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Simulation and Control of Univariate and
Multivariate Set-Up Dominant Process

Steven Cox

This thesis explores the use of statistically valid process improvement tools in low-volume

applications. Setting out the following research questions: How can the Six Sigma Measure

and Analyse phases of a chronic quality problem be statistically validated in a low-volume

process? How can a statistically valid approach for process control be implemented in a

low-volume process? And how can this tool be extended to fit multivariate processes and can

the calculation of control parameter adjustments be automated?

In answer, the thesis presents an enhanced PROcess VAriation Diagnosis Tool (PROVADT)

method, driving a Six Sigma improvement project through the Measure and Analyse phases.

PROVADT provides a structured sampling plan to perform a Multi-Vari study, Isoplot, Gage

R&R and Provisional Process Capability in as few as twenty samples and eighty measure-

ments, making the technique suited to low-volume applications. The enhanced PROVADT

method provides a Gage R&R without confounded variation sources, as was the case in the

original method, and its practical application was demonstrated through two case studies.

Process control tools for low-volume, high-variety manufacturing applications were de-

veloped. An adjustable traffic-light chart, with control limits linked to tolerance and simple

decision rules, was used for monitoring univariate processes. This tool, the Set-Up Process

Algorithm (SUPA), uses probability theory to provide 98% confidence that the process is op-

erating at a pre-specified minimum level of Cp in as few as five samples. SUPA was extended

to deal with high-complexity applications, resulting in multivariate SUPA (mSUPA). mSUPA

maintains SUPA’s principles, but presents the information about multiple process features

on one chart, rather than multiple univariate charts. To supplement the mSUPA tool, a

theoretical method for calculating optimal process adjustment when a multivariate process

is off-target was introduced, combining discrete-event simulation and numerical optimisation

to calculate adjustments.
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Chapter 1

Introduction

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Scope

Over the past two decades, the UK manufacturing sector has been moving from a high-volume

to a low-volume production paradigm. In this low-volume paradigm, products are made by

Advanced Manufacturing Technology (AMT), such as multi-axis machine tools, laser-cutting,

micro-manufacturing and 3-D printing. The set-ups of these processes are being regularly

changed to manufacture a high-variety of high-value products that are typically produced in

small numbers, with high-precision and complexity.

The low-volume nature of these processes and the high-complexity of products, generates

common issues. For example, the difficulty of applying data driven analysis to solve chronic

quality problems, or Statistical Process Control (SPC) to identify process changes. This prob-

lem is confounded with the extra variation created by regular set-up changes to the process.

Research in this field has shown, that to deal with quality problems in these processes, engi-

neers are using subjective reasoning rather than objective analysis [1]. This lack of objective

analysis is highly significant, because unnecessary changes to processes made by operators

can increase the variation in final products. On the other hand, failure to perform correc-

tive action to a problem process can result in final products with Critical-to-Quality (CtQ)

parameters outside of their design tolerances. These types of actions are more likely to oc-

cur when decisions are made based on a subjective approach instead of objective analysis of

process data.

In order to address these problems, this thesis explores the current state-of-the-art process

1



Chapter 1. Introduction 2

improvement methodologies and techniques, with a specific reference to low-volume manufac-

turing. New techniques are then developed and tested, using a novel simulation approach, to

objectively improve and optimise AMT in a low-volume production mode. The next sections

establish the wider context for the implementation of these new techniques and outline the

research questions addressed throughout the thesis.

1.2 Context

1.2.1 Advanced Manufacturing Technology (AMT)

An AMT is defined as ‘an automated production system of people, machines, and tools for

the planning and control of the production process’ [2]. In the current manufacturing environ-

ment, there is an increase in companies utilizing AMT to cope with shorter product life-cycles

and increasing product variety and consumer choice [2, 3]. The UK government sees AMT

as a key area for future economic growth [4–6]. This view is supported by a Royal Bank of

Scotland report [7], which identifies high-value engineering and its utilization of AMT, as a

source of growth in the UK manufacturing sector. Given the economic importance of AMT, it

is important to identify key factors and to research solutions to manage their affects on prod-

uct quality. These factors include the low-volumes of production and the high-complexity

and precision requirements of products. An additional aspect of AMT processes, which does

not directly effect quality but raises the stakes of getting product quality right, is the drive

towards high-value products. The remainder of this section discusses these product quality

affecting factors.

1.2.2 Low-Volume and High-Variety

Two complimentary trends in AMT, are processes with low-volume production runs and the

‘changeability of manufacturing’ [8]. The low-volume nature means that a single product-

type is made in batches as small as one unit. To make sure that AMTs do not stand idle they,

therefore, must produce multiple product variants in a single process. This makes them high-

variety and changeable processes, which reduces the need for expensive bespoke equipment

to make each product [9]. However, this production flexibility has proved problematical for

operators seeking to gain increased performance of these high-variety processes. Operators

struggle to perform classical statistical tests, especially in the absence of data necessary to

apply objective analysis. This applies to both the identification of root causes of process

variation and ongoing process monitoring to prevent defective products. The difficulty of

applying classical statistical tests has led to the abandonment of objective analysis in favour

of a subjective approach [1], utilizing engineers’ opinion over data driven improvement. It is

a situation that is exacerbated by the variation induced by regular set-up changes, known as

set-up dominant variation [10].

Research into this field is imperative to ensure objective analysis and improvement of
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these processes. In particular, advancing the development of analysis tools that focus on the

diagnosis of the root cause of variation and the monitoring of ongoing processes is important.

Developing these techniques is required to achieve statistical rigour under the conditions of

low-volume manufacture and are even more critical under the requirements of high-precision.

1.2.3 High-Precision

‘Manufacture with higher precision’ is a second trend in AMT [11]. An example of this

requirement is observed in the aerospace industry, with the manufacture of precision aero-

foils for jet-engines. Making aerofoils with CtQs that are closer to their design targets, can

contribute to a final engine with small in-service efficiency saving. However, even small im-

provements in efficiency, in the order of 0.1%, saves the aircraft operator tens of millions

of pounds in fuel costs over the engines service life. In addition to fuel savings there are

reductions in green-house emissions, which makes it possible for aircraft operators to comply

with ever tighter emissions regulations. This results in products that are made with ever

smaller tolerances on CtQ design features; in order to achieve the improved in-service perfor-

mance and customer satisfaction. However, these tighter tolerances place additional pressure

on manufacturing operations to produce products with-in design tolerances that are at the

limits of their manufacturing capabilities. This issue is exacerbated given the high-value of

these products, as companies cannot afford to produce defective products.

1.2.4 High-Value and the ‘Cost of Quality’

The increasingly high-value nature of products manufactured in low-volume paradigms, places

greater importance on the cost-of-quality, or more accurately the cost-of-poor-quality. As

discussed in the previous section, placing tighter tolerances on on CtQ design features, makes

producing a product outside its tolerances easier. The products that fall outside design

tolerances are either reworked or scrapped, in both cases adding financial expense and strain

to the capacity of the manufacturing process. This rational in which products that are within

tolerance are ‘good’ and products that are outside tolerance are ‘bad’ is known as ‘worst-case

tolerancing’ [12].

A model of how worst-case tolerancing effects the cost-of-quality is shown in Figure 1.1,

where, the lower tolerance limit, L, the upper tolerance limit, U , process target, T , and cost-

to-quality represents the financial loss to the manufacturer as a result of an off-target CtQ.

In this model only products that are outside their tolerances are considered to add to the the

financial cost-of-quality and it is a view that is commonly held on the shop-floor. This leads

to operators steering their processes within tolerance but not necessarily on-target.

In practice, the cost-of-quality effect is much more subtle. Consider the example of an

aerofoil for a jet engine. If two aerofoils are selected, one that has all its CtQ features near

their design targets and the other with all of its CtQ features just inside there upper tolerance

limit, both are accepted for service, but do they both have the same in-service performance?
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Figure 1.1: Effect of worst-case tolerancing model on the cost-of-quality.

As described in the previous section, the closer the aerofoils are to their design targets the

better their performance is, which leads to significant fuel cost savings over the life of the

engine. Therefore, the actual relationship between a products CtQ feature and the cost-

of-quality is better described by Taguchi’s quality-loss function [13]. Figure 1.2 shows the

quadratic function of Taguchi’s quality-loss relationship. The further away a CtQ is from T ,

the greater the cost-to-quality, as fewer products function optimally and, ultimately, fail.

It is, therefore, critical that products from manufacturing processes are made with pre-

cision, i.e. as close to the design target as economically possible. To achieve this, operators

need to be supported with appropriate tools to steer their processes not only within toler-

ance, but also on-target. A process whose output CtQ is on-target and has a small amount

of variation relative to its design tolerance is said to have a high capability and maintaining

a high capability minimises the cost-of-quality effect. In addition, maintaining a globally

high capability on a complex product which may have in excess of 20 CtQ features greatly

increases the challenge for manufacturers.

1.2.5 High-Complexity

The increasing complexity of products is a fourth trend in AMT. Products with multiple

CtQs are manufactured by fewer and fewer processes. Using the example from the aerospace

industry of the production of aerofoil parts for jet engines, improvements to engine perfor-

mance have been gained by modifying the shape and geometry of the aerofoils. This has

lead to aerofoils that are becoming ever more complex with an increasing number of CtQs.

Traditionally, these parts would have undergone several separate machining processes such

as turning, milling and grinding, but with the development of AMTs, these are now pro-

duced by single machining centres. This has given rise to situations where products with in
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Figure 1.2: Effect of Taguchi’s quality-loss function on the cost-of-quality.

excess of 20 CtQ features can be manufactured by a machine tool with a 5-axis, or control

parameters, to which an operator can apply offsets to improve the final products compliance

with its design targets. As has been shown in the preceding sections, it is important that

the global precision of the part is maintained and, therefore, all CtQs are as close to the de-

sign target as possible. However, when there are significantly less control parameters on the

process than CtQ features on the product, applying an offset to a single control parameter

can effect multiple product features. This means a single control parameter is correlated to

multiple CtQ design features, and the relationship between the process control parameters

and product design features is defined mathematically by a set of unsolvable linear equations.

Currently, optimising these processes, and the defining set of unsolvable linear equations, is

left to the process operator; who rely on intuition and experience. Therefore, operators need

to be supported to steer their processes not only on-target on a individual CtQ basis, but

also on-target on a global product level. Also, given the complexity of the low-volume man-

ufacturing paradigm, when process improvement tools are developed to support operator’s

actions, these tools should present information that is understandable and actionable by the

operator.

1.2.6 End-User Requirements

There is a trend for the ‘democratization of statistics’ in industry [14]. The thrust of this

research, supports this trend by reviewing and developing data driven analysis and control

tools to support operator’s of low-volume manufacturing processes. However, the potential

end-users must be considered at all-times to avoid this research falling into the ‘serious

disconnect between academic research in statistics and quality control and actual practice’ [14].

These end-users, could range from experienced quality engineers with a high level of statistics
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training, to process operators who have no background in statistics. Therefore, methods that

are developed are underpinned by sound statistical theory, but have an interface appropriate

for the end-user. If the application of the methods developed involves complicated and

convoluted stages, no matter how powerful they are statistically, the chances of them being

used is minimal. Hence, this research follows the observation, accredited to the statistician

Churchill Eisenhart [15], of:

...the practical power (of a procedure) is a product of the Mathematical power by the

probability the procedure will be used...

1.3 Research Questions

As described in Sections 1.1 and 1.2, this research reviews and develops, tools and techniques

to support operators identify root causes of variation in and maintain control of low-volume

manufacturing processes. Given the context provided in Section 1.2, the following Research

Questions (RQs) have been devised for the remainder of this thesis to answer:

RQ1 When improving low-volume processes, what is the relevant process improvement frame-

work to structure the deployment of statistical tools?

RQ2 Within a proposed framework, how can the measurement and analysis of a chronic

quality problem be statistically validated in a low-volume process?

RQ3 What is required to provide a practical and statistically valid approach for process con-

trol in a low-volume process?

RQ4 How can a low-volume process control tool be extended to fit multivariate processes?

RQ5 When a low-volume multivariate process control tool signals the process is off-target,

how can the calculation of control parameter adjustments be automated?

1.4 Thesis Outline

A literature review to determine the state-of-the-art in quality improvement in low-volume

manufacturing is provided in Chapter 2. Research conducted to develop a technique known

as PROcess VAriation Diagnosis Tool (PROVADT), which aids the identification of root

causes of low process capability in low-volume manufacture, is detailed in Chapter 4. Re-

search conducted to develop a technique known as Set-Up Process Algorithm (SUPA), which

monitors an assumed capable process and signals to a user when it is off-target or exhibits

excessive variation is presented in Chapter 5. Chapter 6 develops the SUPA technique fur-

ther to monitor a multivariate process, to determine if it is off-target. Further to this, work
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presented in Chapter 7 details potential methods of automating the calculation of corrective

action needed when a multivariate process is off-target.



Chapter 2

Literature Review I - Process

Improvement Methodologies

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Six Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Shainin System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Hybrid Process Improvement Methodology . . . . . . . . . . . . . . . . . . . 17

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Introduction

2.1.1 Outline

Industry has developed process improvement methodologies to assist operators improve man-

ufacturing process performance and product quality. This is achieved by promoting a struc-

tured and consistent problem solving strategy. In this context, a process improvement

methodology is defined by De Mast [16] as: ‘a coherent series of concepts, steps (phases),

methodological rules and tools, that guide a quality professional in bringing the quality of a

process or product to unprecedented levels’. However, the predominant application of process

improvement methodologies in manufacturing has focused on high-volume/mass-production

implementations. This chapter reviews both academic and industrial literature on process

improvement methodologies, with the purpose of identifying the most appropriate framework

to assist operators working in a low-volume paradigm. The identification of a suitable pro-

cess improvement methodology, informs the remainder of the research into specific process

improvement tools for low-volume applications.

In broad terms there are multiple examples of process improvement methodologies, in-

cluding: Lean, Total Quality Management (TQM), Six Sigma, Lean Six Sigma, Taguchi

Methods and the Shainin System. To start this literature review, it is important to identify

8
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which of these process improvement methodologies fit the definition provided by De Mast

[16].

2.1.2 Context

2.1.2.1 Lean Manufacturing

Lean manufacturing is a quality philosophy that aims to eliminate waste, or non-value added

activities, from a process [17–21]. These non-value added activities are divided into seven

forms of waste and targeted by applying specific Lean tools [17]. However, Lean tools are

process-flow orientated and the philosophy does not have an underpinning problem solving

structure, as specified in the De Mast [16] definition.

2.1.2.2 Total Quality Management (TQM)

In the same regard TQM offers a quality philosophy. To achieve process improvement

TQM applies statistical techniques, but they are not applied with a systematic step-wise

approach [16, 22, 23]. Lean and TQM are not not reviewed further in this chapter, as they

do not meet the requirements of the definition of a process improvement methodology. There-

fore, they are not a suitable solution.

2.1.2.3 Six Sigma

Six Sigma is a methodology that aims to reduce variation in a process by following a structured

problem solving algorithm [24–26]. This structured problem solving algorithm, known as

Define-Measure-Analyse-Improve-Control (DMAIC), is accompanied by a set of statistical

tools to achieve data driven process improvement. There is also literature which supports

the current use of Six Sigma in UK industry for low-volume processes [1].

2.1.2.4 Lean Six Sigma

Lean Six Sigma is the integration of Lean tools to eliminate waste and Six Sigma methodology

for variation reduction [17, 27, 28]. Both Pepper and Spedding [17] and Bhuiyan and Baghel

[28] identify that research into Lean Six Sigma has not matured, with a common definition

yet to be defined. When Lean Six Sigma has been used in a problem solving context the

DMAIC structure has been used for process investigations.

The key component of both Six Sigma and Lean Six Sigma, in the context of this thesis, is

the DMAIC problem-solving strategy. This strategy will be further reviewed in this chapter.

2.1.2.5 Taguchi Methods

Taguchi methods, like Six Sigma, focus on reducing variation utilizing statistically derived

experiments [16]. As an approach, Taguchi methods are more suited to reducing process

variation by improving system robustness through optimization experiments [13, 29, 30].
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This approach is not considered further as a process improvement methodology, as it does

not provide a framework, but rather focuses on experimentation.

2.1.2.6 The Shainin System

The Shainin System is a methodology that reduces process variation by employing a sys-

tematic approach to problem solving [31, 32]. This approach uses a novel ‘narrow-down’

strategy, whereby, potential causes of variation are eliminated until the root cause is found.

This narrow-down strategy, is rigourously applied by the overall Shainin System algorithm.

The algorithm provides users with a step-by-step approach to problem-solving. Therefore,

the Shainin System is examined more thoroughly in the remainder of the chapter.

2.1.3 Scope

The scope of this literature review includes published works in English and predominantly

post-1980, when there was a boom in the industrial development and application of process

improvement methodologies. There is increasing interest and literature on using process

improvement methodologies to solve service sector and overall business performance issues,

however, this material was not reviewed and is outside the scope of this research. Individual

process improvement tools that supplement a process improvement project are not explored

in this chapter, as these are addressed in chapter 3.

The objective of this literature review is to investigate process improvement methodolo-

gies specifically as problem solving strategies for low-volume manufacturing processes. The

remainder of this chapter focuses on two specific approaches: Six Sigma and the Shainin Sys-

tem. A wealth of material on Six Sigma was available, including textbooks, technical papers,

literature reviews and case studies. In comparison, the literature on the Shainin System was

both sparse and controversial, which is a result of its proprietary development [33].

2.2 Six Sigma

2.2.1 History

Many manufacturing companies are implementing the Six Sigma process improvement method-

ology, to improve bottom-line financial results by focusing on product quality and reducing

process variation [24, 26, 28, 34–36]. The methodology was originally conceived at Motorola

during the mid- to late-1980s [24, 26, 28, 34, 35, 37, 38]. Motorola was subsequently the

first company to win the Baldrige Award in 1988 as a direct result of its Six Sigma ini-

tiative [26, 34, 36, 38]. The Baldridge award is a US presidential award for performance

excellence. This lead to Six Sigma being adopted at major American manufacturers such as

Allied Signal and General Electric [34–36, 38], with new implementation successes reported

ever since, see [35, 39–41].
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There is no one clear or concise definition of Six Sigma [25, 38]. Aboelmaged [34] iden-

tified 8 different definitions in a comprehensive review based on an analysis of 417 articles

published between 1992 and 2008. Despite its frequent occurrence in both industry and aca-

demic literature, Aboelmaged [34] found that 64.3% of Six Sigma literature focuses on its

original application as a manufacturing process improvement methodology; whereas, the re-

maining papers explore its uses as a business, service and transactional process improvement

methodology. Recent work on Six Sigma as a manufacturing process improvement method-

ology tends to focus on the integration of Lean thinking and tools into a holistic process

improvement initiative [17, 20, 28, 34, 42, 43]. In addition to this, Six Sigma implementa-

tions are divided into an inner-DMAIC loop, describing individual problem solving projects,

and an outer-DMAIC loop, detailing the strategic implementation [44]. The application of

Six Sigma is continually broadening [28, 34] and it is the author’s belief, that the lack of

clarity in a definition stems from this.

In this research, Six Sigma is examined as a purely manufacturing orientated problem

solving strategy and in this context common defining features are found. This includes Six

Sigma [35, 38, 42, 45]:

• as a process improvement methodology;

• employing a structured approach to problem solving DMAIC;

• focusing on variation reduction;

• having an objective of reducing the number of defects to as low as 3.4 parts per million

opportunities;

• achieving bottom-line financial results.

To assess the potential of Six Sigma in a low-volume paradigm, its structure needs to

be detailed and its strengths and weaknesses examined. This structure is outlined in the

following section.

2.2.2 Structure

Six Sigma utilizes the five-phase DMAIC methodology to link the application of process

improvement tools in a sequential order [25, 27, 34, 45]. Figure 2.1 shows how the DMAIC

process improvement cycle is organised. When an improvement project is in the Define phase,

the scope, goals and financial targets are identified [27]. In the Measure phase, baseline

measures of process capability and measurement system capability are assessed [27]. During

the Analyse phase, the root causes of variation, that effect the output variables linked to

the project goals, are identified [27]. In the Improve phase, pilot trials of potential solutions

are run before executing a full-scale implementation [27]. For the Control phase, process
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Figure 2.1: Reproduction of Six Sigma’s DMAIC quality improvement cycle [37].
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procedures are developed and applied to maintain the improvement gains achieved in the

previous phases [27].

To support each phase, of the DMAIC methodology, a toolkit of statistical and non-

statistical techniques is outlined in Six Sigma literature [25, 27]. Specific tools, from the

toolkit of statistical and non-statistical techniques, are used at each stage of the framework

to allow data driven decisions to be made about the process. An overview of the classic

techniques used at each stage of DMAIC can be found in Pande et al. [24] and George et al.

[27]. However, a review of the specific techniques and tools, relevant to this thesis, is made

in chapter 3.

2.2.3 Successes

The prevalence in industry of Six Sigma as a process improvement methodology is largely

due to its many high profile success stories. This success started with originators Motorola,

reporting savings of $16 billion from 1986 to 2001 and followed by other early adopters

including GE saving $4.4 billion from 1996 to 1999 and Honeywell saving $1.8 billion from

1998 to 2000 [46]. Alongside these impressive financial results are equally impressive technical

results. For example, LG Electronics’ appliance business achieved a 50% reduction in defects

between its start in 1995 and 2000 [47].

Further to these organisation level results, there are also many individual case study

successes reported. Suresh et al. [41] reported a 40% reduction in defects in a automobile

piston ring manufacturing process. Gijo et al. [40] reported a $80, 000 saving associated with

improvements to scrap and rework rates in a high precision grinding process for a diesel

engine injector part. For a similar grinding process, Gijo et al. [39] reported a reduction in

defect rates from 16.6% to 1.19% leading to a financial saving of $2.4 million per annum.

The result of these successes, both financial and technical, saw 35% of US organisations

having a Six Sigma program in place by 2006 and 82 of the 100 largest US organisations

having Six Sigma by 2007 [46]. Despite these successes Six Sigma is not without its problems

or critics. These issues will be explored in the following section.

2.2.4 Issues

In traditional high-volume Six Sigma applications, there is a weakness in the Analyse phase

of the DMAIC methodology. During this phase, Six Sigma uses subjective, non-statistical

approaches, for example brainstorming, Ishikawa diagrams and cause-and-effect matrices, to

form a causal hypothesis about the root cause of a quality problem [24]. If these types of

subjective techniques are used to identify potential root causes, it is possible that the real

root causes of a quality problem are missed. The hypothesis formed, is then validated using

complex statistical analyses, for example full or fractional factorial Design of Experiments

(DoE). This approach can also be unproductive if not carefully applied. A fractional factorial

is a screening technique [48], which reduces the numbers of experiments that are used, making
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an investigation manageable but at the expense of understanding higher order interaction

effects [10]. If full factorial designed is used, based around a small number of root causes

identified using subjective analysis, it is possible that the real root causes of a quality problem

are missed. On the other hand, if the DoE is based around a large number of potential

root causes, the experimentation becomes impractical. For example, applying a two-level

Full Factorial design when there are five or more factors is cumbersome (with five factors a

minimum of 25 or 32 experiments is needed). This weakness in Six Sigma’s ‘exploration’ of

a quality problem is identified by De Mast et al. [49], who state:

...Six Sigma seems the most complete strategy...[but] the guidance and tools that are given

for the exploration phase lack clear structure and coherence...

This becomes particularly important to overcome when a low volume of product is avail-

able to test. Hence, as UK manufacturing has moved towards the use of AMT, to provide

low-volume, high-complexity and precision processes, so has the application of Six Sigma [1].

However, applying classic statistical tests, associated with Six Sigma, to low-volume pro-

cesses is difficult due to the lack of available data and opportunity to trial forced experi-

ments. Therefore, practitioners place heavy reliance on non-statistical techniques to drive

improvement projects. This reliance on subjectivity in the Analyse phase is questionable and

deviates from Six Sigma’s underpinning mantra of ‘data driven improvement’.

2.3 The Shainin System

2.3.1 History

The Shainin System, also referred to as Statistical Engineering, originates in the 1940’s when

Dorian Shainin, whilst working with Joesph Juran and Leonard Seder, identified that the

Pareto principle1 applied to the causes of variation in manufacturing processes [31]. This over-

time led to the development of statistically derived tools to identify the causes of variation,

specifically addressed in chapter 3. The Pareto principle also led to the Shainin System, as a

problem-solving system that applies these tools in a systematic procedure to achieve quality

improvement [32].

The underlying logic of the Shainin System as a problem-solving methodology was re-

ported as early as the 1950’s by Shainin [50]. However, it’s well defined algorithmic structure

was not reported until the 1980’s, see [51]. It is this well defined approach that is discussed

in this chapter and the structure is outlined in the following section.

1The Pareto principle is the concept that approximately 80% of effects are a result of 20% of potential

causes [10].
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2.3.2 Structure

The Shainin System aims to find the major, secondary and tertiary causes of variation. These

inputs are known as the Red X, Pink X and Pale Pink X, respectively which affect the output,

known as the Green Y. To determine the Red X, convergence techniques are implemented

within the Shainin System algorithm, a method known as ‘narrow-down’. The process of

converging on a Red X is known as a Y to X approach, where differences in results (Ys) are

analysed to rule out unimportant factors, narrowing down to the Red X [31].

The Shainin System approach is under-pinned by the algorithm [32, 51] shown in Fig-

ure 2.2. The algorithm initially considers all potential causes of variation at the ‘Generate

Clues’ stage. At this stage off-line experiments are performed to eliminate variables in a

process that do not have an effect on the overall variation, without disrupting the process

settings. This allows fewer experiments to be performed with the identified suspect variables,

at the ‘Statistically Designed Experiments’ stage, to narrow-down to the Red X. This limits

the on-line testing which cause process disruption [32]. Once the Red X has been identified

the process is optimised before implementing control measures to sustain process gains.

This narrow-down concept is achieved by using objective analysis instead of subjective

opinion which is seen as ‘guessing’ by Shainin, see [51]. Therefore, the strength of the Shainin

System is in its thorough exploration of a quality problem [49]. The system also achieves

results by conducting experiments with limited sample sizes, making it suitable in a low-

volume paradigm. However, the methodology divides opinion, and these extreme views are

considered in the next two sections.

2.3.3 Successes

Although the academic literature on the Shainin System is limited, a key strength that has

been identified is in its initial analysis of a problem. Steiner et al. [32] supports this, stating

‘the algorithm is very strong for the diagnostic journey’ and De Mast [16] identifies that the

Shainin System is strong in the ‘exploration phase’ of a problem. Beyond this academic view

there are also successful practical implementations.

A major success of the Shainin System, like Six Sigma, is attributed to Motorola and their

winning of the first Baldrige Award in 1988 [52]. Other case studies include: Lucas Engine

Management Systems, who saved $150, 000 per annum after applying the Shainin System to

reduce variation in a electromechanical automotive component [51]; USS-Posco, who made

‘Monthly savings...in the six figures’ after applying the Shainin System to identify a Red X to

reduce the quantity of Zinc used to produce Zinc-plated rolled steel sheets [51]; Jegadheeson

et al. [53] reported significant improvements in the capability of a stator manufacturing pro-

cess, the stators were a component in an auto-electric alternator assembly; In another study

of an alternator assembly, Shanmugam and Kalaichelvan [54] applied the Shainin System

to reduce rejections by 50%; Mooren et al. [55] utilized the Shainin System to identify the

root cause of premature drill wear out, this reduced process down time which had a financial
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Figure 2.2: Reproduction of the Shainin System algorithm [32].
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implication on the cost of a final product. Despite these successes, the Shainin System has

proven to be controversial and this is explored in the next section.

2.3.4 Issues

There has been little peer review work for the Shainin System and its methods, and the

literature that exists is divisive. Senapati [33] states that this controversy is a result of the

systems development by consultants, rather than through transparent application of well de-

scribed theories. An example of this controversy is with the most complete description of

Shainin tools by Bhote [56] and Bhote and Bhote [52]. These texts are heavily criticised by

Hockman [57] and Ziegel [58] for being self-promotional and for their dismissal of classical

DOE techniques. However, a more balanced view of these texts by Steiner et al. [32], iden-

tifies that they present many useful Shainin techniques, but do them a ‘disservice since the

hyperbole hides many of the genuinely useful ideas’. It is noted that much of the academic

criticism of the Shainin System focuses on individual tools employed within the algorithm

rather than with the algorithm itself. The criticism of tools is further explored in chapter 3.

2.4 Hybrid Process Improvement Methodology

2.4.1 Context

This section outlines a hybrid Six Sigma approach which incorporates Shainin concepts such

as ‘narrowing-down’ on a root cause, outlined in Cox [59]. The philosophy of hybridising

two seemingly competing process or quality improvement methodologies is not new. As

detailed in section 2.1, in industry there is widespread use of Lean Six Sigma or Lean Sigma

programmes, which are amalgams of Lean and Six Sigma methodologies. This merger of Lean

Six Sigma has occurred despite some stark fundamental differences in approach. An example

of this is the difference in implementation were Lean focuses on bottom-up application, Six

Sigma uses a top-down application. In this context, the integration of Six Sigma and the

Shainin System should be seen as a smaller leap than that of Lean and Six Sigma. The idea of

integrating Shainin System elements and tools in to other process improvement methodologies

is supported by [32], who states: ‘[Shainin tools] should be incorporated into other process

improvement methodologies’. Further to this, Sharma and Chetiya [60] provide case studies

in an automotive and general lighting lamp manufacturing company, where Shainin system

tools were successfully implemented in a Six Sigma project. Although they do not build an

explicit framework for their implementation.

Six Sigma and the Shainin System have strong methodological similarities in their ap-

proaches. A detailed exploration of the similarities and differences between the Shainin

System and Six Sigma is be found in De Mast et al. [49]. By comparing Figures 2.1 and 2.2,

it can be seen that the structure of the Shainin System and Six Sigma have many similarities.

Both methodologies go through five main stages:
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1. Both start by defining a quality problem.

2. The measurement system is then validated through the an ‘Establish Effective Measur-
ing System’ step in the Shainin System and the Measure phase in Six Sigma.

3. Exploration of the quality problem is achieved with a ‘Generate Clues’ step in the
Shainin System and the Analyse phase in Six Sigma.

4. The process is then optimised, with an explicit ‘Optimise’ step in the Shainin System
and Improve phase in Six Sigma.

5. Finally both then monitor the improved process through a ‘Statistical Process Control’
step and Control phase, respectively.

