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 Abstract 
 

Emerging smart-grid-enabling technologies will allow an unprecedented degree of observability 

and control at all levels in a power system. Combined with flexible demand devices (e.g. electric 

vehicles or various household appliances), increased distributed generation, and the potential 

development of small scale distributed storage, they could allow procuring energy at minimum 

cost and environmental impact. That however presupposes real-time coordination of demand of 

individual households and industries down at the distribution level, with generation and 

renewables at the transmission level. In turn this implies the need to solve energy management 

problems of a much larger scale compared to the one we currently solve today. This of course 

raises significant computational and communications challenges. 

The need for an answer to these problems is reflected in today’s power systems literature where 

a significant number of papers cover subjects such as generation and/or demand management at 

both transmission and/or distribution, electric vehicle charging, voltage control devices setting, 

etc. The methods used are centralized or decentralized, handling continuous and/or discrete 

controls, approximate or exact, and incorporate a wide range of problem formulations. All these 

papers tackle aspects of the same problem, i.e. the close to real-time determination of operating 

set-points for all controllable devices available in a power system. Yet, a consensus regarding the 

associated formulation and time-scale of application has not been reached. Of course, given the 

large scale of the problem, decentralization is unavoidably part of the solution. In this work we 

explore the existing and developing trends in energy management and place them into perspective 

through a complete framework that allows optimizing energy usage at all levels in a power 

system. 
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1  
Introduction & Scope 

The advent of smart grids along with the future need for managing efficiently a large number of 
flexible devices at the end-user level, has led to an increased interest in energy management 
applications in power systems. This in turn brought attention to decentralized methods for solving 
the potential problems associated with: 1) the significant computational and communications 
burden implied for centralized solutions; and 2) certain social aspects related to privacy of 
information and allowing energy usage decisions to remain with the end-user. However, the 
actual practical necessity and scope of application of decentralized approaches in power systems 
energy management remains quite obscure. In this chapter we set our general perspective on the 
subject and provide an overview of relevant problems and questions. 

1.1 Point of Reference 

Electrical power systems are operated today in a highly efficient manner using a largely 

centralized structure. The latter consists of three basic successive mechanisms [1, 2] which control 

the power system state at any point in time: 

 Unit Commitment (UC): a centralized mixed-integer optimization problem, covering a time 

period of several hours, which determines the operating status of large conventional generators. 

This is typically solved up to a day ahead of real-time, to account for the fact that large generators 

may require several hours to start-up or shut-down [1, 3]. It should be noted however that 

different versions of this problem may be solved closer to real-time for the specific purpose of 

scheduling smaller fast-start generators. 

 Economic Dispatch (ED): a centralized non-linear and non-convex optimization problem, 

covering a short period in time [4]. While in practice there may be a number of discrete devices 

involved (e.g. capacitor banks or transformers), ED is commonly assumed in research literature 

to involve only continuous constraints and controls [5]. It is solved several minutes ahead of 

real-time and its purpose is determining the operating points of all controllable devices in the 

system. Within this work we assume ED in its basic form to be a single time-step optimisation 

problem, which includes transmission level network constraints. 

  Fast local controls: these involve the controllers of individual devices acting instantly based 

on local signals of frequency or voltage. Their set-points and operation mode would typically be 

determined through the ED mechanism. This could be considered as a decentralized control 

scheme which unavoidably has to remain so, as the quickly evolving system dynamics do not 
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allow time for any coordination between individual devices. Note that some coordination is still 

achieved through appropriate off-line tuning of device controller parameters. 

Overall the above structure strikes a good balance between management of uncertainty and 

individual problems solution speed and is supported by an appropriate market framework [6, 7]. 

UC and ED are the energy management mechanisms which try to achieve optimal (in terms of 

economic efficiency and reliability) operation, while the fast local controls are there to ensure 

system stability. This work focuses on the technical / engineering aspects of optimal energy 

management problems, rather than issues related with fast controls and stability or the design of 

the associated markets. Given that the above structure has been performing quite well for several 

decades now, our starting question is whether or not, any change to it, or any push towards 

decentralized approaches is at all necessary. 

1.2 Identifying the Problem 

The answer to the question above may become clear through a simple comparison between the 

power system’s structure at present and its expected structure in the future. The changes are 

evident on Fig.1-1. The centralized solution of relevant optimization problems in UC and ED is 

still an active research area and there is no apparent consensus regarding their exact formulation 

[3, 5]. In any case however, both UC and ED are about optimizing the operation of a mix of large-

scale conventional and renewable generation, subject to transmission network constraints, given 

aggregate demand estimates at the transmission node level. As such the distribution networks or 

individual end-user devices have never been considered in detail. This was a reasonable approach 

given that end-users have been largely inflexible in their energy requirements, and as a 

consequence, distribution networks were built to cover any foreseeable amount of demand. As a 

result, their constraints in terms of energy management could simply be ignored. However, recent 

trends in power system literature envision a high number of flexible demand devices – e.g. electric 

vehicles (EVs) [8], small-scale storage [9], or simply controllable versions of today's appliances 

[10] – in the near future. 

The most dominant characteristic of flexible devices in terms of energy management is their time-

linking characteristics, i.e. instead of meeting a power requirement at a given instance of time (as 

with today’s inflexible demand), energy requirements have to be met over a period of time. In 

addition, most of these devices will be connected at the distribution level. These considerations 

raise three basic issues which are not fully addressed through current energy management 

mechanisms: 

1. Demand coordination over time: Towards achieving efficient operation the use of these 

flexible devices at the distribution level has to be coordinated with generation at the transmission 

level, e.g. shift demand to hours when energy is cheap (either due to the fact that demand was 
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in the first place low, or due to increased renewable energy availability). However, this is not 

covered by today’s formulations, where ED has at most a very limited look-ahead period in time 

[4]. At the same time UC, which does optimize over long periods of time, is typically solved far 

in advance and might not fully allow micromanaging individual devices. 

2. Distribution network constraints: One important point that has to be considered is that the 

new developments might imply significant strain for current distribution networks [11]. 

Comparing for example the typical household demand in [10] peaking at about 5 to 14 kW 

(depending on household size) and the typical electric vehicle charging power at 3.5-6.6kW 

(even up to 40kW for fast charging) [12], indicates a significant increase in peak demand and 

maximum network loading. Thus, a second important question pertains to how distribution 

network limits would be taken into account in our energy management problems. The only 

alternative would imply significant investments in distribution network equipment to increase 

 

Fig.1-1: An indicative overview of basic power systems structure, illustrating the 
forthcoming changes at each level. At the top is the transmission (high voltage network) 
which is operated in a meshed fashion. At each individual transmission bus, distribution 
networks (medium voltage) branch out as shown in the middle level. Finally, at the bottom, 
starting from individual medium to low voltage substations, low voltage networks supply 
individual households. Note that while the distribution networks can be meshed in terms of 
physical structure, they are typically operated in a radial fashion through switches which 
isolate different branches. 
In their present form, power systems largely consist of large conventional plants, renewables 
of various sizes, and mostly inflexible demand. In the future one may expect increased 
renewables, electric vehicles, flexible appliances, and if it becomes economically viable 
small scale storage. The lines indicate where the various generation and device types may 
appear (with larger scale plants connected at higher voltage levels). 
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capacity. This again is something that traditionally has never been considered in either UC or 

ED. 

3. Controls assignment: One further evident question is when would a system operator assign 

and adjust set-points or control modes to these new flexible devices. The nature of the control 

or market signals that would be exchanged between them would also need to be clarified. 

Without question, the basic energy management structure (presented in the previous section) 

should evolve to account for these three issues. Only then would procurement of energy at the 

minimum possible cost and environmental impact be possible. As such a change in the way UC 

and ED problems are formulated and solved is unavoidable. Of course the most straightforward 

solution would be to simply extend their formulations to include the requirements and limitations 

of each individual device and network component. This however implies optimization problems 

of a particularly large scale and three new issues would come to replace the ones solved, i.e.: 

1. Tractability: these new problems might not be tractable through centralized methods, i.e. their 

solution time may not be fast enough for the result to be of use for power system operations. 

2. Communications: a centralized solution would require one operator communicating every few 

seconds with millions of devices. It is uncertain whether a sufficiently fast and reliable solution 

in terms of communications infrastructure is possible at a reasonable cost. 

3. Privacy: while this is a rather subjective issue, sending a full schedule of one’s use of energy 

and private activities, might be a problem for some individuals. The same is true with respect to 

passing full control of the devices (e.g. an electric vehicle) one owns to one central operator. 

These three points indicate the need for highly parallelizable and potentially decentralized 

solution methods. 

1.3 Distributed & Decentralized Solutions 

When it comes to optimisation problem tractability – or in other words solution speed – there are 

three possibilities for improvements: simplifying the problem, improving the solver, or 

parallelizing the necessary computations [13]. The latter is something to be pursued on several 

levels, e.g. the parallel execution of basic numerical operations in a processor (a core part of 

modern computing systems), or the parallel solution of algebraic problems within the solver by 

exploiting the structure of the associated mathematical method, or the parallel solution of parts of 

the original problem by exploiting its structure. This latter higher level parallelization of the 

problem solution is of interest in this work. It involves breaking apart the original problem into a 

set of smaller subproblems and coordinating iteratively their solution through an appropriate 

mathematical decomposition approach. The latter achieves this coordination in a way that is 

mathematically proven to converge to the optimum of the original problem (global if the problem 

is convex, possibly local if the problem is non-convex). Depending on how the coordination of 
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the subproblems is achieved the solution may be centralized or decentralized. In the following we 

refer to problem solutions as: 

 distributed: a solution approach which rather than handling the whole problem at once, 

decomposes it into smaller ones, and iteratively coordinates their solution to convergence; 

 centralized: a solution which is not distributed, or even if it is and subproblems are solved in 

a distributed manner (e.g. in separate computing systems), coordination is achieved via 

communication with one central controller; 

 decentralized: a distributed solution where there is no need for a central controller and 

coordination is achieved through the communication between individual subproblems. 

One further distinction could be made between synchronous and asynchronous methods. 

 synchronous: a distributed solution which requires that subproblem updates wait at specific 

points for the arrival of certain data; 

 asynchronous: a distributed solution which performs subproblem updates and transmits 

relevant information as soon as changes to subproblem parameters are registered. These methods 

require a more rigorous assessment of their convergence properties. 

Independently of whether or not a solution approach is decentralized, a distributed method should 

in general be able to cope equally well with tractability problems. However, as will be discussed 

in the following chapters, fully decentralized solutions may have reduced communication 

infrastructure requirements, and depending on the transmitted information type, they may also 

alleviate any privacy issues. Note that decentralized solutions are applicable in continuous 

optimisation problems. For mixed integer problems, while distributed solutions are possible, some 

sort of centralized control is typically necessary to reach a good quality solution. 

1.4 Avoiding Commitment 

In contrast to ED and its limited look-ahead period, UC could readily accommodate flexible 

demand characteristics (e.g. scheduling an electric vehicle or storage unit over time) given its 

typical multi-period formulation. However, one associated difficulty is that UC is characterized 

by significant uncertainty. It is also a fact that UC is already a challenging mixed integer problem 

when the objective is to schedule a few (relative to the number of small-scale flexible devices) 

slow-to-start generators. Incorporating the constraints of individual devices or attempting to 

include the details of distribution networks, would not only make the problem extremely large, 

but it would also probably be of little practical value. This is due to the fact that it is unlikely that 

demand at the end-user level could be reliably forecasted. This in turn implies that any control 

decisions made for devices at the distribution level are also unlikely to be actually used, as they 

would have to be validated and possibly changed closer to real-time. Consequently, aggregate 
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demand models appear to be a better option: e.g. trying to determine a schedule at hour 10 of the 

following day of an EV with 0.5 probability of being connected might not be very meaningful, 

whereas trying to schedule the aggregate consumption of a 100 such EVs (due to the much smaller 

associated uncertainty) is more likely to give an answer of practical value. This conclusion is in 

agreement with approaches published in recent relevant literature (e.g. [14, 15, 16]) which in 

essence attempt to do the same thing, i.e. build appropriate reduced-order models for a collection 

of flexible devices (most commonly EVs). The latter are assumed to be managed by a single 

entity, the aggregator. 

Overall, given the involved uncertainty, individual devices and distribution networks may not be 

meaningfully optimized in the UC time-frame and full coordination to the individual device level 

is not possible. Nevertheless, UC can definitely enable a certain degree of demand coordination 

over time with generation, through the use of aggregate models. In addition, as will become clear 

in the following, UC (currently being the only real-world optimization problem coordinating 

devices over time in power systems) can provide some insight into uncertainty management and 

model reduction approaches for large scale problems. In the following we briefly review how 

device flexibility is managed within this particular problem. 

1.4.1 Aggregator Bidding 

In cases where the aggregators are participating as independent entities in the market, managing 

on their own the uncertainty to which they are exposed, a reduced-order model is essentially built 

through the process of constructing energy bids (i.e. roughly speaking prices vs. power curves). 

For example, in [17] a simplified approach is presented for constructing bids for an EV 

aggregator. Given that the relevant optimization problem when considering each individual 

electric vehicle for all possible future scenarios would be intractable, the vehicles are grouped in 

three basic categories, based on their expected way of charging (e.g. EVs charging on one of three 

pre-agreed periods). The aggregator builds a forecast for each category and solves an optimization 

problem that attempts to minimize costs and expected deviation penalties (i.e. differences of 

power dispatched in ED compared to power initially scheduled in UC). A similar approach of 

grouping vehicles, this time based on similarities in their usage patterns, is proposed in [18] where 

the aggregator participation in a day-ahead market (including regulation services) is taken into 

account through a linear programming formulation. Monte-Carlo simulation is used to generate 

scenarios for electric vehicles and management of uncertainty is done through a point-estimate 

method. 

A scenario based approach is also used in [19], but without any sort of scenario reduction. The 

aggregator simply generates a given number of scenarios by sampling distributions for all EV 

parameters (e.g. connection time and state of charge) and given forecasts for the energy prices 
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solves a two-stage optimization problem. Detailed battery charging characteristics are considered, 

i.e. a dependency between maximum power and state of charge (assuming Li-Ion batteries), and 

represented through additional linear constraints. However, it is unclear what improvement this 

offers compared to simpler approaches. Note that optimization control variables are associated 

with each scenario and each electric vehicle scheduling realization, thus resulting in a particularly 

large problem. 

Reference [16] proposes a deterministic multi-period discrete optimization model for EV 

charging which is solved via dynamic programming. It also considers vehicle participation in 

regulation markets and provides some insight into the economic viability of electric vehicles. The 

scheduling and dispatch problems for EVs are formulated and solved separately, with the 

aggregator trying to buffer the errors in terms of EVs behaviour during the dispatch process. In 

[20] the aggregator submits an inflexible energy bid as well as a flexible energy bid for regulation 

services. The bid is derived based on a stochastic dynamic programming approximation. It is 

assumed that the aggregator has knowledge of the resulting probability distribution of energy and 

regulation prices. EVs are grouped based on their departure times and a penalty is applied if a 

vehicle departs without being charged at the desired level. 

Finally, [21] studies the participation of EVs combined with storage in forward and balancing 

energy markets including the provision of regulation. Each vehicle is assumed to provide 

information regarding its energy requirements and charging time as soon as it is connected. Point-

estimates are used for uncertain quantities and a generic discrete model is used for EVs. The 

resulting mixed integer programming problem is solved using a heuristic based on a linear 

programming relaxation. 

The papers referenced above are indicative of the research currently being carried out in terms of 

managing flexible demand within UC, and apparently there is an abundance of methods to do it. 

At this point it is possible to make two interesting observations. The first is that managing 

uncertainty locally at the aggregator level (through the submission of aggregate bids or other 

aggregate models) appears to be a common enough and sensible approach which can greatly 

simplify the UC problem’s solution. The second relates to the simple fact that, as may be expected, 

the aggregation process presupposes an additional dispatch step for individual devices closer to 

real-time. These are ideas that could also be transferred to the ED time-frame. 

