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Abstract

Bayesian statistics is flourishing nowadays not only because it provides ways to com-

bine prior knowledge with statistical models but also because many algorithms have

become available to sample from the resulting posterior distributions. However, how

to specify a good objective prior can be very difficult. This is largely because igno-

rance does not have a unique definition. For sampling from posterior distributions,

Markov Chain Monte Carlo (MCMC) methods are main tools. However, as statis-

tical models become more and more sophisticated, there is a need for more efficient

MCMC methods than the traditional ones.

For objective prior specifications, we present a new principle to express igno-

rance through the global distance structure. This principle allows us to assign the

prior weight to points in parameter space according to their correspondences to the

statistical models displayed in the structure of the global distance. This method is

applied to simple problems such as location family, scale family and location-scale

family. It is also applied to the one-way random effect model which attracts con-

siderable interest from many researchers. The method considered here allows us

to avoid the dependency of the priors on the experimental design, which has been

seriously disputed, and enables the resulting prior to reflect how the models change

with respect to the population and not the collected samples.

Of MCMC methods for sampling from posterior distributions, the Hamiltonian

Monte Carlo (HMC) method is one that has the potential to avoid random-walk be-

haviour. It does so by exploiting ideas from Hamiltonian dynamics. Its performance,



iii

however, depends on the choice of step-size which is required by this method when

numerically solving the Hamiltonian equations. We propose an algorithm, which

we call HMC with stochastic step-size, to automatically tune the step-size by ex-

ploiting the local curvature information. We also present a meta-algorithm which

includes HMC, HMC with stochastic step-size and the ordinary Metropolis-Hastings

algorithm as a special case.

Finally, we come to a sophisticated hierarchical model developed for analysing

the exco-toxicology data. We present ways to obtain more informative posterior

samples by embedding the marginalized approach and advanced samplers into the

entire Gibbs structure of the modified MCMCglmm algorithm provided by Craig

(2013). The combination of the marginalized approach and HMC with stochastic

step-size is found to be the best choice among a range of methods for the challenging

problem of sampling the hyper-parameters in the model.
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Chapter 1

Introduction

Bayesian methods now have extensive applications in a wide range of fields. What-

ever the problem is, a prior and an efficient computation method for posterior dis-

tributions must be involved to drive the Bayesian engine. In this thesis, we will

discuss some topics in these two areas.

1.1 Prior Distributions

A prior density is a probabilistic representation of our beliefs about model param-

eters of interest. Rather than considering parameters as fixed unknown values as

in the frequentist approach, Bayesian methods take model parameters as uncertain

values and specify a probability distribution for them. With adequate expert opin-

ions or historical data, a subjective prior could be determined accordingly. However,

many statisticians admit that a default prior is needed if little prior knowledge is

available. Such a prior is usually called an objective or non-informative prior.

Determining an objective prior is not easy even for some basic models. The

one-way random effect model is the basic hierarchical model but it turns out that

selecting an objective prior for such a basic model is notoriously difficult. Our re-

search was actually started from selecting an objective prior for the one-way random

effect model for which various objective priors have been suggested. We first looked

at the Half-t prior distribution (Gelman et al., 2006) which is particularly designed

for the one-way random effect model. This Half-t prior distribution, however, re-

1



1.2. Computation Methods for Posterior Distributions 2

quires the users to have a rough idea about the size of the between group variance

and then set the scale of the Half-t prior distribution according to it. We then visit

the Reference prior proposed by Berger and Bernardo (1992b). The disadvantage

of this prior is that it requires the users to have some prior knowledge to order the

parameters according to their inference importance. If all the parameters are at the

same level of importance, then the Reference prior coincides with the Jeffreys prior.

We then went to the famous Jeffreys prior. The Jeffreys prior for the one-way ran-

dom effect model depends on the experimental design and this kind of dependency

has been seriously disputed. More popular objective priors designed for this model

will be discussed in Chapter 2.

The principle which we believe is reasonable to derive a prior is that when there

is no prior knowledge available, all information that distinguishes one point from

another in parameter space should come from their correspondences with probability

models (Jermyn, 2005). We should spread the prior mass out in some sense equally

over all the different models. How much prior weight a point in parameter space

receives should depend on how much its corresponding model differs from other

models represented by other points. In contrast with the Jeffreys’ prior that uses

local distance behaviour, we propose to use the global distance to measure the model

differences. Moreover, rather than considering a pair of points by the global distance,

we use the global distance structure of all points to derive a prior. We call it global

distance structure prior. This will be introduced in Chapter 3.

Regarding to our initial goal of an objective prior for the one-way random effect

model, the development of a global distance structure prior for such a model is dis-

cussed in Chapter 4. This and other priors mentioned in Chapter 2 are all evaluated

by a simulation study in the last section of Chapter 4.

1.2 Computation Methods for Posterior Distribu-

tions

The topics addressed in part II of this thesis can be classified into two aspects. One

aspect focuses on a Markov Chain Monte Carlo (MCMC) algorithm itself. More
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specifically, we explore how to improve the performance of the Hamiltonian Monte

Carlo sampler. The other aspect is about improving the sampling results for a

sophisticated hierarchical model (developed by Craig (2013) for eco-toxicology data

analysis) which has difficulty in sampling from its posterior distribution.

A MCMC Sampler

Markov Chain Monte Carlo (MCMC) methods have become one of the standard

tools for Bayesian computation. MCMC methods are a class of algorithms con-

cerning sampling from a probability distribution by constructing a Markov chain

that takes the target probability distribution as its stationary equilibrium distribu-

tion. The Metropolis algorithm, as one of MCMC methods, was first developed by

Metropolis et al. (1953) and became popular in statistics after the paper by Hastings

in 1970. It is used widely across many sciences to sample from a probability distribu-

tion that is usually difficult to sample from directly. However, in many situations,

especially Bayesian statistics, target distributions have complicated forms, highly

correlated parameters and large dimensional size. The ordinary Metropolis algo-

rithm might have slow exploration of state spaces and low acceptance rates caused

by both random-walk behaviour of the traditional Metropolis methods and the com-

plex nature of target distributions. Therefore, there is a need for the development

of more efficient MCMC methods.

Hamiltonian Monte Carlo (HMC), first introduced by Duane et al. (1987), has

great potential to provide efficient sampling results. It takes advantage of Hamilto-

nian dynamics by adding an auxiliary variable considered as a ‘momentum’ variable

and thus transforms the problem of simulating target distributions to the problem

of approximating Hamiltonian dynamics. Although HMC has good potential to give

high quality simulation results, the ability to do so is limited by three hand-tuning

parameters: the variance matrix M for the augmented ‘momentum’ variables, the

number of leap-frog steps l and the step-size ε for each step of leap-frog integra-

tor used to numerically approximate the Hamiltonian dynamics. In recent years,

there has been growing interest in improving performance of HMC. Girolami and

Calderhead (2011) proposed Riemann Manifold HMC (RMHMC) which exploits
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the local information by setting the variance matrix M as the expected second-

derivative of the log-density function and thereby improves the performance to a

large degree. This expected second-derivative of the log-density function can be

considered as a local metric defined in Riemann geometry. Proper tuning of l is

investigated by Hoffman and Gelman (2011). They introduced the No-U-Turn Sam-

pler (NUTS) which automatically adapts path lengths to guarantee the benefit of

HMC. Generally, NUTS is an extension on HMC which tries to avoid ‘double back’

of the simulated path by a doubling procedure to search candidates which give ‘long

enough’ simulated paths. Compared with basic HMC, RMHMC and NUTS adapt

M and l respectively throughout whole simulations instead of using a global value.

To the best of our knowledge, how to select step-size values has not been explored

adequately. In Chapter 5, we will study the problem of selecting the step-size for

HMC and propose an HMC variant to automatically tune the step-size through-

out the whole simulation according to the local curvature information. We call it

HMC with stochastic step-size. A meta-algorithm, which is realised through the

development of HMC with stochastic step-size algorithm, will be given in Chapter

5. We call this meta-algorithm ‘generalised Metropolis-Hastings with Dynamics’. It

includes HMC, HMC with stochastic step-size and the ordinary Metropolis-Hastings

as a special case.

A Real Hierarchical Model

Sampling methods, which are efficient theoretically, might lost their power when

dealing with some real situations. A hierarchical model developed by Craig (2013)

for eco-toxicology data has some difficulties in sampling from its posterior distribu-

tions not only because of its high dimensionality but also because it has a complex

structure used to represent the taxonomical structure of species. A ‘stuck’ Markov

chain is obtained when directly sending this model to Stan, which is a software im-

plementing HMC or NUTS. By using the modified MCMCglmm suggested by Craig

(2013), the resulting posterior samples have extremely high auto-correlations. The

background and the computational problem associated with this model are discussed

in Chapter 6.
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Having seen the high auto-correlations in the posterior samples given by the

computational method in Chapter 6, we explore how to improve simulations for

such a model in Chapter 8. In this chapter, we present ways to obtain more infor-

mative posterior samples by embedding the marginalized approach and advanced

samplers into the entire Gibbs structure of the modified MCMCglmm algorithm.

The advanced samplers includes HMC, RMHMC, NUTS and HMC with stochastic

step-size. Particularly, NUTS and RMHMC are detailed in Chapter 7 as preliminary

materials.
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Chapter 2

Popular Objective Prior Choices

An objective prior is one that asserts no information available for parameters before

data is collected. The construction and selection of a good objective prior have at-

tracted considerable interest. Usually, a procedure for constructing objective priors

depends on some external principles or assumptions since there is not a unique pre-

cise definition of ignorance. Different external principles may lead to different prior

distributions. In this section, we briefly review some well-known objective priors

and their underlying principles.

Laplace’s rule, or the principle of insufficient reason, states that equal proba-

bility should be assigned to every point in the parameter space if we are ignorant

about model parameters. The prior obeying Laplace’s rule might be the one that

makes the least extra assumptions in expressing ignorance. Although its simplicity

is appealing, its potential usefulness has been disputed. Kass and Wasserman (1996)

discussed problems caused by following Laplace’s rule that implicitly suggests a uni-

form prior. One obvious drawback is that such a prior is not invariant to one-to-one

re-parametrizations. For example, a uniform prior for the normal scale parameter

would not lead to a uniform prior for the normal variance parameter.

Jeffreys (1946) proposed his famous prior—Jeffreys prior based on the connec-

tion to the local behaviour of Kullback-Leibler divergence or Hellinger distance.

This prior is justified by its invariance to parameter transformations. The exter-

nal assumption detailed to express the ignorance might be that two persons with

different parametrizations but identical amount of prior knowledge should end up

7
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with a same prior. Briefly speaking, Jefferys prior is proportional to the square

root of the determinant of the Fisher Information matrix. Inspired by its local dis-

tance connections, George and McCulloch (1993) investigated various priors derived

from other probability distances and provided a general form stating that prior is

proportional to the square root of the determinant of a probability distance’s differ-

ential form. Kass (1989, 1996) further elaborated Jeffreys prior from Riemannian

geometry background.

About the invariance argument, the following discussion of rules for using invari-

ance principles to assist the choice of prior distributions is based on Dawid (1983).

A statistical model is a parameterized family of probability distributions with a

specified domain for the parameters. In the context of a rule for assigning a prior

distribution to a statistical model in the absence of prior knowledge, 1) the parameter

invariance (PI) principle is that prior measures proposed for two different parame-

terizations of the same statistical model should respect the reparameterization; 2)

the data invariance (DI) principle is that the prior measures proposed should be the

same for two statistical models which differ only via a one-to-one transformation of

the data; 3) the context invariance (CI) principle is that if the same statistical model

is to be used in different contexts, the prior measures proposed should be the same.

Jeffreys prior is an example of a rule which satisfies PI, DI and CI. Hartigan (1964)

proposed that rather than assigning exact the same prior measure if a particular in-

variance is satisfied, equivalent prior measure should be assigned since the posterior

distribution is the main issue. This results in relative invariance criteria RPI, RDI

and RCI. A particular way of arriving at two versions of the same statistical model

to which the (R)PI, (R)DI and (R)CI principles might be applied is via an equivari-

ant recoding. Consider a statistical model y ∼ fθ and a transformation g(y). The

transformation ḡ(θ) is an induced recoding of θ if g(y) ∼ fḡ(θ). This recoding g (ḡ)

is called an equivariant recoding of y (θ). The collection of all these equivariant

recodings of y (θ) forms a transformation group G (Ḡ). A prior which satifies RPI,

RDI and RCI with respect to all equivariant recodings is called a relative invariant

prior.

Box and Tiao (2011) introduced a choice of non-informative prior from the point
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of data-translated likelihoods. This prior is elicited from the idea that little is known

relative to the information provided by data and conveyed by the likelihood function.

The reference prior, first proposed by Bernardo in 1979 and further developed by

Berger and others (Berger et al., 1988; Berger and Bernardo, 1992a; Berger et al.,

2009), is constructed through the idea of maximizing the divergence between prior

and posterior distribution so that the data could have maximum influence on the

posterior inference.

Another category of prior distribution is conjugate prior distributions that are in

the same distribution family with the corresponding posterior distribution. Due to

its computational simplicity, they are quite popular in real data analysis. Usually,

they do not target on representing ignorance. Non-informativeness, however, is

approximately expressed by specifying the distributional parameters of conjugate

priors so that the priors are flat to some degree.

The preceding priors could be easily derived if the statistical problems under

consideration are trivial. However, they might be hard to derive or even not exist for

a non-trivial statistical model. Here, we take the one-way random effects model as a

concrete example and investigate problems with determining an objective prior for it.

The selection of an objective prior for this model has attracted many researchers’

attention not only because the importance of this model but also the notorious

difficulties in determining a good non-informative prior for it. In the following part

of this chapter, we will review some existing work on objective priors for the one-way

random effects model. Apart from the above mentioned priors, two additional priors

are designed especially for this model. One is the so-called uniform shrinkage prior

suggested by Daniels (1999) from the point of view of assigning uniform probability

on the shrinkage factor. The other is a folded-t prior distribution suggested by

Gelman et al. (2006). It is an implicit conditionally-conjugate prior for variance

parameters of random effects in hierarchical models. Gelman suggested that it

could be used to represent weak non-informativeness by setting its distributional

parameter to a large value. Both the uniform shrinkage prior and Gelman ’s folded-

t prior concentrate on the variance parameters of random effects in hierarchical

models. Details are provided in section 2.1.
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2.1 Popular non-informative priors for the one-

way random effects model

The balanced one-way random effects model is expressed as follows,

yij = µ+ αi + εij

αi ∼ N(0, σ2
α)

εij ∼ N(0, σ2)

i = 1, . . . ,m; j = 1, . . . , N

where i indexes groups and j indexes observations within a group; σ2
α is the variance

of group means and σ2 is the within-group variances.

Jeffreys Prior

There are two versions of Jeffreys prior. The first one is usually called Jeffreys

general prior which is derived from the Fisher Information matrix. Mathematically,

the prior determined by Jeffreys general rule is

π(θ) ∝ |I(θ)|1/2, (2.1.1)

where I(·) is the Fisher Information matrix of all parameters θ. The argument for

this prior is that it is invariant under re-parametrizations. Intuitively, two different

people with different parametrizations should end up with a same prior if their prior

knowledge is on the same level. The geometric origin of the invariance is that the

Kullback-Leibler discrepancy behaves locally like the square of a distance function

determined by a Riemannian metric and the natural volume element of this metric is

|I(θ)|1/2 which is automatically invariant to re-parametrization (Jeffreys, 1946; Kass

and Wasserman, 1996). For the one-way random effects model, the prior determined

by the general rule illustrated in Equation (2.1.1) is derived as

π(µ, σ, σα) ∝ |I(µ, σ, σα)|1/2 ∝ σα
σ(Nσ2

α + σ2)3/2
. (2.1.2)

The modified version of Jeffreys prior concerns problems involving location pa-

rameters and other parameters. He suggested that location parameters should be
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considered separately. To be specific, the modified Jeffreys prior is

π(µ,θ?) ∝ |I(θ?)|1/2, (2.1.3)

where θ = {µ,θ?}; µ and θ? denote the location parameters and additional pa-

rameters respectively. I(θ?) is the Fisher Information matrix derived by fixing the

location parameters. The justification for this modified prior is not so clear. Ac-

cording to the modified rule illustrated in Equation (2.1.3), the prior for the one-way

random effects model could be derived as

π(µ, σ, σα) ∝ |I(σ, σα)|1/2 ∝ σα
σ(Nσ2

α + σ2)
.

Data-translated Likelihood Prior

The data-translated likelihood prior, proposed by Box and Tiao (2011), attempts

to express the idea that little information is available about model parameters θ

relative to the information provided by the data. Box and Tiao argued that what

the data would be able to tell us is all included in the likelihood function. When the

likelihood function could be expressed in terms of some particular parametrization

φ(θ) so that different sets of data only translate the likelihood curve on the φ(θ) axis

and maintain others unaffected, then a uniform prior would be assigned to φ(θ). In

other words, the data-translated likelihood prior focuses on seeking parametrization

such that the likelihood function is data-translated. Mathematically, the likelihood

function is called data-translated if it can be expressed in the following form

l(θ|y) = t1

(
φ(θ)− t2(y)

)
,

where t1 is a known function independent of y; φ(·) is a one-to-one transformation

of θ; and t2 is a known function of y. The data-translated prior is

π(φ) ∝ 1.

The prior for θ could be thus obtained according to a change of variables by the

Jacobian factor. As might be expected, such a parametrization φ might not exist

especially for a model having a complicated likelihood function. In order to deal
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with this kind of situation, Box and Tiao further proposed the approximate data-

translated likelihood prior. To be specific, Box and Tiao (2011) made use of the fact

that the likelihood function of θ is approximately normal and remains approximately

normal under mild one-to-one transformation if the sample size is large enough.

Therefore, the log-likelihood function could be approximately expressed as

L(θ|y) = log l(θ|y) ≈ L(θ̂|y)− n

2
(θ − θ̂)TVθ̂(θ − θ̂)

≈ const− n

2
(θ − θ̂)TVθ̂(θ − θ̂),

where θ̂ is the maximum likelihood estimation (MLE) of θ and Vθ̂ is

Vθ̂ =
1

n
E
( ∂2L

∂θi∂θj

)∣∣∣
θ̂

=
1

n
I(θ̂).

This indicates that the scale of the likelihood curve could be approximately deter-

mined by (Vθ̂)
−1/2. Consider a parametrization φ(θ). The above equation, under

the new parametrization, becomes

Vφ̂ = J Vθ̂J
T , (2.1.4)

where J = dθ
dφ

. By choosing J so that

J ∝
[
E
( ∂2L

∂θi∂θj

)]−1/2

,

then Vφ expressed in Equation (2.1.4) would be independent of φ̂ and thus be

independent of data. Therefore, the likelihood curve under parametrization φ would

be independent of data except for the location φ̂. Since a uniform prior is assigned

to φ, the prior for θ changes to be

π(θ) ∝
∣∣∣E( ∂2L

∂θi∂θj

)∣∣∣1/2 = |I(θ)|1/2.

The prior derived above from the point of using approximated data-translated like-

lihood changes to be the Jeffreys’ prior determined by the general rule.

Returning to the one-way random effects model, its likelihood function (Box and

Tiao, 2011) is

l(µ, σα, σ|y)

∝ 1

σm(N−1)

1

(σ2 +Nσ2
α)m/2

exp

{
− 1

2

(mN(y·· − µ)2

σ2 +Nσ2
α

+
S2

σ2 +Nσ2
α

+
S1

σ2

)}
,

(2.1.5)
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where S1 =
∑
i

∑
j

(yij − yi·)2 and S2 = N
∑
i

(yi· − y··)2; yi· is sample mean for group

i and y·· is over-all sample mean. It is not feasible to separate data and parameters

in the above likelihood function so that the likelihood curve could be independent

of data other than through location. Therefore, no data-translated likelihood prior

for the one-way random effects model. By resorting to the approximated data-

translated likelihood, the prior for this model should be the same as the one shown

in Equation (2.1.2).

Relative Invariant Prior

In order to find a relative invariant prior for the one-way random effect model, we

need to specify a group of equivariant recodings.

The one-way random effect model can be expressed as yi
iid∼ N(µ1N , AN,N), i =

1, . . . ,m, where 1N is a N-dimensional column vector of all terms to be one; AN,N =

αIN,N +βJN,N with JN,N is a N-dimensional square matrix with all terms to be one

and IN,N is a N-dimensional identity matrix (see section 4.1 for details). In this way,

the model is parametrized by θ = {µ, α, β} and the parameter space is denoted by

Sθ.

Consider a recoding of yi

zi = g(yi) = c1N +Byi, (2.1.6)

where c is a real value and B is a non-singular N × N dimensional matrix. In

particular, suppose that B satisfies B = (aIN,N + bJN,N)O, where a, b are some

real values; O is an orthogonal matrix and has the property O1N = 1N . The

corresponding induced equivariant recoding of θ = {µ, α, β}, which we denote by ḡ,

is (see A.2.1 in appendix for proof):

Φ = ḡ(θ) = ḡ({µ, α, β})

= {(a+Nb)µ+ c, a2α, α(2a+Nb)b+ β(a+Nb)2}.

By requiring a 6= 0 and a+Nb 6= 0, the collection of these recodings forms a group

Ḡ = {ḡa,b,c;∀c ∈ R, a 6= 0, a+Nb 6= 0} (see A.2.2 in Appendix for proof). A relative

invariant prior measure is the one satisfying Ω
(
ḡ(A)

)
∝ Ω

(
A
)
, ∀A ⊂ Sθ for all

ḡ ∈ Ḡ. It is not clear which prior measures satisfy this requirement.
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Reference Prior

Here, we briefly review the reference prior. The main idea of the reference prior is to

maximize the information presented by data in the asymptotic approach (Bernardo,

1979). The maximization of information in the data is considered as the maximiza-

tion of the expected Kullback-Leibler divergence of the prior from the posterior dis-

tribution. Consider p(y|θ) as the statistical model with parameter θ ∈ R. Bernardo

(1979) proposed that the reference prior is the one that maximizes the expected

Kullback-Leibler divergence of π(θ) from it corresponding posterior p(θ|y)∫
p(y)

(∫
log

p(θ|y)

π(θ)
p(θ|y) dθ︸ ︷︷ ︸

K-L divergence

)
d y. (2.1.7)

The expectation of the Kullback-Leibler divergence is taken with respect to the

marginal density p(y) =
∫
p(y|θ)π(θ)dθ. The prior that maximizes this expected

divergence turns out to be the Jeffreys prior (Berger et al., 2009).

For the models that have more than one parameter, the procedure of deriving

the reference prior is started from ordering and grouping parameters according to

the inferential importance. For simplicity, we assume that parameter space θ has

only two elements θ1, θ2. When there is only one group of parameters θ = {(θ1, θ2)},

that is all parameters are considered to have the same inferential importance, then

the reference prior coincides with the Jeffreys’ general prior. When the ordering is

θ = {(θ1), (θ2)} with θ1 is considered to be more important than θ2, the reference

prior is specified as (Berger and Bernardo, 1992a; Ghosh et al., 2007)

π(θ1, θ2) ∝ |I22|1/2︸ ︷︷ ︸
π(θ2|θ1)

· exp
{∫
|I22|1/2 log

∣∣∣ |I|
I22

∣∣∣1/2} dθ2︸ ︷︷ ︸
π(θ1)

, (2.1.8)

where I is the Fisher information matrix; I22 stands for the lower right corner of I

corresponding to θ2. The function π(θ2|θ1) is actually the general Jeffreys prior for θ2

with θ1 fixed. In Equation (2.1.8), the expression of π(θ1), the marginal prior of θ1,

is specifically chosen so that the expected Kullback-Leibler divergence of π(θ1) from

its corresponding posterior is maximized in the asymptotic sense. Particularly, the

expectation is taken with respect to the marginal density p(y) =
∫
p(y|θ1)π(θ1) dθ1.
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Mathematically, the expression of π(θ1) shown in Equation (2.1.8) is

arg maxπ(θ1) lim
n→∞

E
{∫

log
p(θ1|y)

π(θ1)
p(θ1|y) dθ1

}
= arg maxπ(θ1) lim

n→∞

∫ {[∫
log

p(θ1|y)

π(θ1)
p(θ1|y) dθ1

]
︸ ︷︷ ︸

K-L divergence

·
∫
p(y|θ1)π(θ1) dθ1︸ ︷︷ ︸

p(y)

}
dy

= arg maxπ(θ1) lim
n→∞

∫ {∫ [ ∫
log

p(θ1|y)

π(θ1)
p(θ1|y) dθ1

]
p(y|θ1) dy

}
π(θ1) dθ1.

(2.1.9)

The integration part in Equation (2.1.9) is called Lindley-Bernardo functional (Ghosh

et al., 2007).

Returning to the one-way random effect model, Berger and Bernardo (1992) pro-

vided a table of reference priors for the one-way random effect model corresponding

to different orderings and groupings. As they pointed out, all the reference priors

have the following general form

π(µ, σ, σα) ∝ σ−aσ−bα (Nσ2
α + σ2)−cψ(

σ2
α

σ2
), (2.1.10)

where a, b, c are some constants that are different for different orderings and group-

ings; ψ(σ
2
α

σ2 ) could be either 1 or
(

(N−1)+(1+N σ2
α

σ2 )−2
)1/2

. Particularly, {a = 1, b =

−1, c = 3
2
, ψ = 1} corresponds to the reference prior for {(µ, σ, σα)} that takes all pa-

rameters as one group. Also, it turns out to have the same form as the Jeffreys’ gen-

eral prior. Parameters ordered as {µ, (σ, σα)}, {(σ, σα), µ}, {µ, σ, σα}, {σ, µ, σα}, {σ, σα, µ}

take values {a = 1, b = −1, c = 1, ψ = 1} and this prior coincides with the modified

Jeffreys’ prior that considers µ fixed.

The procedure of calculating the reference prior is closely related to the grouping

and ordering of parameters by their inferential importance since different group-

ings and different orderings lead to different reference priors. Berger and Bernardo

(1992b) suggested that it is better to consider all parameters separately and order

them according to the importance but they didn’t specify the reason for doing so.

The reasons for grouping and ordering parameters are not clear. We should not

have any preference for any grouping and ordering since we assert that no prior

information is available at hand. It is natural to assign equal importance to all
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three hyper-parameters and consider them as a whole if we really have no subjective

information. And in such a situation, the reference prior turns out to be the general

Jefferys’ prior.

Uniform Shrinkage Prior

The uniform shrinkage prior, proposed by Daniels (1999), only concentrates on σα

in the random-effect model. The posterior mean of αi is

E(αi|µ, σα, σ,y) =
σ2
α

σ2
α + σ2/N

yi· + (1− σ2
α

σ2
α + σ2/N

)µ,

where yi· stands for the sample mean of group i. The shrinkage factor of the posterior

mean for αi is S = σ2
α

σ2
α+σ2/N

and a uniform prior is specified for this factor.

Conditionally-conjugate Prior

Gelman et al. (2006) commented that the parameters {µ, σα, σ} of one-way random

effect model do not have a simple family of conjugate prior due to the complex struc-

ture of its likelihood as illustrated in Equation (2.1.5). However, the conditionally-

conjugate prior could be easily recognised. Specifically, if the conditional prior of

σ2
α is the inverse-gamma distribution InvG(a, a), then the conditional posterior dis-

tribution p(σ2
α|µ, σ2,α,y) is also the inverse-gamma distribution

σ2
α|µ, σ2,α,y ∼ InvG(a+

m

2
, a+

1

2

m∑
i=1

α2
i ). (2.1.11)

Note that p(σ2
α|µ, σ2,α,y) belongs to the inverse-gamma family while p(σ2

α|µ, σ2,y)

does not. The inverse-gamma prior with small value for a such as 0.01 or 0.001

is usually considered as a non-informative prior to some degree for variance pa-

rameters in the conjugate prior category. This prior is appealing in terms of its

computational convenience as the posterior samples can be obtained by directly im-

plementing Gibbs sampler that iteratively updates the full conditional distributions

p(σ2
α|µ, σ2,α,y), p(α|µ, σ2, σ2

α,y), p(σ2|µ,α, σ2
α,y) and p(µ|σ2,α, σ2

α,y). Gelman

et al. (2006) pointed out two problems in the use of this prior: 1) as a approach to

0, the prior would lead to an improper posterior distribution and thus reasonable

values of a should be decided; 2) the value of a is very influential for the posterior

distribution and the original non-informative intention is thus violated.
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Gelman’s Half-t Prior

Gelman et al. (2006) suggested that one approach to deal with prior problems for

the group variance parameter in a hierarchical model is to give it a parametric model

with hyper-parameters. More precisely, a folded-t prior distribution is proposed for

σα in the one-way random effect model by using an augmented model displayed as

follows (Gelman et al., 2006)

yij = µ+ αi + εij,

αi = ξηi,

ηi ∼ N(0, σ2
η).

Clearly, we have σα = |ξ|ση according to the formula for the random effect αi. If

prior distributions for ξ and σ2
η are specified as standard Normal distribution and

inverse-gamma respectively, then the implicit prior for σα turns out to be a folded-t

distribution with the scale parameter A and degree of freedom v. The prior for σα

could be expressed as

π(σα) ∝
(

1 +
1

v

(σα
A

)2
)−(v+1)/2

.

If v = 1, the above prior changes to be a half-Cauchy distribution. And A → ∞

would lead to a uniform prior for σα. In order to use this prior, the value of A needs

to be specified. Gelman et al. (2006) suggested to set a large but finite value for A to

obtain a weakly informative prior. Particularly, the value that is a bit higher than

the expected standard deviation of the underlying αi is used in his paper. They

mentioned that such a prior provides more reliable posterior distributions than that

provided by the uniform prior on σ2
α when the number of groups m is small. Because

data could only provide little information about σα if m is small, a uniform prior

on σ2
α would lead to improper posterior (m < 3) or proper but unrealistic broad

posterior distributions.

Although we see some benefits of using this half-t prior for σα in the one-way

random effect model, this prior indeed has problems. Firstly, the principle of ex-

panding the model as above and constructing this prior is vague. Secondly, the

choice of A is unclear especially when little is known about how the underlying αi

spread.
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Chapter 3

Global Distance Structure Prior

Here, we introduce the idea of the global distance structure principle. Development

of priors satisfying this principle for some simple problems are discussed in this

chapter.

3.1 The General Situation

Firstly, we consider the global distance structure prior in the general situation.

Denote a statistical model by fθ(x;θ), where x ∈ Rn and θ ∈ Sθ ⊆ Rp. The

statistical model is a mapping that maps a parameter space Sθ to the space of

probability distributions on Rn, that is

fθ : Sθ 7→ F (Rn), (3.1.1)

where F is the space of all distributions on Rn.

A distance function, denoted by d, is likewise a mapping that takes two probabil-

ity distributions on the same sample space and delivers a non-negative real number,

that is

d : F (Rn)×F (Rn) 7→ R+, (3.1.2)

where R+ = {∀v ∈ R+; v ≥ 0}.

Together with a statistical model, the distance function could induce a new

mapping dθ that maps Sθ, the parameter space of θ, to the non-negative real space,

18



3.1. The General Situation 19

i.e.

dθ : Sθ × Sθ 7→ R+. (3.1.3)

Consider a re-parametrization η that bijectively maps the above mentioned pa-

rameter space Sθ to the other parameter space Sϕ = {ϕ;ϕ = η(θ),θ ∈ Sθ}, i.e.

η : Sθ 7→ Sϕ. (3.1.4)

Since the re-parametrization is a bijective mapping, the function η−1 : Sϕ 7→ Sθ

is well defined. The re-parametrization induces a mapping (a statistical model) fϕ

which takes the new parameter space Sϕ to the space of all probability distributions

on Rn. The statistical model fϕ could be expressed as

fϕ = fϕ(x;ϕ) = fθ(x; η−1(ϕ)). (3.1.5)

Being similar to Equation (3.1.3), a mapping dϕ : Sϕ × Sϕ 7→ Rn could be induced

by combing the statistical model fϕ with the distance function d. And it can be

expressed as

dϕ(ϕ1,ϕ2) = dθ(η
−1(ϕ1), η−1(ϕ2)), ∀ϕ1,ϕ2 ∈ Sϕ. (3.1.6)

We want to be able to compare the function dθ and dϕ and ask if they are

effectively the same. The way we do this is to require first that the two spaces Sθ

and Sϕ are the same, i.e.

Sθ = Sϕ = S. (3.1.7)

With this requirement, we only need consider the re-parametrization of the form

η : S 7→ S so that both mappings dθ and dϕ take S×S to R+. Then we could check

if the functions dθ and dϕ are the same function. The definition that the distance

functions are the same is as follows.

Definition 3.1.1 Two distance functions dθ and dϕ are the same if they satisfy

dθ(s1, s2) = dϕ(s2, s2), ∀s1, s2 ∈ S. (3.1.8)
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Principle:

If the re-parametrization η could make the two mappings dθ and dϕ satisfy Equa-

tion (3.1.8), we state that the global distance structure is invariant to the re-

parametrization η and thus the prior measure should also be invariant to η. Rather

than requiring the invariance in parametrized family, a prior is judged with respect

to the invariance in global distance structure as illustrated in Equation (3.1.8). Note

that the invariance in global distance structure is used to verify the objectivity of

an existing prior rather than to design a new prior.

In the following parts of this chapter, priors satisfying this global distance struc-

ture principle are discussed. In section 3.2 and 3.3, the derivations of these priors

are considered in two contexts respectively: firstly, finite discrete model space and,

secondly, continuous model space. In section 3.4, the these priors for the location

family, scale family and location-scale family are provided.
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3.2. Finite Discrete Model Space 21

3.2 Finite Discrete Model Space

In the case of a finite collection of models (or parameter values), the principle of

insufficient reason has been used as grounds for applying a uniform prior. Kass and

Wasserman (1996) discussed this and the possible issues of the partitioning paradox

of this principle. They used the example provided by Shafer et al. (1976) to elaborate

the paradox. Let Λ = {λ1, λ2}, where λ1 represent the event that there is life on

orbit about the star Sirius and λ2 denotes the event there is not. According to the

principle of insufficient reason, the prior weight would be π(λ1) = π(λ2) = 1
2
. But

now let Γ = {γ1, γ2, γ3}, where γ1 denotes the event that there is life around the

Sirius star, γ2 denotes the event that there are planets but no life, and γ3 denotes the

event that there are no planets. The principle of insufficient reason assigns the prior

weight as π(γ1) = π(γ2) = π(γ3) = 1
3
. We shall see that global distance structure

might offer some possibilities for refining the argument.

Considering that the parameter space is a finite collection of discrete points, S

in Equation (3.1.7) changes to be

S = {s1, s2, · · · , sn} ⊆ Rn. (3.2.9)

A distribution on the parameter space S can be represented by a probability vector.

Thus, the prior that we would like to derive here is a probability vector. Since the

parameter space has finite discrete elements, the distance functions dθ and dϕ are

actually matrices. If the distance is chosen to be a symmetric function, we could

obtain a symmetric matrix. Also the bijection η in Equation (3.1.4) turns out to be

a permutation for the elements of the parameter space and thus the matrix dϕ is a

permutation of rows and columns of the matrix dθ.

The principle stated in section 3.1 is: if a re-parametrization η, which makes the

global distance structure invariant as defined in Equation (3.1.8), could be recog-

nized, the prior distributions should be also invariant to η, i.e. πθ = πϕ. In other

words, the prior under consideration is acceptable with respect to the global distance

structure invariance if it is invariant to η. And, a unique such prior does not always

exist. The following two examples illustrate this facts.
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Example 3.2.1 Consider a situation with 5 simple models {A,B,C,D,E} corre-

sponding to 5 parameter values {θ1, θ2, θ3, θ4, θ5} where, for the chosen distance, the

models can be represented in the plane in one of the two following ways:

model A

model B

model Cmodel D

model E

model A model B

model C

model D

model E

Figure 3.1: Two different five-model spaces.

For the situation on the left of Figure 3.1, the model space is represented by a regular

pentagon with all sides of equal length a1 and all diagonals of equal length a2. The

distance structure is unaffected by a rotation as illustrated in Figure 3.2.

model A

model B

model Cmodel D

model E

Rotate−−−−→

modelη(E)

modelη(A)

modelη(B)modelη(C)

modelη(D)

Figure 3.2: Left plot: the original model space; Right plot: model space after

rotation. η denotes the rotation

The distance structure preservation could be seen by looking at the distance matrices

for the original model space (left) and the rotated model space (right) displayed as

follows
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3.2. Finite Discrete Model Space 23

dθ =



A B C D E

A 0 a1 a2 a2 a1

B a1 0 a1 a2 a2

C a2 a1 0 a1 a2

D a2 a2 a1 0 a1

E a1 a2 a2 a1 0


,

dϕ =



η(A) η(B) η(C) η(D) η(E)

η(A) 0 a1 a2 a2 a1

η(B) a1 0 a1 a2 a2

η(C) a2 a1 0 a1 a2

η(D) a2 a2 a1 0 a1

η(E) a1 a2 a2 a1 0


,

where dθ denotes the distance matrix for the original space; dϕ is the distance matrix

for the rotated model space; η, the rotation, is a re-parametrization. Clearly, these

two distance matrices are exactly the same. Therefore, the prior distribution should

be invariant to the rotation. That is,

dθ = dϕ

=⇒ πθ = πϕ = π. (3.2.10)

Since both Jacobian factor and prior’s propriety need not to be considered in finite

discrete situations, we could have the following prior relationship:

changing variable without Jacobian factor involved: πθ(θ1) = πϕ(η(θ1))

Equation (3.2.10) tells that: πϕ(η(θ1)) = πθ(η(θ1))

the rotation shown in Figure 3.2 tells θ2 = η(θ1) and thus: πθ(η(θ1)) = πθ(θ2)


=⇒ πθ(θ1) = πθ(θ2).

Likewise, π(θ1) = π(θ2) = π(θ3) = π(θ4) = π(θ5) and it is a uniform prior which is
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implied by the global distance structure invariance for the rotation.

The prior corresponding to the invariant distance structure, however, is not

always unique. For the situation on the right of Figure 3.1, the distance structure

is invariant to the flipping permutation as illustrated in Figure 3.3.

model A model B

model C

model D

model E

flipping−−−−→

model η(B) model η(A)

model η(E)

model η(D)

model η(C)

Figure 3.3: Left plot: Original plot; Right plot: Relabelling by flipping

Suppose the distance in the original model space are

dθ(model A,model B) = a1,

dθ(model A,model E) = dθ(model B,model C) = a2,

dθ(model A,model C) = dθ(model B,model E) = a3,

dθ(model A,model D) = dθ(model B,model D) = a4,

dθ(model C,model E) = a5,

dθ(model E,model D) = dθ(model C,model D) = a6.

The distance structure preservation could be seen by looking at the distance matrices

dθ for the original space (left plot in Figure 3.3) and dϕ for the flipped model space

(right plot in Figure 3.3)
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dθ =



A B C D E

A 0 a1 a3 a4 a2

B a1 0 a2 a4 a3

C a3 a2 0 a6 a5

D a4 a4 a6 0 a6

E a2 a3 a5 a6 0


,

dϕ =



η(A) η(B) η(C) η(D) η(E)

η(A) 0 a1 a3 a4 a2

η(B) a1 0 a2 a4 a3

η(C) a3 a2 0 a6 a5

η(D) a4 a4 a6 0 a6

η(E) a2 a3 a5 a6 0


.

Therefore, we have πθ = πϕ = π. However, we could not determine a unique prior

distribution. All we could say with certainty is that model C and model E should

be assigned the same prior probability and that model A and model B should be

assigned the same prior, that is

π(A) = π(B), π(C) = π(E). (3.2.11)
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3.3 Continuous Model Space

Here, the derivations of priors based on global distance structure are discussed for

the continuous model space (i.e. continuous parameter space). Compared with

the situation of finite discrete model space in the above section, there are several

differences. Firstly, the parameter space S is not a finite collection of discrete points

and the distance function is not a matrix. In addition, the prior could not be

expressed in a probability vector. Both proper and improper prior measures should

be considered. Before the discussion of prior satisfying the global distance structure

in the continuous model space, we look at the following two concepts.

Definition 3.3.1 Given two measurable spaces (Sθ,Bθ), (Sφ,Bφ), a measure Ωθ on

(Sθ,Bθ) and a measurable map η : Sθ → Sφ, the induced measure Ωϕ on (Sφ,Bφ)

is defined by

Ωϕ(A) = Ωθ
(
η−1(A)

)
, (3.3.12)

where A ∈ Bφ.

Definition 3.3.2 Two prior measures Ω1 and Ω2 are equivalent if they satisfy

Ω1(A) = const. · Ω2(A), ∀ measurable A. (3.3.13)

In other words, these two prior measures are indeed the same since their according

posterior distribution are effectively the same. All the prior measures in such a

equivalence class, denoted by O, are different up to a constant.

Let us now turn to the prior satisfying the global distance structure in continuous

model space.

Definition 3.3.3 Suppose that we have

• a 1-1 re-parametrization η : θ → ϕ such that the global distance structure is

invariant as illustrated in Equation (3.1.8). As illustrated in Equation (3.1.7),

we require the space of θ and ϕ to be the same in order to compare the distance

function.
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• a suggested prior measure Ωθ to which πθ, the prior density under considera-

tion, corresponds

We state that the prior measure Ωθ is accepted with respect to the global distance

structure invariance if the corresponding induced prior measure

Ωϕ(A) = Ωθ
(
η−1(A)

)
, ∀A ⊆ S (3.3.14)

is in the equivalent class of Ωθ, i.e.