These similarities extend beyond there systematic structures. Both methodologies use

rhetoric which is comparable; when referring to measured outputs the Shainin System talks

about Green Y’s where as Six Sigma refers to CtQ’s. When analysing inputs which affect a

process; the Shainin System labels the important factor as the Red X and Six Sigma terms

this factor as the root cause of variation.

The key difference between these problem solving approaches is in the exploration of a

quality problem [16]. Six Sigma aims to find root causes or suspect variables in a manner

which has been identified as problematic. The Shainin System narrows-down to suspect

variables by objectively ruling out variables which have an insignificant effect on a final

Green Y [16, 31, 32]. Hence, the Shainin System eliminates unimportant factors from the

search for the Red X using quantitative analysis, Six Sigma identifies root causes with a

qualitative approach before validating this with a quantitative analysis. It is shown in the

following section how Shainin System elements can be explicitly integrated into the overall

Six Sigma approach to strengthen the exploration of a quality problem.

2.4.2 Structure

As identified in the previous section, Six Sigma lacks objectivity in its early Analyse phase,

but it is in this exploration of quality problems where Shainin is particularly strong. In an

attempt to improve this situation, the hybrid Six Sigma framework outlined in Figure 2.3

was proposed in [59].

This hybrid Six Sigma methodology still holds the DMAIC structure at its core and imple-

ments the Six Sigma 12-step strategy to obtain useful process metrics. It aims to reinforce the

need for objectivity in the Analyse phase by incorporating a ‘Find the Signature’ and ‘Nar-

row Down’ loop. This loop underpins the PROcess VAriation Diagnosis Tool (PROVADT)

tool, which is developed in Chapter 4. The result of this review identified a Hybrid Shainin

Six Sigma methodology as the most appropriate framework to guide operators through a

process improvement project in a low-volume paradigm. Therefore, the remainder of this

thesis develops statistically derived tools and techniques that fit within this hybrid Six Sigma

methodology.
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2.5 Summary

In this chapter, a review of current process improvement methodologies was performed.

This review was conducted in order to determine the most appropriate process improvement

methodology to support process improvement projects in low-volume applications. This re-

view assessed three approaches in particular: Six Sigma, the Shainin System and Hybrid Six

Sigma. The results of this review identified the Hybrid Six Sigma methodology as the most

appropriate for low-volume processes.

Six Sigma was identified as having numerous successful industry implementations, these

successes are underpinned by the rigourous DMAIC cycle. However, it was shown in the

literature that six Sigma is weak in the analyse phase or the ‘ exploration’ of a quality

problem, with a heavy utilisation of subjective analysis rather than objective analysis.

The Shainin System in comparison, was identified as being particularly strong in the ‘

exploration’ of a quality problem. However, the literature that exists on the methodology

is divisive. This is a result of its development and promotion by consultants, with the

leading texts on the methodology being criticised by academics for being self-promotional

and dismissive of classical DOE techniques.

To balance these two approaches the Hybrid Six Sigma approach was reviewed. This

methodology is underpinned by Six Sigma’s classic DMAIC cycle; however, it utilises the

narrowing down approach from the Shainin System to strengthen the Analyse phase. There-

fore, the remainder of this thesis will develop tools and techniques that sit within this Hybrid

Six Sigma approach.
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3.1 Introduction

In the previous chapter, a hybrid Six Sigma process improvement methodology was intro-

duced. It was identified as the most suitable method to assist an operator problem solve in a

low-volume production environment. This hybrid algorithm aims to go step-by-step through

the traditional stages of the DMAIC cycle and collect Six Sigma metrics. The key addition

to Six Sigma in the hybrid strategy, was the Shainin Y to X approach for narrowing-down to

root causes of process variation. However, to apply this hybrid Six Sigma methodology in a

low-volume production environment, process improvement tools are required. This chapter

reviews the literature on process improvement tools suitable to complete three stages of the

hybrid Six Sigma methodology, namely: Measure, Analyse and Control.

3.2 Measure

3.2.1 Introduction

In the Measure stage of a Six Sigma project, the defined problem is described in a measur-

able form and the current capability to perform these measurements is assessed [38]. This

is achieved in three phases of investigation, as highlighted in Figure 2.3. These phases are

21
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Select CtQ Characteristics, Define Performance Objectives and Validate Measurement Sys-

tem [37, 38, 61]. The first two phases are usually evident through engineering design draw-

ing, Computer-Aided Design (CAD) models and tolerances, and the third stage, Validate

Measurement System, is achieved through an investigation know as Measurement System

Analysis (MSA).

MSA investigations are used to establish that the variation in the measurement system

is at an acceptably low level. Each type of MSA makes different assumptions about known

factors, in order to determine if a certain category of measurement system variation exists.

An assumption made by all MSA techniques reviewed in this chapter is that the test is

non-destructive and repeatable. Initial assumptions to validate a destructive test MSAs are

found in De Mast and Trip [62], but destructive tests not addressed further as it is outside

the scope of this review. The next section details the categories of measurement system error

that variation can fall into, then section 3.2.3 details current MSA techniques.

3.2.2 Categories of Measurement System Error

The intension of this section is to give brief description of the types of variation that can

exist in a measurement system. In general, there are five categories of measurement system

error. These are repeatability, reproducibility, bias, linearity and stability errors [63].

Repeatability is the variation in measurements when repeatedly measuring one CtQ

on the same part by one appraiser. This is represented in Figure 3.1(a). Reproducibility

is the variation in the mean measurement of the same sample between appraisers. This is

shown in Figure 3.1(b). Bias is the difference between the observed mean value of repeated

measurements and a known reference value. This effect is seen in Figure 3.1(c). Linearity

is the difference between bias values at different values within the operating range of the

measurement system. This effect is seen in Figure 3.1(d). Stability is the total variation in

a measurement system on the same sample over an extended time period. This is highlighted

in Figure 3.1(e).

The following section 3.2.3 outlines techniques currently used to identify with statistical

confidence if any of these error types exist in a measurement system.

3.2.3 Measurement System Analysis (MSA) Techniques

3.2.3.1 Type I Gage Study

A type I gage study is a tool used to evaluate the repeatability and bias of a measurement

gauge. The version outlined in this section for discussion is detailed in Minitab Technical

Support Document [64], but a similar experimental method is described in AIAG [63]. It

achieves this by measuring a single reference sample repeatedly, with a single appraiser. This

analysis effectively focuses on the gage rather than the entire measurement system [64]. In

essence it is a check of the gage’s calibration. Facilities which use measurement gages and con-
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form to quality standards, such as BS EN ISO 9001:2008 [65] or ISO/IEC 17025:2005(E) [66],

need to regularly check gage calibration. A part of this process is evaluating repeatability

and bias, a specific example of calibrating weighing machines is given by [67].

A type I study assumes there is a reference sample with a known CtQ. This sample is

then measured repeatedly using the same measurement gauge and appraiser. It is typical

that in excess of twenty-five measurements are made to allow for the estimation of variance.

Once the repeat readings are taken, the measurement’s repeatability is represented using the

repeatability metric, Cg, which is calculated by:

Cg =
P
100 · (U − L)

nm · σm
, (3.1)

where, typically, the percentage of the CtQ tolerance, P = 20%; the number of standard

deviations, nm = 6; standard deviation of repeated measurements, σm; the difference between

U and L is the tolerance range. The measurement repeatability and bias are represented

together using the repeatability and bias metric, Cgk, by:

Cgk =
( P
100 · (U − L))− |X̄m −Xref |

nm

2 · σm
, (3.2)

where, the mean of all measurements, X̄m, and the reference value, Xref . For Cg and Cgk a

value of 1.333 or greater is required to pass this analysis. If there is a difference between the

Cg and Cgk this indicates that there is a constant bias in the measurement gauge.

This technique is able to identify bias and repeatability of a measurement system. How-

ever, it relies on the assumption that a reference sample is available, which in a low-volume

production environment is unlikely to be available. This is due to the high-variety and -value

of products made by a single process, making the maintenance of reference samples for each

product expensive and impractical. Therefore, the type I gage study is unlikely to be suitable

in low-volume production environment.

3.2.3.2 Stability Study

The measurement stability study is a tool used to identify variation in a measurement system

over long periods of time. A procedure to achieve this is documented in AIAG [63]. As in

the case of the type I gauge study, the stability study requires the availability of a single

reference sample or the retention of a production part. This reference sample or retained

part as then measured repeatedly on a periodic basis. For example, a reference sample might

be measured three times, once per day. Although the number of repeats and frequency of

testing can be adjusted to suit the operating conditions of the measurement system. The

results are then monitored on a X̄&R or X̄&s control chart1, to identify if a statistically

significant change has occurred in the measurement system over time.

1Control charting methodology is examined further in section 3.4.
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This technique clearly only identifies the stability component of measurement system

variation. It also suffers the same shortcomings as the type I gage study with respect to low-

volume production, that is it is unlikely for there to be reference samples or retain production

parts available for measurement.

3.2.3.3 Type II Gage Study or Gage Repeatability and Reproducibility (R&R)

The Gage R&R study is a tool typically used in Six Sigma to validate a measurement system.

It aims to statistically quantify the repeatability and reproducibility of a measurement system.

To achieve this, it is assumed that when products are measured repeatedly the test itself

does not damage the product. When these products are measured, the total variation, σ2
T ,

recorded is: the sum of the part-to-part variation, σ2
P and the measurement repeatability and

reproducibility variation, σ2
RR:

σ2
T = σ2

P + σ2
RR. (3.3)

In order to assess the magnitude of σ2
RR, a Gage R&R study is a measurement system analysis

tool commonly used. It is classically used at the measure phase within DMAIC to statistically

validate the repeatability variation, σ2
E , and reproducibility variation, σ2

A, of a measurement

system, therefore:

σ2
RR = σ2

E + σ2
A. (3.4)

The σ2
E variation is the difference between repeated measurements by the same appraiser. The

ability of an appraiser to provide consistent measurement data is important in the improve-

ment of any process. σ2
A variation is the difference between different appraisers measuring the

same CtQ under the same conditions [63]. The total Gage R&R variation is then expressed

as a percentage of σ2
T , as follows:

%σRR =

√

σ2
E + σ2

A
√

σ2
T

× 100. (3.5)

The precision-to-tolerance ratio, P/T , is expressed as a percentage of the total Gage R&R

variation against the design tolerance, U − L, as follows:

P/T =

√

σ2
E + σ2

A

U − L
× 100. (3.6)

In both equations (3.5) and (3.6), %σRR and P/T should be less than 10% for the measure-

ment system to be deemed adequate. If it is between 10% and 30% then it is considered

marginal and anything above 30% is inadequate [63].

Ideally both %σRR and P/T metrics should determine the measurement system to be

adequate. However, there are two circumstances where one of these metrics may deem the
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measurement system to be inadequate but it is still appropriate to continue the use of this

measurement system. The first case is where there is a small amount of part-to-part variation.

In this example the denominator of the equation (3.5) is minimised, which means the %σRR

can be greater than 10% but the P/T may still be under 10%. This situation shows that the

measurement system is able to detect large changes in the process with respect to the CtQ

tolerance. However, due to the extremely high capability of the process the measurement sys-

tem is unable to distinguish between parts that fall under the normal part-to-part variation.

The second case is where there is a large amount of part-to-part of variation and there is a

significant amount of σ2
RR. In this example the P/T can be greater than 30% but the %σRR is

less than 10%. For this situation it is still possible to use the current measurement system to

investigate process variation, but it would be desirable to obtain an improved measurement

system for ongoing process measurements.

There are many approaches to both the design of a Gage R&R experiment and the analysis

of its results. Gage R&R studies are usually performed with a balanced design, which means

all appraisers repeatedly measure all samples parts the same number of times [63]. Although

recent work by Stevens et al. [68] has found that unbalanced or augmented experiments can

have substantial gains in efficiency when compared to balanced standard plans that use a

similar number of measurements.

There is also a decision on whether to perform a fully-crossed or a nested Gage R&R

design. In a fully crossed design all appraisers measure all the sampled parts, whereas in

a nested design appraisers measure separate batches of parts. Although the nested design

provides an experiment plan when the opportunities to measure parts is limited, it does con-

found batch-to-batch product variation with appraiser-to-appraiser measurement variation.

It is therefore desirable to use a fully-crossed design where possible.

Traditionally, sixty measurements are used to obtain a Gage R&R. Following the guide-

lines by the AIAG [63], these measures should be taken over samples representing the full

range of product variation, and with at least two repeats by at least two appraisers. The

ability to expand a Gage R&R by increasing the number of repeat measurements, makes it

usable in a low volume production environment where samples are limited. However, the

method only assesses the repeatability and reproducibility of a measurement system. Addi-

tional experiments are required to assess other error types, such as linearity and bias.

3.2.3.4 Isoplot

An Isoplot is a tool associated with ‘establishing a measurement system’ in the Shainin

System. It provides a graph that is used to identify the scale of variation in a measurement

system relative to the variation in the process [32]. This is achieved by two appraisers

measuring the same CtQ on typically thirty products [32, 68]. As in Gage R&R methodology,

appraiser means an alternative measurement system; this can be either different operators

using the same measurement equipment or the same operator using different measurement
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equipments. The first fifteen products are measured by appraiser 1 first, then by appraiser

2. The second fifteen products are measured in the opposite order. From the results the

measurement system variation is displayed graphically against process variation, to see which

has the greatest effect. Figure 3.2 shows examples of Isoplot results seen when different error

types are present.

In Figure 3.2 the common format of an Isoplot is presented. This shows that the mea-

surements of a products CtQ from Appraiser 1 are plotted against the results from Appraiser

2. A 45◦ line is drawn from the origin to represent a perfect measurement system.

In Figure 3.2(a) all thirty measurements are on the same point on the 45◦ line. This

indicates that the measured CtQ on all thirty products is identical with no variation in the

measurement system.

In Figure 3.2(b) the thirty measurements are spread along the 45◦ line. This variation

along the 45◦ line indicates the variation between the measured CtQs of the thirty products.

The fact that these measurements are all on the 45◦ line shows that there is no variation in

the measurement system, i.e. there is no difference between Appraiser 1 and 2 measurements.

In Figure 3.2(c) the thirty measurements are spread both along and perpendicular to the

45◦ line. As in Figure 3.2(b), the variation along the 45◦ line indicates the variation between

the measured CtQs of the thirty products. However, the variation perpendicular to the 45◦

line shows there is variation in the measurement system, i.e. there is a difference between

Appraiser 1 and 2 measurements of the same CtQ. If the ratio between the variation sources

is such that the process variation is at least five times greater than the measurement variation,

the measurement system is said to be valid with 98% confidence [52].

In Figure 3.2(d) the thirty measurements are grouped parallel to the 45◦ line. This dis-

placement from the 45◦ line, means there is a bias between the two appraisers. An angle other

than the 45◦ indicates a proportional error meaning non-linearity in one of the appraisers.

In Figure 3.2(e) the results are split into two distinct groups either side of the 45◦ line.

This occurs when the measurement system itself has an effect on the results. For example, the

second test is always less than the first, due to the product being damaged by the measurement

system. This means that an Isoplot checks that a test is repeatable and non-destructive.

This section shows that an Isoplot can visually display measurement variation, bias and

linearity errors, as well as checking the repeatability. The issue with this test is that the dis-

played measurement variation is a confounding of the measurement systems repeatability and

reproducibility. This is fine if the measurement variation is small enough to validate the mea-

surement system. However, if there is excessive measurement variation, further investigations

are required to determine if this is a repeatability or reproducibility error.

3.2.4 Summary

In this section the five types of measurement system error were observed. Measurement

system analysis techniques that are currently in use in industry and in the literature were
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reviewed. Their ability to detect types of measurement system error was identified and their

ability to be applied in a low-volume environment was assessed. In the next section, analysis

techniques are reviewed to identify methods that can progress a hybrid Six Sigma project

through the analyse phase in a low-volume production environment.

3.3 Analyse

3.3.1 Introduction

In the analyse stage of a Six Sigma project, the process is analysed to determine its current

performance and identify causes of variation in a process. This is achieved in three phases

of investigation, as highlighted in Figure 2.3. These phases are Establish Product Capability,

Define Performance Objectives and Identify Variation Sources. The first phase, Establish

Product Capability, is achieved through a series of statistical experiments known as process

capability studies, these will be reviewed in section 3.3.2. The second phase, Define Perfor-

mance Objectives is not reviewed in this thesis, as it is a function driven by design objectives

that production has to match. The third phase, Identify Variation Sources, is achieved in

classic Six Sigma through a series of subjective analysis and classical statistical tests. How-

ever, within the hybrid Six Sigma’s methodology this phase is reinforced with the Shainin Y

to X approach to experimentation and the associated tools. Therefore the tools associated

with the hybrid Six Sigma Identify Variation Sources, contains techniques from both classic

Six Sigma and the Shainin System, which is discussed in section 3.3.3.

3.3.2 Establishing Product Capability

3.3.2.1 Process Capability Indices

The statistical tool that is used in Six Sigma projects to establish product capability is the

process capability index. A survey study of companies using process capability indices was

performed by Deleryd [69]. It was found that the main advantage of using these metrics was

they provide an increased knowledge of the process and enabled fact-based decisions to be

made about the progression of improvement projects. This study also found that companies

believe the methods of the resource consuming and involving some difficult theory, which

acted as a barrier to implementation. This perception of a method being resource consuming

is a particular barrier to it being used in a low-volume manufacturing context.

Although there are few different process capability indices, in practice there are two which

are most commonly used. These are process capability precision metric, Cp, and process

capability precision and accuracy metric, Cpk. This section will review these two techniques

further and examine how they can be applied in a low-volume context.



Chapter 3. Literature Review II - Process Improvement Tools 30

3.3.2.2 Process Capability Index, Cp

To assess the total variation in a process as a ratio against CtQ tolerance, it is typical to

use Cp. In order to calculate this metric, it is usual to collect and measure the CtQ of

fifty consecutive products from a process. Then the process standard deviation, σ, of these

measurements is used to calculate Cp as follows:

Cp =
U − L

6σ
. (3.7)

The 6σ term has been used historically, because this represent 99.7% of the process

population. This index can only be used when a CtQ has a bilateral tolerance specified, i.e.

both U and L are specified.

3.3.2.3 Process Capability Index, Cpk

To assess the total variation in a process as a ratio against CtQ tolerance and mean deviation

from design target, it is typical to use Cpk. In order to calculate this metric, it is usual to

collect and measure the CtQ of fifty consecutive products from a process. Then the process

mean, µ, and σ of these measurements is used to calculate Cpk as follows:

Cpk = min

[

U − µ

3σ
,
µ− L

3σ

]

. (3.8)

It is also common to use this index when a CtQ has a unilateral tolerance specified, i.e.

only one of U or L is specified.

3.3.2.4 Mini-Capability

It has been outlined in the descriptions of Cp and Cpk that fifty consecutive products are

collected to establish the process capability. Deleryd [69] identified that companies found

this resource consuming. This is a further issue in a low-volume manufacturing environment,

where a production run of fifty units would be considered large. A solution to this is the

application of mini-capability studies [10]. A mini-capability study calculates the Cp and Cpk

indices using a sample size as small as ten products.

This method provides a useful approach to capture a snapshot of current performance

and act as a baseline for an ongoing process improvement project. However, it would not be

recommended to use this mini-capability as the basis of SPC monitoring2.

3.3.3 Identifying Variation Sources

3.3.3.1 Root Cause Analysis Approach

It is common for traditional Six Sigma to use a root cause analysis approach for the identifi-

cation of variation sources. This typically involves, reviewing process data, developing causal

2Control charting methodology is examined further in section 3.4.
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Figure 3.3: Reproduction of the root cause analysis cycle [24].

hypotheses and then performing statistical analysis to validate his hypotheses. An example

of this approach is shown in figure 3.3.

The first stage of the root cause analysis cycle, shown in figure 3.3 (a), is to analyse

data/process. This data is usually historical data collected on an ongoing basis, it is then

reviewed using techniques such as scatter plots to correlate variations in the output with

variations in the inputs. There is a risk with scatter plots, that correlations appear as a

result of coincidence, or an unidentified factor [27]. This risk potentially leads to erroneous

results. There is also the potential to simply miss a root cause from the analysis, if the

correct data is not available. The scatter plot analysis also requires large datasets to provide

confidence in the results, which may not be available in a low-volume situation. At the

same time, the process is reviewed using Ishikawa diagram, cause-and-effect matrices and

brainstorming [27, 39, 70]. These techniques aim to identify input variables that affect the

output variable, however, they are highly subjective and reliant on expert opinion. To that

end, these techniques are considered at best to be ‘educated guesses’ [24] and at worst just a

guess!

The purpose of these analyses is to generate ‘causal hypotheses’ in the search for the root

causes of variation. Once a small number of hypotheses have been developed, or potential root

causes identified, further more rigourous statistical experimentation takes place to confirm

or reject these hypotheses. The types of statistical experimentation classically used at this

stage range from basic regression analysis and t-tests to more elaborate experiments such

as ANalysis Of VAriance (ANOVA) and DoE. However, these techniques can be difficult

to apply in low-volume situations, particularly if there are a large number of potential root

causes incorporated in a hypothesis. For example, if there were five potential root causes and

a full factorial DoE was applied there would be a minimum of 25 = 32 experiments needed. In

a low-volume environment there is limited opportunity to perform these experiments. This

high number of forced experiments would difficult to achieve in a low-volume production
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enviroment. If it was achievable logistically, the products are of a high-value which may

make the cost of sampling prohibited. Using less powerful screening techniques such as

fractional factorials [48], reduces the numbers of experiments needed (as all combinations of

experimental factors are not run) but at the expense of understanding higher order interaction

effects [10]. However, the number of experiments required can still spiral out of control if there

are multiple factors present. It has been noted that in a low volume manufacturing process,

quality practitioners are increasingly leaning towards the use of subjective approaches to

avoid the practical limitations of these types statistical analysis [1].

3.3.3.2 Y to X Approach

In the hybrid Six Sigma approach, describes in section 2.4 and employed in this thesis, a Y to

X approach to identifying variation sources is used. This approach is deployed by integrating

the Shainin System clue generation phase into the Identify Variation Sources. The principal

technique of the Shainin System clue generation phase is the Multi-Vari chart [32, 51, 52].

A Multi-Vari chart is a stratified experiment which identifies the signature of variation. The

three strata of the study are within-piece, piece-to-piece or time-to-time variation. After a

Multi-Vari chart is complete, each variation type is categorised as either the Red X, dominant

variation; Pink X, secondary variation; or Pale Pink X, tertiary variation. Based on the Pareto

principle of a vital few causes accounting for the majority of a problem, the study focuses

the subsequent actions in an improvement project on eliminating the Red X variation.

To assess time-to-time variation, samples are collected from a minimum of five time peri-

ods which cover 80% of historical variation [52]. These time periods can be over chronolog-

ical time periods such as hours, days or weeks; across operator shift periods; or production

batches. Piece-to-piece variation is captured by collecting a minimum of three consecutive

samples at each sampling time. Then, within-piece variation is accessed by measuring each

sample repeatedly, at least three times. If the CtQ is a dimension, the repeated measures

should be in different locations. For example the diameter of a shaft can be measured in dif-

ferent orientations to check ovality. If the CtQ is a property, for example electrical resistance,

only one location can be measured.

Recent examples of its practical implementation, are given in Shanmugam and Kalaichel-

van [54], Doganaksoy and Hahn [71] and Zaciewski and Németh [72]. The use of Multi-Vari

charts within a Six Sigma framework to assist the analyse phase is illustrated in Goh [73]

and Snee [18], for recent case studies see Cox et al. [74]. In either context, it allows a

practitioner to narrow down to a few potential root causes of variation objectively [75, 76].
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3.4 Control

3.4.1 Introduction

Process control procedures are decision algorithms used by process operators to signal when to

adjust control parameters. These adjustments arise when it is deemed that there is either too

much variation in the current production run or the process is off-target with respect to design

features tolerances. In a Six Sigma project, process control procedures are implemented in

the control phase to maintain a processes optimised performance. Six Sigma typically uses

a statistical approach to process control known as Statistical Process Control (SPC), which

was originally conceived by Walter A. Shewhart [77].

SPC is a collection of techniques that commonly use control charts to compare a processes

current capability against its in-control capability. First, the stable variation, or common

cause variation, in a process is established. The process is then regularly monitored to identify

when either: µ has deviated significantly from T , or when σ has increased significantly.

Therefore, SPC techniques detect when significant changes in the Cpk of a CtQ. If a change

is detected, a quality improvement initiative is implemented to determine the assignable cause

of the change.

Historically, this approach has been successful at monitoring high-volume discrete man-

ufacturing processes. However, control methods for low-volume processes is a current con-

cern [78]. As identified in chapter 1, these processes are highly capable over a small production

run and the dominant source of variation is between batches. This is defined as a set-up dom-

inant process [10]. In this environment, it is not possible to sample enough consecutive units

to determine statistical control limits for the process. This has resulted in operators taking

a subjective approach to controlling a process.

A further complication is the increasing complexity of products being manufactured. For

example, if a product has thirty CtQ features, there is a need to produce thirty separate

control charts to monitor each feature. This can become unmanageable for a process op-

erator. Monitoring each individual CtQ independently is known as univariate SPC. There

are techniques to monitor all CtQs on a single chart this is known as multivariate SPC.

Therefore, this section of the literature review details the current approaches for low-volume

process control currently used in industry, identifies approaches available in the literature

and identifies the gaps in knowledge.

3.4.2 Industry Practice

In industries that operate low-volume discrete manufacturing processes, it is common to see

process control procedures which are based on rule of thumb methods. A rule of thumb

method can only loosely be described as SPC procedure, due to their extremely subjective

approach which has a heavy reliance on operator experience and skill. Although it attempts

to detect when a process is off-target to minimising process adjustments; it does this without
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a rigourous statistical framework. However, for set-up dominant processes, of either the

univariate or multivariate case, these procedures are commonly used due to simplicity of

implementation. This follows the trend of low-volume operations employing a subjective

approach to quality improvement [1].

Two rule of thumb methods identified in use are 100% inspection and first-offs [79]. To

apply First Off’s, the first unit produced has its CtQ measured. The process is then adjusted

towards T of the CtQ tolerance; production is then allowed to continue. However, little

statistically valid information can be gained from the measurement of one unit alone 100%

Inspection is where all units are measured as they are produced. The process is then adjusted

either after every unit measured off-target, or after every unit measured out of tolerance. This

results in operators either “hunting” for the tolerance centre, or, even worse, allowing defects

to occur. In either case, little statistical thought or method is applied to the data captured.

These problems with rule of thumb methods were observed by Carter and Butler [80]. This

case-study of precision turned components, reported that control of small batch production

had ‘a heavy reliance on the operators experience’. Instances of variability in a process being

induced by the operators making unnecessary changes, were reported.

3.4.3 Univariate Process Control

The first Statistical Process Control (SPC) methods were introduced by W.A. Shewhart

whilst working at the Bell Telephone Laboratories, Inc. during 1920’s and 1930’s [81, 82].

These have been popularised in high-volume manufacture today through quality standards,

such as ISO/TS 16949:2009 [83] and BS EN ISO 9001:2008 [65].

Shewhart SPC based methods are a parametric approach, which means distributional

assumptions are made about the process. Its operation is classically in two phases. In phase

I, the ‘common cause’ variation is quantified. This is the variation that is ever present and

uneconomical to remove. After the process is running, phase II identifies when ‘assignable

cause’ variation occurs. This type of variation is a result of changes to the process causing

drift in process mean or excessive spread of variation.

A common univariate Shewhart SPC approach for a variable measure is the Mean and

Range Chart (X̄&R Chart) (for examples see [84, 85]). This is obtained by plotting on a

chart, the estimated subgroup mean, X̄, and the subgroup range, R, against capability based

control limits. To calculate X̄ and R, the measured CtQ value, x, of each part in the subgroup

of sample size n is measured and therefore:

X̄ =

n
∑

i=1
Xi

n
. (3.9)

R = max(Xi)−min(Xi). (3.10)

To calculate control limits, in phase I of the procedure twenty-five subgroups of four or
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five units each are typically collected. The mean of the subgroup means, ¯̄X, is computed

using X̄ of the number of subgroups, m, by:

¯̄X =

m
∑

j=1
X̄j

m
, (3.11)

and mean of the subgroup ranges, R̄, is calculated using R of m by:

R̄ =

m
∑

j=1
Rj

m
. (3.12)

This enables control limits to be obtained from:

UCLR = D4R̄,

LCLR = D3R̄. (3.13)

UCLX̄ = ¯̄X +A2R̄,

LCLX̄ = ¯̄X −A2R̄. (3.14)

Where, the upper and lower control limits are UCL and LCL (with subscripts X̄ and R

denoting control limits for a mean or range chart respectively). D3, D4 and A2 are statistical

constants, which allow the estimation of 3σ from the mean subgroup range and can be found

in statistical texts[84, 86].

Then while a process is being monitored in phase II, if X̄ and R fall within their respective

control limits, the process is said to be ‘in-control’. If X̄ or R all outside their respective

control limits, the process is said to be ‘out-of-control’. Whereby, X̄ falling outside its control

limits indicates there is a significant statistical change in the process mean and R falling

outside its control limits indicates a statistically significant change in the process variation.

An example X̄&R Chart is shown in Figure 3.4.

However, the application of SPC for set-up dominant processes is problematic [87]. Due

to the low-volumes of parts produced, quantifying the common cause variation in phase I

is impossible. Production of a small batch would have long been finished before twenty-five

subgroups of four or five sample parts were made. Hence, not enough samples are available

to acquire an estimate of this common cause variation.

Methods have been introduced which operate on the principle ‘study the process, not the

product’ [88]. The Difference Control Chart (δ-Control Chart), plots the results of different

product batches on the same chart, by measuring the deviation from their target [89–92].

Hence, a difference between µ and T , δ-statistic, is charted instead of X̄, but the two are

related by:
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Figure 3.4: An example X̄&R chart.
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δ = X̄ − T (3.15)

However, there is still a requirement for a long start-up phase; making it unsuitable for

set-up dominant processes. The t-chart is a modification of the δ-chart approach, which is

self-starting and eliminates the need for a start-up phase [93]. Although twenty five subgroups

are not required to set control limits, the t-chart still collects data in subgroups. In small

production runs, this could be near, or at the end of a run, meaning that set-up dominance

is overlooked.

Attempts to optimise this have been made with the introduction of computer-aided

SPC [94, 95]. This aims at scheduling the order of batches, so that similar products are

manufactured in series, thus reducing the extent of set-up changes between batches. How-

ever, in a dynamic manufacturing environment where orders occur at short notice, this level

of planning to support SPC implementation is not practical. The concept of self-starting

SPC is also applied in the Q-chart [96].