1.4.2 Unit Commitment Formulations 

The output model of the methods above may be directly included within the UC formulation for 

which appear to be three basic approaches [22]: deterministic, which uses point estimates for the 

uncertain parameters; stochastic, which uses a reduced set of scenarios; and interval, which uses 

a further reduced scenario set (i.e. a central forecast and upper and lower bounds on it). An 
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example of a deterministic formulation with flexible demand is [23] where an EV fleet is modelled 

as a single equivalent vehicle based on the expected values of its constraints. Of course, due to 

the lack of any detail in the representation of uncertainty, the downside of such deterministic 

approaches is that the resulting schedule can be too conservative or even insufficient at certain 

times within a day. To a certain degree, this may be countered through the use of rolling horizon 

approaches as e.g. in [24]. In terms of stochastic optimization approaches, reference [25] follows 

a scenario reduction approach for the day-ahead UC problem. First an arbitrary number (4000) of 

scenarios for wind generation, energy prices and imbalance prices (i.e. prices that market 

participants pay for deviating in real-time from their promised operating points). The these are 

reduced to a predetermined number (3) based on method presented in [26]. EVs are assigned to 

one of 50 driving profiles. The proposed formulation maximizes expected profits over that final 

set of scenarios (33). However, no discussion is offered regarding the effect of the selected 

scenario generation / reduction approach on the solution. In all papers mentioned in this section, 

centralized (often branch & bound based) methods are used for the various problems solution. 

While current literature is inconclusive in regards to what UC formulation should be used and 

what flexible demand models within it would be adequately good for practical purposes, there 

does not appear to be a particularly strong motivation to move towards decentralized solutions of 

the corresponding optimization problem. The reason is that in terms of scale this particular 

problem might not need to change at all. In addition, as will be discussed in the following chapters, 

solving to optimality integer and/or stochastic programming problems through distributed 

approaches is very hard to do. As a consequence, the most drastic changes in energy management 

may be expected to come within the time-frame of economic dispatch. 

1.5 Closer to Real-Time 

Following the observations of the preceding section, several issues associated with the upcoming 

flexible devices will have to be solved in the economic dispatch time-frame. The ED problem 

itself has to grow in scale and scope, and this is where decentralized optimization approaches 

might prove a useful tool. Consequently, this work focuses on the ED time-frame, i.e. a limited 

period (a few minutes) ahead of real-time. During that time, operating set-points of individual 

controllable system devices have to be obtained in a coordinated fashion, through the solution of 

appropriately formulated optimization problems. The problems that we are dealing with in the 

present work may be summarized in the following questions: 

1. How should ED change to account for the impact of flexible demand? 

2. To what extend is it reasonable to manage distribution constraints within ED? 

3. How would flexible demand at the low voltage level be managed and represented in ED? 
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4. To what extent is it feasible to solve the ED problem in its current form in a decentralized 

manner within the allowed ED time-frame? 

5. How would one optimize operations and manage individual devices at the distribution level? 

6. How far can decentralization be pushed within an energy market? In other words, can the ED 

solution be decomposed down to the individual node, or even down to the individual energy user 

connected at each node? 

7. What would a practical decentralized solution look like? 

8. How would a decentralized solution integrate with other power systems energy management 

and control mechanisms? 

The first five questions essentially relate to the formulation of the problem and any auxiliary 

mechanisms which might be required. The last three relate to the applicability of 

distributed/decentralized methods in solving the problem. Hints towards the answers may be 

found in the UC related approaches discussed above, but also a large body of power systems 

literature where papers formulate and solve a variety of energy management optimization 

problems. However, these often lack a clear scope and time-frame of application as they are not 

clearly associated with the time-frames and subsequent operational decisions corresponding to 

either UC or ED. 

Regarding our UC observations, while to a certain extent the concept of aggregation could be 

transferred to ED, there are three significant differences: 1) this is the last system-wide 

optimization being carried out before real-time and any sub-transmission or distribution 

limitations would have to be taken into account here; 2) for the same reason this is when individual 

devices have to be assigned operation modes / set-points; 3) the available time for the problem 

solution is much more limited. In the same sense, while UC formulation principles could be 

applied towards an appropriate ED formulation, not all of them would really be applicable here. 

Regarding the generic energy management literature mentioned above, due to its sheer size, it 

would be of little value to attempt to reference it here. These papers are reviewed throughout the 

following chapters where the information they offer is relevant to the problem at hand. 

1.6 Contributions & Structure 

The current energy management structure as described in the preceding discussions is 

summarized on Fig. 1-2. Given that the real challenge in energy management at the time frame 

of interest (i.e. that of ED) is optimizing subject to the network constraints, our starting point is 

the most fundamental of power system optimization problems: optimal power flow (OPF). In 

Chapter 2 different formulations for the optimal power flow problem are investigated, placing 

particular emphasis on the representation of network constraints. Different centralized solution 

approaches proposed in current literature are briefly reviewed and we conclude with reference 
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formulations of our own for both balanced (transmission level) and unbalanced (distribution level) 

conditions. With regards to relevant contributions: 

• We introduce a new fast approximate approach for solving problems at the distribution level, 

based on appropriate voltage reference frame transformations. The method yields accurate results 

and appears to be suitable for close to real-time optimization. 

As may be expected a natural prerequisite to any decentralized solution is a distributed solution 

to the optimal power flow itself. Therefore, in Chapter 3 we review mathematical methods 

suitable for decomposing optimization problems to a set of smaller subproblems. These are then 

solved iteratively in a coordinated manner until they converge to the optimum of the original 

problem. We focus on the fundamental question of how far we could go with decentralizing the 

solution of the optimal power flow problem, using the formulations presented in Chapter 2. The 

relevant research contributions may be summarized in the following: 

• We investigate through extensive simulations the decentralized solutions convergence 

performance in non-convex OPF problem formulations in several test systems of size ranging 

 

Fig.1-2: A schematic of the basis of energy management in today’s power systems 
emphasizing the ‘technical’ outputs of the various optimization processes (indicated by green 
colour). Each individual stage is supported by a corresponding market. Given the uncertainty 
associated with the UC time-frame the most critical changes in terms of flexible demand 
management would have to happen in the ED time-frame. 
Note that the right side of this figure has been on purpose been left blanc. This figure is 
extended over the following chapters, gradually developing to the energy management 
framework that constitutes a major contribution of this work. 
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from 24-buses to 707-buses (a simplified representation of the UK network). The presented results 

are based on an augmented Lagrangian decomposition method (ADMM) and relate its parameters 

to characteristics of the OPF problem. 

• We investigate different degrees of problem decomposition, down to the individual bus level, 

combined with decomposition of demand and generation connected at a given bus. Different 

decomposition structures are also compared. The results provide significant insight in the 

scalability of such decentralized approaches. 

• Through the introduction of aggregators and the idea of combining different decomposition 

algorithms, we illustrate how it would be possible to improve performance and achieve improved 

scalability when decomposing the problem in terms of users. 

Overall the points above also provide several hints regarding a possible decentralized operations 

structure in power systems and the challenges that the latter entails. The next step is using these 

insights to bring the optimal power flow into context, i.e. solve an actual energy management 

problem: that of economic dispatch. Thus, in Chapter 4 we build upon the results of Chapter 3 

and propose a decentralized solution for an extended formulation of the economic dispatch 

problem. Furthermore, we identify its relation with other energy management mechanisms and 

real-time controls. The relevant research contributions include: 

• A multi-period economic dispatch formulation which takes into consideration distribution 

network constraints and related stochastic aspects. Based on current forward market practices and 

practical considerations, appropriate simplifications are proposed to enable the problem’s timely 

solution. 

• A decentralized solution structure based on stochastic elements of the economic dispatch 

problem, incorporating appropriate aggregate models of electric vehicle demand for use at points 

where accurate forecasts are not possible. 

One of our observations as part of the solution to economic dispatch was that, unavoidably, it is 

not possible, or even meaningful, to include every single constraint and device in it. Thus we 

identify the need for an additional mechanism managing individual devices at the distribution 

level or as we prefer to call it microgrid level. Thus in Chapter 5 we review and discuss approaches 

suitable for a microgrid dispatch problem and propose a trust-region based optimization solution. 

The proposed method is suitable for managing the large number of small individual devices at the 

distribution level and utilizes formulations and solution approaches first described in Chapter 2. 

The main functions of this chapter are: 

• Providing a comprehensive review of distribution control problems as well as of methods for 

their solution with emphasis on a variety of integer programming techniques. 
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• Extending the approximate method proposed in Chapter 2 for distribution level optimization 

problems, to account for discrete controls such as transformer taps and various end-user devices. 

Overall this work presents a general framework for flexible demand management and reference 

solutions for the ensuing network-constrained optimization problems. Chapter 6 provides a 

relevant summary, as well as a discussion on possible extensions and further research possibilities 

which could bring the presented framework closer to practical application. 
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2  
Optimal Power Flow 

Optimal power flow (OPF) – i.e. the single time instance optimization of generators output subject 
to network constraints – is a fundamental part of any power systems optimization problem. In its 
standard form the set of network constraints is non-linear and non-convex, which may imply that 
any mathematical optimization algorithm could converge to a local optimum or might have 
difficulties in converging. This chapter discusses possible alternative formulations in terms of 
network constraints and briefly reviews mathematical programming methods suitable for the 
solution of the problem. 

2.1 Problem Perspective 

Before going further, we have to point out that OPF, in its standard form typically refers to the 

transmission system side. Its purpose is optimizing the operating generators output in the system, 

given the aggregate demand estimate in all system buses, subject to network constraints. 

Transmission networks are meshed as may be seen on the example of Fig.2-1. In addition to the 

constraints describing the physical operating characteristics of the network, practical OPF 

formulations typically also involve contingency constraints [27]. The latter try to ensure that it 

would be possible to serve the demand, with minimum possible curtailments, in case a number of 

contingencies happen. However, in this work we focus on the base version of the problem, without 

the security considerations. The reason is that intuitively, the base OPF problem by itself should 

provide sufficient insight regarding a possible structure for flexible demand and distribution 

network constraints management. Additional constraints (such as the contingency ones) may be 

later directly incorporated into that structure. This will become evident through the results 

presented in the following chapters. 

2.2 Modelling Power Systems Devices 

Before moving into optimization problems themselves, or formulating the problems on a system-

wide scale, it is helpful to go through some basic steady-state modelling considerations with 

respect to individual power systems devices. This should allow a better understanding of the 

power flow equations and offer a clearer association with practice. Note that in power systems, 

the concept of voltage angles reference frame transformations is of fundamental importance, as 

in many cases it allows simpler and clearer models for many devices. One such transformation is 

that of symmetrical components which is presented in the immediately following subsection. Note 
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that all voltage and current quantities are phasors, i.e. vectors where the frequency (50 Hz) 

component has been removed, and whose real part is proportional to the magnitude of the actual 

sinusoidal quantity. Power quantities correspond to average values over a period (1/50 sec). In 

this chapter we provide a quick description of models corresponding to the most basic power 

system network components. These should help provide a basic idea of how power flow 

constraints relate to individual devices, and illustrate the relation and differences between 

transmission and distribution level constraints. A more complete description of power systems 

components modelling may be found e.g. in [2, 28]. 

2.2.1 Sequences Reference Frame 

The underlying concept behind the sequence reference frame is that any set of three-phase 

voltages or currents may be written as the sum of two balanced ac systems (of opposite phase 

sequence) and one unidirectional (for all phases) component, i.e.: 

푉
푉
푉

=
1 1 1
1 푎 푎
1 푎 푎

푉
푉
푉

 ( 2–1) 

Where 푎 = 푒 /  . The inverse transform would be: 

푉
푉
푉

=
1
3

1 1 1
1 푎 푎
1 푎 푎

푉
푉
푉

 ( 2–2) 

An appropriate transformation has to be carried out for individual system components, i.e.: 

Fig. 2-1: This is a representation of IEEE-118 bus transmission test system. Each numbered 
item corresponds to a transmission bus. At each bus typically demand is represented in 
aggregate form, and there may be any number of conventional generators. 
The colour-map identifies different areas in the system. This is a simple example of network 
partitioning but this does not necessarily need to have any direct implications for the OPF 
problem itself. 
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푉 = 푧 퐼 ↔ 푇푉 = 푇푧 푇 푇퐼  ( 2–3) 

Finally, as far as power is concerned: 

푆 = 푉 퐼∗ = 푉 (푇 ) (푇 )∗퐼∗ = 3푉 퐼∗  ( 2–4) 

As will be seen in the following sections, if a device is built to be symmetrical in terms of the 

three phases, this transform can significantly simplify the equations that describe the device. Note 

that symmetry in terms of voltage implies voltages of equal magnitude in each phase, with the 

relative phase angle difference between phases being 120°. 

2.2.2 Overhead Lines Impedance 

The typical low voltage distribution line consists of 4 conductors / cables. For each individual 

conductor resistance is an inherent frequency-dependent characteristic, while inductance depends 

on the geometry of the conductors’ placement. In complex matrix notation, based on Fig. 2-2 the 

following relation stands: 

⎣
⎢
⎢
⎢
⎡
Δ푉
Δ푉
Δ푉
Δ푉 ⎦

⎥
⎥
⎥
⎤

=

푧 푧 푧 푧
푧 푧 푧 푧
푧 푧 푧 푧
푧 푧 푧 푧

퐼
퐼
퐼
퐼

 ( 2–5) 

For e.g. underground cable systems more equations would be required to account for the multiple 

neutral wires. Under the assumption that the ground resistance between the two ends of the line 

is negligible then 푉 ≈ 푉 = 0 and consequently 퐼 = −푧 (푧 퐼 + 푧 퐼 + 푧 퐼 ). 

Substituting this into the above equations results in: 

Δ푉
Δ푉
Δ푉

=

⎣
⎢
⎢
⎢
⎡ 푧 − 푧 − 푧 −

푧 − 푧 − 푧 −

푧 − 푧 − 푧 − ⎦
⎥
⎥
⎥
⎤ 퐼
퐼
퐼

 ( 2–6) 

This is known as Kron’s reduction [28]. If the line is transposed then all diagonal elements are 

equal (푧 ) and so are the off-diagonal elements (푧 ). Applying the symmetrical components 

transform under this assumption yields: 

Δ푉
Δ푉
Δ푉

=
푧 + 2푧 0 0

0 푧 − 푧 0
0 0 푧 − 푧

퐼
퐼
퐼

 ( 2–7) 

In case only positive and zero sequence resistances are known for a line, the approximate 

primitive impedance model (2-6) may be derived by working backwards from (2-7). For unequal 

diagonal and off-diagonal components in (2-6) the off-diagonal elements in (2-7) would be non-

zero. In distribution networks, given the limited length and fixed geometry this is often the case. 

On the contrary, at the transmission level the opposite is always assumed to be true. Note that 
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typical generating systems in normal operation may be assumed to produce voltage in the positive 

sequence only. Furthermore, all three-phase devices (generators, motors, transformers, etc.) are 

built to be symmetrical, i.e. they introduce no coupling between sequences. If we were to assume 

that the load is also balanced (e.g. a set of equal resistances connected to ground), then it should 

be clear form (2-7) that the currents in zero and negative sequence would be equal to 0. This is a 

common assumption when solving problems at the transmission level, and as such when writing 

the network equations one needs only consider the positive sequence part. 

2.2.3 Transformers 

Let us assume the general 3-phase unconnected transformer case as seen on Fig. 2-3. The 

associated equations excluding dynamics in a per unit system with base voltage ratio that of the 

transformer voltage ratio (tap effect included) are [29]: 

 

Fig. 2-2: Typical overhead low voltage distribution line configuration. At higher voltages 
there is no fourth (neutral) conductor. 
 

 

Fig. 2-3: Left: Primary and secondary electrical circuits of an unconnected 3-phase 
transformer. Right: Magnetic circuit of the transformer. 

 
 
 



17 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푧 0 0 0 0 0 푗휔 0 0
0 푧 0 0 0 0 0 푗휔 0
0 0 푧 0 0 0 0 0 푗휔
0 0 0 푧 0 0 푗휔 0 0
0 0 0 0 푧 0 0 푗휔 0
0 0 0 0 0 푧 0 0 푗휔
−1 0 0 −1 0 0 ℛ + ℛ ℛ ℛ
0 −1 0 0 −1 0 ℛ ℛ +ℛ ℛ
0 0 −1 0 0 −1 ℛ ℛ ℛ + ℛ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푖
푖
푖
푖
푖
푖
휓
휓
휓 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ( 2–8) 

Where: 

푧 , 푧  Primary and secondary circuit impedance (resistance and leakage inductance). 

