. However, to extend this work and produce CCL2 (via 

fragmented microwave assisted SPPS) the use of alternative resin to Dawson Dbz 

would be envisaged (e.g. Sulfamylbutyryl or SEA, Table 5.1).  

Trial syntheses of a modified analogue confirmed the Fmoc-L-3-nitrotyrosine-OH 

building block to be amendable to microwave assisted SPPS, in our hands. Thus, if 

an improved route to the synthesis of a CCL2 peptide fragment 1-35 (containing a 

thioester or equivalent) was afforded then the synthesis of tyrosine nitrated 

derivatives could swiftly follow as the coupling partner (CCL2 peptide fragment 36-

76) is already in hand. 
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Chapter 6 : Conclusions and Future Work 
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6.1 Conclusions and Future Work 

This work describes the syntheses of a variety of amino acids (Section 6.1.1), cyclic 

dipeptides/DKPs (Section 6.1.2) and large linear CCL2 fragment peptides (Section 

6.1.3). Of the selection of amino acids and dipeptides synthesised, a number have been 

utilised in chemical and biological applications. The linear peptides are intermediates in 

the total microwave assisted SPPS of CCL2, and, although this was not completed, 

progress was made towards developing a viable synthetic route. 

 

6.1.1 Amino Acid Syntheses 

A library of heteroaromatic amino acids has been prepared in moderate yields via an 

optimised Negishi cross-coupling reaction (Figure 6.1). Previously, the synthesis of 

these heteroaromatic amino acids was not described via this route with only one N-Boc 

protected derivative (of 16) reported in the literature. The developed route offers an 

effective alternate strategy to access heteroaromatic amino acids from a simple starting 

material (iodoalanine). The yields are comparable to other more established routes (e.g. 

asymmetric dehydrogenation, chiral glycine equivalents and enzymatic synthesis) and 

in some cases may be preferable than other strategies. For example, in asymmetric 

hydrogenation the ee of desired product can be extremely dependant on having N- and 

C- protecting groups with steric bulk.  

 



178 

 

Figure 6.1: The various heteroaromatic amino acids reported in this work synthesized via Pd-

catalysed Negishi cross-coupling (Chapter 2). *denotes highest isolated yield of the amino 

acid.  

 

Some of the heteroaromatic amino acid building blocks were found to be tolerant to 

incorporation into bioactive molecules via chemical and biological syntheses. For 

example fluorinated 2-3-difluorotyrosine (29) was shown to be amenable to 

biosynthetic incorporation into the lipopeptide fengycin (Figure 6.2).  Furylalanine was 

shown to be stable to solution and SPPS, thus, can be easily incorporated into bioactive 

peptides e.g. the attempted syntheses of γ-glutamyl-2-furylalanine (Figure 6.3). 
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Figure 6.2: A fengycin derivative lipopeptide containing a 2,3-difluorotyrosine derivative 

amino acid. 

 

Figure 6.3: The chemical structure of natural product: γ-glutamyl-2-furylalanine. 

 

A small library of thiol containing amino acids (31, 32, 33 and 34) was produced. This 

work included the synthesis of two different stereo-isomers of 4-substituted thio-proline 

via multiple synthetic routes. The thiol containing amino acids (33 and 34) were then 

used to provide information (in the form of pKa values and ionic species abundance 

(Figure 6.4)) that could indicate their reactivity towards NCL and thus, be beneficial in 

the development of kinetic NCL reactions. 
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Figure 6.4: The abundance of thiolate species (either zwitterionic or anionic) present at pH 6.8 

and 7.2. The thiolate species is thought to be responsible for initial nucleophilic attack upon the 

thioester.*34 provided erroneous results due to oxidation. 

 

The results show promise as a significant difference in the abundance of active 

deprotonated thiol species is observed over a small pH range (6.8 – 7.2). However, re-

testing of all four amino acids under reducing conditions is needed so that data can be 

gathered on 34. This result is of interest as a major difference in reactivity in NCL has 

been shown between 33 and 34. To further this work, small peptides containing the 

terminal thiol amino acids could be synthesised and the utilised in competition 

experiments to correlate pKa data and NCL efficiency. Ultimately, the correlated pKa 

data could lead to facile planning and execution of kinetic “one-pot” ligations with these 

amino acids. If successful, the work could be easily extended to a larger library of thiol-

amino acids. 

The aforementioned amino acids could be envisaged to be used in a variety of other 

peptide based molecules including the synthesis of potential CCL2 induced chemotaxis 

inhibiting DKPs (Section 6.1.2) and the incorporation into large peptides or proteins 

(Section 6.1.3). 

 

6.1.2 DKPs and CCL2 Induced Chemotaxis Inhibition 

Previous work by the Cobb group had shown potential in the use of DKPs as selective 

inhibitors of CCL2 induced chemotaxis. Therefore, we sought to develop an improved 

synthetic route and utilise this to synthesise (and analyse) a number of DKPs so that 

inhibitors could be intelligently designed and their mechanism of inhibition probed.  
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A solid-phase route to the synthesis of the target DKPs was successfully optimised to 

enable the production of DKPs with a significant improvement on the previous solution 

phase approaches. Using this solid-phase approach a single DKP could be synthesised 

and purified within 8 hours, compared to the solution phase synthesis that could take 

several days, multiple purifications and high temperatures.  

In total, eleven DKPs were synthesised (from N-Boc amino acid building blocks) and 

underwent biological testing against inhibition of CCL2 induced chemotaxis. Of the 

eleven DKPs only three exhibited inhibition of <40% inhibition at a concentration of 

100 μM (red, Figure 6.5) and no inhibitors were found to be significantly better than 

those previously described (e.g. cyclo(L-Phe-L-Pro) black, Figure 6.5). Although it was 

not possible to obtain crystal structures of every DKP synthesized, preliminary analysis 

has shown that the less active molecules (e.g. cyclo(L-Tyr-L-Pro) and cyclo(L-Pro-D-

Phe)) exhibit folding of the aromatic over the core 6-membered ring (common in 

aromatic DKPs of this type) and the more active molecules (e.g. cyclo(L-Phe-L-Pro) and 

cyclo(p-fluoro-L-Phe-L-Pro)) do not. Moreover, the work provided insights into the 

effect on the inhibition activity of changing stereochemistry, aromatic moieties and 

prolyl moieties. For example, potent inhibition of CCL2 induced chemotaxis is 

observed from both cyclo(L-Pro-L-Trp) and cyclo(L-Phe-L-Hyp) (red, Figure 6.5). This 

suggests that the scaffold is tolerant to variations in heteroaromatic group and proline 

substitution at the 4- position. Therefore, work is currently underway to produce a 3
rd

 

generation library of DKPs using a range of heteroaromatic and proline substituted 

amino acids.  
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Figure 6.5: Testing of 100 μM DKPs (structures shown) against CCL2 mediated chemotaxis of THP-1 cells at 10 nM CCL2 concentration. 
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Two DKPs (66 and 67, Figure 6.6) containing non-natural amino acids were 

synthesised via the optimised solid-phase route. The previously described synthesis 

of the non-natural amino acid building blocks (4-fluoro proline, and 2-furyl alanine) 

facilitated this. The synthesis of a number of other non-natural amino acids has been 

described in this work and their application in the preparation of a new library of 

DKPs (containing 66 and 67) is currently under investigation by the Cobb group 

(Figure 6.7).  

 

 

Figure 6.6: Two DKPs (66 and 67) synthesised from the non-natural building block amino 

acids previously outlined. 

 

 

Figure 6.7: Generic structure of an aromatic/prolyl DKP (centre) and the possible 

substituent aromatic (Ar) and 4-substituted proline (R1) groups that have had their 

synthesis reported in this work.  
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6.1.3 Potential Routes to the Microwave Assisted Synthesis of CCL2 

Previous work by the Ali group at Newcastle University and others had shown that a 

heterogeneous mixture of nitrated (at Tyr13, Tyr28 and Trp59) chemokine CCL2  

had reduced chemotactic activity and heparin binding; inferring that this 

posttranslational modification could be vital in abrogation of the immune response in 

vivo. To investigate this we set out to develop the first microwave assisted SPPS of 

native CCL2 (76 AA) to enable the fast production of CCL2 and a number of 

modified analogues. For example, CCL2 analogues containing nitrated or fluorinated 

tyrosine residues.  

Previous work in the Cobb group had attempted the microwave assisted full linear 

SPPS, but the synthesis could not progress beyond the synthesis of a 25 AA CCL2 

peptide fragment 52-76. Significant improvements were made to this method and 

problems with aggregation and methionine oxidation were overcome to enable the 

synthesis of a 41 AA CCL2 peptide fragment 36-76. However, the total linear SPPS 

remained out of reach. Ultimately, we were led to develop an SPPS of CCL2 that 

involved two fragments (1-35 and 36-76) and a NCL between them (Figure 6.8).  

CCL2 Peptide fragment 1-35 was produced via microwave assisted SPPS on a 

Dawson Dbz resin. The resin was protected with N-Alloc (to prevent unwanted side-

reactions formed under the high temperature microwave conditions) and the 

synthesis was shown to be effective throughout (via test cleavage followed by 

analytical HPLC/mass spectrometry). However, due to post-synthesis difficulties (in 

purification, analysis, isolation and subsequent reactions) of this fragment 

(containing an Nbz urea) the total synthesis of CCL2 was not completed. To extend 

and complete this work, it was envisaged that the CCL2 Peptide fragment 1-35 (and 

nitrated analogues, Figure 6.8) could be re-synthesised using a different resin and 

ligated with (already in hand) CCL2 Peptide fragment 36-76 to produce a library of 

site-selective CCL2 analogues.  
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Figure 6.8: Proposed synthesis of site-specific nitrated variants of human chemokine: CCL2. 
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Chapter 7 : Experimental 
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7.1 Small Molecule Syntheses 

7.1.1 Materials and Methods 

All reported yields refer to the isolated yield and the product purity was estimated to be 

>95% by 1H NMR. IR spectra were recorded on a Perkin Elmer Spectrum RX1 fitted 

with an ATR attachment. 1H NMR spectra were recorded at 400 MHz using a Bruker 

Avance 400 MHz and 13C NMR spectra at 100 MHz with a Bruker Avance. Chemical 

shifts are reported in ppm and are referenced to residual solvent peaks; CHCl3 (
1H 7.26 

ppm, 13C 77.0 ppm). J couplings are measured in Hertz (Hz). 2D NMR techniques 

(COSY and HSQC) were used when chemical assignment of NMR spectra is given. 

Mass spectra were collected on a Waters TQD mass spectrometer and accurate mass 

spectra were collected on a Waters LCT Premier XE mass spectrometer. High pressure 

liquid chromatography was performed on an analytical Varian LC with a diode array 

detector. Optical rotations were measured with a Jasco P-1020 polarimeter. All 

reactions were monitored by T.L.C. using Merck pre-coated silica gel plates, Column 

chromatography was performed using silica gel (40-60 mM) and the specific solvent 

system indicated in the experimental procedures. All chemicals were purchased from 

Sigma-Aldrich unless stated. 

 
 
7.1.2 General Procedures 

7.1.2.1 Synthesis of Orthogonally Protected Heteroaromatic Amino Acids via Pd-

Catalysed Negishi Cross-Coupling. 

Reaction Conditions A: 

Acid washed zinc dust (4.00 eq.) was heated under vacuum at 100 °C for 30 min whilst 

vigorously stirring. The zinc dust was cooled to 70 °C and placed under a positive 

pressure of argon, anhydrous DMF (0.5 mL) and I2 (0.015 g) were added and the light 

grey suspension stirred for a further 20 min. The reaction mixture was cooled to 50 °C 

at which point iodoalanine (1 or 9) (1.00 eq.) was dissolved in DMF (0.5 mL) and 

added. Stirring under argon was continued for another 20 min followed by addition of 

the halo-aromatic (1.00 eq.), Tris(dibenzylideneacetone)dipalladium (Pd2(dba)3) (0.03 

eq.) and tri(o-tolyl)phosphine (P(o-tol)3) (0.10 eq.). The reaction mixture was left to stir 

under argon at 50 °C for 5 h, then overnight at room temperature. The cooled reaction 
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mixture was purified via column chromatography without work-up (SiO2; 80/20 

hexane/EtOAc → 100% EtOAc and if impure a second column was run using SiO2; 

100% CH2Cl2).  

Reaction Conditions B: 

This follows the same reaction procedure as above: procedure A, however, 2-

dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos) is used as a replacement 

phosphine ligand to P(o-tol)3 in the same molar equivalents. The reaction mixture was 

purified as outlined in reaction conditions A: 

Reaction Conditions C: 

Acid washed zinc dust (4.00 eq.) was heated under vacuum at 100 °C for 30 min whilst 

vigorously stirring. The reaction mixture was cooled to 50 °C and placed under a 

positive pressure of argon, anhydrous DMF (0.5 mL) and I2 (0.015 g) were added and 

the light grey suspension stirred for a further 20 min. Further cooling of the reaction 

mixture to room temperature at which point iodoalanine (7 or 20) (1.00 eq.) was 

dissolved in DMF (0.5 mL) and added. Stirring under argon was continued for another 

twenty mins and the halo-aromatic (1.00 eq.), Pd2(dba)3 (0.03 eq.) and SPhos (0.10 eq.) 

were added. The reaction mixture was left to stir overnight at room temperature under 

an argon atmosphere. The reaction mixture was purified as outlined in reaction 

conditions A: 

 

7.1.2.2 Solid Phase Cyclic Dipeptide (DKP) Synthesis  

To pre-loaded MHBA-linker resin (65) (1.00 eq.) a pre-mixed peptide coupling solution 

of Boc protected amino acid (A) (3.00 eq.), DMAP (0.05 eq.) and DIC (3.00 eq) in 

DCM (2 mL) was added. The reaction mixture was shaken for 30 min at room 

temperature. The solution was drained and coupling procedure was repeated. The resin 

was washed with DCM (5 x 5 mL). A deprotection solution of 40% TFA in DCM (3 

mL) was added to the resin and stirred for 10 min at room temperature. The solution 

was drained and this deprotection procedure was repeated. The resin was washed with 

DCM (5 x 5 mL). A pre-mixed peptide coupling solution of Boc-protected amino acid 

(B) (3.00 eq.), DIPEA (5.00eq.) and PyBOP (3.00 eq.) in DCM (3 mL) was added to the 

resin and stirred for 1 h at room temperature. The solution was drained and the coupling 
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procedure was repeated. The resin was washed with DCM (5 x 5 mL) a deprotection 

solution of 40% TFA in DCM (3 mL) was added to the resin and stirred for 10 min at 

room temperature. The solution was drained and deprotection procedure was repeated. 