An alternative form of SPC, is the Small-Batch X̄R Chart (SBX̄R), which uses a five unit

decision procedure [79]. This is similar to the Statistical Setup Adjustment technique [87].

Traditional X̄&R methods wait for a subgroup of four or five units before a decision is made

on the process capability. However, SBX̄R avoids waiting for a subgroup of five units by

recalculating the statistical control limits of X̄ and R charts as the subgroup size increases

from one to five units. Therefore, a process can be re-centred after one unit or too much

process variation is detected after two units, overcoming the problem of waiting for a subgroup

of five to indicate an issue. The recalculation of the statistical control limits is achieved by

first estimating R̄n, using historical standard deviation, σ, as follows:

R̄n = d2 · σ, (3.16)

where d2 is a tabulated statistical constant, which can be found in statistical texts [84–86].

The value of d2 is dependant on the sample size n and is determined for sample sizes of

n = 2, 3, 4, 5, because the control limit changes as the subgroup size grows. In an R-chart for

SBX̄R, the upper control limit, UCLR, is calculated using the results from Equation (3.16),

as follows:

UCLR,n = D4R̄n, (3.17)

where D4 is another statistical constant which depends on the sample size n. Finally, the

X̄-charts upper and lower control limits, UCLX̄ and LCLX̄ respectively, are calculated for

sample sizes of n = 1, 2, 3, 4, 5, using σ and the estimated process mean, X̄n, as follows:
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Figure 3.5: An example Small-Batch X̄ and R chart.

LCLX̄,n = X̄n − 3
σ√
n
. (3.18)

UCLX̄,n = X̄n + 3
σ√
n
. (3.19)

An example SBX̄R chart is shown in Figure 3.5. This figure demonstrates the charac-

teristic narrowing of control limits on the mean (or X̄) chart and widening of control limits

on the range (or R) chart. The means and ranges of the progressively bigger subgroup size

are plotted with points. In this example all sample means and ranges fall within the control

limits. A significant disadvantage with this method, is the necessity to estimate the standard

deviation of the process based on subjective assumptions, engineering knowledge, or possibly

scarce surrogate/historical process data. Also, the need for constant recalculation of statisti-
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cal control limits has the potential for error when applied by operators with little background

in statistics.

An alternative to the previously described parametric forms of SPC, is to take a non-

parametric approach. Non-parametric forms of process control make no distributional as-

sumptions about the process. Instead, they base control limits around design targets and

tolerances. They use sequential sampling and decision rules derived from probability theory,

to ensure that a process is performing to a minimum standard.

Set-Up Verification [97], or Acceptance Control Charting (ACC) [86, 98], is a univariate

technique which bases its control limits on the design target, T . Acceptance control limits are

drawn as a fixed deviation from the nominal based on an estimate of the minimum process

standard deviation σ, obtained from a sample of size n and using the statistical constant, Zα.

Zα is derived using a predefined acceptable risk of false fail level, αq-risk and using 1 − αq

as the confidence level from a standardised normal table, see [86]. If any sample mean above

the upper or below the lower acceptance control limit is observed, a process is deemed as

non-acceptable. As with SPC approaches, the ACC method, as described in [98], is slow to

respond to off-target processes as it depends on the collection of a subgroup of samples. In

the example where n = 5, five out-of-specification products could be manufactured before a

change to the process is made.

A different, non-parametric approach to control for a set-up dominant process, is stage

1 validation of PRE-Control (PC) [10, 52, 84, 99–106]. Unlike classic approaches to SPC,

PC makes no assumption of the underlying distribution of a process. Instead, its objective

is defect prevention using a simple algorithm to ensure with 2% αq-risk any validated set-up

has a minimum Cpk = 1.333 [52].

PC uses a traffic light system to divide the design tolerance of a measured CtQ design

feature. The central region covering 50% of the design tolerance is designated as the Green

Zone. The regions covering 25% of the tolerance, between the Green Zone and the design

tolerance limits are the Yellow Zones. The regions outside the tolerance limits are the Red

Zones.

Sampled parts have their CtQ categorized as Green, Yellow or Red. A Red sampled part

signals that the process is off-target and an action should be taken to stop and adjust it. Two

consecutive Yellow parts from the same Yellow Zone signal that the process is off-target, and

an action should be taken to stop and adjust it. Two consecutive Yellow parts from opposite

Yellow Zones signal the process dispersion is too great and an action should be taken to stop

and investigate the root cause of variation. Five consecutive Green parts demonstrate the

process is capable and it’s allowed to continue.

PC’s use of sequential sampling and control limits based on specification rather than

process performance has many critics, e.g. [107–109]. These critics point out that PC is

inferior to SPC as it has a constant risk of unjustifiably tampering with a process, thus,

increasing variability. Using only five measurements to validate a set-up is insufficient and
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PC has an inability to determine statistical control of a process. These points are countered

by [104, 110], arguing that for PC five measurements are adequate given the different purposes

of PC and SPC; waiting for twenty five subgroups to validate a set-up has the potential to

allow many defects as it is difficult to determine statistical control of a process, even with

SPC, due to the dynamic nature of manufacturing variation. However, a balance review of the

method points out situations were PC has merit [99]. One example is machining operations,

were an operator is able to change a process setting that directly affects the output CtQ

being monitored. In this case, it is normally less expensive to make an adjustment than to

produce a defect and it is this situation that operators of set-up dominant processes typically

face.

A full derivation of probability of qualifying a process using a generalised form of PC is

given by San Matias et al. [102]. In this analysis it is shown that three factors affect the

probability of qualifying (P (q)). They are the number of yellow units to signal an issue (t),

the number of green units to qualify a valid process (k) and the width of the green region

(GU −GL). The width of the green region directly affects the probability of a yellow (P (y))

or a green (P (g)) unit occurring. These probabilities, along with the number of yellow units

to signal an issue and the number of green units to qualify a valid process can be used to

calculate the probability of qualifying a process, as follows:

P (q) = P (g)k ·
∑t−1

h=0 P (y)h

1−∑t−1
h=1 P (y)h ·∑k−1

m=1 P (g)m
. (3.20)

Using this equation, a traffic-light control chart can be developed to suit specific needs.

For example, if a chart was to be developed that maintained the rules of Pre-Control, i.e.

t = 2, k = 5 and P (q) = 0.98, the equation would need to be balanced by adjusting P (y)

and P (g). To achieve the correct adjustment of P (y) and P (g), the minimum capability

the process is required to conform to is selected to determine the width of the green region.

Using the Pre-Control example, the process is required to have a minimum Cp > 1.333 with an

assumed gaussian distribution. Therefore, the minimum standard deviation, σ, is calculated

by:

σ =
U − L

6Cp
. (3.21)

Using this value of σ, P (g) and P (y) is calculated as follows:

P (g) = Φ

(

GU − T

σ

)

− Φ

(

GL − T

σ

)

, (3.22)

P (y) =

[

Φ

(

U − T

σ

)

− Φ

(

GU − T

σ

)]

+

[

Φ

(

GL − T

σ

)

− Φ

(

L− T

σ

)]

. (3.23)

The Pre-Control green boundary of 50% of the design tolerance, is derived by balancing

equations 3.20-3.23 with t = 2, k = 5, P (q) = 0.98 and a minimum Cp > 1.333. This confirms

the result for P (q) in [52].
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A significant issue with PC, is that as the variance in a process reduces a greater per-

centage of off-target processes are qualified. In fact as the Cp of a process approaches 2.33,

more than 98% of product will qualify stage 1 validation, even if the process mean is two

standard deviations off-target, as it’s Cpk will be equal to 1.33. As the accuracy of preci-

sion processes increases, maintaining a Cpk of 1.33 is no longer adequate to keep the process

on target. Therefore, by defining parameters of GU , GL, t, k, P (q) and a minimum Cp,

new Pre-Control variants are derived. San Mat́ıas and Giner-Bosch [111] suggests optimising

these parameters for different Pre-Control applications using a Mixed-Integer Nonlinear Pro-

gramming (MINLP) approach. Giner-Boscha and San Mat́ıas [112] takes this work further,

producing optimised control plans based on defining one criteria of performance.

3.4.4 Multivariate Process Control

The SPC methods presented so far are all univariate approaches. When a set-up dominant

process is multivariate, i.e. a process that is making a part with multiple CtQs, univariate ap-

proaches become inadequate [113]. Classic multivariate SPC approaches, such as Hotelling’s

T 2-test, [114], suffer the same issues as univariate SPC. For example multivariate SPC still

needs a start-up period to estimate the process variation. Subgroups of data need to be

collected before actions are taken and there is a potential need for constant recalculation

of control limits. Further, classic multivariate SPC approaches are generally underpinned

by the assumption of multivariate normal distribution which, in the context of a dynamic

manufacturing environment, may not be valid [113].

A further problem is extrapolating a non-parametric method for the multivariate case. It

is common for operators to apply a univariate PC chart on each design feature of a multivari-

ate process, which can be time consuming to chart and analyse results. Attempts to define

‘multivariate PC’ are presented in [115, 116]. However, these are multivariate versions of

stop-light control as they define there zones based on estimated process performance, which

requires an assumption of normality and an estimate of variation based on a start-up period

or historical data. Therefore, the method is not truly non-parametric.

3.4.5 Re-Centring a Process

A further issue in the multivariate case, is what size control adjustment is needed if the process

is off-target? It is common for a part with, for example, thirty CtQs to be manufactured

in a machining centre that has five axis and therefore only five offsets that can be adjusted.

In this case, a single offset adjustment has an effect on multiple CtQ features. This lack

of independence between a control feature adjustment and the re-centring of a CtQ, this

adjustment procedure is, therefore, a skilled task heavily on operator experience.

How an operator changes control parameters after a off-target signal, is a topic that has

had little attention compared to the quantity of research into process control procedures. In

the univariate case, the scale and direction of a control parameter change is usually clear. In
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the multivariate case it is a complex decision, as a change to one control parameter effects

multiple design features. However, it is still typical that process operators are left to make

this decision.

It is possible to use feedback controllers to derive parameter adjustments. The integration

of process control and feedback control has been identified as leading to further practical

improvement in quality [22]. This use of discrete process control tools and continuous feedback

controllers has been used in various forms and generalised as Run-to-Run (RtR) [117–119].

However, its typical implementation is in batch processes, where the same product is made in

continuous batches, such as semiconductor manufacture [120] and chemical industries [121].

These RtR schemes rely on exponentially-weighted moving average SPC charts to identify

when a process has changed and no longer on-target. This triggers the use of feedback

controllers to prescribe a control action before the next batch of product is started. Although

these implementations do not fit with the set-up dominant situation, the philosophy of using

process control charts to identify when a process is off-target then feedback controllers to

prescribe a control action has potential. Particularly, when a process is multivariate and

there are correlations between a single control parameter and multiple design features, using

feedback controllers over operator led control actions would increase the consistency of the

adjustments made.

3.4.6 Summary

This section has shown that there is still a need to develop process control procedures to

assist operators of low-volume manufacturing processes. In the univariate case, further de-

velopment is needed to produce a methodology that can be used consistently across a shop

floor on multiple low-volume processes, that can be adjusted to maintain different standards

of minimum Cp. In the multivariate case, a methodology is required that can monitor all

features on one chart, but provides information to the operator that is easy to digestive.

Further work is needed, in the multivariate case, to provide a mechanism of feedback that

will assist an operator to make changes to control parameters. Chapters 5-7 address these

problems.

3.5 Summary

In this chapter, process improvement tools that supplement projects using the hybrid Six

Sigma process improvement methodology were reviewed. The focus of this review was on

tools that allowed completion of the Measure, Analyse and Control stages of the DMAIC

cycle. Also included in this review are tools from the Shainin System, that are less well used

in traditional Six Sigma, but have great potential to support the application of the DMAIC

cycle to low-volume processes. The results of this review identified process improvement tools

that are currently state-of-the-art, distinguishing between those that provide an objective
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approach to analysis and those that provide a subjective approach to analysis, and finally

indicating their suitability for application in low-volume processes.
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4.1 Introduction

As discrete manufacturing operations move from high-volume to low-volume production runs,

there is a tendency to use subjective analysis to resolve quality problems [1]. In this thesis

a low-volume production run is treated as one that produces between 5-1,000 units. A new

concise process improvement sampling methodology, known as PROVADT, was proposed

by Cox et al. [122]. The PROVADT method was designed to increase the objectivity of Six

Sigma projects in low-volume manufacture by following the hybrid Six Sigma DMAIC cycle

described in chapter 2. This was achieved by sampling from a process, following a set structure

that enabled the application of the required statistical metrics from Six Sigmas measure and

analyse phases. The PROVADT sampling structure devised by Cox et al. [74, 122], also,

allowed the graphical analysis tools from the Shainin System to be used.

PROVADT typically requires the sampling of twenty products each measured three times

in a specific sequence. To those sixty results, four improvement tools can be applied: a

Multi-Vari chart and an Isoplot from the Shainin system [31, 32, 52]; a Gage R&R analysis

and a provisional process capability study from Six Sigma [24, 27, 37]. Compiling the statis-

44
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tical sampling requirements for these techniques into one set of samples and measurements,

shortens the analyse phase.

An issue, highlighted in [74, 122], with PROVADT is that it is unable to distinguish

between measurement and product variation in the presence of a poor Gage R&R result.

In this chapter PROVADT’s sampling structure is improved and the issue is addressed by

enabling a true Gage R&R as part of its design.

This chapter is structured to provide: an outline of where PROVADT fits in a quality

improvement initiative and the tools it implements to achieve this in section 4.2; the sam-

pling constraints required by PROVADT to perform statistically valid analysis are defined in

section 4.3; an enhanced approach is suggested in section 4.4 addressing the poor Gage R&R

issue of the original PROVADT proposed in Cox et al. [74, 122]; in section 4.5 a worked exam-

ple is provided which directly compares the original and enhanced approaches; two industrial

case studies of PROVADT’s implementation are detailed in section 4.6; and conclusions are

drawn in section 4.7.

4.2 PROVADT Tools

The PROVADT methodology enables a user to move a Six Sigma improvement project from

its measure through its analyse phase with a single sampling strategy [74, 122]. This is

achieved by utilising principles from the Shainin System. PROVADTs integration of elements

and tools from both is shown in Figure 4.1.

PROVADT achieves its analysis by using four process improvement tools: Multi-Vari

Chart, Isoplot, Gage R&R and Process Capability Study.

The Multi-Vari chart is the principal technique for clue generation in the Shainin Sys-

tem [32, 51, 52]. Recent examples of its practical implementation, are given in Shanmugam

and Kalaichelvan [54], Doganaksoy and Hahn [71], Zaciewski and Németh [72]. The use of

Multi-Vari charts within a Six Sigma framework to assist the analyse phase is illustrated

in [18, 73]; for recent case studies see [74, 122]. In either context, it allows a practitioner to

narrow down to a few potential root causes of variation objectively by means of a stratified

experiment which identifies the signature of variation [75, 76].

Isoplots are graphs that are used to identify the scale of variation in a measurement system

relative to the variation in the process [32]. This is achieved by two appraisers measuring the

same CtQ on typically thirty products. From the results, the measurement system variation

is displayed graphically against process variation to see which has the greatest effect.

Gage R&R is a measurement system analysis tool. It is classically used at the measure

phase within DMAIC to statistically validate the consistency and stability of the measure-

ment system. σ2
E is the variation caused by the measuring equipment. The ability of a

measuring device to provide consistent measurement data is important in the improvement

of any process. σ2
A is variation caused by the appraisers, which requires measurement read-

ings to be acquired by different appraisers under the same conditions to be assessed [63]. The
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total Gage R&R variation, which is the sum of σ2
E and σ2

A, is then expressed as a percentage

of design tolerance. This should be less than 10% to be deemed an adequate measurement

system. If it is between 10% and 30% then it is considered marginal and anything above 30%

is inadequate [63].

Process capability indices are used to express numerically a processs ability to produce

CtQs within their specified tolerances. Two common indices are Cp, which represents the

process precision, and Cpk, which reflects the process accuracy and precision. A value of

Cp greater than 1.33 identifies most processes as capable of working within the required

tolerance.

4.3 Sampling Constraints

In order to maintain the statistical significance of the four tools used, PROVADTs sampling

strategy must uphold the following strict sampling constraints:

• The number of time periods, α, to sample from should be five or greater and there

should be at least three number of consecutive samples, β, in each sample period, to

formulate a Multi-Vari study, see section 3.3. Hence, α > 5 and β > 3.

• Then n is defined as:

n = αβ, (4.1)

and n must be greater than 10 to produce a provisional process capability, see section

3.3, but ideally at least 20 to produce an initial set of Isoplots. Therefore, n > 20.

• The total number of measurements (rtotal) taken is dependent on three factors: the

number of locations to be measured; the number of appraisers to take measurements in

each location; and the number of repeat measurements each operator makes in each lo-

cation. Therefore, r
(1)
i expresses the number of repeat measurements taken by appraiser

i in location 1. If ε1 is defined as the total number of appraisers taking measurements

in location 1, the total number of measurements taken at location 1 is
∑ε1

i=1 r
(1)
i . This

is then extended to a second measurement location to calculate rtotal, as follows:

rtotal =

ε1
∑

i=1

r
(1)
i +

ε2
∑

j=1

r
(2)
j . (4.2)

As a minimum, ε1 > 2 appraisers and ε2 > 1 appraiser, hence, rtotal = ε1 + ε2.
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• The number of total measurements (ϕ) is defined as:

ϕ = nrtotal (4.3)

To complete a Gage R&R study [63], ϕ > 60.

From these constraints the minimum sampling requirements for PROVADT are:

• α = 5 time periods.

• β = 4 consecutive parts.

• n = 20 total samples.

• ε1 = 2 and ε2 = 1, i.e. two appraisers, with r
(1)
1 = 1, r

(1)
2 = 1 and r

(2)
1 = 1 measure-

ments.

• rtotal = 3 repeats.

• ϕ = 60 measurements.

The order the appraisers measure in, is swapped after the first 10 products. From this

arrangement all four tests (Multi-Vari, Isoplot, Gage R&R and Process Capability) can be

performed.

An important issue in PROVADT following the sampling strategy outlined is the possi-

bility of lacking a sufficient Gage R&R, since it only quantifies variation in the measurement

system confounded by variation between locations measured within a products CtQ. A

Gage R&R which follows industry guidelines, see AIAG [63], only measures a product in one

location. This is due to its focus on determining only measurement variation. Hence, the σ2
E

in a true Gage R&R is given by:

σE =
6R̄E

d∗2
(4.4)

where, R̄E is where the average range between repeat measurements and d∗2 is Hartleys

statistical constant, values can be found in [86]. Hartley’s constant is used to approximate a

populations standard deviation given the sample size (n) of a subgroup. However, PROVADT

is a diagnostic tool and therefore aims at capturing all variation sources. This results in a

Gage R&R where repeated measurements are taken at different locations on a CtQ. It also

confounds measurement and product variation, in which case Equation (4.4) becomes:

√

σ2
E + σ2

P =
6R̄P

d∗2
(4.5)

where σ2
P is the product-within-piece variation and R̄P is the average range between

repeat measurements at different locations. A low Gage R&R score shows there is little

measurement or product variation. However, a high Gage R&R does not clearly identify if
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this is truly a result of a poor measurement system. This conflicts with traditional Gage R&R

assessment approaches and provides the motivation for an enhanced PROVADT method that

eliminates this problem.

4.4 Enhanced PROVADT

A new method has been developed based on the original PROVADT constraints. Extra

constraints must be added to ensure a true Gage RR is obtained, as well as quantifying

product-within-piece (σ2
P ) variation.

In the original PROVADT repeated measurements at the same location would result in

a true Gage R&R, but would not capture the effect of σ2
P . If repeated readings are taken,

in the same experiment, at different locations and by the same appraiser that took repeat

readings for the Gage R&R, it is possible to show how σ2
P can be assessed analytically by

subtracting Equation (4.4) from Equation (4.5), i.e.:

σP =
√

(σ2
E + σ2

P )− σ2
E =

√

(
6R̄P

d∗2
)2 − (

6R̄E

d∗2
)2. (4.6)

Following this approach separates measurement, σ2
E, and product-within-piece, σ2

P , vari-

ation. However, to perform this calculation separate estimates of R̄E and R̄P need to be

made. Hence, two additional sampling constraints are introduced to capture these estimates:

A The minimum repeated measurements in one location are
∑ε1

i=1 r
(1)
i > 3 with ε1 > 2 and

r
(1)
1 > 2. Repeating measurements by multiple operators in one location is critical to

estimate R̄E , enabling the calculation of a true Gage R&R.

B Additional measurements on at least m > 10 products to be made by a minimum of one

appraiser in two new locations, such that ε2 > 1 and ε3 > 1. A minimum of three

measurement locations is critical to obtaining an estimate of R̄P . Therefore, the total

measurements made by enhanced PROVADT, ϕEn, are:

ϕEn = n

ε1
∑

i=1

r
(1)
i +m





ε2
∑

j=1

r
(2)
j +

ε3
∑

k=1

r
(3)
k + · · ·



 . (4.7)

These additional constraints allow for the definition of a minimum sampling strategy

for enhanced PROVADT. For example, if products are sampled from a process, n > 20

must be maintained to perform a basic Isoplot. If this sample size is minimised to n = 20

products, then this impacts the number of time periods, α, to sample from and the number

of consecutive products to sample from each time period, β, such that αβ = 20. To perform

a Multi-Vari chart the time periods are minimised to α = 5, resulting in β = 4.

To fulfil the new constraint A for enhanced PROVADT, these 20 products must be mea-

sured in one location by a minimum of two appraisers, ε1 = 2. One of these appraisers needs
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to repeat these measurements so that r
(1)
1 = 2 and r

(1)
2 = 1, hence,

∑2
i=1 r

(1)
i = 3. This set of

measurements results in a true Gage R&R, by first calculating R̄E of appraiser 1 in location

1. To find this, the absolute difference between appraiser 1 measurements in location 1 is

averaged:

R̄E =

∑20
a=1

∣

∣

∣
x
(1,1,a)
1 − x

(1,1,a)
2

∣

∣

∣

n
, (4.8)

where, x
(1,1,a)
i is the measurement taken by appraiser 1 in location 1 for product a of the

n products collected. R̄E is used to estimate repeatability or equipment variation (σ2
E) using

Equation (4.4) for 20 products and 2 repeats and d∗2 = 1.128 [86]:

σE =
6× R̄E

1.128
. (4.9)

In order to calculate an estimate of reproducibility or appraiser variation (σ2
A), the mean

measurement of repeat 1 for appraiser 1 (
¯

X
(1,1)
1 ) and appraiser 2 (

¯
X

(2,1)
1 ) at location 1 is used

as follows:

σA =

√

√

√

√

√

√







6×
∣

∣

∣

¯
X

(1,1)
1 − ¯

X
(2,1)
1

∣

∣

∣

d∗2







2

− σ2
E

nr
, (4.10)

where, n is the number of products and r is the number of repeats. Hence, for minimum

enhanced PROVADT, where, d∗2 = 1.41:

σA =

√

√

√

√

√

√







6×
∣

∣

∣

¯
X

(1,1)
1 − ¯

X
(2,1)
1

∣

∣

∣

1.41







2

− σ2
E

40
. (4.11)

Summing the squares of σE and σA enables the calculation of the total Gage R&R

(σ
(enhanced)
RR ) by:

σ
(enhanced)
RR =

√

σ2
E + σ2

A. (4.12)

Also, this set of measurements taken across the 20 products by appraiser one can be used

to calculate the capability in this location.

The second new constraint B is fulfilled by re-measuring some of the 20 products by at

least appraiser one in at least two new locations. If this constraint is minimised, m = 10

products are re-measured in two new locations by one appraiser, hence, ε2 = 1 and ε3 = 1.

This results in
∑ε2

j=1 r
(2)
j = 1 and

∑ε3
k=1 r

(3)
k = 1, therefore, ϕEn = 80 total number of

measurements in a minimised enhanced PROVADT. It is recommended that these additional

measurements taken at new locations are spread across the 5 sample time periods. One way

to achieve this is to number sampled products sequentially as they are collected and make
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Table 4.1: PROVADT variants, indicating test appraisers and locations for measurements.
Appraiser 1 1 1 1 2

Location 1 1 2 3 1

Original All • • •

Enhanced
Odd Samples • • • • •
Even Samples • • •

additional measurements on the odd number samples. From this, within-product variation

can be estimated by first calculating R̄P of appraiser 1 in all locations:

R̄P =

∑10
b=1 max

{∣

∣

∣x
1,1,b
1 − x1,2,b1

∣

∣

∣ ,
∣

∣

∣x
1,1,b
1 − x1,3,b1

∣

∣

∣ ,
∣

∣

∣x
1,2,b
1 − x1,3,b1

∣

∣

∣

}

10
, (4.13)

where, x1,y,b1 is the measurement taken by appraiser 1 in location y for product b of the m

products measured in multiple locations. R̄P is used to estimate the within-product variation

(σ2
P ) using Equation (4.6) for 10 products and 3 repeats and d∗2 = 1.72 [86]:

σP =

√

(

6RP

1.72

)2

−
(

6RE

1.128

)2

. (4.14)

A comparison of original and the minimum enhanced PROVADT can be seen in Table 4.1.

The use of the enhanced PROVADT procedure to generate Multi-Vari, Isoplot, Gage R&R

and Process Capability studies is highlighted in the next section. This provides a test study

generated with a manufacturing simulation and is used to provide a worked example.

4.5 Simulation Work Example

4.5.1 Simulation Set-Up

The results in this section were generated by a teaching simulation known as Process Im-

provement Methods Simulation (PIMS) [59]. This simulation reflects a discrete batch man-

ufacturing process and allows users to explore different quality improvement methods to

determine which stage of the simulated process is the root cause of variation in the products

CtQ. Figure 4.2 provides an overview of the PIMS process, which has three manufacturing

stages followed by an opportunity to measure the final product.

ASSEMBLY SPRAY OVEN MEASUREMENT

Stage 1 Stage 2 Stage 3

Figure 4.2: Outline of PIMS process.
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In the assembly stage five components, A, B, C, D and E, are added onto a substrate.

In these components there are different patterns of variation to represent different potential

issues. A, B and D contain normally distributed variation; representing slight differences

in components of the same type from a supplier. In C there is step-change variation every

18 components to reflect the effect of different batches from a supplier. Component E has

variation with-in the component; this is seen as issue of ovality in what should be a perfect

circle.

This assembly then goes through a spray process which has variation in two parameters

pressure and viscosity, uniformly distributed. The assemblies then go through an oven curing

process in batches of nine products, where there is potential variation caused by the oven

position occupied during the curing.

The simulation set-up can be modified so that each input variable has some or no effect on

the measured CtQ of the final product. The goal of the simulation is to identify which inputs

affect the final product allowing the process to be improved. The product has a dimensional

CtQ with a unilateral tolerance of target, T = 100mm, and lower tolerance limit, l = 55mm.

To achieve this both a minimised original and enhanced PROVADT where implemented to

compare results.

The sampling and measurements for original PROVADT were structured using the min-

imal setup. To fulfil these requirements, individual batches were selected to represent a

single time period. From five separate batches four samples were collected. This gave twenty

products to test, and tests were carried out by two appraisers. The results are presented in

Appendix A Table A.1.

The sampling and measurements for enhanced PROVADT were, also, structured using

the minimal setup. The sampling was conducted in the same manner as the original approach.

The results are presented in in Appendix A Table A.2.

These results are then analysed with a Multi-Vari Chart, Isoplot, Gage R&R and Process

Capability Study, as follows.

4.5.2 Multi-Vari Chart

The Multi-Vari chart uses all gathered measurements which are plotted in Figure 4.3(a) for

original PROVADT and in Figure 4.3(b) for enhanced PROVADT. These measurements are

divided into three strata on the chart known as: within-piece, piece-to-piece and time-to-time.

In Figure 4.3(a) the largest or Red X variation is within-piece. This is indicated by the

vertical groups of three measurements per sample. The second largest or Pink X variation is

piece-to-piece and there is little time-to-time effect.

In Figure 4.3(b) the largest or Red X variation is within-piece. This is indicated by the

vertical groups of three and five alternating measurements per sample. The second largest

or Pink X variation is piece-to-piece and there is little time-to-time effect.

From Figure 4.3(a) and (b), it is important to note that the σ2
P variation is represented
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Figure 4.3: Multi-Vari studies of simulation results using (a) original and (b) enhanced
PROVADT.
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in the within-piece variation on all products using original PROVADT, but only represented

in odd numbered products using enhanced PROVADT. However, both approaches identify

within-piece variation as the Red X. Following the Shainin System philosophy the root cause

of the Red X variation is the first to be investigated. This was done initially by examining

the results again using an Isoplot study in the next section.

4.5.3 Isoplots

From the data in Appendix A Table A.1 and A.2, two Isoplots were created. The first plot

compares the measurement repeatability of appraiser 1. To do this, the two repeated mea-

sures taken in the same location were plotted against each other in Figure 4.4(a) and (c) for

original and enhanced PROVADT, respectively. The second Isoplot compares the measure-

ment reproducibility between appraisers 1 and 2. This variation is shown in Figure 4.4(b)

and (d) for original and enhanced, respectively, by plotting the results of appraiser 1 against

appraiser 2 from the same location.

The plots in Figure 4.4 show the results as one homogeneous group, indicating that the

test does not affect the process. Highlighted in Figure 4.4(a), is that there is variation both

along the 45◦ line and perpendicular to it, suggesting that there is excessive repeatability

variation. This indicates that the measurement system is contributing to the within-piece

Red X. However, this result should be taken with caution since as mentioned before original

PROVADT confounds repeatability and product-within-piece variation. Figure 4.4(b) shows

that there is more variation along the 45◦ line than perpendicular to it. This indicates

little reproducibility variation in the measurement system. Both Figure 4.4(c) and (d), also

highlight, that there is more variation along the 45◦ line than perpendicular to it. This means

that there is greater piece-to-piece process variation than measurement variation, indicating

that the measurement system is not contributing to the within-piece Red X. This finding is

quantified by a Gage R&R study as shown in the next section.

4.5.4 Gage R&R Study

A derivation of a Gage R&R study for original PROVADT is in Cox et al. [74]. This was

applied to the sampling results at Appendix A Table A.1 to give a total Gage R&R, as a

percentage of tolerance, σ
(original)
RR = 308.9%. This suggests that the measurement system is

inadequate, due to σ
(original)
RR ≥ 30% [63]. In Figure 4.5 it is shown that the repeatability

variation is the biggest contribution to the overall Gage R&R effect. This is consistent with

the Isoplot observations in Figure 4.4(a) and (b).