Ωϕ(A) = const. · Ωθ(A), ∀ measurable A. (3.3.15)

We state that the prior density πθ, that corresponds to such a prior measure Ωθ, is

accepted with respect to the global distance structure invariance.

Hartigan (1964) also considered this equivalence in prior measures. However, he

concluded this equivalence from the invariance in parametrized family not from the

invariance in global distance structure.

Here, we only take into account global distance structure prior measures which

have finite positive measurements for bounded sets. The reason of not considering

measures assigning 0 or ∞ measurements for bounded sets is as follows. Suppose

there exists a bounded set A such that a prior measure Ω, which is accepted with

respect to the global distance structure invariance, assigns 0 measurement to it, i.e.

Ω(A) = 0.

Then according to the proposition 3.3.1, we can obtain

Ω(B) = Ω(A)
Ω
(
η(B)

)
Ω
(
η(A)

) = 0,

where B is any bounded set. Therefore, we end up with a measure assigning 0 mea-

surements for all bounded sets. Similarly, Ω(A) = ∞ leads to a measure assigning

∞ measurements for all bounded sets. These two kinds of prior measure would not

correspond to the concept of ‘prior distributions’.

Proposition 3.3.1 If the prior Ωθ is accepted with respect to the global distance

structure invariance, then ∃ η : θ → ϕ, a 1-1 re-parametrization, such that

Ωθ(A)

Ωθ(B)
=

Ωθ
(
η(A)

)
Ωθ
(
η(B)

) , ∀A,B ⊆ S. (3.3.16)
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Proof : Let A′ = η(A), B′ = η(B). As the space of θ and the space of ϕ are forced

to be the same, we have A′, B′ ⊆ S. According to Equation (3.3.15), we could have

Ωϕ(A′)

Ωϕ(B′)
=

Ωθ(A
′)

Ωθ(B′)
, (3.3.17)

where Ωϕ is the induced prior measure defined according to Equation (3.3.14).

Therefore,

Ωϕ(A′)

Ωϕ(B′)
=

Ωθ
(
η−1(A′)

)
Ωθ
(
η−1(B′)

) . (3.3.18)

By combining Equation (3.3.17) and (3.3.18), we have

Ωθ
(
η−1(A′)

)
Ωθ
(
η−1(B′)

) =
Ωθ(A

′)

Ωθ(B′)
.

Since A′ = η(A), B′ = η(B), the above equation changes to

Ωθ
(
A
)

Ωθ
(
B
) =

Ωθ(η(A))

Ωθ(η(B))
.

.

The next proposition shows the prior density derived from a prior measure satisfying

the global distance structure principle when the re-parametrization, to which the

global distance structure is invariant, is a translation.

Proposition 3.3.2 Suppose that a prior measure is accepted with respect to the

global distance structure invariance and the 1-1 re-parametrization satisfying the

global distance structure invariance is any translation

ϕ = η(θ) = θ + c, Sθ = R, Sϕ = R, (3.3.19)

then the corresponding prior density is

π(θ) ∝ exp(α θ), (3.3.20)

where α is some real value.

Proof : Denote the prior measure according to parametrization θ by Ω. According

to proposition 3.3.1, we could have

Ω(A)

Ω(B)
=

Ω(A+ c)

Ω(B + c)
,
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where A and B are two arbitrary bounded intervals. By re-arrangement the above

equation, we obtain

Ω(A)

Ω(A+ c)
=

Ω(B)

Ω(B + c)
.

Since the above equation holds for any bounded interval and any real value c, we

could have the following result by setting B fixed

Ω(A+ c)

Ω(A)
= k(c), ∀ bounded interval A ⊂ R,∀c ∈ R

=⇒ Ω(A+ c) = k(c) · Ω(A), (3.3.21)

where k(·) is a function of c.

For bounded interval I = (0, 1], we state the following two facts,

•

Ω(nI) = Ω(I) + Ω(1 + I) + Ω(2 + I) + · · ·+ Ω(n− 1 + I)

= Ω(I) + k(1)Ω(I) +
(
k(1)

)2
Ω(I) + · · ·+

(
k(1)

)n−1
Ω(I) by Equation (3.3.21)

=
[
1 + k(1) +

(
k(1)

)2
+ · · ·+

(
k(1)

)n−1
]
· Ω(I), (3.3.22)

where nI is a bounded interval (0, n] and n is an integer.

•

Ω(I) = Ω(
I

m
) + Ω(

1

m
+
I

m
) + Ω(

2

m
+
I

m
) + · · ·+ Ω(

m− 1

m
+
I

m
)

= Ω(
I

m
) + k(

1

m
)Ω(

I

m
) +

(
k(

1

m
)
)2

Ω(
I

m
) + · · ·+

(
k(

1

m
)
)n−1

Ω(
I

m
)

by Equation (3.3.21)

=
[
1 + k(

1

m
) +

(
k(

1

m
)
)2

+ · · ·+
(
k(

1

m
)
)m−1

]
· Ω(

I

m
), (3.3.23)

where I
m

is a bounded interval (0, 1
m

] and m is an integer.

From the derivation of Equation (3.3.23), we have

Ω(2I) =
[
1 + k(

1

m
) +

(
k(

1

m
)
)2

+ · · ·+
(
k(

1

m
)
)2m−1

]
· Ω(

I

m
). (3.3.24)

February 16, 2016



3.3. Continuous Model Space 30

From the derivation of Equation (3.3.22), we have

Ω(2I) =
(
1 + k(1)

)
· Ω(I)

=
(
1 + k(1)

)[
1 + k(

1

m
) +

(
k(

1

m
)
)2

+ · · ·+
(
k(

1

m
)
)m−1

]
· Ω(

I

m
) (3.3.25)

by substituting Equation (3.3.23).

By comparing Equation (3.3.24) and (3.3.25), we have

1 + k(
1

m
) +

(
k(

1

m
)
)2

+ · · ·+
(
k(

1

m
)
)2m−1

=
(
1 + k(1)

)[
1 + k(

1

m
) +

(
k(

1

m
)
)2

+ · · ·+
(
k(

1

m
)
)m−1

]
.

(3.3.26)

Therefore, we have

1. If k( 1
m

) 6= 1, then Equation (3.3.26) implies

1−
(
k(1/m)

)2m

1− k(1/m)
=
(
1 + k(1)

)1−
(
k(1/m)

)m
1− k(1/m)

=⇒ k(
1

m
) =

(
k(1)

)1/m
. (3.3.27)

2. If k( 1
m

) = 1, then Equation (3.3.26) implies

k(1) = 1. (3.3.28)

Also, the above result could be written in the same form as Equation (3.3.27).

Up to now, we have some knowledge about k(x) where 0 < x ≤ 1 as shown in

Equation (3.3.27) and (3.3.28). In order to get some information about k(x) where

x ∈ R, we do the following job.

Firstly, we look at Ω( n
m
I), where m and n are positive integers, as follows,

Ω(
n

m
I) = Ω(n · 1

m
I)

= Ω(
1

m
I) + Ω(

1

m
+

1

m
I) + · · ·+ Ω

(
(n− 1)

1

m
+

1

m
I
)

= Ω(
1

m
I) + k(

1

m
)Ω(

1

m
I) + · · ·+

(
k(

1

m
)
)n−1

Ω(
1

m
I) by Equation (3.3.21)

=
[
1 + k(

1

m
) + · · ·+

(
k(

1

m
)
)n−1]

Ω(
1

m
I). (3.3.29)
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By a simple re-arrangements to Equation (3.3.23), we obtain

Ω(
1

m
I) =

[
1 + k(

1

m
) + · · ·+

(
k(

1

m
)
)m−1]−1

Ω(I). (3.3.30)

By substituting Equation (3.3.30) to Equation (3.3.29), we have

Ω(
n

m
I) =

[
1 + k( 1

m
) + · · ·+

(
k( 1

m
)
)n−1][

1 + k( 1
m

) + · · ·+
(
k( 1

m
)
)m−1]Ω(I)

=


n
m

Ω(I) if k( 1
m

) = 1

1−
(
k( 1
m

)
)n

1−
(
k( 1
m

)
)mΩ(I) if k( 1

m
) 6= 1

=


n
m

Ω(I) if k( 1
m

) = 1

1−
(
k(1)
) n
m

1−k(1)
Ω(I) By Equation (3.3.27) if k( 1

m
) 6= 1

. (3.3.31)

Both m and n are positive integers and {m
n

;m,n ∈ Z+} forms the positive rational

number set Q+. Because the rational numbers are dense in R, we have the following

Ω(zI) with z ∈ R+,

Ω(zI) =

 zΩ(I) if k( 1
m

) = 1

1−
(
k(1)
)z

1−k(1)
Ω(I) if k( 1

m
) 6= 1

. (3.3.32)

Secondly, we look at Ω(2zI), where z ∈ R+. From Equation (3.3.32), we obtain

Ω(2zI) =

 2zΩ(I) if k( 1
m

) = 1

1−
(
k(1)
)2z

1−k(1)
Ω(I) if k( 1

m
) 6= 1

. (3.3.33)

But,

Ω(2zI) = Ω(zI) + Ω(z + zI)

= Ω(zI) + k(z)Ω(zI) By Equation (3.3.21)

=
(
1 + k(z)

)
Ω(zI)

=


(
1 + k(z)

)
zΩ(I) if k( 1

m
) = 1(

1 + k(z)
)1−
(
k(1)
)z

1−k(1)
Ω(I) if k( 1

m
) 6= 1

by Equation (3.3.32).

By comparing the above results with Equation (3.3.33), we could obtain k(z), where

z ∈ R+ in two situations:
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1. If k( 1
m

) = 1, then

k(z) = 1. (3.3.34)

2. If k( 1
m

) 6= 1, then

1−
(
k(1)

)2z

1− k(1)
Ω(I) =

(
1 + k(z)

)1−
(
k(1)

)z
1− k(1)

Ω(I)

=⇒ k(z) =
(
k(1)

)z
. (3.3.35)

The result shown in Equation (3.3.34) could also be expressed in the same

form of (3.3.35).

For any bounded interval A and any value z ∈ R+,

Ω(A) = Ω(z − z + A)

= k(z)k(−z)Ω(A) by Equation (3.3.21).

Therefore,

k(−z) =
(
k(z)

)−1

=
(
k(1)

)−z
.

Together with Equation (3.3.35), we obtain

k(z) =
(
k(1)

)z
, ∀z ∈ R. (3.3.36)

Suppose that the bounded interval is A = (θ, ρ], then

Ω(A) = Ω
(

(θ, ρ]
)

= Ω
(
θ + (0, ρ− θ]

)
= k(θ) · Ω

(
(ρ− θ)I

)
=
(
k(1)

)θ · Ω( (ρ− θ)I
)

=


(ρ− θ)Ω(I) if k( 1

m
) = 1(

k(1)
)θ
−
(
k(1)
)ρ

1−k(1)
Ω(I) if k( 1

m
) 6= 1

by Equation (3.3.32).

By expressing ρ as ρ = θ + ∆θ, the above result could be re-written as

Ω(A) =


∆θ · Ω(I) if k( 1

m
) = 1(

k(1)
)θ
−
(
k(1)
)θ+∆θ

1−k(1)
Ω(I) if k( 1

m
) 6= 1

.
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Therefore,

Ω(A)

∆θ
=


Ω(I) if k( 1

m
) = 1(

k(1)
)θ[

1−
(
k(1)
)∆θ]

[1−k(1)]·∆θ Ω(I) if k( 1
m

) 6= 1
.

As ∆θ approaches to 0,

lim
∆θ→0

Ω(A)

∆θ
=


Ω(I) if k( 1

m
) = 1(

k(1)
)θ

1−k(1)
·
(
− log

(
k(1)

))
· Ω(I) if k( 1

m
) 6= 1

.

Therefore, the density corresponding to the prior measure Ω exists, i.e.

π(θ) =


Ω(I) if k( 1

m
) = 1(

k(1)
)θ

1−k(1)
·
(
− ln

(
k(1)

))
· Ω(I) if k( 1

m
) 6= 1

∝

 1 if k( 1
m

) = 1(
k(1)

)θ
if k( 1

m
) 6= 1

.

Let α = ln
(
k(1)

)
, then k(1) = eα. With k( 1

m
) = 1, we have k(1) = 1 and thus

α = 0. Therefore, the above prior density could be re-written as

π(θ) ∝ eαθ. (3.3.37)

.

Theorem 3.3.3 Suppose that the prior measure Ω is accepted with respect to the

global distance structure invariance and a translation illustrated as Equation (3.3.19)

preserves the global distance structure. If a symmetrical global distance d is chosen

to measure the differences between models, then the corresponding prior density is

π(θ) ∝ 1 (3.3.38)

Proof : Since a translation illustrated as Equation (3.3.19) preserves the global

distance structure invariance, the prior density that is accepted with respect to the

global distance structure invariance, according to Proposition 3.3.2, is

π(θ) ∝ eαθ. (3.3.39)
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According to Equation (3.1.6), distance dϕ(x, x′) where ∀x, x′ ∈ S could be expressed

as

dϕ(x, x′) = dθ(x− c, x′ − c)

= dθ(−x′,−x) by setting c = x+ x′

= dθ(−x,−x′) by the symmetrical distance. (3.3.40)

Considering the following re-parametrization

φ = −θ.

The corresponding distance function dφ(x, x′) where ∀x, x′ ∈ S, according to Equa-

tion (3.1.6), could be expressed as

dφ(x, x′) = dθ(−x,−x′)

= dϕ(x, x′) according to Equation (3.3.40)

= dθ(x, x
′) by the distance invariance to the translation ϕ.

From definition 3.1.1, the above result indicates that the distance structure is also

invariant to a negative re-parametrization. According to proposition 3.3.1, we have

Ω(A)

Ω(B)
=

Ω(−A)

Ω(−B)
, ∀ sets A,B.

By a simple re-arrangement, the above equation changes to be

Ω(A)

Ω(−A)
=

Ω(B)

Ω(−B)
.

The above equation holds for any choice of sets A and B. By fixing B, we have

Ω(A)

Ω(−A)
= const. (3.3.41)

Let A = (θ, θ + dθ]. According to Equation (3.3.39), the measure of A and −A

could be expressed as

Ω(A) = eαθdθ, Ω(−A) = e−αθd(−θ). (3.3.42)

By substituting the above results into Equation (3.3.41), we have

−e2αθ = const. (3.3.43)
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Therefore, α = 0 and the prior density in Equation (3.3.39) changes to be

π(θ) ∝ 1.

.

Note that what we propose here is to take into account global distance structure

rather than the global distance to derive a prior. And any divergence function, that

is suitable to measure the difference between two probability distributions, can be

used to derive a prior that is accepted with respect to preserving the global structure

of the chosen divergence. In statistics, f-divergence, firstly introduced by Csiszar in

1963, is frequently used. Many popular divergences, such as the Kullback-Leibler

divergence and Hellinger distance, are special cases of f-divergence. Let dθ(θ1, θ2)

denote the f-divergence between two statistical models under parametrization {θ}.

It could be defined as follows (Liese and Vajda, 2006)

dθ(θ1, θ2) =

∫
$
(f(x; θ1)

f(x; θ2)

)
f(x; θ2)dx

where$ is a convex function such that$(1) = 0. By denoting w
(
f(x; θ1), f(x; θ2)

)
=

$
(
f(x;θ1)
f(x;θ2)

)
f(x; θ2), the above f-divergence can be rewritten as

dθ(θ1, θ2) =

∫
w
(
f(x; θ1), f(x; θ2)

)
dx, (3.3.44)

In particular, w(·, ·) changes along with the divergence function. For example, if

Kullback-Leibler divergence is chosen,

w
(
f(x; θ1), f(x; θ2)

)
= ln

(f(x; θ1)

f(x; θ2)

)
f(x; θ1). (3.3.45)

Since the Kullback-Leibler divergence is not symmetric, the following symmetriza-

tion is usually adopted,

w
(
f(x; θ1), f(x; θ2)

)
= ln

(f(x; θ1)

f(x; θ2)

)
f(x; θ1) + ln

(f(x; θ2)

f(x; θ1)

)
f(x; θ2). (3.3.46)

The above formula symmetrizes Kullback-Leibler divergence. And thus the corre-

sponding d(θ1, θ2) satisfies the symmetry condition and could be considered as a

metric measuring the distance between probability distributions.
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If Hellinger distance is chosen,

w
(
f(x; θ1), f(x; θ2)

)
=

1

2

(√
f(x; θ1)−

√
f(x; θ2)

)2

.

If total variation distance is selected,

w
(
f(x; θ1), f(x; θ2)

)
= |f(x; θ1)− f(x; θ2)|.
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3.4 Derivations for Simple Situations

In this section, we provide non-informative priors that are accepted with respect

to the global distance structure invariance for the location family, scale family and

location-scale family. In addition, the normal mean problem and the normal scale

problem are considered as examples for the location family and scale family respec-

tively. The one-way random effect model, that could be considered as an example

of the location-scale family in a special situation, is discussed in Chapter 4.

3.4.1 Location Family

Let f(y;µ) denote a class of probability distributions that is parametrized by a

scalar parameter µ which controls the ‘location’ of distribution. Mathematically, a

location family must be expressible in the form

f(y;µ) = h(y − µ), (3.4.47)

where h(·) is a function related to the probability density function.

Theorem 3.4.1 Suppose that f(·) is a location family as defined in Equation (3.4.47)

and a symmetric distance of the form (3.3.44) is chosen to measure the difference be-

tween probability distributions. The non-informative prior for the location parameter

µ

π(µ) ∝ 1 (3.4.48)

is accepted with respect to the global distance structure invariance.

Proof : According to the distance function defined in Equation (3.3.44), the distance

under parametrization {µ} is

dµ(µ1, µ2) =

∫
w
(
h(y − µ1), h(y − µ2)

)
dy. (3.4.49)

A new parametrization {ϕ} is defined by the following translation

ϕ = µ+ c,
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where c is a arbitrary constant. Under the parametrization {ϕ}, the probability

distribution could be expressed as

f(y;ϕ) = h
(
y − (ϕ− c)

)
= h(y + c− ϕ). (3.4.50)

According to the distance definition in Equation (3.3.44), the corresponding distance

function under parametrization {ϕ} is

dϕ(ϕ1, ϕ2) =

∫
w
(
h(y + c− ϕ1), h(y + c− ϕ2)

)
dy.

By changing the variable z = y + c, the above distance function could be rewritten

as

dϕ(ϕ1, ϕ2) =

∫
w
(
h(z − ϕ1), h(z − ϕ2)

)
dz. (3.4.51)

By comparing dϕ illustrated in the above line with dµ expressed in Equation (3.4.49),

these two distance functions clearly obtain the identical structure, that is

dϕ(·, ·) = dµ(·, ·). (3.4.52)

Then, from the Theorem 3.3.3, a uniform is assigned for the location parameter

π(µ) ∝ 1.

.

The fact stated by theorem 3.4.1 could be generalized to the context with vector-

valued location parameters. Let f(y;µ) denote a class of probability distributions

that is parametrized by a vector-valued parameter µ which controls the ‘location’

of distribution. Mathematically, a location family must be expressible in the form

f(y;µ) = h(y −Xµ),

where y ∈ Rn denotes (n × 1)-dimensional observed data; µ ∈ Rp stands for a

(p×1)-dimensional location parameter; X is a (n×p)-dimensional specified matrix.

Such a probability family is very common for regression models. The global distance

structure prior is π(µ) ∝ 1.
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The Normal Mean

Suppose y = (y1, · · · , yN) is a random sample from a normal distribution N(µ, σ2),

where σ is known. It belongs to the location family. By choosing the symmetrical

Kullback-Leibler distance defined in Equation (3.3.46) to measure the corresponding

distance between two models N(y;µ1) and N(y;µ2), a non-informative prior that

is accepted with respect to the global distance structure invariance is uniform in µ

itself, that is

π(µ) ∝ 1.
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3.4.2 Scale Family

Let us now turn to the development of a non-informative prior distribution for

scale family. Let f(y;σ) denote a scale family. It represents a class of probability

distributions which mathematically have the form

f(y;σ) =
1

σ
h(
y

σ
), (3.4.53)

where σ is called ‘scale parameter’ and h(·) is a known function related to the

probability density function. The distance function under the parametrization {σ}

could be expressed as

dσ(σ1, σ2) =

∫
w
( 1

σ1

h(
y

σ1

),
1

σ2

h(
y

σ2

)
)

d y, (3.4.54)

where the form of w(·, ·) changes along with the chosen distance function.

Definition 3.4.1 A divergence is homogeneous if it satisfies the following condition

cw(f1, f2) = w(cf1, cf2), (3.4.55)

where c is an arbitrary positive constant; f1 and f2 are two probability density func-

tions.

Proposition 3.4.2 Kullback-Leibler distance, Hellinger distance and total varia-

tion distance are homogeneous divergences.

Proof : If Kullback-Leibler divergence is chosen to measure differences between

probability distributions, we have

w(f1, f2) = f1ln
f1

f2

=⇒ cw(f1, f2) = (cf1)ln
cf1

cf2

= w(cf1, cf2).

That is, the Kullack-Leibler divergence is homogeneous and the symmetrical Kullback-

Leibler distance automatically have this property. If Hellinger distance is chosen to

measure differences between probability distributions, we have

w(f1, f2) =
1

2
(
√
f1 −

√
f2)2

=⇒ cw(f1, f2) =
1

2
(
√
c f1 −

√
c f2)2 = w(cf1, cf2).
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If the total variational distance is chosen to measure differences between probability

distributions, we have

w(f1, f2) = |f1 − f2|

=⇒ cw(f1, f2) = |cf1 − cf2| = w(cf1, cf2).

Therefore, Kullback-Leibler distance, Hellinger distance and total variation distance

are homogeneous distances.

Theorem 3.4.3 Suppose that f(·) is a scale family as defined in Equation (3.4.53)

and that a distance satisfying the homogeneous condition is chosen to measure the

differences between probability distributions. We have

1. For the scale parameter σ, the non-informative prior that is accepted with

respect to the global distance structure invariance is

π(σ) ∝ σc, (3.4.56)

where c is some real value.

2. If the chosen distance is also symmetrical, then the non-informative prior that

is accepted with respect to the global distance structure invariance is

π(σ) ∝ 1

σ
. (3.4.57)

Proof : By considering the re-parametrization {ϕ} defined as

ϕ = log σ

the probability distribution could be expressed as

f(y;ϕ) =
1

exp(ϕ)
h(

y

exp(ϕ)
)

The distance function under parametrization {ϕ}, denoted by dϕ, could be expressed

as

dϕ(ϕ1, ϕ2) =

∫
w
( 1

exp(ϕ1)
h(

y

exp(ϕ1)
),

1

exp(ϕ2)
h(

y

exp(ϕ2)
)
)

d y (3.4.58)
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Consider another parametrization {φ} constructed as

φ = ϕ+ c (3.4.59)

where c is an arbitrary constant. The corresponding probability distribution under

this parametrization is

f(y;φ) =
1

exp(φ)/ exp(c)
h
( y

exp(φ)/ exp(c)

)
=

1

k exp(φ)
h
( y

k exp(φ)

)
(3.4.60)

where k = exp(−c). The distance function dφ under parametrization {φ} is

dφ(φ1, φ2) =

∫
w
( 1

k exp(φ1)
h(

y

k exp(φ1)
),

1

k exp(φ2)
h(

y

k exp(φ2)
)
)

d y

By changing the variable z = y
k
, the distance function dφ in the above line changes

to

dφ(φ1, φ2) =

∫
w
( 1

k exp(φ1)
h(

z

exp(φ1)
),

1

k exp(φ2)
h(

z

exp(φ2)
)
)
k d z

Since the distance is required to have the homogeneous property, the above equation

becomes

dφ(φ1, φ2) =

∫
w
( 1

exp(φ1)
(

z

exp(φ1)
),

1

exp(φ2)
h(

z

exp(φ2)
)
)

d z (3.4.61)

By comparing the distance function dϕ in Equation (3.4.58) and dφ in Equation

(3.4.61), we have

dϕ(·, ·) = dφ(·, ·) (3.4.62)

Therefore, the global distance structure is invariant to a translation.

• To prove 1, according to proposition 3.3.2, we have

π(ϕ) ∝ exp(αϕ)

where α is some real value. By transforming back to parametrization {σ}

through the Jacobian factor, we have the following prior for the scale parameter

π(σ) ∝ σα−1 (3.4.63)

By letting c = α− 1, we have

π(σ) ∝ σc (3.4.64)
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• To prove 2, if the chosen distance is also symmetrical, we have

π(ϕ) ∝ 1 (3.4.65)

according to Theorem 3.3.3. By transforming back to parametrization {σ}

through the Jacobian factor, we have

π(σ) ∝ 1

σ
. (3.4.66)

.

The Normal Scale

As an example of the scale family, consider a Normal distribution for which the

mean is supposed to be known. Suppose y = (y1, · · · , yN) is a random sample from

a normal distribution N(µ, σ2), where µ is known. Suppose that the symmetrical

Kullback-Leibler distance is chosen to measure the differences between probability

distributions. According to Theorem 3.4.3, the prior, that is accepted with respect

to the global distance structure invariance, is

π(σ) ∝ 1

σ
.
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3.4.3 Location-Scale family

We now turn to the development of a prior satisfying the global distance structure

principle in the context of location-scale family. Let f(y;µ, σ) denote a location-

scale family. It represents a family of probability distribution parametrized by a

location parameter µ and a non-negative scale parameter σ. Mathematically, it has

the form

f(y;µ, σ) =
1

σ
h(
y − µ
σ

), (3.4.67)

where g(·) is a known function related to the probability density function.

Proposition 3.4.4 Suppose that f(·) is a location-scale family as defined in Equa-

tion (3.4.67). If a distance that satisfies the homogeneous condition is chosen to

measure the difference between probability distributions, then

d{µ,ϕ}(·, ·) = d{θ,φ}(·, ·), (3.4.68)

where {µ, ϕ} is a parametrization defined by

µ = µ, ϕ = log σ (3.4.69)

and {θ, φ} is another parametrization defined by

θ = a+ cµ, φ = ϕ+ log c, (3.4.70)

where a is an arbitrary value and c is an arbitrary positive value.

Proof : The probability distribution under the parametrization {µ, ϕ} could be

expressed as

f(y;µ, ϕ) =
1

exp(ϕ)
h
( y − µ

exp(ϕ)

)
.

The distance function d{µ,ϕ} under parametrization {µ, ϕ} is

d{µ,ϕ}

(
{µ1, ϕ1}, {µ2, ϕ2}

)
=

∫
w

(
1

exp(ϕ1)
h
( y − µ1

exp(ϕ1)

)
,

1

exp(ϕ2)
h
( y − µ2

exp(ϕ2)

))
d y. (3.4.71)
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The probability distribution under the parametrization {θ, φ} could be expressed as

f(y; θ, φ) =
c

exp(φ)
h
(cy + a− θ

exp(φ)

)
.

The distance function dθ,φ under parametrization {θ, φ} is

d{θ,φ}

(
{θ1, φ1}, {θ2, φ2}

)
=

∫
w

(
c

exp(φ1)
h
(cy + a− θ1

exp(φ1)

)
,

c

exp(φ2)
h
(cy + a− θ2

exp(φ2)

))
d y.

By changing the variable z = cy + a, the distance function d{θ,φ} in the above

equation changes to

d{θ,φ}

(
{θ1, φ1}, {θ2, φ2}

)
=

∫
w

(
c

exp(φ1)
h
( z − θ1

exp(φ1)

)
,

c

exp(φ2)
h
( z − θ2

exp(φ2)

))1

c
d z.

Since the distance has the homogeneous property, the above formula could be rewrit-

ten as

d{θ,φ}

(
{θ1, φ1}, {θ2, φ2}

)
=

∫
w

(
1

exp(φ1)
h
( z − θ1

exp(φ1)

)
,

1

exp(φ2)
h
( z − θ2

exp(φ2)

))
d z. (3.4.72)

By comparing the distance function d{θ,φ} in the above equation with the distance

function d{µ,ϕ} in Equation (3.4.71), we have

d{µ,ϕ}(·, ·) = d{θ,φ}(·, ·). (3.4.73)

That is, distance functions d{µ,ϕ} and d{θ,φ} have the same structure.

Theorem 3.4.5 Suppose that f(·) is a location-scale family as defined in Equation

(3.4.67) and that a distance satisfying the homogeneous condition is chosen to mea-

sure differences between probability distributions. For µ and σ, a non-informative

prior that is accepted with respect to the global distance structure invariance is

π(µ, σ) ∝ σγ (3.4.74)

where γ is some real value.
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Proof : According to the proposition 3.4.4, the distance structure is invariant be-

tween parametrizations {µ, ϕ} and {θ, φ} as illustrated in Equation (3.4.69) and

(3.4.70) respectively. Consider the following two Cartesian products

A = M × S B = M ′ × S ′,

where sets M,M ′ are bounded intervals of µ-space and sets S, S ′ are bounded inter-

vals of ϕ-space

M = (µ1, µ2], M ′ = (µ3, µ4]; S = (ϕ1, ϕ2], S ′ = (ϕ3, ϕ4].

According to the re-parametrization in Equation (3.4.70), we have

η(A) = ηµ(M)× ηϕ(S) = (cM + a)× (S + log c), (3.4.75)

η(B) = ηµ(M ′)× ηϕ(S ′) = (cM ′ + a)× (S ′ + log c), (3.4.76)

where ηµ and ηϕ denotes the transformation on the space of µ and ϕ respectively.

From the proposition 3.3.1, we have

Ω
(
η(A)

)
Ω(A)

=
Ω
(
η(B)

)
Ω(B)

.

By fixing the Cartesian product B, the above equation changes to

Ω
(
η(A)

)
Ω(A)

= k(a, c), ∀A. (3.4.77)

The above equation indicates that the ratio between Ω
(
η(A)

)
and Ω(A) does not

depend on the set A and thus does not depend on µ1, µ2, ϕ1, ϕ2. By substituting

Equation (3.4.75) into Equation (3.4.77), we have

Ω
(
η(A)

)
Ω(A)

=
Ω
(

(cM + a)× (S + log c)
)

Ω(M × S)
= k(a, c). (3.4.78)

By setting c = 1, Equation (3.4.78) changes to

Ω
(

(M + a)× S
)

Ω(M × S)
= k(a, 1). (3.4.79)

And by fixing the set S, the measure Ω could induce a new measure Ω?
S(M) illus-

trated as follows,

Ω?
S(M) = Ω(M × S), ∀M. (3.4.80)
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The above equation indicates two points: 1) the new measure Ω?
S corresponds to

the set S; 2) the measure Ω?
S is a measure only on the space of µ. By using the new

measure Ω?
S, Equation (3.4.79) could be re-expressed as follows

Ω?
S(M + a)

Ω?
S(M)

= k(a, 1).

The above result is the same with that in Equation (3.3.21). According to the proof

in proposition 3.3.2, we could obtain the density on the space of µ

π?S(x) = β(S) · exp
(
α(S) · x

)
, (3.4.81)

where α(S) and β(S) are some values changing with the bounded interval S =

(ϕ1, ϕ2]. And thus they could also be expressed as

α(S) = α(ϕ1, ϕ2), β(S) = β(ϕ1, ϕ2).

According to Equation (3.4.80) and (3.4.81), the measure Ω(M × S) could be ex-

pressed as

Ω(M × S) = Ω?
S(M) =

∫
M

π?S(x) dx

=

∫
(µ1,µ2]

β(ϕ1, ϕ2) · exp
(
α(ϕ1, ϕ2) · x

)
dx (3.4.82)

=
β(ϕ1, ϕ2)

α(ϕ1, ϕ2)

[
exp

(
α(ϕ1, ϕ2) · µ2

)
− exp

(
α(ϕ1, ϕ2) · µ1

)]
. (3.4.83)

According to Equation (3.4.83), the measure of the transformed set, Ω
(

(cM + a)×

(S + log c)
)

, could be further expressed as

Ω
(

(cM + a)× (S + log c)
)

=

β(ϕ1 + log c, ϕ2 + log c)

α(ϕ1 + log c, ϕ2 + log c)
·
[

exp
(
α(ϕ1 + log c, ϕ2 + log c) · (cµ2 + a)

)
− exp

(
α(ϕ1 + log c, ϕ2 + log c) · (cµ1 + a)

)]
.

(3.4.84)

By substituting the results of Equation (3.4.83) and (3.4.84) into Equation (3.4.78),

we have

Ω
(

(cM + a)× (S + log c)
)

Ω(M × S)
=

β(ϕ1 + log c, ϕ2 + log c)

α(ϕ1 + log c, ϕ2 + log c)

α(ϕ1, ϕ2)

β(ϕ1, ϕ2)
· exp

(
a · α(ϕ1 + log c, ϕ2 + log c)

)
· Λ1 · Λ2 = k(a, c),

(3.4.85)
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where

Λ1 = exp
[(
c · α(ϕ1 + log c, ϕ2 + log c)− α(ϕ1, ϕ2)

)
· µ1

]
,

Λ2 =
exp

[
c · α(ϕ1 + log c, ϕ2 + log c) ·∆µ

]
− 1

exp
[
α(ϕ1, ϕ2) ·∆µ

]
− 1

,

and ∆µ = µ2 − µ1. Because of the fact that
Ω
(

(cM+a)×(S+log c)
)

Ω(M×S)
does not depend on

the sets M and S, the term Λ1 that involves µ1 must be a constant, i.e.

α(ϕ1 + log c, ϕ2 + log c) =
1

c
α(ϕ1, ϕ2). (3.4.86)

And the term Λ2 becomes 1 once the above equation holds. Therefore, Equation

(3.4.85) changes to

Ω
(
(cM + a)× (S + log c)

)
Ω(M × S)

=

c · β(ϕ1 + log c, ϕ2 + log c)

β(ϕ1, ϕ2)
· exp

(
a · α(ϕ1 + log c, ϕ2 + log c)

)
= k(a, c). (3.4.87)

By setting a = 0 in the above equation, we obtain the following relationship for the

function β(ϕ1, ϕ2)

c · β(ϕ1 + log c, ϕ2 + log c)

β(ϕ1, ϕ2)
= k(0, c). (3.4.88)

By substituting the above relationship into Equation (3.4.87), we could obtain

Ω
(
(cM + a)× (S + log c)

)
Ω(M × S)

= k(0, c) · exp
(
a · α(ϕ1 + log c, ϕ2 + log c)

)
. (3.4.89)

Again, by using the fact that the above ratio does not depend on values ϕ1 and ϕ2,

we could have that α(ϕ1 + log c, ϕ2 + log c) is a constant. Together with the fact

illustrated in Equation (3.4.86), we could obtain

α(ϕ1, ϕ2) = 0. (3.4.90)

According to the above result and Equation (3.4.82), we could have

Ω(M × S) = β(ϕ1, ϕ2)|M |, (3.4.91)

where |M | is the size of the set M . The above result indicates that β(ϕ1, ϕ2) could

also be considered as a measure. Specifically, it is the measure of the set S on the

space of ϕ. By a simple re-arrangement of Equation (3.4.91), we could obtain

β(S) = β(ϕ1, ϕ2) =
Ω(M × S)

|M |
. (3.4.92)
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By substituting the above result into Equation (3.4.88), we could obtain

β(S + log c)

β(S)
=
k(0, c)

c
.

The above result indicates that the ratio of measures between the transformed set

S + log c and the original set S does not depend on the set itself. This result is in

line with that stated in Equation (3.3.21). Therefore, according to proposition 3.3.2,

we could conclude that the measure β(S) has the density πβ(ϕ) ∝ exp(ζϕ), where ζ

is some real value. Because of the relationship between the measure Ω(M × S) and

the measure β(S) as illustrated in Equation (3.4.91), the measure Ω(M×S) has the

same density as that of the measure β(S), i.e.

π(µ, ϕ) ∝ exp(ζϕ).

By transforming back to the parametrization {µ, σ} through the Jacobian factor,

we have the density

π(µ, σ) ∝ σγ, (3.4.93)

where γ, satisfying γ = ζ − 1, is some real value.

Unlike the situations for the location family and the scale family in the previous

sections, we have no constraint available for the power of σ in Equation (3.4.93).

The main reason is that in the context of both the location family and the scale

family, the distances could also be invariant to the negative re-parametrization by

adding a symmetrical assumption for the distance. This extra invariance, however,

does not remain for the location-scale family. There might exist some other re-

parametrizations that can make the global distance structure invariant and thus

can specify the value of γ in the density function illustrated by Equation (3.4.93).

But at this moment, with the invariance presented in proposition 3.4.4, we could

only have the density π(µ, σ) ∝ σγ, where γ is unspecified. In other words, the

prior σγ with any power γ is accepted with respect to the global distance structure

invariance. For a Normal distribution N(µ, σ2) with unknown µ, σ, both Jeffreys

general prior π(µ, σ) ∝ σ2 and its modified version π(µ, σ) ∝ σ are accepted with

respect to the global distance structure invariance.
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There are some connections among the context invariant prior, relative invariant

prior and the global distance structure prior considered here.

• Context invariance states that if the same statistical model is used in two

different contexts, then exact same prior measure should be assigned. Jeffreys

general prior satisfies this condition.

• Relative invariance states that if the same statistical model is used in two

different contexts, then equivalent prior measure should be assigned.

• The principle considered here is that if two statistical models have the same

global distance structure, then equivalent prior measures should be assigned.

In the following table, prior for the location family, the scale family and the location-

scale family according to the above three invariances are reported.

Jeffreys Relative Here

location family 1 1 1

scale family 1
σ

σγ 1
σ

location-scale family 1
σ2 σγ σγ
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Chapter 4

One-way Random Effect Model

In this chapter, the focus is on the development of non-informative priors that are

accepted with respect to the global distance structure invariance for the one-way

random effect model that has lots of difficulties in assigning a non-informative prior

for its parameters. In section 4.1, the model and its parametrization are introduced.

Then section 4.2 presents priors for this model from the perspective of the global

distance structure invariance. In section 4.3, simulation studies are provided to

analyse the performances of different prior distributions.

4.1 Model and Parametrization

Recall the one-way random effect model illustrated in section 2.1,

yij = µ+ αi + εij,

αi ∼ N(0, σ2
α),

εij ∼ N(0, σ2),

i = 1, . . . ,m; j = 1, . . . , N.

The above model is parametrized by

{µ, σ, σα}. (4.1.1)
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4.1. Model and Parametrization 52

This model could also be expressed in the following form,

yi
iid∼ N(µ1N , AN,N),

i = 1, . . . ,m

where 1N is a N-dimensional column vector of all ones and

AN,N =


ϑ2 ϑ2ρ2 · · · ϑ2ρ2

ϑ2ρ2 ϑ2 · · · ϑ2ρ2

...
...

. . .
...

ϑ2ρ2 ϑ2ρ2 · · · ϑ2

 ,

ϑ =
√
σ2 + σ2

α, ρ =
σα√
σ2 + σ2

α

.

Particularly, AN,N could be written as

AN,N = ϑ2ρ2JN,N + (1− ρ2)ϑ2IN,N , (4.1.2)

where JN,N is a N-dimensional square matrix with all terms to be one and IN,N

is a N-dimensional identity matrix. Therefore, the parametrization of the one-way

random effect model changes to be

{µ, ϑ, ρ}. (4.1.3)

This parametrization is specially chosen since µ, ϑ play the role of location parameter

and scale parameter respectively with ρ fixed. This could be easily seen by looking

at the likelihood function

L = p(y;µ, AN,N) =
m∏
i=1

p(yi;µ1N , AN,N)

=
m∏
i=1

1√
(2π)N |AN,N |

exp
(
− 1

2
(yi − µ1N)TA−1

N,N(yi − µ1N)
)
, (4.1.4)

Since the determinant and the inverse operation of AN,N have the following results

(see Appendix A.1 for detailed calculations)

|AN,N | = (ϑ2)N(1− ρ2)N−1
(

(N − 1)ρ2 + 1
)
, (4.1.5)

A−1
N,N =

1

ϑ2(1− ρ2)

(
IN,N −

ρ2

1 + (N − 1)ρ2
JN,N

)
, (4.1.6)
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the likelihood in Equation (4.1.4) could be rewritten as follows,

L =
m∏
i=1

1√
(2π)N(ϑ2)N(1− ρ2)N−1

(
(N − 1)ρ2 + 1

)
× exp

(
− 1

2
(yi − µ1N)T

1

ϑ2(1− ρ2)

(
IN,N −

ρ2

1 + (N − 1)ρ2
JN,N

)
(yi − µ1N)

)
.

With ρ fixed, the above likelihood could be further written as

L =
m∏
i=1

K1
1√

(2π)N(ϑ2)N
exp

(
− K2

2ϑ2
(yi − µ1N)T (yi − µ1N)

)
, (4.1.7)

where

K1 =
1√

(1− ρ2)N−1
(
(N − 1)ρ2 + 1

) , K2 =
1

(1− ρ2)

(
IN,N−

ρ2

1 + (N − 1)ρ2
JN,N

)
.