휓 Magnetic flux. 

ℛ Magnetic reluctance. For a transformer bank ℛ = 0 while for a five-legged transformer 

ℛ = 푅 . 

Applying the symmetrical components transform yields: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푧 0 0 0 0 0 푗휔 0 0
0 푧 0 0 0 0 0 푗휔 0
0 0 푧 0 0 0 0 0 푗휔
0 0 0 푧 0 0 푗휔 0 0
0 0 0 0 푧 0 0 푗휔 0
0 0 0 0 0 푧 0 0 푗휔
−1 0 0 −1 0 0 ℛ + 3ℛ 0 0
0 −1 0 0 −1 0 0 ℛ 0
0 0 −1 0 0 −1 0 0 ℛ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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⎢
⎢
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⎢
⎢
⎢
⎢
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푖
푖
푖
푖
푖
휓
휓
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⎥
⎥
⎥
⎥
⎥
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 ( 2–9) 

Eliminating the magnetic flux equations yields: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
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⎢
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⎢
⎢
⎢
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⎢
⎢
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0 푧 +
푗휔
ℛ 0 0

푗휔
ℛ 0

0 0 푧 +
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푗휔
ℛ

푗휔
ℛ + 3ℛ 0 0 푧 +

푗휔
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0
푗휔
ℛ 0 0 푧 +

푗휔
ℛ 0

0 0
푗휔
ℛ 0 0 푧 +

푗휔
ℛ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
퐼
퐼
퐼
퐼
퐼
퐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ( 2–10) 

Given that the leakage impedances are very small compared to the impedance representing the 

magnetic circuit they may be placed on the same side and replaced by 푦 = 푧 + 푧 . Considering 

also that typically ℛ ≈ 0 one may write: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
퐼
퐼
퐼
퐼
퐼
퐼 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
푦 0 0 −푦 0 0
0 푦 0 0 −푦 0
0 0 푦 0 0 −푦

−푦 0 0 푦 +
3ℛ
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⎢
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Δ푉
Δ푉
Δ푉
Δ푉
Δ푉
Δ푉 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 ( 2–11) 

Note that this last equation does not account for the connections between the windings. Further 

details may be found in [30]. One further assumption can be that ℛ ≈ 0, due to the fact that 

under normal operating conditions any associated leakage currents would be very small compared 

to the current fed to the load or a short-circuit. It should be noted however that for wye - grounded 

wye connections this approximation would result in underestimating the zero sequence current 

[29]. Nevertheless, in practice more often than not distribution transformer connections are 

grounded wye – delta. Note that an off-nominal tap position could be represented by the same set 

of equations by substituting Δ푉  by 푛 Δ푉  and 퐼  by 퐼 /푛 , where 푛  the off-

nominal tap ratio. An alternative approach would be using pi-equivalent models as in [31]. 

2.2.4 Phase Configurations & Generic Device Model 

When it comes to single-phase devices things are simple, as there are typically two connectors 

carrying power: phase and neutral. However, considering the individual circuit corresponding to 

any three-phase device (e.g. the transformer of Fig. 2-3) then there are several possibilities in 

terms of connection. The most common ones are the wye and delta configurations which establish 

the following relations between the phase circuit current and voltage in the device (designated 

with the index d) and the actual phase current injection and voltage in the network (designated 

with the index i): 

푉 ,
푉 ,
푉 ,

=
1 0 0
0 1 0
0 0 1

푉 ,
푉 ,
푉 ,

,
퐼 ,
퐼 ,
퐼 ,

=
1 0 0
0 1 0
0 0 1

퐼 ,
퐼 ,
퐼 ,

     푤푦푒 푐표푛푛푒푐푡푖표푛 ( 2–12) 

푉 ,
푉 ,
푉 ,

=
1 −1 0
0 1 −1
−1 0 1

푉 ,
푉 ,
푉 ,

,
퐼 ,
퐼 ,
퐼 ,

=
1 0 −1
−1 1 0
0 −1 1

퐼 ,
퐼 ,
퐼 ,

     푑푒푙푡푎 푐표푛푛푒푐푡푖표푛 ( 2–13) 

These equations have to be incorporated in the impedance / admittance matrix representing each 

device. 

Regarding the end-user devices themselves different equations would represent different devices 

(e.g. lighting or induction motors). However more often than not, the exact nature of the connected 

devices is not typically known. Even if it is actually known, the exact models may be overly 

complex for optimization or simulation applications. A model commonly used and assumed to be 

sufficiently accurate for any device (or set of devices) would be the ZIP representation [32]: 
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푃
푄 =

푓 푃 푉 + 푓 푃 푉 + 푓 푃 ;   푓 + 푓 + 푓 = 1
푓 푄 푉 + 푓 푄 푉 + 푓 푄 ;  푓 + 푓 + 푓 = 1  ( 2–14) 

Where 푓 are coefficients appropriately fitted to the characteristics of the device [33]. The first 

term corresponds to a constant (as a function of voltage) impedance (Z), the second term to a 

constant current injection (I) and the third term to a constant power injection (P). One such set of 

equations would be necessary for each phase. At the transmission level in steady-state analysis it 

is common to assume that the last term (constant power) is adequate. This representation is simply 

a convention necessitated by the need to simplify calculations and supported by the fact that most 

controllable devices (i.e. generators etc.) tend to behave as constant power devices. After all 

energy prices are determined on the basis of power and given the inherent uncertainties regarding 

the exact state of demand, any sensitivity to voltage might be hard to accurately model in 

transmission level optimization problems. 

2.3 Optimal Power Flow Standard Formulation 

The OPF problem is the basis of any power system optimization application, the problem of 

economic dispatch included. This is a problem typically associated with transmission and 

subsequently balanced system operation. As such only the positive sequence is considered here. 

Traditionally the OPF objective has been cost minimization. This is justified by the fact that, 

under zero elasticity of demand (or lack of its participation in the market), then maximizing social 

welfare is equivalent to minimizing costs [34]. In a more general case, where demand actively 

participates in the market, the target from a system operator perspective should be the 

maximization of benefits derived from both generators and consumers, which may be expressed 

as: 

min
[퐏;퐐]∈푪

푢{ } 퐏( ),퐐( )
∈{ ,..., }

 ( 2–15) 

Where: 

푪 Intersection of all the constraint sets of network and devices in the system, including a set 

of linear constraints coupling the devices together. 

푛  The number of all network users including generators. 

푢 Cost (negative utility) function of a user / device. 

퐏,퐐 Vectors 푛 × 1 with the active and reactive power outputs of users / devices. 

The equations describing for area i the network and its limitations in their standard ac form are 

well documented [2] and may be written in complex number notation as: 
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퐶 { } =

⎩
⎨

⎧퐒 { } = 푑푖푎푔 퐕{ } 퐘{ }퐕{ }
∗

퐕{ } ≤ 퐕{ } ≤ 퐕{ }

퐘 { }퐕{ } ≤ 퐈 { } ⎭
⎬

⎫
  푖 ∈ [1,푛 ] ( 2–16) 

퐘{ }( , ) =

⎩
⎪
⎨

⎪
⎧ −

1
푟 + 푗푥 : 푖푓 푙 ≠ 푗

1
푟 + 푗푥 +

푗푏
2

∈[ , ]

: 푖푓 푙 = 푗
      푙, 푗 ∈ [1,푛 ] ( 2–17) 

퐘 { }( , ) =

⎩
⎨

⎧
1

푟 + 푗푥 : 푖푓 푙푖푛푒 푙 푠푡푎푟푡푠 푓푟표푚 푏푢푠 푗

−1
푟 + 푗푥 : 푖푓 푙푖푛푒 푙 푒푛푑푠 표푛 푏푢푠 푗

     푙 ∈ [1,푛 ], 푗 ∈ [1,푛 ] ( 2–18) 

Where: 

푛  The number of all network buses in the area. 

푛  The number of all network areas. 

푛  The number of all lines in the area. 

푟 ,푥  Line resistance and inductance. 

푟 ,푥 ,푏  Total resistance, inductance and admittance between buses i and j. 

푽( ) Complex voltages 푛 × 1 vector. The voltages may be represented either in polar 

(퐕( ) = 퐕( ) 푒 ∠퐕( ) ) or rectangular (퐕( ) = 푟푒푎푙 퐕( ) + 푗 ∙ 푖푚푎푔 퐕( )  form. 

푺 ( ) Apparent power injection 푛 × 1 vector. 

푰 ( ) Lines maximum current capacities 푛 × 1 vector. 

The equations in (2-16) describe respectively the power balance constraints, voltage constraints 

and line capacity constraints. Note that it is quite common to represent the latter in terms of 

transferred power. However, placing the constraint on line current simplifies calculations and it 

is closer to the actual physical constraints in the system (i.e. current is the quantity directly 

associated with the thermal limitations of the conductors; transferred power may be alternatively 

used on the assumption of a given voltage value at the end of the line). The above equations, 

group together the positive sequence constraints of the form (2-7) for all network components. 

The next subset of typical constraints is that of demand or generation: 

퐶 / { } =

⎩
⎪
⎨

⎪
⎧ 푢{ } = 푐 { }퐏( ) + 푐 { }퐏( )

퐏( ) ≤ 퐏( ) ≤ 퐏( )

푄{ } ≤ 퐐( ) ≤ 푄{ }  표푟 퐐( ) = 푓 { } 퐏( ) ⎭
⎪
⎬

⎪
⎫

  푖 ∈ [1,푛 ] ( 2–19) 

Where: 

푐 , 푐  Variable costs coefficients for generators. For demand 푐 = 0, 푐 > 0 and equal to the 

value a client associates with energy use. It can be thought of as an equivalent to the value 

of lost load (VOLL) which is assumed to be about 100 times the value of energy at peak 

demand. 
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푓  Function of reactive power as a function of active power. For e.g. demand operating at a 

fixed power factor this is simply a linear function. For devices where reactive power is 

independently controlled from active power, this function does not apply and only 

reactive power limits are taken into account. 

Finally, the linear set of constraints coupling network and devices together may be described as: 

퐶 = {퐂 퐔 = 0,퐂 퐔 = 0,퐂 퐔 = 0} ( 2–20) 

The vectors 푈 ,푈 ,푈  are derived from the concatenation of 퐏( ) and 푟푒푎푙 퐒 ( ) , 퐐( ) and 

푖푚푎푔 퐒 ( ) , and 퐕( ) respectively. Matrices 퐂 ,퐂  have elements of 1, 0, -1 establishing variables 

equality at the coupling nodes. 

2.4 Branch Flow Model (Radial Networks Only) 

Transmission networks are typically meshed (i.e. some nodes may be connected through more 

than one path), while distribution networks typically have a tree/radial structure (i.e. any two 

nodes are connected through exactly one path). If the network has a radial structure, it is possible 

to use a different set of equations, i.e. the branch flow model initially proposed in [35]. Assuming 

balanced operation for any line from bus i to j, for the power 푇  and 푇  drawn from the two ends 

of the line we have: 

푇 + 푇 = (푟 + 푗푥) |퐼|    ( 2–21) 

With 푇 = 푇 + 푗푇  for the voltages we have the following equation: 

푉 = 푉 − 푧퐼 = 푉 − 푧
푇∗

푉∗  ⇒ 푉푉 = ||푉 | − 푧푇∗| ⇒ 

⇒ |푉 | |푉 | = |푉 | − 2|푉 | 푟푇 + 푥푇 + (푟 + 푥 ) 푇 + 푇  
( 2–22) 

This effectively removes the bus voltage angle from the equations. Note that as indicated in [36, 

37] only one of the voltage magnitude solutions to this quadratic voltage drop equation can be 

within the range allowed by typical voltage constraints. Furthermore, as reference [38] proves, 

there always exists an inverse projection that allows the recovery of voltage angles for radial 

networks. Generalising the overall equations of the network may be written as: 

퐶 =

⎩
⎪
⎨

⎪
⎧

퐒 = 퐘 퐓−퐘 퐓− 풀 풍
퐘 − 퐘 풗 = −2 푑푖푎푔{풓}퐓 + 푑푖푎푔{풙}퐓 + 푑푖푎푔{풛}풍

퐘 풗 ∙ 푑푖푎푔{풍} = |퐓|ퟐ

풗 ≤ 풗 ≤ 풗
풍 ≤ 풍 ⎭

⎪
⎬

⎪
⎫

   ( 2–23) 

Where: 

풍 A 푛 × 1 vector of squared line current magnitude. 

풗 A 푛 × 1 vector of squared bus voltage magnitude. 
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퐓 A 푛 × 1 vector of line power flows. 

The two first equations in the constraint set (2-23) are simply (2-21) and (2-22) respectively 

written for the whole network. While this form offers a clearer representation of line flows, due 

to the third constraint, power flow equations are still non-convex and they do not appear to directly 

offer any significant benefit compared to the initial ac formulation. As such in this work the 

constraint set in (2-2) is preferred to (2-9). 

2.5 DC Load Flow (Transmission Only) 

The full AC equations may be significantly simplified under the following assumptions [2]: 

 Bus voltages are assumed to be equal to 1 푝.푢. and the equations related to reactive power are 

neglected. 

 Branch resistances are much smaller than branch reactances and may be neglected. Shunt 

reactances to the ground may also be neglected. 

 Voltage angle differences between two connected buses are assumed to be small and as a 

consequence 푠푖푛훿 ≈ 훿 − 훿  and 푐표푠훿 ≈ 1. 

The apparent power transferred between buses 푖 and 푗 through transmission line 푘 is equal to: 

푆 = 푉
푉 − 푉 ∗

푍∗ = 푉푒
푉푒 − 푉
푍 푒 =

1
푍 푉 푒 − 푉푉 푒  ( 2–24) 

Consequently, under the aforementioned assumptions the real power is given by: 

Re 푆 =
1
푍 푉 푐표푠(휃 )−푉푉푐표푠 휃 + 훿 ≈

훿 − 훿
푍  ( 2–25) 

This yields a linear set of power balance equations of the following form: 

퐏 = 퐁훅 ( 2–26) 

Where: 

훅 A 푛 × 1 bus angles vector. 

퐁 The simplified bus admittance matrix. Where 1/퐁( , ) = 1 푦⁄  = ∑(푗푥 ),푘 ∈ 푁 → , and 

퐁( , ) = −∑ 퐁( ),.., . 

This simplified set of equations cannot be used in cases where voltage and reactive power play a 

defining role. Also the second assumption is not valid for distribution networks due to their high 

푟/푥 ratio. However, it gives an adequately good representation of active power flows in the 

system, while offering a significant reduction in computational cost. Furthermore, these 

constraints are obviously convex. 

The above formulation may be easily extended to take transmission losses into account. Losses 

over a transmission line may be approximated based on the following equation [39]: 
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푃 , = 푆 − 푆 =
푐표푠(휃 )
푍 푉 + 푉 − 2푉푉푐표푠 훿 ≈ 

≈
2푟
푍 1− 푐표푠 훿 ≈

4푟
푥 푠푖푛

훿
2 ≈ 푟 Re 푆  

( 2–27) 

These losses may be distributed equally to each of the connected buses as indicated in [40]. An 

iterative approach to take losses into account, as well as a comparison with AC OPF with respect 

to calculated marginal prices may be found in [41]. The comparison indicates that in case the two 

methods identify a different marginal unit due to the approximation error, then the marginal costs 

differences can be significant. Note that with loses included the resulting problem becomes again 

non-convex though still easier to solve than the full AC problem. 

The fact that there is no way to represent voltages in DC OPF implies that it is probably unsuitable 

for any application at the distribution level. On the transmission level while similar models could 

appear as part of a decoupled load-flow formulation, by itself there is little value to using this 

model, unless one can be certain that: 1) voltages are not a problem; 2) in terms of marginal prices 

the approximation of losses is acceptable. In any case we still opt to use the original set of (2.2) 

rather than this formulation. 

2.6  Convex Relaxations 

As mentioned the set 퐶  is non-convex. This implies that in the corresponding optimization 

problem exist local minima and depending on the starting point of the optimization algorithm 

different solutions could be reached. The following subsections present various convex 

relaxations of the initial problem and discuss their applicability. 