The advantage of the enhanced PROVADT method is that a true Gage R&R value is

calculated. In the case of the simulation, this is achieved by using the sampling results

in Appendix B and Equations (4.4) - (4.14), which gives %σ
(enhanced)
RR = 22%. Using the

guidelines from the TS/ISO 16949 standard reference manual, the score of 22% would rate

this as a marginal measurement system.
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Figure 4.5: Gage R&R of simulation results analysed with original PROVADT

The individual components of variation are summarised in Figure 4.6, where the effect

of variation within the product itself is considerably larger than the measurement system

variation. This is consistent with the findings from the Isoplots in Figure 4.4(c) and (d). It

also further narrows down the potential root causes of the within-piece Red X variation as

being a result of the product and not the measurement system.

This set of results shows a significant difference in the original and enhanced PROVADT

methods in determining a true Gage R&R. At this stage the original approach would have

determined that the within-piece Red X variation, identified in the Multi-Vari study, was a

result of an inadequate measurement system. However, due to the known confounding of

repeatability and product-within-piece variation, a follow-up gage analysis would need to be

performed to separate these issues. This would take more time and testing resource, as a

fresh gage analysis uses a minimum of 60 new measurements. In the case of the enhanced

approach, no further gage studies are required, with the addition of only 20 measurements to

the original PROVADT. Not only, are the repeatability and product-within-piece variations

not confounded, but all variation sources are quantified. Thus, the within-piece Red X is

further narrowed down to an issue of non-uniformity in the product. This clearly shows the

improvement of the enhanced PROVADT over the original.

4.5.5 Provisional Process Capability Study

Just as the Gage R&R quantifies the within-piece variation seen in the Multi-Vari chart, the

provisional process capability study quantifies the piece-to-piece variation. The enhanced

PROVADT allows the calculation of process capability at the three measured locations.

In this worked example the product has a unilateral tolerance; therefore, only Cpk is

calculated. For original PROVADT this is performed for the two measurement locations by
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Figure 4.6: Gage R&R of simulation results analysed with enhanced PROVADT including
within-piece variation sources.

using average results for appraiser 1 across the 20 products i.e.
¯

X
(1,1)
1 ,

¯
X

(1,2)
1 and Equation

(4.2). This leads to C
(1)
pk = −0.1023 and C

(2)
pk = −0.0289, which implies the process has a

poor overall capability. These results are plotted in Figure 4.7(a). Given the inadequate

Gage R&R evaluation these results would be considered not reflective of the process but of

the excessive measurement variation. Again, this highlights the importance of obtaining a

true Gage R&R.

For enhanced PROVADT, the capability calculations are performed using the location

means for appraiser 1 repeat 1 (
¯

X
(1,1)
1 ,

¯
X

(1,2)
1 ,

¯
X

(1,3)
1 ) and Equation (4.2). This leads to

C
(1)
pk = −0.1023, C

(2)
pk = −0.0236 and C

(3)
pk = −0.0981, which implies the process has poor

capability in all three locations. The negative results indicate that the process mean is outside

of the tolerance limit. This capability study is consistent with the Multi-Vari chart in that,

despite the Red X within-piece issue, there is a piece-to-piece Pink X underneath, that is

quantified by a poor Cpk values. These results are summarised in Figure 4.7(b).

It is clear to see that both original and enhanced PROVADT offer similar capability

results. The two advantages the enhanced method has shown is that it provided the capability

in a third location and the complement of a valid Gage R&R result allows these results to be

used without further testing.

4.5.6 Summary

Both original and enhanced PROVADT assisted the user to narrow down towards the root

cause of variation. In this example it was an ovality issue in the circle component E that

caused product-within-piece variation in the final CtQ. This was determined by analysing

product using a technique such as paired comparisons, with a reduced number of potential
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Chapter 4. PROcess VAriation Diagnosis Tool (PROVADT) 59

variation sources. However, the difference between the original and enhanced approaches

was that the original approach needed further experimentation to validate the measurement

system. Whereas, enhanced could go straight into the paired comparison analysis. The

following section details two industrial case studies are presented were enhanced PROVADT

has been applied.

4.6 Industrial Case Studies

4.6.1 Overview

In this section two industrial case studies are detailed, where enhanced PROVADT has been

applied. The first is at Rettig, Team Valley, UK, who manufacture steel radiators for the

Myson and Purmo brands. The second is at Coveris, Stanley, UK, who manufacture rigid

packaging for the food industry. In both cases samples are collected as per the minimum

enhanced PROVADT structure. Then these results are analysed, in the same manner as

previously outlined, by Multi-Vari chart, Isoplot, Gage R&R study and Provisional Process

Capability, in that order. The subsequent actions in these cases are then summarised.

4.6.2 Rettig

4.6.2.1 Background

Rettig brings together Europe’s leading brands for radiators, underfloor heating, valves and

controls. Its site at Team Valley was built in 1958, and was acquired by Rettig (Myson) in

2000, to manufacture radiators for the Myson and Purmo brands. In 2003 Rettig invested 30

million euros in a new production hall, equipped with two new fully-integrated high-speed

welding lines. Down these two lines, called Round Top 1 (RT1) and Round Top 2 (RT2), the

side panels for all the non-electric radiators are manufactured. The only difference between

the two lines is RT1 is measured in metric units; whereas RT2 is measured using imperial

units. The two lines work as a mirror image along the factory.

Both assembly lines produce single and double panelled radiators. A welding wheel run-

ning down the edge of each panel creates the top seam. The double panelled radiators are

two single panels manufactured one after each other in which the first panel is rotated and

then lifted to enable the second panel to move underneath for welding. Once the radiators

have been through testing and painting an optional grilling attachment is placed on top.

4.6.2.2 Problem Definition

The problem Rettig experienced was the positioning of grilling on double panelled radiators.

The top seams on each panel were not parallel along their own length and, hence, the grille on

occasion did not fit flush on top of the radiator. Rettig wanted to understand the root cause

of this variance and to compare the scale of variation in both the RT1 and RT2 production
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lines. It was decided that both the seam depth and height of each panel must be measured

to capture all potential sources of variation. This means that four concurrent enhanced

PROVADT studies took place.

On both production lines every radiator is manufactured to a technical specification. The

panel height and seam depth is specified with a 6mm tolerance (−2mm+4mm either side of

the target). Each panel was manufactured to the same specification. This meant that all the

radiators coming off both production lines had the potential to be used for a double panelled

radiator with grilling. They should have had a parallel top seam so that all radiators could

be tested.

4.6.2.3 Measurement Method

The testing at Rettig is non-destructive and data were gathered as per the minimum enhanced

PROVADT requirements. This meant that four consecutive products were collected at five

time periods resulting in a total of twenty samples. Once the samples were collected, five

measurements were taken from every other of the twenty products (odd numbered sample)

and thee measurements taken from the remainder (even numbered sample). Appraiser 1

measured twice in a primary location for all samples and Appraiser 2 measured once in the

same primary location. Appraiser 1 then measured twice more in a secondary and tertiary

location for each odd numbered sample. The order in which the appraisers measured was

swapped after 10 products had been measured.

The seam depth was measured with the depth gauge on Vernier callipers and a larger

version was used to measure the radiator height. Both sets of callipers had a precision of

0.01mm. There was no other measuring instrument available; hence, the two appraisers for

this testing were two different operators. The results for RT1 and RT2 panel heights and

seam depths are presented in Appendix B.

4.6.2.4 Multi-Vari Chart

Multi-Vari charts were derived for the four data sets, seam depth and panel height for both

RT1 and RT2,. These show, that in all cases, the Red X is Within-Piece but with a Pink X

of Piece-to-Piece. These Multi-Vari charts are shown in Figure 4.8(a)-(d).

The difference between the within-piece points show the variation caused by the product

and measurement system. The larger within-piece spread on odd samples indicates that the

product variation has a large contribution to the overall variation.

4.6.2.5 Isoplots

In this analysis, the within-piece measurement variation is compared with the piece-to-piece

variation, this indicates whether the measurement system is capable relative to the overall

piece-to-piece variation. The results for RT 1 and RT2 radiator heights and seam depths are

shown in Figure 4.9(a)-(d) and Figure 4.10(a)-(d).
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Figure 4.8: Multi-Vari charts for (a) RT1 panel height; (b) RT1 seam depth; (c) RT2 panel
height; (d) RT2 seam depth.
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Table 4.2: Gage R&R analysis for seam depth and radiator height on RT2 and RT1.
RT2 RT1

Seam Depth (mm) Rad. Height (mm) Seam Depth (mm) Rad. Height (mm)

σP 0.799 1.959 1.525 1.409
σE 1.559 0.883 1.309 0.375
σA 0 0.268 0 0.333
σRR 1.559 0.923 1.309 0.502
%σRR 25.9% 15.3% 21.8% 8.3%

In all charts there are no obvious separate groupings, indicating that the measurement

system is not having an effect on the product. Figure 4.9(a) and (c) and Figure 4.10(a)

and (c) show the Isoplot for repeatability or consistency of the measurement system between

repeated measurements by the same appraiser in the same location. Results are spread

along the 45◦ line than away from it, highlighting that there is more piece-to-piece than

repeatability variation in the measurement system. Figure 4.9(b) and (d) and Figure 4.10(b)

and (d) show the reproducibility or variation between different appraisers measurements in the

same location. These demonstrate more piece-to-piece variation than measurement system

variation due to different appraisers. However, there is clearly a large deviation in some

results away from the 45◦ line; therefore, reproducibility is the most significant component

of measurement variation.

4.6.2.6 Gage R&R

From the Multi-Vari it was shown that there is within-piece variation caused in part by

the product. The Isoplot verified that the measurement system is a non-destructive test.

Therefore, calculation of a Gage R&R value is imperative to quantify statistically how much

of the within-piece variation is due to measurement. This was unachievable with the previous

version of PROVADT; however, it is possible with enhanced PROVADT and the results

are displayed in Table 4.2. In this table, σP , σE , σA and σRR have been calculated using

Equations (4.8)-(4.14).

Table 4.2 highlights that the measurements systems should be categorized as marginal,

according to AIAG [63], meaning they are sufficient for non-critical CtQs. The results in

Table 4.2 also show the relative differences between σP , σE and σA. This highlighted that

the product-within-piece, σ2
P , component of variation is at least twice as large as the total

measurement-within-piece variation, σ2
RR, for RT1 and RT2 radiator heights. Therefore, to

reduce the size of the Red X within-piece variation, the investigation focused on causes of σ2
P

that result in a non-uniform radiator height in the product.

4.6.2.7 Process Capability

A final analysis from the enhanced PROVADT sampling allows for the calculation of a provi-

sional process capability study in each measurement location in order to quantify statistically
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Table 4.3: Provisional process capability results for RT2 and RT1.
RT2 RT1

Seam Depth Rad. Height Seam Depth Rad. Height

Location 1 2 3 1 2 3 1 2 3 1 2 3

Cp 2.04 2.39 2.28 3.03 3.36 3.36 2.00 1.25 2.07 3.80 4.74 3.93

the Pink X piece-to-piece variation. The results of this study are presented in Table 4.3, where

it is shown that there is consistency in capability across all measurement locations, since the

variation in each location is of a similar magnitude. This is a result of consistent variation

across the product and not a result of one location being constantly different from the others.

Given that this is a provisional study with small sample sizes, larger discrepancies would be

needed to alert an operator.

The provisional process capability results for RT1 and RT2 panel height and seam depth,

in Table 4.3, show that these processes are very capable. The minimum Cp of 1.25 demon-

strates that the piece-to-piece variation is small relative to the design tolerances.

However, the Cpk values for panel height on both RT1 and RT2 were lower than the Cp.

This indicated that the process was not operating exactly on the design target. This was

quickly rectified and the seam welding machines were readjusted to move the process closer

to the technical target. Given the high Cp values once the process had been moved back on

target there was no economic reason to minimise the Pink X variation further.

4.6.2.8 Overall Analysis Provided to Rettig

Enhanced PROVADT enabled the analysis of production lines RT2 and RT1 from one set

of 20 products. It was shown that the main source of variation was within-piece. The

majority of this variation was due to non-uniformity in the product, which is now under

further investigation.

As a result of the experimental work a small adjustment was made to the measurement

system. This improved on the height measurement between RT2 and RT1, resulting in a

decrease in the Gage R&R value so the measurement system became adequate.

Process Capability was above 1.33 on both production lines with regards to the seam

depth, so it is within its specified tolerance and once the welding machines were realigned

the panel height also operated with a high capability. The data collected confirmed Rettigs

suspicions that although the process has the capability to produce within the specification

limit it can have within-piece variation, within the top seam.

4.6.3 Coveris

4.6.3.1 Background

Coveris is a company formed from the merger of five top-ranking plastics packaging compa-

nies. Currently, Coveris is the 6th largest plastics packaging company in the world. Its site
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Figure 4.11: Sample collection points from a single reel.

in Stanley, UK, specialises in the co-extrusion and thermoforming of rigid packaging for the

food industry.

4.6.3.2 Problem Definition

Coveris recently installed a new co-extrusion facility at its Stanley site, known as Erema. This

facility processes raw plastic into rolled sheets which are then used for the thermoforming of

food packaging. The Erema process produces batches of sheet plastic, which are wound up

into reels. A typical production run produces 5-10 reels. The machine set-up is then changed

to produce a product with a different chemical composition and/or gauge of thickness.

As this process was newly established, the company wanted to investigate the capability

and variation patterns of plastic gauge thickness in the reels. As the process contains over

15 controllable parameters, Coveris wanted to narrow its focus down to those parameters

that account for the most variation and that needed adjustment. To achieve this, enhanced

PROVADT was implemented.

4.6.3.3 Measurement Method

In order to gather samples as required by enhanced PROVADT, five consecutive batches

(reels) from the same production run where selected to represent time-to-time variation.

From these reels a section of plastic sheet was cut away from the end, which was then sub-

divided into four consecutive samples, as shown in Figure 4.11.

To measure the plastic gauge thickness, a custom depth gauge jig was used and two

operators were used as appraisers. Each sample was then measured in a primary location

twice by appraiser 1 and once by appraiser 2. This primary location is labelled as (a) in

Figure 4.12. Appraiser 1 measured in this location first for the first half of the samples.

Appraiser 2 then measured first for the second half of the samples.

Appraiser 1 then measured every alternate or odd numbered sample in a secondary and

tertiary location, which are marked as (b) and (c), respectively, in Figure 4.12. These extra
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Figure 4.12: Measurement locations within a single sample.

location measurements provide information assessing product-within-piece variation. The

target gauge for these samples was 1.150 ± 0.058mm and the recorded measurements are

presented in Appendix C.

4.6.3.4 Multi-Vari Chart

Figure 4.13 shows the Multi-Vari chart plotted for the plastic gauge thickness results. It is

clearly shown that the Red X is within-piece variation, and a piece-to-piece Pink X.

Therefore, this project focused on understanding the cause of this variation, which could

be measurement or product-within-piece variation. Isoplots were used for narrowing down

the root cause.

4.6.3.5 Isoplots

The repeatability and reproducibility Isoplots generated from the enhanced PROVADT sam-

pling are displayed in Figure 4.14.

In both Figure 4.14(a) and (b) there are no obvious separate groupings, hence, the mea-

surement system is not effecting the product. It is also shown that the spread of results is

greater along the 45◦ line than across it. This indicates that the piece-to-piece variation is

greater than the measurement-within-piece variation, implying that the Red X is a result of

product-within-piece variation. These implications are further quantified by the Gage R&R

study in the following section.
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Figure 4.13: Multi-Vari chart for sample thickness.

Table 4.4: Gage R&R for sample thickness.
Thickness (mm)

σP 0.0596
σE 0.0114
σA 0.0090
σRR 0.0145

%σRR 12.64%

4.6.3.6 Gage R&R

The Gage R&R results are given in Table 4.4, which were calculated based on the measure-

ments recorded in Appendix C. The two key results from this analysis are the percentage

Gage R&R score and the relative size of the σP against this measurement deviation.

The Gage R&R of 12.64% categorises the measurement system as marginal but close to

the adequate boundary. This gave the investigation confidence that the measurement system

was able to detect changes in the process that were significant relative to the tolerance.

It also reinforced the finding, from the Isoplot, that the Red X is unlikely to be a result

of measurement variation. The second analysis, comparing σP and σRR, can be done by

reviewing the variance values presented in Table 4.4, more clearly displayed in Figure 4.15.

The bar chart in Figure 4.15 graphically shows that the σP is four times larger than

σRR. This confirms that the Red X within-piece variance is a result of product-within-
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piece variation which is caused by a non-uniformity across each sample and is not caused by

excessive measurement variation.

4.6.3.7 Process Capability

The final PROVADT analysis of the provisional process capability aided the investigation to

put the overall variation in the Erema process into perspective. The capability indices for all

of the locations measured are C
(1)
p = 5.89, C

(2)
p = 3.67 and C

(3)
p = 4.01, and C

(1)
pk = −3.32,

C
(2)
pk = −1.82 and C

(3)
pk = −1.17.

The Cp results of greater than 3.5 indicate that the overall variation in the process is

very low with respect to the tolerances. However, the negative Cpk results are indicative of a

process operating outside of its tolerances. These variation spreads are plotted in Figure 4.16,

and from this it can be confirmed that the overall process is outside its tolerance. If original

PROVADT had been used, the Cp and Cpk values would have only been calculated in two

rather than three locations.

4.6.3.8 Overall Analysis Provided to Coveris

As a result of this overall analysis a single control parameter that affected the flow of plastic

extruded was identified, enabling the re-centring of the process. Further action was taken to

establish set-up protocols to ensure process operators adjusted this parameter so the process

remained on target.

Further investigations were undertaken to identify and optimise parameters which effect

the product-within-piece variation. These gains ultimately lead to Coveris minimising the

quantity of plastic used to produce plastic reels, thus leading to financial savings, whilst also
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providing its customers with a more consistent product.

4.7 Summary

This chapter has illustrated the application of an updated PROVADT sampling plan [74]. The

enhanced PROVADT approach addresses a compromise in the original method of not always

providing a true Gage R&R. The benefits of incorporating a true Gage R&R enables the

assessment of whether within-piece variation is caused by measurement variation or product

variation. This new sampling procedure now allows a practitioner to apply a Multi-Vari

chart, Isoplots, Gage R&R and provisional process capability study to one set of samples

and measurements. From these analyses, the signature of the dominant cause of variation is

diagnosed and the scale of process variation is contextualised.

The enhanced PROVADT procedure narrows down the focus of a quality improvement

project. It moves the project from the measure to analyse phase, in the DMAIC cycle, using

passive experimentation, that does not disturb an on-going process, and narrows the focus

using objective, data driven analysis.

The application of the approach has also been outlined, using both a worked example

from a simulation and two real industrial case studies. The flexibility of the approach was

demonstrated in the case studies, with one company producing radiators in a discrete process

and the other producing extruded plastic in continuous batches. In both cases it was possible

to measure within-piece in multiple locations, by identifying sufficient time periods to assess

the process variation and capturing consecutive samples. The follow-up analysis, in both

cases, drove the projects forward significantly in the search for the dominant cause of variation

in their processes.
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5.1 Introduction

This chapter is based around material published by Cox et al. [123, 124, 125]. It was identi-

fied in chapter 1 that AMTs, such as machine tools, are increasingly required to operate in

a low-volume, high-variety production paradigm. This typically creates a pattern of varia-

tion in a process known as ‘set-up dominance’ ; whereby, the process is highly-capable over a

production run and the largest source of variation is between production batches. This vari-

ation, ultimately, appears in a product’s CtQ features and when these CtQs are required to

be produced with high-precision, managing this set-up dominant variation becomes critically

important.

As described in chapter 3, in a traditional mass-production environment process variation

is monitored using a suite of statistical tools known as SPC. Included in SPC are tools

such as: X̄-chart, for monitoring process mean; s-chart, for monitoring process standard

deviation; and R-chart, for monitoring process range. These tools are used to identify when

a statistically significant change has occurred in a process, so that corrective action can be

taken before the process goes out-of-tolerance with respect to a products CtQs. However,

in a low-volume production paradigm these tools are not applicable, resulting in low-volume

manufacturing processes being controlled by operators using their intuition or rules-of-thumb.

72



Chapter 5. Set-Up Process Algorithm (SUPA) 73

It has been shown that this approach increases variation rather than reducing it [80].

This problem can be avoided if a defect prevention, rather than statistical, approach to

process control is taken. Defect prevention process control tools typically set control limits

with respect to CtQ design tolerances, rather than process performance and capability. They

have a goal of identifying when a process is not performing to a predefined minimum capability

standard. These tools can be split into two groups parametric and non-parametric; whereby,

parametric tools make distributional assumptions about a processes and non-parametric tools

make no distributional assumptions. The literature on this topic was reviewed more com-

pletely in section 3.4.

A case study is described in the following section to provide context of an industry sit-

uation where a low-volume process control tool is applicable. A new non-parametric defect

prevention approach to process control, known as Set-Up Process Algorithm (SUPA), is

defined in section 5.3. In section 5.4 an experimental methodology of using a stochastic

discrete-event simulation of a low-volume production environment to test the performance of

process control tools is explained. Results from this experimental methodology to compare

the performance of SUPA against other SPC and defect prevention tools, outlined in the

literature as suited for low-volume control applications, are detailed in sections 5.5 and 5.6.

5.2 Case Study I

5.2.1 Introduction

This case study was conducted at a manufacturer and global supplier of quality metal printing

machinery. In the manufacturing facility there are numerous low-volume processes producing

in excess of 5000 unique parts in batches as low as 5 units. The company did not employ

any SPC methods, as it was perceived that they were not applicable in low-volume processes.

This section highlights the current practices employed to control set-up dominant machine

tools, the perils observed that result from these procedures and the practical obstacles to

deploying an SPC methodology.

This study focused on current working practices around a Nakamura TW-25 CNC twin

turret lathe machine tool. The company used this precision process to machine pre-cast billets

into gear blanks. Gear blanks of multiple shapes and sizes are produced in low-volumes, to

fulfill the assembly and service requirements of multiple product varieties. These gear blanks

go through further processes to produce a final gear cog, which is used in a drive assembly

of a final metal printing machine. At this stage, the gear blank has two CtQ features, which

are its inner-bore diameter (ID) and its outer-diameter (OD) as shown in figure 5.1.

In this process the control parameters used to adjust the position of a CtQ were the

machine tool offsets. It was known by process operators that there was independence between

machine tool offsets and the part’s CtQs. This means adjusting one offset has a direct effect

on a single CtQ.
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Figure 5.1: An example gear machined on a Nakamura TW-25 with ID and OD denoted.

5.2.2 Current Practices

5.2.2.1 Standard Set-Up Procedure

To commence a new production run, a TW-25 machine operator collects a batch card detailing

the part with engineering drawings and production volume. The operator proceeds into the

machine set-up for the run, this takes 120 minutes on average irrespective of the number of

parts to be manufactured. The set-up process involves the operator downloading the correct

Computer Numerical Control (CNC) program onto the TW-25 for the part, loading the

correct tooling into the TW-25 and collecting the correct size billets.

Once the machine set-up is complete, a billet is loaded into the machine and a ‘test cut’

is made. The test cut is pre-loaded in the CNC program and is set 0.5mm outside of the

CtQ tolerance, i.e. as little material is removed from the billet as possible. The OD and

ID are measured with micrometers and the offset from the design target calculated. This

offset is used to adjust the TW-25 to cut within tolerance. The work piece used for the

test cut is reworked with the TW-25 calibrated with the new offsets; this is checked again

with micrometers to ensure it is now within tolerance. Subsequent parts then have their ID

checked with a go/no-go gauge and the OD checked with a micrometer. The frequency of

these checks is largely dependent on the operator managing the process. Although operators

were expected to produce in-tolerance parts, the responsibility of ‘quality control’ was left to

an inspection team who checked parts CtQs conformance between processes.

5.2.2.2 Observed Practices

Beyond the standard set-up procedures stated, the management of the TW-25 process was

largely dependant on the operator, this led to a range of actual practices. An example, was

that operator A overrides the CNC offsets whilst making his test cuts. He reduced the pre-set
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of 0.5mm to 0.2mm and cites an improvement in machine precision in the subsequent cut.

He believed that reworking a piece with a 0.5mm test cut leads to excessive tool deflection in

the next cut. This does call into question whether a test cut, whilst working with precision

machine tools, was needed at all. Testing this theory was outside the scope of this project,

which is to look at the effects of process controls. However, it is an example of how a vague

Standard Operating Procedure (SOP) can lead to variation in operator actions, which in

turn, leads to variation in product batches made by different operators.

This operator to operator difference did not stop with test cuts; another observed dif-

ference was the approach to in-process inspection and in this regard there were two clearly

different approaches. The first approach was to measure each part produced and adjust the

process when a part’s CtQ was out-of-tolerance. Some operators felt this approach was too

time consuming and it was not their responsibility to check every part given that there was

an inspection team. This led to the second approach of ensuring the first part is in tolerance

and then letting the process run; thus, reducing the in-production inspection time. How-

ever, neither of these approaches contain statistical rigour. In the first instance, changes are

only made to a process once it is out-of-tolerance; therefore, making reactive changes, rather

than preventative ones. In the second instance, the process is allowed to run once one part

is in-tolerance; but, this does not give confidence that the process is currently capable of

producing a batch of in-tolerance parts. Operators adopt this approach citing that it saves

time, but in this low-volume production the most significant time overhead is the machine

set-up. If a part is revealed to be out-of-tolerance by post-production inspection, this leads

to a second set-up of the TW-25 machine to rework or reproduce scrapped parts. This has a

significant impact on the processes capacity.

An observation that appeared consistent across all operators, was the aim to make parts

closer to the top tolerance. From an operator perspective, their job is to produce parts with

CtQs that are within design tolerances. If an out-of-tolerance part is produced at the bottom

tolerance, i.e. too much material has been removed, this part is scrapped. If an out-of-

tolerance part is produced at the top tolerance, i.e. too little material has been removed, this

part is reworked to bring it in-tolerance. Therefore, operators perceived it to be beneficial to

set-up the TW-25 to make parts just in-tolerance to reduce the chance of scrap.

However, the design team took a statistical approach to the design of tolerances; whereby,

there is an expectation that on average parts are manufactured with CtQs that are on-target.

This conflicts with the current manufacturing’s approach, were parts are produced inside the

CtQ’s top tolerance, leading to persistent tolerance stacking issues in assembly and servicing.

For example, if a gear cog ID is machined to the top of its tolerance this results in an

acceptable CtQ with a minimum bore size. If a shaft, which the gear is to be mounted

onto, is also manufactured to the top of the tolerance this makes it have the maximum outer

diameter. There is then potential for at least two interfacing part to be both intolerance,

but not fit together. This tolerance stacking issue was appearing both in final assembly of
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Table 5.1: List of parts used for trial, machine processed on and date of processing.
Part Machine Production Date

G99-664A TW25 12/10/2011
G99-285 TW25-B5514 13/10/2011
G99-161 TW25-B5514 17/10/2011
G99-663A TW25-B5514 17/10/2011
W99-2780 TW25-B5514 18/10/2011
W65-8487 TW25-B5518 18/10/2011

new metal printing machines and in the servicing of customer machines. To combat this,

the design team were constantly tightening CtQ tolerances; which in turn, was making parts

increasingly difficult to manufacture. In order, to determine the potential of using a defect

prevention approach to SPC in a low-volume process, a trial was run on the TW-25 using

Pre-Control which is discussed in the next section.

5.2.3 Pre-Control Trial

5.2.3.1 Introduction

The defect prevention approach to SPC of Pre-Control, described in chapter 3, was trialed

by operators of the TW-25. The object of this trial was to identify if a defect prevention

approach to SPC was applicable in a low-volume production environment. Also, limitations

identified at this stage would inform further research.

To establish this trial, six different parts were selected that contained ODs and IDs. The

batches that the six different parts were to be produced in, were of sizes ranging between 8-12

parts. These were due to be produced during the week commencing 10/10/2011, but due to

changes in production scheduling the trial lasted two weeks. The parts used and production

dates are listed in table 5.1.

As the focus of the company’s machining operations was in low-volume production, the

trial used phase 1 of Pre-Control which requires five greens to validate the process. Further

to this, a percent tolerance Pre-Control approach, described by Vermani [126], was employed

so that a custom chart did not need to be produced for each part and each CtQ on that part.

Examples of the record sheet and percent tolerance Pre-Control charts used can be found in

appendix D. In order to convert a measured value of CtQ into a percentage, operators were

required to use the following calculation:

XPC =
100(X − T )

0.5(U − L)
, (5.1)

where X is the actual dimensional measurement and XPC is the associated percent tol-

erance Pre-Control value. The XPC value can then be plotted on the traffic light percent

tolerance Pre-Control chart. These charts are in appendix D.

In order to minimise the effects of different test cut sizes between operators, a standard

test cut offset of 0.2 mm was applied by all operators. The operators had to use micrometers



Chapter 5. Set-Up Process Algorithm (SUPA) 77

on both OD and ID features, to collect variable data. Also, operators were required to adjust

an off-target process towards its design target, rather than just inside its top tolerance. An

exploration of the results from this trial is given in the next section.

5.2.3.2 Results

The records and percent tolerance Pre-Control charts collected during this trial are presented

in appendix D. The first observation, is that in all cases both the OD and ID features were

validated. This means that five consecutive green parts for each feature were collected before

the end of the production run. Using the rationale described in chapter 3, this gives the

process operator 98% confidence that the process is both on target with a minimum capability

of CP > 1.33. Although this is a limited study, it suggests that the process is capable of

manufacturing design CtQ features with a high capability.

It was also noticeable, that in some cases the first adjustment made after the test cut was

not always sufficient to bring the process on-target, but it was sufficient to bring the process

in tolerance. Traditionally these processes would have been allowed to continue; but using

Pre-Control when there was a pattern of two consecutive yellow units on the same side of

the process target, the operator received a signal to make a further adjustment. After these

adjustments the process was consistently validated, with five green units. This demonstrates

that having a process control methodology across parts and operators aided consistent control

actions. This led to processes which are on-target and not just within tolerance.

These results do raise one question, are these processes more capable than a minimum of

CP > 1.33? If they are and a higher capability is desirable from the point of view of design,

can the Pre-Control method be modified to allow for this?