Obviously, with the parameter ρ fixed as a constant, the likelihood shown in Equa-

tion (4.1.7) has the form of the location-scale family illustrated in Equation (3.4.67).

Particularly, µ is the location parameter and ϑ is the scale parameter.
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4.2 Non-informative Priors

In this section, the priors for the one-way random effect model parametrized by

{µ, ϑ, ρ} are derived from the perspective of the global distance structure invariance.

Particularly, the symmetrical Kullback-Leibler distance is used to measure differ-

ences between models. Due to the independence among m groups, the Kullback-

Leibler divergence of p(y|µ1, ϑ1, ρ1) from p(y|µ2, ϑ2, ρ2) is simply the sum of all the

divergence of each group, that is

KL(p(y|µ2, ϑ2, ρ2)||p(y|µ1, ϑ1, ρ1)) =
m∑
i=1

KL(p(yi|µ2, ϑ2, ρ2)||p(yi|µ1, ϑ1, ρ1)).

Therefore, we could use the divergence of a single groupKL(p(yi|µ2, ϑ2, ρ2)||p(yi|µ1, ϑ1, ρ1))

for simplicity.

Due to the structure of covariance matrix AN×N in Equation 4.1.2 (i.e. correlated

data), the divergence of each group KL(p(yi|µ2, ϑ2, ρ2)||p(yi|µ1, ϑ1, ρ1)) depends on

N (the number of observations in each group) and thus the derived prior based on

such a distance would be affected by N . In other words, the experiment design might

have an influence on the derived prior. In our opinion, the influence of experiment

design should be removed from the derived priors. Bernardo (2011) pointed out that

statistical analysis is hardly to be completely objective because both experimental

design and assumed models have strong subjective inputs. However, the reason that

frequentist procedures are considered as ‘objective’ is that the frequentist inferences

are only based on the assumed model and observed data. In the Bayesian framework,

data is not collected at the stage of prior selection. In order to develop a prior with

as least subjective input as possible, we need try to remove the influence of the

experiment design on the global distance structure invariance so that the derived

prior only depends on assumed models. It is, however, not always easy to remove.

Therefore, we consider following two situations:

1. For some situations, the experiment design does not have influence on the

global distance structure invariance and we thus can use the invariance from

the global distance structure directly to derive a prior. A simple situation is
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that the distance could be expressed as

dθ(θ1,θ2) = t(N) ∗ d?(θ1,θ2), (4.2.8)

where N denotes data size or experimental design; t(N) is a function of N

and is thus related to the experiment design; d? is a function of parameters

of interest and is independent of N . If the distance could be written to have

the form as illustrated by Equation (4.2.8), then deriving priors by using dθ

or d? based on the global distance structure invariance are the same. Simple

problems discussed in Chapter 3, such as the normal mean and the normal

scale problem, are examples of this situation.

2. For situations where the global distance structure invariance is not clear due

to the influence of experiment design, we make an attempt to investigate the

structure invariance by using the averaged distances in the asymptotic sense,

that is

• D1 = lim
N→∞

d̄θ, where d̄θ = 1
N
dθ.

• D2 = lim
N→∞

(dθ −N ·D1)

The ‘taking limit’ trick of D1 provides us with two benefits: 1) the experi-

mental design could be removed and the resulting distance describes how the

model changes for the population rather than for the observed data; 2) some

clear structure invariances might show up in the function D1. Despite these

attractive features, special care should be taken if D1 is used as a distance to

derive a prior since such a distance might result in some information loss. This

fact is detailed in the following derivations of global distance structure priors

for the one-way random effect model. The information lost is stored in the

term D2. The function D2 might or might not provide some extra invariances

for us to derive a prior. If no further global distance structure invariance can

be recognised in D2, we just consider the prior derived based on D1 as a prior

that is accepted with respect to the global distance structure invariance.

In the following part of this section, we discuss the derivations of priors from the

perspective of the global distance structure invariance for the one-way random effect
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model under parametrization {µ, ϑ, ρ}. We will look at the situation with all three

parameters unknown, followed by the two-parameter situations and single-parameter

situations.

4.2.1 With µ, ϑ, ρ unknown

Suppose that we are interested in all the parameters, the Kullback-Leibler divergence

could be written as

KL(p(yi|µ2, ϑ2, ρ2)||p(yi|µ2, ϑ1, ρ1)) =
1

2

(
tr(A−1

1 A2) + (µ1 − µ2)2
1
TA−1

1 1−N − ln
|A2|
|A1|

)
,

where

tr(A−1
1 A2) = N

ϑ2
2

ϑ2
1

1 + (N − 2)ρ2
1 − (N − 1)ρ2

1ρ
2
2

(1− ρ2
1)
(
1 + (N − 1)ρ2

1

) . (4.2.9)

The symmetrical Kullback-Leibler distance could be expressed as

d({µ1, ϑ1, ρ1}, {µ2, ϑ2, ρ2}) =

N

2

(
(ϑ2

2 − ϑ2
1)
( (N − 2)ρ2

1 + 1

ϑ2
1(1− ρ2

1)
(
1 + (N − 1)ρ2

1

) − (N − 2)ρ2
2 + 1

ϑ2
2(1− ρ2

2)
(
1 + (N − 1)ρ2

2

))
+ (ϑ2

1ρ
2
1 − ϑ2

2ρ
2
2)
( (N − 1)ρ2

1

ϑ2
1(1− ρ2

1)
(
1 + (N − 1)ρ2

1

) − (N − 1)ρ2
2

ϑ2
2(1− ρ2

2)
(
1 + (N − 1)ρ2

2

))
+ (µ1 − µ2)2

( 1

ϑ2
1

(
1 + (N − 1)ρ2

1

) +
1

ϑ2
2

(
1 + (N − 1)ρ2

2

))).
This distance does not show clear structural invariance. Therefore, we attempt to

find some structure invariances and remove N by using the limit technique in the

following two situations:

• Suppose that N →∞, the averaged distance becomes

D1 = d̄({µ1, ϑ1, ρ1}, {µ2, ϑ2, ρ2}) =
1

2

(ϑ2
2(1− ρ2

2)

ϑ2
1(1− ρ2

1)
+
ϑ2

1(1− ρ2
1)

ϑ2
2(1− ρ2

2)
− 2
)
.

(4.2.10)

The parameter µ does not appear in the above formula and thus the structure

of D1 in the above formula would be invariant to any re-parametrization of

µ. A global distance structure invariant prior π(µ, ϑ, ρ) cannot be derived

from this D1 since there does not exist two prior measures that are effectively
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equivalent as defined in Equation (3.3.13) with any re-parametrization. We

will see later in Equation (4.2.14) that this D1 is exactly the same as that in

the context of only ϑ, ρ unknown. In other words, D1 here only indicates some

structure invariances conditional on known µ.

• In order to explore the information lost by the above D1, we look at

D2 = lim
N→∞

(d−N ·D1) =

1

2

[ϑ2
2

ϑ2
1

1

ρ2
1

+
ϑ2

1

ϑ2
2

1

ρ2
2

+
(µ1 − µ2)2

ϑ2
1

1

ρ2
1

+
(µ1 − µ2)2

ϑ2
2

1

ρ2
2

−
(ϑ2

2(1− ρ2
2)

ϑ2
1(1− ρ2

1)

1

ρ2
1

+
ϑ2

1(1− ρ2
1)

ϑ2
2(1− ρ2

2)

1

ρ2
2

)]
.

Under the original parametrization {µ, σ, σα}, the above D2 can be rewritten

as

D2 =
1

2

[(σ2
α2

σ2
α1

+
σ2
α1

σ2
α2

)
+
((µ1 − µ2)2

σ2
α1

+
(µ1 − µ2)2

σ2
α2

)
−
(σ2

2

σ2
1

+
σ2

1

σ2
2

)]
This D2 is invariant to the transformation

{µ, σα, σ} → {a+ bµ, bσα, cσ}

where a ia an arbitrary value; b, c are arbitrary positive values. According to

Theorem 3.4.3 and 3.4.5, a prior that is accepted with respect to the global

distance structure invariance based on the above D2 has the following form

π(µ, σ, σα) ∝ σγα
σ

(4.2.11)

where γ is some real value.

In summary, we cannot conclude a prior that is accepted with respect to the global

distance structure invariance based on d({µ1, ϑ1, ρ1}, {µ2, ϑ2, ρ2}) and D1. But,

based on D2, a prior that is accepted with respected to the global distance structure

invariance can be derived and it has the form of Equation (4.2.11).
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4.2.2 With ϑ, ρ unknown

Here we investigate the situation that ϑ, ρ are the parameters of interest. With µ

known, we have the symmetrical Kullback-Leibler distance

d
(
{ϑ1, ρ1}, {ϑ2, ρ2}

)
=

1

2

(
tr(A−1

1 A2) + tr(A−1
2 A1)− 2N

)
=
N

2

( 1

1 + (N − 1)ρ2
1

ϑ2
2

ϑ2
1

+
(N − 1)ρ2

1

1 + (N − 1)ρ2
1

ϑ2
2(1− ρ2

2)

ϑ2
1(1− ρ2

1)

+
1

1 + (N − 1)ρ2
2

ϑ2
1

ϑ2
2

+
(N − 1)ρ2

2

1 + (N − 1)ρ2
2

ϑ2
1(1− ρ2

1)

ϑ2
2(1− ρ2

2)
− 2
)
.

(4.2.12)

In particular, tr(A−1
1 A2) in the above d

(
{ϑ1, ρ1}, {ϑ2, ρ2}

)
is the same with that

in Equation (4.2.9) but can be rewritten as a weighted sum of these two terms

ϑ2
2

ϑ2
1

=
σ2

2+σ2
α 2

σ2
1+σ2

α 1
and

ϑ2
2(1−ρ2

2)

ϑ2
1(1−ρ2

1)
=

σ2
2

σ2
1
, i.e.

tr(A−1
1 A2) = N

( 1

1 + (N − 1)ρ2
1

ϑ2
2

ϑ2
1

+
(N − 1)ρ2

1

1 + (N − 1)ρ2
1

ϑ2
2(1− ρ2

2)

ϑ2
1(1− ρ2

1)

)
. (4.2.13)

This distance d
(
{ϑ1, ρ1}, {ϑ2, ρ2}

)
in Equation (4.2.12) does not show clear struc-

tural invariance due to the influence of N . Therefore, we now look at the following

two situations:

• The averaged distance with N →∞,

D1 = lim
N→∞

d̄
(
{ϑ1, ρ1}, {ϑ2, ρ2}

)
=

1

2

(ϑ2
2(1− ρ2

2)

ϑ2
1(1− ρ2

1)
+
ϑ2

1(1− ρ2
1)

ϑ2
2(1− ρ2

2)
− 2
)

(4.2.14)

By the following transformation

ϕ = log ϑ, φ = log(1− ρ2),

D1 changes to

D1 =
1

2

[
exp

(
2(ϕ2 − ϕ1) + (φ2 − φ1)

)
+ exp

(
2(ϕ1 − ϕ2) + (φ1 − φ2)

)
− 2
]
.

(4.2.15)

If the above term D1 is considered as a distance to measure the differences be-

tween models, a re-parametrization that such a distance structure is invariant

to is

η = ϕ+ a1, ξ = φ+ a2, (4.2.16)
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where a1, a2 are arbitrary values. However, this re-parametrization cannot be

used to derive the global distance structure prior since the identity of Equation

(3.1.7) is violated. Particularly, Sξ, the space of ξ, is not the same with Sφ,

the space of φ since

Sξ = (−∞, a2), Sφ = (−∞, 0). (4.2.17)

Therefore, the re-parametrization illustrated in Equation (4.2.16) cannot be

used to derive a strict global distance structure invariant prior. The re-

parametrization that the distance D1 in Equation (4.2.15) is invariant to is

η = ϕ+ a, φ = φ, (4.2.18)

where a is an arbitrary value. That is,

D1

(
{ϕ1, φ1}, {ϕ2, φ2}

)
= D1

(
{η1, φ1}, {η2, φ2}

)
.

The above formula indicates the conditional invariance in the structure of D1.

Denote the parameter space for parameters ϕ, φ by Sϕ, Sφ respectively. For

any R ⊂ Sφ and its prior measure ΩR, we have

ΩR

(
a+M

)
ΩR(M)

= k(a), ∀M ⊂ Sϕ (4.2.19)

The above equation indicates that the ratio between ΩR

(
a+M

)
and ΩR(M)

does not depend on the sets M . This is in line with that shown in Equation

(3.3.21). Note that ΩR corresponds to the set R and that ΩR is a measure on

the space Sϕ. According to the derivation in Theorem 3.3.3, we can conclude

that ΩR has the density πR ∝ 1
ϑ
. In other words, this is a conditional prior

π(ϑ|ρ) ∝ 1

ϑ

Therefore, the global distance structure invariant prior for the unknown pa-

rameters {ϑ, ρ} has the following form

π(ϑ, ρ) ∝ π(ρ) · 1

ϑ
. (4.2.20)

The prior for ρ cannot be specified from the invariance provided by D1.
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• In order to consider the information lost by D1, we look at D2 in terms of the

parametrization {ϕ, φ}

D2 = lim
N→∞

(d−N ·D1)

=
1

2

{exp[2(ϕ2 − ϕ1)]

1− exp(φ1)
+

exp[2(ϕ1 − ϕ2)]

1− exp(φ2)

− exp[2(ϕ2 − ϕ1) + (φ2 − φ1)]

1− exp(φ1)
− exp[2(ϕ1 − ϕ2) + (φ1 − φ2)]

1− exp(φ2)

}
.

The re-parametrization, that the above D2 is invariant to, is same with that

shown in Equation (4.2.18). Therefore, the global distance structure invariant

prior based on D2 has the same form with that shown in Equation (4.2.20).

In summary, both D1 and D2 agree on the same re-parametrization that they are

invariant to and thereby have the same global distance structure invariant prior

π(ϑ, ρ) ∝ π(ρ) · 1
ϑ
.

4.2.3 With µ, ϑ unknown

Here, we suppose that µ, ϑ are the parameters of interest. With ρ known, the

symmetrical Kullback-Leibler distance is

d
(
{µ1, ϑ1}, {µ2, ϑ2}

)
=

1

2

(
N
ϑ2

2

ϑ2
1

+N
ϑ2

1

ϑ2
2

+
N(µ1 − µ2)2

ϑ2
1

(
1 + (N − 1)ρ2

) +
N(µ1 − µ2)2

ϑ2
2

(
1 + (N − 1)ρ2

) − 2N
)
. (4.2.21)

By taking the transformation µ = µ, ϕ = log ϑ, the above Kullback-Leibler distance

could be rewritten as

d
(
{µ1, ϕ1}, {µ2, ϕ2}

)
=

1

2

(
N exp

(
2(ϕ2 − ϕ1)

)
+N exp

(
2(ϕ1 − ϕ2)

)
+

N

1 + (N − 1)ρ2

((µ1 − µ2)2

exp(2ϕ1)
+

(µ1 − µ2)2

exp(2ϕ2)

)
− 2N

)
.

(4.2.22)

It is easy to see that

d
(
{µ1, ϕ1}, {µ2, ϕ2}

)
= d
(
{a+ cµ1, ϕ1 + log c}, {a+ cµ2, ϕ2 + log c}

)
. (4.2.23)
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This result is in line with the distance structure invariance proved for the location-

scale family in proposition 3.4.4. This coincidence is rational since the model belongs

to the location-scale family with the parametrization {µ, ϑ, ρ} and known ρ. There-

fore, according to Theorem 3.4.5, the non-informative prior according to the global

distance structure invariant principle is

π(µ, ϑ) ∝ ϑγ,

where γ is some real values.

4.2.4 With µ, ρ unknown

Suppose that µ, ρ are the parameters of interest. With ϑ known, the symmetrical

Kullback-Leibler distance could be written as

d
(
{µ1, ρ1}, {µ2, ρ2}

)
=
N

2

( (N − 1)ρ2
1(ρ2

1 − ρ2
2)

(1− ρ2
1)
(
1 + (N − 1)ρ2

1

) +
(µ2 − µ1)2

ϑ2
(
1 + (N − 1)ρ2

1

)
+

(N − 1)ρ2
2(ρ2

2 − ρ2
1)

(1− ρ2
2)
(
1 + (N − 1)ρ2

2

) +
(µ2 − µ1)2

ϑ2
(
1 + (N − 1)ρ2

2

))
=
N

2

( (N − 1)(ρ2
1 − ρ2

2)2
(
(N − 1)ρ2

1ρ
2
2 + 1

)
(1− ρ2

1)(1− ρ2
2)
(
1 + (N − 1)ρ2

1

)(
1 + (N − 1)ρ2

2

)
+

(µ1 − µ2)2

ϑ2

( 1

1 + (N − 1)ρ2
1

+
1

1 + (N − 1)ρ2
2

))
.

(4.2.24)

Obviously, the above distance does not show clear structural invariance due to the

influence of N . We attempt to consider the following two situations:

• Suppose that N →∞, the averaged distance becomes

D1 = lim
N→∞

d̄
(
{µ1, ρ1}, {µ2, ρ2}

)
= −1

2

(1− ρ2
2

1− ρ2
1

− 1
)(1− ρ2

1

1− ρ2
2

− 1
)
.

Again, the above D1 could not tell anything about µ and thus its structure is

invariant to any re-parametrization of µ. This D1 only provides structure in-

variance conditional on known µ. From D1, we cannot obtain a global distance

structure invariant prior π(µ, ρ).
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• In order to explore the information lost by D1, we look as

D2 = lim
N→∞

(d−N ·D1)

=
1

2

[
− 1

2

(1− ρ2
2

1− ρ2
1

− 1
)(1− ρ2

1

1− ρ2
2

− 1
)1− (ρ2

1 + ρ2
2)

ρ2
1ρ

2
2

+
(µ1 − µ2)2

ϑ2

ρ2
1 + ρ2

2

ρ2
1ρ

2
2

]
.

The re-parametrization, that the above D2 is invariant to, is

η = µ+ a, ρ = ρ, (4.2.25)

where a is an arbitrary real value. Being similar with the argument for D1 in

section 4.2.2, we can obtain a conditional prior π(µ|ρ). According to Theorem

3.3.3, this conditional prior has the following form

π(µ|ρ) ∝ 1

Therefore, the global distance structure invariant prior for the unknown pa-

rameters {µ, ρ} has the following form

π(µ, ρ) ∝ π(ρ) (4.2.26)

The prior for ρ cannot be specified from the invariance provided by this D2.

In summary, the global distance structure invariant prior in the context of having

{µ, ρ} unknown is derived based on D2 and has the form π(µ, ρ) ∝ π(ρ).

4.2.5 With only µ unknown

Suppose that the location parameter µ is the only parameter of interest. With ϑ, ρ

known, the symmetrical Kullback-Leibler distance is

d(µ1, µ2) =
(µ1 − µ2)2

ϑ2(1/N + ρ2(N − 1)/N)
. (4.2.27)

According to Equation (4.2.8), this distance d shows dependency only on the two

parameter values via the difference and is obviously invariant to a translation no

matther what values N takes. According to theorem 3.3.3, a non-informative prior

based on the global distance structure invariance is the uniform distribution, that is

π(µ) ∝ 1.
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4.2.6 With only ϑ unknown

Suppose that the scale parameter ϑ is the only parameter of interest. With µ, ρ

known, the symmetrical Kullback-Leibler distance is

d(ϑ1, ϑ2) =
N

2

(ϑ2
2

ϑ2
1

+
ϑ2

1

ϑ2
2

− 2
)
. (4.2.28)

It only depends on the two scale parameter values via the ratio. By taking the

logarithm transformation of the scale parameter ϑ, i.e.

ϕ = log ϑ,

the distance could be invariant to any translation. Therefore, a non-informative prior

that is accepted with respect to the global distance structure invariance, according

to theorem 3.3.3, is π(ϕ) ∝ 1. By transforming back to the original parametrization,

the non-informative prior changes to

π(ϑ) ∝ 1

ϑ
. (4.2.29)

4.2.7 With only ρ unknown

Suppose that we are interested in ρ. With µ, ϑ unknown, the symmetrical Kullback-

Leibler distance is

d(ρ1, ρ2) = KL(p(yi|µ, ϑ, ρ2)||p(yi|µ, ϑ, ρ1)) +KL(p(yi|µ, ϑ, ρ1)||p(yi|µ, ϑ, ρ2))

=
1

2

( N(N − 1)ρ2
1(ρ2

1 − ρ2
2)

(1− ρ2
1)
(
1 + (N − 1)ρ2

1)
+

N(N − 1)ρ2
2(ρ2

2 − ρ2
1)

(1− ρ2
2)
(
1 + (N − 1)ρ2

2

)). (4.2.30)

This distance does not show clear structural invariance. Therefore, we attempt to

find some structure invariances and remove N by using the limit technique. As

N →∞, we have

D1 = lim
N→∞

1

N
d(ρ1, ρ2) =

1

2
(ρ2

1 − ρ2
2)(

1

1− ρ2
1

− 1

1− ρ2
2

) =
1

2

(
1− ρ2

2 − (1− ρ2
1)
)
(ρ2

1 − ρ2
2)

(1− ρ2
1)(1− ρ2

2)

=
1

2

(
1− ρ2

2 − (1− ρ2
1)
)(

(1− ρ2
2)− (1− ρ2

1)
)

(1− ρ2
1)(1− ρ2

2)

= −1

2

(1− ρ2
2

1− ρ2
1

− 1
)(1− ρ2

1

1− ρ2
2

− 1
)
. (4.2.31)
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By the following transformation,

ϕ = log(1− ρ2),

Equation ((4.2.31)) could be rewritten as

D1 = −1

2

(
exp(ϕ2 − ϕ1)− 1

)(
exp(ϕ1 − ϕ2)− 1

)
.

Suppose that this D1 is considered as the distance to measure the differences be-

tween models. Under the parametrization ϕ, the above result is invariant to any

translation, i.e.

ξ = ϕ+ a

where a is an arbitrary value. Because of the similar reason illustrated in Equa-

tion (4.2.17), this re-parametrization cannot be used to derive a strict global dis-

tance structure prior. Let us put this problem aside and still consider to use this

re-parametrization to derive a prior. The resulting prior is π(ϕ) ∝ 1. And by

transforming back to parametrization {ρ}, we have

π(ρ) ∝ ρ

1− ρ2
. (4.2.32)

4.2.8 Summary

Here, the priors derived in all different contexts from the global distance structure

invariant principle are summarized in the following table. The first row specified

the unknown parameters and the second row states the corresponding priors. {·}?

denote that the corresponding prior is derived according to a re-parametrization

that violates the identity of parameter spaces as illustrated in Equation (3.1.7).

Parameters {µ} {ϑ} {ρ}? {µ, ϑ} {µ, ρ} {ϑ, ρ} {µ, ϑ, ρ}

Prior 1 1
ϑ

ρ
1−ρ2 ϑγ π(ρ) π(ρ) · 1

ϑ
ϑγργ

1−ρ2

Table 4.1: Non-informative priors from global distance structure invariant principle for

the one-way random effect model

Particularly, the prior reported in the last column is obtained by transforming the

prior π(µ, σ, σα) ∝ σγα
σ

to that under the parametrization {µ, ϑ, ρ}. In addition, by
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looking at the above table, we see that the prior of the following form

1

ϑ

ρ

1− ρ2
(4.2.33)

respects all the forms of the above priors reported in the rest columns of the above

table. In the next section, we will test the performance of two priors:

π(µ, ϑ, ρ) ∝ ϑγργ

1− ρ2
; π(µ, ϑ, ρ) ∝ 1

ϑ

ρ

1− ρ2

by simulation studies to see whether their corresponding posterior distributions have

unreasonable performances. Note that γ in the prior π(µ, ϑ, ρ) ∝ ϑγργ

1−ρ2 is unspecified.

Note that by choosing γ ∈ (−1, 0), the posterior distribution can be guaranteed

to be proper even with m = 3. We, therefore, arbitrarily set γ as −1
2

and test

π(µ, ϑ, ρ) ∝ 1√
ϑρ (1−ρ2)

in the next section.
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4.3 Prior Evaluation

In this section, frequentist performance of different priors are investigated for the

one-way random effect model. We firstly introduce the priors to be tested, followed

by the simulated data. And then, the performance of different priors is presented.

Priors

The tested priors are listed as follows.

• Global distance structure prior (GDSP for short):

π(µ, σ, σα) ∝ 1

σ
√
σα

This is the prior obtained by setting γ = −1
2

in the prior π(µ, σ, σα) ∝ σγα
σ

.

• Conditional Global distance structure prior (CGDSP for short):

π(µ, σ, σα) ∝ σα
σ(σ2

α + σ2)

This prior is obtained by transforming the prior π(µ, ϑ, ρ) ∝ 1
ϑ

ρ
1−ρ2 under the

parametrization {µ, ϑ, ρ} to the original parametrization {µ, σ, σα}. Apart

from the prior derived in the context with all three parameters unknown, it

respects forms of all the priors derived for the one-way random effect model

in the previous section.

• Jeffreys prior (JP for short):

π(µ, σ, σα) ∝ σα
σ(Nσ2

α + σ2)3/2

This prior is same as the reference prior when setting {µ, σ, σα} in one group

with same importance.

• Jeffreys prior with location fixed (JPLF for short):

π(µ, σ, σα) ∝ σα
σ(Nσ2

α + σ2)
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• Half Cauchy prior suggested by Gelman Gelman et al. (2006):

π(µ, σ, σα) ∝ 1

σ(σ2
α + A2)

Following the suggestion by Gelman, we set A as a large value to obtain

a weakly informative prior. Particularly, 25 and 50 are chosen. Therefore,

the tested priors denoted by ‘Gelman25’ and ‘Gelman50’ respectively are

π(µ, σ, σα) ∝ 1
σ(σ2

α+252)
and π(µ, σ, σα) ∝ 1

σ(σ2
α+502)

.

• Uniform shrinkage prior (USP for short):

π(µ, σ, σα) ∝ σσα
(Nσ2

α + σ2)2

The above prior is obtained by setting the prior π(µ, σ, S) ∝ 1
σ

with S =

σ2
α

σ2
α+σ2/N

and transforming back to parametrization {µ, σ, σα}.

Simulated Data

The data used to explore the performance of priors are simulated by setting the

parameter values and number of observations as follows:

Parameter Values Experimental Design

σα σ µ σα
σ

m N

2 2 5 1

3 3

3 100

10 3

10 100

2 0.2 5 10

3 3

3 100

10 3

10 100

2 20 5 0.1

3 3

3 100

10 3

10 100

20 2 5 10

3 3

3 100

10 3

10 100

Table 4.2: Parameter values and experimental designs for simulating data
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In total, there would be 16 scenarios with different parameter values and experi-

mental designs. The value of µ is fixed as 5 for all scenarios. Four sets of parameter

values for σα, σ are chosen varying the ratio σα
σ

. Particularly, the last set of param-

eter values {σα = 20, σ = 2} are specified to have the same ratio as that for the

second set {σα = 2, σα = 0.2}. The reason for considering data simulated using

parameter values {σα = 20, σ = 2} in the study is to detect whether the actual

values for σα, σ themselves have some influences on performances of priors. As for

the experimental design, 4 different settings are specified for each set of parameter

values so that we could explore the impacts of the number of groups and number of

observations within each group.

Simulation Results

As illustrated in table 4.2, there are 16 scenarios. For each scenario, 1000 data sets

are firstly generated according to the one-way random effect model and then each

prior is repeatedly tested on the simulated 1000 data sets. The performance of a prior

is analysed by examining the mean, median, 95% credible interval and 95% HPD

(Highest Posterior Density) interval of the corresponding posterior samples obtained

by the MCMC method. Particularly, Stan (Stan Development Team, 2014a) is used

to obtain the Markov chain with 50000 posterior MCMC samples. The chain is

thinned by 3 and has 2000 burn-in iterations. Since 1000 data sets are generated for

each scenario, averaged posterior mean, averaged posterior median, the percentage

of true values falling in 95% credible interval and the percentage of true values falling

in 95% HPD interval are reported in the following plots. Results of different priors

are distinguished by colours: GDSP is represented by light-blue dot; CGDSP is

represented by blue dot; green and purple dots stand for JP and JPLF respectively;

red and yellow dots denote Gelman25 prior and Gelman50 prior respectively; an

orange dot is for USP. In the following plots, X-axes records the data scenarios

determined by the true parameter values and experimental designs. In particular,

each data scenario is expressed by σα σ m N in the x axis. For example, 2 2 3 100

stands for the data sets generated by setting σα = 2, σ = 2,m = 3, N = 100.
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Figure 4.1: Averaged posterior mean of σα across 1000 data sets for each data type. The

horizontal dotted line shows the true value of σα

The black dashed lines mark the true values of σα used to generate data sets. The

red dashed lines mark the 20% error bounds. JP (green dot) is the prior that

provides averaged posterior mean nearest to the true values for most scenarios.

USP (orange dot) always gives the smallest mean values among the test priors. The

Gelman25 prior (red dot) and the Gelman50 prior (yellow dot) obtain relatively large

values compared with other priors in most situations. Particularly, the averaged

mean values obtained by the Gelman50 are always larger than that offered by the

Gelman25. This is consistent with the fact that the Gelman50 prior has larger scale

and thus could be more diffuse than the Gelman25 prior. GDSP (light-blue dot) also

provides relatively large values for the scenarios with σα larger than or equal to σ (i.e.

{σα = 2, σ = 2}, {σα = 2, σ = 0.2}, {σα = 20, σ = 2}) but gives results close to the
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true values in the scenario with σα smaller than σ (i.e. {σα = 2, σ = 20}). JPLF

(purple dot) and GDSP (blue dot) have similar performances. For the scenarios

with ratio σα
σ

= 10, JPLF and GDSP almost overlap with each other. Let us now

turn to the influences of experimental designs and true parameter values. Firstly,

the second row of Figure 4.1 illustrates prior performances for the data sets with

m = 10 while the first row presents that for the data sets with m = 3. Obviously,

great improvements are displayed in the second row compared to the performance

of the first row since the all the results are shrinked towards the true values. Let

us now turn to each individual plot containing two scenarios with only N (number

of observations in each group) different. Increasing N from 3 to 100 provides big

differences only for the scenarios with σα smaller than σ (i.e. {σα = 2, σ = 20}).

For the rest scenarios, changing N does not make obvious differences in the results.

Generally speaking, the Jeffrey prior could be the best one among the test priors by

simply looking at the posterior mean.

It is worthwhile exploring the median of the posterior samples due to the skew-

ness of the posterior distribution for σα. Let us now look at Figure 4.2 that il-

lustrates the averaged median of 1000 simulated data sets for each data scenario.

The influences of true parameter values and experimental designs on the averaged

median are similar to that exhibited in Figure 4.1 for the averaged mean. The

performances of priors, however, have great differences in terms of median values.

Particularly, JPLF (purple dot) replaces JP (green dot) to provide estimations that

are nearest to the true values in most situations. And, thus, JPLF becomes the

best choice from the perspective of posterior median. CGDSP (blue dot) exhibits

similar performances with that of JPLF for the scenarios with σα larger than σ (i.e.

{σα = 2, σ = 0.2}, {σα = 20, σ = 2}). GDSP (light-blue dot) exhibits good perfor-

mances for the scenarios with {σα = 2, σ = 2}, {σα = 2, σ = 20}. In other words,

CGDSP (blue dot) has good performances when the ratio σα
σ

is large while GDSP

(light-blue dot) has good performances when the ratio σα
σ

starts to decrease. This

phenomenon also exists in the Figure 4.1 reporting the averaged posterior mean.
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Figure 4.2: Averaged posterior median of σα across 1000 data sets for each data type.

The horizontal dotted line shows the true value of σα

Let us now turn to look at Figure 4.3 showing the percentage of 1000 data sets

for each data scenario that the true values of σα is included in the 95% credible

intervals. Such a percentage is expected to be close to 95% marked by the dotted

line. The texts in Figure 4.3 report the priors whose percentages of including the

true values in their 95% credible interval are too low to draw on the plots. It can be

easily seen that USP has the worst performances amongst the investigated priors.

The JP (green dot), which is the best choice when simply looking at the averaged

posterior mean in Figure 4.1, does not provide satisfactory results here because it

always leads to low percentages. For scenarios with {σα = 2, σ = 20}, the results

are not as satisfactory as those for other data scenarios since most priors fall out of

range. For these scenarios, GDSP (light-blue dot) provides the best performances

February 16, 2016



4.3. Prior Evaluation 72

among all the tested priors. This figure also points out that the larger values m and

N take, the better performances the priors could obtain.
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Figure 4.3: Percentage of 1000 data sets for each data type that the true value of σα lies

in its 95% credible interval.

Again, a 95% HPD interval is explored due to the skewness of posterior dis-

tribution for σα. Figure 4.4 shows the percentage of 1000 data sets for each data

scenario that the true value of σα is included in the 95% HPD intervals. This fig-

ure shows that JPLF is the best choice since the purple dots are the closest to the

dotted line in most scenarios. And the CGDSP (blue dot) and JPLF (purple dot)

are close or almost overlap with each other in all the scenarios apart from the ones

with σα = 2, σ = 20.
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Figure 4.4: Percentage of 1000 data sets for each data type that the true value of σα lies

in its 95% HPD interval.

As for the prior performances for σ, µ, all tested priors provide reasonable results

as illustrated in Figure B.1, B.2, B.3 and B.4. And the differences amongst priors

are not significant. One point to note is that both the averaged posterior mean and

median for σ shrink quickly towards the true values as N increases from 3 to 100.

Taken altogether, the CGDSP offers acceptable results in scenarios when the

ratio σα
σ

is large and it displays similar performances with JPLF in such scenarios.

The JPLF is the best choice when the ratio σα
σ

is around one. For scenarios with

small σα
σ

, most priors do not provide satisfactory behaviour whereas the GDSP

has relatively good performances in such scenarios. Although the CGDSP has some

inadequacies (violation of the identity of parameter spaces) as stated in the previous

section, it does not give absurd results. It is hard to decide which prior always
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performes better than others when we claim that there is no prior knowledge at all.

In such a situation, it is better to test several priors and compare their performance.

In particular, we suggest to test at least the JPLF, CGDSP and GDSP and compare

their performances.
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Chapter 5

Generalised Metropolis-Hastings

with Dynamics

Here, we propose a meta-algorithm which we call it ‘generalised Metropolis-Hastings

with dynamics’ to construct Markov chains converging to the desired distributions.

It is a class of algorithms that make the transitions by using augmented variables

and dynamics. We illustrate that the Markov chains constructed according to this

scheme converge to the desired distribution as long as the dynamics are volume-

preserving involutions. The ordinary Metropolis-Hastings algorithm can be consid-

ered to belong to this class (see section 5.1 for details). With proper designs, the

dynamics have the ability to suppress the random-walk behaviour inherent in the or-

dinary Metropolis-Hastings algorithm to some degree and thereby improve the algo-

rithm efficiency. In particular, Hamiltonian Monte Carlo (HMC) can be considered

as a generalised Metropolis-Hastings with dynamics algorithm which tries to avoid

the random-walk behaviour and mitigates problems of highly correlated samples by

defining the dynamics according to the gradient information of target distributions.

This makes HMC easier to have remote proposals and converge quicker than the

ordinary Metropolis-Hastings method.

In the simulation of Hamiltonian dynamics, the leap-frog integrator, a numeri-

cal method, is used to approximate Hamiltonian trajectories if the exact dynamics

cannot be obtained. HMC with both exact dynamics and approximated dynamics

can be considered as the generalised Metropolis-Hastings with dynamics algorithms.
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To approximately solve the Hamiltonian dynamics, the user must specify two pa-

rameters: the number of leap-frog steps l and the step-size value of the leap-frog

integrator ε. Neal (2011) discussed the theoretical and practical aspects of HMC.

Selecting a proper step-size value is important as ε controls the approximation

errors caused by the leap-frog integrator for the calculated dynamics and thus is in-

fluential for the acceptance rate and auto-correlation of simulated samples. The issue

of how to tune ε has been attracting much interest in recent years. The frequently

used methods usually adapt step-size values based on optimizing an chosen objec-

tive measure (such as acceptance probability or first-order autocorrelation) which

describes the behavior of an MCMC chain. Therefore, the step-size tuning problem

transfers to be an optimization problem with respect to the objective measure. In

particular, Hoffman and Gelman (2011) proposed to use the stochastic optimization

method; Wang et al. (2013) suggested to use the Bayesian optimization method.

Both methods have two disadvantages. Firstly, they require many extra parameters

to be set before the start of HMC algorithm in order to control the optimization

method and thus are contrary to our original aim of realizing an automatic HMC.

Especially, the Bayesian optimization method is achieved through fitting Gaussian

process and thus require lots of extra efforts to choose and tune an appropriate

Gaussian kernel function. Secondly, these methods are both vanishing adaptions,

that is the adaptive power would die out eventually and the step-size would be al-

most fixed after some point. Therefore, the chain behavior after these points cannot

be considered. These vanishing adaptation solves many problems. They do not,

however, take into account the situation in which different regions have their own

requirements for step-size. In fact, the proper step-size value varies since the stable

bound of dynamics, dictated by the local geometric structure, changes throughout

the state space. It is not suitable to choose a global step-size value in this situa-

tion. In addition, it is usually impossible for us to get access to the information

about whether the stable bound of Hamiltonian dynamics is fixed or not when the

target distribution is unknown and complicated. Therefore, it is risky to use a fixed

step-size value that is tuned only in burn-in iterations based on the acceptance rate.

Based on the step-size mentioned above, we propose an algorithm which exploits
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the geometric structure of the log-density for a statistical model to generate step-size

stochastically and thus the step-size will automatically adapt to the local structure

at each MCMC iteration according to the location of the parameter. The resulting

algorithm, that retains the advantages of HMC without the need to set or tune the

step-size value, is also a generalised Metropolis-Hastings with dynamics method. We

call this algorithm as ‘HMC with stochastic step-size’ in later chapters.

This chapter is divided into 8 sections. The first section details how to construct

the generalised Metropolis-Hastings with dynamics algorithms. In section 5.2, we

provide mathematical proof for the generalised Metropolis-Hastings with dynamics

algorithms. Sections 5.3 and 5.4 describe the reason that HMC with both exact

dynamics and approximated dynamics can be considered as special cases of the gen-

eralised Metropolis-Hastings with dynamics method. Section 5.5 and 5.6 contain

issues concerning step-size problems of HMC with approximated dynamics and con-

ditions to locally stabilize the approximated dynamical trajectories. In section 5.7,

HMC with stochastic step-size is introduced and its performance is provided by an

illustrative example. In the final section, some conclusions are drawn.
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5.1 General Construction

Here, we firstly give a brief description of the ordinary Metropolis-Hastings algorithm

and then introduce the generalised Metropolis-Hastings with dynamics algorithm.

The ordinary Metropolis-Hastings Algorithm

Consider a situation in which the model parameters of interest θ ∈ RD have proba-

bility density function p(θ). The usual approach of the ordinary Metropolis-Hastings

algorithm is to start with specifying a probability density function f(θ′|θc) to draw

the proposal sample θ′ conditional on the current state θc. The probability of ac-

cepting this proposal, usually called as acceptance probability, is given by

min{1, p(θ
′)f(θc|θ′)

p(θc)f(θ′|θc)
},

in order to satisfy the reversibility and thus guarantee the right equilibrium distri-

bution. The ordinary Metropolis-Hastings algorithm is now shown in the following

algorithmic form.

Algorithm 1 Ordinary Metropolis-Hastings

1: Given an initial value θ1;

2: for j = 1, 2, · · · , n do

3: Sample θ′ ∼ f(·|θj);

4: Let

θj+1 =

 θ′, If Uniform(0, 1) ≤ min{1, p(θ
′)f(θj |θ′)

p(θj)f(θ′|θj)}

θj, otherwise
.

5: end for

The Generalised Metropolis-Hastings with Dynamics Algorithm

The approach of the generalised Metropolis-Hastings with dynamics algorithm is to

start with introducing auxiliary variables ϕ ∼ g(·|θc) conditional on the current

state of the Markov chain, where ϕ ∈ Rd. Note that d, the dimension of ϕ, is not

necessarily the same as the dimension of the parameters of interest. The joint prob-

ability density function, composed by the parameters of interest and the augmented
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variables, is

p(θ,ϕ) = p(θ)g(ϕ|θ). (5.1.1)

By using a dynamic evolution U that satisfies the following two conditions:

• U is volume-preserving;

• U is an involution,

the state {θc,ϕ} is transfered to state {θ′,ϕ′}, i.e.

{θ′,ϕ′} = U({θc,ϕ}).

With probability

min{1, p(θ
′)g(ϕ′|θ′)

p(θc)g(ϕ|θc)
},

state θ′ is accepted. It can be seen that simulations for the parameters of interest

could be obtained by firstly sampling the joint density in Equation (5.1.1) and then

simply ignoring the auxiliary variable ϕ. This is because the marginal density of

the joint density p(θ,ϕ) is our desired distribution p(θ), i.e.∫
p(θ,ϕ)dϕ =

∫
p(θ)g(ϕ|θ)dϕ = p(θ). (5.1.2)

The process of this algorithm is summarized in the following algorithmic form.