The resin was washed with DCM (5 x 5 mL). Finally, 10% DIPEA in DCM (3 mL) was 

added to the resin and stirred for 10 min at room temperature. The filtrate solution was 

drained, collected and then repeated twice. The combined filtrate solutions were 

evaporated under reduced pressure to yield crude cyclic dipeptide. Dipeptides were 

purified via preparative TLC (SiO2; 80/20% EtOAc/hexane) to yield pure cyclic 

dipeptide.  

 

7.1.3 Small Molecule Syntheses 

Benzyl 2-(R)-[(tert-butoxycarbonyl)amino]-3-iodopropanoate, Boc-ȕ-iodo-Ala-OBzl. 1  

Boc-L-Ser-OBzl 10 (0.70 g, 2.20 mmol), I2 (0.60 g, 

2.20 mmol), imidazole (0.16 g, 2.20 mmol) and 

PPh3 (0.62 g, 2.20 mmol) were dissolved in DCM 

(25 mL) and stirred for 20 h at room temperature. 

The reaction mixture was evaporated under 

reduced pressure and purified via column 

chromatography (SiO2; 95/5 % hexane/EtOAc → 40/60 % hexane/EtOAc) to yield the 

product 1 as pale yellow powder (0.71 g, 73%). δH (400 MHz; CDCl3) 1.45 (9H, s, tBu), 

3.58(2H, m, ß-CH2), 4.56 (1H, m, a-CH), 5.21 (2H, m, CH2Ar), 5.25 (1H, d, J 7.6, NH) 

7.33 to 7.48 (5H, m, ArH); m/z (ESI+) 427.9 [M+Na]+. 

Data obtained is consistent with that given in the literature: [α]D
25 = -22.1° (c 1.0, 

CHCl3), δH (300 MHz; CDCl3) 1.45 (9H, s), 3.55 (2H, dd, J 3.6, 10.2), 4.55 (1H, m), 

5.18 (1H, d, J 12.3), 5.24 (1H, d, J 12.3), 5.24 (1H, br d, J 7.5), 7.34 to 7.39 (5H, m); 

m/z (EI-MS+) 270.0 [M - CO2Bn]+.1 

 

 

 

 



190 

 

(2R)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-iodo-propyric acid tert-butyl ester, 

Fmoc-β-iodo-Ala-OtBu. 9 

Fmoc-L-Ser-OtBu 11 (1.64 g 4.30 mmol) 

dissolved in DCM (40 mL) and stirred at room 

temperature. Addition of triphenylphosphine 

(PPh3) (1.12 g, 4.30 mmol), then imidazole (0.29 

g, 4.30 mmol) followed by the addition of iodine 

(I2) (1.09, 4.3 mmol). The reacting mixture was 

left to stir at room temperature for 20 h, 

evaporated under reduced pressure and purified via column chromatography (SiO2; 

90/10 hexane/EtOAc → 100% EtOAc) to yield product 9 as a sticky yellow solid (1.60 

g, 77%). [α]D
24 = +15.36 (c 1.0 in CHCl3); vmax(solid)/cm-1 3388 (w, N-H), 2968 (w, C-

H), 1735 (s, C=O), 1698 (vs, C=O); δH (400 MHz; CDCl3) 1.53 (9H, s, CO2tBu), 3.61 

(2H, m, ß-CH2) 4.25 (1H, m, Fmoc-CHCH2), 4.35 (1H, m, α-CH), 4.43 (2H, m, Fmoc-

CHCH2), 5.68 (1H, bd, J 6.8, NH), 7.31 to 7.35 (2H, m, Fmoc-ArH), 7.39 to 7.43 (2H, 

m, Fmoc-ArH), 7.60 (2H, bd, J 7.3, Fmoc-ArH), 7.77 (2H, bd, J 7.5, Fmoc-ArH); 

HRMS m/z (ES+) 516.0648 ([M+Na]+. C22H24NO4INa requires 516.0625). 

Data obtained is consistent with that given in the literature: [α]D
23 = +16.3 (c 1.1 in 

CHCl3), δH (CDCl3) 1.51 (9H, s), 3.58 (1H, dd, J 3.5, 10.5), 3.61 (1H, dd, J 3.5, 10.5), 

4.24 (1H, t, J 7.5), 4.32 to 4.43 (3H, m), 5.72 (1H, d, J 6.5), 7.29 to 7.33 (2H, m), 7.39 

(2H, t, J 7.5), 7.61 (2H, d, J 7.5), 7.75 (2H, d, J 7.5); m/z (EI-MS+) 493 ([M+H]+).2 

 

 

 

 

 

 

 



191 

Benzyl 2-(S)-[(tert-butoxycarbonyl)amino]-3-hydroxypropanoate, Boc-Ser-OBzl. 10 

Boc-L-Ser-OH (1.53 g, 7.46 mmol), benzyl 

bromide (0.98 mL, 8.21 mmol) and K2CO3 (1.13 g, 

8.21 mmol) were dissolved in DMF (30 mL) and 

stirred for 20 h at room temperature. H2O (150 

mL) was added and the aqueous phase was 

extracted with diethyl ether (3 x 60 mL). The 

combined organic extracts were washed with brine, (2 x 50 mL), dried over MgSO4 and 

evaporated under reduced pressure to yield 10 as white powder (1.71 g, 78%). δH (400 

MHz; CDCl3) 1.44 (9H, s, tBu), 3.95 (2H, m, ß-CH2), 4.43 (1H, m, a-CH), 5.21 (2H, m, 

CH2Ar), 5.48 (1H, m, NH) 7.29 to 7.41 (5H, m, ArH); m/z (ESI+) 318.1 [M+Na]+. 

Data obtained is consistent with that given in the literature: δH (300 MHz; CDCl3) 1.44 

(9H, s), 2.41 (1H, t, J 6.1) 3.90 to 3.98 (2H, m), 4.41 (1H, bs), 5.21 (2H, s), 5.47 (1H, 

bs) 7.35 (5H, bs).3 

 

(2S)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-hydroxy-propyric acid tert-butyl 

ester, Fmoc-Ser-OtBu. 11 

Fmoc-L-Ser-OH (2.00 g, 6.10 mmol) is 

dissolved in EtOAc (15 mL). tert-Butyl 2,2,2 –

trichloroacetimidate (TBTA) (2.08 g, 9.50 

mmol) was dissolved in EtOAc (20 mL) and 

added. The reaction was allowed to stir at room 

temperature for 20 h. The reaction mixture was 

evaporated under reduced pressure and purified via column chromatography (SiO2; 

80/β0 hexane/EtOAc → 100% EtOAc). Further work-up to increase product purity 

involved re-dissolving in ether and washing with water (2 x 10 mL). The organic layer 

is dried with MgSO4, filtered and evaporated to yield 11 as a white crystalline powder 

(1.53 g, 63%). vmax(solid)/cm-1 3374 (w bd, OH), 2963 (w, C-H), 1737 (s, C=O), 1679 

(vs, C=O); δH (400 MHz; CDCl3) 1.49 (9H, s, CO2tBu), 3.93 (2H, m, ß-CH2) 4.22 (1H, 

m, Fmoc-CHCH2), 4.32 (1H, m, α-CH), 4.43 (2H, d, J 7.6, Fmoc-CHCH2), 5.68 (1H, 

bs, NH), 7.30 to 7.33 (2H, app. t, Fmoc-ArH), 7.38 to 7.42 (2H, app. t, Fmoc-ArH), 
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7.60 (2H, bd, J 7.2, Fmoc-ArH), 7.77 (2H, bd, J 7.3, Fmoc-ArH); HRMS m/z (ES+) 

406.1630 ([M+Na]+. C22H25NO5Na requires 406.1612). 

Data obtained is consistent with that given in the literature: [α]D = +5.9 (c 1.2 in 

CHCl3), δH (CDCl3); δH (400 MHz; CDCl3) 1.49 (9H, s), 3.93 (2H, bs), 4.22 (1H, t, J 

6.8), 4.33 (1H, m), 4.41 (2H, d, J 6.8), 5.80 (1H, d, J 6.4, NH), 7.31 (2H, t, J 7.5), 7.40 

(2H, t, J 7.5), 7.60 (2H, d, J 7.1), 7.76 (2H, d, J 7.5); m/z (ES+) 406.1619 ([M+Na]+).4 

 

Fmoc-ȕ-(2-furyl)-Ala-OtBu. 13 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions A was 

followed (0.61 mmol of 3). 13 obtained as a 

yellow crystalline solid, 11% (0.07 mmol). 

vmax(solid)/cm-1 2928 (w, C-H), 1702 (s bd, 

C=O); [α]D
27 = -5.6° (c 1.0, CHCl3); δH (400 

MHz; CDCl3) 1.47 (9H, s, CO2
tBu), 3.20 (2H, 

d, J 5.β, ȕ-CH2), 4.24 (1H, app. t, Fmoc-CHCH2),  4.38 (2H, m, Fmoc-CHCH2), 4.55 

(1H, dt,  J 5.β, 8.0, α-CH), 5.50 (1H, bd, J 8.0, NH), 6.09 (1H, d, J 2.8, furan-CH), 6.31 

(1H, m , furan-CH), 7.30 to 7.34 (2H, m, Fmoc-ArH), 7.32 (1H, m, furan-CH), 7.39 to 

7.43 (2H, m, Fmoc-ArH), 7.60 (2H, bd, J 7.4, Fmoc-ArH), 7.77 (2H, d, J 7.4, Fmoc-

ArH); δC (100 MHz; CDCl3) 170.3, 155.7, 150.7, 144.0, 142.1, 141.4, 127.8, 127.2, 

125.3, 120.1, 110.5, 108.1, 82.6, 67.2, 53.6, 47.3, 31.2, 28.0; HRMS m/z (ES+) 

456.1784 ([M+Na]+. C26H27NO5Na requires 456.1787). General procedure for Pd-

catalysed Negishi cross-coupling reaction conditions B was followed; Yellow 

crystalline solid, 42% (0.26 mmol). 
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Fmoc-β-(3-furyl)-Ala-OtBu. 14 

The general procedure for Pd-catalysed 

Negishi cross-coupling reaction conditions B 

was followed (0.61 mmol of 4). 14 obtained as 

colourless oil, 27% (0.17 mmol). 

vmax(solid)/cm-1 3342 (w bd, N-H), 2979 (w, C-

H), 1706 (s bd, C=O); [α]D
28 = -6.8° (c 1.0, 

CHCl3); δH (400 MHz; CDCl3) 1.46 (9H, s, 

CO2
tBu), β.λ5 (βH, m, ȕ-CH2), 4.43 (1H, m, Fmoc-CHCH2), 4.42 (2H, m, Fmoc-

CHCH2), 4.51 (1H, m, α-CH), 5.35 (1H, bs, NH), 6.24 (1H, m, furan-CH), 7.23 (1H, m, 

furan-CH), 7.30 to 7.34 (2H, m, Fmoc-ArH), 7.37 (1H, m, furan-CH), 7.39 to 7.43 (2H, 

m, Fmoc-ArH), 7.57 to 7.60 (2H, m, Fmoc-ArH), 7.78 (2H, m, Fmoc-ArH); δC (100 

MHz; CDCl3) 170.6, 155.8, 144.1, 143.1, 141.5, 140.6, 127.9, 127.2, 125.2, 120.2, 

119.2, 111.5, 82.6, 67.1, 54.4, 47.4, 31.0, 28.2; HRMS m/z (ES+) 456.1785 ([M+Na]+. 

C26H27NO5Na requires 456.1787). 

 

Fmoc-ß-(2-furfural)-Ala-OtBu. 15 

The general procedure for Pd-catalysed 

Negishi cross-coupling reaction conditions A 

was followed (0.61 mmol of 8). 15 obtained as 

a green oil, 46% (0.28 mmol). vmax(solid)/cm-1 

3333 (w bd, N-H), 2979 (w, C-H), 1714 (s, 

C=O), 1677 (s, C=O); δH (400 MHz; CDCl3) 

1.47 (9H, s, CO2tBu), 3.25 (1H, dd, J 5.6, 

15.β, ȕ-CH2),  3.30 (1H, dd, J 5.6, 15.β, ȕ-CH2), 4.22 (1H, t, J 6.8, Fmoc-CHCH2),  4.36 

(1H, dd, J 6.8, 10, Fmoc-CHCH2), 4.43 (1H, dd, J 6.8, 10, Fmoc-CHCH2), 4.57 (1H, 

dd, J 5.6, 7.6, α-CH), 5.51 (1H, bd, J 7.6, NH), 6.30 (1H, d, J 3.6 furan-CH), 7.15 (1H, 

d, J 3.6, furan-CH), 7.27 to 7.31 (2H, m, Fmoc-ArH), 7.36 to 7.40 (2H, m, Fmoc-ArH), 

7.55 to 7.58 (2H, app. t, Fmoc-ArH), 7.77 (2H, bd, J 7.6, Fmoc-ArH), 9.55 (1H, s, 

furan-COH); δC (100 MHz; CDCl3) 188.5, 177.2, 170.0, 157.9, 155.7, 152.7, 143.9, 

141.5, 127.9, 127.2, 125.2, 120.2, 111.3, 83.4, 67.2, 53.2, 47.3, 31.7, 28.0; HRMS m/z 

(ES+) 484.1746 ([M+Na]+. C27H27NO6Na requires 484.1736). 
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Fmoc-β-(2-thienyl)-Ala-OtBu. 16 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions B followed 

(0.62 mmol of 7). 16 obtained as a yellow oil, 

26% (0.16 mmol). vmax(solid)/cm-1 3342 (w bd, 

N-H), 2977 (w, C-H), 1710 (s bd, C=O); [α]D
27 

= +15.0° (c 1.0, CHCl3); δH (400 MHz; CDCl3) 

1.48 (9H, s, CO2
tBu), γ.γλ (βH, m, ȕ-CH2) 4.26 

(1H, t, J 7.2, Fmoc-CHCH2), 4.35 (1H, dd, 7.2, 10.4, Fmoc-CHCH2), 4.48 (1H, dd, 7.2, 

10.4, Fmoc-CHCH2),  4.58 (1H, m, α-CH), 5.90 (1H, bd, J 8.0, NH), 6.83 (1H, d, J 3.0 

thiophene-CH), 6.96 (1H, dd, J 3.0, 5.0, thiophene-CH), 7.20 (1H, d, J 5.0, thiophene-

CH),  7.32 to 7.36 (2H, m, Fmoc-ArH), 7.40 to 7.44 (2H, m, Fmoc-ArH), 7.61 to 7.64 

(2H, m, Fmoc-ArH), 7.78 (2H, bd, J 7.6, Fmoc-ArH); δC (100 MHz; CDCl3) 170.0, 

155.7, 144.0, 141.4, 137.6, 127.8, 127.1, 127.0, 126.9, 125.2, 124.8, 120.1, 83.8, 67.1, 

55.0, 47.3, 32.5, 28.1; HRMS m/z (ES+) 472.1562 ([M+Na]+. C26H27NO4SNa requires 

472.1559). General procedure for Pd-catalysed Negishi cross-coupling reaction 

conditions B followed with 5; Yellow oil, 26% (0.15 mmol). General procedure for Pd-

catalysed Negishi cross-coupling reaction conditions C followed with 7; Yellow oil, 

22% (0.13 mmol). 