2.6.1 Semi Definite Programming 

A reformulation of the OPF problem into a semi definite programming (SDP) form seems to have 

first been made in [42], while a more concise description of the approach may be found in [43, 

44]. The underlying concept is that if 풆 , … ,풆  the basis vectors of ℝ , then the power balance 

equations at any given node may be written as: 

푆( ) = 푡푟푎푐푒 퐘퐞 퐞 퐖 , 푖 ∈ 푁  ( 2–28) 

With the additional constraints: 

퐖 ≽ 0, 푟푎푛푘{퐖} = 1 ( 2–29) 

The sign ≽ indicates that 퐖 is a positive semi-definite matrix (i.e. its eigenvalues are all non-

negative). Under the constraints (2-29) there is a unique decomposition 퐖 = 퐕퐕 . However, the 

rank constraint makes the problem non-convex, and subsequently a convex relaxation may be 

reached by simply dropping this constraint. The authors in the aforementioned papers derive 
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necessary conditions for the relaxation to be tight, and they conjecture that those are fulfilled as 

long as the resistive part of the system (i.e. the graph induced by 푟푒푎푙{풀}) is strongly connected 

(i.e. there exists a path between any two nodes of the graph). In some IEEE test systems this 

required the addition of a small resistance, on the order of 10 , to any transmission component 

having a resistance lower than that. Reference [45] suggests that the SDP relaxation may be used 

also in the presence of more complex constraints, such as those involved in security constrained 

power flow, while [46] suggests that it is always tight in radial networks. It should be noted 

however that in case of negative marginal prices or very tight transmission constraints the SDP 

relaxation can fail [47]. Following these results subsequent papers [48, 49] further investigated 

the necessary conditions under which the SDP relaxation may be used, without however being 

conclusive regarding its range of application. 

2.6.2 Conic Programming 

Going back to the set of branch flow equations convexification is possible if the current equation 

for line k was relaxed to an inequality: 

푙 ≥
푃 + 푄

푣
⟺ 푙 + 푣 ≥

2푃
2푄
푙 − 푣

 ( 2–30) 

The equation on the right is a second-order cone (SOC) set of constraints which is known to be 

convex. Intuitively losses over a power line will ensure that 푙  remains at its lower bound at the 

optimal solution. Reference [38] investigates the conditions where this relaxation is tight and 

further proves when voltage angles may be recovered. More specifically let 퐺 be a graph 

describing the network and for any spanning tree 푇(푁,퐸 ) of 퐺, let 푩  be the incidence matrix 

of lines included in 푇 and 푩  the incidence matrix of lines not included in 푇. Bus angles may be 

similarly partitioned into two sets 휹  and 휹 . If 푚표푑(푩 푩 휹 − 휹 , 2휋) = 0 then there is a 

unique solution 휹∗ = 푩 휹 . This relation always holds for radial networks. In meshed networks, 

assuming phase shifters are placed in branches outside the spanning tree, then the angle recovery 

condition becomes 푚표푑(푩 푩 (휹 − 흓 ) − (휹 − 흓 ), 2휋) = 0, where 흓 are angles 

introduced by the phase shifters [50]. For a suitable selection of the latter the angle recovery 

condition always holds. Of course having phase shifters at all the right places for this condition 

to hold cannot be expected in real networks as their installation entails a significant cost. 

It should be noted that according to [51] there exists a one to one mapping between the solution 

set of this relaxation and the SDP based one. However, perhaps the most important implication 

of this is that both relaxations share the same issues in terms of applicability. Thus an extended 

discussion on the conditions under which the conic relaxation of the branch flow model is exact 

in radial networks may be found in [52]. The derived conditions are shown to be valid for two 
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real distribution networks. However, these conditions would have to be checked for each 

particular network and general applicability should not be taken for granted. Another conic 

relaxation approach for distribution networks may also be found in [53, 54] however these appear 

to be rather restrictive in terms of problem formulation. 

While convex relaxations represent a very interesting mathematical work in power systems they 

are still at an early stage of development. At the time of writing it was not deemed as a good idea 

to use such models as: 1) they require certain conditions to be fulfilled in order to work which are 

not fully clarified in current literature; 2) even when they work the computational burden is 

typically much higher than that involved in solving the original non-convex model through e.g. 

an interior point method. The standard ac formulation still appears to be the better option. Further 

information regarding the SDP and SOC relaxations, as well as the relation between them, may 

also be found in [55]. 

2.7 Unbalanced Optimal Power Flow Generic Formulation 

In contrast to transmission which may be assumed to be always operating in a balanced manner 

(i.e. same amplitude of voltage and current in all three phases), distribution networks are almost 

always unbalanced. As such, especially when considering electric vehicles which could represent 

significant single phase loads, optimizing the network considering a full unbalanced load flow 

might be a requirement. As discussed earlier, in terms of constraints modelling there are two 

possibilities: 1) express the constraints in the 3-phase reference frame; 2) convert the 3-phase 

equations into the so-called sequence reference frame. As shown earlier, the sequence 

transformation effectively replaces the 3-phase quantities by three equivalent ones, which for fully 

balanced devices and systems may be solved independently. For unbalanced systems the result is 

usually a sparser constraints representation. Due to this fact a number of papers advocate the use 

of symmetrical components [56] or attempt to exploit the sequence components structure [57] in 

order to achieve faster solutions for power flow problems. However, when it comes to optimal 

power flow, available references are more limited, and what the ideal formulation is remains 

unclear. 

In terms of OPF a number of papers use sequence components, e.g. [58] which proposes a multi-

objective chance constrained optimization model for distribution networks. In terms of network 

equations, the paper states that due to the weak coupling sequences may be independently solved. 

This would be imprecise however when a significant number of unbalanced loads is present. The 

same comment applies to [59], which focuses on voltage-converter interfaced generation – this is 

represented simply by a voltage source in the positive sequence and zero resistance in the 

remaining sequences. 
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In contrast to the two papers above, in [60] a full 4-phase (including neutral wire) power flow 

problem is formulated where all equations are expressed in terms of current. The algorithm is 

shown to converge in a few seconds in a more than 10000 node system. This current injection 

formulation approach was earlier introduced in [61]. An even more complex model is proposed 

in [62] where an additional 5th conductor is considered to allow detailed calculation of earth 

currents. While these models are proposed for power flow they have found some application in 

distribution level OPF [63]. 

Summarizing the rather scarce literature in the field of unbalanced OPF, with regards to 

symmetrical components it appears that there may be some benefits through the sparsity 

introduced by the transform given that a large number of distribution devices are symmetrical. 

Even if decomposition to sequence circuits is not possible calculations should be faster. However, 

this only applies if the symmetrical components can be independently controlled. This is usually 

not the case in practice, and there are types of networks where the use of symmetrical components 

can complicate the solution [28]. For that reason, in this work we opt for the full three-phase 

representation. 

The constraints describing each individual device have the form: 

퐈 = 퐲 Δ퐕  ( 2–31) 

One could bring together all system equations as follows: 

퐈
퐈
⋮

=
퐲 0 ⋯

0 퐲 ⋯
⋮ ⋮ ⋱

Δ퐕
Δ퐕
⋮

 ( 2–32) 

These equations could be simplified if one establishes a relation between voltage drops and the 

actual node voltages in the system, as well as the relation between current injections at individual 

nodes, i.e.: 

퐂
퐈
퐈
⋮

=
퐈
퐈
⋮

                    
Δ퐕
Δ퐕
⋮

= 퐂
퐕
퐕
⋮

 ( 2–33) 

As a consequence, the relation between node voltages and node current injections is: 

퐈
퐈
⋮

= 퐂
퐲 0 ⋯

0 퐲 ⋯
⋮ ⋮ ⋱

퐂

퐘

퐕
퐕
⋮

 ( 2–34) 

This yields the following constraint set: 

퐶 =

⎩
⎪
⎨

⎪
⎧ 풆 푑푖푎푔{e ∠푽}퐜 퐈 = 퐘 풆 퐕 퐾푖푟푐ℎℎ표푓푓′푠 푙푎푤푠

|퐜 퐕| ≤ ퟏ 푛푒푡푤표푟푘 푐푎푝푎푐푖푡푦
0.95 ≤ |퐕| ≤ 1.05 푣표푙푡푎푔푒 푎푚푝푙푖푡푢푑푒
|풄 퐕| ≤ 0.02|풄 퐕| 푣표푙푡푎푔푒 푢푛푏푎푙푎푛푐푒

퐈( ) = 푒 푐 ( ) + 푐 ( )|퐕| + 푐 ( )|퐕| 푖 ∈ {1, … ,푛 } ⎭
⎪
⎬

⎪
⎫

 ( 2–35) 
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Where: 
퐜  Matrix 푛 × 푛  associating current injections with nodes, e.g. 퐜 ( , ) = 퐼 { } if the single 

phase device k is connected at node j and 0 otherwise; where 퐼 { } the nominal current of 
the device. 

퐜  Matrix 3(푛 − 1) × 푛  associating node voltages with branch flows; each equation is 
normalized by the corresponding current limit. 

퐜 , 퐜  Matrix 푛 × 푛  converting a-b-c voltages to corresponding zero and positive sequence 
components. In this case symmetrical components cannot be avoided. 

풆  Diagonal matrix 푛 × 푛 , with 풆 ( , ) = 푒 , where 훿  is an estimate of the 푖 − 푡ℎ voltage 
angle, e.g. one possible estimate is: 0, 240, 120 for phases a, b, c respectively with the 
addition of any phase-shifts due to transformer connections. Effectively this defines a 
voltage reference frame. 

푐 , 푐 , 푐  Coefficients corresponding to the constant current and constant impedance and constant 
power part of the load respectively. 

휙 Device current angle with respect to voltage. 

Considering e.g. [64] meeting power quality targets implies also taking into account the voltage 

unbalance as described by the third constraint. The corresponding requirement is that the ratio of 

zero to negative sequence fundamental frequency voltage components should be less than 2%. It 

should be noted that a variety of other unbalance definitions exists [65], however these may 

deviate significantly from the aforementioned ‘true’ definition [66]. The reason for exposing the 

풆  term is that as long as this initial estimate of voltage angles is accurate, then at the optimum 

the angle of voltages in V (or their imaginary part if a rectangular formulation is used) would be 

approximately 0, as illustrated on Fig. 2-4. The value of this will be clarified in subsection 2.8.1. 

Fig. 2-4: Schematic illustration of the effect of the 풆  term in a simple three phase network 
(IEEE 4 nodes test feeder) solution. Both solutions with 풆  and 풆  are equivalent. However, 
in the second case, all voltages are on the real axis. As such, on the assumption that the angle 
would not significantly change, imposing constraints on voltage amplitude, or optimising the 
current injections of e.g. a power electronics converter, are straightforward to do. In the latter 
case, voltages are already oriented to the reference frame a vector control scheme would use 
[251]. 
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2.8 Current Injection Approximations (Distribution Only) 

Considering a balanced network, let us now calculate the current corresponding to this load with 

푉 = |푉 + 푗푉 | under the assumption that 푉 ≈ 푉 : 

퐼 =
푃 − 푗푄
푉 − 푗푉 =

푓 푃 − 푗푓 푄
푉 − 푗푉 푉 +

푓 푃 − 푗푓 푄
푉 − 푗푉 푉 +

푓 푃 − 푗푓 푄
푉 − 푗푉 ≈ 

≈ 푓 푃 − 푗푓 푄 (푉 + 푗푉 ) + 푓 푃 − 푗푓 푄 +
푓 푃 − 푗푓 푄

푉  

( 2–36) 

This assumption is also followed in [67] which focuses on the distribution level, dropping 

however the constant power term. Subsequently the power flow equations may be written as: 

퐶 =
퐈 + 퐘∗(퐕풓 − 푗퐕풊) = 퐘∗(퐕풓 − 푗퐕풊)

퐕 ≤ 퐕풓 ≤ 퐕
−퐈 ≤ 퐘 퐈 ≤ 퐈

   ( 2–37) 

Assuming that only the current injection part is variable then the optimal power flow constraints 

are significantly simplified. 

Reference [68] also uses a current injection based formulation for the network and presents a 

systematic approach to linearize the models for both loads and amplitude constraints using 

rectangular coordinates for voltage. Disjunctive inequality constraints are used to represent load 

controls, which are generally assumed to be discrete in nature. Overall the presented approach 

yields a mixed integer linear programming problem of increased complexity, but suitable for most 

optimization applications in distribution networks. 

Modelling demand accurately in terms of power is perhaps of fundamental importance when 

working within the context of an energy market where all payments are carried out on the basis 

of power injections. However, when discussing about distribution networks at a level where 

individuals are not exposed to a market, then this is not necessary. It is a fact after all that constant 

power models used at the transmission level do not adequately model low voltage demand. 

Overall a sensible approach could be to simply use the most mathematically simple model that 

adequately captures the current-voltage relationship of any given connected device. Effectively if 

all demand could be modelled as a current injection then the power flow constraints would be 

convex. 

2.8.1 Current Approximation Approach for Unbalanced Networks 

The above assumption of a constant angle for voltage in terms of nodal current injections can 

significantly simplify (2-35). However, it would unavoidably introduce an error (depending on 

the angle) in terms of power output and potentially voltage. In this work we propose a novel 
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approach that allows taking advantage of this voltage angle approximation, without however 

sacrificing results accuracy. Consider the following assumptions: 

● Constant power types of load may be adequately approximated through an equivalent 

combination of ZI loads, as shown on Fig. 2-5. 

● Following [67] it is assumed voltage angles do not significantly vary as demand / generation 

changes, i.e. in terms of load current injections 풆 푑푖푎푔{e푗∠푽} ≈ 풆 . 

● As a direct implication of the above, 풆  can be an adequately good estimate of the actual voltage 

angles. Consequently, at the optimal solution it may be expected that |퐕| ≈ 퐕 . Hence 

computational burden may be decreased by imposing the voltage amplitude limits only on the 

real part of voltage. 

● Regarding capacity constraints rather than maintaining the quadratic constraints we replace 

them with an equivalent set of linear constraints 퐜∗퐕 ≤ 퐛   as may be seen on Fig. 2-6. This 

approach is similar to the one proposed in [68]. 

 

Fig. 2-5: Example of a linear approximation of the current injection for the constant power part of a 
controllable device (e.g. a renewable generator). The slope of the curve is the approximating constant 
Z part (which would take negative value for a generator), while the offset at 0 voltage is the 
approximating constant I part. The current injection error at ±10% voltage bounds is 1% for wye 
connected devices. The feasible operating points are below the approximating line (down to 0 current). 
If the device was inflexible then the feasible points would only be on the approximating line itself. 

 

Fig. 2-6: Example of current feasibility region outer approximation: the shaded area indicates the 
feasibility region defined by a set of 8 linear constraints. In most practical cases the number of these 
constraints may be further reduced. 
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● Regarding the voltage unbalance constraints one issue to consider is that given that voltage 

amplitude is typically limited to ±10%, the initial constraint implies a variation of the maximum 

amplitude of the zero sequence voltage roughly between 0.018 and 0.022. For operational 

purposes capturing the impact of such a small variation might as well be quite unnecessary. Thus 

we simply assume that for any given bus |퐜 퐕| ≤ 0.02 and we further represent this through an 

equivalent set of linear constraints 퐜∗퐕 ≤ 퐛 . 

The result is a set of linear network constraints: 

퐶 =

⎩
⎪
⎨

⎪
⎧ 풆 퐜 퐈 = 퐘 풆 퐕 퐾푖푟푐ℎℎ표푓푓′푠 푙푎푤푠

풄∗퐕 ≤ 풃 푛푒푡푤표푟푘 푐푎푝푎푐푖푡푦
0.95 ≤ 푟푒푎푙{퐕} ≤ 1.05 푣표푙푡푎푔푒 푎푚푝푙푖푡푢푑푒

풄∗푽 ≤ 풃 푣표푙푡푎푔푒 푢푛푏푎푙푎푛푐푒
퐈( ) = 푒 푐 ( )

∗ + 푐 ( )
∗ 푽 푖 ∈ {1, … , 푛 } ⎭

⎪
⎬

⎪
⎫

 ( 2–38) 

Our proposed solution approach involves the following steps: 

Algorithm 2-1: approximate linear unbalanced OPF 

0. Initialization: Set 풆  to best available estimate of voltage angles. 

1. Base Solution: Solve (2-15) with the constraints (2-35). 

2. Reference-frame update: Near convergence if 푚푎푥{푖푚푎푔(퐕)} > 휖  update 풆휹 and 

continue with the solution. Typically 휖  would be a tolerance parameter on the order of 

10 . 