Algorithm 2 Generalised Metropolis-Hastings with Dynamics Algorithm

1: Given an initial value θ1 and a dynamics U that is a volume-preserving involu-

tion;

2: for j = 1, 2, · · · , n do

3: Generate ϕ ∼ g(·|θj);

4: Obtain {θ′,ϕ′} = U({θj,ϕ});

5: Let

θj+1 =

 θ′, If Uniform(0, 1) ≤ min{1, p(θ
′)g(ϕ′|θ′)

p(θj)g(ϕ|θj)}

θj, otherwise
.

6: end for
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Note that generating augmented variables ϕ in the third step of the above algo-

rithm plays the role of introducing the randomness to the transitions as the dynamics

of step 4 is fixed. Any dynamics that is a volume-preserving involution can be used

in the above algorithm. In particular, the ordinary Metropolis-Hastings algorithm

can be considered as a special case of the generalised Metropolis-Hastings with dy-

namics as summarized in Algorithm 2. This can be seen by considering the proposal

θ′ in the third step of Algorithm 1 as the augmented variables ϕ in the third step

of Algorithm 2. The dynamic which transfers the state {θc,ϕ} to {θ′,ϕ′} in step 4

of Algorighm 2 is a swap between θc and ϕ, i.e.

{θ′,ϕ′} = U({θc,ϕ}) = {ϕ,θc}.

This swapping dynamics reproduces the ordinary Metropolis-Hastings algorithm.

And it satisfies the volume-preserving requirement since the Jacobian factor is given

by

| det(J)| =
∣∣∣ det

 dθ′

dθc
dθ′

dϕ

dϕ′

dθc
dϕ′

dϕ

∣∣∣ =
∣∣∣ det

0 1

1 0

∣∣∣ = 1.

Also, U is clearly a involution, i.e.

U
(
U({θc,ϕ})

)
= {θc,ϕ}.
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5.2 Mathematical Proof

In this section, we give the mathematical proof for the generalised Metropolis-

Hastings with dynamics method summarized in Algorithm 2. As indicated by

Equation (5.1.2), the joint density of the parameters of interest and the augmented

variables takes the desired statistical density p(θ) as its marginal density. Thus, this

method can be justified by showing that it constructs a Markov chain converging to

the joint probability p(θ,ϕ). Tierney (1998) proposed general Metropolis-Hastings

kernels which consider transition kernels with deterministic proposals as a special

case. The following is a more detailed restatement proving that the transition kernels

with dynamic method summarized in Algorithm 2 converge to the desired distribu-

tion.

Proposition 5.2.1 Suppose that X has density π(·) on X ⊆ Rp and that U is a

continuously differentiable bijection almost everywhere on X . Denote U−1 by T . If

the transition scheme is

Y |X = x =

 U(x) with probability α(x)

x with probability 1− α(x)
,

then we have

πY (y) =
(
1− α(y)

)
π(y) + α

(
T (y)

)
π
(
T (y)

)
|T ′|. (5.2.3)

Proof : The transition scheme can be rewritten as

Y = IU(X) + (1− I)X,

where I|X = x follows a Bernoulli distribution with probability α(x). Let Br(y)

denote the ball with radius r centered at y. The probability the variable Y is in

Br(y) becomes

P (Y ∈ Br(y)) = P
(
I = 1 ∩ U(X) ∈ Br(y)

)
+ P

(
I = 0 ∩X ∈ Br(y)

)
= P

(
I = 1 ∩X ∈ T

(
Br(y)

))
+ P

(
I = 0 ∩X ∈ Br(y)

)
=

∫
T
(
Br(y)

) α(x)π(x) dx+

∫
Br(y)

(
1− α(x)

)
π(x) dx. (5.2.4)
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After a change of variable by the bijection, Equation (5.2.4) becomes

P (Y ∈ Br(y)) =

∫
Br(y)

α
(
T (z)

)
π
(
T (z)

)
|T ′| dz +

∫
Br(y)

(
1− α(x)

)
π(x) dx.

As r → 0, we obtain

πY (y) = lim
r→0

P (Y ∈ Br(y))

|Br(y)|

= α
(
T (y)

)
π
(
T (y)

)
|T ′|+

(
1− α(y)

)
π(y). (5.2.5)

Proposition 5.2.2 The transition scheme given in proposition 5.2.1 conserves prob-

ability density function, i.e.

πY (y) = π(y), ∀y,

if the following conditions are satisfied:

1. The bijection U is volume-preserving, i.e.

|U ′| = 1. (5.2.6)

2. The bijection U is an involution, i.e.

U
(
U(x)

)
= x, ∀x ∈ X. (5.2.7)

3. The acceptance probability α(·) is set to

α
(
x
)

= min
{

1,
π
(
U(x)

)
π(x)

}
. (5.2.8)

Proof : Since U is an involution as defined in Equation (5.2.7), we obtain

U(x) = U−1(x) = T (x).

The above indicates that T is also a volume-preserving involution. Since the bijection

T preserves volume, Equation (5.2.3) becomes

πY (y) =
(
1− α(y)

)
π(y) + α

(
T (y)

)
π
(
T (y)

)
. (5.2.9)
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According to the involution condition, the acceptance probability defined in Equa-

tion (5.2.8) can be expressed as

α(x) = min
{

1,
π
(
U(x)

)
π(x)

}
= min

{
1,
π
(
T (x)

)
π(x)

}
. (5.2.10)

If π(y) ≤ π
(
T (y)

)
, then according to Equation (5.2.10) we have

α(y) = 1, α
(
T (y)

)
=

π(y)

π
(
T (y)

) .
Hence, πY (y) displayed in Equation (5.2.9) is simplified to

πY (y) = π(y).

Similarly, if π(y) > π
(
T (y)

)
, then

α(y) =
π
(
T (y)

)
π(y)

, α
(
T (y)

)
= 1.

Hence,

πY (y) = π(y).

.

The process of Algorithm 2 is justified by the following theorem.

Theorem 5.2.3 Suppose that X = (θ,ϕ) and its density π(x) = p(θ,ϕ) = p(θ)g(ϕ|θ).

If the transition from xc = (θc,ϕc) to y is given by

xc = (θc,ϕc)
generate ϕ−−−−−−→

fix θ
x = (θc,ϕ)

by the dynamics U−−−−−−−−−−→ y = (θ′,ϕ′), (5.2.11)

where U is a volume-preserving involution and y is accepted according to the follow-

ing rule

Y |X = xc =

 (θ′,ϕ′) with probability α(x)

(θc,ϕ) with probability 1− α(x)
,

with

α
(
x
)

= min
{

1,
π
(
U(x)

)
π(x)

}
= min{1, p(θ

′)g(ϕ′|θ′)
p(θc)g(ϕ|θc)

}, (5.2.12)

then the joint density p(θ,ϕ) is conserved, i.e.

πY (y) = π(y),

and θ ∼ p(θ).
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Proof : From Equation (5.2.11), the proposal-generating process is made of two

steps. Firstly, x = (θc,ϕ) is generated. The second step generates the proposal

y = (θ′,ϕ′) by using a volume-preserving involution U . We have the fact: if θc

follows p(θ), then (θc,ϕ) follows p(θ,ϕ) by sampling ϕ from g(ϕ|θc). Therefore,

the first step of the transition procedure automatically conserves the density function

p(θ,ϕ). In order to justify the entire transition procedure in Equation (5.2.11), we

only need to show that the second step of transition procedure conserves p(θ,ϕ).

The second step generates the proposal y = (θ′,ϕ′) by using a volume-preserving

involution U . With probability α in Equation (5.2.12), this proposal is accepted. If

it is rejected, the chain stays at state x = (θc,ϕ). According to proposition 5.2.2,

the second transition with probability α in Equation (5.2.12) also conserves π(·).

Therefore, the combination of these two generating steps illustrated in Equation

(5.2.11) with acceptance probability α in Equation (5.2.12) conserves the density

π(·). That is, p(θ,ϕ) is conserved. Therefore, θ ∼ p(θ) since the joint density

function p(θ,ϕ) takes the desired statistical density p(θ) as its marginal density.

From Theorem 5.2.3, we can see that the generalised Metropolis-Hastings with

dynamics method summarized in Algorithm 2 can provide us with a Markov chain

having the desired equilibrium distribution. Therefore, the issue changes to seeking

appropriate augmented variables and appropriate dynamics to provide efficient sim-

ulation results. In the following sections 5.3, 5.4 and 5.7, we will show the generalised

Metropolis-Hastings method with three suitable dynamics.
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5.3 Exact Hamiltonian Dynamics

Here, we illustrate that the Hamiltonian dynamics can be used as the dynamics

in Algorithm 2. We begin by introducing the design of the Hamiltonian system,

followed by its properties that are desired in the generalised Metropolis-Hastings

with dynamics method.

Consider a situation in which the model parameters of interest θ ∈ RD have

probability density function p(θ). In order to build a Hamiltonian system, an aux-

iliary variable pi is introduced for each such model parameter θi, 1 ≤ i ≤ D. These

auxiliary variables, called ‘momentum’ variables, are usually generated from a mul-

tivariate Gaussian distribution N(p|0,M). The joint probability density function

composed by the parameters of interest and the ‘momentum’ variables is p(θ,p) =

p(θ)N(p|0,M). In fact, the ‘momentum’ variables p act as the augmented variables

ϕ in Algorithm 2, i.e.

ϕ = p.

So far, the variable augmentation required in the generalised Metropolis-Hastings

with dynamics method is achieved. It can be seen that simulations for the param-

eters of interest could be obtained by firstly sampling the joint density p(θ,p) and

then simply ignoring the auxiliary variable p. The parameters of interest and the

augmented ‘momentum’ variables jointly compose a Hamiltonian system with its

energy defined via the negative logarithm of the joint density function

H(θ,p) = − log p(θ,p) = −L(θ) +
1

2
log{(2π)D|M |}+

1

2
pTM−1p, (5.3.13)

where L(θ) is the log-density function of the target distribution p(θ). In physics, θ

and −L(θ) are interpreted as ‘position’ variable and potential energy respectively;

p and 1
2
log{(2π)D|M |} + 1

2
pTM−1p are considered as ‘momentum’ variables and

‘kinetic’ energy respectively.

Here, we briefly illustrate how to construct a Markov chain converging to the right

joint density function p(θ,p) according to the Hamiltonian dynamics. We denote

the current state of the Markov chain by {θc,pc}. According to the construction of

Algorithm 2, ‘momentum’ variables p are firstly generated from N(0,M) to form

{θc,p}. And then, the dynamical transition achieved by the Hamiltonian system is
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designed by evolving the Hamiltonian dynamics with respect to dynamical time τ

according to Hamiltonian equations,

dθ

dτ
=

∂H

∂p
= M−1p, (5.3.14)

dp

dτ
= −∂H

∂θ
= ∇θL(θ). (5.3.15)

We denote the solution for the above differential equations by

(θ(τ),p(τ)) = Φτ (θ(0),p(0)),

where the starting point {θ(0),p(0)} of the dynamic trajectory is set as {θc,p}.

Note that Φτ plays the role of U in Algorithm 2. Therefore, the generalised Metropolis-

Hastings with the Hamiltonian dynamics achieves a transition process illustrated as

follows,

{θc,pc} p∼N(0,M)−−−−−−→ {θc,p} Hamiltonian−−−−−−−→
flow

{θ(τ),p(τ)}. (5.3.16)

The transition of the Markov chain from current state {θc,pc} to the new state

{θ(τ),p(τ)} is achieved by firstly generating the augmented ‘momentum’ variables

and then moving along the dynamic trajectory according to the Hamiltonian dif-

ferential equations. As previously commented, generating ‘momentum’ variables in

the first step plays the role of introducing the randomness of the transition as the

Hamiltonian flow in the second step is determined if the starting point {θ(0),p(0)}

and dynamical time τ are fixed. In the following part of this section, we illustrate

that such a flow has appealing properties to satisfy not only the conditions required

by the generalised Metropolis-Hastings with dynamics method but also guarantee

the acceptance probability to be exactly one.

5.3.1 Energy Preservation

A dynamic flow satisfying Hamiltonian differential equations preserves the total

energy of Hamiltonian system, i.e.

H{θ(τ),p(τ)} = H{θ(0),p(0)}.
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This conservation can be demonstrated by following facts. The change of total

energy with respect to dynamical time τ is

dH

dτ
=

D∑
i=1

{∂H
∂θi

dθi
dτ

+
∂H

∂pi

dpi
dτ

}
.

Since the dynamic flow satisfies Equation (5.3.14) and (5.3.15), the above line can

be rewritten as

dH

dτ
=

D∑
i=1

{∂H
∂θi

∂H

∂pi
+
∂H

∂pi

(
− ∂H

∂θi

)}
= 0.

Thus, the total energy would be exactly same as long as the dynamic flow adheres

to the Hamiltonian differential equations. Since the total energy and the joint prob-

ability density are in a one-to-one relationship as shown in Equation (5.3.13), the

conserving energy ensures conservation of the probability density, i.e.

p{θ(τ),p(τ)} = p{θ(0),p(0)}.

This exact energy preservation ensures the acceptance probability illustrated in

Equation (5.2.12) to be exactly one.

5.3.2 Volume Preservation

The dynamic flow actually makes a coordinate transformation from time 0 to time

τ . Denote
(
θi, pi

)
by xi for each dimension i. The transformation can be rewritten

as

Φτ :
(
x1(0), · · ·xD(0)

)
→
(
x1(τ), · · ·xD(τ)

)
.

The Jacobian matrix of such a transformation is

J
(
x(τ);x(0)

)
=
∂
(
x1(τ), · · · , xD(τ)

)
∂
(
x1(0), · · · , xD(0)

) , (5.3.17)

with its elements denoted by

Jij =
∂xi(τ)

∂xj(0)
. (5.3.18)

The Jacobian factor is

det(J) = exp
(

tr
(

log J
))
.
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Taking the derivative of the Jacobian factor with respect to time τ , we obtain

d

dτ
det(J) = exp

(
tr
(

log J
))
· tr
(
J−1 dJ

dτ

)
= det(J)

D∑
i=1

D∑
j=1

{
J−1
ij

dJji
dτ

}
. (5.3.19)

According to Equations (5.3.17) and (5.3.18),

J−1
ij =

∂xi(0)

∂xj(τ)
, (5.3.20)

dJji
dτ

=
∂ẋj(τ)

∂xi(0)
, (5.3.21)

where ẋ stands for the first derivative of the state with respect to time τ , i.e.

ẋ(τ) =
(
ẋ1(τ), · · · , ẋi(τ), · · · , ẋD(τ)

)
,

with

ẋi(τ) =
(dθi(τ)

dτ
,
dpi(τ)

dτ

)
=
( ∂H

∂pi(τ)
,− ∂H

∂θi(τ)

)
. (5.3.22)

Substituting Equation (5.3.20) and (5.3.21) into (5.3.19),

d

dτ
det(J) = det(J)

D∑
i=1

D∑
j=1

{
∂xi(0)

∂xj(τ)

∂ẋj(τ)

∂xi(0)

}

= det(J)
D∑
i=1

D∑
j=1

D∑
k=1

{
∂xi(0)

∂xj(τ)

∂ẋj(τ)

∂xk(τ)

∂xk(τ)

∂xi(0)

}
(5.3.23)

= det(J)
D∑
j=1

D∑
k=1

{
∂ẋj(τ)

∂xk(τ)

D∑
i=1

( ∂xi(0)

∂xj(τ)

∂xk(τ)

∂xi(0)

)}

= D · det(J)
D∑
j=1

D∑
k=1

{
∂ẋj(τ)

∂xk(τ)
δkj

}

= D · det(J)
D∑
j=1

{
∂ẋj(τ)

∂xj(τ)

}
(5.3.24)

where the chain rule is inserted into the line (5.3.23); and δkj stands for the delta

function, i.e.

δkj =

 1 if k = j

0 otherwise
.
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By substituting Equation (5.3.22) into (5.3.24), we have

d

dτ
det(J) = D · det(J)

D∑
j=1

{
∂

∂θj(τ)

(dθj(τ)

dτ

)
+

∂

∂pj(τ)

(dpj(τ)

dτ

)}

= D · det(J)
D∑
j=1

{
∂

∂θj(τ)

( ∂H

∂pj(τ)

)
+

∂

∂pj(τ)

(
− ∂H

∂θi(τ)

)}
= 0.

(5.3.25)

The above equation indicates the fact that the Jacobian factor does not change along

the Hamiltonian dynamic flow. In addition, the initial value of the Jacobian factor

is

det
(
J
(
x(0);x(0)

))
=

∣∣∣∣∣∂
(
x1(0), · · · , xD(0)

)
∂
(
x1(0), · · · , xD(0)

)∣∣∣∣∣ = 1.

Combining the above equation with the assertion in Equation (5.3.25), we have

det
(
J
(
x(τ);x(0)

))
= 1.

Therefore, along the dynamic flow, the volume element is preserved.

5.3.3 Involution

Recall that the Hamiltonian dynamics in Equation (5.3.14) and (5.3.15) is given by

the evolution operator Φτ ,

Φτ : {θ(0),p(0)} Hamiltonian−−−−−−−→
flow

{θ(τ),p(τ)}.

In order to illustrate the involution property, we could add an extra step—-changing

sign of ‘momentum’ variables—–to the Hamiltonian dynamics. More specifically, the

dynamics U can be considered as evolving the Hamiltonian dynamics with the sign

changed ‘momentum’ variables. Let us denote

{θ?,p?} = R({θ,p}) = {θ,−p},

where R denotes the transformation of changing sign of ‘momentum’ variables. The

‘momentum’ variables are generated from Gaussian distribution N(0,M) which is a

symmetrical distribution about 0 and thus changing the sign of p would not bring

changes to the total energy H. The sign change of p also does not have any influence
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on the volume-preserving property. According to the Hamiltonian equations (5.3.14)

and (5.3.15) for {θ,p}, we have the following differential equations for {θ?,p?}, dθ?

dτ
= dθ

dτ
= ∂H

∂p
= − ∂H

∂p?

dp?

dτ
= −dp

dτ
= ∂H

∂θ
= ∂H

∂θ?

=⇒

 dθ?

dτ
= − ∂H

∂p?

dp?

dτ
= ∂H

∂θ?

That is, the dynamics U is defined as the above differential equation for {θ?,p?}.

In terms of evolution operator, this dynamics implies (Lamb and Roberts, 1998),

U = Φ−1
τ ◦R = R ◦ Φτ

where ◦ denotes function composition. Therefore, U is an involution since

U ◦ U = (R ◦ Φτ ) ◦ (Φ−1
τ ◦R)

= R ◦ Φτ ◦ Φ−1
τ ◦R

= R ◦R = I.

where I represents the identity function.

According to theorem 5.2.3, we can conclude that the exact Hamiltonian dynam-

ics can be used to construct a Markov chain converging to the desired statistical

distribution.
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5.4 Approximated Hamiltonian Dynamics

Usually, the Hamiltonian equations in Equations (5.3.14) and (5.3.15) cannot be

solved analytically and thus we cannot use the exact Hamiltonian dynamics as the

dynamics required in Algorithm 2 to construct a Markov chain. Therefore, a suitable

numerical method is required to approximate the dynamical flows. As long as the

approximated dynamics provided by the chosen numerical method can satisfy the

conditions of volume preservation and involution, it can be used in Algorithm 2

to construct a Markov chain converging the desired distribution. The leap-frog

integrator, which is often successfully used to approximate Hamiltonian trajectories,

is reviewed as follows,

p(τ +
ε

2
) = p(τ) + (

ε

2
)
∂L

∂θ
|θ=θ(τ), (5.4.26)

θ(τ + ε) = θ(τ) + εM−1p(τ +
ε

2
), (5.4.27)

p(τ + ε) = p(τ +
ε

2
) + (

ε

2
)
∂L

∂θ
|θ=θ(τ+ε), (5.4.28)

where
(
θ(τ),p(τ)

)
is the current state of the Hamiltonian trajectory,

(
θ(τ+ε),p(τ+

ε)
)

is the next state of the trajectory given by the leap-frog integrator and ε is the

step-size. Consecutively applying the leap-frog integrator provides us with approxi-

mate trajectory paths. In fact, this is the so called Hamiltonian Monte Carlo that is

firstly introduced by Duane et al. (1987) and popularized by Neal (2011) in statistics

field.

In the following part, we will illustrate that the approximated Hamiltonian dy-

namics given by the leap-frog integrator is a volume-preserving involution. In ad-

dition, the approximation errors of the leap-frog integrator is investigated since the

approximated dynamics, unlike the exact Hamiltonian dynamics, introduce errors

when calculating the total energies.

5.4.1 Volume Preservation

It is straightforward to verify the volume preservation property since the transfor-

mation carried out by the leap-frog integrator can be considered as a composite of
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three shear mappings as illustrated in Equations (5.4.26) to (5.4.28), i.e.

by Equation (5.4.26) , {θ(τ),p(τ)} → {θ(τ),p(τ +
ε

2
)}

by Equation (5.4.27) , {θ(τ),p(τ +
ε

2
)} → {θ(τ + ε),p(τ +

ε

2
)}

by Equation (5.4.28) , {θ(τ + ε),p(τ +
ε

2
)} → {θ(τ + ε),p(τ + ε)}

The above three transformations are shear mappings according to the definition of

shear mapping as follows x′
y′

 =

x+ g(y)

y


with Jacobian matrix 1 g′(y)

0 1

 .

Since the Jacobian factor of a shear mapping is 1, the Jacobian factor of the transfor-

mation from {θ(τ),p(τ)} → {θ(τ + ε),p(τ + ε)} is also 1 as it is the product of the

Jacobian factors of three shear mappings. Therefore, the approximated dynamics

provided by the leap-frog integrator is volume-preserving.

5.4.2 Involution

We denote the mapping constructed by the leap-frog integrator as LFε. In order

to illustrate that the involution requirement is satisfied, we add an extra step—-

changing the sign of ‘momentum’ variables—-to the leap-frog dynamics. That is,

the dynamics U required in Algorithm 2 is given by

U : {θ(τ ), p(τ )} change−−−→
sign

{θ(τ ),−p(τ )} LFε−−→ {θ(τ + ε), p(τ + ε)}. (5.4.29)

Note that the total energy H is not influenced by the sign changes since the ‘mo-

mentum’ variables are generated from a Gaussian distribution that is symmetrical

about 0. The sign change also preserves the volume and thereby U is also volume-

preserving. According to Equations (5.4.26) to (5.4.28), θ(τ + ε) and p(τ + ε) can
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be expressed as

θ(τ + ε) = θ(τ) + εM−1
(
− p(τ) +

1

2
ε
∂L

∂θ
|θ=θ(τ)

)
, (5.4.30)

p(τ + ε) = −p(τ) +
1

2
ε
∂L

∂θ
|θ=θ(τ) +

1

2
ε
∂L

∂θ
|θ=θ(τ+ε). (5.4.31)

Suppose that the trajectory is now started from {θ(τ + ε), p(τ + ε)}. By applying

the transformation U , that is composed of a sign change for ‘momentum’ variables

and the leap-frog mapping LFε, to {θ(τ + ε), p(τ + ε)}, we obtain

{θ(τ + ε), p(τ + ε)} change−−−→
sign

{θ(τ + ε),−p(τ + ε)} LFε−−→ {A,B},

where

A = θ(τ + ε) + εM−1
(
− p(τ + ε) +

1

2
ε
∂L

∂θ
|θ=θ(τ+ε)

)
,

B = −p(τ + ε) +
1

2
ε
∂L

∂θ
|θ=θ(τ+ε) +

1

2
ε
∂L

∂θ
|θ=A.

By substituting Equation (5.4.30) and (5.4.31) into A and B,

A = θ(τ) + εM−1
(
p(τ) +

1

2
ε
∂L

∂θ
|θ=θ(τ)

)
+ εM−1

(
− p(τ)− 1

2
ε
∂L

∂θ
|θ=θ(τ) −

1

2
ε
∂L

∂θ
|θ=θ(τ+ε) +

1

2
ε
∂L

∂θ
|θ=θ(τ+ε)

)
= θ(τ), (5.4.32)

B = p(τ)− 1

2
ε
∂L

∂θ
|θ=θ(τ) −

1

2
ε
∂L

∂θ
|θ=θ(τ+ε) +

1

2
ε
∂L

∂θ
|θ=θ(τ+ε) +

1

2
ε
∂L

∂θ
|θ=A

= p(τ)− 1

2
ε
∂L

∂θ
|θ=θ(τ) +

1

2
ε
∂L

∂θ
|θ=θ(τ) By Equation (5.4.32)

= p(τ).

That is, the dynamics U is an involution. Therefore, the approximated Hamiltonian

dynamics provided by the leap-frog integrator can be used to construct a Markov

chain converging to the desired distribution according to Theorem 5.2.3. According

to Equation (5.2.12), the acceptance probability is not exactly one and is given by

min{1, exp(−H(θ(τ),p(τ)))

exp(−H(θc,p))
}.
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Clearly, the smaller the approximation error is, the higher the acceptance probability

is. As the generalised Metropolis-Hastings with the approximated Hamiltoninan

dynamics is the usually used HMC, we will refer it as HMC in the following parts.

It is summarized in the following algorithmic form.

Algorithm 3 Hamiltonian Monte Carlo

1: Given an initial value θ1 and values for ε, l;

2: for j = 1, 2, · · · , n do

3: Sample p ∼ N(0,M)

4: Set θ′ ← θj,p′ ← p

5: for i = 1 to l do

6: Set θ′,p′ ← Leapfrog(θ′,p′, ε)

7: end for

8: Let

θj+1 =

 θ′, If Uniform(0, 1) ≤ min{1, exp(−H(θ′,p′))

exp(−H(θj ,p))
}

θj, otherwise
.

9: end for

10: Function Leapfrog {θ,p, ε}

11: Set p′ ← p + ( ε
2
)∇θL(θ)

12: Set θ′ ← θ + εM−1p

13: Set p′ ← p′ + ( ε
2
)∇θL(θ′)

14: Return θ′,p′

5.4.3 Approximately Conserving Energy

Any numerical method will introduce approximation errors and thus the energy

could not be conserved exactly by the leap-frog integrator. The approximation

errors of a numerical method are the differences between numerical solutions and

exact solutions. Here, the local error of the leapfrog integrator, which turns out to

be O(ε3), is illustrated. We denote the exact solutions at time τ + ε by θ(τ + ε)

and p(τ + ε); and we denote the numerical solutions by θ̃(τ + ε) and p̃(τ + ε). For

the sake of simplicity, the dimensionality of both θ and p are set to one. The exact

solution of Hamiltonian equations at time τ + ε is expressed by applying a Taylor
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expansion as follows,

θ(τ + ε) = θ(τ) + εM−1p(τ) +
1

2
ε2M−1∂L

∂θ
|θ=θ(τ)

+
1

3!
ε3M−1∂

2L

∂θ2 |θ=θ(τ)
∂H

∂p
|p=p(τ) +O(ε4), (5.4.33)

p(τ + ε) = p(τ) + ε
∂L

∂θ
|θ=θ(τ) +

1

2
ε2M−1p(τ)

∂2L

∂θ2 |θ=θ(τ)

+
1

3!
ε3

(
M−1∂L

∂θ
|θ=θ(τ)

∂2L

∂θ2 |θ=θ(τ) +
(
M−1p(τ)

)2∂3L

∂θ3 |θ=θ(τ)

)
+O(ε4).

(5.4.34)

Recall the leap-frog integrator expressed in Equation (5.4.30) and (5.4.31), the nu-

merical solutions provided by the leap-frog integrator could be written as

θ̃(τ + ε) = θ(τ) + εM−1p(τ) +
1

2
ε2M−1∂L

∂θ
|θ=θ(τ), (5.4.35)

p̃(τ + ε) = p(τ) +
1

2
ε
∂L

∂θ
|θ=θ(τ) +

1

2
ε
∂L

∂θ
|θ=θ̃(τ+ε). (5.4.36)

Expand ∂L
∂θ
|θ=θ̃(τ+ε) at θ(τ) by Taylor expansion,

∂L

∂θ
|θ=θ̃(τ+ε) =

∂L

∂θ
|θ=θ(τ) +

(
θ̃(τ + ε)− θ(τ)

)∂2L

∂θ2 |θ=θ(τ)

+
1

2

(
θ̃(τ + ε)− θ(τ)

)2∂3L

∂θ3 |θ=θ(τ) +O(ε3)

=
∂L

∂θ
|θ=θ(τ) +

(
εM−1p(τ) +

1

2
ε2M−1∂L

∂θ
|θ=θ(τ)

)∂2L

∂θ2 |θ=θ(τ)

+
1

2

(
εM−1p(τ) +

1

2
ε2M−1∂L

∂θ
|θ=θ(τ)

)2∂3L

∂θ3 |θ=θ(τ) +O(ε3)

=
∂L

∂θ
|θ=θ(τ) + εM−1p(τ)

∂2L

∂θ2 |θ=θ(τ)

+
1

2
ε2

(
M−1∂L

∂θ
|θ=θ(τ)

∂2L

∂θ2 |θ=θ(τ) +
(
M−1p(τ)

)2∂3L

∂θ3 |θ=θ(τ)

)
+O(ε3).

(5.4.37)

By substituting Equation (5.4.37) into (5.4.36), we have

p̃(τ + ε) = p(τ) + ε
∂L

∂θ
|θ=θ(τ) +

1

2
ε2M−1p(τ)

∂2L

∂θ2 |θ=θ(τ)

+
1

4
ε3

(
M−1∂L

∂θ
|θ=θ(τ)

∂2L

∂θ2 |θ=θ(τ) +
(
M−1p(τ)

)2∂3L

∂θ3 |θ=θ(τ)

)
+O(ε4).

(5.4.38)
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Denote the error for θ by Err(θ). By comparing Equation (5.4.35) with (5.4.33), we

have

Err(θ) = θ(τ + ε)− θ̃(τ + ε)

=
1

3!
ε3(M−1)2p(τ)

∂2L

∂θ2 |θ=θ(τ) +O(ε4). (5.4.39)

This shows that for small ε, the error for θ is approximately proportional to ε3 and is

controlled by term (M−1)2p(τ)∂
2L
∂θ2 |θ=θ(τ) that is related to the curvature information

of the desired density. It is important to ensure Err(θ) to be moderately small so

that the Markov chain would not go to extreme regions. Similarly, the error for p

could be written as

Err(p) = p(τ + ε)− p̃(τ + ε)

= − 1

12
ε3

(
M−1∂L

∂θ
|θ=θ(τ)

∂2L

∂θ2 |θ=θ(τ) +
(
M−1p(τ)

)2∂3L

∂θ3 |θ=θ(τ)

)
+O(ε4).

The above equation indicates that the accuracy of p is related to the first derivative,

the second derivative and even the third derivative of the target log-density function

at the current state of the approximated dynamical trajectory. This approximation

error would have an influence on the accuracy of the total energy of the Hamiltonian

system. We now turn to the corresponding error in the total energy of the Hamil-

tonian system caused by the leap-frog integrator. By using a Taylor expansion, we

could express H
(
θ̃(τ + ε), p̃(τ + ε)

)
at the point

(
θ(τ + ε),p(τ + ε)

)
as follows,

H
(
θ̃(τ + ε), p̃(τ + ε)

)
= H

(
θ(τ + ε),p(τ + ε)

)
+ ε3

(1

4
(M−1)2p(τ)

(∂2L

∂θ2

∂L

∂θ

)
|θ=θ(τ) +

1

12

(
M−1p(τ)

)3∂3L

∂θ3 |θ=θ(τ)

)
+O(ε4).

We denote the approximation error for the energy of the Hamiltonian system by

Err(H) and obtain

Err(H) = H
(
θ̃(τ + ε), p̃(τ + ε)

)
−H

(
θ(τ + ε),p(τ + ε)

)
= ε3

(1

4
(M−1)2p(τ)

(∂2L

∂θ2

∂L

∂θ

)
|θ=θ(τ) +

1

12

(
M−1p(τ)

)3∂3L

∂θ3 |θ=θ(τ)

)
+O(ε4).

(5.4.40)
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The above equation illustrates that the local error for H(θ,p) has order ε3. And this

error influenced by Err(p) is also related to the first derivative, the second derivative

and the third derivative of the target log-density function at the current state of the

approximated dynamical trajectory. Clearly, the closer to zero the error Err(H) is,

the higher the acceptance probability is. However, moderate size of this local error

in Hamiltonian energy would be acceptable.
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5.4.4 Example

Here, we use a toy example to illustrate the performance of HMC compared with

the ordinary Metropolis algorithm. Considering the following ‘banana’ example

yi
i.i.d.∼ N

(
θ1 + θ2

2, σ
2
y

)
i = 1, . . . , N

with prior distribution for θ1 and θ2 chosen as

θ ∼ N
(
0, σ2

θI
)

where σθ and σy are fixed as 1 and 2 respectively. The data {yi; i = 1, · · · , 100} are

simulated from the above model with specified parameter values. The mean and

the standard deviation of the simulated data were 1.26 and 2.16 respectively. The

corresponding posterior density contour is displayed in Figure 5.1.
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6.7e−06

level

Figure 5.1: Target density contour of ‘Banana example’

Both HMC and RWMH (random walk Metropolis-Hastings algorithm) are used to

sample the posterior distribution for this model. Particularly, algorithm parameters

required by HMC is specified as follows,

{ε = 0.1, l = 4, M = I}
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For the RWMH method, Laplace approximation is often used to initiate the variance

matrix of proposal density. Moreover, a parameter that is used to scale this variance

matrix is tuned in the burn-in iterations according to the acceptance rate. Figure

5.2 shows the proposal densities tuned by Laplace approximation with two different

initial guess points. Different initial guess points lead to completely different pro-

posal densities due to two local maximum states and the special shape of the target

density (‘banana’ shape). Neither of these two proposal densities could recognize

the shape of target density well and give rise to distant proposals. In a real simula-

tion problem, the actual target density is unknown. Therefore, traditional methods

possessing the random-walk behaviour could not usually provide us with efficient

sampling results.
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−2 −1 0 1 2
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x
2

Figure 5.2: Proposal density provided by Laplace approximation with different initial

guess points for RWMH sampler. Left plot starts from (−1, 1.4); right plot starts from

(−1,−1.4). The black contour represents the target density; red contour lines stand for

the tuned proposal densities.

We started both HMC and RWMH from point (−1, 1.4) and implemented them

to obtain 20000 posterior samples without thinning. For the sake of clarity, the

first 600 simulated samples are displayed in Figure 5.3. HMC illustrated in the

left plot traversed the state space quickly compared with the traditional RWMH

sampler reported in the right plot. Moreover, posterior samples provided by the
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RWMH sampler displayed a similar shape with the proposal density of sampler as

illustrated in the left plot of Figure 5.2.
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Figure 5.3: 600 posterior samples provided by HMC sampler (left plot) and RWMH

sampler (right plot). Red points illustrate starting points.

Therefore, HMC has potentials to provide distant proposals as it exploits the Hamil-

tonian dynamics to avoid the random-walk behaviour and guide the proposals.
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5.5 Step-Size Problems

As highlighted in the previous section, HMC is a powerful sampling method in

providing distant proposals. Its performance, however, is very sensitive to its own

algorithm parameters: M , l and ε. RMHMC, proposed by Girolami and Calderhead

(2011), and NUTS, proposed by Hoffman and Gelman (2011), are two HMC variants

designed to deal with problems of M and l respectively; See Chapter 7 for more

details. In this section, we will discuss the influences of step-size to the performances

of HMC sampler from two aspects. Firstly, the result of inappropriate step-size is

illustrated in section 5.5.1. Secondly, section 5.5.2 shows that a fixed global step-size

is not suitable.

5.5.1 Inappropriate Step-Size

Obviously, when the step-size is too small, the energy of a Hamiltonian system is well

conserved by the leap-frog integrator to some degree and the acceptance rate is high.

However, the problem is that the performance of HMC is just like a random walk

Metropolis-Hastings MCMC which has high auto-correlations, low effective sample

size and thus slow explorations of the state space which wastes much computation

time. When the step-size is too large, the leap-frog integrator could not conserve

the energy of Hamiltonian system well enough and thus lots of proposals would be

rejected. Recall the acceptance probability,

α = min{1,
exp

(
−H[θ(τ),p(τ)]

)
exp

(
−H[θ(0),p(0)]

)},
where {θ(0),p(0)} is the starting point of the dynamical trajectory and is identical

to {θc,p}; {θ(τ),p(τ)} is the end point of the approximated trajectory provided by

the leap-frog integrator. If the numerical integrator used could conserve the energy

exactly, then the acceptance rate would always be one. It is, however, unrealistic

since numerical integrators always introduce errors. The leap-frog integrator has

local error of order ε3 and global error of order ε2 with a fixed length of the trajectory.

The acceptance probability is determined by the difference between the Hamiltonian

energies at the starting point and ending point of the approximated trajectory.
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A rejected trajectory is caused by large difference between these two values. To

highlight this fact, we reuse the ‘banana’ example stated in section 5.4.4. The

dynamic trajectory is initialized from point (−3, 5, 3.5) and approximated by the

leap-frog integrator with step-size value 0.08. Table 5.1 reports how the Hamiltonian

energy changes for 4 leap-frog steps in approximating such a trajectory. The total

energy underwent a big change even after one leapfrog step and became extremely

large after 4 steps.

step 0 step 1 step 2 step 3 step 4

energy 9.37e+02 2.24e+03 4.28e+04 8.37e+09 1.55e+26

Table 5.1: Energy changes when leapfrog starts from (−3.5, 3.5) with step-size 0.08

Such a trajectory would definitely be rejected. Therefore, an inappropriately large

step-size would lead to many unstable trajectories like the case highlighted in Table

5.1 and thus give rise to low acceptance rate and a stuck MCMC chain, i.e. no new

proposals are accepted. For such an unstable trajectory caused by an inappropriate

step-size, as illustrated by Table 5.1, two points are worthy to conclude:

• The approximation error in energy increases quickly as the trajectory grows.

Neal (2011) pointed out that the approximation error in simulated Hamiltonian

trajectories is independent of l as long as the step-size value is small enough

to make the Hamiltonian dynamic stable. Therefore, a stable boundary is

required to be satisfied by the step-size to prevent the local approximation

error from accumulating as the number of leap-frog integrator increases.

• The approximation error after one leap-frog step (the local approximation er-

ror) might be large enough to result in a low acceptance probability. Therefore,

by controlling the step-size, the local approximation error should be managed

in a moderate magnitude to provide reasonable acceptance probability.

February 16, 2016



5.5. Step-Size Problems 104

5.5.2 Changing Step-Size

Depending upon the problems caused by inappropriate step-sizes, the issue is de-

tecting the boundary which could guarantee the leap-frog integrator to give stable

trajectory approximations with reasonable local approximation errors. As Neal com-

mented, a constant boundary is not dangerous since the step-size problem can be

fixed by preliminary runs. In these preliminary runs, HMC could be started with

a big step-size and then we could reduce the step-size gradually until a satisfactory

acceptance rate is reached. The real problem arises when there is no fixed bound-

ary that has the ability to make the leap-frog integrator provide stable trajectories

globally. If the stable boundaries vary based on different regions of state space,

then a step-size which is stable for one region might turn out to be: 1) too large for

other regions and thus the chain might not visit other regions; 2) too small for other

regions so that close proposals are obtained. Therefore, in situations with changing

stable boundaries, usual adaptive methods are not suitable any more. In addition, if

local stable boundaries become smaller and smaller as θ changes, then there might

not exist a single step-size which is appropriate for the HMC to run throughout the

whole state space. Here, we will illustrate two points:

• The optimal or sub-optimal step-size value might change as current state

changes.

• Even starting points could have an influence on the choice of the step-size

value.

To illustrate the step-size problem due to changing stable boundaries, we carried

out two experiments by running HMC for the ‘banana’ example with different initial

points and step-size values. There are 500 iterations in each MCMC chain generated

by HMC algorithm with 4 Leapfrog steps per iteration; the variance matrix for

‘momentum’ variables is set to the identity matrix for simplicity. If the proposal

point is accepted, the trajectory path is displayed by the blue line, otherwise the

red line.
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Experiment 1:

The first experiment proceeded by implementing HMC with the same step-size value

but two different starting points. To be specific, these two Markov chains con-

structed by HMC initialized from points (−3, 2.8) and (−3, 3) respectively. Also the

step-size value is set to be 0.1 for both of them.

−2

0

2

−2 0 2
(a)

x2

−2

0

2

−2 0 2
(b)

x2

Figure 5.4: 200 posterior samples provided by HMC sampler with step-size 0.1 and

starting point (−3, 2.8) (plot a) and (−3, 3) (plot b). Red lines represent rejected paths;

blue lines mean accepted paths; ‘+’ illustrates initial point; ‘·’ means an accepted state.

The sampler performances are illustrated in Figure 5.4. It can be seen that small

differences in starting points lead to completely different results: the one in plot

(a) started from point (−3, 2.8) could traverse the state space although there were

several rejected iterations at the beginning; the other one in plot (b) which is ini-

tialized from point (−3, 3) always fails to be accepted. This phenomenon indicates

that step-size 0.1 is stable for (−3, 2.8) or its small neighbourhood but not suitable

for the vicinity of (−3, 3).