 

Fmoc-β-(3-thienyl)-Ala-OtBu. 17 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions B followed 

(0.61 mmol of 6). 16 obtained as a yellow oil, 

20% (0.12 mmol). vmax(solid)/cm-1 3342 (w bd, 

N-H), 2976 (w, C-H), 1707 (s bd, C=O); [α]D
28 

= -18.1° (c 1.0, CHCl3); δH (400 MHz; CDCl3) 

1.45 (9H, s, CO2tBu), γ.15 (βH, m, ȕ-CH2) 4.23 

(1H, m, Fmoc-CHCH2),  4.30 to 4.57 (3H, m, Fmoc-CHCH2, α-CH), 5.35 (1H, bs, NH), 

6.92 (1H, d, J 4.0, thiophene-CH), 6.98 (1H, m, thiophene-CH), 7.26 (1H, m, 

thiophene-CH), 7.29 to 7.35 (2H, m, Fmoc-ArH), 7.39 to 7.44 (2H, m, Fmoc-ArH), 7.58 

- 7.61 (2H, m Fmoc-ArH) 7.77 (2H, d, J 7.6, Fmoc-ArH); δC (100 MHz; CDCl3) 170.7, 
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155.7, 144.0, 141.4, 136.3, 128.7, 127.8, 127.2, 125.8, 125.2, 122.9, 120.1, 82.5, 67.0, 

54.8, 47.3, 32.9, 28.0; HRMS m/z (ES+) 472.1563 ([M+Na]+. C26H27NO4SNa requires 

472.1559). 

 

(2S)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)propionic acid tert-butyl ester, Fmoc-

Ala-OtBu. 18 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions A followed 

(0.61 mmol). 18 was purified from desired 

product and obtained as a pale yellow crystalline 

solid, 82% (0.49 mmol). δH (400 MHz; CDCl3) 

1.40 (3H, d, J 7.β, ȕ-CH3), 1.48 (9H, s, CO2tBu), 

4.19 to 4.29 (1H, m, Fmoc-CHCH2)  4.24 (1H, 

m, α-CH),  4.39 (2H, d, J 7.4, Fmoc-CHCH2), 5.35 (1H, bd, J 6.8, NH), 7.31 to 7.35 

(2H, app. t, Fmoc-ArH), 7.39 to 7.43 (2H, app. t, Fmoc-ArH), 7.60 (2H bd, J 7.6, Fmoc-

ArH), 7.77 (2H, bd, J 7.6, Fmoc-ArH); δC (100 MHz; CDCl3) 170.2, 155.7, 141.5, 

127.8, 127.2, 125.3, 125.2, 120.1, 82.2, 67.1, 50.4, 47.4, 28.2, 18.7; m/z (ES+) 390.3 

[M+Na]+. 

Data obtained is consistent with that given in the literature: δH (400 MHz; CDCl3) 1.40 

(3H, d, J 6.6), 1.48, (9H, s), 4.20 to 4.30 (2H, m), 4.38 (2H, d, J 7.4), 5.37 (1H, d, J 

6.6); 7.32 (2H, td,  J 1.5, 7.4), 7.40 (2H, t, J 7.4); 7.61 (2H, d, J 7.4), 7.77 (2H, d, J 

7.4).5  
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Boc-β-(2-furyl)-Ala-OBzl. 19 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions B followed 

(0.65 mmol of 3). 19 was obtained as a yellow oil, 

86% (0.56 mmol). [α]D
28 -7.0° (c 1.0, CH3Cl); δH 

(400 MHz; CDCl3) 1.43 (9H, s, tBu), 3.14 (2H, m, 

ȕ-CH2), 4.61 (1H, m, α-CH), 5.46 (2H, m, 

CH2Ar), 5.95 (1H, d, J 3.2, furan-CH), 6.24 (1H, 

dd, J 2.0, 3.2, furan-CH), 7.27 (1H, d, J, 2.0, furan-CH), 7.31 to 7.40 (5H, m, ArH); δC 

(100 MHz; CDCl3) 171.4, 155.2, 150.4, 142.2, 135.4, 128.6, 128.5, 110.4, 108.0, 80.1, 

67.3, 52.9, 31.0 28.4, 18.6; HRMS m/z (ES+) 368.1473 ([M+Na]+. C19H23NO5Na 

requires 368.1474). 

 

Z-Glu-(-β-(2-Furyl)-Ala-OBn)-OBn. 21  

Boc-ȕ-(2-furyl)-Ala-OBn 19 (0.05 g, 0.14 mmol) 

was stirred in TFA: DCM 1:4 (10 mL) until the Boc 

deprotection was seen to be complete by TLC.  The 

reaction mixture was then evaporated under reduced 

pressure to dryness. The resulting yellow powder 

was dissolved in DCM (15 mL). Z-Glu-OBn (0.05 

g, 0.14 mmol), PyBOP (0.08 g, 0.14 mmol) DIPEA 

(0.08 mL, 0.42 mmol) were added and the reaction mixture was stirred overnight at 

room temperature. The reaction mixture was evaporated under reduced pressure and 

purified via column chromatography (SiO2; λ5/5% hexane/EtOAc → 40/60% 

hexane/EtOAc) to yield 21 as a white powder (0.07 g, 78%). δH (400 MHz; CDCl3) 1.90 

to β.γ4 (4H, m, ȕ-CH and Ȗ-CH2), γ.18 (βH, m, ȕ-CH2), 4.46 (1H, m, α-CH) 4.87 (1H, 

m, α-CH), 5.08 to 5.28 (6H, m, CH2Ar), 5.62 (1H, d, J 8.0, NH), 5.94 (1H, d, J 2.8, 

furan-CH) 6.19 (1H, t, J 2.8, furan-CH), 6.28  (1H, d, J 7.2, NH), 7.21 (1H, m, furan-

CH), 7.27 to 7.41 (15H, m, ArH); δC (100 MHz; CDCl3) 171.0, 150.3, 142.3, 136.3. 

135.3, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 110.4, 108.2, 67.6, 67.5, 67.2, 

53.6, 51.8, 48.4, 32.2, 30.6, 28.4, 18.5; HRMS m/z (ES+) 599.2387 ([M+H]+. 

C34H34N2O8 requires 599.2393). 



197 

4-(Benzyloxy)-1-bromo-2-fluorobenzene. 26 

4-Bromo-3-fluorophenol 24 (0.33 g, 1.74 mmol), 

benzyl bromide (0.23 mL, 1.91 mmol) and K2CO3 

(0.29 g, 1.91 mmol) was stirred in MeCN (25 mL) for 

20 h at room temperature. The reaction mixture was 

evaporated under reduced pressure and purified via 

column chromatography (SiO2; 95/5 % hexane/EtOAc 

→ 40/60 % hexane/EtOAc) to yield the product as colourless oil (0.276 g, 58%). δH 

(400 MHz; CDCl3) 5.04 (2H, s, CH2Ar), 6.68 (1H, m, ArH), 6.78 (1H, m, ArH), 7.30 to 

7.45 (6H, m, ArH); δF (376 MHz; CDCl3) -105.14 (1F, t, J 9.2, ArF); m/z (ES-) 278.9 

[M-H]-, 79Br.  

Data obtained is consistent with that given in the literature: δH (400 MHz; CDCl3) 5.05 

(2H, s), 6.69 (1H, ddd, J 4.0, 8.0, 10.0), 6.77 (1H, dd, J 40, 8.0), 7.32 to 7.42 (6H, m).6 

 

4-(Benzyloxy)-1-bromo-2,3-difluorobenzene. 27 

4-Bromo-2,3-difluorophenol 25 (0.31 g, 1.49 mmol), 

benzyl bromide (0.20 mL, 1.64 mmol) and K2CO3 

(0.25 g 1.64 mmol) was stirred in MeCN (25 mL) for 

20 h at room temperature. The reaction mixture was 

evaporated under reduced pressure and purified via 

column chromatography (SiO2; 95/5 % hexane/EtOAc 

→ 40/60 % hexane/EtOAc) to yield the product as a colourless oil (0.350 g, 77%). δH 

(400 MHz; CDCl3) 5.18 (2H, s, CH2Ar), 6.85 (1H, m, ArH), 7.27 (1H, m, ArH), 7.38 

(3H, m, ArH), 7.52 (2H, m, ArH); δF (376 MHz; CDCl3) -136.1 (1F, m, ArF), -149.4 

(1F, m, ArF); m/z (ESI-) 296.9 [M-H]-, 79Br. 

Data obtained is consistent with that given in the literature: δH (400 MHz; CDCl3) 5.16 

(2H, s), 6.90 (1H, dt, J 1.8, 8.0), 7.19 (1H, dt, J 2.5, 8.1), 7.42 (5H, m).7 
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Boc-2-fluoro-Tyr(OBzl)-OBzl. 28 

 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions B followed 

(0.72 mmol of 26). The reaction mixture was 

purified via column chromatography (SiO2; 98/2 

% hexane/EtOAc → 50/50 % hexane/ EtOAc) 

to yield 28 as a yellow powder, 72% (0.52 

mmol). vmax(solid)/cm-1 3364 (w bd, N-H), 2976 

(w, C-H), 1732 (s, C=O) 1687 (s, C=O); [α]D
29 

= -11.8° (c 1.0, CHCl3); δH (400 MHz; CDCl3) 1.41 (9H, s, tBu), 3.10 (2H, m, ß-CH2), 

4.58 (1H, m, α-CH), 5.00 (2H, s, CH2Ar), 5.05 (1H, m, NH), 5.14 (2H, s, CH2Ar), 6.62 

to 6.68 (2H, m, ArH), 6.94 (1H, t, J 9.0, ArH), 7.30 to 7.44 (10H, m, ArH); δF (376 

MHz; CDCl3) -115.0 (1F, m, ArF); δC (150 MHz; CDCl3) 171.8, 161.9 (1C, d, J 208.5), 

159.3 (m), 155.2, 136.6, 135.4, 128.8, 128.7, 128.6, 128.3, 128.6, 127.6, 132.1 (1C, d, J 

4.5), 115.2 (1C, d, J 15.0), 110.9 (1C, d, J 3.0), 102.6 (1C, d, J 22.5), 80.0, 70.5, 67.4, 

54.0, 28.4, 18.8; HRMS m/z (ES+) 502.1994 ([M+ Na]+. C28H30NO5F requires 

502.2006).  

 

Boc-2,3-difluoro-Tyr(OBzl)-OBzl. 29 

 

The general procedure for Pd-catalysed Negishi 

cross-coupling reaction conditions B followed 

(0.72 mmol of 27). The reaction mixture was 

purified via column chromatography (SiO2; 98/2 

% hexane/EtOAc → 50/50 % hexane/EtOAc) to 

yield 29 as brown oil, 60% (0.43 mmol). 

vmax(solid)/cm-1 3377 (w bd, N-H), 2965 (w, C-

H), 1737 (s, C=O), 1686 (s, C=O); [α]D
29 = -

19.4° (c 1.0, CHCl3); δH (400 MHz; CDCl3) 1.40 (9H, s, tBu), 2.96 (2H, m, ß-CH2), 

4.55 (1H, m, α-CH), 5.05 to 5.24 (4H, m, 2 x CH2Ar), 5.06 (1H, m, NH), 6.72 to 6.80 

(2H, m, ArH), 7.23 to 7.45 (10H, m, ArH); δF (376 MHz; CDCl3) -137.5 (1F, m, ArF), -

153.0 (1F, m, ArF); δC (150 MHz; CDCl3) 171.8, 155.2, 150.8 (1C, dd, J 9.0, 211.5), 
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146.1 (1C, d, J 6.0), 144.3 (1C, dd, J 11.3, 213.0), 136.5, 135.4, 128.7, 128.7, 128.7, 

128.6, 128.5, 128.4, 126.2 (br s), 124.9 (m), 111.2 (1C, d, J 13.5), 80.0, 75.8, 67.2, 54.1, 

28.4, 18.8; HRMS m/z (ES+) 520.1921 ([M+Na]+. C28H29NO5F2 requires 520.1912).  

 

H-Pen-OMe. 32 

Penicillamine (0.30 g, 2.01 mmol) was dissolved in MeOH 

(20 mL) and thionyl chloride was added (0.29 mL, 4.02 

mmol) stirred at reflux for 15 h. Additional thionyl chloride 

was added (0.29 mL, 4.02 mmol) stirred at reflux for 40 h. 