 

Regarding step 2, it follows that as long as 푚푎푥{푖푚푎푔(퐕)} is close to 0 then the assumptions 

about voltage are accurate. If not, then updating the voltage reference frame ensures that this 

condition holds. This additional step has minimum impact on convergence time and can 

significantly improve accuracy. We evaluated the impact of these approximations on IEEE test 

feeders through a comparison of the solution with the full ac constraints. Further details for these 

networks may be found in [69] while the detailed data may be found on [70]. Though originally 

the IEEE test feeders are meant to be used for power flow problems we converted the latter into 

optimization problems by allowing all loads to be curtailable. Following are the maximum errors 

(approximate linear vs. exact ac solution) in voltage magnitude and angles (the two values 

correspond to the end of step 1 and step 2 in algorithm 2-1), as well as solution times 

(corresponding to the full execution of algorithm 2-1 and the full AC non-linear solution): 
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Table 2-1: Impact of approximations 
(voltage bounds ±10; tap changers fixed to IEEE solution values 
 |풆 퐕| 

error (p.u.V) 
∠풆 퐕 
error (deg.) 

퐕 /|퐕| Time 
(sec) 

IEEE-13 0.0176→0.0031 0.0161→0.0024 0.9945→0.9999 0.17 (0.25) 
IEEE-34 0.0056→0.0003 0.0168→0.0006 0.9929→1.0000 0.24 (0.50) 
IEEE-37 0.0002→0.0001 0.0005→0.0001 0.9998→1.0000 0.23 (0.43) 
IEEE-123 0.0079→0.0012 0.0099→0.0013 0.9964→1.0000 0.33 (1.80) 

 

Note that the ratio 퐕 /|퐕| being close 1 simply indicates that the small voltage angle assumption 

holds. A value equal to 1 indicates that there is no approximation error introduced in the solution 

due to the assumptions made in terms of voltage. The errors in voltage magnitudes and angles are 

the result of the approximate constant power models. However as may be seen, even for the IEEE-

37 where loads are connected in delta configurations, these errors are very small. At the same 

time the method is sufficiently fast, giving a solution in less than half a second, using a primal-

dual interior point solver in MatLab. Note that approaches based on linear approximate versions 

of the power flow equations using the small voltage angles assumption (e.g. [67]) can have a 

significant error in voltage magnitude (e.g. the 1.76% p.u. error could be important in a voltage 

constrained case). Step 2 in algorithm 2-1 helps remove such errors. Finally, it should be noted 

that in general, the range of current / power injections for which our assumptions hold and give 

accurate results would depend on the system characteristics (the presented results simply indicate 

that this range can be quite wide). In any case however, these conditions may be enforced by 

applying trust-region constraints as done in chapter 5 of this work. 

2.9 Mathematical Programming for OPF 

While there is a significant number of papers in current literature that include some sort of power 

flow constraints in their optimization problems, there is a rather limited number of papers that 

focus specifically on the solution approach to the OPF problem. In this section we discuss such 

solution methods. While our main point in this work is investigating the application of distributed 

optimization approaches, a centralized solver is still necessary for solving a variety of OPF-type 

subproblems. As such we review a number of relevant mathematical optimization approaches. 

The general non-linear optimization problem that we would be interested to solve has the 

following form: 

min
퐱

{푓(퐱): 퐠(퐱) = ퟎ,퐡(퐱) ≤ ퟎ} ( 2–39) 

Mathematical programming methods typically try to find a point that satisfies the so-called 

Karush-Kuhn-Tucker (KKT) conditions, i.e. a point 퐱∗ such that: 
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∇푓(퐱∗)− 훍 ∇퐠(퐱∗)− 훌 ∇퐡(퐱∗) = 0 푠푡푎푡푖표푛푎푟푖푡푦
퐠(퐱∗) = ퟎ
퐡(퐱∗) ≤ ퟎ 푝푟푖푚푎푙 푓푒푎푠푖푏푖푙푖푡푦

훍 ≥ 0 푑푢푎푙 푓푒푎푠푖푏푖푙푖푡푦
푑푖푎푔{훍}퐠(퐱∗) = 0 푐표푚푝푙푒푚푒푛푡푎푟푦 푠푙푎푐푘푛푒푠푠

 ( 2–40) 

Where 훍,훌 are column vectors of the Lagrange multipliers corresponding the inequality and 

equality constraints respectively. In the following sections we briefly present some optimization 

methods used in power systems literature. A more rigorous treatment of the mathematical 

properties and variants of these methods in a more general context may be found in e.g. [71]. 

2.9.1 Penalty Methods 

Consider the following reformulation of (2-39) where the constraints are added as penalties in the 

objective function (the index + indicates that only positive values of the function are taken into 

account): 

min
퐱

푓(퐱) + 휌| 퐠(퐱)|−  휌 퐡(퐱)  ( 2–41) 

Equation (2-41) is an unconstrained problem and several techniques applicable to unconstrained 

optimization, such as line search methods, could be used to solve it. An example of such 

approaches are Newton based methods. For example, in [72] a quasi-Newton approach is used 

for unbalanced OPF which involves the following general steps: 

Algorithm 2-2: (Quasi) Newton method 

0.  Select initial values for the optimization variables 퐱. 

1.  Calculate the search direction 퐩 = −퐁 훁 푓 , where 퐁 = 훁 푓  for the Newton 

method, or in the case of Quasi-Newton methods some symmetric and positive definite 

approximation of the Hessian. 

2.  Update 퐱 = 퐱 + 푎 퐩  where 푎   is a positive scalar. 

3.  Check for convergence. 

 

The exact formulation in [72] is unclear however as no power balance equations are explicitly 

presented. For the IEEE 123 bus feeder convergence was achieved within a few seconds. 

However, the authors do not provide any clear guidelines regarding the setting of penalty 

parameters in the unconstrained problem. One significant drawback of this method appears to be 

that inappropriate selection of the penalty factor 휌 could imply ill-conditioning and difficulties in 

convergence. Note that different penalty values may be used for the equality and inequality 

constraints. Further information on relevant issues and ways to improve the method’s behaviour 

may be found in [71]. Nevertheless, this is not our optimization method of choice. 
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2.9.2 Sequential Programming Methods 

Sequential (or successive) programming methods solve the initial non-linear problem by going 

through a series of approximate optimization subproblems (typically linear or quadratic) [73]. 

The reasoning behind these methods is that it can be much easier to solve these approximate 

subproblems, as well as manage efficiently inequality constraints, from one iteration to the next. 

As an example, linear approximations have been commonly used in various forms in the OPF 

problem. If iterated with an AC power flow potentially it would be possible to achieve an exact 

solution [74], e.g. through the following steps: 

Algorithm 2-3: sequential linear programming 

0.  Select an initial operating point 퐱 , set 푘 = 0. 

1.  Linearize the AC equations around the given point and solve the ensuing linear 

programming problem, i.e.: min
퐱

∇퐱  푓(퐱):∇퐱 퐠(퐱) = ퟎ,∇퐱 퐡(퐱) ≤ ퟎ  

2.  If converged stop, else set 푘 = 푘 + 1 and go back to step 1. 

 

Reference [75] however hints at one basic drawback of the sequential linearization techniques 

applied to OPF problems. When optimization variables are allowed to vary over a wide range, 

they might result in solutions which are not effectively supported by the next iteration, i.e. for 

large control actions and line flow changes it might be that the current linear model is no longer 

sufficiently accurate. Thus, especially in terms of loss minimization, appropriately adjusting the 

range within which controls are allowed to move is of great importance. Furthermore, given that 

linear problem solutions are always at the bounds, establishing convergence conditions is not 

straightforward. These considerations are not however clarified in the aforementioned work. 

Some further information regarding the step size selection may be found in [76]. 

An alternative is proposed in reference [77] in the form of a sequential quadratic programming 

(SQP) technique which is summarized in the following: 

Algorithm 2-4: sequential quadratic programming 

0.  Select initial values for the optimization variables. 

1.  Linearize the KKT conditions around the current point. The linearized equations may 

be interpreted as the KKT conditions of an equivalent quadratic programming problem. 

2.  Solve the quadratic programming problem, e.g. using an interior point method 

(described in the following section) and update the optimization variables values. 

3.  If converged stop, else go back to step 1. 
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The authors claim a reduced computational burden, but they do not provide a direct comparison 

with any other optimization algorithms. Further general information on SQP methods may be 

found in [71]. 

2.9.3 Interior Point Methods (IPM) 

The idea behind this class of algorithms is that instead of to solving (2-39) directly, one could 

solve instead a sequence of equality constrained problems of the form: 

min
퐱

{푓(퐱) − 훾∑푙푛(퐳): 퐠(퐱) = ퟎ,퐡(퐱) + 퐳 = ퟎ} ( 2–42) 

This may be done using e.g. the following method [78]: 

Algorithm 2-5: non-linear Primal-Dual Interior Point method 

0.  Select initial values for the optimization variables 퐱,훌,훍 > ퟎ, 퐳 > ퟎ. 

1.  Select a value for the perturbation parameter 훾. 

2.  Compute variables search direction by solving a single Newton iteration for the KKT 

conditions of (2-41). 

3.  Determine update step length and update optimization variables. 

4.  If KKT conditions of (2-39) are satisfied, then the algorithm has converged; else go 

back to step 1. 

 

It should be clear that variables should be initialized so that the inequality constraints for 흁, 풛 are 

satisfied. As long as eventually 훾 → 0 then the solution converges to the solution of (2-39). Hence 

훾 should be updated in such a way that it converges to zero as the variables converge to their 

optimal values. One update rule that works adequately appears to be [79]: 

훾 = 0.1
퐳 흁
푛  ( 2–43) 

Where 푛  is the number of inequality constraints. Note that at the optimum either 퐳 or 훍 should 

be zero, hence the aforementioned condition is satisfied. 

As far as the search direction is concerned the Lagrangian of (2.21) may be written as follows: 

ℒ = 푓(퐱) + 훌 퐠(퐱) + 훍 (퐡(퐱) + 퐳)− 훾∑푙푛(퐳) ( 2–44) 

And let: 

ℒ 퐱 = ∇퐱푓(퐱) + 훌 ∇퐱퐠(퐱) + 훍 ∇퐱퐡(퐱)  ( 2–45) 

ℒ 퐱 = ∇퐱퐱푓(퐱) + ∇퐱 훌 ∇퐱퐠(퐱) + 훍 ∇퐱퐡(퐱)  ( 2–46) 

The necessary optimality conditions for this problem then are: 
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ℒ 퐱

푑푖푎푔(훍)퐳 − 훾
퐠

퐡 + 퐳

= ퟎ ( 2–47) 

Assuming the Newton method was used for the solution a single iteration would entail: 

⎣
⎢
⎢
⎡ℒ 퐱 ퟎ (∇퐱퐠) (∇퐱퐡)푻

ퟎ 푑푖푎푔(훍) ퟎ 푑푖푎푔(퐳)
∇퐱퐠 ퟎ ퟎ ퟎ
∇퐱퐡 ퟏ ퟎ ퟎ ⎦

⎥
⎥
⎤ Δ퐱
Δ퐳
Δ훌
Δ훍

= −

ℒ 퐱

푑푖푎푔(훍)퐳 − 훾
퐠

퐡 + 퐳

 ( 2–48) 

These equations may be further simplified by solving the 2nd and 4th row for: 

Δ퐳 = −퐡− 퐳 − (∇퐱퐡)Δ퐱 ( 2–49) 

Δ훍 = −훍 + 푑푖푎푔 (퐳)(훾 − 푑푖푎푔(훍)Δ퐳) ( 2–50) 

Substituting into the remaining equations we get: 

ℒ 퐱 + (∇퐱퐡)푻푑푖푎푔 (퐳)푑푖푎푔(훍)(∇퐱퐡) (∇퐱퐠)
∇퐱퐠 ퟎ

Δ퐱
Δ훌 = 

− ℒ + (∇퐱퐡)푻푑푖푎푔 (퐳)(훾 + 푑푖푎푔(훍)퐡)
퐠  

( 2–51) 

The solution of these equations yields the search direction. 

In terms of step length, the only requirement is that inequality constraints should not be violated. 

Consequently, the update step length is limited as follows: 

푎 = min 0.9995 min
퐳

−
퐳
Δ퐳 , 1

푎 = min 0.9995 min
훍

−
훍
Δ훍 , 1

→

퐱 = 퐱 + 푎 Δ퐱
퐳 = 퐳 + 푎 Δ퐳
훌 = 훌 + 푎 Δ훌
훍 = 훍 + 푎 Δ훍

 ( 2–52) 

The algorithm terminates if the change in variables is below a certain tolerance. A similar 

algorithm is also used in [80], where convergence times for a variety of interior point solvers and 

systems are presented. Standard MatLab solvers (i.e. the interior point and sequential quadratic 

programming methods supported by the fmincon function) fail on IEEE-118 bus systems and 

higher. Based on our experience these issues were related to approximation errors in the Hessian 

matrix. Analytical derivatives greatly improve the performance of the method. Nevertheless, 

computational times increase significantly, up to several minutes for very large systems. It seems 

unlikely that any interior point solver would be able to manage together transmission and 

distribution network constraints in a sufficiently fast manner. 

Another point of interest is made in [81] where it is shown that near the optimum of the OPF 

problem taking full Newton steps according to (2-50) may result in oscillatory behaviour rather 

than convergence. As that paper suggests, these issues may be easily resolved by appropriately 

reducing the step length. 

Overall, as indicated in [82], IPM methods have been quite popular approaches for solving OPF 

problems in current literature. In [83] a primal-dual barrier based IPM is used to optimize 
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available reactive power in a transmission network. In earlier works linear IPM methods were 

used e.g. in [84], which uses a successive linearization approach to solving the OPF problem, and 

[85] which solves an approximate linear version of the OPF problem. In more recent papers a 

variety of non-linear IPM variants are investigated. In [86] the non-linear IPM described above is 

modified through a predictor-corrector approach. A similar approach is used also in [87] for 

solving OPF with the presented results indicating improved performance over the standard IPM 

method. In [88] a variety of non-linear IPM based algorithms are presented as an appealing 

approach for the OPF solution, namely: pure primal-dual; predictor-corrector; and multiple 

centrality correction IPM. The algorithms are tested in systems of up to 300 buses and are shown 

to converge within a few seconds, with the multiple centrality IPM performing slightly better than 

the others. In [89] the predictor-corrector IPM is used to solve a maximum loadability type of 

problem, and also in [90] where different OPF formulations (in polar and rectangular coordinates) 

are tested giving similar results. Reference [91] proposes an approach that combines predictor-

corrector IPM and multiple-centrality-correction IPM. The results indicate improved performance 

both in terms of time and successful convergence in cases where other methods failed. Another 

IPM variant may be found in [92] where the Newton step formulation is modified in such a way 

that non-negativity constraints with respect to slack variables have to be satisfied. The underlying 

idea is that these slack variables may be replaced by suitable positive functions. However, it 

appears that the parameters of the latter have to be appropriately selected and the overall 

performance of that method does not appear to be better than the standard IPM. 

2.9.4 Trust-Region Methods 

Trust region methods by themselves are not really a separate class of optimization algorithms for 

non-linear programming. They simply represent a different way in deriving the step an 

optimization algorithm takes at each iteration and may be used instead of the line search 

techniques discussed in the previous sub-sections [71]. Trust region methods for constrained 

problems involve the following general steps: 

Algorithm 2-6: generic trust-region method for constrained optimization 

0.  Define an initial trust region size Δ  and initialize 퐱. 

1.  Derive an appropriate approximation m of the initial optimization problem (2-39); 

solve m:‖Δ퐱‖ ≤ Δ  

2.  Determine if the step can be accepted. If yes update 퐱 and go to step 3, else adjust the 

trust region and go back to step 1. 