From the point of view of implementation, there was an issue with the data collection

process. Using a paper-based records and chart system, which required operators to convert

actual measurements into a percentage Pre-Control value, delayed processing times. Further

to this, the operators in the trial felt that if a paper-based system was rolled-out, some

operators would not fill out the forms correctly to avoid the perceived hassle of making

calculations. A solution to this could be to use an electronic data collection system, which

is seen in high-volume SPC implementations. However, further research into the cost and

implementation in low-volume applications would be required.

5.2.4 Conclusion

This case study identifies shop-floor practices, such as making parts inside tolerance rather

than on-target and inconsistencies between operator adjustments of processes. These prob-

lematic practices are consistent with the issues identified in the literature, in chapter 3.

A defect prevention approach to SPC was trailed, as it was identified in section 3.4 of the

literature review as a potential solution. Using Pre-Control did improve the consistency of

operator process adjustments and also forced the operators to adjust the process to its design
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target. However, it did raise a research question: can phase 1 Pre-Control be adjusted when

a capability of CP > 1.33 is desirable? This question is explored in the following sections of

this chapter.

5.3 SUPA Definition

5.3.1 Introduction

In this section, a process control method known as SUPA is outlined. The research that led

to this method was conducted in response to rule-of-thumb set-up practices conducted by

operators of low-volume manufacturing processes. These rule-of-thumb practices have been

identified in both the literature, see chapter 3, and in the case study detailed in the previous

section.

In the previous section phase 1 PRE-Control, was identified as a process control tool

suitable for low-volume manufacturing processes. It was identified as a suitable tool due to

it:

• providing operators with an easy to define and clear control chart based on product

CtQ tolerance;

• providing operators with a clear set of rules to identify when a process is conforming

to a minimum standard of Cp > 1.333;

• identifying with 98% confidence (i.e. 2% αq-risk) that the process is conforming to this

standard;

• distinguishing between a non-conforming process that is off-target and a non-conforming

process that has excessive variation.

However, phase 1 PRE-Control has a clear issue with respect to high-precision processes.

For example, is a minimum standard of Cp > 1.333 good enough? If a precision process has

a high Cp does PRE-Control ensure the process is centred? In a world where world-class

manufacturers are aiming for Cp > 2.0, a process control tool that maintains a minimum

standard of Cp > 1.333 is certainly not good enough.

The issue is not as clear-cut as tweaking PRE-Control to maintain a new standard of

Cp > 2.0. There are different features of the method that are adjustable, as identified

in section 3.4. These include: the number of consecutive yellow units needed to identify a

nonconforming process (t); the number of consecutive green units needed to validate a process

(k); the probability of qualifying a valid process (P (q)) where αq = 1− P (q); and the width

of the central green band (GU −GL). Adjusting each of these features has different effects on

the final performance of a process control tool. A final SUPA method definition is described

next, by selecting values of t, k and P (q) and using probability theory outlined in section 3.4.
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5.3.2 Method

To define a final SUPA method, the first step requires the selection of the t and k parameters.

An aim of the method is to provide operators with an easy to implement protocol to use on

the shop-floor. Therefore, the values of t and k remain constant to increase the practicality

of the method. This means that an operator moving between processes has a consistent set

of rules to follow. The established rules of phase 1 PRE-Control, have been shown to be

practical in the literature (section 3.4) and in the previous case study. Hence, SUPA uses

these rules (table 5.2), which results in t = 2 and k = 5.

Table 5.2: Outline of SUPA decision rules for t = 2 and k = 5.
Sampled Units Observation Action

1 Red Unit Stop and Adjust
1 2 Two Consecutive Yellow Units Same Side of Target Stop and Adjust
1 2 Two Consecutive Yellow Units Opposite Sides of Target Stop and Investigate
1 2 3 4 5 Five Consecutive Green Units Continue Process

Based on these values of t = 2 and k = 5, the generalised phase 1 Pre-Control formula

(equation (3.20)) is reduced to:

P (q) = P (g)5 · 1 + P (y)

1− P (y)
∑4

i=1 P (g)i
. (5.2)

The next value to define is P (q), the confidence that a process is on-target and capable.

As outlined in the literature review, P (q) = 1−αq; whereby αq is the risk of a false fail. The

classic criticism of phase 1 PRE-Control is its 2% αq-risk is too high. For example, classic

SPC tests such as X̄-chart, have an αq-risk of 0.27%. However, if the αq-risk is reduced

below 2% in SUPA, this has the effect of widening the central green band, see [111]. This has

the effect of allowing an increased number of off-target processes being incorrectly validated.

Also, when compared to current practices in precision machining processes of using rule-of-

thumb methods to validate, an αq-risk of 2% is low. Therefore, SUPA maintains the use of

an αq-risk= 2%, and P (q) = 0.98.

SUPA maintains the intuitive linkage of the red zones to design tolerances, which means

there are only two remaining parameters can be modified: minimum Cp and the width of

the green zone (GU − GL). Given the aim of SUPA is to provide a traffic-light chart based

method of process control that is adjustable to maintain different minimum standards of Cp,

this is directly controlled by adjusting the width of the green zone. To find green zone widths

that maintain a P (q) = 0.98, different values of P (g) and P (y) are calculated by:

P (g) = Φ

(

GU − µ

σ

)

− Φ

(

µ−GL

σ

)

, (5.3)

and,
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P (y) = Φ

(

U − µ

σ

)

− Φ

(

GU − µ

σ

)

+Φ

(

µ−GL

σ

)

− Φ

(

µ− L

σ

)

. (5.4)

A range of green zone widths, described as a percentage of the design tolerance, can then be

correlated for given minimum standards of Cp. These results are plotted in figure 5.2.
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Figure 5.2: SUPA percentage green zone against minimum Cp at P (q) = 98% confidence.

These green zone widths are then set for each CtQ of a product by an operator on the

shop-floor or at design level. The procedure to set up a SUPA-chart is described by an

algorithm shown in figure 5.3.

The next section will give a worked example of how to set up and use the SUPA method.

5.3.3 Worked Example

5.3.3.1 Chart Preparation

In this section, the application of SUPA is illustrated. The example used in this section,

considers a CtQ that has a T = 100, U = 200 and L = 0. The process which machines the

CtQ is required at a design level to have a minimum Cp > 2.0. Using figure 5.2, it is estimated

that the green zone should be 31% of the design tolerance, to ensure a minimum Cp > 2.0.

The resulting SUPA-chart, figure 5.4, has Red zone limits fixed at the design tolerances of

U = 200 and L = 0, and also has Green zone limits fixed at GU = 131 and GL = 69.
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Figure 5.3: Flow chart of SUPA algorithm.
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Figure 5.4: Configuration of a SUPA-chart.

The following sections demonstrate how a SUPA-chart detects if a process is: off-target

or incapable.

5.3.3.2 Process Off-Target

Once the SUPA-chart has been established, production of the example part can begin. The

data collected in Table 5.3 shows the measurements of the monitored CtQ. The results in

Table 5.3 are plotted on a SUPA-chart in figure 5.5.

Table 5.3: SUPA run chart of example results.
1 2 3 4 5 1 2 3 4 5

1 135.0 135.0 105.0 105.0 105.0 105.0 105.0

2 147.5 97.5 97.5 97.5 97.5

3 112.5 112.5 112.5

4 85.0 85.0

5 95.0

action -41.25 valid

In the first stage of production, the process was off-target. The SUPA-chart in figure 5.5

identified this after the first two sampled products, which were both in the yellow zone on the

same side of the tolerance. This indicates that the process is off-target and needs adjustment

(Table 5.2). It is indicated in the record in Table 5.3 that an adjustment of -41.25 was made

to the process.
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Figure 5.5: SUPA-charts of example results: a) at the start of a new process set-up, and
b) after the introduction of a process adjustment.

In the second stage, after the corrective adjustment was made, the process produced

five consecutive parts. For the SUPA-chart, it highlights the process’s validity, because five

consecutively produced part’s CtQ fell inside the Green zone. This indicates that the process

is both on-target and capable, i.e. it is not producing parts with excessive variation.

5.3.3.3 Process Incapable

In this second example of the same process, two samples are taken shown in Table 5.4.
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Table 5.4: Example run chart
1 2

1 135.0 135.0
2 63.0

action Investigate

Using the SUPA-chart in figure 5.6, it can be seen that the two samples fall in yellow

zones either side of the green zone. This indicates excessive variation, according to the rules

outlined in Table 5.2. Therefore, the process was deemed to be incapable, i.e. there was too

much product variation. When there is an indication that there is excessive variation present,

further investigation is required to determine the cause.
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Figure 5.6: SUPA-chart of example results for the start of a new process set-up, showing
excessive process variation.

5.3.4 Summary

This section has described a new process control methodology to monitor sets-up dominant

processes. The performance of the method known as SUPA was tested using a discrete-

event simulation model. This model is described in the following section. The model is then

used in sections 5.5 and 5.6 to test the performance of SUPA against other process control

methodologies in a set-up dominant environment.

5.4 Performance Testing Methodology

5.4.1 Introduction

In this section a general discrete-event simulation model is described that can be used to test

the performance of different process control tools in a set-up dominant environment. Some
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performance characteristics of process control methods, such as probability of qualifying,

can be analytical derived. This does not show how a process responds to the adjustments

implemented by the respective methods or the number of units needed to validate the process.

Since there are no detailed analytical models for that, a discrete-event simulation model was

utilised. The general model is outlined and then validated against performance characteristics

that can be determined analytically. This validation gives confidence in the performance

results obtained through simulation that cannot be derived analytically. This general discrete-

event simulation model is then used to examine the performance of four specific process

control tools in a set-up dominant environment in sections 5.5 and 5.6. The process control

tools analysed where selected based on the review in section 3.4 and include: SUPA, Pre-

Control, Acceptance Control Chart (ACC) and SBX̄R.

5.4.2 General Discrete-Event Simulation Model

In order to further test the effectiveness of the different methods of validating the set-up of

a process, a discrete-event simulation model was built using WITNESS (Lanner Group Ltd.,

UK). The model simulated a generic process applying a CtQ to a unit. For example, this

could represent a lathe machining the outer diameter of a gear. The process has a U = 200

and L = 0 and a process target, T = 100. The current process mean, µ, can be offset at

the start of the simulation. The model adjusts µ based on the decision rules of the control

method analysed. Capability is set prior to the simulation and remains constant throughout.

The simulation model applies adjustments by finding the mean of the units signalling an

adjustment (Ā). Then it subtracts the difference between Ā and the process target, T , from

the current mean (µ(k)) to find the new process mean (µ(k + 1)), i.e.

µ(k + 1) = µ(k)− (Ā− T ) (5.5)

The general model can be seen in Figure 5.7. At the start, the experimenter sets the

initial parameters of capability and process mean (boxes 1 and 2). The model is allowed to

run. Units enter the model (box 3) with a generic process applying a CtQ to each unit (box

4), based on parameters of capability and process mean. The model then samples consecutive

units (box 5). Based on the decision rules of the Control method utilised, a decision is made

on whether or not the process is valid (box 6). In the case of SUPA, if there were five

consecutive units in the green zone the model will be validated. If a model is validated or

deemed incapable, sampling immediately stops (box 7). If the model is not validated, the

model decides whether an adjustment is needed to the current process mean (box 8). If an

adjustment is not needed sampling continues (box 5). If an adjustment is needed, the mean

is recalculated (box 9) by equation (5.5). The adjustment is then applied to the process mean

(box 2).
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Figure 5.7: Process flow of general discrete-event simulation model.

5.4.3 Model Validation

To test the validity of the simulation model, the function of adjusting the process was switched

off. The simulation was stopped if it was validated, incapable or in-need of adjustment.

From this the simulations estimate of confidence was compared with the statistically derived

results. A model built around the general framework in figure 5.7 was developed to test the

performance of SUPA in this situation. Figure 5.8 demonstrates the operating curves for the

analytical and simulation results, by plotting the probability of qualifying (P (q)) the SUPA

method against a range of Cp values. It is assumed in this example that the SUPA chart has

been set up to maintain a process with a Cp = 2.0.
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Figure 5.8: Operating curves of SUPA’s analytical and simulation performance.

The analytical results for SUPA, shown in figure 5.8, are derived from equations (5.2)

- (5.4). It can be seen in figure 5.8 that the difference between analytical and simulation

results was small for the SUPA control method. These SUPA results are typical for the other

methodologies simulated. This close alignment allows credible results to be derived from the

simulations conducted in the following sections.

5.5 Parametric Analysis

5.5.1 Introduction

In this section the performance of four process control methods are analysed. The first two

methods, Pre-Control and SUPA, are nonparametric process control approaches, they do not

make any distributional assumptions. The other methods, SBX̄R and ACC, are parametric

and assume the process has a Gaussian distribution. Simulating a process with a Gaussian

distribution offers a fair starting point for comparing the respective methods. Therefore, this

section performs a parametric analysis of these process control methods. This is achieved by

simulating a manufacturing process which produces products with a CtQ denoted by X, that

follows a Gaussian distributed as follows:

X ∼ N

(

µ(k),

(

U − L

6Cp

)2
)

. (5.6)

There are two events which can cause a signal from a process control method: a) when a

process is on-target but not capable and b) when a process is capable but off-target. Here,

the results are presented from when the simulated process control methods are tested under

these two conditions.
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5.5.2 Process On-Target, but not Capable

The respective methods were tested against a process which was initially set on-target. How-

ever, each time the simulation was run it had a smaller Cp and therefore larger process

variation. The control methods were all set to monitor a process with a Cp > 2.0. During

this analysis SBX̄R’s and ACC’s control limits, where set based on a historical process capa-

bility Cp = 2.0 and historical mean equal to the design target. SUPAs control limits, where

set based on a required Cp = 2.0. The first run of the simulation had a Cp = 2.0. Each run

decreased in the value of Cp, to a final value of 0.667. As these discrete-event simulation

models are stochastic, each simulation run had 1,000 replications to minimise deterministic

effects of the pseudo-random number generation.

Two questions are posed: a) what is the P (q), despite any adjustments made? and b)

how many units does it take to make a decision? These are answered in figure 5.9 and 5.10

respectively.
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Figure 5.9: Operating curves showing the effect of decreasing Cp against probability of qual-
ifying (P (q)).

Figure 5.9 demonstrates some important points:

• ACC has no mechanism to indicate that a process is incapable and eventually validates

all set-ups despite the capability. This is indicated by the flat line for ACC at P (q) = 1.0

for all values of Cp.

• For CtQs which need to be made to a higher Cp than 1.333, SUPA offers significantly

improved performance over Pre-Control. This is shown by SUPA having lower values

of P (q) as Cp decreases, i.e. SUPA rejects incapable processes more consistently.

• SUPA has better performance than SBX̄R at detecting incapable processes. At a
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Cp = 0.667 SBX̄R still qualifies over 20% of set-ups whereas SUPA only qualifies 7%.

• These results indicate that SUPA is the most sensitive control method for detecting

incapable processes. SUPA has the operating curve with the steepest gradient and as

such rejects more invalid processes.
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Figure 5.10: Operating curves showing the effect of decreasing Cp against number of samples.

Figure 5.10 highlights that as Cp decreases:

• SBX̄R consistently requires between 5-6 units to reach a final decision.

• Pre-Control and ACC use more units, tending towards 13 and 10 units respectively as

Cp approaches 0.667.

• SUPA uses increasingly more units to make a decision, peaking at 14 units.

On the face of these results, SBX̄R appears to be the most efficient method. This result

was due to SUPA’s decisions being made after a specific sequence of events, whereas, SBX̄R’s

decisions were made after specific numbers of samples. Using the example of a process with

a Gaussian distribution in figures 5.9 and 5.10, and Cp = 1.0, it was shown that on average

a final valid or invalid decision from SUPA came after 14 units and from SBX̄R after five

units. Under these conditions for SUPA, using equations (5.2) - (5.4) shows P (g) = 0.64 and

P (yu) = P (yl) = 0.17. Given these probabilities it is possible to imagine how a sequence

of samples from a process would ‘wander’ between zones without triggering a decision, e.g.

from Green zone to upper Yellow to Green to lower Yellow to... before two consecutive

Yellows in opposite Yellow zones or five consecutive Greens. Although it is desirable to

make a final decision as quick as possible, in the case of an incapable process, additional

sampling results in SUPA makes it more powerful at detecting an incapable process. Also,
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the increase in sampling that occurs as a process becomes less capable has practical benefits,

as more defective units are likely to be produced, increased sampling gives protection against

out-of-specification parts going undetected.

5.5.3 Process Capable, but not On-Target

To assess processes that were capable but not on-target, this analysis tested the respective

methods against a process which was initially set with a fixed Cp of 1.333, 2.000 and 2.667.

Each time the simulation was run using these settings the process mean was set further away

from the on-target state. The process control methods were all set to monitor a process with

a Cp = 2.0. The first run of the simulation at each setting of Cp started on-target. Following

runs began with the process mean, µ(k = 0), further from the on-target state by a factor, ̺,

of the σ. Again, each simulation run had 1,000 replications.

The most important question in this case was: what was the Cpk after a process was

validated? This shows how effective the control methods are at centring an off-target process,

presented in figure 5.11.

1

1.5

2

2.5

0 1 2 3 4 5

C
p
k

µ(k = 0)

(a) SUPA
SBX̄R
PC
ACC

1

1.5

2

2.5

0 1 2 3 4 5

C
p
k

µ(k = 0)

(b)

SUPA
SBX̄R
PC
ACC

1

1.5

2

2.5

0 1 2 3 4 5

C
p
k

µ(k = 0)

(c)

SUPA
SBX̄R
PC
ACC

Figure 5.11: Operating curves of final Cpk against process mean start positions as a factor of
σ, when the simulation has three different maximum values of Cp = (a) 1.333; (b) 2.000; (c)
2.667, for SUPA, Pre-Control, SBX̄R and ACC.
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Figure 5.11 highlights:

• SUPA has improved performance over Pre-Control, maintaining a higher value of Cpk.

• SBX̄R and ACC have steadier performance profiles over SUPA and Pre-Control. i.e.

the operating curves for SBX̄R and ACC more closely follow flat lines.

• SUPA has a dip in performance when a process is one to two standard deviations

off-target.

These results highlight that for re-centering an off-target process SUPA offers significantly

improved performance over Pre-Control. For example, in figure 5.11(b) where the process has

a maximum performance of Cpk = 2.0, overall SUPA keeps the process Cpk > 1.63, whereas,

Pre-Control keeps the process Cpk > 1.36. Further to this, SBX̄R provides marginally better

performance over SUPA. Using the same example, SBX̄R keeps the process Cpk > 1.7.

The next question is how many adjustments does each method take to re-center the

process? These results are presented in figure 5.12.
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Figure 5.12: Operating curves of number of adjustments against start positions of process
mean as a factor of σ, when the simulation has three different maximum values of Cpk = (a)
1.333; (b) 2.000; (c) 2.667, for SUPA, Pre-Control, SBX̄R and ACC.

Figure 5.12 highlights:
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• Pre-Control used the least number of adjustments for all values of maximum Cpk.

• SUPA and SBX̄R use a similar number of adjustments when the process maximum

Cpk > 2.0.

• SUPA makes more adjustments than any other method when the maximum Cpk =

1.333. This ties in with the high number of units sampled shown in figure 5.10, when

a process has a low Cpk but is on-target. Therefore, SUPA needs to make a couple of

adjustments to get process on-target before it can deem it as incapable.

Another question is how many samples does each method take to finally validate the

process? These results are presented in figure 5.13.
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Figure 5.13: Operating curves of number of samples against process mean start positions as
a factor of σ, when the simulation has three different maximum values of Cp = (a) 1.333; (b)
2.000; (c) 2.667, for SUPA, Pre-Control, SBX̄R and ACC.

Figure 5.13 highlights:

• Once the process is off-target, SBX̄R uses approximately 10 samples to get the process

back on-target and validate it.

• SUPA uses a similar number or less samples than SBX̄R, except in a window where
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the process is one to two standard deviations away from its target. For example, if the

process has a maximum Cpk = 2.0, SUPA can use up to 15 samples to validate.

• ACC and Pre-Control generally use less samples than SUPA and SBX̄R, this however,

is at the expense of performance in other areas.

5.5.4 Summary

This section has presented a parametric analysis of four different statistical approaches to

process control for set-up dominant processes. The new method known as SUPA was com-

pared with existing industrial practices and statistical techniques in the literature. To test

the method’s robustness, a generic discrete-event simulation model was used to perform the

analysis.

SUPA offers a method of process control for set-up dominant processes, which is easier

to apply than classically derived SPC approaches. This is achieved by using simple rules

and a traffic light system based on design specification, rather than control limits based on

estimated process performance. Simulation analysis also shows that SUPA is more sensitive

than other approaches at detecting an incapable process as it monitors more units when a

process is less capable in its effort to reduce the risk of allowing a defect to occur. It is, also,

more sensitive than PC at detecting mean shifts in a process.

SUPA is a nonparametric methodology and should, therefore, be robust against processes

with non-Gaussian distributions. This assertion is examined in the following section.

5.6 Non-Parametric Analysis

5.6.1 Introduction

The analysis performed in section 5.5 determined that SUPA was the most effective non-

parametric control method and SBX̄R was the most effective parametric control method, for

set-up dominant processes. In this section these two control methods are assessed further by

examining their performance against processes with unknown, non-Gaussian distributions.

The statistical distributions modeled were (a) Uniform, (b) skewed Triangle and (c) mixed

Uniform and skewed Triangle distributions. In order to make the analyses comparable, the

variances of the three distributions used were made equal to one another.

The three distributions were selected as they are bilateral distributions, i.e. they can

have positive or negative outcomes. This is important, as previous simulation work of Pre-

Control by Sinibaldi [127] was criticised in the literature by Shainin [110] for using a χ2

distribution, which is not bilateral, to test robustness against non-Gaussian distributions.

Also, the distributions have probability density functions that are very different, enabling

SUPA’s non-parametric properties to be examined, as well as testing SBX̄R with processes

that are not Gaussian. These three process cases, had an output (X) which is expressed
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mathematically, using the upper, U , and lower, L, specification limits, the current process

mean, µ(k), and the capability defined at the start of the simulation, Cp, by:

(a) Uniform,

X ∼ U(aU , bU ); (5.7)

where,

aU = µ(k)−

√

12

(

U − L

6Cp

)2

. (5.8)

bU = µ(k) +

√

12

(

U − L

6Cp

)2

. (5.9)

(b) Skewed Triangle,

X ∼ Tri(aT , bT , cT ); (5.10)

where,

aT = 3µ(k) − bT − cT , (5.11)

bT = µ(k) +

(

U − L

6Cp

)

, (5.12)

cT =

√

((3b(µ(k)))2)− (12(3(µ(k))2 − 9bµ(k) + 3b)2 − 18

(

U − L

6Cp

)2

)). (5.13)

(c) Mixed Uniform and skewed Triangle,

X ∼















Tri(aT , bT , cT ) for µ(k) < T − 0.3(T − L)

U(aU , bU ) for T − 0.3(T − L) < µ(k) < T + 0.3(U − T )

Tri(2µ(k)− aT , 2µ(k) − bT , 2µ(k) − cT ) for µ(k) > T + 0.3(U − T )

(5.14)

As SBX̄R and SUPA have different philosophies, setting SBX̄Rs control limits based on

a historical process Cp = 2.0 and setting SUPAs control limits based on a required Cp = 2.0,

allowed equivalent analyses. In order to prevent deterministic effects of the simulation’s

pseudo-random number generator disrupting the outcome, each setting was replicated 1,000

times. In these experiments, as in the previous parametric analysis, if a false adjustment signal

was made, the process was adjusted and continued until the control procedure determined

the process as either valid or incapable.

As in the previous section, this analysis examines the two events that lead to a control

chart signal: a) when a process is on-target but not capable; b) when a process is capable

but off-target. These two situations were applied to the three process distribution cases: (a)

Uniform; (b) skewed Triangle; (c) mixed Uniform and skewed Triangle.
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5.6.2 On-target, not capable

In these cases, the process had (a) Uniform, (b) skewed Triangle and (c) mixed Uniform and

skewed Triangle distributions, whose means (µ(k = 0)) were on-target with respect to the

nominal specification (T = 100). However, the distributions variances were increased in each

simulation, to test how effective the respective control methods were at detecting that the

process was not capable. As Cp is inversely proportional to the standard deviation, when the

process variation is increased, Cp is reduced.

Results for the probability of qualifying, despite adjustment, against the process Cp, are

given in figure 5.14 (a;b;c). These results demonstrate that if Cp = 2.0, both SUPA and

SBX̄R validate the process in excess of 98% of occasions, despite the underlying statistical

distribution of the process. Also, it is shown in Figure 5.14 that SUPA is more powerful as a

control method than SBX̄R. This is shown with the same type of separation in performance

seen in the previous parametric analysis in these nonparametric cases (a;b;c) and was partic-

ularly pronounced in the Uniform case (figure 5.14(a)). This is an important point, since it

indicates that SUPA rejected more invalid processes than the SBX̄R method.
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Figure 5.14: Operating curves of decreasing Cp against probability of qualifying (P (q)) for
(a) Uniform, (b) skewed Triangle and (c) mixed distributions.

The number of units sampled, by the control methods, before making a final decision was
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also assessed, Figure 5.15(a;b;c). The results show that SBX̄R consistently uses approxi-

mately six samples before making a final decision whether the process is valid or not for all

distribution cases. However, as in the parametric case, SUPA uses a small number of units

to make a final decision when the Cp is close to 2.0, but uses increasingly more units as

the Cp decreases. For example, SUPA uses a maximum of: 18 samples in the uniform case

(figure 5.15(a)); 14 samples in the skewed triangular case (figure 5.15(b)); 16 samples in the

mixed case (figure 5.15(c)).
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Figure 5.15: Operating curves of decreasing Cp against number of samples for (a) Uniform,

(b) skewed Triangle and (c) mixed distributions.

As in the previous parametric analysis, this nonparametric analysis has shown that both

SUPA and SBX̄R are both suitable tools for low-volume process control in terms of iden-

tifying incapable processes. The performance of SBX̄R in this nonparametric analysis is

particularly surprising, given that it is a tool based on parametric assumptions. Again, this

analysis has shown that SBX̄R is more efficient in terms of the number of units sampled,

but SUPA gives better protection against accepting invalid processes. The next section of

this nonparametric analysis assesses SUPA’s and SBX̄R’s ability to identify and off-target

process with a underlying non-Gaussian distribution.
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5.6.3 Off-target, capable

The second situation was for a capable process, i.e. had a Cp=2.0, but with an initial process

mean not on-target (µ(k = 0) 6= T ). As with the previous test, in this section, the process

had (a) Uniform, (b) skewed Triangle and (c) mixed distributions. At the start of each

simulation run, the process’s starting mean (µ(k = 0)) was moved further off-target. The

standard deviation, σ, of the process was calculated, given a Cp = 2.0, using equation (3.7).

The deviation from the design target was measured as a coefficient, ̺, of σ, such that:

µ(k = 0) = T + ̺σ. (5.15)

Figure 5.16(a;b;c) highlights the final capability with respect to process accuracy and

precision (Cpk), plotted against µ(k = 0)’s starting position. This shows that:

• in the Uniform case (Figure 5.16(a)), profiles were closer in performance;

• in the skewed Triangle case (Figure 5.16(b)), the dip in performance was Cpk ≈ 1.6 at

2.5σ for SUPA and Cpk ≈ 1.8 at 1.5σ for SBX̄R;

• in the mixed case (Figure 5.16(c)), there was a dip in performance of Cpk ≈ 1.6 for

SUPA and Cpk ≈ 1.8 for SBX̄R.
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Figure 5.16: Operating curves of final Cpk against process mean start positions µ(k = 0) as a
factor of σ, when Cpk = 2.0, for (a) Uniform, (b) skewed Triangle and (c) mixed distributions.

Figure 5.17(a;b;c) illustrates the number of adjustments made before a final decision, plot-

ted against µ(k = 0)’s starting position. It can be seen in all cases (figures 5.17(a;b;c)), that

both control methods had performances in a similar range. Once µ(k = 0) is more than 1σ

away from the T in the Uniform and mixed distribution cases and more than 2.5σ away from

T in the skewed Triangle case, they will make 1− 1.5 adjustments to the process on average.

The closeness in profiles in both the final Cpk (Figure 5.16) and number of adjustments made

(Figure 5.17), shows that both methods respond and make similar corrections to the system.
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Figure 5.17: Operating curves of increasing µ(k = 0) as a factor of σ, against number of
adjustments for (a) Uniform, (b) skewed Triangle and (c) mixed distributions.

Figure 5.18 illustrates the number of units sampled before an adjustment is made. It

was shown in these results that the SBX̄R method takes less samples, before making an

adjustment, than SUPA. SBX̄R makes a decision to adjust a process within five samples or

else validate the process, whereas, SUPA takes as many as necessary to come to a conclusion.

It is also worth noting, that the extreme situations shown in Figure 5.18 of SUPA taking more

than six units to make an adjustment, typically when µ0 was less than 1σ off-target, occurs

infrequently. This result only shows the number of samples to make an adjustment in the

runs when an adjustment occurs. If we take this in context with the results in Figure 5.17,

when µ0 was less than 1σ not all runs were adjusted and were validated instead. This leads to

the ‘dips’ in performance seen in the Cpk values shown in Figure 5.16, but prevents excessive

sampling.
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Figure 5.18: Operating curves of increasing µ(k = 0) as a factor of σ, against number of
sampled units before an adjustment for (a) Uniform, (b) skewed Triangle and (c) mixed
distributions.

Figure 5.19 illustrates the number of units required to make a final decision. It was noted

that the typical number of units sampled was in the range 5-8 for SBX̄R and 6-14 for SUPA.

This difference is in keeping with the results described in Figure 5.18. Both SBX̄R and SUPA

need at least five units to validate, this result is, therefore, created by the difference in the

number of sampled units before an adjustment is made.
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Figure 5.19: Operating curves of increasing µ(k = 0) as a factor of σ, against the total
number of samples for (a) Uniform, (b) skewed Triangle and (c) mixed distributions.

Overall, it can be seen that the performance of the methods was similar. SBX̄R was

faster at making a decision and slightly better at maintaining a process Cpk as close to its

optimum. However, SUPA was more powerful at detecting a process that was incapable and

in this instance the additional sampling was useful.