Solvent was evaporated under reduced pressure to yield 32 as 

a pale yellow powder (quant.). δH (400 MHz; d4-methanol); 

1.48 (γH, s, ȕ-CH3), 1.55 (γH, s, ȕ-CH3), 3.86 (3H, s, OCH3), 4.12 (1H, s, α-CH). δC 

(376 MHz; d4-methanol) 167.3, 62.5, 42.9, 29.0, 26.2; m/z (ES+) 164.1 [M+H]+. 

Data obtained is consistent with that given in the literature: δH (400 MHz; d4-methanol) 
1.47 (3H, s), 1.56 (3H, s), 3.86 (3H, s). 4.12 (1H, s).8 

 

Cis-4-(thio)-L-proline methyl ester. 33 

35 (0.05 g, 0.17 mmol) was dissolved in MeOH (5 mL). 

Thionyl chloride (0.04 mL, 0.50 mmol) was slowly 

syringed into the reaction vessel at 5°C and the reaction 

mixture was then heated to reflux for 4 h. The reaction 

mixture was evaporated under reduced pressure to yield 

33 as a pale yellow powder (quant.). vmax(solid)/cm-1 2937 

(w, C-H), 1702 (s, C=O), 1333; [α]D
27 = -5.1° (c 0.1, CHCl3); δH (400 MHz; CDCl3) 

2.10 to 2.20 (2H, m, ß-CH, SH), 2.86 (1H, m, ß-CH), γ.4β (1H, m, δ-CH), 3.65 (1H, m, 

Ȗ-CH), 3.82 to 3.93 (4H, m, OCH3, δ-CH), 4.57 (1H, m. α-CH), 9.11 (1H, m, NH), 

11.γ1 (1H, m, NH); δC (100 MHz; CDCl3) 169.1, 58.8, 54.2, 54.0, 38.9, 34.9; HRMS 

m/z (ES+) 162.0578 ([M+H]+. C6H12NO2S requires 162.0589). 
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Trans-4-(thio)-L-proline methyl ester. 34 

36 (0.05 g, 0.17 mmol) was dissolved in MeOH (5 mL). 

Thionyl chloride (0.04 mL, 0.50 mmol) was slowly 

syringed into the reaction vessel at 5°C and the reaction 

mixture was then heated to reflux for 4 h. The reaction 

mixture was evaporated under reduced pressure to 34 a 

pale yellow powder (quant.). vmax(solid)/cm-1 3586, 2946 

(w, C-H), 1734 (s, C=O), 1239; [α]D
27 = +6.2° (c 0.2, CHCl3); δH (400 MHz; CDCl3) 

2.35 (1H, m, ß-CH), 2.48 (1H , d, J 8.0, SH) 2.67 (1H, m, ß-CH), 3.37 (1H, dd, J 7.2, 

1β.0, δ-CH), γ.60 (1H, m, Ȗ-CH), 3.85 (3H, s, OCH3), 4.05 (1H, dd, J 7.β, 1β.0, δ-CH), 

4.74 (1H, m. α-CH), 9.43 (1H, m, NH), 10.70 (1H, m, NH); δC (100 MHz; CDCl3) 

169.0, 58.8, 54.5, 53.9, 38.9, 34.8; HRMS m/z (ES+) 162.0580 ([M+H]+. C6H12NO2S 

requires 162.0589). 

 

N-Boc-cis-4-(acetylthio)-L-proline methyl ester. 35 

Potassium thioacetate (0.06 g, 0.50 mmol) was added to 

43 (0.12 g, 0.33 mmol) dissolved in DMF (8 mL). The 

reaction mixture was stirred at 70 °C for 3 h. The 

reaction mixture was evaporated under reduced pressure 

and purified via column chromatography (SiO2; 90/10 

hexane/EtOAc → 100% EtOAc) yielding 35 as a 

colourless oil (quant.). δH mixture of two rotamers in a 

ratio of ca. 1.0:1.1, (400 MHz; CDCl3) 1.37 and 1.43 (9H, 2 s, tBu), 1.95 (1H, m, ß-

CH), 2.31 (3H, s, CH3CO), 2.70 (1H, m, ß-CH), γ.γβ (1H, m, δ-CH), 3.72 (3H, OCH3), 

3.88 to 4.00 (βH, m, Ȗ-CH, δ-CH), 4.β7 and 4.β5 (1H, β t, α-CH) δC (100 MHz; CDCl3) 

195.1, 194.8, 172.9, 172.7, 153.9, 153.3, 80.6, 58.7, 58.2, 52.5, 52.3, 52.2, 51.4, 39.5, 

38.8, 37.1, 35.8, 30.6, 28.5, 28.3; m/z (ES+) 326.0 [M+Na]+. 

Data obtained is consistent with that given in the literature: [α]D
20 = −4γ.γ° (c 1.2, 

CHCl3); δH (400 MHz; CDCl3) 1.44 (9H, s), 1.98 (1H, m), 2.34 (3H, s),  2.75 (1H, m), 

3.36 (1H, m), 3.76 (3H, s, COOCH3), 3.99 (2H, m), 4.40 (1H, m).9 
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N-Boc-trans-4-(acetylthio)-L-proline methyl ester. 36 

Potassium thioacetate (0.06 g, 0.55 mmol) was added to 

42 (0.13 g, 0.37 mmol) dissolved in DMF (8 mL). The 

reaction mixture was stirred at 70 °C for 3 h. The reaction 

mixture was evaporated under reduced pressure and 

purified via column chromatography (SiO2; 90/10% 

hexane/EtOAc → 100% EtOAc) yielding 36 as a 

colourless oil (0.110 g, 98%). δH mixture of two rotamers 

in a ratio of ca. 1.0:1.3 (400 MHz; CDCl3) 1.41 and 1.45 (9 H, 2 s, tBu), 2.16 to 2.44 

(5H, m, CH3CO, ȕ-CH2), γ.γ0 and γ.4β (1H, β m, δ-CH) 3.74 (3H, s, OCH3) 3.93 (1H, 

m, δ-CH) 4.04 (1H, m, Ȗ-CH) 4.31 and 4.39 (1H, 2 m, α-CH)   δC (100 MHz; CDCl3) 

194.9, 194.8, 173.0, 172.7, 154.1, 153.4, 80.6, 58.6, 58.2, 52.5, 52.3, 52.1, 51.6, 39.6, 

39.6, 37.0, 35.7, 30.7, 28.5, 28.3; HRMS m/z (ES+) 326.1029 ([M+Na]+. C13H21NO5SNa 

requires 326.1038). 

Data obtained is consistent with that given in the literature: [α]D
20 = -33.0° (c 0.9, 

CHCl3); δH (400 MHz; CDCl3) 1.41 (9H, s), 2.10 (1H, m), 2.34 (3H, s), 2.47 (1H, m), 

3.31 to 4.10 (3H, m), 3.75 (3H, s), 4.40 (1H, m).9 

 

N-Boc-trans-4-(hydroxy)-L-proline methyl ester, Boc-Hyp-OMe. 38 

L-4-hydroxyproline methyl ester hydrochloride (2.88 g, 20.00 

mmol), Boc anhydride (5.20 g, 23.80 mmol) and triethylamine 

(4.05 g, 40.0 mmol) were dissolved in DCM (30 mL) and 

stirred at room temperature for 24 h. The reaction mixture was 

evaporated under reduced pressure and purified via column 

chromatography (SiO2; 100% hexane → 40/60% 

hexane/EtOAc) yielding 38 as a white crystalline solid (3.03 

g, 62%). δH (400 MHz; CDCl3) 1.37 (9H, s, tBu), 2.04 (1H, m), 2.13 (2H, m, ß-CH2), 

γ.4λ (βH, m, δ-CH2), 3.67 (3H, s, OCH3), 4.28 to 4.48 (βH, m, α-CH, Ȗ-CH); δC (100 

MHz, CDCl3) 173.8, 154.2, 80.5, 69.3, 58.1, 54.7, 52.3, 52.1, 39.1, 38.5, 28.3, 28.1; m/z 

(ES+) 268.6 [M+Na]+. 
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Data obtained is consistent with that given in the literature: δH (200 MHz; CDCl3) 1.41 

(9H, s), 2.06 (1H, m), 2.30 (2H, m), 3.58 to 3.62 (2H, m), 3.74 (3H, s), 4.40 to 4.49 (2H, 

m).10 

 

N-Boc-trans-4-(tetrafluoropyridyl)-L-proline methyl ester. 40 

Boc-Hyp-OMe 38 (0.23 g, 0.94 mmol), Cs2CO3 

(0.26 g, 1.88 mmol) and pentafluoropyridine (0.31 

mL, 2.82 mmol) were dissolved in MeCN (8 mL) 

and stirred at room temperature for 72 h. The 

reaction mixture was filtered and evaporated under 

reduced pressure. The crude product was purified 

via column chromatography (SiO2; 90/10% 

hexane/EtOAc → 100% EtOAc) yielding 40 as a white powder (0.32 g, 85%); δH 

mixture of two rotamers in a ratio of ca. 1.0:2.0 (400 MHz; CDCl3) 1.42 and 1.45 (9H, 

s, tBu), 2.28 (1H, m, CH), 2.57 to 2.70 (1H, m, CH), 3.72 to 3.98  (2H, m, CH2) 3.76 

(3H, s, OCH3) 4.43 (1H, m, CH), 4.36 (1H, m, CH); δF (376 MHz; CDCl3) -89.5 (1F, m, 

ArF), 158.0 (1F, m, ArF); δC (100 MHz; CDCl3) 172.9, 154.1, 153.7, 144.4 (2C, d, J 

242.1), 135.3 (2C, d, J 293.2) 81.6, 57.8, 56. 9, 51.7, 37.5, 36.4, 28.4. 

Crystal data and structure refinement: 

 

Empirical formula C16H18N2O5F4 
Formula weight 394.32 
Temperature/K 120 
Crystal system orthorhombic 
Space group P212121 
a/Å 9.9914(5) 
b/Å 10.0506(5) 
c/Å 18.3781(9) 
α/° 90 
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ȕ/° 90 
Ȗ/° 90 
Volume/Å3 1845.52(16) 
Z 4 
ρcalcg/cm3 1.419 
ȝ/mm-1 1.151 
F(000) 816.0 
Crystal size/mm3 0.387 × 0.113 × 0.103 
Radiation CuKα (Ȝ = 1.54184) 
βΘ range for data collection/° 9.626 to 150.38 
Index ranges -10 ≤ h ≤ 11, -1β ≤ k ≤ 11, -ββ ≤ l ≤ β1 
Reflections collected 22217 
Independent reflections 3653 [Rint = 0.0286, Rsigma = 0.0166] 
Data/restraints/parameters 3653/0/248 
Goodness-of-fit on F2 1.076 
Final R indexes [I>=βσ (I)] R1 = 0.0325, wR2 = 0.0835 
Final R indexes [all data] R1 = 0.0347, wR2 = 0.0854 
Largest diff. peak/hole / e Å-3 0.25/-0.20 
Flack parameter 0.01(3) 

 

N-Boc-cis-4-(iodo)-L-proline methyl ester, Boc-cis-iodoproline-OMe. 42 

Boc-Hyp-OMe 38 (0.40 g, 1.64 mmol), imidazole (0.11 g, 

1.64mmol), PPh3 (0.43 g, 1.64 mmol) and I2 (0.42 g, 1.64 

mmol) were dissolved in DCM (20 mL) and stirred at room 

at room temperature for 4 h. The reaction mixture was 

evaporated under reduced pressure and purified via column 

chromatography (SiO2; 100% hexane → 60/40% 

hexane/EtOAc) yielding 42 as a pale yellow crystalline 

solid (0.40 g, 69%). Rf 0.19 (hexane/EtOAc 9:1). δH mixture of two rotamers in a ratio 

of ca. 1.0:1.3 (400 MHz; CDCl3) 1.40 and 1.46 (9H, 2 s, BocH), 2.34 (1H, m, ß-CH), 

2.86 (1H, m, ß-CH), 3.66 (1H, dd, J 7.8, 10.β, δ-CH), 3.75 (3H, s, OCH3), 4.00 to 4.13 

(βH, m, Ȗ-CH, δ-CH), 4.23 and 4.31 (1H, 2 t, J 7.8, α-CH); δC (100 MHz, CDCl3) 172.3, 

172.0, 153.4, 152.8, 80.9, 59.3, 58.7, 57.1, 56.8, 52.4, 43.0, 42.0, 28.5, 28.4, 12.9, 12.1; 

m/z (ES+) 378.0 [M+Na]+. 

Data obtained is consistent with that given in the literature: [α]D
20 -20.9 (c 0.82°, 

CHCl3); δH (500 MHz; CDCl3) 1.38 and 1.43 (9H, 2 s), 2.26 to 2.35 (1H, m), 2.82 to 

2.85 (1H, m), 3.63 (1H, dd, J 8.2, 10.2), 3.72 (3H, s), 4.00 to 4.10 (2H, m), 4.20 and 

4.28 (1H, 2 t, J 7.5). 11 
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Crystal data and structure refinement: 

 
Empirical formula  C11H18INO4 
Formula weight  355.16 
Temperature/K  120 
Crystal system  monoclinic 
Space group  P21 
a/Å  5.5923(3) 
b/Å  9.1371(6) 
c/Å  13.7963(8) 
α/°  90.00 
ȕ/°  99.189(2) 
Ȗ/°  90.00 
Volume/Å3  695.91(7) 
Z 2 
ρcalcmg/mm3  1.695 
m/mm-1  2.304 
F(000)  352.0 
Crystal size/mm3  0.44 × 0.14 × 0.06 
βΘ range for data collection  3 to 56° 
Index ranges  -7 ≤ h ≤ 7, -11 ≤ k ≤ 1β, -18 ≤ l ≤ 18 
Reflections collected  7114 
Independent reflections  3336[R(int) = 0.0219] 
Data/restraints/parameters  3336/1/226 
Goodness-of-fit on F2  1.050 
Final R indexes [I>=βσ (I)]  R1 = 0.0262, wR2 = 0.0615 
Final R indexes [all data]  R1 = 0.0283, wR2 = 0.0630 
Largest diff. peak/hole / e Å-3  1.72/-0.93 
Flack parameter -0.04(2) 
 

 

N-Boc-trans-4-(iodo)-L-proline methyl ester, Boc-trans-iodoproline-OMe. 43 

 Boc-Hyp-OMe 38 (0.24 g, 0.96 mmol), imidazole (0.07 g, 

1.06 mmol), PPh3 (0.28 g, 1.06 mmol) and I2 (0.27 g, 1.06 

mmol) were dissolved in DCM (20 mL) and left to stir at 

room temperature for 48 h. The reaction mixture was 

evaporated under reduced pressure and purified via column 

chromatography (SiO2; 100% hexane → 60/40% 



205 

hexane/EtOAc) yielding 43 as a sticky yellow solid (0.12 g, 35%). Rf 0.16 

(hexane/EtOAc 9:1). δH mixture of two rotamers in a ratio of ca. 1.0:1.2 (400 MHz; 

CDCl3) 1.4β and 1.46 (λH, β s, BocH), β.41 (1H, m, ȕ-CH), β.5λ (1H, m, ȕ-CH), 3.68 to 

3.74 (4H, m, OCH3, δ-CH), γ.λ7 (1H, m, δ-CH), 4.32 to 4.47 (βH, m, Ȗ-CH, α-CH); δC 

(100 MHz; CDCl3) δC (100 MHz, CDCl3) 172.9, 172.8, 153.9, 153.3, 80.8, 59.0, 58.6, 

57.8, 57.5, 52.6, 52.4, 43.3, 42.3, 29.4, 28.5, 16.2, 15.9; m/z (ES+) 378.0 [M+Na]+. 