3.  If converged stop, else go back to step 1. 
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At step 1 the approximation m could be, e.g. the penalty based formulation used in algorithm 2-

2 or the linear or quadratic subproblem of the sequential methods. In terms of the trust region 

definition any norm may be used, but the Euclidean is the most common. It should also be clear 

that step 2 (i.e. the process through which a step is accepted and the determination of the trust 

region size) can have a significant impact on the convergence speed of such algorithms. Further 

relevant information may found in [93]. 

An example of trust region methods application in power systems may be found in reference [94]. 

Considering an equality constrained only problem similar to (2-39), the proposed approach 

involves the following basic steps: 

Algorithm 2-7: trust-region method for OPF 

0.  Select initial values for the optimization variables 퐱 , define a trust region Δ  and set 

푘 = 0. 

1.  Solve the vertical subproblem: 퐮 = min
퐝

 퐠 + ∇퐱 퐠 퐝 :퐝 ∈ Δ  . This 

subproblem attempts to find an update to 퐱 within the trust region that minimizes the 

constraints residuals squared Euclidean norm. 

2.  Compute the final update by solving the horizontal subproblem: 퐱 = min
퐝

 푓 +

∇퐱 푓퐝 + 0.5퐝 ∇퐱 ∇퐱 푓 퐝: ∇퐱 퐠 퐝 = ∇퐱 퐠
푇
퐮 +1,퐝 ∈ Δ  . This subproblem looks 

for an update to 퐱 that minimizes the objective function yet makes as much progress as u 

towards satisfying the equality constraints.  

3.  Calculate a merit function value (which includes the objective function value and a 

penalty for constraints violations) to determine whether the step is accepted. 

4.  If converged stop, else update 퐱, adjust the trust region, set 푘 = 푘 + 1 and go back to 

step 1. 

 

The authors in [94] use the infinity norm, rather than the Euclidean norm, to avoid introducing 

non-linear constraints. IPM methods are used for the solution of the subproblems and an 

appropriate heuristic for updating the trust region. It is also claimed that while slower, the trust-

region based approach is a more robust than other non-linear programming methods, and can 

succeed in cases where standard interior point methods fail. 

2.9.5 Implementation Considerations 

It is a fact that it is hard to match the efficiency of today’s commercial optimisation solvers (e.g. 

AIMMS, Express, etc.), especially in large scale optimisation problems. However, this work 

focuses on distributed solutions of various optimisation problems. As will be discussed and 
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further clarified in the following chapters (especially 3 and 4), this involves solving a series of 

small scale optimisation subproblems, rather than a single centralized problem. In order to solve 

these subproblems using a simpler customised solver can enable a faster execution of the 

distributed optimisation algorithm for four main reasons: 1) it avoids losing any time due to 

information exchange between different software packages (e.g. MatLab where the main 

distributed optimisation code was programmed and AIMMS); 2) it avoids any pre-processing that 

a commercial solver would likely do; 3) it allows initialisation of internal optimisation variables 

(i.e. Lagrange multipliers values) which improves solution speed over subsequent iterations of 

the distributed optimisation solver; 4) it allows straightforward incorporation of derivatives and 

Hessian information, which in turns helps avoid repetitive mathematical computations within 

each iteration of the centralized solver. 

Considering the basic structure of the IPM presented in §2.9.3 (illustrated on Fig. 2-7) one of the 

most computationally intensive steps is finding the Newton direction. As mentioned earlier, an 

analytical calculation of the involved derivatives and Hessian of the Lagrangian, significantly 

improved convergence performance. Considering the OPF formulation of (2-16) and assuming 

that 퐕 = diag{퐯}푒 훅 (where 퐯 a vector of all voltage amplitudes and 훅 a vector of all voltage 

angles) these may be calculated as described in the following. For brevity, in this subsection only, 

we denote diag{퐯} ≡ {퐯}. The current injection derivatives (퐈 = 퐘퐕) are: 

휕퐈
휕훅 = 퐘

휕퐕
휕훅 = 푗 퐘 {퐕},       

휕퐈
휕퐯 = 퐘

휕퐕
휕퐯 =  퐘 푒푗훅   

The power injection derivatives (퐒 = {퐕}퐈∗) are: 

휕(퐒)
휕훅 = {퐈∗}푗{퐕} − {퐕}푗퐘∗ = 푗{퐕}({퐈∗} − 퐘∗{퐕∗})  

휕(퐒)
휕퐯 = {퐈∗} 푒푗훅 + {퐕}퐘∗ 푒−푗훅   

Assuming 훌 is a vector of the associated Lagrange multipliers, then the corresponding second 

derivatives involved in the Hessian of the Lagrangian (ℒ = 훌 퐒 = 퐒 훌) are: 

휕 (ℒ )
휕훅 =

휕
휕훅

휕(퐒)
휕훅

퐓

훌 = 푗
휕
휕훅

({퐈∗}− {퐕∗}퐘∗ ){퐕}훌 = 푗
휕
휕훅

({퐕}{훌}퐈∗ − {퐘∗{퐕}훌}퐕∗)

= 푗(−{퐕}{훌} 푗 퐘∗ {퐕∗} + 푗 {훌}{퐈∗}{퐕}− 푗{퐕∗}퐘∗{훌}{퐕} + 푗{퐘∗{퐕}훌}{퐕∗}) 

 

Fig. 2-7: Basic steps involved in a non-linear IPM method. 
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휕 (ℒ )
휕퐯휕훅 =

휕
휕퐯

휕(퐒)
휕훅

퐓

훌 = 푗
휕
휕퐯

({퐕}{훌}퐈∗ − {퐘∗{퐕}훌}퐕∗)

= 푗 {훌}{퐈∗} 푒 훅 + {퐕}{훌}퐘∗ 푒 훅 − {퐕∗}퐘∗{훌} 푒 훅 − {퐘∗{퐕}훌} 푒 훅  

휕 (ℒ )
휕퐯 =

휕
휕퐯

휕(퐒)
휕퐯

퐓

훌 =
휕
휕퐯

{퐈∗} 푒 훅 + 푒 훅 퐘∗{퐕} 훌 =
휕
휕퐯 푒 훅 {훌}퐈∗ + 푒 훅 퐘∗푻{훌}퐕

= 푒 훅 {훌}퐘∗ 푒 훅 + 푒 훅 퐘∗{훌} 푒 훅   

휕 (ℒ )
휕훅휕퐯 =

휕
휕훅

휕(퐒)
휕퐯

퐓

훌 =
휕
휕훅 푒 훅 {훌}퐈∗ + 푒 훅 퐘∗{훌}퐕

= 푗 {퐈∗}{훌} 푒 훅 − 푒 훅 {훌}퐘∗{퐕∗} + 푒 훅 퐘∗{훌}{퐕}− {퐘∗{훌}퐕} 푒 훅

=
휕 (ℒ )
휕퐯휕훅   

Regarding the line currents (퐈 = 퐘 퐕): 

휕퐈
휕훅 = 푗 퐘  {퐕},       

휕퐈풕
휕퐯 = 퐘  푒푗훅   

Assuming 훍 is a vector of the associated Lagrange multipliers, then the second derivatives 

involved in the Hessian of the Lagrangian ℒ = 훍 퐈 = 훍 퐈  are: 

휕 ℒ퐼푡
휕훅 =

휕
휕훅

(푗{퐕}풀퐓훍) = −{풀퐓훍}{퐕} 

휕 ℒ퐼푡
휕퐯휕훅 =

휕
휕퐯

(푗{퐕}풀 훍) = 푗{풀퐓훍} 푒 훅  

휕 ℒ퐼푡
휕퐯 =

휕
휕퐯 푒푗훅 풀 훍 = 0  

휕 ℒ퐼푡
휕훅휕퐯 =

휕
휕훅 푒푗훅 풀 훍 =  푗{풀퐓훍} 푒 훅  

The derivatives associated to the remaining (linear) terms involved in the constraints are easy to 

calculate, thus we do not discuss them further here.  

Some convergence examples using the IPM and the analytical derivatives described above may 

be seen on Fig. 2-8. Our customised solver was validated through convergence results 

comparisons (in terms of optimisation decision variables and Lagrange multipliers values) with 

the MatLab fmincon function, the ipopt of the MatPower package, and for base IEEE test cases 

OPF problems, with a corresponding formulation in AIMMS. In all tested cases the same optimal 

points were found. However, we would like to stress that in terms of convergence time, we do not 

make any claim that our customised solver performs better than the others in isolated centralized 

problems. After all the development of a centralized solver is beyond the scope of this work. 

Nevertheless, due to the reasons discussed above, our implementation gave faster results when 

applied within the distributed optimisation procedures described in Chapters 3 and 4. 



40 
 

2.10 Conclusions & Further Questions 

This chapter reviewed different formulations for the OPF problem as well as optimization 

techniques that have been proposed for their solution. This is reflected on our updated energy 

management framework diagram shown on Fig. 2-9. It should be clear that, as also pointed out in 

[5], there is no standard formulation or solution approach, despite the several papers already 

published on the subject. Overall IPM based approaches appear to be promising and quite generic 

in terms of problems they are able to tackle. On the other hand, current literature indicates that 

 

 

 

Fig. 2-8: Indicative IPM convergence results for (from top to bottom row) IEEE-24, 118, 300 
nodes systems. 
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sequential or trust-region based methods are more robust but slower compared to IPM for small 

to medium scale problems. There is also a slight implication that they might be closer to what 

power industry would use [95]. 

In terms of network constraints formulation, at the transmission level we opt to use the standard 

ac formulation given that there are no clear guarantees that any of the proposed alternatives might 

perform better. In terms of optimization problems centralized solution approach, we implemented 

and use a basic form of the primal-dual interior point method. The reason is that it is faster than 

its trust-region counterparts and given that we are interested in solving the smaller scale problems 

generated through mathematical decomposition approaches it is expected to perform adequately 

well. In hindsight that was the case and we did not encounter any problems with the solution of 

any of our small-scale problems (i.e. those involved in the methods presented in the following 

chapters). We do however revisit (in chapter 5) the sequential programming / trust-region type of 

approach in the context of an OPF solution at the distribution level. The reason is that due to the 

fact that networks at that level are unbalanced and the number of controls significantly large and 

often discrete, the ensuing optimization problems would still be of a relatively large scale. As 

 

Fig. 2-9: The updated energy management schematic. There is a wide variety of algorithms 
which could potentially solve OPF problems (Interior-Point, Trust-Region or Sequential 
Linear Programming). However, as the problem scale increases convergence can become 
more difficult or altogether fail, while for the most robust OPF approaches including 
distribution constraints would imply a significant increase in computational time. 
Note that distribution networks are not currently optimized and as such the relevant 
formulations and solution approaches are not yet incorporated into ED. This link will be 
established in a following chapter. 
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such the reliability and speed offered by the linear or quadratic subproblems formulations in 

sequential programming methods is of interest. In addition, such approaches would allow us to 

take advantage of the approximate linear unbalanced OPF formulation. As will be discussed in a 

later chapter this can actually be an effective way to solve distribution level optimization 

problems. 

Closing, while the optimization algorithms discussed above could find application within the ED 

problem, scalability is always an issue. It would be doubtful, even in the most basic OPF 

formulation, whether convergence could be achieved in reasonable time when the constraints of 

a large number of controllable loads, and both transmission and distribution level are included. 

Nevertheless, it reasonable to ask whether or not it would be possible to develop specialized 

highly efficient centralized solvers which could deal with this very large scale problem. However, 

even if that were the case, it would presuppose that it is possible to establish a fast and reliable 

communications infrastructure which could handle the communications burden of transmitting 

the required information to / from that centralized solver. As such in the following we focus on 

the opposite question of whether or not it would be possible to implement a decentralized solution 

approach. 
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3  
Decentralized Optimal Power Flow 

This chapter investigates how the standard optimal power flow problem could be solved in a 
decentralized manner. More specifically it focuses on the balanced (transmission level) form of 
the problem and the following questions: 1) what are appropriate mathematical decomposition 
methods; 2) what is the decomposition structure (i.e. how would the original problem be divided 
into subproblems); 3) to what extent is decentralization possible. 

3.1 Problem Statement 

The basic formulation for OPF in balanced transmission systems was presented in the previous 

chapter. This comes with the following starting assumptions: 

A1. We consider a simplified version of the OPF problem in that contingency and reserve 

constraints are not taken into account. 

A2. We assume that no time-linkages exist with the future or prior states of the optimization 

variables, or if any such linkages exist they may be potentially represented through terms in the 

objective function. 

A3. Prior to the balancing market a forward market has been cleared. Based on that, conventional 

generators have set their operating status (on/off) and as such we do not deal with the associated 

cost non-convexities. 

A4. The problem is assumed to be solved at fixed intervals (e.g. 10-20 min) relatively close to 

real-time. On one hand this implies that the solution has to be given within that interval, on the 

other that all constraints and variables may be considered to be deterministic. 

A5. We assume that all available controls and decisions (e.g. generation output or load 

curtailments) are continuous. 

A6. We do not consider distribution network constraints on the assumption that the networks 

are designed in such a way that they can meet maximum demand without any problem. 

3.2 Decomposition Structure 

This section addresses two basic questions: a) how to determine the subsets into which the set 퐶 

in (2-15) will be decomposed to (i.e. the subproblems), and b) how to perform the decomposition 

assuming the desired subsets are known. Each subproblem attempts to maximize the economic 
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surplus associated its individual components and is considered to be managed by an agent, i.e. an 

entity which handles all necessary communications and runs the required optimization routines. 

3.2.1 Distributed Optimization Underlying Principle 

First let us consider a problem with 푛 control variables which has the following form: 

min
퐱

∑푓{ } 퐱( ) :ℎ{ } 퐱( ) = 0, 푖 ∈ {1, … ,푛}  ( 3–1) 

Given that all constraints associated with this problem are separable across variables, it is possible 

to solve a series of subproblems, one for each variable, of the following form: 

min
퐱( )

푓{ } 퐱( ) :ℎ{ } 퐱( ) = 0, 푖 ∈ {1, … , 푛}  ( 3–2) 

These subproblems are not only simpler but may be solved in parallel. Consequently, both the 

computational burden and time are significantly reduced. In practice however this is not usually 

possible either because complicating constraints are involved, e.g.: 

min
퐱

∑푓{ } 퐱( ) :
ℎ{ } 퐱( ) = 0, 푖 ∈ {1, … ,푛}
ℎ 퐱( ), … , 퐱( ) = 0

 ( 3–3) 

Or because complicating variables appear e.g.: 

min
퐱

∑푓{ } 퐱( ) :ℎ{ } 퐱( ),퐱( ) = 0, 푖 ∈ {2, … , 푛}  ( 3–4) 

Decomposition (distributed optimization) methods are algorithms which attempt to bring 

optimization problems in the form of (3-3) or (3-4) closer to that of (3-1). Subsequently this can 

allow an iterative coordinated solution of a number of subproblems similar to those in (3-2), 

leading to the optimum of the original problem in a mathematically proven way. 

3.2.2 Decomposition Schemes 

The basic structure of the problems solved in this chapter is illustrated in Fig. 3-1. Three different 

decomposition schemes are considered: 

 Scheme A (network decomposition): Each subproblem contains a part of the transmission 

network. The agent managing a subproblem is assumed to have complete knowledge of utility 

functions and constraints of users connected to his network area. Such an agent may be 

considered as the equivalent of a transmission system operator (TSO) responsible for managing 

both the network and the user devices located in a power system area, and is designated as 

TSO*. All TSO* agents can operate in parallel and in a synchronous manner, i.e. for the 

algorithm to progress to the next iteration all agents have to solve their respective optimization 

subproblems. This scheme, which is similar to standard approaches in literature for power 

system areas coordination, is used to test scalability with respect to the number of network 

subproblems. 
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 Scheme B (network and user decomposition): The power system is decomposed 

simultaneously to network areas and individual network user blocks. For each network area a 

TSO agent manages the corresponding subset of transmission constraints (2-16) (note that in 

contrast with the TSO* agents, the TSO problem no longer contains any user/device constraints 

as these are now handled independently of the network). A set of network users, represented 

by constraints similar to (2-19), is managed by a microgrid operator (MO). An MO agent would 

in practice represent any number of nearby located users (at the extremes it could represent a 

single user or all the users at a specific bus), and would have to deal with the peculiarities of 

end user equipment and demands (e.g. communication issues, unexpected requests etc.). Again 

all agents can work in parallel. This scheme is used to test scalability with respect to the 

disaggregation of network users. 