Experiment 2: The second experiment set up bears a close resemblance to the

previous experiment. We only altered the step-size value from 0.1 to 0.08 and

specified starting points as (−3, 3) and (−3, 3.5). Figure 5.5 reports 200 posterior

samples generated by HMC sampler. Obviously, reducing the step-size value from
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0.1 to 0.08 fixes the problem shown in Experiment 1 for point (−3, 3). However,

step-size 0.08 cannot satisfy the stability requirement as long as the initial point

changes from (−3, 3) to (−3, 3.5) (plot (b)). In order for the chain to move from

point (−3, 3.5), the step-size value needs to be decreased again. This circulating

phenomenon, that would occur again and again as initial point goes further, implies

that the stability boundary is changing locally.
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Figure 5.5: 200 posterior samples provided by HMC sampler with step-size 0.08 and

starting point (−3, 3) (plot a) and (−3, 3.5) (plot b). Red lines represent rejected paths;

blue lines mean accepted paths; ‘+’ illustrates initial point; ‘·’ means an accepted state.

As shown by Experiment 1 & Experiment 2, different regions might have different

stability boundaries. In addition, the more extreme position at which the chain is

currently located, the smaller step-size is needed. In other words, an appropriate

step-size is dependent on where the point is. In plot (b) of both Figure 5.4 & Figure

5.5, all the unstable trajectories (red lines) illustrate that it is the inappropriate step-

size used for the current position point that will drive paths to extreme places which

have extremely low probabilities. Therefore, to solve the step-size problems, local

conditions is needed in order for the leap-frog integrator to give stable trajectories

with local approximation errors of moderate size.

February 16, 2016



5.6. Step-Size Local Conditions 107

5.6 Step-Size Local Conditions

In this section, we will focus on the local conditions for the step-size so that the

leap-frog integrator can provide stable trajectories with local approximation errors

of moderate size. In general, such local conditions, especially the one for the stability

of the leap-frog integrator, cannot be derived easily. We therefore approximate the

local area of the target statistical distribution and explore the step-size conditions

for this local approximation. And the step-size conditions explored for the local

approximations are considered as the local conditions for the original target problem

approximately.

Here, we illustrate how to locally approximate the target statistical distribution

in the Hamiltonian system. Recall the Hamiltonian system illustrated in Equation

(5.3.13)

H(θ,p) = − log p(θ,p) = −L(θ) +
1

2
log{(2π)D|M |}+

1

2
pTM−1p. (5.6.41)

Denote −L by L, the above line can be re-written as

H(θ,p) = L(θ) +
1

2
log{(2π)D|M |}+

1

2
pTM−1p. (5.6.42)

The local approximation is made for L(θ) through its second-order Taylor expansion

around θc, the current state of the Markov chain iterations. Let us denote such a

approximation by Lθc(θ), we then have the following expression

L(θ) ≈ Lθc(θ) = L(θc) +
d

dθ
L(θ)|θ=θc · (θ − θc) +

1

2
(θ − θc)T · d

2

dθ2L(θ)|θ=θc · (θ − θc).

(5.6.43)

For Lθc(θ), it is a quadratic function and thus has the first derivative and the second

derivative of the following forms

d

dθ
Lθc(θ) =

d

dθ
L(θ)|θ=θc + (θ − θc)T · d

2

dθ2L(θ)|θ=θc (5.6.44)

d2

dθ2Lθc(θ) =
d2

dθ2L(θ)|θ=θc (5.6.45)

dk

dθk
Lθc(θ) = 0, k > 2 (5.6.46)
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Therefore, by expanding the quadratic function Lθc(θ) around its maximum θc?

according to the Taylor expansion, Lθc(θ) can be re-expressed as

Lθc(θ) = Lθc(θ
c
?) +

1

2
(θ − θc?)T ·

d2

dθ2L(θ)|θ=θc · (θ − θc?) (5.6.47)

where θc? is the maximum of Lθc(θ) and thus the first derivative in Equation (5.6.44)

evaluated at this point is zero. By substituting the above expression into Equation

(5.6.43), we have

L(θ) ≈ Lθc(θ
c
?) +

1

2
(θ − θc?)T ·

d2

dθ2L(θ)|θ=θc · (θ − θc?)

By substituting the above approximation for L(θ) into Equation (5.6.42), we obtain

a local approximation H(θ,p) for the original Hamiltonian system H(θ,p), i.e.

H(θ,p) ≈ H(θ,p) =

Lθc(θ
c
?) +

1

2
(θ − θc?)T ·

d2

dθ2L(θ)|θ=θc · (θ − θc?) +
1

2
log{(2π)D|M |}+

1

2
pTM−1p.

(5.6.48)

Note that d2

dθ2L(θ)|θ=θc represents the curvature information of the statistical model

of interest around θc. Suppose that d2

dθ2L(θ)|θ=θc is a positive-definite matrix.

Through such an approximation, at the start of each simulated trajectory, H(θ,p)

is like a scenario taking a Gaussian distribution with mean θc? and variance matrix(
d2

dθ2L(θ)|θ=θc

)−1

as its target distribution. In other words, the Gaussian distri-

bution N (θc?,
(
d2

dθ2L(θ)|θ=θc

)−1

) is used to locally approximate the area around θc

of the original target distribution and is thus adapted to the current state of the

Markov chain. While, for each dynamical trajectory that is going to be calculated

by the leap-frog integrator, the target distribution of H is simply a Gaussian distri-

bution with fixed mean and fixed variance. In the following parts, we discuss the

conditions controlling stability and the local approximation errors of the leap-frog

integrator for H. And these conditions are considered as local conditions for H

approximately.

Local Stability Condition

For H shown in Equation (5.6.48), the analytical trajectory of its Hamiltonian equa-

tions can be derived. For the sake of simplicity, the terms Lθc(θ
c
?) and 1

2
log{(2π)D|M |}
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can be dropped since they are both constant. By denoting Σ =
(
d2

dθ2L(θ)|θ=θc

)−1

and shifting the approximated Gaussian distribution to have zero mean, i.e. N (0,Σ),

the Hamiltonian system H in Equation (5.6.48) can be written as

H(θ,p) =
1

2
θTΣ−1θ +

1

2
PTM−1p. (5.6.49)

Its corresponding Hamiltonian equations are

θ̇ =
∂H
∂P

= M−1P

Ṗ = −∂H
∂θ

= −Σ−1θ

This Hamiltonian equations are equivalent to

θ̈ +M−1Σ−1θ = 0

Its analytical solution can be expressed as (José and Saletan, 1998)

θ(τ) = C
D∑
j=1

cos(ωjτ + δj)Nj, (5.6.50)

where ωj are square root of the eigenvalues λj of the matrix M−1Σ−1, i.e. ωj =
√
λj;

Nj are the corresponding eigenvectors of matrix M−1Σ−1; C and δj are amplitude

and phases, both determined by the initial conditions. Equation 5.6.50 indicates

that the analytical solution can be considered as a combination of D independent

harmonic oscillators. To obtain a good numerical approximation to such a solution,

we would like the numerical method to provide stable results for each of these

harmonic oscillations. In other words, we should investigate the leap-frog stability

problem for D trajectories

uj(τ) = C cos(ωjτ + δj)Nj, (5.6.51)

j = 1, · · · , D.

Each of these trajectories is the solution of the following differential equation

üj + ω2
juj = 0, (5.6.52)
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which is equivalent to

u̇j = m−1
j Ivj

v̇j = −k−1
j Iuj

where mj and kj are any values satisfying ω2
j = m−1

j k−1
j ; I is a D ×D-dimensional

identity matrix. Each of these oscillators conserves a Hamiltonian system of the

form

Hj(uj,vj) =
1

2
uTj (k−1

j I)uj +
1

2
log(2π|mjI|) +

1

2
vTj (m−1

j I)vj.

Suppose that the amplitude of uj,vj are denoted by uj, vj respectively. The numer-

ical solution of a one-step leap-frog integrator applied to its differential equations

yields uj(τ + ε)

vj(τ + ε)

 = S

uj(τ)

vj(τ)

 ,

where

S =

 1 0

− ε
2
k−1
j 1

1 εm−1
j

0 1

 1 0

− ε
2
k−1
j 0


=

 1− ε2

2mjkj

ε
mj

− ε
kj

+ ε3

4k2
jmj

1− ε2

2mjkj

 .

The eigenvalues of the above matrix S determine stability (the long-time behaviour

of the numerical solution) and stability requires the eigenvalues to be less than or

equal to one in modulus (Hairer et al., 2006). The matrix S has 2D eigenvalues

ξ1, · · · ξ1︸ ︷︷ ︸
D eigenvalues

, ξ2, · · · ξ2︸ ︷︷ ︸
D eigenvalues

where

ξ1,2 = 1− ε2

2mjkj
± ε√

mjkj

√
ε2

4mjkj
− 1.

Note that the leap-frog integrator consists of shear transformations and thus |S| =

(ξ1ξ2)D = 1. If the two eigenvalues ξ1, ξ2 are both real values, then one of them must
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be larger than 1 and thereby violates the stability requirement. In order to satisfy

the stability requirements, we should let

ε2

4mjkj
− 1 < 0

=⇒ ε√
mjkj

< 2 (5.6.53)

and ξ1, ξ2 become complex values

ξ1,2 = 1− ε2

2mjkj
± i ε√

mjkj

√
1− ε2

4mjkj

with |ξ1,2| = 1. Therefore, we obtain D stability conditions of the form in Equa-

tion (5.6.53) corresponding to the D trajectories in Equation (5.6.51). Note that√
m−1
j k−1

j are identical to ωj, the square root of the eigenvalues of matrix M−1Σ−1.

The stability conditions in Equation (5.6.53) can be rewritten as

εωj < 2,

If M = I, ωj become square root of the eigenvalues of the matrix Σ−1. Therefore,

the higher the eigenvalue of Σ−1 is, the smaller the step-size is required to make

the corresponding oscillator stable. Since there are D such oscillators, the condition

that can make all the oscillators stable is

εω < 2, (5.6.54)

where ω is the square root of the largest eigenvalue of the matrix Σ−1, i.e. ω =
√
λ,

where λ = max{λj; j = 1 · · · , D}.

Recall the dependence of Σ−1 on the current state of the Markov chain,

Σ−1 = −∂
2L

∂θ2 |θ=θc .

Therefore, the local stability condition for the original target L(θ) is approximately

εωθc < 2, (5.6.55)

where ωθc =
√
λθc and λθc is the largest eigenvalue of −∂2L

∂θ2 |θ=θc , the Hessian matrix

at the current state. The larger the eigenvalue is, the smaller the step-size is required
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to keep the trajectory stable. Since the Hessian matrix represents the local curvature

information, we can conclude that the higher the curvature is, the smaller the step-

size should be. This finding is in line with the intuition visualized in Figure 5.6.

Figure 5.6: Surface of Torus

The rotation speed (curvature) along the red curve is much more gentle than that on

the blue curve. Suppose that a particle is moving on the surface of the torus. The

step-size that could make the particle move successfully along the red curve is larger

than that for the blue curve. A step-size which satisfies the stable condition of the

red curve might turn out to be too large to keep the particle on the surface due to the

influence along the blue curve. Also note that the conclusion in Equation (5.6.55)

is derived under the assumption that the Hessian matrix is positive-definite. This

assumption, however, cannot always be guaranteed and thus it might lead to negative

eigenvalues. A negative eigenvalue with large absolute value still depicts a large

curvature but in an opposite direction compared to the positive one. Intuitively,

a small step-size is also needed in this situation. Therefore, we change the local

stability condition in Equation (5.6.55) to the following one

εωθc < 2 (5.6.56)

where ωθc =
√
|λθc | and λθc is the eigenvalue of the matrix of −∂2L

∂θ2 |θ=θc with the

largest absolute value. RMHMC exploits this fact to design ‘momentum’ variables;

see details in section 7.2.
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Approximation Errors

For the Hamiltonian system shown in Equation (5.6.48), according to Equation

(5.4.40), the local approximation error Err(H) caused by the leap-frog integrator

changes to be

Err(H) = ε3
(1

4
pT (τ)(M−1)2

(∂2L

∂θ2

∂L

∂θ

)
|θ=θ(τ)

)
+O(ε4)

The above equation indicates that not only the curvature of the log-density func-

tion but also the gradient (interpreted as the ‘force’ in physic) should be considered

in controlling the local approximation error. There is no explicit condition for the

approximation errors as that for the stability. And reasonable approximation er-

rors are acceptable. Neal (2011) has already noted that a small step-size value is

required when the gradient (the first derivative) of the log density is large. How-

ever, compared with the first derivative, the curvature controlling the stability is

more influential since it makes sure that the parameters of interest θ do not go

to wild places in long time. In addition, as illustrated by Equation (5.4.39), it is

the curvature information that controls the accuracy of θ given by the leap-frog

integrator.
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5.7 HMC with Stochastic Step-Size

As previous discussions have shown, the stability requirement varies as the current

state changes. This fact leads us to consider using variable step-sizes according to

where the state is currently located. In this section, problems of the variable step-

sizes method are firstly stated and then a new algorithm is proposed to achieve state-

dependent step-size HMC in a stochastic way without encountering the described

problems. This new algorithm can also be considered as a generalised Metropolis-

Hastings with dynamics method.

5.7.1 Variable Step-Size Problems

The leap-frog integrator with a constant appropriate step-size could guarantee that

the approximated dynamics are involutions as the leap-frog integration is time sym-

metrical. This desirable property, however, will be lost if variable step-sizes are used.

Hut et al. (1995) proposed an implicit method to recover this appealing property.

It calculates step-size by a given symmetry function

ε =
1

2

(
h(φt) + h(φ(t+ε))

)
where φt = [θ(t),p(t)] and φ(t+ε) = [θ(t + ε),p(t + ε)]. The function h(·) is some

criterion of choosing step-size according to where the state is. The symmetry is

recovered by the symmetry function but the unwanted property of this method

is that extra iterations are required to calculate step-size values because of the

implicit function involved in the symmetry function. The RMHMC sampler, which

selects the variance matrix for ‘momentum’ variables according to where the current

state is, also involves implicit calculations and thus requires expensive computations

especially for complex models.

5.7.2 Stochastic Step-Size

Our goal is a sampler which retains the good features of HMC without either needing

the user to choose a leap-frog step-size or assuming that there is a global lower limit

to the stability boundary. We propose an algorithm which automatically updates
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the step-size according to the current state. The basic idea is to generate a step-

size for each iteration from a distribution determined by the local curvature (local

geometric information) at the current state of the Markov chain. As discussed in

section 5.6, the curvature information solely determines a stable trajectory and is

more influential in keeping the parameters of interest not falling in wild regions

compared with the gradient. Therefore, only the local curvature is exploited to

simulate step size values. This changing step-size scheme violates the involution

property of HMC and we overcome this difficulty by re-defining the augmented

variables ϕ in Algorithm 2 rather than using implicit symmetry functions to recover

the involution. We consider the ‘momentum’ variables and the generated step-size

altogether as the augmented variables ϕ required in Algorithm 2, i.e.

ϕ = {p, ε}

The dynamics used here are the same with that illustrated in Equations (5.4.26)

to (5.4.28). Note that the dynamics do not not involve varying step-sizes since

changing step-sizes is achieved before the start of the dynamics. These dynamics

are involutions and preserve volume. The acceptance probability is given by

min{1, exp(−H(θ′,p′))g(ε|θ′)
exp(−H(θc,p))g(ε|θc)

}. (5.7.57)

A benefit of this stochastic scheme is that there is no need for the user to specify a

step-size value. In addition, this stochastic scheme allows the step-size chances to

take small values to get out of ‘sticky’ points and large values to move to distant

proposals if possible. Finally, the novelty is that the scheme exploits the local geo-

metric information to update the step-size distribution automatically. This process

is described in the following algorithmic form.
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Algorithm 4 Hamiltonian Monte Carlo with Stochastic Step-size

1: Given an initial value θ1, value for l and matrix M ;

2: for j = 1, 2, · · · , n do

3: Sample p ∼ N(0, I)

4: Sample ε ∼ g(ε|θj)

5: Set θ′ ← θj,p′ ← p

6: for i = 1 to l do

7: Set θ′,p′ ← Leap-frog(θ′,p′, ε)

8: end for

9: Let

θj+1 =

 θ′, If Uniform(0, 1) ≤ min{1, exp(−H(θ′,p′))g(ε|θ′)
exp(−H(θj ,p))g(ε|θj)}

θj, otherwise
.

10: end for

11: Function Leap-frog {θ,p, ε}

12: Set p′ ← p+ ( ε
2
)∇θL(θ)

13: Set θ′ ← θ + εM−1p′

14: Set p′ ← p′ + ( ε
2
)∇θL(θ′)

15: Return θ′,p′

Specifically, we propose that g(ε|θc) is any appropriate distribution which has posi-

tive support and is scaled by 1√
|λ|

, where λ is the eigenvalue with the largest absolute

value of the matrix M−1 ∂
2(−L)

∂ θ2

∣∣∣
θ=θc

. The convergence of Algorithm 4 is demon-

strated in the following corollary.

Corollary 5.7.1 Suppose that X = (θ,ϕ), where ϕ = {p, ε}, has density π(·) on

X ⊆ Rp. The Markov chain described in Algorithm 4 converges to π(·).

Proof : The joint density of the parameters of interest θ and the augmented

variables ϕ is

π(X) = p(θ)N(p|0,M)g(ε|θ) = exp
(
−H({θ,p})

)
g(ε|θ).

Let LF ({θ,p}, l, ε) denote the leap-frog integrator which starts at {θ,p} with fixed

step l and fixed step-size ε. Similarly as that in section 5.4, by changing the sign of
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momentum variables LF ({θ,p}, L, ε) is also a continuously differentiable volume-

preserving involution. Algorithm 4 changes the step-size before the beginning of

the dynamics and keeps step-size unchanged during the dynamics. Therefore, the

dynamics can be expressed as

U : ({θ,p}, ε)→
(
LF ({θ,p}, L, ε), ε

)
= ({θ′,p′}, ε).

It is a continuously differentiable volume-preserving involution if we change the

sign of momentum variable. With the acceptance probability defined according to

Equation (5.2.12),

α(x) = min
{

1,
exp

(
−H

(
{θ′,p′}

))
g(ε|θ′)

exp
(
−H

(
{θ,p}

))
g(ε|θ)

}
,

the transition achieved by Algorithm 4 conserves the joint density π(·) according to

Theorem 5.2.3.
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5.7.3 Illustrative Example

In this section, the new designed algorithm ‘HMC with stochastic step-size’ is applied

to two examples: the previously discussed ‘banana’ example and a multivariate t

distribution.

Banana example

As stated in Equation (5.6.56), step-size are dictated by the local curvature. Thus,

step-size are generated from a half-standard-normal distribution scaled by the eigen-

value with the largest absolute value of the local curvature matrix and thus adapted

automatically according to the current state. We investigate the performances of

the new algorithm if the simulation is started from a extreme point. The starting

point is set to (−10, 10) which is a very extreme starting position compared to previ-

ously mentioned starting points. The variance matrix of the ‘momentum’ variables

are set to the identity matrix and the number of the leap-frog steps is set to 4.

The trace plots and autocorrelations plots of simulation results are shown in Fig-

ure 5.7. In order to visualize the tract plots clearly, the samples drawn on the plots

are obtained by thinning 10. The autocorrelations plots are for posterior samples

without thinning. The simulated chain mixes quickly and converges well even with

such a starting point. In fact, this algorithm works well even with a starting point

(−100, 100) where has extremely large gradient value. This indicates that without

the gradient information involved in, adapting the step-size values only according

to the local curvature information is enough to deal with the step-size problems.

The marginal simulation result is compared to the theoretical marginal density

generations by carrying out a Kolmogorov-Smirnov test. In Figure 5.8, the blue

line is the empirical cumulative density curve provided by the theoretical marginal

density generation and the red curve is provided by the simulation result from Algo-

rithm 4. The curves overlap well with significant small distances in both plots. The

joint simulation result is tested by a Chi-squared test. Using a grid of 25 cells, the

chi-squared goodness-of-fit statistic for this simulation is 26.15057 which is smaller

than 36.41503, the critical value at 5% significance.
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Figure 5.7: Trace plots (left column) and autocorrelations plots (right column) of simu-

lated samples for ‘banana’ example.
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Figure 5.8: Comparison of the empirical distributions of samples generated from the theo-

retical marginal density and samples provided by HMC with stochastic step-size algorithm.

The left plot is for θ1 and the right plot is for θ2.
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Multivariate t distribution

Considering a 10-dimensional t distribution tν,µ,Σ(θ) with ν = 1× 106, µ is a 10-

dimensional vector with all terms being zero and Σ = 1× 10−5I where I is a

10 × 10 identity matrix. Both HMC and HMC with stochastic step-size algorithm

are applied to this 10-dimensional t distribution. In order to be comparable, the

covariance matrix of the momentum variables for both algorithms are set to be

identity matrix and the number of leap-frog steps are both set to be 4.
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Figure 5.9: Efficiency comparisons

For the basic HMC algorithm, the step-sizes are adapted according to the ac-

ceptance rate in the burn-in iterations. Specifically, the step-size is doubled if the

current acceptance rate is larger than 0.8 and is halved if the current acceptance

rate is smaller than 0.6. For the HMC with stochastic step-size, there is no need

to specify step-sizes. We run 10 chains each having 20000 iterations without thin-

ning in three situations: HMC, HMC with stochastic step-size and the combination

of HMC and HMC with stochastic step-size. Specifically, in the situation of using

HMC and HMC with stochastic step-size together, HMC with stochastic step-size
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is implemented in the burn-in iterations and HMC is used in the main iterations

with fixed step-size set as the mean of step-size obtained by HMC with stochastic

step-size algorithm. Figure 5.9 illustrates the box-plots of logarithm of the effective

sample size (plot a) and logarithm of ESS per second (plot b) of obtained chains in

all three situations. All the logarithms are taken based on 10. Using HMC solely

results in unstable results. This further reflects that the performance of HMC is

sensitive to the chosen step-size and thus the step-size tuning method. As for HMC

with stochastic step-size algorithm, both plots indicates that it is the most stable

one among all three and provides competitive performances compared with HMC.

By comparing ESS with ESS/s for HMC with stochastic step-size algorithm, it is

easy to see that it is more computational expensive than HMC. The reasons is that

it requires curvature calculations. Clearly, the combination of HMC and HMC with

stochastic step-size has generally larger effective sample size and effective sample

size per second than the other two. It makes use of HMC with stochastic step-size

algorithm to obtain reasonable step-size in the burn-in iterations and retains the

speed of HMC in the main iterations.
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5.8 Conclusions

We have presented a meta-algorithm ‘generalised Metropolis-Hastings with dynam-

ics’ which includes, but not limited to, the ordinary Metropolis-Hastings algorithm,

HMC with both exact and approximated dynamics and HMC with stochastic step-

sizes. Any dynamics that are volume-preserving involutions can be used to design a

algorithm converging to the desired distribution according to Theorem 5.2.3. Any

algorithm (such as HMC) that exploits the dynamics to suppress the random-walk

behaviour is worthy of investigation.

The HMC with stochastic step-size algorithm automatically adapts step-size ac-

cording to the local curvature information of statistical model surfaces. This sampler

eliminates the basic HMC’s dependence on the chosen step-size value and is robust

to extreme starting points.
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Chapter 6

Background of a Complex

Hierarchical Model

Hierarchical models have wide applications due to their flexibility in modelling a

range of data across many sciences. Especially in Bayesian analysis, hierarchical

models have become more and more prevalent after great computing power, efficient

algorithms and user-friendly software have become available. The hierarchical model

considered here, and further on, was firstly developed by Craig (2013) to model

eco-toxicological data about variations in sensitivity of species to chemicals. It is

particularly designed to characterize the non-exchangeable and taxonomic structure

of species. Rather than using the frequently chosen Gaussian distributions, the

Student’s t-distribution is selected for the response variable since its heavy-tailed

behaviour is observed in the preliminary data analysis (see Craig (2013) for details).

In order to sample the posterior distribution resulting from the use of this model,

two main computation tools are considered: Markov chain Monte Carlo (MCMC)

methods and the MCMCglmm method.

Among a class of MCMC methods, random-walk Metropolis-Hastings algorithm

(Metropolis et al., 1953) and Gibbs sampling algorithm (Geman and Geman, 1984)

are traditional methods that depend on proposal distributions and conditional dis-

tributions respectively; Hamiltonian Monte Carlo (Duane et al., 1987) is a technique

that exploits the gradient information through the Hamiltonian scheme. Some soft-

ware tools, eg. BUGS (Spiegelhalter et al., 1996) and Stan (Stan Development Team,
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2014b), have been developed to implement these MCMC samplers without onerous

programming by users. These methods and software tools, however, result in poor

performances when they are expected to deal with more sophisticated models in-

volving high dimensionality and complex patterns of dependence. To be specific, the

successful design of the most practical MCMC algorithms to sample from a target

distribution in scenarios involving high dimensionality and complex dependence pat-

terns relies on the appropriate choice of the proposal distribution. This holds true

even for the Hamiltonian Monte Carlo sampler since the problem of tuning proposal

distributions transfers to that of tuning distributions for ‘momentum’ variables.

As the model of choice becomes complicated, the solution is to break up the orig-

inal sampling algorithm into smaller and simpler sampling problems by targeting the

subcomponents of the entire parameter space. Efficient design of algorithms is often

feasible in the block of such subcomponents. MCMCglmm (Hadfield et al., 2010)

is particularly designed to sample posterior distributions of the generalized linear

mixed models by classifying the whole parameter space into two subcomponents —-

one block of linear predictors and another block of variance for the linear predic-

tors. The R package ‘MCMCglmm’ is available to implement this method directly.

However, it only works for models with response variables from a limited range of

distributions. Unfortunately, the Student’s t-distribution, that is assumed by our

model, is not included in the predefined list. Craig (2013) described how to modify

the MCMCglmm to calculate a model with t-distributed response variables. Al-

though some improvements have been achieved by using the modified MCMCglmm

for the targeted model, the obtained results still display high auto-correlations.

In this chapter, the background to our model of interest is introduced in section

6.1. Section 6.2 presents computation results and problems for the targeted model

by using MCMC and MCMCglmm. The following three chapters deal with the

computation problems and concentrate on improving simulation performances by

designing different computation strategies for such a model. In chapter 7, some ad-

vanced MCMC methods, that would be used in the design of computation strategies

for the chosen model, are introduced as preliminary materials. Chapter 8 details the

design of computation strategies for this hierarchical model by combining and mod-
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ifying advanced computation tools. In chapter 8.5, computation results obtained

from different methods proposed in chapter 8 are compared.
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6.1 Model Structure

The hierarchical model considered here is designed to model ecotoxicological data,

especially the half maximal effective concentration (EC50). EC50 refers to the

concentration of a chemical that provokes 50% of the maximal possible response after

a specified exposure time (Motulsky, 1995). According to the exposure time, the test

from which the data are recorded can be roughly classified as acute test or chronic

test. As their names indicate, acute test is a short-term exposure test (usually hours

or days) while chronic test is a long-term exposure test (weeks, months or years). The

analysis of exotoxicological data mainly deals with variations in sensitivity of species

to different chemicals. There is a large literature on ecotoxicological risk assessment

and much of the existing work make some underlying assumptions: for example,

Gaussian distributed errors and exchangeability among species. However, it has been

found by examining a database of acute test results for a wide variety of chemicals

and aquatic species that those assumptions might be inappropriate (Craig, 2013).

Measurement errors for the same chemical-species combination display heavy-tailed

behaviour. Moreover, species sensitivities are not priori exchangeable and exhibit

taxonomic structure. In order to model these features, Craig (2013) proposed the

hierarchical model

yijk = µij + εijk (6.1.1)

and

µij = µ+ αi + βj + ψij, (6.1.2)

where

• yijk is the k-th measured log-sensitivity by using the log-EC50 for chemical i

tested on species j;

• µij is the true log-sensitivity for species j exposed to chemical i;

• εijk is measurement error modelled as Student’s-t distribution by the parametriza-

tion

εijk = σε
zijk√
κijk

,
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where zijk are iid (independently and identically distributed) N(0, 1) and κijk

are iid Γ(1
2
νκ,

1
2
νκ). zijk and κijk are independent with each other.

• µ is the overall central value of log-sensitivity across all chemicals and species;

• αi is the difference between the central value of log-sensitivity for chemical i

and µ. They are modelled as random effects which are iid N(0, σ2
α);

• βj is the logarithm of the sensitivity-tendency for species j. In order to incor-

porate the taxonomical structure, βj is modelled as

βj = β1t1(j) + · · ·+ βltl(j) + · · ·+ βLtL(j),

where βltl(j) is the tendency component at taxonomical level l for species j

whose classification at level l is t. Moreover, all the βlt’s are exchangeable at

same taxonomic level l. The species tendency components βl· at each level are

iid N(0, σ2
βl).

• ψij is the interaction between chemical i and species j. In order to incorporate

both the chemical specific variability and the taxonomically-related structure,

the interaction factors are written as

ψij = φiξij

and

ξij = ξi1t1(j) + · · ·+ ξiltl(j) + · · ·+ ξiLtL(j),

where φi scales the log-sensitivity variation for chemical i. This allows some

chemicals to exhibit more variation in sensitivity than others. ξij is constructed

to introduce the taxonomical structure in a similar way as that for βj. More-

over, all the ξilt’s are exchangeable for fixed taxonomic level l, i.e. ξ·l· are

iid N(0, σ2
ξl). Thus, ξij retain partial exchangeability between interactions to

some degree. In this way, ξij is directly comparable between different chemi-

cals but ψij is not. If we let λi = 1
φ2
i
, then the interactions could be rewritten

as

ψij =
1√
λi
ξi1t1(j) + · · ·+ 1√

λi
ξiltl(j) + · · ·+ 1√

λi
ξiLtL(j),
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where all λi are defined to be iid Γ(1
2
νφ,

1
2
νφ). In the right hand-side of the

above equation, each component term 1√
λi
ξiltl(j) can be considered as normal

distribution with spread controlled by λi corresponding to chemical i. Techni-

cally, such a term follows a Student’s-t distribution. Since all the component

terms in the right hand-side are scaled by a same λi, these terms are not inde-

pendent. The sum of these correlated Student’s-t distributed terms, ψij, does

not follow a Student’s-t distribution.

• Conditional on the hyper-parameters σα,
{
σβl
}
l=1,··· ,L,

{
σξl
}
l=1,··· ,L, νφ, σε and

νκ, the following blocks are independent,

µ, {αi}, {β1t}, · · · , {βLt}, {φi}, {ξi1t}, · · · , {ξiLt}, {κijk}, {zijk}.

February 16, 2016



6.2. Computations 129

6.2 Computations

The prior distribution for the hyper-parameters are assumed to be independent

p(µ, σα, σβ1, · · · , σβL, σξ1, · · · , σξL, νφ, σε, νκ) ∝

p(µ)p(σα)p(σβ1, · · · , σβL)p(σξ1, · · · , σξL)p(σε)p(νφ)p(νκ),

where

• p(µ) is a diffuse prior distribution N(0, 100);

• p(σε) ∝ 1
σε

;

• p(σα) ∝ 1;

• p(σβ1, · · · , σβL) ∝ 1;

• p(σξ1, · · · , σξL) ∝ 1;

• p(νφ) ∝ 1
ν2
φ
;

• p(νκ) ∝ 1
ν2
κ
.

The joint posterior probability density function is

p(µ, {αi},{βil}, {ψilt}, {λ}, {κijk}, σα, σβ1, · · · , σβL, σξ1, · · · , σξL, νφ, σε, νκ|{yijk})

∝ p(µ)p(νκ)p(νφ)p(σε)
∏
i∈I

N(αi|0, σα)
L∏
l=1

∏
t∈Ll

N(βlt|0, σβl)

×
∏
i∈I

Gamma(λi|
1

2
νφ,

1

2
νφ)
∏
i∈I

L∏
l=1

∏
t∈Lil

N(ψilt|0, σ2
ξl/λi)

×
∏

(i,j)∈IJ

Kij∏
k=1

Gamma(κijk|
1

νκ
,
1

2
νκ)N(yijk|µij,

σ2
ε

κijk
), (6.2.3)

where I is the set of all chemicals i in the database; IJ is the set of all chemical-

species combinations (i, j) in the database; Ll is the set of classifications at level

l for species in the database and Lil is the set of classifications at level l in the

database tested on chemical i. The database used here contains a wide variety

of chemicals and aquatic species. It has 8997 records involving 1896 chemicals
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with ‘CAS’ number. Each species is classified into 4 taxonomical levels: Phylum-

division, Class, Order and Latin. In order to make statistical inferences, the above

posterior distribution needs to be calculated. Considering its complexity structure

and high dimensionality, two recently developed computation packages, ‘rstan’ and

‘MCMCglmm’, are used to draw posterior samples as they are known to deal with

complicated and high-dimensional models.

6.2.1 Stan

Stan, a software which implements NUTS (No-U-Turn-Sampler), could be used

directly to simulate the posterior probability density function of the constructed

model; see section 7.1 for a detailed description of NUTS. The model code which is

fed to the argument of the ‘Stan’ function provided by R package ‘rstan(version:2.2.0)’

is displayed in Appendix D. The performance, however, is very poor. The following

rejection warning message is obtained almost in every iteration

"Informational Message: The current Metropolis proposal is about to be

rejected becuase of the following issue:

Error in function stan::prob::normal_log(N4stan5agrad3varE): Location

parameter[764] is -nan:0, but must be finite! If this warning occurs

sporadically, such as for highly constrained variable types like co-

variance matrices, then the sampler is fine, but if this warning oc-

curs often then your model may be either severely ill-conditioned or

misspecified."

Clearly, even with an advanced MCMC sampler, we still cannot obtain reliable poste-

rior samples for such a sophisticated model involving 20316 latent parameters contained

in the location component µij and 12 hyper-parameters if we crudely apply the MCMC

method to the entire parameter set.

6.2.2 Modified MCMCglmm

The MCMCglmm package (Hadfield et al., 2010) was developed to implement MCMC

sampling methods for generalized linear mixed models. It classifies parameters as two

components: 1)linear predictors; 2) covariance structures for fixed and random effects
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in the linear predictors. Generally, computation steps are iterated between these two

components by using the conditional distributions. It allows response variables to follow

many distributions, e.g. Gaussian, Poisson and exponential, but Student’s t-distributed

response variables are not considered. Craig (2013) exploited the idea of MCMCglmm and

modified it to make it suitable for the model considered here with Student’s t-distributed

errors. The modified algorithm, which is used to simulate the chosen model by sampling

iteratively between its corresponding conditional distribution of linear predictors and the

rest of the hyper-parameters, is restated here.

1. Simulate the linear predictors:

Conditional on σα, {σβl}l=1,··· ,L, {σξl}l=1,··· ,L, {κijk}, {λi}, the model could be ex-

pressed in the following matrix form

Y = Xθ + z

where θ is a column vector containing all the predictors and has a prior distribution

θ ∼ N(θ0,Σ); X is the design matrix; z is also a column vector and has prior

distribution z ∼ N(0, R). The posterior distribution for θ is

p(θ|Y ) ∝ N(θ|θ0,Σ)×N(Y |Xθ,R)

∝ exp
(
− 1

2

(
θT (Σ−1 +XTR−1X)θ − 2(Σ−1θ0 +XTR−1Y )θ

))
= N

(
C−1(Σ−1θ0 +XTR−1Y ), C−1

)
(6.2.4)

where C = Σ−1 + XTR−1X. Simulation from distribution displayed in Equation

(6.2.4) is achieved by the following algorithm:

Algorithm 5 Sampling the linear predictor

1: Simulate θ? from N(θ0,Σ) and ε? from N(0, R).

2: Set Y ? = Xθ? + ε?.

3: Compute θ̃ = C−1XTR−1(Y − Y ?).

4: Set θ = θ̃ + θ?.
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The reason that these steps give a correct simulation is shown below:

Cθ = Cθ̃ + Cθ?

= XTR−1(Y − Y ?) + Σ−1θ? +XTR−1Xθ?

= XTR−1Y −XTR−1Xθ? −XTR−1ε? + Σ−1θ? +XTR−1Xθ?

= XTR−1Y + Σ−1θ0 − Σ−1θ0 −XTR−1ε? + Σ−1θ?

= XTR−1Y + Σ−1θ0 + Σ−1(θ? − θ0)−XTR−1ε? (6.2.5)

In the above equation, the first two terms are constant; the third and final term fol-

low N(0,Σ−1) and N(0, XTR−1XT ) respectively. Obviously, Cθ follows N(Σ−1θ0 +

XTR−1Y, Σ−1 +XTR−1X). Therefore, Equation (6.2.4) is satisfied. Note that the

sparseness of C according to its definition makes its inverse matrix solved efficiently

by the sparse Cholesky decomposition provided by R package ‘Matrix’. The details

of calculation for C−1 are described in Craig’s technical report.

2. Simulate other parameters:

Conditional on the linear predictors obtained in step 1, the simulations for param-

eters σα, {σβl}l=1,··· ,L, {σξl}l=1,··· ,L, {κijk}, {λi}, νκ, νφ are provided by Gibbs sam-

pling which iterates by sampling in succession from the conditional distribution of

each parameter given current values of other parameters. The full conditional dis-

tributions for all of them could be recognised as known distribution families except

that for νκ and νφ. Therefore, the simulations for νκ, νφ are done by using the

random-walk Metropolis-Hastings method. According to the joint posterior shown

in Equation (6.2.3), the full conditional distributions are displayed as follows,

for {κijk} block:

κijk|others ∼ Γ
(1

2
(νκ + 1),

1

2

(
νκ +

(yijk − µij)2

σ2
ε

))
(6.2.6)

for σε: After making transformation τε = 1
σ2
ε
,

τε|others ∼ Γ
(1

2

∑
(i,j)∈IJ

Kij ,
1

2

∑
(ij)∈IJ

Kij∑
k=1

κijk(yijk − µij)2
)

for σα: After making transformation τα = 1
σ2
α

,

τα|others ∼ Γ
(1

2

(
|I| − 1

)
,
1

2

∑
i∈I

α2
i

)
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for {σβl} block: After making transformation τβl = 1
σ2
βl

,

τβl ∼ Γ
(1

2

(
|Ll| − 1

)
,
1

2

∑
t∈Ll

β2
lt

)
, l = 1, · · · , L

for {σξl} block: After making transformation τξl = 1
σ2
ξl

,

τξl ∼ Γ
(1

2

(∑
i∈I
|Lil| − 1

)
,
1

2

∑
i∈I

∑
t∈Lil

ψ2
ilt

φ2
i

)
, l = 1, · · · , L

for {λi} block:

λi|others ∼ Γ
(1

2

(
νφ +

L∑
l=1

|Lil|
)
,
1

2

(
νφ +

L∑
l=1

∑
t∈Lil

ψ2
ilt

σ2
ξl

))
(6.2.7)

for νκ:

p(νκ|others) ∝ 1

ν2
κ

((νκ/2)νκ/2

Γ(νκ/2)

)∑
(i,j)∈JI

Kij( ∏
(i,j)∈JI

Kij∏
k=1

κijk

)νκ/2

exp{−1

2
νκ

∑
(i,j)∈JI

Kij∑
k=1

κijk}

for νφ:

p(νφ|others) ∝ 1

ν2
φ

((νφ/2)νφ/2

Γ(νφ/2)

)∑
i∈I λi

(∏
i∈I

λi

)νφ/2
exp{−1

2
νφ
∑
i∈I

λi}

The simulations for νκ and νφ are obtained by using the random-walk Metropolis-Hastings

method as their conditional distribution cannot be recognized to some known distribution

families. In the burn-in period, the scale of proposal distribution is tuned by using the

acceptance rate. Briefly, if current observed acceptance rate is lower than a given lower

bound, then the scale is reduced by half; if the observed accepted rate is higher than a

given upper bound, then the scale is doubled. Roberts et al. (2001) stated that Metropolis-

Hastings MCMC algorithms with acceptance rate between 0.15 and 0.5 is at least 80%

efficient. We therefore set the above mentioned lower bound and upper bound to be 0.15

and 0.5 respectively. Other algorithm parameters needed in the random-walk Metropolis-

Hastings method and the resulting acceptance rates for νκ, νφ are displayed in the following

grey box.
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Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thin: thin = 1;

The scale of proposal distribution tuned during the burn-in period:

• for νκ: 0.025

• for νφ: 0.05

The accepted rate of the main iterations:

• for νκ: 0.3197

• for νφ: 0.2929

Some improvements are achieved by MCMCglmm method compared to the results given

by Stan in the previous section. However, posterior samples have high auto-correlations

for most parameters, especially those for νκ, νφ, σε, {σβl}l=1,··· ,L. The trace-plot and auto-

correlation plot for νκ and νφ are displayed in Figure 6.1. The sticky behaviour indicates

the low efficiency of the algorithm. In order to measure number of independent samples in
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Figure 6.1: Trace-plot and Auto-correlations of νκ and νφ

the simulations, ESS (effective sample size) is used to show the efficiency of the algorithm.

Particularly, ESS, which is closely related to auto-correlations, is defined as

ESS =
N

1 + 2
∑∞

k=1 ρk
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where N is Number of iterations and ρk is auto-correlations at lag k. In ‘coda’, an R pack-

age, ESS is provided by function ‘effectiveSize’ which fits an autoregressive (AR) model

to calculate ESS. In order to obtain a reliable value for ESS, we make some transforma-

tions to our simulation results if they are skewed heavily. The simulations of σβ1 and σβ2

, which correspond to taxonomical level ‘Class’ and ‘Phylum-division’ respectively, have

obvious skewness (as shown by red curves in Figure 6.2). Therefore, we take square root

of simulations for them and calculate ESS after transformations.
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Figure 6.2: Density plots for the original and transformed samples for σβ1 and σβ2.