Data obtained is consistent with that given in the literature: δH (250 MHz; CDCl3) 1.42 

and 1.47 (9H, 2 s), 2.41 (1H, m), 2.58 (1H, m), 3.72 and 3.80 (2H, 2 m), 3.74 (3H, s), 

3.96 and 3.98 (1H, 2 m) 4.30 to 4.35 (2H, m).12 

 

Cyclo(L-Pro-L-Tyr). 47 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.30 mmol scale with amino acid 

(A): Boc-L-Pro-OH and (B): Boc-L-Tyr-OH to yield 47 

as pale orange powder (31 mg, 46%). δH (400 MHz; 

CDCl3) 1.86 (2H, m, Pro CH2), 1.98 (1H, m, Pro-CH), 

2.30 (1H, m, Pro-CH), 2.79 (1H, dd, J 9.4, 14.5, Tyr-ß-

CH) 3.40 (1H, dd, J  4.0, 14.5, Tyr-ß-CH), 3.57 (2H, m, Pro-δ-CH2), 4.06 (1H, m, Pro-

α-CH), 4.23 (1H, m, Tyr-α-CH), 6.16 (1H, s, NH), 6.76 (2H, d, J  8.4, ArH), 7.02 (2H, 

d, J 8.4, ArH); δC (100 MHz; CDCl3) 169.9, 165.4, 156.0, 130.5, 126.8, 116.2, 59.3, 

56.4, 45.5, 36.1, 28.4, 22.5; HRMS m/z (ES+) 261.1232 ([M+H]+. C14H17N2O3 requires 

261.1239). 

Data obtained is consistent with that given in the literatureμ δH (400 MHz; CDCl3) 1.83 

to 1.94 (2H, m), 1.96 to 2.02 (1H, m), 2.29 (1H, m), 2.75 (1H, dd), 3.39 to 3.44 (1H, m), 

3.51 to 3.56 (1H, m). 3.59 to 3.66 (1H, m), 4.08 (1H, t), 4.21 (1H, dd), 5.72 (1H, s), 

6.77 (2H, d), 7.05 (2H, d).13  
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Cyclo(L-Pro-D-Phe). 54 

General procedure for cyclic dipeptide (DKP) synthesis was 

followed on a 0.05 mmol scale with amino acid (A): Boc-L-

Pro-OH and (B): Boc-D-Phe-OH to yield cyclo(L-Pro-D-

Phe) 54 as a pale yellow powder (6 mg, 4λ%). δH (400 

MHz; CDCl3) 1.74 (2H, m, Pro-Ȗ-CH2), 1.94 (1H, Pro-ß-

CH), 2.20 (1H, Pro-ß-CH), 3.02 (1H, m, Pro-α-CH), 3.13 

(2H, m, Phe-ß-CH2), 3.40 (1H, m, Pro-δ-CH), 3.63 (1H, m, Pro-δ-CH), 4.23 (1H, m, 

Phe-α-CH), 6.26 (1H, bs, NH), 7.17 to 7.24 (2H, m, ArH), 7.27 to 7.35 (3H, m, ArH); 

δC (100 MHz; CDCl3) 169.2, 164.9, 135.4, 130.0, 128.9, 127.7, 59.3, 57.9, 45.3, 40.7, 

29.1, 21.4; HRMS m/z (ES+) 245.1294 ([M+H]+. C14H17N2O2 requires 245.1290).  

Data obtained is consistent with that given in the literature: δH (400 MHz; d4-methanol) 

1.58 to 1.78 (2H, m), 1.84 to 2.00 (1H, m), 2.00 to 2.21 (1H, m), 2.65 (1H, dd, J 6.3, 

10.4), 3.02 (1H, dd, J 4.6, 13.6), 3.23 (1H, dd, J 4.8, 13.7), 3.27 to 3.44 (1H, m), 3.49 to 

3.65 (1H, m), 4.23 (1H, t, J 4.7), 7.14 to 7.44 (5H, m).14 

Crystal data and structure refinement:  

 

Empirical formula C14H16N2O2 
Formula weight 244.29 
Temperature/K 120 
Crystal system monoclinic 
Space group P21 
a/Å 7.7670(5) 
b/Å 6.5187(5) 
c/Å 12.1777(9) 
α/° 90 
ȕ/° 94.773(17) 
Ȗ/° 90 
Volume/Å3 614.43(8) 
Z 2 
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ρcalcg/cm3 1.320 
ȝ/mm-1 0.090 
F(000) 260.0 
Crystal size/mm3 0.48 × 0.17 × 0.05 
Radiation MoKα (Ȝ = 0.7107γ) 
βΘ range for data collection/° 3.356 to 60.02 
Index ranges -10 ≤ h ≤ 10, -λ ≤ k ≤ λ, -17 ≤ l ≤ 17 
Reflections collected 8753 
Independent reflections 3585 [Rint = 0.0315, Rsigma = 0.0363] 
Data/restraints/parameters 3585/1/167 
Goodness-of-fit on F2 1.024 
Final R indexes [I>=βσ (I)] R1 = 0.0383, wR2 = 0.0983 
Final R indexes [all data] R1 = 0.0437, wR2 = 0.1014 
Largest diff. peak/hole / e Å-3 0.32/-0.18 
Flack parameter 0.4(6) 
 

 

Cyclo(D-Pro-D-Phe). 55 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.08 mmol scale with amino acid (A): 

Boc-L-Pro-OH and (B): Boc-D-Phe-OH to yield cyclo(L-

Pro-D-Phe) 55 as orange oil (7 mg, 4β%). δH (400 MHz; 

CDCl3) 1.84 to 2.08 (3H, m, Pro-CH2, Pro-CH), 2.35 (1H, 

m, Pro-CH), 2.77 (1H, dd, J 10.8, 14.7, Phe-ȕ-CH) (2H, dd, 

Pro-CH2), 3.51 to 3.70, (3H, m, Pro-δ-CH2, Phe-ȕ-CH), 4.08 (1H, t, J  7.4, Pro-α-CH), 

4.27 (1H, dd, J 3.6, 10.8, Phe-α-CH) 5.6β (1H, s, NH), 7.β0 to 7.41 (5H, m, ArH); δC 

(100 MHz; CDCl3) 169.5, 165.2, 136.1, 129.4, 129.3, 127.7, 59.3, 56.3, 45.6, 36.9, 28.5, 

22.7; HRMS m/z (ES+) 245.1310 ([M+H]+. C14H17N2O2 requires 245.1290). 

Data obtained is consistent with that given in the literatureμ δH (300 MHz; CDCl3) 1.81 

to 1.98 (2H, m), 2.00 to 2.10 (1H, m), 2.28 to 2.38 (1H, m), 2.77 (1H, dd), 3.45 to 3.59 

(1H, m), 3.50 to 3.61 (1H, m), 3.61 to 3.69 (1H, m), 4.08 (1H, t), 4.27 (1H, dd), 5.62 

(1H, br s), 7.18 to 7.41 (5H, m).15 
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Cyclo(D-Pro-L-Ala). 56 

General procedure for cyclic dipeptide (DKP) synthesis was 

followed on a 0.16 mmol scale with amino acid (A): Boc-D-

Pro-OH and (B): Boc-L-Ala-OH to yield cyclo(D-Pro-L-Ala) 

56 as white solid (13 mg, 51%). δH (400 MHz; CDCl3) 1.49 

(3H, d, J 6.8, Ala-CH3), 1.84 to 2.08 (3H, m, Pro-CH, Pro-

CH2), 2.41 (1H, m, Pro-CH), 3.53 (1H, m, CH), 3.64 (1H, m, 

CH), 3.99 to 4.12 (2H, m, Pro-α-CH, Ala-α-CH) 6.6β (1H, s, NH); δC (100 MHz; 

CDCl3) 169.2, 166.5, 58.1, 53.9, 45.8, 29.2, 22.3, 20.4; HRMS m/z (ES+) 169.0974  

([M+H]+. C8H13N2O2 requires 169.0977). 

Data obtained is consistent with that given in the literature: δH (400 MHz; CDCl3) 1.48 

(3H, d, J 7.2), 1.86 to 2.08 (3H, m), 2.41 (1H, m), 3.54 (1H, m), 3.66 (1H, m) 4.02 to 

4.13 (2H, m), 7.40 (1H, br s).16 

 

Cyclo(L-Pro-L-MePhe). 57 

General procedure for cyclic dipeptide (DKP) synthesis was 

followed. However, microwave heating (60 °C, 10 min) was 

used in the final synthetic step (cyclisation). The synthesis 

was undertaken on a 0.10 mmol scale with amino acid (A): 

Boc-L-Pro-OH and (B): Boc-L-MePhe-OH to yield cyclo(L-

Pro-L-MePhe) 57 as a pale orange powder (11 mg, 42%). δH 

(400 MHz; CDCl3) 1.48 to 1.65 (3H, m, Pro-CH2, Pro-CH), 1.86 (1H, m, Pro-CH), 3.10 

to 3.20 (4H, m, NCH3, CH), 3.40 (1H, m, CH), 3.70 (2H, m, CH2) 4.28 (1H, m, CH), 

7.03 to 7.08 (2H, m, ArH). 7.19 to 7.βλ (γH, m, ArH); δC (100 MHz; CDCl3) 169.2, 

164.9, 135.4, 130.0, 129.0, 127.7, 77.4, 57.9, 45.3, 40.7, 29.3, 29.1, 21.9; HRMS m/z 

(ES+) 259.1452 ([M+H]+. C15H19N2O2 requires 259.1447).  

Data obtained is consistent with that given in the literature: m/z (MALDI-TOF+) 258.5 

[M+H]+.17 
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Cyclo(L-Hyp-L-Phe). 58 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.28 mmol scale with amino acid 

(A): Boc-L-Hyp-OH and (B): Boc-L-Phe-OH to yield 

cyclo(L-Hyp-L-Phe) 58 as white powder (62 mg, 86%). 

vmax(solid)/cm-1 3275, 2928 (w, C-H), 2871, 1637 (s, 

C=O), 1414; [α]D
25 = +104.0° (c 0.1, CHCl3); δH (400 

MHz; CDCl3) 1.95 (1H, m, Hyp-CH), 2.32 (1H, dd, J 6.2, 13.5, Hyp-CH), 2.79 (1H, dd, 

J 10.4, 14.4, Phe-ß-CH), 3.53 to 3.62 (2H, m, Phe-ȕ-CH, Hyp-CH), 3.73 (1H, dd, J 4.8, 

13.2, Hyp-CH), 4.31 (1H, m, Phe-α-CH), 4.44 (1H, dd, J 6.0, 11.2, Hyp-CH), 4.52 (1H, 

t, J 4.2, Hyp-CH), 5.84 (1H, s, NH), 7.20 to 7.24 (2H, m, ArH), 7.27 to 7.37 (3H, m, 

ArH); δC (100 MHz; CDCl3) 169.8, 165.3, 135.9, 129.4, 129.3, 127.7, 57.5, 56.3, 54.6, 

37.8, 36.8; HRMS m/z (ES+) 261.1219 ([M+H]+. C14H17N2O3 requires 261.1239). 

 

Cyclo(L-Hyp-L-Leu). 59 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.07 mmol scale with amino acid (A): 

Boc-L-Hyp-OH and (B): Boc-L-Leu-OH to yield cyclo(L-

Hyp-L-Leu) 59 as white powder (5 mg, 31%). 

vmax(solid)/cm-1  3307 (br, O-H), 2963 (w, C-H), 1657 (s, 

C=O), 14γ5; [α]D
25 = -79.1° (c 0.2, CHCl3); δH (400 

MHz; MeOD) 0.95 (3H, m, Leu-δCH3), 0.97 (3H, m, Leu-δCH3), 1.51 (1H, m, CH), 

1.90 (2H, m, CH), 2.09 (1H, m, CH), 2.28 (1H, m, CH) 3.43 (1H, d, J 12.8, CH), 3.66 

(1H, dd, J 4.4, 12.8, CH), 4.18 (1H, m, CH), 4.46 (1H, t, J 4.4, CH), 4.52 (1H, m, CH); 

δC (100 MHz; CDCl3) 170.7, 166.6, 69.0, 57.8, 54.8, 53.0, 39.0, 38.0, 25.2, 23.8, 21.7; 

HRMS m/z (ES+) 227.1390 ([M+H]+. C11H19N2O3 requires 227.1390). 
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Cyclo(L-Pro-L-Trp). 61 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.27 mmol scale with amino acid (A): 

Boc-L-Pro-OH and (B): Boc-L-Trp-OH to yield cyclo(L-

Pro-L-Trp) 61 as a white powder (51 mg, 67%). δH (400 

MHz; CDCl3) 1.80 to 2.07 (3H, m, Pro-CH2, Pro-CH), 

2.32 (1H, m, Pro-CH), 2.97 (1H, m, Trp-CH), 3.54 to 3.79 

(3H, m, Pro-δ-CH2, Trp-CH), 4.08 (1H, m, Pro-α-CH), 

4.38 (1H, m, Trp-α-CH), 5.76 (1H, bs, amide-NH), 7.10 (1H, m, ArH), 7.14 (1H, m, 

ArH), 7.24 (1H, m, ArH), 7.39 (1H, d, J 8.0, ArH), 7.59 (1H, d, J 8.0, ArH), 8.33 (1H, 

br s, indole-NH); δC (100 MHz; CDCl3) 169.5, 165.6, 136.8, 126.8, 123.5, 122.9, 120.1, 

118.6, 111.7, 110.1, 59.4, 54.7, 45.6, 28.5, 27.0, 22.8; HRMS m/z (ES+) 284.1400 

([M+H]+. C16H18N3O2 requires 284.1399). 