5.6.4 Summary

This section compared the performance of two set-up dominant process control methods:

SBX̄R and SUPA, against processes with non-Gaussian distributions. The former provides

a statistical process control procedure, which maintains the statistical stability of a process

using capability limits. Whereas, the latter is a non-parametric approach to defect prevention,

with control limits and tests based on specification and derived using probability theory. The

method’s effectiveness with respect to: (a) detecting an incapable process; (b) adjusting an

off-target process, were studied. To investigate this, the methods were used to control a

simulated process with three different statistical distributions.
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5.7 Summary

In section 5.1 the need for a process control tool to monitor set-up dominant processes

was identified. Three currently available approaches: Pre-Control, ACC and SBX̄R, were

highlighted. However, each had their own theoretical and practical limitations; as a result,

it is common for operators of setup dominant processes to use a rule-of-thumb approach to

process control.

In section 5.2, this issue of monitoring set-up dominant processes was then observed in

a case study of a manufacturer and global supplier of quality metal printing machinery.

During this case study the initial observations, match those in the literature, that rule-of-

thumb methods are being used to control the setup dominant processes within the company.

Management perceived classical SPC approaches as not relevant for control of their processes;

operators saw classic SPC as an abstract approach, which did not link control limits and

tolerance limits.

In order to improve the situation, Pre-Control was trialled as a potential method of

process control. Pre-Control has had limited use in these setup dominant situations, but

its phase 1 can validate a new process without having prior statistical knowledge. It was

selected as it provided operators within easy to grasp traffic-light chart, linking tolerance

limits to control limits. Although, the paper-based system used in the trial was convoluted,

the operators appreciated the easy to interpret traffic light chart and system of rules to

identify incapable processes. The main problem highlighted in the trial, was up Pre-Control

was a very rigid system and did not have a mechanism to control processes required different

levels of capability.

To address this issue, a new method of set-up dominant process control, called Set-Up

Process Algorithm (SUPA), was developed and described in section 5.3. This approach was

largely based on the Pre-Control methodology, due to being nonparametric and an easy to

follow system of traffic-light chart and rules.

To fully examine the potential of SUPA and to compare it with other set-up dominant

process control methods, a stochastic discrete-event simulation model was developed as a

test bed. This model was described in section 5.4 and provided a means of assessing process

control tool performance features that cannot be calculated analytically. The results derived

from these models, therefore, give a more complete picture to evaluate the effectiveness of

each tool. The situation experiments were then broken into two sections: firstly, a parametric

analysis in section 5.5; secondly, a nonparametric analysis in section 5.6.

In the parametric analysis, SUPA, Pre-Control, ACC and SBX̄R were compared to one

another against a set-up dominance process with a Gaussian distribution, in two situations:

a) when a process was on-target but contained excessive variation; b) when a process had a

fixed amount of variation but was off-target. The results from this study, showed that SUPA

and SBX̄R were overall the best performing process control tools for a set-up dominant
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process with a Gaussian distribution.

In the nonparametric analysis, SUPA and SBX̄R were compared against one another

against a set-up dominant process with three different non-Gaussian distributions, namely:

a) uniform; b) skewed triangle; c) mixed uniform and skewed triangle. It was noted, that

the SBX̄R control method performed well against different statistical distributions, despite

it being specifically designed to operate with Gaussian processes. However, the performance

results between SUPA and SBX̄R largely followed the same pattern as the parametric anal-

ysis.

A consideration from the simulation results is the number of units required to make a

final valid or not valid decision. It was shown in all cases that the SUPA method used more

samples than SBX̄R. When the process was capable and on-target it was shown that the

difference between the two methods is marginal. However, as a process becomes less capable,

or starts further from the target, the SUPA method requires many more samples to make

a final decision. This can be seen as a useful feature, for the situation where the process is

not capable. The SUPA method is more powerful in this situation, as a result of additional

sampling when processes become incapable. Also, if the process is not capable it produces

more defects; therefore, by collecting more samples the chances of detecting a defective units

is increased. The high sample numbers collected by SUPA in the second situation, where a

process is off-target, is less desirable. It is preferable in this situation that an adjustment is

made and then validated as quickly as possible.

A practical consideration, which cannot be explored by simulation, is how easy it is for the

end user to implement the methods. These methods are typically used by machine operators,

who are unlikely to have a background in statistics. Therefore, they are likely to find a

method which uses control limits linked to design tolerance easier to utilise, such as SUPA,

than ones which use statistical limits, such asSBX̄R.

To extend this work further, the following chapter addresses the situation where set-up

dominant processes are also multivariate in nature, i.e. they have multiple correlated CtQs.
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6.1 Introduction

In the previous chapter, a new traffic-light control chart for setup dominant processes was

introduced known as SUPA. It was shown through simulation analysis that SUPA was an

effective control tool for monitoring processes producing products with a small number of CtQ

features. Also, SUPA required independence between CtQs and the process’s adjustment or

re-centring parameters, for example, in a machine tool this would be the machine tools offsets.

In chapter 1, it was outlined that the AMTs that typically operate in a set-up dominant

environment producing parts with ever increasing complexity. An example from the aerospace

industry is the production of aerofoil parts for jet engines. In this example, it is common

for in-excess of 30 CtQ features to be machined on the part by a single multi-axis Computer

Numerical Control (CNC) machining centre process. This would require the machine tool

operator to manage over 30 separate SUPA charts for a single part and process combination.

An industrial case study of this type of issue is outlined and examined in section 6.2.

It is clear there is a need to extend univariate approaches to process control, such as

SUPA, into a multivariate context. In section 3.4, the literature on multivariate process

control was reviewed. As with the literature on univariate process control, there has not

been extensive work in the field of multivariate process control for setup dominant processes.

Most of the multivariate process control methods available are extensions of classic univariate

104
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SPC techniques. This means they require large sampling during the start-up period to

derive control limits based on the process following an approximately Gaussian multivariate

distribution. There were two papers reviewed [115, 116], that attempted to extend pre-control

into a multivariate context. The issue with these approaches was that they were not truly

nonparametric. Instead, they offered a version of multivariate stop-light control, whereby,

the control boundaries were calculated using statistical limits and historical data. In response

to this, section 6.3 extends the SUPA method into a multivariate approach. This method,

known as Multivariate Set-Up Process Algorithm (mSUPA), provides an operator with the

same traffic-light based rules of SUPA that are nonparametric; hence, do not require prior

process knowledge. The implementation of this new mSUPA method is then discussed in

section 6.4.

In section 6.5, the performance of the mSUPA is assessed using a discrete event simulation

model. The discrete-event simulation model used is the same as described in the previous

chapter, in section 5.4, has been extended to produce products with multiple CtQs. The

findings of this chapter are concluded in section 6.6.

6.2 Case Study

6.2.1 Introduction

This case study was conducted at manufacturing facility of a world leading producer of

aero engines. The study consisted of a site visit to the manufacturing facility on 23/10/13

and follow-up analysis of production data. The manufacturing facility mainly produced

aerofoil parts, known as vanes, of varying types and sizes. These vanes would then go into

a final assembly producing stators. The stators are then used in different sections of a jet

engine; for example, a high-pressure stator would be used for the engine’s hot section or a

compressor stator for the engine’s cold section. The function of the stator, ultimately, defines

the specification of the vanes CtQ features.

In this case study, a single manufacturing process is followed. It consists of a single multi-

axis CNC machining centre. Typical production volumes in this process are between 40-100

parts. After a batch of parts has been made, the process is set up to manufacture a different

component. This is a typical set-up dominant process, because the production volume is too

small to calculate control limits for classical SPC techniques. The operators of this process

have access to a CMM inspection station to check a part’s CtQs for dimensional conformity

against the CAD model. A unique feature of this manufacturing process is that the machining

centre has four heads; which means that, any adjustment to a machine tool offset will not

be seen in the part CtQ for three units. It is therefore critical for the company to have an

effective process control methodology in place, that can detect a drift in the process before

it is out-of-tolerance. If a part as measured out-of-tolerance, even if an immediate change is

made to the process, the next three parts are likely to be also out-of-tolerance.
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Also, this study focuses on the production of a single part; a standard vane, for a stage

II high-pressure stator. This part has 26 CtQ features machined during this process step. A

drawing of this part and the CtQ features is shown in figure 6.1. The next section outlines

process control practices observed during the site visit on 23/10/13.

Figure 6.1: Drawing of the standard vane for a stage II high-pressure stator.

6.2.2 Observed Practices

At this stage current practices were observed, with a particular focus on the process control

methodology employed. As in the previous case study, set-up time of the process was signif-

icant compared to the processing time of a single part. It was, therefore, critical that if a

batch size of 100 parts was required, operators were able to produce 100 in-tolerance parts.

In order to make the facility’s production more lean and to reduce work in process, the com-

pany had moved away from ‘ over-producing’ parts to compensate for any potential defects.

However, this puts pressure on the operator to produce the required number of in-tolerance

parts; if defective parts went undetected and replacements had to be made, this would require

the process to be set-up again for a batch size of one part. This in turn, reduces the overall

manufacturing capacity of that particular machining centre, due to the extra time spent in a

set-up mode and no part produced.

The company wants to minimise the number of parts that were inspected. Employing a
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variant of SPC was seen as a potential methodology to give them confidence in reducing the

number of samples inspected. Prior to the site visit, the company had completed a review

of potential SPC practices to employ. This review included input from leading external

consultants in the field of SPC. The findings in this review concluded that there was no

currently available SPC method suitable for their purpose.

This led to the current situation where 100% inspection is employed. The measurements

collected from the CMM were automatically collected using Mitutoyo MeasurLink. Using

this software, operators were able to automatically plot their measurements onto Pre-Control

charts; although they did not employ any formal Pre-Control rules. Operators were merely

using the Pre-Control chart as a guide, trying to set up their processes within the green

band and not just within tolerance. Although, Pre-Control charts could be plotted through

the software, the standard rules to identify out-of-control processes were not built in. Man-

agement found that there was an overall improvement in productivity as a result of using

these Pre-Control charts as a guide, but it had not succeeded in reducing the number of

inspected parts. In fact, employing this Pre-Control approach had increased inspection time,

as operators would have to review 26 charts associated with each CtQ. This was an issue

the company wished to address and is a situation where a multivariate approach to analysis

would be suitable.

The company had two fundamental issues with employing a full Pre-Control implemen-

tation. Firstly, there were certain parts and CtQs that would require confidence that the

process capability Cpk > 1.33, in order to reduce the current 100% inspection regime. This

is not achievable with standard Pre-Control. Secondly, there were situations where to keep

one CtQ near its target, another CtQ would have two run in a yellow zone on a Pre-Control

chart. This situation occurs due to a combination of tool wear and correlation of two CtQs

to a single machine tool offset, i.e. changing this offset has an effect on both CtQs. The

operator, therefore, has to make a decision as to what is the optimum position to run the

process. It may be that one CtQ is less critical to the overall in-service performance of the

part and this is allowed to be manufactured closer to its tolerance limit. The result being

that the other CtQ can be manufactured closer to its target value.

6.2.3 Discussion

This site visit had positive discoveries. Chiefly, that operators were not just trying to steer

their processes to be inside the tolerances, but were using a Pre-Control chart to steer the

process into the middle 50% of the tolerance band. However, no Pre-Control rule sets were

used to give operators confidence that their processes were capable. Therefore, production

could not move away from their current 100% inspection regime. There was also concerns

over the time added by monitoring multiple univariate Pre-Control charts for each part type

produced and the need to have confidence that certain CtQs had a high capability. The

remainder of this chapter addresses these issues by introducing a new multivariate version of
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SUPA, a control tool developed for these set-up dominant applications.

A further concern, was the ability to optimise the process. Currently this optimisation is

performed by the machine tool operators. Chapter 7 looks into methods of automating this

optimisation process in conjunction with a process control tool, such as mSUPA.

6.3 Multivariate SUPA

The SUPA method, described in chapter 5, provides a machine operator with a simple chart

and rule set to statistically diagnose when a process is off-target. The chart is based around

the tolerance of the monitored CtQ design feature and a traffic-light scheme where the central

region around the design target is designated as the green zone. The regions which are

between the green zone and the tolerance limits are the yellow zones. The regions outside the

tolerance limits are the red zones. The size of the green zone is determined by the minimum

Cp required from the process, as per figure 5.2.

If the green zone percentage is used from figure 5.2, this means that the probability of a

single part falling into the green zone is P (g) = 0.94 if it conforms to the minimum required

Cp. Consecutive parts are sampled and their measured CtQ design features are categorized

as green, yellow or red. If a sampled part is red it signals that the process is off-target. Two

consecutive parts in the same yellow zone signal an off-target process. Five consecutive green

parts demonstrate the process is capable with 98% confidence and is allowed to continue

without further checks. These rules are summarised in table 5.2.

In order to perform SUPA in the multivariate case (mSUPA), in a manner that maintains

a nonparametric approach a series of sampling rules needs to be established. In order to

maintain consistency between univariate and multivariate SUPA, the rules established in

table 5.2 will be used in the multivariate context. Therefore, this requires that consecutive

parts are sampled from a process after set-up. The CtQ features of these parts are measured

and recorded as the CtQ vector, x. If a feature of the CtQ vector is outside its design

tolerance, the part is scrapped.

Consider the simplified case of a part with two CtQ design features, i.e. x = [x1, x2]
T . If

x1 and x2 have the same specified design tolerances of U = 250 and L = 50, the tolerance

boundary can be represented as a box, as in Figure 6.2. Taking the philosophy of linking

a red zone to design tolerance from SUPA, this box can be used in mSUPA as a boundary

between the red and yellow zones. Let two measured parts k = 1 and k = 2 be collected

with CtQ design vectors of x(k = 1) = x(1) = [200, 100]T and x(k = 2) = x(2) = [40, 200]T .

These points are plotted on figure 6.2, where it is shown there that x(1) is within and x(2)

is outside the design tolerance.
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Figure 6.2: Tolerance boundary of x and positions of CtQ design vectors x(1) and x(2).

Although this information tells a user if a part is in or out-of-tolerance, it does not give

any indication of how close a part is to the design target. However, to formulate a green

zone, and therefore an mSUPA chart, a target Cp value for each CtQ design feature needs to

be defined. Rearranging the Cp formula the desired standard deviation is:

σ =
U − L

6Cp
. (6.1)

For an x with n CtQ design features, the minimum variation in each xi, i = 1, . . . , n can

be represented by σ2
i . This allows the definition of the target covariance matrix, S as:

S =











σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . . 0

0 0 0 σ2
n











. (6.2)

The target covariance matrix, S only contains diagonal elements. This reflects the fact that

no assumptions are made about correlations between CtQ design features. With S, the

multivariate chart in Figure 6.2 is refined by using this as a scale of maximum variation

acceptable in the process. S is used with the measured CtQ design vector, x, and the process

target vector, T , to calculate the Mahalanobis distance [128], between x and T as follows:

(x− T )TS−1(x− T ) < H2 (6.3)

where H is a pre-selected constant. This allows the definition of a multidimensional green

zone, which is the set of those points that have a Mahalanobis distance less than H2 from T .

The left hand side of equation (6.3) has the property of following a χ2
n,ε distribution, where
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n is the degrees of freedom, which is equal to number of CtQ design features and ε is the

probability of a sample from a population that is on-target falling outside the green zone.

In the case of univariate SUPA the green zone is defined so that a part produced by an

on-target process has a minimum probability of falling in the green zone of P (g) = 0.94.

Hence, extending this to the multivariate case results in ε = 0.06. This results in the sphere

shown in figure 6.3. Using this chart, a decision about whether a process is off-target or not,

is still made by following the SUPA rules of table 5.2.
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Figure 6.3: 2-dimension mSUPA chart showing green, yellow and red zones.

A significant issue with all multivariate approaches to process control, and mSUPA is no

exception, is how to present information. The next section, addresses how to implement an

mSUPA process control system.

6.4 Implementation

A key point in any successful process control method is how it is implemented. As was

shown in the univariate Pre-Control case study at a manufacturer of metal printing presses

in section 5.2, the management of control charts needed to be perceived as effortless to ensure

widespread uptake. In the case study, a paper-based method of implementing univariate Pre-

Control was used for a trial purpose. Although this paper-based method provided useful data

to the operator in the trial, it was perceived as a hassle to complete which would limit its

widespread uptake.

This issue has been overcome with the implementation of classic SPC techniques in high-

volume manufacturing applications. Software packages, such as Mitutoyo MeasurLink [129],

InfinityQS ProFicient [130],Q-DAS procella [131], to name a few, offer automated solutions

for real-time data collection and SPC. It was shown in the manufacturer of aerofoil parts
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case study in section 6.2, that these systems offer a convenient solution to collect and visu-

alise data. However, the SPC solutions built into the software packages are not statistically

robust against set-up dominant processes and do not offer an effective way to communicate

multivariate data.

A solution to providing a process control methodology that was robust against set-up

dominant processes, would be to offer mSUPA through a real-time data collection and process

control software package. The critical issue then would be how to present multivariate data

available through mSUPA. As the number of CtQ features on a single part increases, with

increasingly complex designs, successful implementation does not just rest on an easy-to-use

data collection system but also requires a means of presenting data to an operator in a way

that is digestible. If for example, a part with 25 CtQ features was to be monitored, either

a single plot with 25 axes would be needed or 25 individual projection plots are required.

The former would be impossible to visualise given the stereoscopic 3-D vision of the human

eye. The latter has already been shown to be time-consuming, as it would be a very similar

process to the management of multiple Pre-Control charts that is currently contacted by the

company in the aerofoil parts case study.

However, visualising data graphically would miss a key feature of the mSUPA method.

That is a simple traffic-light could be presented to the operator. Once CtQ tolerances and

mSUPA zones have been specified, it is computationally quick to identify which zone a mea-

sured part falls into. Presenting an operator with a green, yellow or red light gives them very

quick information about the current global position of the process. If a red or two consecutive

yellows are signalled individual 2-D projection plots can then be presented to the operator,

to assist in identifying what corrective action is needed.

The next section uses the discrete-event simulation model described in section 5.4 to test

the performance of this new mSUPA method.

6.5 Detection of Off-Target Processes

6.5.1 Introduction

In this section the mSUPA approach is tested and benchmarked against the first-off ap-

proach using a discrete-event simulation model. The model used is the same as described

in section 5.4, but it now produces products with multiple CtQ features. For the purposes

of presenting results that can be visualised, this analysis looks at a simulated process that

produces a product with two CtQ features (x), therefore:

x =

[

x1

x2

]

. (6.4)

These products are produced by a process that has a multivariate normal distribution.

This means that x is distributed by:
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x ∼ N(µ,Σ), (6.5)

where, µ is the vector mean and Σ is the covariance matrix of the CtQ features. In the

simulations, the positioning of µ is changed to assess the effectiveness of mSUPA at detecting

whether a process is making CtQs near their design target. In these examples, both x1

and x2 have the same specified design tolerances U = 250, L = 50 and a design target

T = 150. The covariance matrix, Σ is adjusted to provide to separate simulation cases: the

first in section 6.5.2, looks at the situation where there is no correlation between the two CtQ

features; the second in section 6.5.3, looks at the situation where there is a strong correlation

between the two CtQ features.

In this analysis, either the mSUPA or the first-off method is being used to identify whether

µ is sufficiently close enough to T to validate or qualify the process. If µ and T are not close

enough together, a signal is made that an adjustment is needed to the process. The first-off

method achieves this by sampling the first unit made then, if x is within its tolerances the

process is validated, if x is outside one of its tolerances the process is rejected. For mSUPA

a target Cp value for each CtQ needs to be defined, so that a green zone boundary can

be calculated. For the purposes of this simulation, both x1 and x2 are expected to have a

minimum capability Cp > 2.0. This means that the mSUPA covariance matrix, S, is:

S =

[

277.78 0.00

0.00 277.78

]

. (6.6)

Using this value for S, a decision can be made as to whether a x value falls in a green

zone by solving the inequality in equation 6.3. The value for H2, from equation 6.3, has the

property of following a χ2
n,α distribution. In this case, the degrees of freedom n = 2 and the

probability that an on-target process produces an x value outside the green zone, α = 0.06;

therefore, H2 = χ2
2,0.06 = 5.627. The red/yellow zone boundary is encapsulated by U and L

for x. These green/yellow/red zones can be plotted as in figure 6.3.

In these simulations, the performance of mSUPA to indicate when an adjustment is needed

is assessed. This means that adjustments are not made in this series of simulations. The

topic of adjusting a multivariate processes is addressed in chapter 7.

6.5.2 Two Uncorrelated CtQs

In this series of experiments, the ability of mSUPA and the first-off method to detect an

off-target process is tested when there is no correlation between individual CtQ. The process

is also producing CtQ features with a capability Cp = 2.0. This means that the processes

covariance matrix, Σ, is:

Σ =

[

277.78 0.00

0.00 277.78

]

. (6.7)
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In the first experiment, the CtQs process means were set equal to the design target, i.e.

µ = T . The simulation was then allowed to run uninterrupted, producing 10,000 products.

Then the resulting x values were plotted to visualise the distribution of points created by Σ

value in equation 6.7. These results are displayed in figure 6.4, which shows a dense circular

scattering of points within the green zone.
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Figure 6.4: Distribution of x values from the uncorrelated simulated process.

This dense circular scattering of points is consistent with two features that are indepen-

dently distributed. I.e. there is no correlation between the two CtQ features. This confirms

that the simulation is producing products with CtQ features as expected.

A second experiment was then run with this simulation; whereby, the starting process

mean (µ(k = 0)) was moved progressively further away from the design target. This exper-

iment is performed to demonstrate the effectiveness of mSUPA at identifying and off-target

process. Due to the red zone being linked to CtQ design tolerances, this control limit forms

a rectangle around the design target. To compensate for the different distances between the

central design target and the red zone boundary, this experiment was run twice. In the first

run, the position of µ(k = 0) was moved away from the design target in a direction that

crosses the red zone boundary in the shortest path, see figure 6.5(a). In the second run,

the position of µ(k = 0) was moved away from the design target in a direction that crosses

the red zone boundary in the longest path, see figure 6.5(b). Given this stochastic nature

of the simulation, each time µ(k = 0) is moved further away from the design target, 2000

experimental runs are made to ensure deterministic effects of the pseudo-random number

generation are eliminated.
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Figure 6.5: Starting positions of µ in the correlated simulated process: (a) taking the shortest
path to the red zone; (b) taking the longest path to the red zone.

There are two results from these experiments: the probability of qualifying a process and

the number of samples to make this decision. The probability of qualifying a process without

any adjustments being made is shown in figure 6.6. The number of samples needed to make

this decision is shown in figure 6.7.
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Figure 6.6: Operating curve of probability of qualifying (P (q)) without any adjustments
against the position of µ(k = 0) as a distance from process target for: (a) shortest path; (b)
longest path.

In figure 6.6(a) the P (q) is shown for the situation where µ(k = 0) is moved away from

the design target taking the shortest path to the red zone. In figure 6.6(b) the P (q) is shown

for the situation where µ(k = 0) is moved away from the design target taking the longest

path to the red zone. The mSUPA results are plotted with a solid line and the first-off results

are plotted with a dotted line. Both these figures demonstrate that when the process is on-
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target, i.e. µ(k = 0) = 0, mSUPA qualifies or validates approximately 98% of the processes,

whereas first-off validates 100% of the processes. This is a critical result, as it demonstrates

that mSUPA maintains the same confidence level as SUPA. Figure 6.6 also showed that

when µ(k = 0) moved away from the design target on the longest path, a slightly higher

percentage of processes are validated in both cases. Further, as µ(k = 0) moved away from

the design target the operating curve for the SUPA rejected more process than the operating

curve for the first-off method, highlighting that SUPA is more able to detect an off-target

process. However, the difference in results between the shortest and longest path are similar

when µ(k = 0) is close to 0 and, although different as µ(k = 0) moves away from 0, this

difference is not large.
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Figure 6.7: Operating curves of the number of samples to make a decision against µ(k = 0)
for: (a) shortest path; (b) longest path.

In figure 6.7 The number of samples to make a valid/off-target decision is shown for the

situation where µ(k = 0) is moved away from the design target, with (a) taking the shortest

path to the red zone and (b) taking the longest path to the red zone. The mSUPA results are

plotted with a solid line and the first-off results are plotted with a dotted line. This shows

that mSUPA performs in a similar manner in both situations. It highlights that an on-target

process, where µ(k = 0) = 0, is validated within six samples. As µ(k = 0) moves away from

the design target increasingly more samples are required to make a decision, until a peak

of just under 8 samples at µ(k = 0) ≈ 30. Then there is a drop off in the number of units

required down to two samples at µ(k = 0) ≈ 60. This behaviour reflects mSUPA requiring

more units to make a decision as µ(k = 0) approaches the green/yellow zone boundary.

Once this boundary has been crossed mSUPA only requires two samples to identify that the

process is off-target. These fluctuations in the number of samples required are consistent with

the results obtained for univariate SUPA. The first-off method, however, only ever requires

a single sample by definition. Although, first-off is the more efficient approach, figure 6.6

clearly demonstrates that this compromises its performance.
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In a final experiment, starting process mean positions, µ(k = 0), were uniformly dis-

tributed across the design space. 600,000 simulations were run to produce a concentration

diagram of µ(k = 0) positions that were validated. These concentration diagrams are shown

in figure 6.8.
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Figure 6.8: Concentration diagrams showing µ(k = 0) positions with green representing a
validated process and red representing an off-target process.

In figure 6.8 processes that were validated are plotted in green and processes that signal

an adjustment was required are plotted in red. The first concentration diagram shows results

using mSUPA. This clearly shows that as µ(k = 0) approaches the green/yellow zone bound-

ary, fewer processes are validated. As µ(k = 0) approaches the yellow/red zone boundary, no

processes are validated. This result demonstrates that by using mSUPA off-target processes

are identified before µ(k = 0) is outside the green zone, which is determined by the minimum
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capability required from the process. The second concentration diagram shows results using

the first-off method. This clearly shows that as µ(k = 0) approaches the yellow/red zone

boundary, fewer processes are validated. However, there are a significant number of valid

green points falling outside the tolerance of x. This result confirms the results shown in

figure 6.6 and demonstrates that by using first-off method off-target processes are identified

after µ(k = 0) is outside the tolerances.

6.5.3 Two Correlated CtQs

In this series of experiments, the ability of mSUPA and the first-off method to detect an

off-target process is tested when there is a correlation between individual CtQ. The process

is also producing CtQ features with a capability Cp = 2.0. This means for this example that

the processes covariance matrix, Σ, is:

Σ =

[

277.78 250

250 277.78

]

(6.8)

In the first experiment, the CtQs process means were set equal to the design target, i.e.

µ = T . The simulation was then allowed to run uninterrupted, producing 10,000 products.

Then the resulting x values were plotted to visualise the distribution of points created by Σ

value in equation 6.8. These results are displayed in figure 6.9, which shows a dense elliptical

scattering of points within the green zone.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

x
2

x1

Figure 6.9: Distribution of x values from the correlated simulated process.

This dense elliptical scattering of points is consistent with two features that are jointly

distributed, i.e. there is a strong correlation between the two CtQ features. This confirms

that the simulation is producing products with CtQ features as expected.
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As in the previous case, a second experiment was then run with this simulation; whereby,

the starting process mean (µ(k = 0)) was moved progressively further away from the design

target. Given the elliptical distribution of x values in relation to the rectangular yellow/red

zone boundary, µ(k = 0) is moved away from the design target in three directions. In the

first run, the position of µ(k = 0) was moved away from the design target in a direction

that crosses the red zone boundary in the shortest path, see figure 6.10(a). In the second

run, the position of µ(k = 0) was moved away from the design target in a direction that

crosses the red zone boundary in the shortest path from edge of the ellipse of points, see

figure 6.10(b). In the third run, the position of µ(k = 0) was moved away from the design

target in a direction that crosses the red zone boundary in the longest path, see figure 6.10(c).

Given this stochastic nature of the simulation, each time µ(k = 0) is moved further away

from the design target, 2000 experimental runs are made to ensure deterministic effects of

the pseudo-random number generation is eliminated.
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Figure 6.10: Starting positions of µ in the correlated simulated process: (a) taking the shortest
path from the distribution centre to the red zone; (b) taking the shortest path from the tip
of the distribution ellipse to the red zone; (c) taking the longest path from the distribution
centre to the red zone.

Following the same pattern of experiments as in the uncorrelated case, there are two

results from these experiments: the probability of qualifying a process and the number of

samples to make this decision. The probability of qualifying a process without any adjust-

ments being made is shown in figure 6.11. The number of samples needed to make this

decision is shown in figure 6.12.
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Figure 6.11: Operating curve of probability of qualifying (P (q)) without any adjustments
against the position of µ(k = 0) as a distance from process target for: (a) taking the shortest
path from the distribution centre to the red zone; (b) taking the shortest path from the tip
of the distribution ellipse to the red zone; (c) taking the longest path from the distribution
centre to the red zone.

In figure 6.11, the mSUPA results are plotted with a solid line and the first-off results

are plotted with a dotted line. The results in figure 6.11 demonstrate that when the process

is on-target, i.e. µ(k = 0) = 0, mSUPA validates approximately 98% of processes and

first-off validates 100% of processes. This is consistent with the uncorrelated case and is a

critical result as it, again, demonstrates that mSUPA maintains the same confidence level as

SUPA. For mSUPA, there was little difference in performance between the results shown in

figure 6.11(a;b); however, figure 6.11(c) showed that when µ(k = 0) moved away from the

design target on the longest path, a higher percentage of processes are validated. This is

demonstrated by figure 6.11(a;b) validating close to 98% of processes until µ(k = 0) = 10;

whereas, in figure 6.11(c) close to 98% of processes are validated until µ(k = 0) = 20. For

first-off, figure 6.11(a;b;c) shows 100% of processes were validated until µ(k = 0) = 60 in all



Chapter 6. Multivariate SUPA 121

cases. When µ(k = 0) = 60, mSUPA validate 0% of processes in all cases. This highlights

that the first-off method is less able to detect deviations in the process mean when compared

to mSUPA.
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Figure 6.12: Operating curves of the number of samples to make a decision against µ(k = 0)
for: (a) taking the shortest path from the distribution centre to the red zone; (b) taking the
shortest path from the tip of the distribution ellipse to the red zone; (c) taking the longest
path from the distribution centre to the red zone.