In the Table 6.1, auto-correlations at lag 1, 5, 10 and effective sample size for all hyper-

parameters are provided in ascending order of effective sample size value. Extreme high

auto-correlations exist in the samples for {σξl}l=1,··· ,L, νφ, σε, νκ as shown in this table.

Therefore, we need to change our computation strategy and try other more efficient algo-

rithms in order to obtain high quality simulations.
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parameters lag 1 lag 5 lag 10 ESS

σξ4 (Latin:CAS) 0.990 0.950 0.902 103

σξ3 (Order:CAS) 0.981 0.916 0.843 149

νφ 0.966 0.881 0.814 154

σξ1 (Phylum-division:CAS) 0.983 0.918 0.848 176

σξ2 (Class:CAS) 0.981 0.910 0.835 182

νκ 0.965 0.864 0.769 242

σε 0.952 0.814 0.709 248

σβ2 (Class) 0.919 0.705 0.555 316

σβ4 (Latin) 0.881 0.567 0.356 1040

σβ3 (Order) 0.882 0.568 0.349 1074

σα (CAS) 0.504 0.222 0.144 1923

σβ1 (Phylum-division) 0.671 0.227 0.123 1934

µ 0.075 0.022 0.022 11323

Table 6.1: Auto-correlations and ESS
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Chapter 7

Advanced MCMC

In this chapter, we review two advanced MCMC algorithms, NUTS (No-U-Turn Sampler)

and RMHMC (Riemann Manifold Hamiltonian Monte Carlo), which are made use of later

to improve simulation quality for the model described in the previous chapter. As discussed

in Chapter 5, Hamiltonian Monte Carlo is a powerful MCMC tool which suppresses random

walk behaviour by taking advantage of Hamiltonian dynamic system. In spite of the

potential efficiency provided by this scheme of HMC, tuning of HMC algorithm parameters,

ε (step-size), l (path length) and M (variance matrix of ‘Momentum’), is still an important

issue which is influential on the efficiency of the algorithm. NUTS and RHMC are two

HMC variants that are designed to automatically tune algorithm parameters l and M

respectively.

7.1 NUTS

Hoffman and Gelman (2011) proposed NUTS, a relatively new MCMC method which ex-

tends HMC to eliminate the need of hand-tuning l by users. The trajectories, that are

used to approximate the exact dynamic flow satisfying the Hamiltonian equations, are

numerically calculated by the leap-frog integrator. Obviously, to implement this sampler,

one must choose an appropriate length for these trajectories to reach distant proposals ef-

ficiently. The need for such a special choice limits the routine use of HMC, and inhibits the

development of software that automatically construct an HMC sampler. As commented

by Hoffman and Gelman (2011), calculating the length of the simulated trajectory is not

an easy task. A trajectory that is too short might result in a high auto-correlated chain
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that turns out to have low efficiency. A too long trajectory might cause the chain to trace

back. The trace back behaviour not only leads to a waste of computation but also results

in low efficiency due to proposals which go back towards the current states. This fact is

shown in Figure 7.1, in which we consider a bivariate Gaussian distribution

N

(0

0

 ,

 1.8 0.99

0.99 1.8

)

as the target distribution. The blue curves are the simulated trajectories which start from

−2

0

2

−2 0 2
x1

x2

−2

0

2

−2 0 2
x1

x2

−2

0

2

−2 0 2
x1

x2

Figure 7.1: Trajectories with different lengths. The black contour is the target bivariate

Gaussian distribution. Simulated trajectories are displayed by blue curves with same

starting point marked by 2 and ending points marked by arrows.

same point (−1.5,−0.58) marked by a ‘square’ and ends at different points marked by

arrows. The ‘momentum’ variable generated from standard bivariate Gaussian distribution

is (1.52, 1.22) and step-size is chosen as 0.08. In the leftmost plot, the trajectory, which

has the ability to move to further place, is halted too early. In middle plot, the path starts

to trace back to the initial point due to a too long trajectory. The rightmost plot shows

the trajectory with the ‘just right’ length to move to the furthest place without a waste

of computation.
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The real difficulty is that some areas require small l while some need large l. Therefore,

a fixed global l which is always right for every state to move to the most distant place along

the simulated trajectory might not exist. The commonly used adaptive methods which

tune l only in the burn-in period would be inadequate to maximize the potential ability

of HMC. Moreover, unlike HMC with stochastic step-size (introduced in Chapter 5) and

RMHMC (described in section 7.2 ), it is difficult to make use of some geometrical tools like

the local curvature to tune the length of trajectory. In Figure 7.2, the target distribution

is a simple bivariate Gaussian distribution which has constant curvature throughout the

whole state space. Two blue trajectories are initialized from different points: the one in

−2

0

2

−2 0 2
x1

x
2

−2

0

2

−2 0 2
x1

x
2

Figure 7.2: Trajectories with different starting points. The simulated trajectories are

shown by solid blue curves starting from different points marked by 2 and ending at same

point marked by arrows. The length of trajectories are l = 40 and l = 20 respectively.

The dotted lines show paths after stopping points.

the left hand-side plot is initialized from point (−1.5,−0.58); the one in the right hand-side

plot starts from point (1.36, 0.98). The best stopping points are marked by arrows since the

trajectories start to trace back as shown by the dotted lines after arrows. Conspicuously,

the left hand-side plot needs a larger l while a smaller l is adequate for the right hand-

side trajectory. It is noteworthy that the trace-back behaviour is due to the periodical
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feature of the solutions for the Hamiltonian equations as illustrated in Equations (5.6.50).

The period of the trajectory can be worked out analytically in such a trivial example

while in most real computation problems it cannot be derived. In fact, the period of the

Hamiltonian solution is not useful in determining the length l of the trajectory. Because it

is where the trajectory starts that dominates the tuning as shown in Figure 7.2 in which

two trajectories have the same period but should have different l due to different starting

points.

In fact, maximizing the ability of HMC in terms of length of trajectory is identical to

keeping moving trajectories until an appropriate stopping point is achieved. Therefore, a

criterion that judges whether the trajectory has reached a far enough point is necessary

during main iterations. Denote (θ,p) and (θ′,p′) as states where a trajectory starts and

currently reaches respectively. The criterion used in NUTS is based on the dot product

between the vector θ′ − θ and p′, i.e.

(θ′ − θ) · p′ (7.1.1)

Once the above dot product changes the sign to negative, it indicates that the ‘momentum’

variables start to pull the trajectory back to its initial point and thus we should stop the

trajectory.

7.1.1 Reversibility

After confirming a stopping rule that seeks an appropriate length of the simulated trajec-

tory, a problem with this rule comes into view. Such a rule cannot retain the reversibility

which is mandatory for a MCMC algorithm to converge to the desired distribution. We

illustrate the irreversibility in Figure 7.3. In the left hand-side plot, the trajectory is

initialized from point (−1.5,−0.58) which is marked by ‘square’; and it is terminated at

the point (2.88, 2.10) according to the stopping rule in Equation (7.1.1) since the value

of that formula is −0.245. Let us consider the reverse trajectory in the right hand-side

plot. The trajectory is started from point (2.88, 2.10) that is the terminated point of the

trajectory in the left hand-side plot. The blue curve violates the reversibility as it passes

by the point (−1.5,−0.58) (initial point of the trajectory in the left hand-side plot) and

terminates at point (−2.38,−2.64) according to the stopping rule.
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Figure 7.3: Non-reversible trajectory. Blue solid curves with arrows pointing at termi-

nated points represent simulated trajectories. 2 and O represent starting points of the

trajectory of the left and right plot respectively. Dotted lines show paths after terminated

points.

The strategy used in NUTS to recover the reversibility is called doubling procedure.

This procedure builds a tree as shown in Figure 7.4. The doubling step at each tree level

j is implemented by moving the trajectory 2j−1 leap-frog steps after choosing a direction

(backward or forward marked by the red arrows) uniformly. The development from level j

to level j+ 1 is completed recursively. Suppose the tree currently has j levels. It develops

the (j + 1)-th level by recursively calculating two (j − 1)-level sub-tree. For example,

suppose that the tree has 2 levels. It grows level 3 by adding two 1-level sub-trees with

nodes marked by 3. For a tree with j levels, it contains 2j − 1 balanced binary sub-trees

marked by the blue dashed lines. At level j, the new double procedure increases the

number of sub-trees by 2j−1. For example, the number of sub-trees are increased from

3 to 7 after the doubling procedure at level 3. After each doubling, the stopping rule

(Equation (7.1.1)) needs to be tested. More specifically, the leftmost and rightmost points

of each sub-trees are examined by the stopping rule. Therefore, the stopping rule is tested

by 2j − 1 times if the tree has j levels. Once the stopping criterion is satisfied by a pair of

points, the tree evolution stops. The level that contains the points causing the stopping is
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0

with probability 0.5 01

with probability 0.5 0122

with probability 0.5
122 0 3 3 3 3

with probability 0.5
0122 3 3 3 344444444

1

0

2

2

level 0

level 1

level 2

level 3

level 4

Figure 7.4: Tree evolution. This illustrated 4-level tree is constructed by 4 doubling steps.

Starting from the initial point (recorded by 0) located at level 0 (the root of the tree),

after randomly choosing the direction the trajectory moves 20 step backward from node

0 to node 1 at level 1. If the two nodes at level 1 does not satisfy the stopping rule, the

tree is growing to level 2 where the trajectory moves 21 steps backward from node 1 to

the leftmost node 2. If the nodes at level 2 do not meet the stopping criterion, the tree

grows to level 3 and so on.

removed from the tree; we return to the last level and uniformly select one point as the

proposal of this MCMC iteration. For example, suppose that the pair containing the two

grey nodes shown in the Figure 7.4 meets the stopping criterion. The tree evolution is

stopped and we then delete level 4, and uniformly select one node from level 3 (23 nodes

available) as terminating point of the simulated trajectory.

We briefly state how the reversibility is guaranteed by such a tree constructed via the

doubling procedure; see Hoffman and Gelman (2011) for strict proof. Suppose that the

stopping arises at level 4 as previously assumed and the point uniformly selected from

level 3 is coloured by red as shown in the top plot of Figure 7.5. In other words, the

trajectory is started from node 0 (yellow node) and terminated at node 3 (red node). The
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last level with gray nodes are removed from the tree due to the fact that it contains points

satisfying the stopping rule. Although being removed, the last backward movement still

contributes to the whole tree development (level 0 to level 3) since the final tree might be

different if the direction is chosen to be forward after level 3. Therefore, the probability

of transferring from node 0 to the red node 3 is

1

2︸︷︷︸
backward

× 1

2︸︷︷︸
backward

× 1

2︸︷︷︸
forward

× 1

2︸︷︷︸
backward and removed

× 1

8︸︷︷︸
uniform selection

.

In the bottom plot of Figure 7.5, the tree is initiated from node 3 (the terminated state

of the top tree) at level 0. This tree can be built by moving forward once and backward

three times in order. The structure of the sub-trees marked by the blue dashed lines in

the bottom plot is identical to that in the top plot. Therefore, the pairs of nodes being

tested by the stopping rule in the bottom plot are exactly the same with those in the top

plot. This indicates that the tree keeps on growing until level 4. For the bottom plot, the

probability of obtaining this tree and terminating trajectory at node 0 is

1

2︸︷︷︸
forward

× 1

2︸︷︷︸
backward

× 1

2︸︷︷︸
backward

× 1

2︸︷︷︸
backward and removed

× 1

8︸︷︷︸
uniform selection

.

That is, the probability of moving from the yellow node to the red node is the same as

that of moving from the red one to the yellow one under this tree and thus the reversibility

is recovered.
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Figure 7.5: Reversibility of Tree
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7.2 RMHMC

RMHMC, proposed by Girolami and Calderhead (2011), exploits the geometric informa-

tion of statistical models to choose M (the variance matrix of ‘momentum’ variables) and

thus eliminates the needs for hand-tuning of it. Moreover, the choice for M depends on

θ. HMC has been demonstrated to have extraordinary potential ability to provide distant

proposals owing to its special proposal strategy that takes advantages of the Hamiltonian

dynamic flow by augmenting an auxiliary variable to establish the Hamiltonian system.

In fact, the augmented ‘momentum’ variable plays the role of proposal distribution that

introduces randomness in HMC. Therefore, M is influential in the performance of HMC.

7.2.1 Effect of M

By reusing the ‘banana’ example described in section 5.4.4, we illustrate the effect of M .

For the ‘banana’ example, we show the performance of HMC with M chosen as identity

matrix and RMHMC which chooses M as the expected Hessian matrix of the log-density

function. These two sampler are implemented for one iteration with 30 leap-frog steps and

step-size 0.1. The simulated trajectory paths are displayed in the following figure by using

the blue lines. These two trajectories are started from the same starting point (−1, 1.5)

marked by +. The black dots are terminated points.
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1
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−2 −1 0 1 2
theta1
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et

a2
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1
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−2 −1 0 1 2
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Figure 7.6: HMC and RMHMC trajectory path for one iteration. Left: HMC; Right:

RMHMC.

The left-hand side plot displays the trajectory given by the HMC and the right-hand

side plot displays the trajectory given by the RMHMC. The ‘momentum’ variables used
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to construct the left-hand side trajectory are generated from N(0, I) while the ‘mo-

mentum’ variables used to construct the right-hand side trajectory are generated from

N(0,Ey|θ

[
∂2

∂θ2 (−L)
]
). In order to make comparisons, we use the same random number to

generate ‘momentum’ variables. The trajectory given by the HMC has zigzag behaviour

while the trajectory given by the RMHMC is much more smooth.

According to Equation 5.6.50, by locally approximating the target distribution, the

trajectory can be considered as a combination of independent oscillators along directions

of eigenvectors of matrix M−1Σ−1
θ , where Σ−1

θ = −∂2L
∂θ2 |θ=θc . If M = Σ−1

θ , then the matrix

M−1Σ−1
θ becomes a identity matrix. In this way, the simulation becomes easy since the

target distribution is locally standardized to a standard Gaussian distribution and the

curvature of the target log-density function is locally corrected to 1. Since we need to

generate the ‘momentum’ variables from N(0,M), M must be a positive-definite matrix.

And this can be fixed by using the expectation of −∂2L
∂θ2 |θ=θc .

7.2.2 Implementation

As M depends on θ, we denote it by M(θ). The ‘momentum’ variables come from

p ∼ N(0,M(θ))

where M(θ) = Ey|θ

[
∂2

∂θ2 (−L)
]
. The Hamiltonian system formed by the parameters of

interest and such augmented ‘momentum’ variables is

H(θ,p) = −L(θ) +
1

2
log{|M(θ)|}+

1

2
pTM(θ)−1p (7.2.2)

The energy shown in Equation (7.2.2) is not separable and the corresponding Hamiltonian

equations are

dθi
dt

=
∂H

∂pi
= {M−1(θ)p}i

dpi
dt

= −∂H
∂θi

=
∂L

∂θi
− 1

2
tr{M(θ)−1∂M(θ)

∂θi
}+

1

2
pTM(θ)−1∂M(θ)

∂θi
M(θ)−1p

The numerical integrator exploited to solve above differential equations is the generalized

leap-frog algorithm

p(t+
ε

2
) = p(t)− ε

2
∇θH{θ(t),p(t+

ε

2
)} (7.2.3)

θ(t+ ε) = θ(t) +
ε

2

[
∇pH{θ(t),p(t+

ε

2
)}+∇pH{θ(t+ ε),p(t+

ε

2
)}
]

(7.2.4)

p(t+ ε) = p(t+
ε

2
)− ε

2
∇θH{θ(t+ ε), p(t+

ε

2
)} (7.2.5)

February 16, 2016



7.2. RMHMC 147

Equations (7.2.3) and (7.2.4) are implicit equations for p(t + ε
2),θ(t + ε) and thus extra

numerical iterations are required to solve them. The method used in RMHMC to solve

these implicit functions is fixed-point iterations. Suppose an implicit function x = g(x).

The fixed-point iteration scheme is summarized as follows.

Algorithm 6 Fix-Point Iteration

1: Given an initial guess x0;

2: for n = 0, · · · , N do

3: n = n+ 1;

4: xn+1 = g(xn);

5: end for

p(t + ε
2),θ(t + ε) in Equation (7.2.3) and (7.2.4) are calculated according to the above

scheme. Girolami and Calderhead (2011) suggested to set N to 5 or 6 in the fix-point

iteration scheme for solving the implicit function in the RMHMC algorithm.

Disadvantages of RMHMC

Admitting the perfect performance of RMHMC, it is much more computationally expen-

sive than HMC since it requires not only significant effort in matrix calculations (such as

matrix decompositions and matrix derivatives) but also in solving implicit equations. In

addition, the expectation of the Hessian matrix also need efforts to derive before using this

sampler. There is no good solution which could simplify RMHMC and retain its ability at

the same time. In order to speed up the program which runs RMHMC, one might resort

to other high-efficient programming languages such as C++ or Python.
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Chapter 8

Improving Simulations for a Real

Model

As discussed in section 6.2, current computational solutions to the model under consid-

eration are unsatisfactory: Stan failed to provide us with even one simulation; modified

MCMCglmm performed better than Stan but also provided very high-autocorrelated sim-

ulation results. In this chapter, we carry out a study to investigate suitable computational

strategies to improve the simulation quality for the hierarchical model described in chapter

6.

As illustrated in section 6.2.1 and 6.2.2, the computation difficulties associated with

such a model are due to its high-dimensional parametric space, complicated model struc-

ture and the limitations of simulation algorithms. Stan’s use of both HMC and NUTS is

fully justified but submitting the whole model directly to Stan causes a stuck Markov chain

due to the complicated model structure (involving interactions, taxonomically related

structures and partial exchangeability) and large number of parameters (31221 parame-

ters in total). The modified MCMCglmm seems to be acceptable as it eventually provided

us with a simulation result after substantial thinning (such as 100). Generally speaking,

it classifies parameters according to their roles (linear predictors and variance structure

parameters) in the model and then simulates them separately. The major drawback of

this method when applied to the target model is the ‘sticky’ behaviour of simulations

for variance structure parameters provided by the MCMC sampler. Particularly, MCMC

simulations for the parameters {νκ, σε, νφ, σξ1, σξ2, σξ3, σξ4} display very high autocorre-

lations according to Table 6.1. With these facts in mind, our experimental set up bears
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a close resemblance to the modified MCMCglmm that deals with parameters separately

according to their roles. However, the following two changes are made:

1. Blocking parameters

As shown in Table 6.1, the original sampling method that simulates the variance structure

parameters one at a time according to their full conditional distributions obtained highly

auto-correlated posterior samples for these parameters. We therefore consider blocking

these challenging variance-structural parameters

{νκ, σε, νφ, σξ1, σξ2, σξ3, σξ4}.

Rather than considering all the above parameters in one single block, we further divided

them into two small blocks:{
νφ, {σξl}l=1:L, {λi}i∈I

}
,
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈IJ

}
The reason why we adopted the above partition is that the above two blocks are condition-

ally independent with each other. Such independence is illustrated as follows. Recall the

hierarchical model illustrated in section 6.1. The structure of model is displayed in Figure

8.1. In order to obtain the conditional independence clearly, the direct acyclic graph and

its corresponding moral graph are shown in Figure 8.2 and 8.3 respectively. The moral

graph is obtained by connecting the nodes that have a common child. We should connect

every two nodes in {µ, αi, βltj , ψij , κijk, σε}. In order to make the moral graph clear, we use

the oval with double green edge to mean that every two nodes on its edge are connected.

In Figure 8.3, the variables inside the red dotted ellipse are given by Algorithm 5. By

looking at the moral graph in Figure 8.3, we have the following conditional independence{
νφ, {σξl}l=1:L, {λi}i∈I

}
⊥
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈IJ

}
|
{
µ, αi, βltj , ψij , yijk

}
.

It is natural to group those challenging parameters into two blocks:

Block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
and Block

{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈IJ

}
.

The parameter νφ controls variance of λi and the whole block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
de-

cides the degrees of freedom and the variance of the t-distributed random effect interaction

ψij . Similarly, νκ governs all of κijk and the whole block
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
dictates the degree of freedom and the variance of the the t-distributed measurement error

εijk.
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Figure 8.1: Model Structure. Double arrows represent deterministic dependencies. For

example, εijk =
zijk√
κijk

.

Figure 8.2: Direct Acyclic Graph

Figure 8.3: Moral Graph.
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2. Sampling the marginalized conditional distributions

In order to simulate the two blocks mentioned above, we apply the marginal MCMC

sampling method instead of directly using MCMC methods to the blocks. To illustrate

the computation design for the full conditional distributions of these two blocks, we assume

a scenario where we are interested in sampling from the distribution p(x1,x2|x3), where

x1,x2,x3 are arbitrary random variables. Consider the standard decomposition

p(x1,x2|x3) = p(x1|x3)p(x2|x1,x3), (8.0.1)

where p(x1|x3) is the marginalized distribution of x1 after integrating out x2 from p(x1,x2|x3).

We use the following sampling procedure for an update

T
(
(x?1,x

?
2)|(x1,x2)

)
= T (x?1|x1)p(x?2|x?1,x3) (8.0.2)

That is,

(x1,x2)
x?1∼p(x1|x3)
−−−−−−−−→

fix x2

(x?1,x2)
x?2∼p(x2|x?1,x3)
−−−−−−−−−−→

fix x?1
(x?1,x

?
2), (8.0.3)

This procedure is automatically justified by the decomposition shown in Equation (8.0.1).

This procedure was chosen because it is a feasible way to transform a high dimensional

simulation problem into a low dimensional simulation that is much more economic to

deal with. This marginal scheme is also exploited in particle MCMC proposed by Andrieu

et al. (2010) for the state space model. They mentioned that, “this proposed x?2 is perfectly

adapted to the proposed x?1 and the only degree of freedom of the algorithm (which will

affect its performance) is T (x?1|x1)” (Andrieu et al., 2010). And, therefore, a good sampling

from the marginalized distribution for x1 is essential. This procedure to update (x1,x2)

is summarized in the following algorithmic form.

Algorithm 7 The Marginal Sampling Approach

1: Given current states xt =
{

xt1,x
t
2

}
, sampler’s parameters Λ;

2: Set xt+1
1 = Sampler

(
p(x1|x3),xt1,Λ

)
;

3: Simulate xt+1
2 ∼ p(x2|xt+1

1 ,x3).

where Λ denotes all parameters needed by the specific sampler implemented to simulate

x1. For example, Λ = {ε, l,M} representing the step-size, the number of the leap-frog steps

and the variance matrix of ‘momentum’ variables if HMC is chosen to be the sampler.
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Let us now turn to our real problem: sampling from the conditional distribution of

the block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
and the block

{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
. We

respectively denote these two conditional distributions by

p(νφ, σξ1, · · · , σξL, {λ}i∈I |others)

and

p(νκ, σε, {κijk}|others)

where ‘others’ denotes the parameters not in the targeted block. For each block, we firstly

sample a marginalized conditional distribution and then a conditional distribution. To

be specific, for block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
, the marginalized conditional distribution

p(νφ, {σξl}l=1:L|others) and the conditional distribution of p({λi}i∈I |νφ, {σξl}l=1:L, others)

are sampled in order to achieve the simulation for the conditional distribution of this

block. For block
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
, the marginalized conditional distribu-

tion p(νκ, σε|others) and the conditional distribution of p({κijk}k=1,...,Kij ;(i,j)∈JI |νκ, σε, others)

are sampled in order to achieve the simulation for the conditional distribution of this block.

The parameters νφ, {σξl}l=1:L and parameters νκ, σε play the role of x1, the parameters

{λi}i∈I and {κijk}k=1,...,Kij ;(i,j)∈JI act as x2 and the parameters not in this block are x3

in Equation (8.0.1).

There are two reasons of adopting this marginalized sampling method. Firstly, high-

dimensional simulation problems can be simplified to low-dimensional simulation prob-

lems. For example, for block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
, a 1901-dimensional (1896 λi’s, 4

σξl’s and 1 νφ) simulation is divided into a 5-dimensional sampling problem for νφ, {σξl}l=1:L

and a sampling problem concerning 1896 λi’s. Particularly, the simulation problem of

1896 λi’s could be efficiently solved by sampling them all in a single line of code as the

conditional distribution p({λi}i∈I |νφ, {σξl}l=1:L), that is the same as the one in Equa-

tion (6.2.7), belongs independently to the gamma distribution family. Secondly, {λi}i∈I

and {κijk}k=1,...,Kij ;(i,j)∈JI play the role of latent variable; νφ, {σξl}l=1:L and νκ, σε can

be considered as hyper-parameters of these two blocks respectively conditional on ‘other’

parameters. Integrating out latent variables can break the correlation between hyper-

parameters and latent variables and thus ease simulating difficulties of the corresponding

hyper-parameters. This fact can be illustrated in the following experimental results where

the posterior samples for νφ and νκ have been improved to a large extent (please see Figure

C.6 for details).
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Therefore, the main issue is to choose an appropriate sampler to sample from the

marginalized conditional distribution. We apply different MCMC samplers to achieve

informative simulations. Particularly, RWMH, HMC, and HMC’s variants are used as the

proposal methods for the desired marginalized conditional distributions.

This chapter is divided into 5 sections. In section 8.1, mathematical details that are

needed in the algorithms for sampling the block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
and the block{

νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
are presented. Sections 8.2 and 8.3 provide simulation re-

sults obtained by applying RWMH, basic HMC, NUTS, RMHMC and HMC with stochas-

tic step-size sampler to the marginalized conditional distributions respectively. Section

8.4 discusses the autocorrelations left in the simulation results presented in section 8.3. In

the final section, simulation results from different sampling methods are compared.
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8.1 Blocking Parameters

Here, we provide the mathematical details that are required in sampling from the block{
νφ, {σξl}l=1:L, {λi}i∈I

}
and the block

{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
according to the

marginal approach illustrated in Algorithm 7. To be specific, the marginalized distribution,

its first derivatives, second derivatives and the expected Hessian matrix are provided for

each block.

8.1.1 Block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
Considering the joint posterior distribution shown in Equation (6.2.3), the full conditional

distribution of the parameters in block
{
νφ, {σξl}l=1:L, {λi}i∈I

}
, given parameters not in

this block, can be expressed as

p(νφ, σξ1, · · · , σξL, {λ}i∈I |others)

∝ p(νφ)
∏
i∈I

Γ(λi|
1

2
νφ,

1

2
νφ)
∏
i∈I

L∏
l=1

∏
t∈Lil

N(ψilt|0, σ2
ξl/λi)

In the following section, ‘other’ is omitted for convenience and p(νφ, σξ1, · · · , σξL, {λ}i∈I)

is used to denote the full conditional distribution of this block. As described in Equation

(8.0.2), the strategy used to simulate the full conditional distribution p(νφ, {σξl}l=1:L, {λi}i∈I)

is composed by two steps:

1. sampling from the marginalized conditional distribution p(νφ, {σξl}l=1:L) that is

the result of integrating out all of {λi}i∈I from the full conditional distribution

p(νφ, {σξl}l=1:L, {λi}i∈I);

2. given νφ, {σξl}l=1:L obtained from the previous step, sampling from the conditional

distribution p({λi}i∈I |νφ, {σξl}l=1:L).

By using this marginal approach, a 1901-dimensional (1896 λi’s, 4 σξl’s and 1 νφ) simu-

lation is divided into a 5-dimensional sampling problem stated in step 1 and a sampling

problem concerning 1896 λi’s. Particularly, the simulation problem of 1896 λi’s could be

efficiently solved by sampling them all in a single line of code as the conditional distribu-

tion p({λi}i∈I |νφ, {σξl}l=1:L), that is the same as the one in Equation (6.2.7), belongs in

dependently to the gamma distribution family. Therefore, the main issue is to choose an

appropriate sampler to sample from the 5-dimensional marginalized conditional distribu-

tion.
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Marginal Distribution

By integrating out all of λi (see Appendix C.1 for the integration details), we obtained

the following marginalized conditional distribution p(νφ, {σξl}l=1:L),

p(νφ, {σξl}l=1:L) =

∫
· · ·
∫
p(νφ, {σξl}l=1:L, {λi}i∈I) dλ1 · · · dλ|I|

=
1

ν2
φ︸︷︷︸

prior

∏
i∈I

tνφ(Wi|0,Σi)︸ ︷︷ ︸
‘likelihood’

(8.1.4)

with

Wi =



Wi1

Wi2

...

Wil

...

WiL


Pi,1

Σi = σ2
ξ1I|Li1|,|Li1| ⊕ σ

2
ξ2I|Li2|,|Li2| ⊕ · · · ⊕ σ

2
ξlI|Lil|,|Lil| ⊕ · · · ⊕ σ

2
ξLI|LiL|,|LiL|

Pi =
L∑
l=1

|Lil|

where Wil is the column vector of length |Lil| with entries {ψilt}t∈Lil ; Ix,x stands for

x×x-dimensional identity matrix and ‘⊕’ is direct sum. The term Σi represents a Pi×Pi

dimensional covariance matrix. In this block, the relevant linear predictor components,

which we denote by Wi, are considered as ‘data’ that are provided by Algorithm 5. Each

{Wi; i ∈ I} is independently from a Pi-dimensional t distribution with parameters Σi and

νφ, i.e.

Wi ∼ tνφ(0,Σi)

Derivatives and Fisher Information Matrix

In order to sample from the above marginalized conditional distribution by using different

MCMC samplers, logarithm of the marginal distribution, its first derivatives and Fisher

Information matrix are required. We denote the logarithm of p(νφ, {σξl}l=1:L) by lφ. After
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some simplifying, it is given by

lφ = −2 log νφ + |I|
(1

2
νφ log

1

2
νφ − log Γ(

1

2
νφ)
)

+
∑
i∈I

{
− 1

2
log |Σi|+ log Γ(

1

2
νφ +

1

2
Pi)− (

1

2
νφ +

1

2
Pi) log

(1

2
νφ +

1

2
W T
i Σ−1

i Wi

)}
(8.1.5)

With the above formula, it is straightforward to obtain its derivatives which are listed as

follows.

• First Derivatives:

The first derivative of lφ with respect to νφ is

∂

∂νφ
lφ = − 2

νφ
+

1

2
|I|
(

1−Ψ(
1

2
νφ)
)

+
1

2

∑
i∈I

{
Ψ(

1

2
νφ +

1

2
Pi)− log(1 +

W T
i Σ−1

i Wi

νφ
)−

νφ + Pi
νφ

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
}

(8.1.6)

where

Ψ(x) =
d

dx
log(Γ(x)) =

Γ′(x)

Γ(x)

Particularly, Ψ(·) could be calculated by calling the R function ‘digamma()’ directly.

The first derivative of lφ with respect to σξl (l = 1, · · · , L) is

∂

∂σξl
lφ = −

∑
i∈I

|Lil|
σξl

+
∑
i∈I

{(νφ + Pi
σξl

)(
W T
il Σ−1

il Wil

)(
νφ + W T

i Σ−1
i Wi

)−1
}

(8.1.7)

where

Σil = σ2
ξlJ|Lil|×|Lil|

i.e. Σi = Σi1 ⊕ Σi2 ⊕ . . .Σil ⊕ . . .ΣiL.

• Second Derivatives:

According to the above first derivatives, the following second derivatives are ob-

tained. The second derivative of lφ with respect to νφ is

∂2

∂ν2
φ

lφ =

C1−
1

2

∑
i∈I

{
νφ − Pi
ν2
φ

(
1+

W T
i Σ−1

i Wi

νφ

)−1
+
νφ + Pi

ν3
φ

(W T
i Σ−1

i Wi)
(

1+
W T
i Σ−1

i Wi

νφ

)−2
}

(8.1.8)
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where

C1 =
2

ν2
φ

+
1

2
|I|
( 1

νφ
− 1

2
Ψ′(

1

2
νφ)
)

+
1

4

∑
i∈I

Ψ′(
1

2
νφ +

1

2
Pi)

Ψ′(x) =
d2

dx2
log(Γ(x))

where Ψ′(·) could be obtained by calling the R function ‘trigamma()’ directly.

The second derivative of lφ with respect to νφ and σξl (l = 1, · · · , L) is

∂2

∂νφ∂σξl
lφ =

∑
i∈I

{
W T
il Σ−1

il Wil

νφσξl

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
−
νφ + Pi

ν2
φσξl

W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
}

(8.1.9)

The second derivative of lφ with respect to σξl (l = 1, · · · , L) is

∂2

∂σ2
ξl

=∑
i∈I |Lil|
σ2
ξl

+
∑
i∈I

{
−3(νφ + Pi)

σ2
ξlνφ

W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1

+
2(νφ + Pi)

σ2
ξlν

2
φ

(
W T
il Σ−1

il Wil

)2(
1 +

W T
i Σ−1

i Wi

νφ

)−2
}

(8.1.10)

The second derivative of lφ with respect to σξl and σξj with l 6= j is

∂2

∂σξl∂σξj

∣∣∣
l 6=j

=

∑
i∈I

{
2(νφ + Pi)

ν2
φσξlσξj

(
W T
il Σ−1

il Wil

)(
W T
ijΣ−1

ij Wij

)(
1 +

W T
i Σ−1

i Wi

νφ

)−2
}

(8.1.11)

The Fisher Information matrix is essential in implementing RMHMC. The calculation of

such a matrix involves some challenging integrations. The following part shows resulting

Fisher Information matrix.

• Fisher Information Matrix:

In order to achieve Fisher Information matrix, we need the expected values of the

above second derivatives. According to Equation (8.1.8), the corresponding expec-
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tation is

E
(
− ∂2

∂ν2
φ

lφ

)
= −

∫
· · ·
∫

∂2

∂ν2
φ

lφ
∏
i∈I

tνφ(Wi|0,Σi) dW1 · · · dW|I|

= −C1 +
1

2

∑
i∈I

νφ − Pi
ν2
φ

C2 +
1

2

∑
i∈I

νφ + Pi

ν3
φ

C3

= −C1 +
1

2

∑
i∈I

(
νφ − Pi

νφ(νφ + Pi)
+

Pi
νφ(νφ + Pi + 2)

)
(8.1.12)

where

C2 = E
[(

1 +
W T
i Σ−1

i Wi

νφ

)−1
]

C3 = E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

See proposition C.2.1 and C.2.5 in Appendix C.2 for the results and derivations for

C2 and C3.

According to Equation (8.1.9), its corresponding expectation is given by

E
(
− ∂2

∂νφ∂σξl
lφ

)
= −

∫
· · ·
∫

∂2

∂νφ∂σξl
lφ
∏
i∈I

tνφ(Wi|0,Σi) dW1 · · · dW|I|

=
∑
i∈I

νφ + Pi

ν2
φσξl

C3 −
∑
i∈I

1

νφσξl
C4

=
∑
i∈I

−2|Lil|
σξl(νφ + Pi)(νφ + Pi + 2)

(8.1.13)

where

C4 = E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

See proposition C.2.6 for the result and detailed calculations for the term C4.

According to Equation (8.1.10), its corresponding expectation is given by

E
(
− ∂2

∂σ2
ξl

lνφ

)
= −

∫
· · ·
∫

∂2

∂σ2
ξl

lφ
∏
i∈I

tνφ(Wi|0,Σi) dW1 · · · dW|I|

= −
∑
i∈I

|Lil|
σ2
ξl

−
∑
i∈I

3(νφ + Pi)

νφσ
2
ξl

C4 −
∑
i∈I

2(νφ + Pi)

ν2
φσ

2
ξl

C5

= −
∑
i∈I

|Lil|
σ2
ξl

−
∑
i∈I

|Lil|
σ2
ξl

{
|Lil|+ 2

1 + (νφ + Pi)/2
− 3

}
(8.1.14)

where

C5 = E
[(
W T
il Σ−1

il Wil

)2(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]
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See proposition C.2.7 for the result and the derivation of the term C5.

According to Equation (8.1.11), its corresponding expectation is given by

E
(
− ∂2

∂σξlσξj
lνφ

)
= −

∫
· · ·
∫

∂2

∂σξlσξj
lφ
∏
i∈I

tνφ(Wi|0,Σi) dW1 · · · dW|I|

= −
∑
i∈I

2(νφ + Pi)

ν2
φσξlσxij

C6

= −
∑
i∈I

|Lil||Lij |

σξlσξj

(
1 + (νφ + Pi)/2

) (8.1.15)

where

C6 = E
[(
W T
il Σ−1

il Wil

)(
W T
ijΣ−1

ij Wij

)(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

See proposition C.2.8 for the result and detailed derivation for the term C6.

8.1.2 Block
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
According to the joint distribution shown in Equation (6.2.3), the full conditional distri-

bution of parameters {νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI} given all other parameters not in this

block is

p(νκ, σε, {κijk}|others) ∝

p(νκ)p(σε)
∏

(i,j)∈IJ

Kij∏
k=1

Gamma(κijk|
1

2
νκ,

1

2
νκ)N(yijk|µij ,

σ2
ε

κijk
)

In the following section, ‘others’ is omitted again for the sake of simplicity and thus

p(νκ, σε, {κijk}) denotes the full conditional distribution of this block. Similar to the

previous block, the update strategy used to simulate this full conditional distribution

p(νκ, σε, {κijk}) is also divided into two parts as described in Equation (8.0.2):

1. sampling from the marginalized conditional distribution p(νκ, σε) that is the result

of integrating out all of {κijk} from the full conditional distribution p(νκ, σε, {κijk});

2. given νκ, σε simulated from the marginalized conditional distribution in the first

step, simulating {κijk} from the conditional distribution p({κijk}|νκ, σε).

By using this procedure, a 8999-dimensional (8997 κijk’s, 1 σε and 1 νκ) sampling problem

is divided into a 2-dimensional simulation problem stated in step 1 and a 8997-dimensional

simulation for κijk in step 2. Particularly, the 8997-dimensional sampling problem for
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κijk could be solved by sampling them all in a single line of code. This is because the

conditional distribution p({κijk}|νκ, σε), that is the same as the one stated in Equation

(6.2.6), belongs to the gamma distribution family. Therefore, our focus is the simulation

from the marginalized conditional distribution p(νκ, σε) required in the first step.

Marginal Distribution

Through integrating out all of {κijk}, we get the marginalized conditional distribution

shown as follows,

p(νκ, σε) ∝

1

σεν2
κ︸ ︷︷ ︸

prior

∏
(i,j)∈JI

Kij∏
k=1

1

σε

Γ(νκ+1
2 )

Γ(νκ2 )
√
νκ

(
1 +

(yijk − µij)2/σ2
ε

νκ

)− νκ+1
2

︸ ︷︷ ︸
density of Student’s t-distribution

(8.1.16)

It is straightforward to verify that this marginalized conditional distribution is in compli-

ance with the model assumption defining the t-distributed measurement error through

yijk ∼ N(µij ,
σ
√
κijk

)

where κijk ∼ Γ(1
2νκ,

1
2νκ). After integrating out all of {κijk}, yijk are independent t-

distributed with mean µij , scale σε and degree of freedom νκ conditional on the parameters

not in this block. For the reason of simplicity, we adopted the following standardization

Tijk =
yijk − µij

σε

and thus

Tijk ∼ tνκ

Derivatives and Fisher Information Matrix

In order to simulate above marginalized conditional distribution shown in Equation (8.1.16)

by using different MCMC samplers, the first derivatives, second derivatives and the Fisher

information matrix need to be calculated. After some simplifying, the logarithm of

p(νκ, σε), which we shall call by lκ, has the following form

lκ = −2 log νκ − (K + 1) log σε +K
(1

2
νκ log(

1

2
νκ)− log Γ(

1

2
νκ) + log Γ(

1

2
νκ +

1

2
)
)

− (
1

2
νκ +

1

2
)
∑

(i,j)∈JI

Kij∑
k=1

log
(1

2

(
νκ +

(yijk − µij)2

σ2
ε

))
(8.1.17)
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where

K =
∑

(i,j)∈JI

Kij

Its corresponding first derivatives and second derivatives are provided as follows.