Data obtained is consistent with that given in the literature: δH (400 MHz; CDCl3) 1.86 

to 2.04 (3H, m), 2.27 to 2.35 (1H, m), 2.98 (1H, dd, J 10.8, 15.1), 3.55 to 3.69 (2H, m), 

3.75 (1H, ddd, J 0.8, 3.6, 14.8), 4.05 (1H, t, J 7.6), 4.37 (1H, dd, J 2.4, 10.8), 5.78 (1H, 

br s), 7.08 (1H, d, J 2.1), 7.14 (1H, td, J 0.9, 7.5), 7.23 (1H, td, J 1.0, 7.5), 7.38 (1H, d, J 

8.4), 7.59 (1H, d, J 8.0), 8.40 (1H, br s).18 

Cyclo(L-Pro-L-Val). 62 

 General procedure for cyclic dipeptide (DKP) synthesis was 

followed on a 0.15 mmol scale with amino acid (A): Boc-L-Pro-

OH and (B): Boc-L-Val-OH to yield cyclo(L-Pro-L-Val) 62 as a 

white as white crystalline powder (12 mg, 41%). δH (400 MHz; 

CDCl3) 0.91 (3H, d, J 6.8 ,CH3), 1.06 (3H, d, J 7.2, CH3), 1.90 

(1H, m, CH), 2.04 (2H, m, CH), 2.37 (1H, m, CH), 2.64 (1H, m, 

CH), 3.54 (1H, m, CH), 3.63 (1H, m, CH), 3.94 (1H, m, CH), 4.08 (1H, m, CH), 5.74 

(1H, m, NH); δC (100 MHz; CDCl3) 170.1, 165.0, 60.5, 59.0, 45.3, 29.7, 29.5, 19.5, 

16.2; HRMS m/z (ES+) 197.1299 ([M+H]+. C10H17N2O2 requires 197.1290). 

 

Data obtained is consistent with that given in the literature: δH (500 MHz; CDCL3) 0.92 

(3H, d, J  7.6), 1.07 (3H, d, J 7.3), 1.87 to 1.95 (1H, m), 2.00 to 2.11 (1H, m), 2.35 to 
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2.41 (2H, m), 2.59 to 2.67 (1H, m), 3.51 to 3.68 (2H, m), 3.94 (1H, s), 4.08 (1H, t, 

J 7.6), 5.99 (1H, br s).19 

 

4-hydroxymethyl-3-nitrobenzoic acid. 64  

4-Bromomethyl-3-nitrobenzoic acid (2.00 g, 7.57 mmol) was 

dissolved in aqueous NaHCO3 (50%, 30 mL) and heated to 

reflux for 40 min. The yellow solution was hot filtered and 

acidified to pH 1 – 2. The aqueous solution was extracted with 

EtOAc (3 x 30 mL) and the combined organic extracts were 

washed with saturated aqueous NaCl (30 mL). The organic layer 

was dried with MgSO4, filtered and evaporated under reduced 

pressure to yield 64 as a pale orange powder (0.854 g, 59%); δH (400 MHz; CDCl3) 5.01 

(2H, m, CH2), 8.01 (1H, m, ArH), 8.γ1 (1H, m, ArH), 8.6γ (1H, m, ArH); δC (100 MHz; 

CDCl3) 195.6, 176.6, 172.2, 163.3, 160.3, 158.0, 154.8, 90.0; m/z (ESI-) 196.4 [M – 

H+]. 

Data obtained is consistent with that given in the literatureμ δH (400 MHz; d4-methanol) 

4.99 (2H, s),  7.97 (1H, d, J 8.1), 8.27 (1H, dd, J 1.5, 8.1), 8.57 (1H, d, J 1.7).20 

 

MHBA-linker, 65 

DCM (5 mL) was added to MHBA.LL.HCl resin (1.0 eq, 

0.10 mmol) and the resin was agitated for 30 seconds 

before draining, this step was repeated a further 4 times. 

A solution of 40% TFA in DCM (5 mL) was added and 

the resin was agitated for 30 second before draining. 

Fresh 40% TFA in DCM (5 mL) was added and the resin 

was agitated for 5 min before draining, this step was 

repeated once more. A solution of 5% DIPEA in DCM (5 mL) was added and the resin 

was agitated for 2 min before draining, this step was repeated twice more. Finally, the 

resin was washed with DCM (5 x 5 mL). 4-hydroxymethyl-3-nitrobenzoic acid 01 (5.0 

eq, 0.50 mmol), DIC (5.0 eq, 0.50 mmol) in DCM (1 mL) was added to MHBA.LL.HCl 

resin (1.0 eq, 0.10 mmol) and the solution was left to shake for 18 h. The resin was 
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washed with DMF (5 x 5mL) and DCM (5 x 5mL) to form pre-loaded MHBA-linker 

65. 

 

Cyclo(L-Flp-L-Phe). 66 

General procedure for cyclic dipeptide (DKP) synthesis 

was followed on a 0.10 mmol scale with amino acid 

(A): Boc-L-flp-OH 69 and (B): Boc-L-Phe-OH to yield 

cyclo(L-Flp-L-Phe) 66 as white powder (21 mg, 84%). 

vmax(solid)/cm-1 3168, 2944 (w, C-H), 2875, 1666 (s, 

C=O), 1418; [α]D
25 = -195.2° (c 0.5, CHCl3); δH (400 

MHz; CDCl3) 2.50 (1H, m, flp-CH), 2.76 to 2.91 (2H, 

flp-CH, Phe-CH), 3.40 (1H, ddd, J 3.6, 13.6, 32.8, flp-CH), 3.65 (1H, dd, J 3.6, 14.6, 

Phe-CH), 4.20 (1H, dd, J 4.6, 10.2, flp-CH), 4.26 to 4.38 (2H, m, Phe-CH, flp-CH), 5.23 

(1H, d, J 53.2, flp-ȖCH) 5.6β (1H, s, NH), 7.βγ to 7.γλ (5H, m, ArH); δC (100 MHz; 

CDCl3) 168.6, 165.9, 135.8, 129.5, 129.2, 127.8, 89.9 (1C, d, J 179.5), 57.2, 56.1, 52.5 

(1C, d, J 23.2), 36.5, 34.7 (1C, d, J 24.4); HRMS m/z (ES+) 263.1770 ([M+H]+. 

C14H16FN2O2 requires 263.1196). 

 

Cyclo(L-Pro-L-ȕ-(2-furyl)-Ala). 67 

To pre-loaded MHBA-linker 65 (1.0 eq, 0.10 mmol) a 

pre-mixed peptide coupling solution of Boc-L-Pro-OH 

(3.0 eq, 0.30 mmol), DMAP (0.05 eq) and DIC (3.0 eq, 

0.30 mmol) in DCM (2 mL) was added. The reaction 

mixture was shaken for 40 min at room temperature. 

The solution was drained and coupling procedure was 

repeated. The resin was washed with DCM (5 x 5 mL). 

A deprotection solution of 40% TFA in DCM (3 mL) was added to the resin and stirred 

for 10 min. The solution was drained and this deprotection procedure was repeated 

twice. The resin was washed with DCM (5 x 5 mL) and stored at 5°C for 4 h. Fmoc-ȕ-

(2-furyl)-Ala-OtBu 14 (4.0eq, 0.40 mmol) was dissolved in 20% TFA in DCM (10 mL) 

and stirred at room temperature for 3 hours or until the deprotection reaction was judged 

to be complete by TLC to yield Fmoc-ȕ-(2-furyl)-Ala-OH (quant.). Fmoc-ȕ-(2-furyl)-
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Ala-OH was used without purification. A pre-mixed peptide coupling solution of Fmoc-

ȕ-(2-furyl)-Ala-OH (2.0 eq, 0.20 mmol), DIPEA (5.0 eq, 0.50 mmol) and PyBOP (2.0 

eq, 0.20 mmol) in DCM (2 mL) was added to the resin and stirred for 1 h. The solution 

was drained and coupling procedure was repeated. The resin was washed with DCM (5 

x 5 mL) and DMF (3 x 5 mL). Finally 20% piperidine in DMF (3 mL) was added to the 

resin and stirred for 10 min. The filtrate solution was drained, collected and then 

repeated. The combined filtrate solutions were evaporated under reduced pressure 

purified via column chromatography (SiO2; 70/γ0% EtOAc/hexane → λ0%/10% 

EtOAc/acetone) to yield 67 as colourless oil (14 mg, 64%). vmax(solid)/cm-1 3223, 2950 

(w, C-H), 2879, 1646 (s, C=O), 14ββ; [α]D
23 = -259.5° (c 0.4, CHCl3); δH (400 MHz; 

CDCl3) 1.86 to 2.12 (3H, m, Pro-CH, Pro-CH2) 2.35 (1H, m, Pro-CH), 2.90 (1H, dd, J 

10.4, 15.6, FurylAla-ȕ-CH), 3.52 to 3.66 (3H, m, FurylAla-ȕ-CH, Pro-δ-CH2) 4.10 (1H, 

m, Pro-α-CH), 4.27 (1H, d, J 10.4, FurylAla-α-CH), 6.06 (1H, s, NH), 6.19 (1H, dd, J 

0.4, 3.2, ArH), 6.32 (1H, dd, J 2.0, 3.2, ArH), 7.36 (1H, dd, J 0.4, 2.0, ArH);  δC (100 

MHz, CDCl3) 177.4, 169.6, 142.7, 150.6, 110.7, 108.6, 59.3, 54.7, 45.7, 28.4, 22.8, 

29.3; HRMS m/z (ES+) 235.1065 ([M+H]+. C12H15N2O3 requires 235.1083). 

 

7.2 Solid Phase Peptide Syntheses 

7.2.1 Materials and Methods 

Electrospray ionization (ESI) mass spectra were collected on a Waters TQD mass 

spectrometer and matrix assisted laser desorption/ionization - time of flight (MALDI-

TOF) on a Waters Micromass LR TOF mass spectrometer or a Bruker Autoflex II 

ToF/ToF mass spectrometer (fitted with a 337 nm nitrogen lasers). Crude CCl2 peptide 

fragments were purified using a Gilson 305 LC pump and UV/Vis detector fitted with a 

C18 columnμ 5.0 ȝm, β50 mm x 10 mm. Absorbance was measured at βγ0 nm. The 

linear gradient ranged from 2% MeCN (0.1% TFA) in H2O (0.1% TFA) at 0 min to 

50% MeCN (0.1% TFA) in H2O (0.1% TFA) at 60 min. All amino acid derivatives and 

peptide resins were purchased from Novabiochem. All chemicals were purchased from 

Sigma-Aldrich, unless otherwise stated. DMF and PyBOP were purchased from AGTC 

and Apollo Scientific, respectively. The amino acid derivatives that were utilised are as 

follows: Fmoc-Arg(Pbf)-OH, Fmoc-Asn(tBu)-OH, Fmoc-Asp(tBu)-OH, Fmoc-

Cys(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(tBu)-OH, Fmoc-His(Trt)-OH, Fmoc-
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Lys(Boc)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH and 

Fmoc-Tyr(tBu)-OH. 

 

7.2.2 General SPPS Procedures 

7.2.2.1 Microwave Assisted Automated Fmoc-SPPS 

All automated syntheses were undertaken on a CEM liberty1 microwave peptide 

synthesizer fitted with a Discover microwave unit in a 30 mL PTFE vessel. Pre-

synthesis swelling of the resin was carried out in DMF for 1 h at room temperature. 

Microwave assisted coupling cycles were carried out for 10 min at 75°C (25 W) with 

amino acid (5.0 eq.), DIC (5.0 eq.) and HOBt (10.0 eq.). In the case of double 

couplings, the vessel was drained after the first cycle and the coupling cycle was 

repeated with fresh reagents. For amino acid and sequence specific details see the 

relevant section in Chapter 5. The Fmoc deprotection step was carried out for 10 min at 

75°C (45 W) with a solution of 20% piperidine in DMF. In all steps, agitation was 

provided by bubbling nitrogen. 

 

7.2.2.2 Room Temperature Manual Fmoc-SPPS 

Manual couplings were carried out at room temperature for 1h 30 minutes with amino 

acid (5.0 eq.), PyBOP (5.0 eq.) and DIPEA (10.0 eq.) in a fritted polypropene vessel. In 

the case of an incomplete coupling (visualised by TNBS/Kaiser or chloranil tests), 

double or triple couplings were undertaken. For successive couplings the vessel was 

drained after the each coupling cycle and the coupling cycle was repeated with fresh 

reagents. For amino acid and sequence specific details see the relevant section in 

Chapter 5. The Fmoc deprotection step was carried out for 5 min with a solution of 

20% piperidine in DMF, followed by a further treatment for 15 min with a fresh 

solution of 20% piperidine in DMF. In all steps, agitation was provided by rolling. 

 

7.2.2.3 N-Alloc Protection and Dawson Dbz Resin Loading 
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The Dawson Dbz (3-(Fmoc-amino)-4-aminobenzoyl) AM resin was swollen in DMF 

for 1 h at room temperature. The resin was treated with a solution of 20% piperidine in 

DMF and washed with DMF. The general procedure for room temperature manual 

Fmoc-SPPS was followed to couple to first amino acid to the resin. The peptide-resin 

was washed with DMF before treatment with a solution of allyl chloroformate (10.0 eq.) 

and DIPEA (1.0 eq.) in DCM (minimum volume to cover resin) for 24 h at room 

temperature. The peptide-resin was washed with DCM and DMF. 