 Scheme C (network and user decomposition with user aggregation): This is a two-step 

decomposition scheme used to test the effects of aggregation with respect to network users. 

First the initial problem is decomposed to TSO subproblems (as in scheme B) and bus 

aggregator subproblems. These bus aggregators could be considered the equivalent of a 

distribution system operator (DSO). Each bus aggregator subproblem (designated as DSO*) 

contains the objectives and constraints of all users supplied through a specific bus. Then each 

DSO* subproblem is further decomposed to individual MO subproblems and an aggregator 

subproblem (designated as DSO) which effectively sums up the MO agents response, thus 

limiting communications and computational requirements for TSO agents. This scheme is used 

 
Fig.3-1: Left: A typical transmission network schematic (IEEE-24 nodes test system). The 
network is assumed to be separated into four control areas. Right: Tested decomposition 
schemes and sample illustration of generated subproblems interrelations. Each block 
represents a subproblem / agent and each line indicates a required bidirectional 
communications link. 
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to test the effects of aggregation with respect to network users. Intuitively this is also the 

scheme that might be closer to what could eventually be applied in practice, as aggregators are 

often thought of as a necessary part of demand management [96, 97]. 

These three schemes effectively represent all possible sensible decomposition structures in the 

typical OPF problem. The only other possibility would be an approach akin to scheme C with 

even more decomposition steps/layers. However, there does not appear to be a clear justification 

for pursuing such a solution and it would no longer have any direct association with the physical 

power system structure. Note that as seen on Fig.3-1 in all decomposition schemes the network 

may be divided in separate areas. In case such a division is not readily available, it may be 

obtained through a variety of network partitioning methods [98], such as the spectral partitioning 

method discussed in the following subsections. 

3.2.3 Spectral Partitioning 

One approach to partitioning a graph (such as a power network) is using the so called spectral 

methods. Such methods base their results on the eigenvectors of the Laplacian matrix of a graph's 

connectivity matrix. For a given set of points (in our case network buses) 푥{ }, … , 푥{ }  that need 

to be clustered in 푘 subsets a basic spectral clustering algorithm involves the following steps [99]: 

Algorithm 3-1: spectral partitioning 

1. Form an 푛 × 푛 matrix 퐀 based on some distance metric whose elements indicate a 

relation between given points. 

2. Define the matrix 퐃 = 푑푖푎푔 ∑ 퐀( , )∈{ ,…, } , … ,∑ 퐀( , )∈{ ,…, }  and calculate the 

normalized Laplacian of 퐀 which is equal to 퐋 = 퐃 . 퐀퐃 . . 

3. Find the eigenvalues and eigenvectors of 퐋 . Let 퐕 be a 푛푥푘 matrix derived by the 

concatenation of the eigenvectors corresponding to the 푘 smallest eigenvalues. 

4. Form the matrix 퐕  by normalizing each of 퐕's rows to have unit length. 

5. Treating each row of 퐕  as a point in ℝ  assign them into 푘 clusters using a suitable 

algorithm. One of the most commonly used is the k-means algorithm described in the 

following subsection. 

6. Assign a point 푥{ } to cluster 푗 if row 푖 of the matrix 퐕  was assigned to cluster 푗. 

 

In the particular case of power systems analysis the matrix 퐀 may be set to be equal to the bus 

admittance matrix which effectively implies that the partitioning results become independent of 

the operating state of the system. Further information may be found in [100]. 
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3.2.4 k-Means Clustering 

The k-means algorithm is one of the most commonly used clustering algorithms [101]. It is 

designed to cluster 푛 numerical vectors into 푘 clusters based on the distance of each data sample 

from the cluster mean. It involves the following steps: 

Algorithm 3-2: k-means 

0.  Randomly select initial cluster means. 

1.  Calculate the distance 푑{ , } between each data sample 푥{ } and each cluster’s mean 

푞{ }. 

2.  Assign each sample 푥{ } to cluster 푗∗ = min ∈{ ,…, } 푑{ , }. 

3.  Recalculate cluster means. 

4.  If changes in cluster membership are observed go to step 1. 

 

The k-means algorithm is a heuristic that attempts to minimize an objective function of the form 

푓 = ∑  ∑ 푑 푥{ },푞{ }∈{ ,…, }∈{ ,…, }  by alternately fixing and updating 푞{ }. It is a generally 

efficient approach in clustering large data sets and often terminates at a local optimum. Its 

performance is largely dependent on the initialization of the cluster means. In this work in each 

clustering case multiple runs of the algorithm were performed and the best solution was kept. 

The reasoning behind using spectral partitioning with k-means clustering is simply that it is an 

approach commonly used in power systems. While one cannot claim that this is an optimal way 

to partition a system for the purpose of distributed optimization, it is adequate for the purpose of 

testing scalability. After all, in practice, contingency constraints and practical geographical and 

operations considerations would affect how the problem could be – if at all – partitioned at the 

transmission level. 

3.3  Decomposition Methods 

Following is a brief review of currently available mathematical decomposition methods, 

describing the basic algorithms and their main applications in power systems. We discuss their 

various properties and justify our preference for the proximal based methods (e.g. Alternating 

Directions Method of Multipliers) that will be used in this work. 

3.3.1 Dantzig-Wolfe Decomposition 

This decomposition approach may be used to solve problems with complicating constraints of the 

following form: 
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min
퐱

{퐜 퐱:퐄퐱 = 퐟,퐀퐱 = 퐛} ( 3–5) 

Where and 퐱 is a 푛 × 1 vector, and 퐀퐱 = 퐛 are complicating constraints. The constraints 퐄퐱 = 퐟 

are separable, e.g. they might have a structure similar to that of (3-2). The algorithm involves the 

following steps: 

Algorithm 3-3: Dantzig-Wolfe decomposition 

0.  Generate a set of 푛 random cost functions and solve the relaxed subproblems 퐳(풊) =

min
퐱{풊}

퐜{풊}
푻 퐱:퐄퐱 = 퐟 , 푖 ∈ {1, … ,푛}. 

1.  Solve the ‘master’ problem min 퐳푻퐮: 퐫푻퐮 = 퐛,∑ 퐮( )∈{ ,…, } = 1 . Where 풓 is a 

matrix of the complicating constraints values for each solution, while 훌 and 훔 are the dual 

variables of the first and second set of constraints. 

2.  Solve the relaxed subproblems 퐮{풊} = min
퐱

퐜푻퐱 − 훌휯퐀(:, )퐱{ }: 퐄퐱 = 퐟 . 

3.  If 퐮{풊} ≤ 훔{풊}, then the optimal solution has been reached. Else add the current 

solution to the initial set, set 푛 = 푛 + 1, and go back to step 1. 

 

The method starts with a set of relaxed feasible solutions and then attempts to find an affine 

combination of these relaxed solutions so that the total cost is minimized and the complicating 

constraints are satisfied. Then, if the optimum of the original problem has not yet been reached, 

it adds the new relaxed feasible solution to the master problem. As the master problem grows in 

size it will be able to better approximate and eventually find the optimal solution of (3-5). The 

relaxed subproblems at steps 0 and 2 may be solved in parallel. It should be noted that the master 

problem as formulated above may be infeasible, and a different formulation with the addition of 

slack variables could be required. Further details and examples may be found in [102]. 

The Dantzig-Wolfe decomposition has been applied successfully to some power system 

problems. Reference [103] utilizes this method for optimal reactive power dispatch using 

linearized power system equations. A similar application of the method may also be found in 

[104]. Reference [105] uses a non-linear version of the method for the solution of security 

constrained OPF problem. 

However, this method has three basic problems: 1) in each iteration the auxiliary problem 

increases in size and it eventually it may become difficult to solve for large degrees of 

decomposition; 2) the auxiliary problem has to be solved centrally; 3) for degenerate cases the 

method might not be able to give a solution in terms of power. As a result, it does not appear to 

be suitable for a fully decentralized optimization scheme. 
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3.3.2 Benders Decomposition 

This method is suitable for solving problems with constraints of the form: 

푚푖푛
퐱,퐲

{푓(퐱, 퐲):퐜(퐱) = ퟎ ,퐝(퐱,퐲) = ퟎ} ( 3–6) 

Note that all constraints would be separable over the elements of 퐱 if 퐲 was a constant. This 

algorithm involves the following basic steps: 

Algorithm 3-4: Benders decomposition 

0.  Find an initial 퐱  such that 퐜(퐱 ) = ퟎ, set 푎 = +∞ and the iteration count 푘 = 0. 

1.  Solve the subproblem min퐲{푓(퐱, 퐲):퐝(퐱, 퐲) = ퟎ,퐱 = 퐱 }. Let 훌 be the optimal dual 

variables corresponding to the last equality constraint. 

2.  Solve the master problem min ,퐱 훼: 퐜(퐱) = ퟎ,훼 ≥ 풇(풙 ,풚 ) + (훌 ) (풙 − 풙 ),푛 ∈

{1, … ,푘} . 

3.  If 푓 퐱 , 퐲 − 훼  is less than a certain tolerance the algorithm has converged, else 

increase iteration count and go to step 1. 

 

Effectively the solution of the subproblem gives an upper bound to the solution of the initial 

problem, while the solution of the master problem gives a lower bound. After each iteration a new 

constraint is added to the master problem which allows the approximation of the objective 

function through a set of hyper-planes. If the problem is non-convex the added constraints (so 

called Bender’s cuts) might exclude feasible regions within which the globally optimal solution 

may be contained. 

A very common application for Benders decomposition is the security constrained OPF. 

Reference [106] includes a thorough review of different approaches in using this method for that 

particular problem. Most commonly the master problem contains all constraints related with the 

base (no contingency) case, along with the Benders cuts derived from the subproblems related to 

various contingencies. Reference [107] includes an adaptive variant of the method to circumvent 

the aforementioned issue of excluding optimum solutions in non-convex problems. 

This method shares two basic problems with the previous one: 1) in each iteration of the method 

the master problem increases in size; 2) step 2 has to be solved centrally. As a result, it is does 

not appear to be a method suitable for our purposes. 

3.3.3 Lagrangian Relaxation (LR) 

Considering the generic non-linear optimization problem of the following form: 

푚푖푛
퐱

{푓(퐱):퐡(퐱) = ퟎ } ( 3–7) 
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Then its dual function may be defined as: 

휑(훌) = 푚푖푛
퐱

{푓(퐱) + 훌 퐡(퐱)} ( 3–8) 

Where 훌 is the vector of Lagrange multipliers. The quantity to be minimized is the so called 

Lagrangian function. The dual problem is: 

max
훌

{휑(훌)} ( 3–9) 

The following equation generally holds: 

푠푢푝
훌

{휑(훌)} ≤ 푖푛푓
퐱

{푓(퐱):퐡(퐱) = ퟎ} ( 3–10) 

The difference between the two values in this equation is called duality gap [108]. If for some 

feasible combination of 퐱∗,훌∗ the duality gap is zero, then 퐱∗ is the optimal solution of the primal 

problem and 훌∗ is the optimal solution of the dual. Consequently, it is possible instead of solving 

(3-7) directly, to solve the problem (3-9) [109]. Given that the latter may be hard to formulate 

directly, it may be solved through the following algorithm: 

Algorithm 3-5: Lagrangian Relaxation 

0.  Initialization: Select initial values 훌  and iteration count 푘 = 0. 

1.  Solve 퐱 = min
퐱

푓(퐱) + 훌 퐡(퐱) . 

2.  Multipliers update: Find 훌 . 

3.  Convergence check: If max 훌 − 훌  is less than a certain tolerance then 

convergence has been achieved, else update iteration count and go to 1. 

 

Assuming that 푓 and each function in 퐡 are separable, then the optimization problem in step 1 

may be split into several smaller, independent, easy to solve problems. Given that the dual 

function might not always be differentiable the following methods may be used to update the 

Lagrange multipliers in step 2 of the LR algorithm [102]: 

 Subgradient method: Assuming that the dual is a concave function (which is the case for 
convex problems) then 풉 풙  is a subgradient of the dual function, i.e. 휑(흀) ≥ 휑 흀 +
 풉 풙 흀− 흀 . This implies that updating 흀 along the direction indicated by the 
subgradient might yield an improved dual function value. Thus: 

훌 = 훌 + 푎 퐡 퐱  ( 3–11) 

For a sufficiently small step size 푎 > 0 convergence is possible. This may be expressed with the 

following necessary conditions: 

lim
→

푎 = 0, 푎 = ∞ ( 3–12) 
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Intuitively (3-12) implies that while 푎  should decrease as the iteration count increases, it should 

never become zero. In that case, it follows from (3-11) that the Lagrange multipliers would not 

be updated and the algorithm would stop prematurely. While this method is very simple to 

implement, a standard approach for setting the step size does not seem to be available. At the 

same time the selection of this parameter can have a significant impact on convergence. 

 Cutting Plane method: In order to determine multiplier updates this approach requires the 
solution of the following optimization subproblem: 

max
,흀

푧: 푧 ≤ 휑(훌 ) + 퐡(풙 ) (훌− 훌 ), 푖 ∈ {1, … ,푘}  ( 3–13) 

This approach essentially attempts to reconstruct the dual function using a set of subgradients. 

While it can lead to faster convergence compared to the subgradient method, the size of the 

optimization problem increases significantly with the number of iterations. In addition, the 

problem (3-13) requires to be centrally solved, and as such it does not easily allow for fully 

decentralized solutions. 

 Bundle method: This method involves solving (3-13) with an additional penalty term in the 

objective function of the form 푎 흀 − 휣 , where 휣 is the so called centre of gravity which 

has to be suitably updated in every iteration. The method is a variant of the cutting plane 

approach but it requires careful tuning of the additional parameters in order to be efficient. 

 Trust region method: This is another variant of the cutting plane method. Its basic difference 

is that it uses only a limited set of the closest hyper-planes to the solution of interest and as a 

result the problem size remains constant. Bounds on the values of Lagrange multipliers may be 

dynamically updated. Again the decomposability of the relevant problem is an issue. 

Overall, possibly due to its simplicity, LR has been a quite popular method in power systems. In 

[110] LR with a subgradient based update is used to solve a simplified unit commitment problem. 

Only a global power balance constraint is considered and commitment problems of individual 

units are solved using dynamic programming. The paper also illustrates the inability of 

subgradient based LR to converge when similar units exist in the system. In such cases the price 

(i.e. Lagrange multiplier) signal given through this decomposition approach is not adequate. As a 

result, the use of a heuristic by the system operator would be necessary, but then the optimality 

of the solution would be in question. For example, in [111] a few simple rules are combined with 

the standard LR approach for the solution of the unit commitment problem: a) The start-up cost 

normalized by the number of operating hours is added to the hourly variable cost to determine 

whether or not a unit turns on. This is used instead of dynamic programming. b) Depending on 

their type certain units (e.g. base units) are ignored by the heuristic. c) Units with similar 

characteristics are committed as a group and then decommitted one by one as long as demand and 

reserve requirements are satisfied. d) Committed units are sorted in terms of cost and are turned 

off or substituted by other units by checking each in turn. A similar approach is followed in [112] 
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where a variety of empirical rules are used for updating the Lagrange multipliers depending on 

whether or not reserve and active power balance constraints are satisfied. It should be clear 

however that heuristics such as this require centralized control. 

Reference [113] discusses the formulation of LR subproblems when reserve constraints are 

included in the initial OPF, based on DC equations. The algorithm is tested on a simple 6 unit 

system. Reference [114] uses the LR approach with a subgradient method for the decomposition 

of an OPF problem, which is separated into three subproblems. Each subproblem / area is a copy 

of the IEEE RTS. The method is shown to converge within a few tens of iterations to accurate 

results. However, this may not be necessarily expected for the general case. The good 

convergence might mostly have to do with the fact that the tie-line flows between areas did not 

have a significant effect on the system Lagrange multiplier values. 

Reference [115] focuses in solving the dual of a relaxed mixed-integer unit commitment problem. 

The transmission system is not explicitly modelled and only two constraints, regarding reserve 

requirements and global power balance, are included. The method used is LR with a trust region 

based update of multipliers and indicates improved convergence compared to other updating 

techniques. 