• First Derivatives:

The first derivative of lκ with respect to νκ is

∂

∂νκ
lκ = − 2

νκ
+

1

2
K
(

log(
1

2
νκ) + 1−Ψ(

1

2
νκ) + Ψ(

1

2
νκ +

1

2
)
)

−1

2

∑
(i,j)∈JI

Kij∑
k=1

log
(1

2

(
νκ+

(yijk − µij)2

σ2
ε

))
−(

1

2
νκ+

1

2
)
∑

(i,j)∈JI

Kij∑
k=1

(
νκ+

(yijk − µij)2

σ2
ε

)−1

(8.1.18)

The first derivative of lκ with respect to σε is

∂

∂σε
lκ = −K + 1

σε
+ (νκ + 1)

∑
(i,j)∈JI

Kij∑
k=1

(yijk − µij)2

νκσ3
ε + (yijk − µij)2σε

(8.1.19)

• Second Derivatives:

According to the above first derivatives, the second derivatives are displayed as

follows. The second derivative of lκ with respect to νκ is

∂2

∂ν2
κ

lκ = C7 −
1

νκ

∑
(i,j)∈JI

Kij∑
k=1

(
1 +

T 2
ijk

νκ

)−1
+
νκ + 1

2ν2
κ

∑
(i,j)∈JI

Kij∑
k=1

(
1 +

T 2
ijk

νκ

)−2

(8.1.20)

where

C7 =
2

ν2
κ

+
K

2

( 1

νκ
− 1

2
Ψ
′
(
νκ
2

) +
1

2
Ψ
′
(
νκ + 1

2
)
)

The second derivative of lκ with respect to νκ and σε is

∂2

∂νκ∂σε
=

∑
(i,j)∈JI

Kij∑
k=1

{
1

νκσε
T 2
ijk

(
1 +

T 2
ijk

νκ

)−1
− νκ + 1

ν2
κσε

T 2
ijk

(
1 +

T 2
ijk

νκ

)−2
}

(8.1.21)

The second derivative of lκ with respect to σε is

∂2

∂σ2
ε

lκ =
K + 1

σ2
ε

− νκ + 1

νκσ2
ε

∑
(i,j)∈JI

Kij∑
k=1

{
3T 2

ijk

(
1+

T 2
ijk

νκ

)−2
+

1

νκ
T 4
ijk

(
1+

T 2
ijk

νκ

)−2
}

(8.1.22)
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The Fisher Information Matrix is obtained by taking expectations of the previously derived

second derivatives. Here, each term in the Fisher Information matrix is provided.

• Fisher Information Matrix:

According to Equation (8.1.20), the corresponding term in Fisher Information Ma-

trix is

E
(
− ∂2

∂ν2
κ

lκ

)
= −C7 +

1

νκ

∑
(i,j)∈JI

Kij∑
k=1

E
[(

1 +
T 2
ijk

νκ

)−1
]
− νκ + 1

2ν2
κ

∑
(i,j)∈JI

Kij∑
k=1

E
[(

1 +
T 2
ijk

νκ

)−2
]

= −C7 +K

(
1

(νκ + 1)
− (νκ + 2)

2νκ(νκ + 3)

)
(8.1.23)

The trick related to the calculations of the expectation E
[(

1+
T 2
ijk

νκ

)−1
]

and E
[(

1+

T 2
ijk

νκ

)−2
]

is shown in proposition C.3.1.

According to Equation (8.1.21), the corresponding expectation result becomes

E
(
− ∂2

∂νκσε

)
= −

∑
(i,j)∈JI

Kij∑
k=1

{
1

νκσε
E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−1
]
− νκ + 1

ν2
κσε

E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−2
]}

= − 2K

σε(νκ + 1)(νκ + 3)
(8.1.24)

According to Equation (8.1.22), the corresponding expectation is given by

E
(
− ∂2

∂σ2
ε

)
= −K + 1

σ2
ε

+
νκ + 1

νκσ2
ε

∑
(i,j)∈JI

Kij∑
k=1

{
3E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−2
]

+
1

νκ
E
[
T 4
ijk

(
1 +

T 2
ijk

νκ

)−2
]}

= −K + 1

σ2
ε

+
3K(νκ + 1)

σ2
ε(νκ + 3)

(8.1.25)

The derivation for E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−1
]
, E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−2
]

in Equation (8.1.24)

and that for E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−2
]
, E
[
T 4
ijk

(
1 +

T 2
ijk

νκ

)−2
]

in Equation (8.1.25) are

addressed in proposition C.3.2.
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8.2 RWMH for Marginalized Conditional Distri-

butions

In this section, the RWMH is chosen as the sampler mentioned in Algorithm 7 to simu-

late the marginalized conditional distributions p(νφ, {σξl}l=1:L) and p(νκ, σε) as shown in

Equation (8.1.4) and (8.1.16) respectively. To implement it, the variance matrix of the

proposal distribution needs to be specified. The usual approach is to customize such a ma-

trix by exploiting a Laplace approximation that provides us with an initial guess about the

spread of the target distribution. To be specific, it approximates the target marginalized

conditional distribution by using a Gaussian distribution with the mean and the variance

setting as the mode and the variance matrix at the mode of the desired distribution re-

spectively. We also need to note that the variance matrix of the proposal distribution

is adapted during the whole iteration process since the random-walk Metropolis-Hastings

sampling for the target marginalized conditional distribution is embedded into a Gibbs

sampling structure dealing with entire model parameters. At each iteration, updates in

other blocks would change the spread information of the desired marginalized conditional

distribution and thus the approximation for the spread also needs to be renewed. This

procedure that achieves the second step of Algorithm 7 is listed below.

Algorithm 8 RWMH for marginals within Gibbs Structure

1: Given current states xt1,Λ = {∆}

2: Set V = ∆× laplace
(

log[p(xt1)],xt1
)
$var

3: Set x′1 = xt1 + Gaussian(0, V )

4: With probability α = min{1, p(x
′
1)

p(xt1)
}, set xt+1

1 = x′1

where ∆, a scale parameter tuned according to the acceptance rate during the burn-in

period, is used to modify the matrix given by the Laplace approximation. The function

‘laplace()’, which calculates the Laplace approximation, is provided by R package ‘Learn-

Bayes’. It returns mode and variance at the mode of the distribution placed in its first

argument. The simulation information is displayed in the following grey box. The result-

ing Markov chain consists of 2000 burn-in iterations and 20000 main iterations without

thinning. This set-up is the same as that for the Markov chain described in section 6.2.2.

In addition, the algorithm in section 6.2.2 and the algorithm implemented here both use

the RWMH sampler to simulate distributions that do not belong to a known family. The
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difference is that the algorithm stated in section 6.2.2 uses the RWMH sampler to sam-

ple the full conditional distribution of each parameter while the algorithm proposed here

uses the RWMH sampler to deal with the marginalized conditional distribution of the

problematic parameters.

Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thinning: thin = 1;

The scale ∆:

• for {νκ, σε}: ∆ = 1.6

• for {νφ, {σξl}l=1:L}: ∆ = 0.8

The acceptance rate of the main iterations:

• for {νκ, σε}: 0.3713

• for {νφ, {σξl}l=1:L}: 0.4151

The simulation results of parameters {νφ, {σξl}l=1:L} and {νκ, σε} provided by the marginal

approach with RWMH sampler are displayed in Figure C.2 in the appendix C.4. Particu-

larly, the last 3000 samples of the simulated chain for the parameter νκ and νφ are reported

in the following figure.
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Figure 8.4: Trace plot and auto-correlations for the parameter νκ and νφ
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Compared with that in Figure 6.1, there is clear improvement in the case of the parameter

νκ while no significant improvement was achieved for the parameter νφ by this marginal

procedure. Figure C.2 further confirms that the chain, given by using the marginal ap-

proach and the RWMH sampler together, can reduce the auto-correlation for {νκ, σε} but

does not works well for {νφ, {σξl}l=1:L}. Indeed, the distribution p(νφ, {σξl}l=1:L) has a

more complex structure and higher dimensionality than that of p({νκ, σε}). Therefore,

the RWMH sampler might not be suitable in such a scenario.
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8.3 Advanced Samplers for Marginal Distributions

As was reported before, the RWMH sampler has limitations in sampling from distribu-

tions which have complicated structures and high-dimensional spaces. As for the problem

here, it demonstrates poor performance in sampling from the marginalized conditional

distribution p(νφ, {σξl}l=1:L). We, therefore, consider replacing the RWMH sampler by

some advanced sampler to improve the simulation results. Particularly, HMC and its vari-

ants are chosen to replace the RWMH to simulate both p(νφ, {σξl}l=1:L) and p(νκ, σε) as

displayed in Equation (8.1.4) and (8.1.16) respectively.

8.3.1 Basic HMC

Let us firstly turn to the basic HMC sampler. To implement the basic HMC sampler, we

set the parameters Λ needed for the sampler as follows,

Λκ = {εκ = 0.1, lκ = 5,Mκ =

134 0

0 19487

};

Λφ = {εκ = 0.1, lκ = 5,Mφ =



26 0 0 0 0

0 1304 0 0 0

0 0 1883 0 0

0 0 0 8140 0

0 0 0 0 12995


}

where εκ, εφ denote the step-size values used for HMC sampling of p(νκ, σε) and p(νφ, {σξl}l=1:L)

respectively; lκ, lφ represent the number of leap-frog steps used for HMC sampling of

p(νκ, σε) and p(νφ, {σξl}l=1:L) respectively; Mκ,Mφ are the variance matrices for momen-

tum variables in the HMC sampling for distribution p(νκ, σε) and p(νφ, {σξl}l=1:L) respec-

tively. Particularly, Mκ,Mφ are chosen according to the variance of samples illustrated in

Figure C.1. Other algorithm information and resulting acceptance rates are listed in the

following grey box.

Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thin: thin = 1;

The acceptance rate of the main iterations:

• for {νκ, σε}: 0.99195

• for {νφ, {σξl}l=1:L}: 0.9284
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The simulation results for parameters {νκ, σε} and {νφ, {σξl}l=1:L} are displayed in Fig-

ure C.3. Compared with Figure C.1 and C.2, general improvements have been achieved

by using the HMC sampler in the marginal approach since the auto-correlations for all

parameters listed in Figure C.3 are reduced by different degrees. Particularly, the most

significant improvements lie in the decrease of auto-correlations among the posterior sam-

ples for the parameters νκ and νφ as illustrated in the following figure. For the sampling

problem from the marginalized conditional distribution p(νφ, {σξl}l=1:L), despite the corre-

sponding auto-correlations have been reduced to some degree by using the HMC sampler,

there are still conspicuous auto-correlations, especially for the parameter {σξl}l=1:L.
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Figure 8.5: Trace plot and auto-correlations for the parameter νκ and νφ

To sum up, the combination of the marginalized strategy and an advanced sampler

to sample from marginalized conditional distributions is demonstrated to improve the

mixing behaviour of the Markov chain. Neither of them would be powerful if it were

employed alone. Further work will concentrate on testing other advanced samplers for the

marginalized conditional distributions to obtain more informative simulation results.
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8.3.2 NUTS

Now, NUTS is selected to simulate the marginalized conditional distributions of p(νφ, {σξl}l=1:L)

and p(νκ, σε) displayed in Equation (8.1.4) and (8.1.16) respectively. Rather than setting

the number of the leap-frog integrator l to an arbitrary value, NUTS is considered here

as the ‘Sampler’ in Algorithm 7 to apply HMC and automatically tune the number of

leap-frog steps. The step-size values εκ, εφ and variance matrices Mκ,Mφ required by this

sampler are chosen to be the same as that in section 8.3.1. Other algorithm information

and resulting acceptance rates are stated in the following grey box.

Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thin: thin = 1;

The acceptance rate of the main iterations:

• for block {νκ, σε}: 1

• for block {νφ, {σξl}l=1:L}: 0.999

The obtained acceptance rates are close to one. One possible reason that could explain

these high values is that the chosen step-size values are appropriate to make most binary

trees grow at least one level. The depths of binary trees constructed by the NUTS during

the main iterations are reported in Figure 8.6.
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Figure 8.6: Histograms of depth of constructed binary trees. Red: block {νκ, σε}; Blue:

block
{
νφ, {σξl}l=1:L

}
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From the illustrated histograms, tree depths are clustered around small values (such as 3

or 4) for both blocks. In addition, block {νκ, σε} tends to have slightly deeper binary trees

than the other block. The computational time is very sensitive to the tree depth. Suppose

a tree is constructed to have depth 8, it is equivalent to 28 = 256 leap-frog steps in a single

iteration which would reduce the speed of program. Too many trees with high depth

indicates that the chosen step-size is too small. Therefore, choosing a proper step-size is

crucial in NUTS as well.

Due to the complex procedure and recursive nature of building a binary tree required

by NUTS to recover the reversibility, it would be inefficient to implement NUTS by using

R. Therefore, the code for carrying out NUTS to sample from these two marginalized

conditional distributions is written in C++ and it is integrated with R code written for

simulating other parameters through ‘Rcpp’ package. The simulation results for param-

eters {νκ, σε} and {νφ, {σξl}l=1:L} are displayed in Figure C.4. Compared to the chain

given by the basic HMC, NUTS did not provide us with significant improvements. It only

did slightly better for parameters {νκ, σε}.

8.3.3 RMHMC

Let us now use the RMHMC as the ‘Sampler’ in Algorithm 7 to simulate the marginalized

conditional distributions p(νφ, {σξl}l=1:L) and p(νκ, σε) displayed in Equation (8.1.4) and

(8.1.16) respectively. Rather than using a fixed variance matrix for ‘momentum’ variables,

the RMHMC automatically tunes the variance matrix by utilizing the local expected

Hessian matrix that provides us with not only the local curvature information but also

a positive definite matrix. The parameters needed by the RMHMC sampler to simulate

targeted two marginalized distributions are specified as

Λκ = {εκ = 0.85, lκ = 5}; Λφ = {εφ = 0.80, lφ = 5} (8.3.26)

By using the local expected Hessian matrix as the variance matrix of ‘momentum’ vari-

ables, the influence of the step-size problem is automatically relieved in the RMHMC

sampler. As shown by εκ and εφ in the above equation, they are larger than those used

in the previously mentioned samplers. However, the RMHMC sampler is a computational

expensive algorithm since it requires not only matrix decompositions for each leap-frog

step but also extra iterations to deal with the implicit functions involved in the gener-

alised leap-frog integrator. Considering the limited speed of R, the implementation of the
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RMHMC sampler is written in C++ code and calling through R by using ‘Rcpp’ package.

Other algorithm information and acceptance rates of these two blocks are displayed in the

following grey box. The reported acceptance rates are satisfactory even with such high

step-size values.

Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thin: thin = 1;

The acceptance rate of the main iterations:

• for {νκ, σε}: 0.90925

• for {νφ, {σξl}l=1:L}: 0.87565

The simulation results for parameters {νκ, σε} and {νφ, {σξl}l=1:L} are illustrated in

Fig. C.5. All trace plots demonstrate that the resulting Markov chain has better mix-

ing behaviour than those provided by other methods. The most striking results are the

simulations for parameters {νκ, σε} because of the huge reductions of auto-correlations

as illustrated in the corresponding auto-correlation plot. As for the other block, obvious

improvements also emerge to different extents with the parameter νφ improving the most.

8.3.4 HMC with Stochastic Step-size

Let us now try HMC with stochastic step-size to sample the two marginalized conditional

distributions p(νφ, {σξl}l=1:L) and p(νκ, σε). This sampler proceeds very much in the same

way as the basic HMC in section 8.3.1. The only difference is that the HMC with stochastic

step-size does not need the user to specify a step-size value. It automatically adapts the

step-size values according to the largest eigenvalue of the expected Hessian matrix at the

current state. Note that we can also just use the Hessian matrix evaluated at current

states and its corresponding eigenvalue with the largest absolute value. Compared to the

basic HMC sampler, it is more computationally expensive as it needs eigen-decomposition

at states where each simulated trajectory starts and terminates in order to generate step-

size values and recover the reversibility. However, its computational complexity is much

lower than that of the other two HMC variants: NUTS and RMHMC. The step-size value

of each iteration is generated from a probability distribution with parameters determined
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by the local curvature information. Particularly, we choose

ε ∼ T N
(

mean =
1

2
r, sd =

1

8
r, a = 0, b = r

)
(8.3.27)

with r =
2√
λθ

where T N (·) stands for truncated normal distribution bounded between a and b; λθ

denotes the largest eigenvalue of the curvature matrix evaluated at point θ. The term r is

the maximum step-size allowed by the stability condition illustrated in Equation (5.6.55).

The variance matrices of ‘momentum’ variables and the number of leap-frog steps required

by this sampler are set to be the same as that for the basic HMC sampler described in

section 8.3.1. Other algorithm information and resulting acceptance rates of the targeted

two blocks are listed in the following grey box.

Number of Iterations: N = 20000;

Burn-in: burn = 2000;

Thin: thin = 1;

The acceptance rate of the main iterations:

• for {νκ, σε}: 0.91815

• for {νφ, {σξl}l=1:L}: 0.87735

The simulation results for parameters {νκ, σε} and {νφ, {σξl}l=1:L} are reported in Fig-

ure C.6. It also apparent that simulation results for parameters {νκ, σε} demonstrate

much better performances than that for parameters
{
νφ, {σξl}l=1:L

}
. Trace plots for block

{νκ, σε} display good mixing behaviours and their associated autocorrelation plots demon-

strate just small amount of autocorrelations among posterior samples. On the other hand,

trace plots for parameters
{
νφ, {σξl}l=1:L

}
indicate that the chain does not traverse their

marginal distribution as quick as that for parameters {νκ, σε}. Their associated autocor-

relation plots still display high autocorrelations among posterior samples. By comparing

the simulation results displayed in Figure C.6 with others simulation results, we draw two

conclusions. Firstly, for sampling parameters {νκ, σε}, although this sampler is not as

good as RMHMC (Figure C.5), it does much better than the basic HMC sampler (Figure

C.3) and NUTS (Figure C.4). Secondly, for sampling parameters
{
νφ, {σξl}l=1:L

}
, there

is no significant further decrease in auto-correlations among posterior samples achieved

by this sampler. Particularly, the RMHMC sampler outperforms HMC with stochastic

step-size algorithm in the simulation for {νφ, {σξl}l=1:L}.
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The step-size values, that are simulated during the main iterations, are illustrated in

Figure 8.7.
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Figure 8.7: step-size used for sampling block {νκ, σε} and block
{
νφ, {σξl}l=1:L

}

It shows that the marginalized conditional distribution p(νφ, {σξl}l=1:L) (blue line) needs

smaller step-size values than the distribution p(νκ, σε) (red line). This indicates that

sampling for the block
{
νφ, {σξl}l=1:L

}
is more challenging that that for the block {νκ, σε}.

February 16, 2016



8.4. Explanation of Tenacious Autocorrelations 173

8.4 Explanation of Tenacious Autocorrelations

Despite the fact that the joint use of the marginalized approach and advanced samplers

(HMC and its associated variants) have obtained great achievements in respect of de-

creasing auto-correlations, noticeable amounts of auto-correlation are still persistent in

posterior samples especially for block
{
νφ, {σξl}l=1:L

}
. All HMC variants including HMC

itself obtained similar simulation performances for the marginalized conditional distribu-

tion p(νφ, {σξl}l=1:L). For p(νφ, {σξl}l=1:L), although the RMHMC sampler did better than

other samplers, it still cannot reduce the autocorrelations to a satisfactory level. In this

section, the reason of these tenacious auto-correlations are explored from the perspective

of the Gibbs structure for the entire sampling.

These apparent and tenacious auto-correlations are not due to the implemented sam-

pler used to sample from these two marginalized conditional distributions but should be

attributed to parameters not in the target block. As previously stated, simulations for

these two marginalized conditional distributions are embedded into a big block Gibbs

sampling structure. Therefore, sampling results for these two blocks are influenced by

parameters in the remaining sampling parts of the entire Gibbs structure. To verify the

fact that the tenacious autocorrelations do indeed come from the Gibbs structure, the

following experiment is carried out. The experiment is to proceed by first fixing param-

eters not in block {νκ, σε} and block
{
νφ, {σξl}l=1:L

}
to eliminate the influence of those

parameters and then simulating these two blocks solely by RMHMC. Figure 8.8 illustrates

autocorrelations of 3000 samples obtained by this experiment. Autocorrelations for both

blocks become significantly small. This finding confirms the statement that those tena-

cious autocorrelations displayed in Figure C.3 to Figure C.6 for HMC and its variants were

caused by parameters in the remaining of sampling parts of the entire Gibbs structure.
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Figure 8.8: Auto-correlations of posterior samples obtained by fixing other parameters

and simulating only block {νκ, σε} and block
{
νφ, {σξl}l=1:L

}
by RMHMC. plot (a)-(e):

for
{
νφ, {σξl}l=1:L

}
; plot (f)-(g): for {νκ, σε}
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8.5 Conclusion

In a real situation, an issue of true concern is which sampling method should be used to

achieve the best performance within the shortest possible time. Some sampling schemes

like RMHMC might give simulations with relatively low autocorrelations but they are com-

putationally expensive in each iteration. In respect of computation time, these sampling

methods might not be good choices. In this section, we compare all the previously men-

tioned sampling methods in terms of both the effective sample size and the computational

time.

As shown in Figures C.1 to C.6, the computational method’s ability of providing in-

formative samples varies a lot. The lower autocorrelations among the posterior samples

are, the more information these samples can offer. In order to measure the information

of simulations provided by each sampling scheme, we use the effective sample size pro-

vided by the R function ‘effectiveSize()’ from ‘coda’ package. For the samples from the

posterior provided by a particular sampling method, we obtain ESS for all the hyper-

parameters. In Table C.1 of Appendix C.5, ESS values for all the hyper-parameters of

the chains shown in Figures C.1 to C.6 are reported. In order to compare these ESS

values given by different sampling methods, we choose the original sample method (the

modified MCMCglmm without the marginalized approach detailed in section 6.2.2) as the

base-line method and calculate the ratios between ESS for the chains provided by the

other sampling methods (all sampling methods in section 8.2 and 8.3) and that for the

chain provided by the base-line method. For clear visualization, the logarithms of obtained

ratios of ESS are shown in Figure 8.9. In particular, the green line represents the basic

HMC; the purple line represents NUTS; the blue line represents RMHMC; the red line

represents HMC with stochastic step-size (HMC S); the black represents RWMH. The

black dashed horizontal line marks 1. The line higher than this dotted line means that

the corresponding chain can provide more effective samples than the base-line method,

otherwise the base-line method is better. From Figure 8.9, lines show great difference for

the parameters {νφ, {σξl}l=1:L, νκ, σε} that are simulated by using the marginalized dis-

tributions as illustrated in section 8.1 while for the other parameters, the lines sit around

0. Compared with the base-line method, the marginalized approach with other samplers,

apart from the RWMH sampler (black line), generally increases the ESS values.
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Figure 8.9: Logarithm of Ratios of ESS for all the hyper-parameters.

In spite of the increased effective sample size that is achieved by the marginalized

approaches, their computations are also quite expensive. The computation time must be

taken into account when measuring the efficiency of a sampling method. We therefore

calculate ESS/s (ESS per second) for each sampling method by dividing the ESS values

by the its corresponding computation time. Figure 8.10 displays the ratios of ESS/s in

the same way as that for Figure 8.9. For the parameters that are not simulated by the

marginalized distributions, all the lines are under the black dashed line since compared

with the base-line method, rest of the samplers with marginalized approach give similar

ESS values for these parameters but use longer computation time. For the parameters

that are simulated by using the marginalized distributions, HMC with stochastic step-size

(red line) provided the highest ESS/s for {νκ, σε} and the basic HMC sampler (green line)

provided the highest ESS/s for {νφ, {σξl}l=1:L}.
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Figure 8.10: Ratios of ESS/SEC for the unblocked hyper-parameters.

To sum up, sampling the marginalized conditional distributions by the basic HMC

sampler or the HMC with stochastic step-size sampler provided us with the best simulation

results for this model in terms of both effective sample size and computation time.
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Chapter 9

Conclusion

The study was set out to explore some topics of two important areas in Bayesian statistics:

objective priors and MCMC simulations for posterior distributions.

Objective Priors

The initial goal of the research for objective priors was to develop a principle for an ob-

jective prior to satisfy in order to represent ignorance. This aim was motivated by the

observation that for the one-way random effect model which is a simple model, most

objective priors depend on additional knowledge about parameters and experimental de-

signs. It was hoped that the principle discussed in this thesis might enable us to consider

representing the ignorance in a different way. In particular, the principle was applied to

the one-way random effect model which is simple but is notoriously difficult to specify an

objective prior for it.

Our principle was introduced in Chapter 3. The main idea of the principle is that

if the global distance structure is invariant to a re-parametrization, then equivalent prior

measure should be assigned to these two parametrizations. This idea was motivated by the

belief that when there is no prior knowledge available, all information that distinguishes

one point from another should be obtained by considering how its corresponding statistical

model differs from other statistical models. We used the global distance to present the

differences among statistical model and, in order to avoid considering only a pair of points,

the global distance structure of all points was actually used to derive a prior. Based on

this global distance structure principle, we derived corresponding priors for three simple

problems: location family, scale family and location-scale family.
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In Chapter 4, the global distance structure was applied to the one-way random effect

model. For the one-way random effect model, most objective priors, such as the Jeffreys

prior, the Jeffreys prior with location parameter fixed and the uniform shrinkage prior,

depend on the experimental design (i.e. the number of observations). In order to avoid

such dependencies, we considered the structure of the averaged global distance by using

the limit technique, i.e.

D1 = lim
N→∞

1

N
dθ(θ1,θ2), D2 = lim

N→∞
[dθ(θ1,θ2)−N ·D1]

The benefits of considering these distances are the removal of the influence of the exper-

iment design and the simplification of the distance structure. Apart from D1, D2 has

also been taken into account since the limit technique usually leads to information loss

in D1. Based on the structure of such averaged distances, the priors were derived in dif-

ferent contexts with all three parameters {µ, ϑ, ρ} unknown, only two of the parameters

unknown and only one of the parameters unknown. Two priors resulted from these deriva-

tions: the GDSP, π(µ, σ, σα) ∝ σγα
σ , is obtained by considering all parameters as unknown;

the CGDSP, π(µ, σ, σα) ∝ σα
σ(σ2

α+σ2)
, is the one that respects all the forms of the priors

derived in the context with two parameters unknown and one parameter unknown. The

performances of the GDSP with γ = −1
2 , the CGDSP and other popular objective priors

were evaluated by using a simulation study. The conclusion drawn from the simulation

studies is that no prior could always perform better than others. When the true value of

between group variance is much larger than that of within group variance, the CGDSP

and the JPLF had similar performances and were the best choices. When the true value

of between group variance is much smaller than that of within group variance, most priors

did not show good performance while the GDSP gave relatively satisfactory performance.

When the true value of between group variance is similar to that of within group variance,

the JPLF is the best choice. We, therefore, suggested to use GDSP, CGDSP and JPLF

together.

The limitation of the GDSP is that γ, the power of σα, is unspecified. In the simulation

study, γ was arbitrarily chosen as −1
2 . Choice of the value of γ could perhaps be an area for

further exploration and might have the potential to increase the frequentist behaviour of

the corresponding posterior distribution. The limitation of the CGDSP is that although

it did not lead to posterior distributions with undesirable frequentist behaviour, it did

not satisfy the requirement that the parameter spaces should not change after the re-

parametrization. Seeking other parametrizations so that other invariant structures could
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display in D1 and D2 could perhaps be an area for further opportunity to improve the

performance of priors.

Computation

The research into the Bayesian computation included two aspects: one is for the HMC

algorithm itself; the other one is the simulation problem for a real complex hierarchical

model developed for ecotoxicology data analysis.

The initial goal of the research for the HMC algorithm was to improve its performance

from the perspective of the step-size. This aim was motivated by the observation that

although the HMC has the potential to avoid the random-walk behaviour of the traditional

MCMC algorithm, its ability depends largely on the choices of the step-size values. It was

hoped that the method proposed in this thesis could enable us to tune the step-size values

automatically.

HMC with stochastic step-size, our method proposed to automatically tune the step-

size values, was introduced in Chapter 5. After an exploration of the problem of the

step-size, we found out that the real difficulty of choosing a good step-size value is that a

good global step-size value might not actually exist. In other words, appropriate step-size

values changes as the Markov chain moves. We therefore investigated the local step-size

conditions which turned out to depend on the local curvature information of the target

log-density function. The main idea of the proposed method is to consider the step-

size as an augmented random variable generated according to the curvature information

at the current state of the Markov chain. In this way, the step-size could change long

Markov chain iterations. The proposed method was applied to the ‘banana’ example. It

displayed good performance even with an extreme starting point. In addition, through

the exploration of the method of choosing the step-size values, we found a new way, called

by generalised Metropolis-Hastings with dynamics, to represent a series of algorithms

including the ordinary Metropolis-Hastings algorithm, the HMC algorithm, and the HMC

with stochastic step-size algorithm.

The limitation of the HMC with stochastic step-size algorithm is that it only exploited

the largest eigenvalue of the local curvature information matrix. Researching how to

make full use of the local curvature information, without requiring as much expensive

computation as the RMHMC, might be an area for further exploration to improve the

algorithm performance.
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As for the simulation problem for a real complex hierarchical model developed for

ecotoxicology data analysis, our goal was to decrease the autocorrelation of the posterior

samples. This aim was motivated by the observation that the existing method, the modi-

fied MCMCglmm, for this model, led to highly-correlated posterior samples. It was hoped

that the method suggested in this thesis could help decrease the autocorrelation living in

the posterior samples given by the original method.

Firstly, the background of this model and its computation difficulties were given in

Chapter 6. After an attempt to apply some existing methods to this model, we found

out that the procedure adopted in the modified MCMCglmm, breaking the simulation for

the entire parameters into small pieces and simulating them alternatively under a Gibbs

structure, is a possible way to compute this model even though its corresponding posterior

samples had high autocorrelations. This led to a study of improving the simulation effi-

ciency for small pieces inside the big Gibbs structure. Secondly, two HMC variants, NUTS

and RMHMC, used to improve the simulation were reviewed in Chapter 7 as preliminary

materials.

The strategy, used to improve the simulation within the big Gibbs structure, was intro-

duced in Chapter 8. The strategy contained two aspects. One is to group parameters into

blocks and then simulate the blocks by using the marginalized distributions to break the

correlations among parameters within the blocks. The other is to use advanced samplers,

HMC and its variants, to simulate the marginalized distributions. After the comparisons,

the combination of the marginalized approach and the HMC with stochastic step-size was

the best choice in terms of both effective sample size and computation time.

The limitation of this method is that it only targeted on parts of the parameters.

Integrating out all the random effects analytically or approximately and simulate the

resulting marginalized distribution could perhaps provide possible ways to further decrease

autocorrelations of the posterior samples.
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Appendix A

Computations for one-way random

effect models

A.1 Covariance Matrix

Here, two facts about a matrix having the form illustrated in Equation (4.1.2) are provided.

1) If AN,N = aIN,N + bJN,N , then we have

|AN,N | = (a+Nb)aN−1

Proof Denote the orthogonal eigenvectors of AN,N are 1N , u2, . . . , uN , i.e.

uj ⊥ 1N , j = 2, . . . , N

where 1N is a column vector with all terms to be one. According to the definition of

eigenvalue and eigenvector,

AN,N · v = λv

we have

AN,N · 1N = aIN,N1N + bJN,N1N = a1N +Nb1N

= (a+Nb)1N = λi1N

AN,N · uj = aIN,Nuj + bJN,Nuj = aIN,Nuj + b1N1TNuj

= auj = λjuj where j = 2, . . . , N
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Note that 1TNuj = 0 since the orthogonal property. Therefore, the eigenvalues of AN,N are

a+Nb, a, . . . , a and the determinant of AN,N is the product of these eigenvalues, i.e.

|AN,N | = (a+Nb)aN−1

.

2) If AN,N = IN,N + cJN,N , then we have

A−1
N,N = IN,N + dJN,N where d = − c

Nc+ 1

Proof

AN,N ·A−1
N,N = (IN,N + cJN,N )(IN,N + dJN,N ) = IN,N + (c+ d+Ncd)JN,N = IN,N

Therefore,

c+ d+Ncd = 0 =⇒ d = − c

Nc+ 1

.

A.2 Equivariant Recodings

Consider the one-way random effect model

y
iid∼ N(µ1N , AN,N ); i = 1, . . . ,m (A.2.1)

where

AN,N = αIN,N + βJN,N (A.2.2)

with JN,N is a N-dimensional square matrix with all terms to be one, 1N is a N-dimensional

column vector of all terms to be one and IN,N is a N-dimensional identity matrix.

Proposition A.2.1 Suppose that a recoding of yi has the following form

zi = g(yi) = c1N +Byi, (A.2.3)

where c is a real value and B is a non-singular N ×N dimensional matrix. In particular,

suppose that B satisfies

B = (aIN,N + bJN,N )O, (A.2.4)
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where a, b are some real values; O is an orthogonal matrix and has the property

O1N = 1N . (A.2.5)

We show here that the corresponding equivariant recoding of θ = {µ, α, β} induced by this

g is

Φ = ḡ(θ) = ḡ({µ, α, β})

= {(a+Nb)µ+ c, a2α, α(2a+Nb)b+ β(a+Nb)2}. (A.2.6)

Proof : After the transformation g, the variable zi has the mean

E(zi) = c1N + µ(aIN,N + bJN,N )O1N

= c1N + µ(aIN,N + bJN,N )1N by Equation (A.2.5)

= c1N + aµ1N + bµJN,N1N

= c1N + aµ1N +Nbµ1N by JN,N1N = N1N

= (c+ aµ+Nbµ)1N (A.2.7)

The covariance matrix of zi is

Cov(zi) = B Cov(yi)B
T = BAN,NB

T

= (aIN,N + bJN,N )(αIN,N + βJN,N )(aIN,N + bJN,N )T

= a2αOOT + abαOOTJN,N + a2βOJOT + abβOJN,NOTJN,N + baαJN,NOOT

+ b2αJN,NOOTJN,N + abβJN,NOJN,NOT + b2betaJN,NOJN,NOTJN,N

(A.2.8)

Since the property shown in Equation (A.2.5), we have the following fact

OJN,N = JN,N (A.2.9)

By multiplying both sides of the above equation by a matrix O−1, we obtain that

JN,N = O−1JN,N (A.2.10)

Together with the fact that O is an orthogonal matrix, i.e. OOT = IN,N , we have

OTJN,N = O−1JN,N = JN,N (A.2.11)

Because of the special structure of JN,N , we have

JN,NJN,N = NJN,N (A.2.12)
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By substituting Equations (A.2.9), (A.2.11) and (A.2.12) into Equation (A.2.8), the co-

variance matrix of zi changes to

Cov(zi) = a2αIN,N + [α(2a+Nb)b+ β(a+Nb)2]JN,N (A.2.13)

After the transformation g, zi still obeys the one-way random effect model. By comparing

the mean and covariance matrix of yi and zi, we obtain that zi follows the one-way random

effect model with parameters {(a + Nb)µ + c, a2α, α(2a + Nb)b + β(a + Nb)2}. That is,

the induced equivariant recoding of θ = {µ, α, β}, which we call it by ḡ, is

Φ = ḡ(θ) = ḡ({µ, α, β}) = {(a+Nb)µ+ c, a2α, α(2a+Nb)b+ β(a+Nb)2}.

.

Proposition A.2.2 For the equivariant recoding g shown in proposition A.2.1, the col-

lection of all the induced equivariant recodings ḡ shown in Equation (A.2.6) forms a group

Ḡ = {ḡa,b,c; ∀c ∈ R, a 6= 0, a+Nb 6= 0} (A.2.14)

Proof : In order to qualify as a group, there are four requirements: closure, associativity,

identity element and inverse element. We will check them in order.

Closure: ∀ḡ1 = ḡa1,b1,c1 ∈ Ḡ and ∀ḡ2 = ḡa2,b2,c2 ∈ Ḡ, according to Equation (A.2.6), we

have

ḡ1ḡ2({µ, α, β}) = ḡ1({(a2 +Nb2)µ+ c2, a
2
2α, α(2a2 +Nb2)b2 + β(a2 +Nb2)2})

= {(a? +Nb?)µ+ c?, (a?)2α, α(2a? +Nb?)b? + β(a? +Nb?)2}, (A.2.15)

where a? = a1a2, b
? = a1b2 + a2b1 +Nb1b2, and c? = (a1 +Nb1)c2 + c1.

Therefore, ḡ1ḡ2 ∈ Ḡ and the closure is satisfied.

Associativity: ∀ḡ1 = ḡa1,b1,c1 ∈ Ḡ, ∀ḡ2 = ḡa2,b2,c2 ∈ Ḡ and ∀ḡ3 = ḡa3,b3,c3 ∈ Ḡ, by applying

the fact in Equation (A.2.15) to ḡ1ḡ2 and (ḡ1ḡ2)ḡ3 in order, we have

(ḡ1ḡ2)ḡ3 = {(a4 +Nb4)µ+ c4, a
2
4α, α(2a4 +Nb4)b4 + β(a4 +Nb4)2}, (A.2.16)

where a4 = a1a2a3, b4 = a1a2b3+a3(a1b2+a2b1+Nb1b2)+N(a1b2+a2b1+Nb1b2)b3 and c4 =

[a1a2 +N(a1b2 + a2b1 +Nb1b2)]c3 + (a1 +Nb1)c2 + c1.

Similarly, by applying the fact in Equation (A.2.15) to ḡ2ḡ2 and ḡ1(ḡ2ḡ3) in order, we have

ḡ1(ḡ2ḡ3) = {(a5 +Nb5)µ+ c5, a
2
5α, α(2a5 +Nb5)b5 + β(a5 +Nb5)2}, (A.2.17)
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where a5 = a1a2a3, b5 = a1(a2b3+a3b2+Nb2b3)+a2a3b1+Nb1(a2b3+a3b2+Nb2b3) and c5 =

(a1+Nb1)[(a2+Nb2)c3+c2]+c1. By some formula simplifications, we can see that a4, b4, c4

from (ḡ1ḡ2)ḡ3 are the same as a5, b5, c5 from ḡ1(ḡ2ḡ3). Therefore, (ḡ1ḡ2)ḡ3 = ḡ1(ḡ2ḡ3) and

the associativity is satisfied.

Identity element: Consider ḡ1,0,0 and ∀ḡa,b,c ∈ Ḡ, according to Equation (A.2.15), we have

ḡa,b,c ḡ1,0,0({µ, α, β}) = ḡ1,0,0 ḡa,b,c({µ, α, β})

= {(a? +Nb?)µ+ c?, (a?)2α, α(2a? +Nb?)b? + β(a? +Nb?)2}

= ḡa,b,c({µ, α, β})

Therefore, ḡ1,0,0 is the identity element in Ḡ.

Inverse element: ∀ḡa,b,c ∈ Ḡ, consider ḡa′,b′,c′ , where a′ = 1
a , b

′ = − b
a2+Nab

, and c′ =

− c
a+Nb . By applying Equation (A.2.15) to ḡa,b,c ḡa′,b′,c′ and ḡa′,b′,c′ ḡa,b,c, we have

ḡa,b,c ḡa′,b′,c′({µ, α, β}) = ḡa′,b′,c′ ḡa,b,c({µ, α, β})

= {(a6 +Nb6)µ+ c6, a
2
6α, α(2a6 +Nb6)b6 + β(a6 +Nb6)2},

where a6 = aa′ = 1, b6 = ab′+a′b+Nbb′ = a′b+ab′+Nbb′ = 0 and c6 = (a+Nb)c′+ c =

(a′ +Nb′)c+ c′ = 0. Therefore,

ḡa,b,c ḡa′,b′,c′({µ, α, β}) = ḡa′,b′,c ḡa,b,c({µ, α, β}) = ḡ1,0,0({µ, α, β}).

That is, the requirement for the inverse element is satisfied.
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Simulation Results of Priors
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Figure B.1: Averaged posterior mean of σ across 1000 data sets for each data type.
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Figure B.2: Averaged posterior median of σ across 1000 data sets for each data type.
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Figure B.3: Percentage for σ. Top plot: percentage of 1000 data sets for each data type

that the true value lies in 95% credible interval; Bottom plot: percentage of 1000 data

sets for each data type that ture value lies in 95% HPD
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Figure B.4: For µ. The four plots focus on posterior mean, posterior median, 95% credible

interval, 95 % HPD respectively
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Appendix C

Detailed Calculations

C.1 Marginal Distribution p(νφ, {σξl}l=1:L)

The marginal distribution p(νφ, {σξl}l=1:L) is

p(νφ, {σξl}l=1:L) =

∫
· · ·
∫
p(νφ, {σξl}l=1:L, {λi}i∈I) dλ1 · · · dλ|I|

=
1

ν2
φ

∫
· · ·
∫ ∏

i∈I

{
(1

2νφ)
1
2
νφ

Γ(1
2νφ)

λ
1
2
νφ−1

i exp
(
−1

2
νφλi

) L∏
l=1

∏
t∈Lil

1√
2πσξl/

√
λi

exp
(
−
ψ2
iltλi

2σ2
ξl

)}
dλ1 · · · dλ|I|

=
1

ν2
φ

(∏
i∈I

(1
2νφ)

1
2
νφ

Γ(1
2νφ)

( L∏
l=1

1

(
√

2πσξl)|Lil|

))
∫
· · ·
∫ ∏

i∈I

{
λ

1
2
νφ+ 1

2

∑L
l=1 |Lil|−1

i exp
[
− λi

(1

2
νφ +

L∑
l=1

∑
t∈Lil

ψ2
ilt

2σ2
ξl

)]}
dλ1 · · · dλ|I|

(C.1.1)

It is clear that λi appears in the form of the pdf

Γ(
1

2
νφ +

1

2

L∑
l=1

|Lil|,
1

2
νφ +

L∑
l=1

∑
t∈Lil

ψ2
ilt

2σ2
ξl

)

but without the normalizing constant and thus the normalizing constant could be used to

do the integration in line (C.1.1) as follows
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p(νφ, {σξl}l=1:L)

=
1

ν2
φ

∏
i∈I

{
(1

2νφ)
1
2
νφ

Γ(1
2νφ)

( L∏
l=1

1

(
√

2πσξl)|Lil|

) Γ(1
2νφ + 1

2

∑L
l=1 |Lil|)

(1
2νφ +

∑L
l=1

∑
t∈Lil

ψ2
ilt

2σ2
ξl

)
1
2

∑L
l=1 |Lil|+

1
2
νφ

}

=
1

ν2
φ

∏
i∈I

{
(νφπ)−

1
2

∑L
l=1 |Lil|

( L∏
l=1

σ
−|Lil|
ξl

)Γ(1
2νφ + 1

2

∑L
l=1 |Lil|)

Γ(1
2νφ)(

1 +

∑L
l=1

∑
t∈Lil ψ

2
ilt/σ

2
ξl

νφ

)−( 1
2
νφ+ 1

2

∑L
l=1 |Lil|)

}

Denote

Pi =
L∑
l=1

|Lil|

Wi =



Wi1

Wi2

...