 

7.2.2.4 N-Alloc Deprotection  

Pre-deprotection, DCM was added to the peptide-resin in a fritted polypropene vessel 

and the mixture was left to swell for 30 min followed by argon sparging for 30 sec.  

Pd(PPH3)4 (0.4 eq.) and PhSiH3 (20.0 eq) were added in DCM (minimum volume to 

cover resin) and the reaction was rolled at room temperature for 30 min in an argon 

atmosphere. Subsequently, the peptide-resin was washed with DCM then DMF. 

 

7.2.2.5 Nbz Formation  

The peptide-resin in a fritted polypropene vessel was treated with p-nitrophenyl 

chloroformate (5.0 eq.) in DCM (minimum volume to cover resin) for 1 h at room 

temperature. Subsequently, the peptide-resin was washed with DCM, DMF and rolled 

in a solution of DIPEA (0.5 M) in DMF for 45 min at room temperature. Finally, the 

resin was washed with DMF. 

 

7.2.2.6 Peptide Cleavage from Acid-Labile Resin 

Pre-cleavage the peptide-resins are washed with DCM (x 3) and ether (x 3) and left to 

air dry for 5 min. Subsequently the peptide-resins were treated with a (4 mL per 0.1 

mmol of resin) solution of 2.5% TIPS and 2.5% H2O in TFA for 3 h at room 

temperature. After which, the resin was filtered and the filtrate collected. The filtrate 

was treated with cold ether to form a suspension that is left to settle or pelleted via 
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centrifugation. The precipitate was collected and washed with ether (x 2) yielding crude 

product peptide. For sequence specific cleavage details see the relevant section in 

Chapter 5.  

 

7.2.2.7 Reductive Peptide Cleavage from Acid-Labile Resin 

Pre-cleavage the peptide-resins are washed with DCM (x 3) and ether (x 3) and left to 

air dry for 5 min. Subsequently the peptide-resins were treated with a (4 mL per 0.1 

mmol of resin) solution of 5% TIPS in TFA for 2 h 30 min at room temperature. After 

which, TMSBr (60 ȝL per 0.1 mmol of resin) and EDT (70 ȝL per 0.1 mmol of resin) 

were added and the solution was left for 30 min at room temperature. The resin was 

filtered and the filtrate collected. The filtrate was treated with cold ether to form a 

suspension that is left to settle or pelleted via centrifugation. The precipitate was 

collected and washed with ether (x 2) yielding crude product peptide. For sequence 

specific cleavage details see the relevant section in Chapter 5.  

 

7.2.3 Syntheses of CCL2 Peptide Fragments 

CCL2 Peptide Fragment 52-76 

General procedure for microwave assisted automated Fmoc-SPPS synthesis was 

followed on a 0.1 mmol scale with low-loading polystyrene Wang (PABA) resin (0.27 

mmol/g). Fmoc-His(Trt)-OH coupling was carried out at a reduced temperature (10 min 

at 50 °C (25 W). The general procedure for peptide cleavage from acid-labile resin was 

followed and crude CCL2 Peptide Fragment 52-76 was isolated at a purity of 80.2% by 

RP-HPLC (230 nm) subsequent purification via RP-HPLC afforded CCL2 Peptide 

Fragment 52-76 (50 mg, 17%). m/z (MALDI-TOF+) 2928.8 ([M+H]+. C124H199N36O42S2 

requires 2928.4). Retention time by analytical RP-HPLC (230 nm) of 16.2 minutes 

(gradient: 2% MeCN in H2O (0.1% TFA) to 50% MeCN in H2O (0.1% TFA) over 30 

minutes). 

CCL2 Peptide Fragment 36-51 
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General procedure for microwave assisted automated Fmoc-SPPS synthesis was 

followed on a 0.1 mmol scale with Dawson Dbz AM resin (0.41 mmol/g) and in every 

case the amino acid coupling cycle was repeated. General procedures for N-Alloc 

protection, N-Alloc deprotection and Nbz formation were followed. Boc-L-thiazolidone-

4-carboxylic acid coupling was carried out following the general procedure for room 

temperature manual Fmoc-SPPS with reduced reagent equivalents: amino acid (2.5 eq.), 

PyBOP (2.5 eq.) and DIPEA (5.0 eq.) The general procedure for peptide cleavage from 

acid-labile resin was followed and crude CCL2 Peptide Fragment 36-51 was isolated at 

a purity of 32.7% by RP-HPLC (230 nm). Subsequent purification via RP-HPLC 

afforded CCL2 Peptide Fragment 36-51 (23 mg, 14%). m/z (MALDI-TOF+) 1960.4 

([M+H]+. C92H147N22O23S requires 1960.1). Retention time by analytical RP-HPLC 

(230 nm) of 22.4 minutes (gradient: 2% MeCN in H2O (0.1% TFA) to 50% MeCN in 

H2O (0.1% TFA) over 30 minutes). 

 

CCL2 Peptide Fragment 36-76 

General procedure for microwave assisted automated Fmoc-SPPS synthesis was 

followed on a 0.1 mmol scale with pre-loaded (Thr(tBu)) Tentagel resin (0.21 mmol/g) 

(Rapp-Polymere) and in every case the amino acid coupling cycle was repeated. Higher 

temperature couplings (10 min at 95°C (25 W) were utilised for section 46-51 (residues: 

IVAKEI) and section 37-43 (residues: PKEAVI). Fmoc-Cys(Trt)-OH and Fmoc-

His(Trt)-OH couplings were carried out at a reduced temperature (10 min at 50 °C (25 

W). Fmoc-Lys(Boc)-Thr(Ψpro)-OH (KT pseudo-proline) coupling was carried out 

following the general procedure for room temperature manual Fmoc-SPPS with reduced 

reagent equivalents: amino acid (2.5 eq.), PyBOP (2.5 eq.) and DIPEA (5.0 eq.) and 

repeated until complete (as visualised by TNBS test). The general procedure for 

reductive peptide cleavage from acid-labile resin was followed and crude CCL2 Peptide 

Fragment 36-76 was isolated at a purity of 33.1% by RP-HPLC (230 nm). Subsequent 

purification via RP-HPLC afforded CCL2 Peptide Fragment 36-76 (6 mg, 8%). m/z 

(ES+) 941.1 ([M+5H]5+. C207H342N55O63S3 requires 940.5). Retention time by analytical 

RP-HPLC (230 nm) of 21.0 minutes (gradient: 2% MeCN in H2O (0.1% TFA) to 50% 

MeCN in H2O (0.1% TFA) over 30 minutes). 

CCL2 Peptide Fragment 1-35 
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General procedure for microwave assisted automated Fmoc-SPPS synthesis was 

followed on a 0.1 mmol scale with Dawson Dbz AM resin (0.41 mmol/g) and in every 

case the amino acid coupling cycle was repeated. Fmoc-Cys(Trt)-OH coupling was 

carried out at a reduced temperature (10 min at 50 °C (25 W). Fmoc-Arg(Pbf)-OH 

coupling was carried out at a reduced temperature (1 h min at room temperature). 

General procedures for N-Alloc protection, N-Alloc deprotection and Nbz formation 

were followed. Boc-L-pyroglutamic acid coupling was carried out following the general 

procedure for room temperature manual Fmoc-SPPS with reduced reagent equivalents: 

amino acid (2.5 eq.), PyBOP (2.5 eq.) and DIPEA (5.0 eq.) and repeated until complete 

(as visualised by a chloranil test). The general procedure for peptide cleavage from acid-

labile resin was followed and crude CCL2 Peptide Fragment 1-35 was isolated at a 

purity of 19.8% by RP-HPLC (230 nm). Subsequent purification via RP-HPLC afforded 

CCL2 Peptide Fragment 1-35 (6 mg, 1%). m/z (ES+) 1381.2 ([M+3H]3+. 

C180H287N56O53S2 requires 1381.7). Retention time by analytical RP-HPLC (230 nm) of 

18.1 minutes (gradient: 2% MeCN in H2O (0.1% TFA) to 50% MeCN in H2O (0.1% 

TFA) over 30 minutes). 

 

Nitrated (Tyr(NO2)28) CCL2 Peptide Fragment 25-35 

General procedure for microwave assisted automated Fmoc-SPPS synthesis was 

followed on a 0.1 mmol scale with Dawson Dbz AM resin (0.41 mmol/g) and in every 

case the amino acid coupling cycle was repeated. Fmoc-Arg(Pbf)-OH coupling was 

carried out at a reduced temperature (1 h min at room temperature). General procedure 

for N-Alloc protection was followed. Fmoc-L-3-nitrotyrosine coupling was carried out 

following the general procedure for room temperature manual Fmoc-SPPS and repeated 

(visualisation by TNBS/Kaiser or chloranil proved test). The general procedure for 

peptide cleavage from acid-labile resin was followed and afforded nitrated 

(Tyr(NO2)28) CCL2 peptide fragment 25-35. m/z (MALDI-TOF+) (1543.8 [M+H]+. 

C66H107N22O21 requires 1543.8). Retention time by analytical RP-HPLC (230 nm) of 

15.7 minutes (gradient: 2% MeCN in H2O (0.1% TFA) to 50% MeCN in H2O (0.1% 

TFA) over 30 minutes). 

7.3 Chemotaxis Assays 

7.3.1 Materials and Method 
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Cellular migration of THP-1 (derived from the peripheral blood of a 1 year old child 

with acute monocytic leukemia (ATCC TIB-202)) was measured in dual chamber 24-

well companion plates (Becton Dickinson, Franklin Lakes, NJ) with γȝM filters. Prior 

to the experiment each companion plates was incubated at room temperature with a 

solution of 1% BSA/RPMI (1ml). The BSA solution was removed and to the lower well 

800 ȝL of serum-free RPMI-1640 medium supplemented with CCL2 (10 nM). The 

DKP compound under investigation was also added to the lower cell (100 ȝM), except 

in the positive control. 500000 monocytes in a 500 ȝL solution of 1% bovine serum 

albumin (BSA) in RPMI 1640 were added to the upper well and the assay was 

incubated at 37 °C for 90 min before removal of medium. The upper surface of the 

transwell filters were gently rubbed to remove non-migrated cells and then fixed (1 h in 

cold methanol followed by 30 min staining via haematoxylin (Gill No.1; Sigma 

Aldrich)). The filters were dehydrated, mounted to slides and the migrant cells (adherent 

to the inferior aspect of the membrane) in five high-power fields of vision were counted 

via high resolution microscopy. The assays were carried out in triplicate. 
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Appendix 1: 4-Fluoroproline Synthesis 

A1.1 The Influence of Fluoroproline 

Cis(2S,4S)- and trans- 4-Fluoroproline (Figure A1.1) are of interest amino acids as they 

have been shown to drastically increase structural rigidity of peptides1-3 and proteins.4-6 

The enhancement in structural rigidity arises from fluorine gauche and n→π* 

stereoelectronic effects.7-10 The effects lead to a preference for the cis and trans 

diastereoisomers to form a CȖ-endo  or CȖ-exo  pyrrolidine ring pucker and in turn a cis 

and trans peptide bond, respectively. Hence, it was envisaged that these structural 

properties would have effects on the biological activity of both lipopeptides (Section 

2.4) and diketopiperazine (DKP) CCL2 induced chemotaxis inhibitors (Chapter 4). 

 

 

Figure A1.1: cis(2S,4S)- and trans-(2S,4R)- fluoroproline. 

 

A1.2 Synthesis of cis-Fluoroproline 

Cis-fluoroproline (flp) and trans-fluoroproline (Flp) are expensive commercially 

available compounds (Fluorochem, Bachem). However, facile routes to their synthesis 

from the significantly cheaper trans-hydroxyproline (Hyp) (53$ per 100g, mimotopes) 

amino acid exist. Therefore, a published synthetic route to yield cis-fluoroproline was 

successfully followed from Boc-L-Hyp-OMe (Scheme A1.1). The synthesis of trans-

fluoroproline is more difficult as it involves stereochemical inversion at the 4-position 

before final fluorination (as in Scheme A1.1). Therefore, the synthesis of trans-

fluoroproline was not attempted. 
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Scheme A1.1: Fluorination of hydroxyproline i:TBAF, PBSF, DIPEA, DCM, RT, 48 h. 

 

 

A1.3 Incorporation of cis-Fluoroproline into Bioactive Peptides 

A1.3.1 Incorporation into Lipopeptides 

The cis-fluoroproline (68) was deprotected to yield an unprotected amino acid 

hydrochloride salt (30) suitable for biosynthesis (Scheme A1.2). 

 

Scheme A1.2: Deprotection of 68. i: LiOH, H2O, THF, RT, 18 h. ii: HCl (aq), THF, RT, 5h. 

 

The fully deprotected fluoroproline (30) was then supplemented into the growth 

medium of Bascillus sp. CS93 and extracts from the cultures were analysed for 

fluorinated lipopeptide content. However, no fluorinated lipopeptide products were 

observed  
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A1.3.2 Incorporation into DKP CCL2 Induced Chemotaxis Inhibitors 

The on-resin synthetic route to form DKPs (Chapter 4) utilises N-Boc amino acids. 

Hence, Boc-flp-OH (69) was synthesised (Scheme A1.3). 

 

Scheme A1.3: Methyl ester de-protection of i: LiOH, H2O, THF, RT, 18 h 

 

69 could easily be incorporated into a potentially active DKP: cyclo(flp-L-Phe) 66 

following the general route described in Chapter 4 and  Scheme A1.4. 

 

Scheme A1.4: Synthesis of cyclo(flp-L-Phe) 66.  i: 69, DIC, DMAP, DCM, 30 min, RT, x 2. ii: 
TFA:DCM (40% v/v), 10 min, RT, x 2. iii: Boc-Phe-OH, PyBOP, DIPEA, DCM, 1 h, RT, x 2. 
iv: DIPEA:DCM (10% v/v) 10 min, RT, x 3.*Denotes overall isolated yield over 5 steps. 
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A1.4 Experimental 

H-flp-OH.HCl. 30 

Boc-L-flp-OtBu (0.09 g, 0.31 mmol) was dissolved in THF (5 

mL) and stirred at room temperature. 0.5 mL of 11.6 M HCl 

(aq) was added dropwise and the reaction was left to stir for 

30 min or until reaction completion was indicated by TLC.  