In figure 6.12 the number of samples to make a valid/off-target decision is shown for the

situation where µ(k = 0) is moved away from the design target. There is very little difference

between the results for mSUPA in figure 6.12(a;b); which, shows when µ(k = 0) = 0 typically

6.4 samples are needed to make a decision. As µ(k = 0) moves away from the design target

increasingly more samples are required to make a decision, until a peak of just under 8

samples at µ(k = 0) ≈ 30. Then there is a drop off in the number of samples required

down to two samples at µ(k = 0) ≈ 50. However, the results in figure 6.12(c) show when

µ(k = 0) = 0 typically 6.4 samples are needed to make a decision. As µ(k = 0) moves away

from the design target increasingly more samples are required to make a decision, until a
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sharper peak of just over 8 samples at µ(k = 0) ≈ 30. Then there is a drop off in the number

of samples required down to two samples at µ(k = 0) ≈ 50. The drop off in the number of

samples at µ(k = 0) ≈ 50 reflects the behaviour of mSUPA requiring more units to make a

decision as µ(k = 0) approaches the green/yellow zone boundary. Once this boundary has

been crossed mSUPA only requires two samples to identify that the process is off-target.

These fluctuations in the number of samples required are consistent with the results obtained

for univariate SUPA. The first-off method, however, only ever requires a single sample by

definition. Although, first-off is the more efficient approach, figure 6.12 clearly demonstrates

that this compromises its performance.

In a final experiment, starting process mean positions, µ(k = 0), were uniformly dis-

tributed across the design space. 600,000 simulations were run to produce a concentration

diagram of µ(k = 0) positions that were validated. This concentration diagram is shown in

figure 6.13.
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Figure 6.13: Concentration diagrams showing µ(k = 0) positions with green representing a
validated correlated process and red representing an off-target process.

In figure 6.13 processes that were validated are plotted in green and processes that signal

an adjustment was required are plotted in red. The first concentration diagram for mSUPA

clearly shows that as µ(k = 0) approaches the green/yellow zone boundary, fewer processes

are validated. As µ(k = 0) approaches the yellow/red zone boundary, no processes are

validated. It is also shown that the green points form an ellipse shape; however, this ellipse

is contained within the green zone. This suggests that by using mSUPA off-target processes

are identified before µ(k = 0) is outside the green zone irrespective of the underlying process

distribution. The second concentration diagram shows results using the first-off method. This

clearly shows that as µ(k = 0) approaches the yellow/red zone boundary, fewer processes are

validated. However, there are a significant number of valid green points falling outside the
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tolerance of x with more green points falling outside the tolerance when x1 and x2 are both

low or high. This reflects the shape of the underlying distribution. This result confirms

the results shown in figure 6.11 and demonstrates that by using first-off method off-target

processes are identified after µ(k = 0) is outside the tolerances.

6.6 Summary

In this chapter, a new nonparametric process control tool was introduced known as Multi-

variate Set-Up Process Algorithm (mSUPA). mSUPA was designed to monitor multivariate

set-up dominant processes; in order, to identify when the process mean is not on the global

design target.

The need for such a tool was highlighted with a case study example in section 6.2. This

case study used the example of a multi-axis CNC machining centre to identify challenges

faced by low-volume production systems. It was identified that classical SPC tools were not

sufficient to monitor parts with multiple CtQ features, that were produced in low-volumes.

The primary issue identified with classical SPC tools was that it was not possible to obtain

enough data from a production run to set-up statistical control limits. There were further

potential issues identified associated with operators responsible for processes interpreting

statistically derived control chart.

The company involved in the case study had recently employed Pre-Control charts to

monitor their set-up dominant processes. There were clear benefits to using this approach:

it did not require a start-up period to set up control limits; linking control limits to tolerance

limits provided operators with an intuitive control tool. However, implementation of Pre-

Control was not without its own issues. When applied to a multivariate process where that the

parts being produced have multiple CtQ features, this requires the management of multiple

Pre-Control charts1. This can quickly become unmanageable.

Further to this, the control rules that give Pre-Control statistical confidence in the control

observations derived by them, could not be employed. Therefore, the company employed a

100% inspection regime. Firstly, Pre-Control ensures that a process is maintaining a minimum

process capability Cpk > 1.33, for certain CtQs this may not be of a high enough standard.

Secondly, due to an imbalance between the number of control parameters and CtQ features,

there are situations where to keep one CtQ in a green zone another CtQ has to run in a

yellow zone. The operators would therefore benefit from a global approach to process control

rather than a feature by feature approach.

In order to overcome this situation, the mSUPA method was proposed in section 6.3.

This extends the univariate SUPA method into the multivariate case. By doing this, an easy

to digestive traffic-light system is maintained that is linked to tolerance boundaries. Unlike

using Pre-Control, the mSUPA charts can be adjusted to suit a range of required process

126 CtQs in the case study example, results in 26 Pre-Control charts to manage.
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capabilities. Although, the presentation of results through a simple global traffic-light to

inform the operator that the process is on- or off-target is easy to digestive, it requires more

complex calculations to decide which zone a part falls into. Therefore, it is recommended that

this approach is implemented through an online software interface to perform the required

calculations. An issue not addressed in this chapter, is how to optimise a process once it is

identified as being off-target? This is an issue which is particularly complex in multivariate

processes, where there are significantly less control parameters to adjust and there are CtQ

features that they affect. This problem is addressed in the following chapter.
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7.1 Introduction

In chapter 5 a new method for control of a univariate set-up dominant process was introduced

known as SUPA. This was extended, in chapter 6, to provide a method for control of a

multivariate set-up dominant process known as mSUPA. These two process control methods

provide operators of low-volume manufacturing processes with a means to identify when a

process is off-target with statistical confidence. However, once a process has been identified as

off-target, how it is then adjusted is left to the operator’s experience or rule-of-thumb. This is

not an issue in the univariate case, where there is typically an independent control parameter

which directly affects the CtQ being monitored. But, the adjustment of process parameters

in the multivariate case can pose a challenge, particularly when there are fewer process

parameters to adjust there are CtQs to keep in control. This issue was highlighted in the

case study in section 6.2, which described a single multi-axis machining centre manufacturing

a part with 26 CtQ features. In that case, adjusting one machining centre offset affected two

or more CtQs.

In the literature reviewed in section 3.4, a hybrid control system known as run-to-run

control (RtR) was identified as a potential solution to the process adjustment issue. The gen-

eralised RtR approach integrates discrete process control tools, such as SPC, and continuous

feedback controllers. Current RtR methods are not suitable for set-up dominant processes

126
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due to their use of classic SPC approaches. However, the philosophy of applying a discrete

process control tool and continuous feedback controller does have potential in low-volume

applications. Therefore, this chapter explores the potential of designing a new RtR method

for set-up dominant processes which uses mSUPA as the discrete process control tool.

In section 7.2 the concept of direct feedback using feedback controllers is described and

explored. This concept is expanded in section 7.3, where a simulated feedback approach is

used. This simulated feedback approach is then tested in a simulation where there are less

control parameters than there are CtQ design features in section 7.4. The simulated feedback

approach is then developed further based on the experiments conducted in section 7.4 to

provide an updated method in section 7.5.

7.2 Adjustment Feedback Loop

7.2.1 RtR Approach

In this section a new RtR method is introduced that utilises mSUPA, described in chapter 6,

as the discrete process control tool in conjunction with feedback controllers. A basic flowchart

describing this methodology is shown in figure 7.1.
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Figure 7.1: Flow chart of mSUPA based RtR method.

Figure 7.1 shows a multivariate process producing parts. These parts CtQ features are

then checked at a measurement station. The data generated at the measurement station is

then used to validate the process with the mSUPA method. If a process is validated, i.e.

there has been five consecutive green parts, the process is allowed to run without the need
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of further checks on parts produced. If a process is not validated, mSUPA decides whether

an alarm needs to be generated or not. If an alarm is not generated, the process is allowed

to continue but consecutive parts continue to be checked at the measurement station. If an

alarm is generated, i.e. there has been one red part or two consecutive yellow parts, feedback

controllers are applied to optimise process parameters.

In order to model the relationship between the changes in control parameters and the

resulting effect on the process output, data needs to be recorded regarding the time and

size of current changes to control parameters settings. The relationship between the current

process mean when part k has been measured, µ(k), and the next process mean when part

k+1 has been measured, µ(k+1), after an adjustment, is described as a discrete time linear

dynamic system of the form:

µ(k + 1) = µ(k) +A · u(k) (7.1)

where u(k) is the m-dimensional vector of adjustments performed after part k has been

measured, and m depends on the adjustment capabilities of the process, i.e. the ability of an

operator to make different corrections on the machine; A is an n ×m matrix modelling the

causal relationship between adjustment actions taken and their effect on every CtQ design

feature. If the mSUPA chart indicates that an adjustment to the control factors is required,

the size of adjustment u(k) can be calculated by using a feedback control approach.

Depending on the properties and the setting of the machining centre, the number of

independent adjustments may vary. For example, it may be possible for the operator to

make corrections for each design feature individually, in which case the dimension of the

control vector u = [u1, u2, u3]
T and m = n = 3. In this case, equation (7.1) can be expanded

as follows:

µ1(k + 1) = µ1(k) + a11u1(k) + a12u2(k) + a13u3(k) (7.2)

µ2(k + 1) = µ2(k) + a21u1(k) + a22u2(k) + a23u3(k) (7.3)

µ3(k + 1) = µ3(k) + a31u1(k) + a32u2(k) + a33u3(k) (7.4)

where aij are elements of the A matrix. This simple set of linear equations could be solved

to find the optimum control vector adjustment by setting µ1(k + 1) = T1, µ2(k + 1) = T2

and µ3(k + 1) = T3, where T1, T2 and T3 are the targets for CtQ design features 1, 2 and

3, respectively. However, this situation where there are as many control parameters as there

are CtQ features was simulated to demonstrate the potential of the proposed RtR method.

It is shown in section 7.4 the effect of RtR under the conditions were there are fewer control

parameters than CtQ features. In order to complete the RtR method, a proportional feedback

controller is used for the case of n = m = 3. Assuming that u is the adjustment made and x̄

is the estimate of µ, this leads to the following proportional feedback control calculations:
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u1(k) = G1[x̄1(k)− T1]

u2(k) = G2[x̄2(k)− T2]

u3(k) = G3[x̄3(k)− T3]

(7.5)

where, G1, G2 and G3 are gain factors. G1, G2 and G3 are set to improve the dynamic

response when an adjustment is required, i.e. they can be fine tuned. A change in the control

factor u1(k), has an effect on mean of the CtQ design features µ1, µ2 and µ3 through the

elements of matrix A, as modelled in equations (7.2)-(7.4). These feedback control actions

are only made if consecutive units fall in the yellow or red zones of the mSUPA chart as per

control rules of table 5.2. In the remainder of this section, the values of G are adjusted to

demonstrate their affect on proportional feedback control.

7.2.2 Simulation Example

In the following figures 7.2-7.6 the effect of this dynamic feedback approach is demonstrated

with results from a simulation. In the simulation, the vector x represents the three CtQ

design features, x1, x2 and x3; which, all have the same design target and tolerances of

L = 50, T = 150 and U = 250. It is also required that each CtQ feature maintains a

minimum Cp > 2.0. The next step is to specify the mSUPA-chart based on these parameters.

Therefore, the mSUPA covariance matrix, S, is defined as:

S =









277.778 0 0

0 277.78 0

0 0 277.78









(7.6)

Using this value for S, a decision can be made as to whether an x value falls in a green

zone by solving the inequality in equation (6.3). However, to solve this inequality a value for

H2 is needed. Given that this value has the property following a χ2
n,α distribution; where,

the degrees of freedom n = 3 and the probability that an on-target process produces an x

value outside the green zone α = 0.06. Hence, H2 = χ2
3,0.06 = 7.412.

The process in the simulation maintains the multivariate normal distribution of:

x ∼ N(µ,Σ) (7.7)

The initial position of the process mean, µ(k = 0), is started off-target. This is to

demonstrate the effect of the proportional feedback controllers at steering the process back

on-target. In the simulation results presented in figures 7.2-7.6, the process is started at:

µ(k = 0) =









215

60

150









(7.8)

The covariance matrix, Σ, remains constant throughout the simulation runs and is set to:
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Σ =









250 200 170

200 250 150

170 150 250









(7.9)

This value of Σ demonstrates correlations between the CtQ features in the x vector. The

control matrix, A, which links changes to control parameters, u, to a change in the process

mean, µ, as in equation (7.1), is also consistent throughout the simulation runs. In the

simulation used in this section, A is set to:

A =









78 45 0

−24 93 15

25 −16 86









(7.10)

In practice, this A matrix is a function of the process that cannot be changed and the

RtR method has to deal with it. If the linear equations formed by equation (7.2)-(7.4) where

solved, u(k) = [1.1857, 0.5885, 0.4542]T . However, this section simulates feedback controllers

as described.

The final parameters that need to be specified are the gain values, G, of the proportional

feedback controllers. In each simulation run in this section, the G values are changed to

demonstrate the effect of the gain values on the results achieved by the proportional feedback

controllers. The results of the first simulation run were generated using the following G

values: G1 = 0.000125, G2 = 0.000125 and G3 = 0.000125. By using these values for G,

simulation results were generated and are presented in figure 7.2.
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Figure 7.2: Path of control adjustments for a proportional feedback controller using G =
0.000125.

Figure 7.2 shows the path of the control adjustments with a line and the effect on the

process mean, µ, with crosses. This figure demonstrates that the proportional feedback

controllers are capable of of driving a process that is off-target towards the design target.

However, this figure also demonstrates that for the G values used, there was a total of 122

control adjustment before the process was validated and this required a total of 323 products

to be collected. Clearly, this is not a desirable situation, particularly in the context of low-

volume manufacturing were production runs a commonly less than 50 products and can be

as few as 5 to 10 products. Ideally, only one control adjustment would be made to get the

process to validate.

Increasing the gains values should increase the step size of control adjustments, thus,

reducing the number of control adjustments needed to drive the process to a valid position.

Therefore to improve the situation presented in figure 7.2, the G values were increased to:
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G1 = 0.0015625, G2 = 0.0015625 and G3 = 0.0015625. The simulation was then run again

with these new G values, the results are presented in figure 7.3.
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Figure 7.3: Path of control adjustments for a proportional feedback controller using G =
0.0015625.

Figure 7.3 shows the path of the control adjustments and the effect on µ. As in figure 7.2,

the results in figure 7.3 show that the control adjustments made by the proportional feedback

controllers are driving µ towards the design target. In this simulation case there was a total

of 11 control adjustments before the process was validated and this required a total of 52

products to be collected. The result of using larger G values has significantly reduced the

number of the control adjustments applied. However, this is still a large number of control

adjustments in the context low-volume manufacture.

The G values were increased, in order to reduce the number of the control adjustments

needed. The next simulation used G values of: G1 = 0.00625, G2 = 0.00625 and G3 =

0.00625. The results produced by using these G values are plotted in figure 7.4.
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Figure 7.4: Path of control adjustments for a proportional feedback controller using G =
0.00625.

In figure 7.4 it is shown that by increasing G from 0.0015625 to 0.00625, the number

of control adjustments made by the proportional feedback controllers was reduced. In this

simulation case there was a total of 4 control adjustments before the process was validated

and this required a total of 15 products to be collected. Again, increasing the G values

are significantly reduce the number of control adjustments applied and also the number of

products collected.

In the next simulation run the G values were increased, in order to reduce the number of

control adjustments further. The following G values were used: G1 = 0.0125, G2 = 0.0125

and G3 = 0.0125. The results from this simulation are presented in figure 7.5.
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Figure 7.5: Path of control adjustments for a proportional feedback controller using G =
0.0125.

Figure 7.5 shows the number of control adjustments made by the proportional feedback

controllers has remained the same as in the previous simulation. Hence, in this simulation case

there was a total of 4 control adjustments before the process was validated and this requires

a total of 16 products to be collected. These results indicate a very marginal difference in

performance between a G = 0.0015625 and G = 0.0125. However, if figures 7.4 and 7.5 are

compared, the path of µ directed by the control adjustment is very different. Figure 7.4 takes

a direct route towards the design target; whereas, figure 7.5 takes a less stable route around

the design target.

The G values are increased again in the next simulation run to: G1 = 0.025, G2 = 0.025

and G3 = 0.025. These results are presented in figure 7.6.
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Figure 7.6: Path of control adjustments for a proportional feedback controller using G =
0.025.

In figure 7.6 it is shown that the number of control adjustments made by the proportional

feedback controller has actually increased when compared to the previous simulation. In

this case the simulation did not stop, it kept making control adjustments, collecting more

and more products. The path of µ directed by the control adjustments spirals around the

design target; except rather than converging on the design target, µ moves further away.

This simulation demonstrates that if the G values used are too large the path of µ becomes

extremely unstable and rather than improving the process makes the situation worse.

This section has shown that the use of proportional feedback controllers in conjunction

with mSUPA has the potential to drive the process mean, µ, towards its design target through

iterative control adjustments. The key issue uncovered is the effect of the gain values, G,

on the efficiency and effectiveness of a proportional feedback controllers. If the G values

are small, the proportional feedback controller provides a steady path converging on the
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design target; however, it requires a large number of control adjustments and products to

be collected. If the G values are large, the proportional feedback controller provides an

unsteady path and if G values are very large, the proportional feedback controller does not

converge on the design target. In the next section, this problem is addressed using a novel

simulation-based approach.

7.3 Simulated Feedback Approach

7.3.1 Direct Feedback

In the previous section a new RtR approach that combined mSUPA and proportional feedback

controllers was introduced. This RtR approach is outlined in figure 7.1. The key issue

identified with the method was the balance between using a G value that drives a process

towards its design target in a direct and stable trajectory and a G value that is less stable

but more efficient. Another issue is that although the proportional feedback controllers are

capable of driving a process towards its design target, it is prevented from doing so by

the mSUPA method. If the previous example of a process with µ(k = 0) = [216, 60, 150]T is

simulated with a feedback controller G = [0.001, 0.001, 0.001]T and the simulation is repeated

1000 times, to minimise deterministic effects; the final validated µ positions are recorded in

figure 7.7.
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Figure 7.7: Final µ positions from RtR with direct proportional feedback control.

Figure 7.7 shows that the proportional feedback controllers are consistently driving the

process into the mSUPA green zone. However, the process final validated µ positions are

not on-target. The small size of the G values used has also resulted in an average of 174.635

control adjustments being made to move µ from its initial position to its final dated position.

This also required a mean of 465.911 products being collected.

These results support those made in the previous section that a low G value, produces

a large number of control adjustments and, therefore, a large number of products to be

collected. However, these results also highlight that mSUPA is effectively cutting short the

proportional feedback controllers ability to drive the process towards its design target. There-

fore, a modified RtR approach is outlined next, which incorporates simulated proportional

feedback controllers in an effort to maximise performance and minimise the number of control

adjustments and products collected.
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7.3.2 Simulated Feedback

The remainder of this section outlines an online simulation approach to applying proportional

feedback controllers within an RtR method. The goal of the online simulation is to capture

the benefit of using a proportional feedback controller with a small G value, i.e. a stable path

towards the design target, whilst minimising the number of control adjustments required

to achieve this. An outline of this mSUPA based simulated adjustment RtR method is in

figure 7.8.
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Figure 7.8: Flow chart of mSUPA based simulated adjustment RtR method.

Figure 7.8 shows: the process producing a part; this part’s CtQs are then measured; these

measurements are then plotted on an mSUPA chart. Once consecutive parts have been mea-

sured and plotted on the mSUPA chart, the process is either validated after five consecutive

green parts or an adjustment is signalled after two consecutive yellow parts or a single red

part. If the process is validated, production continues without further measurements being

taken. If an adjustment is required, the size of the adjustment to the control parameters, u,

is determined through a real-time online simulation using proportional feedback controllers.

The calculation of these adjustments to the control parameters through simulation is outlined
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in figure 7.9.
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Figure 7.9: Flow chart of the calculation of a control parameter adjustment through a simu-
lation using proportional feedback controllers.

Figure 7.9 shows that the first step in the simulation is to estimate the current process

mean. This is achieved by finding the mean of the measured part’s CtQs that led to a control

adjustment. For example, if two consecutive yellow units signals a control adjustment, the

estimate of the current process mean would be calculated by:

x̄(k) =
x(k) + x(k − 1)

2
(7.11)

This estimate of current process mean, x̄(k), is then used within the simulation as the

initial process mean, µ(k = 0). Proportional feedback controllers are then applied within the

simulation environment to determine control parameter adjustments, by:

u(k) = G[µ(k) − T ] (7.12)

The effects of u(k) on the simulation process mean, µ(k), is then estimated, by:

µ(k + 1) = µ(k) +A · u(k) (7.13)

were, A is this control matrix that links changes in control parameters to changes in

the process mean. In direct feedback control, described in the previous section, this physical

parameter of the process does not need to be known. To apply simulation feedback control, an

estimate of A needs to be made. In practice, this needs to be determined from the machining

centre program.

The online simulation continues to make these virtual control parameter adjustments for

a fixed number of steps, l. The total control parameter adjustment to be applied to the real

process is calculated by summing all the virtual control parameter adjustments, by:

u(total) = u(k) + u(k + 1) + . . .+ u(k + l) (7.14)

Once the fixed number of simulation steps, l, has been completed, the final control param-

eter adjustment, u(total) is applied to the real process. The process then continues to make
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products that are continuously measured until the process is either validated or an alarm is

signalled by mSUPA.

The previous example of a process with µ(k = 0) = [216, 60, 150]T was re-simulated using

simulated feedback control, rather than direct feedback control. In the virtual proportional

feedback controller, G = [0.001, 0.001, 0.001]T was used and there was a fixed number of vir-

tual steps of l = 1000. Again, 1000 simulation runs were made to minimise the deterministic

effects of the pseudo-random number generation. This produced the results that are plotted

in figure 7.10.
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Figure 7.10: Final µ positions from RtR with simulated proportional feedback control.

In figure 7.10 the final µ positions from the RtR approach with simulated proportional

feedback control are plotted. This plot shows the results are clustered within the green zone

around the design target. The cluster of results also forms an ellipse, the shape of which is

determined by the covariance of the real process. Because the process contains covariance
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and the adjustment simulation estimates the current process mean with a small number of

units, i.e. one or two, this variance is transferred into the final µ positions. Further results

from this simulation experiment shows that this RtR approach requires an average of 1.199

process adjustments before validation. This required an average of 10.020 products.

These results demonstrate that the use of virtual process control adjustments, derived by

proportional feedback controllers, produces more accurate results with final µ positions clus-

tered around the design target when compared with direct proportional feedback controllers.

The virtual process control adjustment cycle allows the proportional feedback controllers to

converge on a final real process control adjustment. When a direct proportional feedback

control is used, its path towards the design target is interrupted when the process mean is

sufficiently within the green zone to be validated. The virtual process control adjustment

cycle also significantly reduces both the number of process adjustment, from 174.635 to 1.199,

and the number of products collected in measured, from 465.911 to 10.020 in this example.

In all the experiments conducted this far in the chapter there has been the same number of

control parameters to adjust as CtQ factors they affect. However, as described in section 6.2,

it is common in modern machining centres for there to be fewer control parameters to adjust

than there are CtQs they affect. This imbalance causes an issue with reachability, i.e. the

proportional feedback controllers are not capable of steering the process towards its design

target. This topic is explored in the following section.

7.4 Reachability

7.4.1 Convergence

It was outlined, in section 6.2, that in practical shop floor operations it was common for com-

plex products to be machined in single processors where there are fewer control parameters

than there are CtQ design features, i.e. n > m. This means that there are fewer dimensions

in u than in x; therefore, the system is under-defined.

If the case of n = 3 and m = 2 is taken such that:

A =









78 45

−24 93

25 −16









. (7.15)

The effect of u on µ can be calculated by expanding the following equation:

µ(k + 1) = µ(k) +A · u(k). (7.16)

However, the simulated proportional feedback control is described in the previous section

cannot be directly applied in this situation. New proportional feedback control calculations

need to be defined in order to calculate values of u(k) when an adjustment is required. An

example arrangement that can be used to calculate these values of u(k) is:
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u1(k) = G1[x1(k)− T1] +G3[x3(k)− T3].

u2(k) = G2[x2(k)− T2] +G3[x3(k)− T3].
(7.17)

Using this proportional feedback control arrangement allows the deviation from design

target to be considered in all three process dimensions. If the mSUPA based simulated

feedback control RtR method, described in the previous section, is applied with balanced

gain values of G = [0.001, 0.001, 0.001]T to a process with a initial process mean of µ(k =

0) = [215, 215, 215]T , this results in the control actions plotted in figure 7.11.
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Figure 7.11: µ positions after adjustments made by the mSUPA based simulated feedback

control RtR method.

Figure 7.11 shows the changes in µ after each adjustment made, which highlights an initial

move from µ(k = 0) = [215, 215, 215]T to µ(k = 1) = [54, 66, 220]T , after which µ wanders

around this position. This example demonstrates the reachability problem generated by the

imbalance between the number of control parameters and number of CtQ design features.
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Due to the lack of control parameters, the process cannot be adjusted directly towards its

design target, i.e. the design target is not reachable. In fact, in this case the optimum

position that can be achieved by the proportional feedback controllers is not even inside the

green zone. This means that mSUPA consistently signals an alarm for another adjustment

to be made, which creates the cluster of results around the µ(k = 1) position. This poses

the question, if a design target is not reachable but the process can be maintained within its

design tolerances, how can the constant alarm signals from mSUPA be stopped?

7.4.2 Adjustable Green Zone Position

To resolve this situation a method of adjusting the position of the green zone is proposed.

Given that the proportional feedback controllers are applied virtually, a predicted process

mean position can be estimated in this simulation. Therefore, it is proposed that this estimate

of the process mean after control parameter adjustments is used as the new centre of the

green zone, provided that this does not force the green zone boundary to cross the red zone

boundary. This enables a process whose optimum position is not close to the design target to

be monitored with the same performance as the mSUPA method described in the previous

section monitoring a process whose optimum position is on the design target.

The example process described in this section, can then be re-simulated using this mSUPA

with adjustable green zone based simulated feedback control RtR method. In this situation

10, 000 uniformly distributed µ(k = 0) process positions a simulated to identify which areas

of the process space can be adjusted within the design tolerances. The results from the

simulation are presented in figures 7.12 and 7.13.
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Figure 7.12: Starting µ(k = 0) positions of simulation with G = [0.001, 0.001, 0.001]T .

Figure 7.12 shows the initial µ(k = 0) positions. The points show and are also colour-

coded green, yellow and red. This colour coding relates to whether the point falls into the

traditional green zone based on design target, or the red and yellow zones after it has been

optimised using the mSUPA with adjustable green zone based simulated feedback control RtR

method. In effect, this plot is showing reachability bands of the process which are determined

by the control matrix, A, and the design of the proportional feedback controllers. It can be

seen that with respect to x3, there are firm boundaries where the process needs to fall into if

it is to be adjusted to a position that is within the design tolerance, this is signified by the

green, yellow and red points forming solid regions over the process space. With respect to

x1 and x2 the initial starting position does not affect whether the process can be adjusted

into a within tolerance position, this is signified by the mottled green, yellow and red points

scattered over the process space.
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Figure 7.13: Final µ positions of simulation with G = [0.001, 0.001, 0.001]T .

Figure 7.13 shows the final µ positions after being optimised using the mSUPA with

adjustable green zone based simulated feedback control RtR method. The points are colour-

coded green, yellow and red to show whether they fall within the traditional multivariate

green, yellow and red zones. This is because a point may be within the green zone on a

x1 − x2 projection, but could be in the yellow zone on the x3 dimension; therefore, the point

is yellow. These results show that a process with the characteristics specified in this example

can be manipulated into µ positions that form solid bands in the process space. In this

example, the 10,000 starting positions led to 4,133 in a final red zone, 4,305 in a final yellow

zone and 1,562 in a final green zone. In order to improve this ratio proportional feedback

controller designs were experimented with.
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7.4.3 Changing Proportional Feedback Controllers

In the next experiment, the G values of the virtual proportional feedback controllers were

changed to see the effect on reachability. Hence, the same simulation was run as the previous

example but with G = [0.003, 0.003, 0.001]T . This virtual proportion feedback controller

places more weight on µ1 and µ2 deviation from the design target. The results from these

experiments are plotted in figures 7.14 and 7.15.
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Figure 7.14: Starting µ(k = 0) positions of simulation with G = [0.003, 0.003, 0.001]T .

Figure 7.14 shows the initial µ(k = 0) positions, with colour coding relating to whether the

point falls into the traditional green zone based on design target, or the red and yellow zones

after it has been optimised. When these results are compared to those obtained in figure 7.12,

it is seen that both forms similar patterns; there firm boundaries in the x3 planes and no clear

boundaries in the x1 and x2 planes demonstrating reachability. The key difference between

these two sets of results, shown in figures 7.14 and 7.12, is the much wider green and yellow
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bands in the x3 plain when feedback controllers with G = [0.003, 0.003, 0.001]T . These wider

green and yellow bands indicate that more processes have been directed to a final process

position that can be validated by mSUPA as intolerance. Hence, a much greater area of the

process space can reach an intolerance position by placing a greater weight on µ1 and µ2

deviation from the design target.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

x
1

x2

0

50

100

150

200

250

300

0 50 100 150 200 250 300

x
2

x3

Figure 7.15: Final µ positions of simulation with G = [0.003, 0.003, 0.001]T .

Figure 7.15 shows the final µ positions after being optimised with colour-coded green,

yellow and red to show whether they fall within the traditional multivariate green, yellow

and red zones. These results clearly differ from those presented in figure 7.13; in the x1 and

x2 planes all results fall within the processes tolerances, all the results that are red have fallen

outside the tolerance in the x3 plane. Further to this, the 10,000 starting positions led to

3,451 in a final red zone, 3,963 in a final yellow zone and 2,586 in a final green zone. This is

a significant improvement, with 6,549 processes falling within tolerance as opposed to 5,867.
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In addition to this, 2,586 processes fell within the Green zone centred on the design target as

opposed to 1,582. This suggests that putting more weight on µ1 and µ2 deviation from the

design target, has led to more processes falling within tolerance and more accurate centring

of the process.

In the next experiment, the G values of the virtual proportional feedback controllers

were changed to see the effect on reachability by placing more weight on µ3 deviation from

the design target. Hence, the same simulation was run as the previous example but with

G = [0.001, 0.001, 0.003]T . The results from these experiments are plotted in figures 7.16 and

7.17.
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Figure 7.16: Starting µ(k = 0) positions of simulation with G = [0.001, 0.001, 0.003]T .

Figure 7.16 shows the initial µ(k = 0) positions, with colour coding relating to whether

the point falls into the traditional green zone based on design target, or the red and yellow

zones after it has been optimised. When these results are compared to those obtained in

figure 7.12 and 7.14, it is seen that in all similar patterns are; there are firm boundaries in



Chapter 7. Adjustment Simulator 149

the x3 planes and no clear boundaries in the x1 and x2 planes demonstrating reachability.