Wil

...

WiL


Pi,1

Σi = σ2
ξ1I|Li1|,|Li1| ⊕ σ

2
ξ2I|Li2|,|Li2| ⊕ · · · ⊕ σ

2
ξLI|LiL|,|LiL|

where Wil is the column vector of length |Lil| with entries {ψilt}t∈Lil ; Ix,x is x× x dimen-

sional identity matrix and ‘⊕’ is direct sum. The term Σi represents a Pi×Pi dimensional

covariance matrix. Thus, the marginalized distribution can be simplified as

p(νφ, {σξl}l=1:L)

=
1

ν2
φ

∏
i∈I

{
(νφπ)−

1
2
Pi |Σi|−

1
2

Γ(1
2νφ + 1

2Pi)

Γ(1
2νφ)

(
1 +

W T
i Σ−1

i Wi

νφ

)−( 1
2
νφ+ 1

2
Pi)
}

=
1

ν2
φ︸︷︷︸

prior

∏
i∈I

tνφ(Wi|0,Σi)︸ ︷︷ ︸
‘likelihood’

(C.1.2)
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The following calculations are under the assumption that Pi dimensional variable Wi ∼

tνφ(0,Σ0), i.e.

p(Wi) = C
(

1 +
1

νφ
W T
i Σ−1

i Wi

)− νφ+Pi
2

(C.2.1)

where

C = (νφπ)−
Pi
2

Γ(
νφ
2 + Pi

2 )

Γ(
νφ
2 )|Σi|

1
2

Proposition C.2.1

E
[(

1 +
W T
i Σ−1

i Wi

νφ

)−n]
=

Γ(
νφ
2 + Pi

2 )Γ(
νφ+2n

2 )

Γ(
νφ
2 )Γ(

νφ+2n
2 + Pi

2 )
(C.2.2)

Proof

E
[(

1 +
W T
i Σ−1

i Wi

νφ

)−n]
=

∫ (
1 +

W T
i Σ−1

i Wi

νφ

)−n
(νφπ)−

Pi
2

Γ(
νφ
2 + Pi

2 )

Γ(
νφ
2 )|Σi|

1
2

(
1 +

1

νφ
W T
i Σ−1

i Wi

)− νφ+Pi
2

dWi

= (νφπ)−
Pi
2

Γ(
νφ
2 + Pi

2 )

Γ(
νφ
2 )|Σi|

1
2

∫ (
1 +

W T
i Σ−1

i Wi

νφ

)− (νφ+2n)+Pi
2

= (νφπ)−
Pi
2

Γ(
νφ
2 + Pi

2 )

Γ(
νφ
2 )|Σi|

1
2

∫ (
1 +

1

νφ + 2n
W T
i

( νφ
νφ + 2n

Σi

)−1
Wi

)− (νφ+2n)+Pi
2

dWi

According to the density function displayed in Equation (C.2.1), the above integration

could be solved easily by using the normalizing constant of a Pi dimensional Student’s t

distribution tνφ+2n(0,
νφ

νφ+2nΣi),

E
[(

1 +
W T
i Σ−1

i Wi

νφ

)−n]
= (νφπ)−

Pi
2

Γ(
νφ
2 + Pi

2 )

Γ(
νφ
2 )|Σi|

1
2

×
((
νφ + 2n

)
π
)Pi

2 Γ(
νφ+2n

2 )

Γ(
νφ+2n

2 + Pi
2 )

∣∣∣ νφ
νφ + 2n

Σi

∣∣∣ 1
2

=
Γ(

νφ
2 + Pi

2 )Γ(
νφ+2n

2 )

Γ(
νφ
2 )Γ(

νφ+2n
2 + Pi

2 )

.

When n = 1, we have

C2 = E
[(

1 +
W T
i Σ−1

i Wi

νφ

)−1
]

=
Γ(

νφ
2 + Pi

2 )Γ(
νφ
2 + 1)

Γ(
νφ
2 )Γ(

νφ
2 + Pi

2 + 1)
=

νφ
νφ + Pi

(C.2.3)
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Proposition C.2.2∫
ηT η(1 + ηT η)−kd η =

nΓ(3
2)[Γ(1

2)]n−1Γ
(
k − 3

2 −
1
2(n− 1)

)
Γ(k)

(C.2.4)

where η is n-dimensional vector

η =


η1

η2

...

ηn


Proof∫

ηT η(1 + ηT η)−kd η =

∫
· · ·
∫

(η2
1 + · · ·+ η2

n)(1 + η2
1 + · · ·+ η2

n)−kd η1 · · · d ηn

=

∫
· · ·
∫ {∫

η2
1(1 + η2

1 + · · ·+ η2
n)−kd η1

+ (η2
2 + · · ·+ η2

n)

∫
(1 + η2

1 + · · ·+ η2
n)−kd η1

}
d η2 · · · d ηn

(C.2.5)

Denote

I1 =

∫
η2

1(1 + η2
1 + · · ·+ η2

n)−kd η1, I2 =

∫
(1 + η2

1 + · · ·+ η2
n)−kd η1

As for I1,

I1 = (1 + η2
2 + · · ·+ η2

n)−k
∫
η2

1

(
1 +

η2
1

1 + η2
2 + · · ·+ η2

n

)−k
d η1 (C.2.6)

Let V = η1

(1+η2
2+···+η2

n)1/2 , then

η1 =
(

1 + η2
2 + · · ·+ η2

n

) 1
2
V, d η1 =

(
1 + η2

2 + · · ·+ η2
n

) 1
2
dV (C.2.7)

By substituting the above line into Equation (C.2.6), we obtain

I1 = (1 + η2
2 + · · ·+ η2

n)−k+ 3
2

∫
V 2(1 + V 2)−kdV

Taking the transformation

r =
1

1 + V 2
, (C.2.8)

the above line changes to be

I1 = (1 + η2
2 + · · ·+ η2

n)−k+ 3
2

∫ 1

0
rk−

5
2 (1− r)

1
2 dr

= (1 + η2
2 + · · ·+ η2

n)−k+ 3
2 Beta

(
k − 3

2
,
3

2

)
= (1 + η2

2 + · · ·+ η2
n)−k+ 3

2
Γ(k − 3

2)Γ(3
2)

Γ(k)
(C.2.9)
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As for I2, we have

I2 = (1 + η2
2 + · · ·+ η2

n)−k
∫ (

1 +
η2

1

1 + η2
2 + · · ·+ η2

n

)−k
dη1

By using the same transformation shown in Equation (C.2.7), the above line changes to

be

I2 = (1 + η2
2 + · · ·+ η2

n)−k+ 1
2

∫
(1 + V 2)−kdV

Taking the following transformation

V 2 = U =⇒ V = U
1
2 , dV = U−

1
2 dU (C.2.10)

we have

I2 = (1 + η2
2 + · · ·+ η2

n)−k+ 1
2

∫ ∞
0

U−
1
2 (1 + U)−kdU

= (1 + η2
2 + · · ·+ η2

n)−k+ 1
2 Beta

(1

2
, k − 1

2

)
= (1 + η2

2 + · · ·+ η2
n)−k+ 1

2
Γ(1

2)Γ(k − 1
2)

Γ(k)
(C.2.11)

Therefore, we have∫
(η2

1 + · · ·+ η2
n)(1 + η2

1 + · · ·+ η2
n)−kd η1

=
Γ(k − 3

2)Γ(3
2)

Γ(k)
(1+η2

2+· · ·+η2
n)−k+ 3

2 +
Γ(1

2)Γ(k − 1
2)

Γ(k)
(η2

2+· · ·+η2
n)(1+η2

2+· · ·+η2
n)−k+ 1

2

(C.2.12)

Integrating the above line further with respect to η2, we obtain∫ ∫
(η2

1 + · · ·+ η2
n)(1 + η2

1 + · · ·+ η2
n)−kd η1d η2

=
Γ(k − 3

2)Γ(3
2)

Γ(k)

∫
(1 + η2

2 + · · ·+ η2
n)−k+ 3

2 d η2

+
Γ(1

2)Γ(k − 1
2)

Γ(k)

∫
(η2

2 + · · ·+ η2
n)(1 + η2

2 + · · ·+ η2
n)−k+ 1

2 d η2

According to Equation (C.2.11) for I2 and Equation (C.2.12), the above line could be
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changed to be∫ ∫
(η2

1 + · · ·+ η2
n)(1 + η2

1 + · · ·+ η2
n)−kd η1d η2

=
Γ(k − 3

2)Γ(3
2)

Γ(k)

Γ(1
2)Γ(k − 3

2 −
1
2)

Γ(k − 3
2)

(1 + η2
3 + · · ·+ η2

n)−k+ 3
2

+ 1
2

+
Γ(1

2)Γ(k − 1
2)

Γ(k)

{
Γ(k − 1

2 −
3
2)Γ(3

2)

Γ(k − 1
2)

(1 + η2
3 + · · ·+ η2

n)−k+ 1
2

+ 3
2

+
Γ(1

2)Γ(k − 1
2 −

1
2)

Γ(k − 1
2)

(η2
3 + · · ·+ η2

n)(1 + η2
3 + · · ·+ η2

n)−k+ 1
2

+ 1
2

= 2
Γ(3

2)Γ(1
2)Γ(k − 3

2 −
1
2)

Γ(k)
(1 + η2

3 + · · ·+ η2
n)−k+ 3

2
+ 1

2

+

[
Γ(1

2)
]2

Γ(k − 2× 1
2)

Γ(k)
(η2

3 + · · ·+ η2
n)(1 + η2

3 + · · ·+ η2
n)−k+2× 1

2 (C.2.13)

Similarly, the integration with respect to η3 of the above line is∫ ∫ ∫
(η2

1 + · · ·+ η2
n)(1 + η2

1 + · · ·+ η2
n)−kd η1d η2d η3

= 3
Γ(3

2)Γ(1
2)Γ(1

2)Γ(k − 3
2 − 2× 1

2)

Γ(k)
(1 + η2

4 + · · ·+ η2
n)−k+ 3

2
+2× 1

2

+

[
Γ(1

2)
]3

Γ(k − 3× 1
2)

Γ(k)
(η2

4 + · · ·+ η2
n)(1 + η2

4 + · · ·+ η2
n)−k+3× 1

2 (C.2.14)

After integrating out the first n− 1 element of η, we have∫
· · ·
∫

(η2
1 + · · ·+ η2

n)(1 + η2
1 + · · ·+ η2

n)−kd η1 · · · d ηn−1

= (n− 1)
Γ(3

2)
[
Γ(1

2)
]n−2

Γ(k − 3
2 − (n− 2)× 1

2)

Γ(k)
(1 + η2

n)−k+ 3
2

+(n−2)× 1
2

+

[
Γ(1

2)
]n−1

Γ(k − (n− 1)× 1
2)

Γ(k)
η2
n(1 + η2

n)−k+(n−1)× 1
2

(C.2.15)

By integrating out the last term ηn from the above line, we obtain∫
· · ·
∫

(η2
1 + · · ·+ η2

n)(1 + η2
1 + · · ·+ η2

n)−kd η1 · · · d ηn

= (n− 1)
Γ(3

2)
[
Γ(1

2)
]n−2

Γ(k − 3
2 − (n− 2)× 1

2)

Γ(k)
×

Γ(1
2)Γ
(
k − 3

2 −
1
2(n− 2)− 1

2

)
Γ
(
k − 3

2 −
1
2(n− 2)

)
+

[
Γ(1

2)
]n−1

Γ(k − (n− 1)× 1
2)

Γ(k)
×

Γ(3
2)Γ(k − (n− 1)× 1

2 −
3
2)

Γ(k − (n− 1)× 1
2)

= n
Γ(3

2)
[
Γ(1

2)
]n−1

Γ(k − 3
2 −

1
2(n− 1))

Γ(k)
(C.2.16)

.
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Proposition C.2.3 ∫
(1 + ηT η)−kd η =

Γ(k − 1
2n)[Γ(1

2)]n

Γ(k)
(C.2.17)

Proof ∫
(1 + ηT η)−kd η =

∫
· · ·
∫ (∫

(1 + η2
1 + · · ·+ η2

n)−kd η1

)
d η2 · · · d ηn

Recall the result for I2 displayed in Equation (C.2.12), the above line changes to be∫
(1 + ηT η)−kd η =

Γ(k − 1
2)Γ(1

2)

Γ(k)

∫
· · ·
∫

(1 + η2
2 + · · ·+ η2

n)−k+ 1
2 d η2 · · · ηn

Apply the result for I2 repeatedly on the above formula, we have∫
(1 + ηT η)−kd η

=
Γ(k − 1

2)Γ(1
2)

Γ(k)
×

Γ(k − 1
2 × 2)Γ(1

2)

Γ(k − 1
2)

× · · ·
Γ(k − 1

2(n− 1))Γ(1
2)

Γ(k − 1
2(n− 2))

×
Γ(k − 1

2n)Γ(1
2)

Γ(k − 1
2(n− 1))

=
Γ(k − 1

2n)[Γ(1
2)]n

Γ(k)
(C.2.18)

.

Proposition C.2.4∫
(ηT η)2(1 + ηT η)−kd η =

n(n+ 2)π
n
2

4

Γ(k − 1
2n− 2)

Γ(k)
(C.2.19)

Proof ∫
(ηT η)2(1 + ηT η)−kd η =

∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

Firstly, we investigate the integration with respect to only η1,∫
(η2

1 + · · · η2
n)2(1 + η2

1 + · · · η2
n)−kd η1

= (1 + η2
1 + · · · η2

n)−k
∫ (

η4
1 + (η2

2 + · · ·+ η2
n)2 + 2η2

1(η2
2 + · · · η2

n)
)

×
(

1 +
η2

1

1 + η2
2 + · · ·+ η2

n

)−k
d η1

= (1 + η2
2 + · · · η2

n)−k
∫
η4

1

(
1 +

η2
1

1 + η2
2 + · · ·+ η2

n

)−k
d η1

+ (η2
2 + · · ·+ η2

n)2

∫ (
1 + η2

1 + · · ·+ η2
n

)−k
d η1

+ 2(η2
2 + · · ·+ η2

n)

∫
η2

1

(
1 + η2

1 + · · ·+ η2
n

)−k
d η1 (C.2.20)
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Let

I3 =

∫
η4

1

(
1 +

η2
1

1 + η2
2 + · · ·+ η2

n

)−k
d η1 (C.2.21)

For I3 in Equation (C.2.21), by taking the transformation displayed in Equation (C.2.7)

we have

I3 = (1 + η2
2 + · · ·+ η2

n)
5
2

∫
V 4(1 + V 2)−kdV

Make further transformation as shown in Equation (C.2.8), the above line changes to be

I3 = (1 + η2
2 + · · ·+ η2

n)
5
2

∫ 1

0
rk−

7
2 (1− r)

3
2 d r

= Beta
(
k − 5

2
,
5

2

)
= (1 + η2

2 + · · ·+ η2
n)

5
2

Γ(k − 5
2)Γ(5

2)

Γ(k)
(C.2.22)

Recall the results of I1 and I2 shown in Equation (C.2.9) and (C.2.11), we have∫
(η2

1 + · · · η2
n)2(1 + η2

1 + · · · η2
n)−kd η1

=
Γ(k − 5

2)Γ(5
2)

Γ(k)
(1 + η2

2 + · · ·+ η2
n)−k+ 5

2

+
Γ(k − 1

2)Γ(1
2)

Γ(k)
(η2

2 + · · ·+ η2
n)2(1 + η2

2 + · · ·+ η2
n)−k+ 1

2

+ 2
Γ(k − 3

2)Γ(3
2)

Γ(k)
(η2

2 + · · ·+ η2
n)(1 + η2

2 + · · ·+ η2
n)−k+ 3

2

We take further integrations of the above line with respect to the rest components,∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

=
Γ(k − 5

2)Γ(5
2)

Γ(k)

∫
· · ·
∫

(1 + η2
2 + · · ·+ η2

n)−k+ 5
2 d η2 · · · d ηn

+

∫
· · ·
∫

Γ(k − 1
2)Γ(1

2)

Γ(k)
(η2

2 + · · ·+ η2
n)2(1 + η2

2 + · · ·+ η2
n)−k+ 1

2 d η2 · · · d ηn

+ 2
Γ(k − 3

2)Γ(3
2)

Γ(k)

∫
· · ·
∫

(η2
2 + · · ·+ η2

n)(1 + η2
2 + · · ·+ η2

n)−k+ 3
2 d η2 · · · d ηn (C.2.23)

It is easy to recognize that the integration component of first term and third term in the
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above line have the same form as those in Equation (C.2.17) and (C.2.4), thus∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

=
Γ
(
k − 5

2 −
1
2(n− 1)

)
Γ(5

2)[Γ(1
2)]n−1

Γ(k)

+ 2
(n− 1)[Γ(3

2)]2[Γ(1
2)]n−2Γ

(
k − 3

2 × 2− 1
2(n− 2)

)
Γ(k)

+
Γ(k − 1

2)Γ(1
2)

Γ(k)

∫
· · ·
∫

(η2
2 + · · ·+ η2

n)2(1 + η2
2 + · · ·+ η2

n)−k+ 1
2 d η2 · · · d ηn (C.2.24)

Applying the fact stated by the above equation on its own last term, we have∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

=
Γ
(
k − 5

2 −
1
2(n− 1)

)
Γ(5

2)[Γ(1
2)]n−1

Γ(k)

+ 2
(n− 1)[Γ(3

2)]2[Γ(1
2)]n−2Γ

(
k − 3

2 × 2− 1
2(n− 2)

)
Γ(k)

+
Γ(k − 1

2)Γ(1
2)

Γ(k)

{
Γ
(
k − 1

2 −
5
2 −

1
2(n− 2)

)
Γ(5

2)[Γ(1
2)]n−2

Γ(k − 1
2)

+ 2
(n− 2)[Γ(3

2)]2[Γ(1
2)]n−3Γ

(
k − 1

2 −
3
2 × 2− 1

2(n− 3)
)

Γ(k − 1
2)

+
Γ(k − 1

2 −
1
2)Γ(1

2)

Γ(k − 1
2)

∫
· · ·
∫

(η2
3 + · · ·+ η2

n)2(1 + η2
2 + · · ·+ η2

n)−k+ 1
2

+ 1
2 d η3 · · · d ηn

}
= 2

Γ
(
k − 5

2 −
1
2(n− 1)

)
Γ(5

2)[Γ(1
2)]n−1

Γ(k)

+ 2
[Γ(3

2)]2[Γ(1
2)]n−2Γ

(
k − 3

2 × 2− 1
2(n− 2)

)
Γ(k)

[(n− 1) + (n− 2)]

+
[Γ(1

2)]2Γ(k − 1
2 × 2)

Γ(k)

∫
· · ·
∫

(η2
3 + · · ·+ η2

n)2(1 + η2
2 + · · ·+ η2

n)−k+ 1
2
×2d η3 · · · d ηn

By repeating this process until ηn,∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

= (n− 1)
Γ
(
k − 5

2 −
1
2(n− 1)

)
Γ(5

2)[Γ(1
2)]n−1

Γ(k)

+ n(n− 1)
[Γ(3

2)]2[Γ(1
2)]n−2Γ

(
k − 3

2 × 2− 1
2(n− 2)

)
Γ(k)

+
[Γ(1

2)]n−1Γ(k − 1
2(n− 1))

Γ(k)

∫
η4
n(1 + η2

2)−k+ 1
2

(n−1)d ηn (C.2.25)

Taking the following transformation

r =
1

1 + η2
n
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we have∫
η4
n(1 + η2

2)−k+ 1
2

(n−1)d ηn =

∫
rk−

1
2
n−3(1− r)

3
2 d r = Beta(k − 1

2
n− 2,

5

2
) (C.2.26)

Substitute the above result into Equation (C.2.25),∫
· · ·
∫

(η2
1 + · · · η2

n)2(1 + η2
1 + · · · η2

n)−kd η1 · · · d ηn

=

(
nΓ(

5

2
)[Γ(

1

2
)]n−1 + n(n− 1)[Γ(

3

2
)]2[Γ(

1

2
)]n−2

)
Γ(k − 1

2n− 2)

Γ(k)

=
n(n+ 2)π

n
2

4

Γ(k − 1
2n− 2)

Γ(k)

.

Proposition C.2.5

E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

=
ν2
φPi

(νφ + Pi + 2)(νφ + Pi)
(C.2.27)

Proof

E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

=

∫
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
p(Wi)dWi

= C

∫
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)− νφ+4+Pi
2

dWi

By taking the transformation

Xi =
1
√
νφ

Σ
− 1

2
i Wi =⇒ Wi =

√
νφΣ

1
2
i Xi, dWi = |√νφΣ

1
2
i |dXi

we have

E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]
= Cνφ

∣∣√νφΣ
1
2
i

∣∣ ∫ XT
i Xi(1 +XT

i Xi)
−
νφ+4+Pi

2 dXi

According to Equation (C.2.4), the above line changes to be

E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

= Cνφ
∣∣√νφΣ

1
2
i

∣∣Pi Γ(3
2)
[
Γ(1

2)
]Pi−1

Γ
(νφ+4+Pi

2 − 3
2 −

1
2(Pi − 1)

)
Γ(

νφ+4+Pi
2 )

(C.2.28)

Note that C is the normalizing constant of multivariate Student’s t distribution shown in

Equation (C.2.1) and the following fact about Gamma function

Γ(z + 1) = zΓ(z), Γ(
1

2
) =
√
π
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Equation (C.2.28) changes to be

E
[
(W T

i Σ−1
i Wi)

(
1 +

W T
i Σ−1

i Wi

νφ

)−2
]

=
ν2
φPi

(νφ + Pi + 2)(νφ + Pi)

.

Proposition C.2.6

E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

=
|Lil|νφ
νφ + Pi

(C.2.29)

Proof Since Wi follows a multivariate Student’s t distribution tνφ(0,Σi), it is easy to obtain

E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

=

∫
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
p(Wi)dWi

= C

∫
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)− νφ+Pi
2
−1

dWi

= C

∫ ∫
W T
il Σ−1

il Wil

(
1 +

W T
il Σ−1

il Wil

νφ
+
W T
−ilΣ

−1
−ilWil

νφ

)− νφ+Pi
2
−1

dWildW−il

= C

∫ (
1 +

W T
−ilΣ

−1
−ilWil

νφ

)− νφ+Pi
2
−1

×
{∫

W T
il Σ−1

il Wil

(
1 +

W T
il Σ−1

il Wil

νφ +W T
−ilΣ

−1
−ilW−il

)− νφ+Pi
2
−1

dWil

}
dW−il

(C.2.30)

where W−il denotes all the elements in Wi except those in Wil and Σ−il denotes the

covariance matrix for W−il. Denote the dimension of W−il by P−il, it is obvious that

P−il = Pi − |Lil|.

Taking the following transformation

Xil =
1

(νφ +W T
−ilΣ

−1
−ilW−il)

1
2

Σ
− 1

2
il Wil (C.2.31)

=⇒ Wil = (νφ +W T
−ilΣ

−1
−ilW−il)

1
2 Σ

1
2
ilXil, dWil = (νφ +W T

−ilΣ
−1
−ilW−il)

|Lil|
2 |Σil|

1
2 dXil

the formula in Equation (C.2.30) could be rewritten as

E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

= Cν
1+ 1

2
|Lil|

φ

∣∣Σil

∣∣ 1
2

∫ (
1 +

W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2

×
∫
XT
ilXil

(
1 +XT

ilXil

)− νφ+Pi
2
−1

dXildW−il
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According to Equation (C.2.4), the above line changes to be

E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

= Cν
1+ 1

2
|Lil|

φ

∣∣Σil

∣∣ 1
2 |Lil|

Γ(3
2)
[
Γ(1

2)
]|Lil|−1

Γ(
νφ
2 +

P−il
2 )

Γ(
νφ
2 + Pi

2 + 1)

×
∫ (

1 +
W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2

dW−il

(C.2.32)

By using the normalizing constant of
P−il

2 -dimensional multivariate Student’s t distribution

tνφ
(
0,Σ−il

)
, the integration has the following result∫ (
1 +

W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2

dW−il =
(
νφπ

)P−il
2

Γ(
νφ
2 )|Σ−il|

1
2

Γ(
νφ
2 +

P−il
2 )

(C.2.33)

Substituting Equation (C.2.33) into Equation (C.2.32), we have

E
[
W T
il Σ−1

il Wil

(
1 +

W T
i Σ−1

i Wi

νφ

)−1
]

=
|Lil|νφ
νφ + Pi

.

Proposition C.2.7

E
[
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=
ν2
φ|Lil|(|Lil + 2|)

(νφ + Pi)(νφ + Pi + 2)
(C.2.34)

Proof Since Wi follows a multivariate Student’s t distribution tνφ(0,Σi), we have

E
[
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= C

∫
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)− νφ+Pi
2
−2

dWi

= C

∫ (
1 +

W T
−ilΣ

−1
−ilWil

νφ

)− νφ+Pi
2
−2

×
{∫

(W T
il Σ−1

il Wil)
2
(

1 +
W T
il Σ−1

il Wil

νφ +W T
−ilΣ

−1
−ilW−il

)− νφ+Pi
2
−2

dWil

}
dW−il

(C.2.35)

Taking the transformation displayed in Equation (C.2.31),

E
[
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= Cν
2+ 1

2
|Lil|

φ

∣∣Σil

∣∣ 1
2

∫ (
1 +

W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2

×
∫

(XT
ilXil)

2
(

1 +XT
ilXil

)− νφ+Pi
2
−2

dXildW−il
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According to Equation (C.2.19), the above line changes to be

E
[
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= Cν
2+ 1

2
|Lil|

φ

∣∣Σil

∣∣ 1
2
|Lil|(|Lil + 2|)

4
(π)

|Lil|
2

Γ(
νφ
2 +

P−il
2 )

Γ(
νφ+Pi

2 + 2)

×
∫ (

1 +
W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2

dW−il (C.2.36)

Due to the fact stated in Equation (C.2.33), we have

E
[
(W T

il Σ−1
il Wil)

2
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=
ν2
φ|Lil|(|Lil + 2|)

(νφ + Pi)(νφ + Pi + 2)

.

Proposition C.2.8

E
[
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=
|Lil||Lij |ν2

φ

(νφ + Pi + 2)(νφ + Pi)
(C.2.37)

Proof Since Wi follows a multivariate Student’s t distribution tνφ(0,Σi), we have

E
[
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= C

∫
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)− νφ+Pi
2
−2

dWi

= C

∫
(W T

ijΣ−1
ij Wij)

(
1 +

W T
−ilΣ

−1
−ilW−il

νφ

)− νφ+Pi
2
−2

×
∫

(W T
il Σ−1

il Wil)

(
1 +

W T
il Σ−1

il Wil

νφ +W T
−ilΣ

−1
−ilW−il

)− νφ+Pi
2
−2

dWildW−il

(C.2.38)

Take the transformation in Equation (C.2.31) for Wil, we have

E
[
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= Cν
|Lil|

2
+1

φ |Σil|
1
2

∫
(W T

ijΣ−1
ij Wij)

(
1 +

W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2
−1

×
∫
XT
ilXil(1 +XT

ilXil)
−
νφ+Pi

2
−2dXildW−il (C.2.39)

Recall the fact in Equation (C.2.4), we have

E
[
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=

= Cν
|Lil|

2
+1

φ |Σil|
1
2
|Lil|

2
π
|Lil|

2
Γ(

νφ
2 +

P−il
2 + 1)

Γ(
νφ
2 + Pi

2 + 2)

×
∫

(W T
ijΣ−1

ij Wij)
(

1 +
W T
−ilΣ

−1
−ilW−il

νφ

)− νφ
2
−
P−il

2
−1

dW−il (C.2.40)
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Let I4 =
∫

(W T
ijΣ−1

ij Wij)
(

1 +
WT
−ilΣ

−1
−ilW−il
νφ

)− νφ
2
−
P−il

2
−1

dW−il, we have

I4 =

∫ (
1 +

W T
−iljΣ

−1
−iljW−ilj

νφ

)− νφ
2
−
P−il

2
−1

×
∫

(W T
ijΣ−1

ij Wij)

(
1 +

W T
ijΣ−1

ij Wij

νφ +W T
−iljΣ

−1
−iljW−ilj

)− νφ
2
−
P−il

2
−1

dWjdW−ilj (C.2.41)

where W−ilj denotes the the rest elements in Wi with Wil and Wij being removed and

thus to be a P−ilj = Pi−|Lil|− |Lij | dimensional variable; Σ−ilj is the variance matrix for

W−ilj . Similar transformation trick as shown in Equation (C.2.31) is applied on Wij , i.e.

Xij =
1

(νφ +W T
−iljΣ

−1
−iljW−ilj)

1
2

Σ
− 1

2
ij Wij

Thus,

I4 = ν
|Lij |

2
+1

φ |Σij |
1
2

∫ (
1 +

W T
−iljΣ

−1
−iljW−ilj

νφ

)− νφ
2
−
P−ilj

2

×
∫
XT
ijXij(1 +XT

ijXij)
−
νφ
2
−
P−il

2
−1dXijdW−ilj (C.2.42)

Applying the fact in Equation (C.2.4) again, we have

I4 = ν
|Lij |

2
+1

φ |Σij |
1
2
|Lij |

2
π
|Lij |

2
Γ(

νφ
2 +

P−ilj
2 )

Γ(
νφ
2 +

P−il
2 + 1)

∫ (
1 +

W T
−iljΣ

−1
−iljW−ilj

νφ

)− νφ
2
−
P−ilj

2
dW−ilj

(C.2.43)

Applying the similar transformation trick

X−ilj =
1
√
νφ

Σ
− 1

2
−iljW−ilj

I4 turns to be

I4 = ν
|Lij |

2
+1

φ |Σij |
1
2
|Lij |

2
π
|Lij |

2
Γ(

νφ
2 +

P−ilj
2 )

Γ(
νφ
2 +

P−il
2 + 1)

ν
P−ilj

2
φ |Σ−ilj |

1
2

×
∫

(1 +XT
−iljX−ilj)

−
νφ
2
−
P−ilj

2 dX−ilj (C.2.44)

Recall the fact in Equation (C.2.17), we have

I4 =
|Lij |

2
(νφπ)

P−il
2 νφ|Σ−il|

1
2

Γ(
νφ
2 )

Γ(
νφ
2 +

P−il
2 + 1)

(C.2.45)

Substitute the above result into Equation (C.2.40), we have

E
[
(W T

il Σ−1
il Wil)(W

T
ijΣ−1

ij Wij)
(

1 +
W T
i Σ−1

i Wi

νφ

)−2
]

=
|Lil||Lij |ν2

φ

(νφ + Pi + 2)(νφ + Pi)

.

February 16, 2016



C.3. Expectations for Block
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
205

C.3 Expectations for Block
{
νκ, σε, {κijk}k=1,...,Kij ;(i,j)∈JI

}
Assume random variable Tijk ∼ tνκ , then its probability density function is

p(Tijk) = D
(

1 +
T 2
ijk

νκ

)− νκ+1
2

(C.3.1)

where

D =
Γ(νκ2 + 1

2)
√
νκπΓ(νκ2 )

(C.3.2)

Proposition C.3.1

E
[(

1 +
T 2
ijk

νκ

)−k]
=

√
νκ + 2k
√
νκ

Γ(νκ2 + 1
2)Γ(νκ2 + k)

Γ(νκ2 )Γ(νκ2 + 1
2 + k)

(C.3.3)

Proof According to the pdf illustrated in Equation (C.3.1),

E
[(

1 +
T 2
ijk

νκ

)−k]
= D

∫ (
1 +

T 2
ijk

νκ

)− νκ+2k+1
2

dTijk

By using the normalizing constant of a standard Student’s t distribution tνκ+2k, the above

integration turns out to be

E
[(

1 +
T 2
ijk

νκ

)−k]
= D

√
νκπΓ(νκ+2k

2 )

Γ(νκ+2k
2 + 1

2)

=
Γ(νκ2 + 1

2)Γ(νκ2 + k)

Γ(νκ2 )Γ(νκ2 + 1
2 + k)

.

When k = 1, we have

E
[(

1 +
T 2
ijk

νκ

)−1]
=

νκ
νκ + 1

(C.3.4)

When k = 2, we have

E
[(

1 +
T 2
ijk

νκ

)−2]
=

νκ(νκ + 2)

(νκ + 1)(νκ + 3)
(C.3.5)

Proposition C.3.2

E
[
Tmijk

(
1 +

T 2
ijk

νκ

)−k]
= ν

m
2
κ

Γ(νκ2 + 1
2)

Γ(νκ2 )Γ(1
2)

Γ(νκ2 + k − m
2 )Γ(m2 + 1

2)

Γ(νκ2 + k + 1
2)

(C.3.6)

Proof According to the pdf shown in Equation (C.3.1),

E
[
Tmijk

(
1 +

T 2
ijk

νκ

)−k]
= D

∫
Tmijk

(
1 +

T 2
ijk

νκ

)− νκ+2k+1
2

dTijk
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By taking the transformation Zijk =
Tijk√
νκ

, the above integration changes to be

E
[
Tmijk

(
1 +

T 2
ijk

νκ

)−k]
= D

∫
ν
m
2

+ 1
2

κ Zmijk

(
1 + Z2

ijk

)− νκ+2k+1
2

dZijk

Taking transformation again by Xijk = 1
1+Z2

ijk
, the integration problem turns out to be

E
[
Tmijk

(
1 +

T 2
ijk

νκ

)−k]
= D

∫ 1

0
ν
m
2

+ 1
2

κ X
νκ
2

+k−m
2
−1

ijk (1−Xijk)
m
2

+ 1
2
−1dXijk

According to definition of Beta function and the normalizing constant shown in Equation

(C.3.2),

E
[
Tmijk

(
1 +

T 2
ijk

νκ

)−k]
= ν

m
2
κ

Γ(νκ2 + 1
2)

Γ(νκ2 )Γ(1
2)

Γ(νκ2 + k − m
2 )Γ(m2 + 1

2)

Γ(νκ2 + k + 1
2)

.

When m = 2, k = 1, we have

E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−1]
=

νκ
νκ + 1

(C.3.7)

When m = 2, k = 2, we have

E
[
T 2
ijk

(
1 +

T 2
ijk

νκ

)−2]
=

ν2
κ

(νκ + 3)(νκ + 1)
(C.3.8)

When m = 4, k = 2, we have

E
[
T 4
ijk

(
1 +

T 2
ijk

νκ

)−2]
=

3ν2
κ

(νκ + 3)(νκ + 1)
(C.3.9)
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C.4 Simulation Results
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Figure C.1: Left column: Trace plots for the last 3000 posterior samples in

the Markov chain given by using the modified MCMCglmm method to simulate

{νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right column: corresponding auto-correlation plots.
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Figure C.2: Left column: Trace plots for the last 3000 posterior samples in the

Markov chain given by using the RWMH to simulate the marginalized conditional

distributions of {νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right column: corresponding auto-

correlation plots
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Figure C.3: Left column: Trace plots for the last 3000 posterior samples in the

Markov chain given by using the HMC sampler to simulate the marginalized con-

ditional distributions of {νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right column: corresponding

auto-correlation plots
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Figure C.4: Left column: Trace plots for the last 3000 posterior samples in the

Markov chain given by using the NUTS sampler to simulate the marginalized con-

ditional distributions of {νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right column: corresponding

auto-correlation plots

February 16, 2016



C.4. Simulation Results 211

1.85

2.34

2.83

3.32

19000 20000 21000 22000

nu
.p

hi

0.18

0.23

0.27

0.32

19000 20000 21000 22000

P
hy

:C
A

S

0.19

0.23

0.27

0.31

19000 20000 21000 22000

C
la

ss
:C

A
S

0.09

0.11

0.12

0.14

19000 20000 21000 22000

La
tin

:C
A

S

0.12

0.14

0.17

0.19

19000 20000 21000 22000

O
rd

er
:C

A
S

1.68

1.89

2.10

2.31

19000 20000 21000 22000

nu
.k

ap
pa

0.18

0.20

0.22

0.24

19000 20000 21000 22000

si
gm

a.
ep

si
lo

n

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

0.0

0.5

1.0

0 10 20 30 40 50

Figure C.5: Left column: Trace plots for the last 3000 posterior samples in the

Markov chain given by using the RMHMC sampler to simulate the marginalized con-

ditional distributions of {νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right column: corresponding

auto-correlation plots
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Figure C.6: Left column: Trace plots for the last 3000 posterior samples in the

Markov chain given by using the HMC with stochastic step-size sampler to simulate

the marginalized conditional distributions of {νκ, σε} and
{
νφ, {σξl}l=1:L

}
; Right

column: corresponding auto-correlation plots
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C.5 ESS

ESS

parameters MCMCglmm RWMH HMC NUTS RMHMC HMC-S

νφ 154 174 396 370 546 399

σξ1 176 21 222 220 170 139

σξ2 182 48 366 264 339 224

σξ3 149 77 328 276 361 266

σξ4 103 38 203 183 254 195

νκ 242 815 672 1217 2632 2720

σε 248 433 627 948 1330 1588

σα 1923 1284 1931 2016 2188 1734

σβ1 1934 2337 2495 1213 1515 1614

σβ2 316 266 286 178 205 291

σβ3 1074 956 858 916 517 906

σβ4 1040 960 981 1027 1057 1006

µ 11323 12729 15683 9816 11522 11978

Table C.1: ESS of 20000 Posterior samples from 6 sampling methods. The first column

is the original modified MCMCglmm without the marinalized distirbutions. The rest of

the columns represent sampling methods with the marginalized distributions.
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Appendix D

Stan’s Model Code

fish_code <- ’

data{

int<lower = 0> N;

int<lower = 0> M_CAS;

int<lower = 0> M_Phylum_division;

int<lower = 0> M_Class;

int<lower = 0> M_Order;

int<lower = 0> M_Latin;

int<lower = 0> M_t1i;

int<lower = 0> M_t2i;

int<lower = 0> M_t3i;

int<lower = 0> M_t4i;

real y[N];

// index of random effects

int CAS[N];

int Phylum_division[N];

int Class[N];

int Order[N];

int Latin[N];

int t1i[N];

int t2i[N];

int t3i[N];

int t4i[N];

}

parameters{

real mu;

real alpha[M_CAS];

real beta_Pd[M_Phylum_division];

real beta_C[M_Class];

real beta_O[M_Order];

real beta_L[M_Latin];

real lamda[M_CAS];
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real xi_1[M_t1i];

real xi_2[M_t2i];

real xi_3[M_t3i];

real xi_4[M_t4i];

real kappa[N];

real<lower = 0> sigma_alpha;

real<lower = 0> sigma_epsilon;

real<lower = 0> sigma_beta_Pd;

real<lower = 0> sigma_beta_C;

real<lower = 0> sigma_beta_O;

real<lower = 0> sigma_beta_L;

real<lower = 0> sigma_xi_1;

real<lower = 0> sigma_xi_2;

real<lower = 0> sigma_xi_3;

real<lower = 0> sigma_xi_4;

real<lower = 1> nu_phi;

real<lower = 1> nu_kappa;

}

transformed parameters {

real theta[N];

real sy[N];

for(n in 1:N){

theta[n] <- mu + alpha[CAS[n]] + beta_Pd[Phylum_division[n]]

+ beta_C[Class[n]] + beta_O[Order[n]] + beta_L[Latin[n]] + (xi_1[t1i[n]]

+ xi_2[t2i[n]] + xi_3[t3i[n]] + xi_4[t4i[n]])/sqrt(lamda[CAS[n]]);

sy[n] <- sigma_epsilon/sqrt(kappa[n]);

}

}

model {

mu ~ normal(0, 10);

alpha ~ normal(0, sigma_alpha); //vectorized

beta_Pd ~ normal(0, sigma_beta_Pd); //vectorized

beta_C ~ normal(0, sigma_beta_C); //vectorized

beta_O ~ normal(0, sigma_beta_O); //vectorized

beta_L ~ normal(0, sigma_beta_L); //vectorized

lamda ~ gamma(nu_phi/2, nu_phi/2); //vectorized

xi_1 ~ normal(0, sigma_xi_1); //vectorized

xi_2 ~ normal(0, sigma_xi_2); //vectorized

xi_3 ~ normal(0, sigma_xi_3); //vectorized

xi_4 ~ normal(0, sigma_xi_4); //vectorized

kappa ~ gamma(nu_kappa/2, nu_kappa/2); //vectorized

y ~ normal(theta, sy);

increment_log_prob( -2*log(nu_phi) - 2*log(nu_kappa) - log(sigma_epsilon));

}

’
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