Solvent was evaporated under reduced pressure to yield 30 as 

a pale yellow powder (0.05 g, 90%); δH (400 MHz; d4-methanol) 2.64 (2H, m, CH2), 

3.53 (1H, m, CH), 3.72 (1H, m, CH) 4.58 (1H, m, CH), 5.42 (1H, m, CH); δF (376 

MHz; d4-methanol) -175.8 (1F, m); δC (150 MHz; d4-methanol) 170.9, 93.7, 91.9, 59.6, 

53.5, 36.8;  m/z (ES-) 131.9 [M–H]-. 

Data obtained are consistent with that given in the literature: δH (400 MHz; CDCl3) 2.54 

to 2.38 (2H, m), 3.43 (1H, ddd, J 3.2, 13.8, 37.8), 3.72 (1H, dd, J 13.9, 18.3), 4.65 to 

4.79 (1H, m), 5.34 (1H, d, J 52.2).11 

 

N-Boc-cis-4-fluoro-L-proline methyl ester, Boc-flp-OMe. 68 

Boc-Hyp-OMe 38 (1.00 g, 4.09 mmol), DIPEA (1.76 mL, 

10.22 mmol), TBAT (1.75 g, 3.27 mmol), PBSF (2.69 g, 9.99 

mmol) in DCM (30 ml) was stirred for 48 h.  The solvent was 

removed under reduced pressure and the crude product was 

purified via column chromotography (SiO2; 100% hexane → 

80/20% hexane/EtOAc) to yield 68 as a colourless oil (0.72 g,  

7β%), δH mixture of two rotamers in a ratio of ca. 1.0:1.4, 

(400 MHz; CDCl3;) 1.43 and 1.48 (9H, 2 s, BocH), 2.39 (2H, m, β-CH2), 3.54 to 3.92 

(5H, m, δ-CH2, OCH3) 4.41 and 4.45 (1H, 2 d, J 9.6, α-CH), 5.19 (1H, d, J 5β.8, Ȗ-CH); 

δF (376 MHz; CDCl3) -173.2 (1F, m, CF); δC (100 MHz; CDCl3) 172.4, 172.0, 154.1, 

153.8, 80.6, (91.3 and 92.3, 1C, 2 d, J 176, Ȗ-C), 80.6, 57.8, 57.4, 52.5, 53.2 (1C, d, J 

24, CH2), 52.4, 37.2 (1C, d, J 22, CH2), 28.5, 28.4; m/z (ES+) 270.5 [M+Na]+. 
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Data obtained is consistent with literature: δH a mixture of rotamers (400 MHz; CDCL3) 

1.44 and 1.49 (9H, s) 2.25 to 2.55 (2H, m), 3.56 to 3.93 (2H, m), 3.75 (3H, m), 4.43 and 

4.55 (1H, d, J 9.2), 5.20 (br d, J 52.8).12 

 

 

N-Boc-cis-4-fluoro-L-proline, Boc-flp-OH.  69 

Boc-flp-OMe 68 (0.80 g, 3.21 mmol) and LiOH (0.08 g, 3.2 

mmol) in THF:H2O (10 ml:5 ml) were stirred at room 

temperature for 48 h.  The solvent was removed under 

reduced pressure and residue acidified to pH 4 with citric acid 

(10% w/v) and extracted with EtOAc (3 x 40 mL).  The 

combined organic phases were dried over MgSO4 and the 

solvent removed under reduced pressure to afford 69 as a 

clear oil (0.51 g, 68%); δH (400 MHz; CDCl3) 1.40 (9H, s, tBu) 2.13 to β.48 (βH, m, ȕ-

CH2), 3.49 to 3.8β (βH , m, δ-CH2), 4.42 (1H, m, α-CH), 5.17 (1H, d, J 52.6, Ȗ-CHF). δF 

(376 MHz; CDCl3) -175.8 (1F, m, C-F); δC (100 MHz; CDCl3) 174.8, 171.5, 73.7, 58.3, 

43.2, 28.5. 

Data obtained is consistent with literature: δH (400 MHz; d4-methanol) 1.47 (9H, s), 

2.39 to 2.46 (2H, m), 3.59 to 3.72 (2H, m), 4.38 to 4.43 (1H, m), 5.12 to 5.30 (1H, m).13 

 

 

 

 

 

 

 

 

 



227 

A1.5 References 

1. D. D. Staas, K. L. Savage, V. L. Sherman, H. L. Shimp, T. A. Lyle, L. O. Tran, 
C. M. Wiscount, D. R. McMasters, P. E. Sanderson, P. D. Williams, B. J. Lucas, 
Jr., J. A. Krueger, S. D. Lewis, R. B. White, S. Yu, B. K. Wong, C. J. 
Kochansky, M. R. Anari, Y. Yan and J. P. Vacca, Bioorg. Med. Chem., 2006, 
14, 6900-6916. 

2. J. C. Horng and R. T. Raines, Protein Sci., 2006, 15, 74-83. 
3. T. Steiner, P. Hess, J. H. Bae, B. Wiltschi, L. Moroder and N. Budisa, PLoS 

One, 2008, 3, e1680. 
4. W. Kim, R. A. McMillan, J. P. Snyder and V. P. Conticello, J. Am. Chem. Soc., 

2005, 127, 18121-18132. 
5. C. Renner, S. Alefelder, J. H. Bae, N. Budisa, R. Huber and L. Moroder, Angew. 

Chem. -Int. Ed., 2001, 40, 923-925. 
6. D. Naduthambi and N. J. Zondlo, J. Am. Chem. Soc., 2006, 128, 12430-12431. 
7. R. T. Raines, Protein Sci., 2006, 15, 1219-1225. 
8. E. S. Eberhardt, N. Panisik, Jr. and R. T. Raines, J. Am. Chem. Soc., 1996, 118, 

12261-12266. 
9. M. P. Hinderaker and R. T. Raines, Protein Sci., 2003, 12, 1188-1194. 
10. J. A. Hodges and R. T. Raines, Org. Lett., 2006, 8, 4695-4697. 
11. R. Bejot, T. Fowler, L. Carroll, S. Boldon, J. E. Moore, J. Declerck and V. 

Gouverneur, Angew. Chem.-Int. Edit., 2009, 48, 586-589. 
12. K. Y. Kim, B. C. Kim, H. B. Lee and H. Shin, J. Org. Chem., 2008, 73, 8106-

8108. 
13. X. Ji, M. Su, J. Wang, G. Deng, S. Deng, Z. Li, C. Tang, J. Li, J. Li, L. Zhao, H. 

Jiang and H. Liu, Eur. J. Biochem., 2014, 75, 111-122. 



228 

Appendix 2: Ciliatamide B Synthesis 

A2.1 Anti-Parasitic Lipopeptides: The Ciliatamides 

Ciliatamides A (70), B (71) and C (72) were isolated from deep sea sponge Aaptos 

ciliate by Nakao et al. as the (S,S)-enantiomers (Figure A2.1). These molecules are of 

particular interest as ciliatamide A and B show significant activity against insect-vector-

borne Leishmania species.
1
 Leishmaniasis is a neglected tropical disease that affects 

over 12 million people with an annual death toll exceeding 50,000.
2,3

 The current 

treatment for leishmaniasis involves the use of drugs (pentavalent antimonials, 

miltefosene and amphotericin B) that possess a series of disadvantages including high 

cost, cardiotoxicity, parenteral administration and long treatment regimes.
4
 

The solid phase approach described in Chapter 4 is tolerant to a variety of chemical 

reactions, functional groups and can lead to the synthesis of complex DKP-natural 

product derivatives.
5
 Hence, we envisaged the “on-resin” cyclisation synthesis of cyclic 

natural product lipopeptides, specifically: Ciliatamides B.
6
 

 

Figure A2.1: The structure of S,S-ciliatamides A-C, 70-72. 
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A2.2 The Synthesis of Ciliatamide B  

The synthesis of ciliatamide B (71) using “on-resin” cyclisation strategy was attempted 

as a trial synthesis from commercially available Boc-Lys(Fmoc)-OH, Boc-N-MePhe-

OH and octanoic acid. 

71 was synthesised in a 13% overall isolated yield after 6 on-resin steps (Scheme A2.1) 

followed by purification via column chromatography. This clearly shows that the scope 

of this strategy extends to natural products of this type and could be utilised to great 

effect to synthesise a huge variety of ciliatamide derivatives with relative ease. 

 

Scheme A2.1: i: Boc-Lys(Fmoc)-OH, DIC, DMAP, DCM, 30 min, RT, x 2. ii: TFA:DCM 

(40% v/v), 10 min, RT, x 3. iii: Boc-N-MePhe-OH, PyBOP, DIPEA, DCM, 1 h, RT, x 2. iv: 

octanoic acid, PyBOP, DIPEA, DCM, 1 h, RT, x 2.v: piperidine:DMF (20% v/v) 5 min, RT; 10 

min, RT.*Denotes overall yield over 6 steps. 
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The product purity of 70 (visualised by 
1
H NMR, Figure A2.2) is tentatively deemed to 

be of a similar quality to the material produced by Lewis et al.
6
 via solution phase 

synthesis. The synthesis time however is much shorter and requires only one purification step. 

Therefore, on-resin route is the more viable to quickly make analogues for antilieshmanial 

testing . 

 

Figure A2.2: 
1
H NMR sprectrum of S,S-ciliatamide B, 71.  

 

Figure A2.3: 
1
H NMR sprectrum of S,S-ciliatamide B (71), reported by Lewis et. al.

6
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This original (S,S) chiral assignment of the natural product ciliamtamide lipopeptides by 

Nakao et al.
1
 was challenged by optical rotation data obtained from chemically 

synthesised lipopeptides (Figure A2.3) by  Lewis et. al.
6
  

 

Ciliatamide B (70) origin [α]D Temp. Conc. Solvent Ref 

Isolated from: Aaptos ciliate +55° 20 0.1 MeOH 1 

Lewis et al. synthesised (S,S) diastereoisomer -40° 20 0.1 MeOH 6 

Lewis et al. synthesised (R,R) diastereoisomer +49° 20 0.1 MeOH 6 

On-resin synthesised (S,S) diastereoisomer -53° 22 0.5 MeOH  

Table A2.1: Optical rotation measurements of the natural product (S,S) and (R,R) ciliamtamide 

B lipopeptides. 

 

Our optical rotation data agrees with the reassignment
6
 and the R,R diastereoisomer is 

likely to be  the natural form of 70. However, anti-parasitic testing is key to definitively 

understanding which is the active and hence, naturally occurring diastereoisomer. 

 

A2.2 Experimental  

(S,S) Ciliatamide B.  71 

To MHBA-linker resin (65) (1.00 eq, 

0.08 mmol) a pre-mixed peptide 

coupling solution of Boc-L-Lys(Fmoc)-

OH (3.00 eq, 0.23 mmol), DMAP (0.05 

eq) and DIC (3.0 eq, 0.23 mmol) in 

DCM (2 mL) was added. The reaction 

mixture was shaken for 30 min. The 

solution was drained and coupling 

procedure was repeated. The resin was washed with DCM (5 x 5 mL). A deprotection 
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solution of 40% TFA in DCM (3 mL) was added to the resin and stirred for 10 min. The 

solution was drained and this deprotection procedure was repeated twice. The resin was 

washed with DCM (5 x 5 mL). A pre-mixed peptide coupling solution of Boc-L-MePhe-

OH acid (3.00 eq, 0.23 mmol), DIPEA (5.00 eq, 0.39 mmol) and PyBOP (3.00 eq, 0.23 

mmol) in DCM (3 mL) was added to the resin and stirred for 1 h. The solution was 

drained and coupling procedure was repeated. The resin was washed with DCM (5 x 5 

mL) a deprotection solution of 40% TFA in DCM (3 mL) was added to the resin and 

stirred for 10 min. A pre-mixed peptide coupling solution of octanoic acid (3.00 eq, 

0.23 mmol), DIPEA (5.00 eq, 0.39 mmol) and PyBOP (3.00 eq, 0.23 mmol) in DCM (3 

mL) was added to the resin and stirred for 1 h. The solution was drained and coupling 

procedure was repeated. The resin was washed with DCM (5 x 5 mL) and DMF (3 x 5 

mL). Finally, 20% Piperidine in DMF (3 mL) was added to the resin and stirred for 10 

min at room temperature. The filtrate solution was drained, collected and then repeated 

once. The resin was then treated with DIPEA (10% in DCM) for 20 min at 60°C. The 

filtrate solution was drained, collected and then repeated once. The combined filtrate 

solutions from previous piperidine and DIPEA steps were evaporated under reduced 

pressure purified via preparative TLC (SiO2; 100% EtOAc). (4 mg, 13%). [α]D
22 -53.0° 

(c 0.5, MeOH); δH (400 MHz; CDCl3) 0.87 (3H, m, CH2CH3), 1.01 to 1.34 (9H, m, 

CH), 1.34 to 1.54 (4H, m, CH), 1.83 (2H, m, CH2), 2.01 (2H, m, CH2), 2.19 (2H, m, 

CH2), 2.87 (3H, m, NCH3), 2.99 (1H, dd, J 10.0, 14.8, CH), 3.21 to 3.44 (3H, m, CH), 

4.50 (1H, m, CH), 5.46 (1H, dd, J 6.2, 9.6, NH), 5.99 (1H, m, NH), 7.22 (5H, m, ArH); 

δC (100 MHz; CDCl3) 175.1, 174.2, 169.7, 137.4, 129.0, 128.6, 126.7, 57.6, 52.4, 42.3, 

34.4, 33.8, 31.8, 31.6, 29.4, 29.1, 28.1, 25.1, 22.7, 14.4; HRMS m/z (ES
+
) 416.2913 

([M+H]
+
. C24H38N3O3 requires 416.2913). 

Data obtained is consistent with literature; see Figure A.2.2 and Figure A.2.3.
6
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