The key difference between these sets of results is the much narrower green and yellow bands

in the x3 plain when feedback controllers with G = [0.003, 0.003, 0.001]T are deployed. These

narrower green and yellow bands indicate that fewer processes have been directed to a final

process position that can be validated by mSUPA as intolerance. Hence, a much smaller

area of the process space can reach an intolerance position by placing a greater weight on µ3

deviation from the design target.
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Figure 7.17: Starting µ(k = 0) positions of simulation with G = [0.001, 0.001, 0.003]T .

Figure 7.17 shows the final µ positions after being optimised with colour-coded green,

yellow and red to show whether they fall within the traditional multivariate green, yellow

and red zones. These results clearly differ from those presented in figure 7.13; in the x3 plane

all results fall within the process tolerance, all the results that are red have fallen outside

the tolerance in the x3 plane. Further to this, the 10,000 starting positions led to 9,938 in
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a final red zone, 3 in a final yellow zone and 59 in a final green zone. This is a significant

deterioration, with 62 processes falling within tolerance as opposed to 5,867. In addition to

this, 59 processes fell within the green zone centred on the design target as opposed to 1,582.

This suggests that putting more weight on µ3 deviation from the design target, has led to

fewer processes falling within tolerance and less accurate centring of the process.

This section has clearly highlighted the issue of reachability when a process has fewer

control parameters than CtQ design features. A method of adjusting the green zone of

an mSUPA chart has been proposed to stop false alarm signals once a process has been

optimised. Also, it has been shown that the design of the virtual proportional feedback

controller has a significant effect on reachability. To use this method in practice would require

a high level of tuning of the G values, which may not be possible in a low-volume process.

Proportional feedback controllers were initially used because they provided an approach to

directly control the system. However, because these calculations are now made in the virtual

space this provides an opportunity to use numerical optimisation techniques rather than

feedback controllers. Therefore, the next section proposes a RtR methodology that is based on

mSUPA with a location adjustable green zone and a virtual numerical optimisation approach

to calculating the size of control parameter adjustments.

7.5 Proposed Methodology

7.5.1 Methodology

In sections 7.3 and 7.4 an mSUPA with position adjustable green zone based simulated pro-

portional feedback control RtR method was described and tested. An issue with the approach

was the difficulty in forming proportional feedback controller calculations and tuning the gain

values. However, by simulating process adjustment there is an opportunity to use other op-

timisation techniques in place of the proportional feedback controllers. This section explores

the potential of applying a local search optimisation technique known as hill climbing to the

adjustment of control parameters.

In essence the hill climbing method defines an objective function to maximise or minimise.

From the current position, variables are adjusted iteratively to search the local space around

the current position for an improvement in the objective function. This process is continued

until a position is found with no improvements in the objective function in the local space.

If the approach is applied to optimise the example problem of a process with 3 CtQ features

and 2 control parameters, the objective function f(µ(k + 1)) is define as:

minimize
µ

f(µ(k + 1)) =
√

|µ1(k + 1)− T1|2 + |µ2(k + 1)− T3|2 + |µ3(k + 1)− T3|2,

subject to µ(k + 1) = µ(k) +A · u(k).
(7.18)
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Therefore, f(µ(k + 1)) is minimised with respect to the design target, T , by adjusting

the control parameters, u. This optimisation algorithm is then placed in the mSUPA with

position adjustable green zone based simulated control RtR method as in figure 7.18.
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Figure 7.18: Flow chart of mSUPA based simulated hill climbing adjustment RtR method.

The remainder of this section uses examples to demonstrate the effectiveness of this

approach.

7.5.2 Local Search Optimisation Example

In this example, the same process defined in the previous section is simulated and controlled

with the mSUPA plus hill climbing RtR method. In this situation 10, 000 uniformly dis-

tributed µ(k = 0) process positions are simulated to identify which areas of the process space

can be adjusted within the design tolerances. The results from the simulation are presented

in figures 7.19 and 7.20.
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Figure 7.19: Starting µ(k = 0) positions of simulation controlled by the mSUPA plus hill
climbing RtR method.

Figure 7.19 shows the initial µ(k = 0) positions with there final colour coding. It can be

seen that with respect to x3, there are firm boundaries where the process needs to fall into if it

is to be adjusted to a position that is within the design tolerance, this is signified by the green,

yellow and red points forming solid regions over the process space. With respect to x1 and x2

the initial starting position does not affect whether the process can be adjusted into a within

tolerance position, this is signified by the mottled green, yellow and red points scattered over

the process space. This effect is similar to the results shown in figures 7.12, 7.14 and 7.16

when virtual proportional feedback controllers were used. However, there is a difference in

the width of the green and yellow bands in the x3 plane, in the hill climbing case these bands

are wider than any of the virtual proportional feedback controllers. This suggests the hill

climbing approach steers a greater number of processes towards an in-tolerance position.
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Figure 7.20: Final µ(k) positions of simulation controlled by the mSUPA plus hill climbing
RtR method.

Figure 7.20 shows the final µ positions after being optimised with there final colour-coding.

These results clearly differ from those presented in figures 7.13, 7.15 and 7.17; in the x1 and x2

planes all results fall within the processes tolerances forming a tight elliptical cluster around

the central green zone; all the results that are red have fallen outside the tolerance in the x3

plane. Further to this, the 10,000 starting positions led to 2,546 in a final red zone, 4,339

in a final yellow zone and 3,115 in a final green zone. This is a significant improvement,

with 7,454 processes falling within tolerance as opposed to 6,549 for the best performing

proportional feedback controller. In addition to this, 3,115 processes fell within the green

zone centred on the design target as opposed to 2,586 for the best performing proportional

feedback controller. These improved results have been achieve without the need for a process

specific proportional controller to be designed and tuned. In fact the hill climbing approach

is generic and should, therefore, be scalable to fit a process with any number CtQ features
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and control parameters.

7.5.3 Benchmark

7.5.3.1 First-Off and Primary Feature Correction

In the previous section a RtR method that combines mSUPA and hill climbing optimisation

was tested in a simulation environment. In order to give these results context, this section

provides a benchmark case for comparison and future research can then reference. The

benchmark case in this section uses the first-off approach to process control, as this method

reflects an approach currently used in industry and has been simulated in chapter 6. In

conjunction with first-off, this benchmark uses a primary feature correction approach to apply

adjustment feedback. This combined approach of first-off and primary feature correction only

measures the first sample, if a feature is outside its tolerance the primary feature correction

approach is used to adjust the process but no other samples are measured. The primary

feature correction approach works by: firstly, determining the number of control parameters,

m; then, the control parameter, u(k) are adjusted to steer the first m of n measured critical

features, x(k), to their design target, T . For example, if there are m = 2 control parameters

and there are n = 3 critical features, the size of the adjustment to u(k) is calculated by

solving:

T1 − x1(k) = a11 · u1(k) + a12 · u2(k)

T2 − x2(k) = a21 · u1(k) + a22 · u2(k)
(7.19)

then the final effects of the control parameters on the next unit are calculated by:

x1(k + 1) = x1(k) + a11 · u1(k) + a12 · u2(k)

x2(k + 1) = x2(k) + a21 · u1(k) + a22 · u2(k)

x3(k + 1) = x3(k) + a31 · u1(k) + a32 · u2(k)

(7.20)

where aij of elements of the A matrix outlined in equation (7.16). The remainder of this

section uses examples to demonstrate the effectiveness of this approach.

7.5.3.2 Benchmark Simulation Example

In this example, the same process defined in the previous section is simulated and controlled

with the first-off and primary feature correction. In this situation 10, 000 uniformly dis-

tributed µ(k = 0) process positions are simulated to identify which areas of the process space

can be adjusted within the design tolerances. The results from the simulation are presented

in figures 7.21 and 7.22. The same A matrix is used in this example as was used in the

mSUPA and hill climbing example, thus, providing a direct comparison.
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Figure 7.21: Starting µ(k = 0) positions of simulation controlled by the first-off and primary
feature correction benchmark method.

Figure 7.21 shows the initial µ(k = 0) positions with there final colour coding. This figure

shows that there are very few points that start outside of the tolerance band that finish as

either a yellow or green process. Hence, it is demonstrating that few processes have their

mean position improved globally using the first-off and primary feature adjustment method.
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Figure 7.22: Final µ(k) positions of simulation controlled by the first-off and primary feature
correction benchmark method.

Figure 7.22 shows the final µ positions after being optimised with there final colour-coding.

These results do not differ a great deal from the initial positions shown in figure 7.21. Further

to this, the 10,000 starting positions led to 7,741 in a final red zone, 2,189 in a final yellow

zone and 68 in a final green zone. This performance is poor when compared with the mSUPA

and hill climbing approach, with 2,257 processes falling within tolerance after application of

the first-off and primary feature correction method as opposed to 7,454 for the mSUPA and

hill climbing approach. In addition to this, 68processes fell within the green zone centred on

the design target as opposed to 3,115 for the mSUPA and hill climbing approach.

7.5.4 Higher Order Example

This test, assesses the scalability of the mSUPA with position adjustable green zone based

simulated hill climb control RtR method against a new simulated process with n = 5 CtQ
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factors and m = 2 control parameters. The process maintains the multivariate normal dis-

tribution described in equation 7.7, but with the following covariance matrix:

Σ =



















100 50 0 50 0

50 100 50 40 10

0 50 100 0 40

50 40 0 100 30

0 10 40 30 100



















. (7.21)

This Σ value describes the correlations between the five processed CtQ features. The next

feature that is defined is the A matrix, which links changes in the control parameters, u, to

their affect on CtQ factors mean position, µ, as follows:

A =



















50 −50

0 100

100 0

56 67

0 75



















. (7.22)

In this situation 10, 000 uniformly distributed µ(k = 0) process positions are simulated.

The results from the simulation are presented in figures 7.23 and 7.24.
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Figure 7.23: Starting µ(k = 0) positions of simulation controlled by the mSUPA plus hill
climbing RtR method.

Figure 7.23 shows the initial µ(k = 0) positions with there final colour coding. Unlike the

previous examples, of a three dimension process, this five dimension process does not have

clear cut green/yellow/red boundaries. The x2-x5 projection has the clearest boundaries with

a diagonal green band. However, despite the imbalance between n and m, there is a large

area of yellow points on all planes. This suggests that hill climbing optimisation is able to

steer the process to a globally in-tolerance position.
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Figure 7.24: Final µ positions of simulation controlled by the mSUPA plus hill climbing RtR

method.

Figure 7.24 shows the final µ positions after being optimised with colour-coding. Of the

10,000 starting positions 8,733 where in a red zone, 1,252 where in a yellow zone and 14 where

in a green zone. This led to 4,887 in a final red zone, 4,723 in a final yellow zone and 389

in a final green zone. This confirms the previous observation that hill climbing optimisation

is able to steer the process to a globally intolerance position despite the imbalance between

n and m. This experiment highlights that the mSUPA with position adjustable green zone

based simulated hill climb control RtR method is scalable and steers processes to an optimum

position despite an imbalance in n and m.
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7.6 Summary

This chapter set out to explore the feasibility of providing automated information to operators

to adjust the process control parameters; in order, to optimise the CtQ features on manufac-

tured products. The study was undertaken due to the prevalence of operators currently using

rule-of-thumb approaches to adjusting process control parameters. The importance of this

study is becoming ever more critical as manufacturing processes produce ever more complex

products; resulting in processes that have considerably fewer control parameters to adjust

than CtQ features to optimise.

An mSUPA based RtR method was outlined as a basic strategy to signal when an adjust-

ment was needed. Within this method different approaches to automating the calculation

of control parameter adjustments where tested. Initially a direct proportional feedback con-

troller was tested due to its use in other RtR methods described in the literature. This

approach was shown to drive processes towards their target when the gain, G, of the con-

troller was sufficiently small. However, the smaller the G value used the greater the number

of adjustments that was required, which is undesirable.

To reduce the number of adjustment an online simulation using a virtual proportional

feedback controller was developed and tested. Results from experimentation with this vir-

tual proportional feedback controller highlighted that it was able to drive processes closer to

their design target with fewer real-world adjustments required when compared to direct pro-

portional feedback control. However, the proportional feedback control method had an issue

with reachability when the process had fewer control parameters than CtQ design features.

To overcome this reachability issue a numerical optimisation technique known as hill

climbing was used in the online simulation in place of the virtual proportional feedback con-

troller. The hill climbing technique performed better than the virtual proportional feedback

controller in the situation when there are fewer control parameters than CtQ design features.

It consistently drove processes as close to the CtQ design target as feasibly possible. The hill

climbing technique showed that when it was applied in the same circumstances as the virtual

proportional feedback controller a greater number of processes ended up inside the tolerance

boundary.
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8.1 Introduction

This research set out to explore the available process improvement methodologies and tools

suitable for application to low volume manufacturing processes. The thesis aimed to derive

statistically valid process improvement tools for use by industry practitioners. This led

to the development and testing of tools to specifically assist a practitioner to efficiently

Measure, Analyse and Control a quality problem. The research was conducted under the

consideration of Advanced Manufacturing Technology (AMT); whereby, a single process is

producing products in low-volumes with: high-variety, high-precision, high-value and high-

complexity. A further consideration was the practitioners requirements; although all the tools

developed would be underpinned by statistical analysis, they are intended for use by process

operators who do not have a background in statistics. Therefore, this research asked the

following questions:

RQ1 When improving low-volume processes, what is the relevant process improvement frame-

work to structure the deployment of statistical tools?

RQ2 Within a proposed framework, how can the measurement and analysis of a chronic

quality problem be statistically validated in a low-volume process?

RQ3 What is required to provide a practical and statistically valid approach for process con-

trol in a low-volume process?

RQ4 How can a low-volume process control tool be extended to fit multivariate processes?

161
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RQ5 When a low-volume multivariate process control tool signals the process is off-target,

how can the calculation of control parameter adjustments be automated?

8.2 Findings

The main findings of this research are chapter specific and were summarised within their

respective chapters. However, these results are used here to answer the main research ques-

tions:

RQ1 When improving low-volume processes, what is the relevant process improvement

framework to structure the deployment of statistical tools?

This topic was addressed in chapter 2. It was found that using a blend of two seemingly

separate process improvement methodologies, Six Sigma and the Shainin System, allowed

a rigourous framework to be formed that guides practitioners to a solution to a quality

problem. The resulting framework, known as Hybrid Six Sigma and outlined in figure 2.3,

uses the DMAIC cycle from Six Sigma, that is prevalent in industry, as its backbone. Finding

an approach that already has roots in industry was an important result when practitioner

requirements are considered, because it eases the transfer of the framework into practice.

A key issue of the DMAIC method was in the ‘exploration’ of a quality problem at the

Analyse phase; an issue that is exacerbated in the context of low-volume manufacturing prob-

lems. Specifically, it was the application of statistically valid tools to problems that contained

a large number of potential causes of process variation that challenged practitioners. Typ-

ically, a statistical test to identify the main causes of process variation would be deployed.

However, in the presence of a large number of potential causes this requires a sample contain-

ing a large number of products, which are not always available and can be cost prohibitive

in low-volume, high-value processes. Therefore, practitioners of these low-volume, high-value

processes had resorted to subjective, non-statistical analysis.

To address the problem of subjective analysis, the Hybrid methodology incorporates the

principle of ‘narrowing down’ from the Shainin System to strengthen the exploration of a

quality problem. This principle uses a series of stratified experiments, which require smaller

sample sizes of product to be tested, to rule out potential causes of process variation that are

having little or no effect down to the main causes.

RQ2 Within a proposed framework, how can the measurement and analysis of a chronic

quality problem be statistically validated in a low-volume process?

This topic is addressed by chapters 3 and 4. By answering RQ1, a process improvement

methodology was identified to guide practitioners through the steps required to solve quality

problems. This Hybrid Six Sigma framework aimed to improve the exploration of a quality

problem; which, occurs at the bridge of the Measure and Analyse phases of the DMAIC
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cycle. To answer RQ2, this research examined: what statistical metrics are required at the

Measure and Analyse phases? what tools from the Shainin System are required to implement

the narrowing down approach? and, how can these analysis methods be deployed in a low-

volume process?

It was identified that there were two generally required statistical metrics from the Mea-

sure and Analyse phases: Gage R&R, to validate the performance of the measurement system,

and process capability, to asses the current performance of the process. It was also identified

that these phases can be supported by the Shainin System toolkit by: the Isoplot, to validate

the measurement system, and the multi-vari study, a stratified experiment to identify the

time scale of process variation and starting the narrowing down analysis. Further to this,

the PROcess VAriation Diagnosis Tool (PROVADT) method was identified as a sampling

strategy capable of collecting and measuring products that allows application of all four of

the aforemention analysis tools. This is achieved in as few as 20 products and a total of 60

measurements; therefore, PROVADT lends itself to low-volume application.

An Issue with the PROVADT method as it stood, was it confounded some variation

sources in the measurement system analysis; in order, to minimise the sample size of products

tested. Chapter 4 developed an enhanced PROVADT method, which, separated the

confounding variation sources by maintaining a minimum sampling size of 20 products, but

being measured a total of 80 times. This sample size maintained enhanced PROVADT’s

application in low-volume applications. This research was novel as it provides practitioners

with a means of apply four essential process improvement tools in one sample; rather than

applying them sequentially, as is the case traditionally. The traditional approach, ultimately,

drives up the number of products tested and the number of measurements made, which

places time and financial pressures on the analysis particularly in low-volume applications.

The enhanced PROVADT method also delivered positive results in two industrial case studies

in short time-frames.

The remainder of the research was focused in the Control phase of the Hybrid Six Sigma

methodology. Specifically, how to control low-volume, high-variety processes, which, are

classified as ‘set-up dominant’ in control texts. In set-up dominant processes, it is impossible

to derive the instantaneous statistical performance. Therefore, classic SPC is impossible

to apply in its true form; leading practitioners, such as process operators, to manage their

equipment with a subjective rule-of-thumb approach. This situation provided the next three

research questions:

RQ3 What is required to provide a practical and statistically valid approach for process

control in a low-volume process?

This question is addressed by chapters 3 and 5 and is a critical issue for set-up dominant

processes as ever higher precision requirements are demanded. This research generated a

new non-parametric control method, known as Set-Up Process Algorithm (SUPA), which

although underpinned by statistical theory, provided practitioners with a traffic-light chart
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and simple set of rules. The clarity of the traffic-light chart, which intuitively links control

boundaries to tolerance limits, was a critical feature to aid practitioners understanding.

The performance of the SUPA tool was compared with other traditional SPC tools in a

low-volume application through discrete-event simulation. A novelty in this research was the

use of discrete-event simulation to asses the performance of a control tool, not only up to

the point of a control action, but beyond it until a final process valid or invalid decision is

made. These simulations identified that SUPA and Small-Batch X̄R Chart (SBX̄R) were

the best performing control tools against set-up processes with both Gaussian and non-

Gaussian distributions. However, SBX̄R had drawbacks: it required an estimate of process

performance to establish control limits, this is not always possible in low-volume applications;

its control limits also change after each sampled product and two control charts need to be

maintained, which is confusing when compared to the clarity of non-parametric approaches

such as Pre-Control or SUPA.

RQ4 How can a low-volume process control tool be extended to fit multivariate processes?

This topic is addressed by chapters 3 and 6 and is a key issue for set-up dominant processes

as more high-complex products are manufactured in single processes. As products become

more complex they contain more Critical-to-Quality (CtQ) features, this means the associated

process needs to be controlled in each CtQ, this raises RQ4. One approach would be to

monitor a control chart for each feature, but, it was shown in a case study, this becomes

less and less practical as the number of CtQs increases. In response, this research looked to

extend SUPA to provide a single chart covering all CtQs, resulting in the multivariate SUPA

(mSUPA) tool.

The mSUPA tool maintained the non-parametric approach of univariate SUPA; linking

tolerances to control limits. The novelty of this research is the non-parametric approach;

multivariate SPC tools typically are parametric relying on the assumption that the process is

multivariate normal. Even previous attempts to extend Pre-Control, a non-parametric tool,

into the multivariate case have uncoupled control limits from tolerances and linked them to

statistical limits based on a multivariate normal distribution.

A consideration that needs to be made in the implementation of mSUPA is its presenta-

tion. Although a product with multi-dimensional CtQ features can be theoretically plotted

on a single chart, once a product has more than 2 CtQ features this becomes increasingly

difficult to visualise. However, if the calculation was automated, the practitioner could be

presented with a simple traffic-light describing if a process is in a global green, yellow or red

zone. Then the simple SUPA rules can be applied; which leads to RQ5.

RQ5 When a low-volume multivariate process control tool signals the process is off-target,

how can the calculation of control parameter adjustments be automated?

This question is addressed by chapters 3 and 7 and raises a problem facing practitioners

who are operating multivariate processes. Currently, how control parameter adjustments are
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made are left to a process operator’s judgement. This creates variation between batches of

products made by different operators. This research developed a novel tool that implements

an online simulation that automates the calculation of control parameter adjustments. Using

this tool in conjunction with mSUPA provides an overall control approach for discrete low-

volume manufacture, that eliminates the rule-of-thumb methods commonly used.

8.3 Future Work

In this section, directions for future work based on the research in this thesis are outlined as

follows:

1. Further work is required to identify the best means of presenting the information gen-

erated by mSUPA to aid the final implementation.

2. The online process adjustment simulation is underpinned by the assumption that the

A matrix that links the effect of a control parameter adjustment on the current process

mean can be estimated. For example, if a product is manufactured in a machining

centre, the product has an associated CNC program. It is hypothesised that an estimate

of the A-matrix can be extracted from this program, hence, further work is needed in

this area.

3. If the mSUPA and automated process adjustment tools are implemented, there is an

opportunity for the software to directly adjust the process parameters. This reduction

in operator influence has the potential to increase productivity.
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Appendix A

CtQ Outputs from Manufacturing

Simulation

This appendix details experimental results taken to validate the PROVADT method. These

results were collected from a manufacturing simulation known as PIM. Table A.1 details the

results collected in the original PROVADT format and Table A.2 details the results collected

in the enhanced PROVADT format. These results are analysed in detail in section 4.5.

174
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Table A.1: Original PROVADT format outputs from manufacturing simulation

Piece No.
Location 1 Location 2 Location 1

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2

1 20 30 20 1
2 58 87 54 2
3 36 45 35 3
4 76 52 78 4
5 17 47 18 5
6 43 68 49 6
7 58 94 55 7
8 77 96 78 8
9 22 56 24 9
10 43 21 43 10
11 60 77 58 11
12 78 34 77 12
13 22 72 22 13
14 47 75 44 14
15 43 17 44 15
16 90 63 90 16
17 20 33 23 17
18 35 65 38 18
19 47 63 46 19
20 70 45 74 20

Table A.2: Enhanced PROVADT format outputs from manufacturing simulation

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 20 21 20 30 41 1
2 58 57 54 2
3 36 34 35 45 59 3
4 76 75 78 4
5 17 22 18 47 33 5
6 43 45 49 6
7 58 60 55 94 41 7
8 77 79 78 8
9 22 26 24 56 70 9
10 43 45 43 10
11 60 56 58 77 26 11
12 78 79 77 12
13 22 25 22 72 89 13
14 47 48 44 14
15 43 45 44 17 32 15
16 90 84 90 16
17 20 22 23 33 64 17
18 35 35 38 18
19 47 47 46 63 36 19
20 70 70 74 20



Appendix B

CtQ Outputs from Rettig Case
Study

This appendix details experimental results taken from a case study at Rettig to validate the
PROVADT method. These results were collected from two production lines, manufacturing
radiators for a consumer market. The tables in this appendix show results for both production
lines, RT1 and RT2, and for two features, radiator height and seam depth, on the samples
collected. These results are analysed in detail in section 4.6.
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Table B.1: Enhanced PROVADT CtQ outputs from Rettig case study for RT1 radiator
height.

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 448.06 448.14 448.16 447.91 448.04 1
2 447.79 447.84 447.89 2
3 447.98 447.93 448.25 448.01 448.02 3
4 448.01 448.05 448.06 4
5 448.25 448.3 448.32 447.79 448.56 5
6 448.43 448.42 448.6 6
7 448.21 448.39 448.25 448.43 448.58 7
8 448.18 448.2 448.37 8
9 447.63 447.7 447.68 448.18 448.18 9
10 448.17 448.2 448.18 10
11 447.66 447.72 447.6 448.21 448.25 11
12 448.19 448.16 448.24 12
13 447.64 447.58 448 448.12 448.73 13
14 448.16 448.14 448.38 14
15 448.09 448.12 448.3 448.17 448.44 15
16 448.27 448.49 448.39 16
17 448.43 448.39 448.65 448.44 448.62 17
18 448.35 448.55 448.36 18
19 448.49 448.48 448.42 448.31 448.54 19
20 448.34 448.5 448.79 20

Table B.2: Enhanced PROVADT CtQ outputs from Rettig case study for RT1 seam depth.

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 10.96 11.54 10.88 10.78 10.92 1
2 11.3 11.44 10.64 2
3 11.24 11.58 11.2 11.7 10.94 3
4 11.5 11.26 11.28 4
5 11.02 11.22 11.04 10.44 10.98 5
6 11.96 12.04 11.72 6
7 10.8 11.06 10.52 11.4 10.62 7
8 11.96 11.2 11.32 8
9 10.54 10.2 10.48 11.3 10.98 9
10 11.18 11.56 11.24 10
11 10.54 10.4 10.46 10.08 10.96 11
12 10.94 11.22 11.26 12
13 10.94 10.92 11.18 10.7 11.16 13
14 11.52 11.48 11.54 14
15 11 11.08 10.98 10.58 11.04 15
16 11.7 11.64 11.68 16
17 12.32 12.22 12.46 12.42 12.22 17
18 11.7 11.08 12.14 18
19 11.9 11.82 11.92 12.34 11.84 19
20 11.04 11.22 11.28 20
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Table B.3: Enhanced PROVADT CtQ outputs from Rettig case study for RT2 radiator
height.

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 526.45 526.39 526.24 526.75 526.99 1
2 526.28 526.11 526.09 2
3 526.37 526.25 526.79 527.04 527.22 3
4 526.18 526.25 526.2 4
5 526.66 526.64 525.55 526.12 526.64 5
6 526.59 526.85 526.42 6
7 526.24 526.34 525.67 526.7 526.83 7
8 526.61 526.57 526.54 8
9 526.33 526.68 526.54 526.8 526.6 9
10 526.16 526.18 526.45 10
11 526.13 526.24 526.21 526.9 527.06 11
12 526.66 526.96 527.07 12
13 525.73 525.55 526.12 526.69 526.83 13
14 526.77 526.74 526.75 14
15 527.2 526.83 526.84 526.8 527.06 15
16 526.76 526.86 526.72 16
17 526.61 526.72 526.42 527 526.69 17
18 526.66 526.43 526.69 18
19 526.03 526.61 526.22 526.26 526.19 19
20 526.22 526.32 526.57 20

Table B.4: Enhanced PROVADT CtQ outputs from Rettig case study for RT2 seam depth.

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 10.34 10.6 10.94 10.96 10.76 1
2 10.68 10.42 10 2
3 10.34 10.36 10.16 10.78 10.64 3
4 9.7 9.82 9.36 4
5 9.66 10.2 9.54 10 9.54 5
6 10.52 10.46 10.64 6
7 9.44 9.24 9.58 9.92 9.56 7
8 9.96 9.7 10.68 8
9 10.22 9.78 10.3 10.02 10.22 9
10 9.38 9.2 9.34 10
11 10.38 10.72 9.42 9.78 9.92 11
12 10.28 9.94 9.66 12
13 8.78 8.7 8.78 9.84 9.76 13
14 10.02 9.24 9.72 14
15 10.32 10.3 10.14 10 10.18 15
16 9.84 9.5 9.82 16
17 9.46 9.88 9.32 10.34 9.62 17
18 10.36 10.02 10.36 18
19 9.54 10.02 10.36 10.58 10.24 19
20 10.38 10 9.92 20



Appendix C

CtQ Outputs from Coveris Study

This appendix details experimental results taken from a case study at Coveris to validate

the PROVADT method. These results were collected from a manufacturing process, which

extrudes plastic into sheet reels. The tables in this appendix show results for the material

thickness on the samples collected. These results are analysed in detail in section 4.6.
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Table C.1: Enhanced PROVADT CtQ outputs from Coveris case study for thickness.

Piece No.
Location 1 Location 2 Location 3

Piece No.
Appraiser 1 Appraiser 1 Appraiser 2 Appraiser 1 Appraiser 1

1 1.245 1.24 1.243 1.238 1.23 1
2 1.241 1.239 1.242 2
3 1.24 1.237 1.24 1.237 1.227 3
4 1.241 1.239 1.243 4
5 1.238 1.232 1.233 1.224 1.218 5
6 1.235 1.236 1.236 6
7 1.239 1.241 1.241 1.233 1.223 7
8 1.235 1.237 1.238 8
9 1.24 1.245 1.245 1.236 1.229 9
10 1.238 1.24 1.246 10
11 1.24 1.245 1.246 1.243 1.225 11
12 1.244 1.244 1.247 12
13 1.242 1.241 1.244 1.237 1.227 13
14 1.235 1.234 1.238 14
15 1.236 1.238 1.24 1.236 1.217 15
16 1.239 1.24 1.24 16
17 1.246 1.245 1.246 1.242 1.228 17
18 1.24 1.24 1.243 18
19 1.239 1.238 1.239 1.235 1.219 19
20 1.244 1.243 1.247 20



Appendix D

Case Study I Pre-Control Results

This appendix details experimental results taken from a case study to stage I PRE-Control

as a process control method for set-up dominant processes. The tables in this appendix were

plotted on percent tolerance PRE-Control charts to provide consistency. These results are

discussed in detail in section 5.2.

181



Chapter D. Case Study I Pre-Control Results 182

Figure D.1: Percent tolerance Pre-Control record example.
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Figure D.2: Percent tolerance Pre-Control chart example.
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Figure D.3: Percent tolerance Pre-Control chart for G99-161.
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Figure D.4: Percent tolerance Pre-Control chart for G99-285.
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Figure D.5: Percent tolerance Pre-Control chart for G99-663A.
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Figure D.6: Percent tolerance Pre-Control chart for W65-8487.



Chapter D. Case Study I Pre-Control Results 188

Figure D.7: Percent tolerance Pre-Control chart for G99-664A.
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Figure D.8: Percent tolerance Pre-Control chart for W99-2780.