In [116] the full AC single period optimal power flow is solved. A 5 bus system is used and 

decomposition to the individual generator / demand block is performed. The transmission system 

problem is solved as a single problem. Convergence is achieved in less than 20 iterations. A 

central entity is responsible for the exchange of Lagrange multiplier information. It uses a Newton 

method to update the associated Lagrange multipliers. The required derivatives for the Newton 

step can be calculated based on market players’ previous responses. 

In [117] the LR is coupled with cutting plane methods for multiplier updates. Tests are carried 

out in a 6 bus system including a number of 4000 network user subproblems. Two different 

cutting plane approaches are compared in terms of convergence performance. 

Reference [118] uses an LR scheme with a subgradient method to solve a power system demand 

management problem. The paper recognizes the inefficiency of this approach’s convergence in 

non-strongly-convex problems. It proposes a simple heuristic which limits the maximum power 

consumption per hour for individual consumers. While this problem might solve the issue of 

demand allocation in the forward market (as long as the demand involves continuous functions), 

it is not clear how it affects the generators commitment problem. Furthermore, the overall 

optimization problem has to be solved for a variety of limit values and the optimal solution has 

to be selected among them. This is bound to increase the computational burden, and brings up the 

question of how to determine this set of limit values. The second part of this work [119] applies 

the method in a test case based on the UK system, including electric vehicles and thermal loads. 

Transmission constraints are not considered however and the reported low numbers of iterations 
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to convergence might be misleading given that the multipliers initial values appear to be set very 

close to the actual solution. Finally, in [120] a quite similar approach is used including DC power 

flow equations. The test system is a 16 bus representation of the UK network. No results on the 

number of iterations to convergence are reported. 

In [121] a decentralized trading scheme based on LR is proposed. The authors recognize the fact 

that due to the generators’ cost non-convexities a market equilibrium might not exist. The 

proposed solution is the force the so called ‘convexifying market rule’ to surpass this problem. A 

market is said to operate under this rule as long as the trial price – response pairs may be extended 

to a monotone incremental cost (or monotone decreasing incremental benefit) function. How 

actually a market clearing strategy using this rule would work however is not clarified. 

Overall, LR yields simple easily coordinated subproblems. However, there are three issues with 

this method: 1) in its basic form with subgradient multiplier updates it has poor convergence 

performance if the subproblem objective functions are not strongly convex (an example may be 

seen on Fig. 3-2); 2) in any of its improved forms degenerate solutions can be an issue as even if 

Lagrange multipliers converge, power might not; 3) improved methods for Lagrange multiplier 

updates typically imply centralized solutions of the Lagrange multiplier update problem. As a 

consequence, LR does not fully satisfy our requirements for a decentralized solution method. 

The convergence issues identified above (also illustrated with a simpler example in [122]) may 

be resolved by considering an augmented form of the Lagrangian, i.e.: 

ℒ (퐱,훌) = 푓(퐱) + 훌 퐡(퐱) +
휌
2
‖퐡(퐱)‖  ( 3–14) 

Where 휌 is a penalty factor, which should be sufficiently small so that the problem does not 

become ill conditioned [109, 123]. At the optimal point the last term is equal to zero and as a 

result has no impact on the final solution of the problem. However, it makes the problem strongly 

convex (at least in a region around the optimum) with respect to x and due to this fact offers 

improved convergence. The disadvantage of the augmented Lagrangian is that (3-14) is no longer 

 

Fig. 3-2: Simple example illustrating the performance of LR in IEEE-24 test system (split 
into three areas) with subgradient updates of Lagrange multipliers. This oscillatory behaviour 
is rather typical of the method and careful tuning would be required to achieve acceptable 
convergence results. 
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separable due to the quadratic penalty term. Methods suitable for the decomposition of the 

augmented Lagrangian are presented in some of the following sections. 

3.3.4 Alternating Direction Method of Multipliers (ADMM) 

One conceptually simple approach in decomposing the augmented Lagrangian is the ADMM 

approach [124], which solves problems of the following form: 

min
퐱,퐳

{푓(퐱) + 푔(퐳):퐀퐱+ 퐁퐳 = 퐂} ( 3–15) 

The augmented Lagrangian for this problem is: 

ℒ (퐱, 퐳,훌) = 푓(퐱) + 훌 (퐀퐱+ 퐁퐳− 퐂) +
휌
2
‖퐀퐱 + 퐁퐳 − 퐂‖  ( 3–16) 

The algorithm involves the following steps: 

Algorithm 3-6: ADMM 

0.  Select initial values for 퐱 , 퐳 ,훌  and set the iteration count 푘 = 0. 

1.  Solve 퐱 = min
퐱
퓛흆 퐱, 퐳 ,훌 . 

2.  Solve 퐳 = min
퐳
퓛흆 퐱 , 퐳,훌 . 

3.  Update 훌 = 훌 + 휌 퐀퐱 + 퐁퐳 − 퐂 . 

4.  If not converged update iteration count and go to step 1. 

 

Effectively this involves updating sequentially parts of the variables vector. In order to bring the 

generic optimization problem of the form min
퐱∈

푓(퐱), to the ADMM form, a reformulation to the 

following equivalent problem is necessary [125]: 

min
퐱,퐳

{푓(퐱) + 푔(퐳): 퐱 = 퐳} ( 3–17) 

Where 푔(퐳) is an indicator function to the constraint set 퐶, i.e.: 

푔(퐳) = 0
+∞

퐳 ∈ 퐶
퐳 ∉ 퐶 ( 3–18) 

This enables the decomposition of step 1 and the parallel solution of the subproblems. An 

experimental evaluation of the effect of problem size and penalty factor selection on iterations to 

convergence may be found in [126], along with related theory. 

A limited number of papers has applied ADMM to power systems problems. In [127] a serial 

implementation of the method was used, where it was compared to APP and PCPM approaches 

(described in following subsections). Test cases involve up to 8 areas in systems of up to 1777 

buses. No significant differences appear between the compared methods. In [128] a variant of the 

method is applied to a DC model of the three area IEEE RTS. Coupling variables for each area 
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subproblem are fixed to the value of their previous iteration, instead of performing the 

minimization of step 2. A mathematical proof of convergence in this case is not provided however. 

Another application of the method may be found in [129] where the initial problem is decomposed 

down to the individual component level. Tests are carried out in randomly generated networks of 

up to 3 ∙ 10  buses. The scaling results indicated by the authors look impressive, however 

Kirchhoff’s laws are not taken into account. Reference [130] uses the ADMM method for the 

decomposition of a semi-definite formulation of the unbalanced OPF problem in distribution 

networks. For a 37 node network partitioned in 4 areas, convergence is shown to be achieved in 

about 100 iterations. 

In the case of the ADMM method the initial OPF problem takes the form: 

min
퐳,퐔∈

{푓 (퐏,퐐) + 푔(퐳): 퐳 = 퐔 } ( 3–19) 

Where 푔 is an indicator function to the linear coupling constraints set 퐶  of equation (2-20) and 

퐔  a vector of variables involved in 퐶 . The augmented Lagrangian becomes then equal to: 

ℒ (퐔,퐳,훌 ) = 푓 (퐔) + 푔(퐳) + 훌 (퐔 − 퐳) +
휌
2
‖퐔 − 퐳‖  ( 3–20) 

The ADMM equations then become: 

퐔 = argmin
퐔∈ /

푓 (퐔) + (훌 ) 퐔 +
휌
2
‖퐔 − 퐳 ‖  ( 3–21) 

퐳 = Π {퐔 − 퐳} ( 3–22) 

훌 = 훌 + 휌(퐔 − 퐳 ) ( 3–23) 

Where Π  is the Euclidian projection on the set 퐶 . These equations presuppose that the initial 

values for the Lagrange multipliers are selected so that (훌 ) 퐳 = 0 ∀ {퐳 :퐡 퐳 = 0}. For 

example, let us consider the constraint 푃 + 푃 = 0 and corresponding auxiliary variables 

퐳( ), 퐳( ). Let 훌 ( ),훌 ( ) be the Lagrange multipliers corresponding to the constraints 퐳( ) =

푃 , 퐳( ) = 푃  and assume their initial values are selected so that 훌 ( ) = 훌 ( ). It follows from 

(3-21) that 퐳( ) = −퐳( ) = 푧  and also: 

푧 = min 훌 ( )푧 − 훌 ( )푧 + (푃 − 푧) + (푃 + 푧) ⇒ 

⇒  (푃 − 푧  ) − (푃 + 푧 ) = 0 → 푧 = (푃 − 푃 ) 2⁄  
( 3–24) 

From (3-22) we then have: 

훌 ( ) = 훌 ( ) + 휌(푃 − (푃 − 푃 ) 2⁄ ) = 훌 ( ) + 휌 (푃 + 푃 ) 2⁄  

훌 ( ) = 훌 ( ) + 휌(푃 + (푃 − 푃 ) 2⁄ ) = 훌 ( ) + 휌 (푃 + 푃 ) 2⁄  
( 3–25) 

Consequently 훌 ( ) = 훌 ( ). This result is valid for any duplicated variable. Thus for any iteration 

훌 퐳 = 0. Note that the optimization subproblems and multiplier update steps are fully 
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decomposable, with the only requirement being the exchange of information between the 

subproblems which are coupled by this constraint. 

According to [125] necessary and sufficient conditions for convergence are primal and dual 

feasibility, i.e. 퐫 = 퐳 − 퐔 = 0 and ∇푓 + 훌 퐔 = 0, with the quantity 퐬 = 휌 퐳 − 퐳  

being indicative of the latter. Thus a typical requirement for convergence could be 퐫 ≤ 휖  

and 퐬 ≤ 휖 , where 휖 , 휖  positive tolerance values (e.g. on the order of 10 ). Typically, 

the primal residual equation would correspond to power and voltage variables equalities and 

directly relates to the updates in Lagrange multipliers themselves. In a typical OPF problem if the 

multipliers do not significantly vary from one iteration to the next, the change in 퐳 may also be 

expected to be small and in most cases checking the primal residuals might be adequate. 

3.3.5 Predictor Corrector Proximal Multipliers Method (PCPM) 

The ADMM method is actually a member of one larger family of decomposition methods who 

are based on the so called proximal method of multipliers [131, 13]. The latter instead of directly 

solving the generic optimization problem min
퐱∈

푓(퐱), reaches the solution through the iterative 

process: 

퐱 = min
퐱∈

푓(퐱) +
1

2푐
‖퐱 − 퐱 ‖  ( 3–26) 

The LR method may be applied to this problem [132] to enable a parallelizable solution. The 

penalty term if sufficiently large (i.e. 푐 is sufficiently small) will effectively limit how much 퐱 

changes over subsequent iterations. This should help achieve smooth convergence (i.e. limit 

Lagrange multipliers oscillations over subsequent iterations) and resolve any degeneracy issues 

(i.e. even for linear objective functions there will be a unique solution for subproblems as a 

function of price or Lagrange multiplier value). A variant of this method appears in [133] where 

the PCPM algorithm is presented. The method solves problems similar to (3-15) with a modified 

objective function as in (3-25), and involves the following steps: 

Algorithm 3-7: PCPM 

0.  Select initial values for 퐱 , 퐳 ,훌  and set the iteration count 푘 = 0. 

1.  Update predictors 퐩 = 훌 + 휌 퐀퐱 − 퐁퐳 . 

2.  Solve 퐱 = min
퐱
퓛흆 퐱, 퐳 ,퐩 . 

3.  Solve 퐳풌 ퟏ = min
퐳
퓛흆 퐱 , 퐳,퐩 . 

4.  Update 훌 = 훌 + 휌 퐀퐱 − 퐁퐳 . 

5.   If variables values do not significantly change, convergence is achieved. Otherwise 

go back to step 2. 
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Apart from [127] the method with minor changes was also used in [134]. No clear settings are 

indicated for the method’s parameters however, and no additional results of interest are presented. 

This method compared to ADMM involves one additional multiplier update, i.e. it involves two 

different parameters for the Lagrangian function penalty and the Lagrange multiplier update. It is 

not however clear what benefits this additional complexity would bring. As such there is no 

particular motivation to apply this particular approach. 

3.3.6 Adaptive Proximal Decomposition Method (APDM) 

Some simpler variants of proximal decomposition methods have found application in energy 

management problems [135]. In this work we also use a proximal decomposition variant for the 

network unconstrained DSO problem. Consider the solution of a problem of the form 

min
퐱

∑푓{ } 퐱( ) − 휆∑퐱( ) + 휌 ∑퐱( ) − 푑 . This is a typical subproblem produced by the 

ADMM process when following decomposition scheme C. Instead of a centralized solution we 

carry out the following steps: 

Algorithm 3-8: Proximal decomposition scheme 

0.  Select initial values for 퐱  and set the iteration count 푘 = 0. 

1.  Set 훌 = 훌 − 2휌 ∑퐱 − 풅 . 

2.  Solve 퐱 = min
퐱

∑푓 퐱( ) − 흀∑퐱( ) + 휌∑ 퐱( ) − 퐱( ) . 

3.  If max 퐱 − 퐱  is less than a certain tolerance value then convergence has been 

achieved. Else go to step 1. 

 

Note that for this scheme to converge 휌 should be sufficiently large. For a suitably selected value 

convergence is achieved following a quickly damped oscillation. Too large values will delay 

convergence. A simple way to achieve good performance is by setting initial bounds 휌 = 0,휌 =

휌 푛  (where 푛  is the number of MOs managed by the DSO) and using the following empirical 

updating scheme every few iterations as an intermediate step between 2 and 3 in algorithm 3-8: 

Algorithm 3-9: Adaptive proximal penalty factor update 

1.  If max 퐱 퐱 퐱 퐱
퐱 퐱 ≤ → 휌 = 휌. The inequality if valid implies 

large oscillations around the optimum and consequently slow convergence due to a low 

penalty value. Thus the lower bound is increased. 
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2.  If max 퐱 − 퐱 퐱 − 퐱 ≥ 0 → 휌 = 휌. The inequality if valid implies that 

convergence is slow due to a high penalty factor value. Thus the upper bound is decreased. 

3.  Set 휌 = 휌 + 휌 /2. 

 

This algorithm as will be shown allows for faster convergence compared to standard ADMM, 

however how well it could work in network constrained cases is an open question. 

3.3.7 Auxiliary Problem Principle (APP) 

This method is suitable for the decomposition of problems with separable constraints but non-

separable objective function [136, 137]. This obviously includes the case of an augmented 

Lagrangian. For the generic optimization problem the basic lemma associated with 퐴푃푃 is as 

follows: if for some function 푔(퐱) the relation ∇푔(퐱∗) = 휖∇푓(퐱∗), 휖 > 0 holds and 퐱∗ =

min
퐱
푔(퐱), then 퐱∗ = min

퐱
푓(퐱). Effectively this means that instead of optimizing 푓 it would be 

possible to optimize 푔. For example, the function 푔 could be: 

푔(퐱) = 퐾(퐱) + 휖∇푓(퐱) − ∇퐾(퐱) 퐱 ( 3–27) 

Where 퐾 is an appropriately selected function, differentiable in 퐶. This may yield among others 

an iterative algorithm which requires solving: 

퐱 = argmin
풙∈

퐾 (퐱) + 휖 ∇푓(퐱 )− ∇퐾 (퐱 ) 퐱  ( 3–28) 

Overall this algorithm replaces the objective function by an arbitrarily selected function and their 

linearization. If 퐾 is a separable function, then (3-27) is also separable. Despite the difficulty 

associated with selecting a suitable function and relevant parameters, this method has been used 

in several papers on power systems. These are discussed in the remainder of this subsection. 

As indicated in [138, 139, 127] the method generates subproblems with objective functions 

including a Lagrange multiplier term, a proximal term and a linearized component of the 

augmented Lagrangian quadratic term. With the exception of the last term the method is quite 

similar to ADMM and PCPM. The results in the aforementioned references indicate convergence 

in a few iterations for systems with up to 8 areas. The same test cases are studied in [140, 141] 

but including a more detailed discussion of the effect of various parameters on convergence. 

In [142] a general implementation background is presented but without any particular test results 

or any details on the formulation as far as power systems are concerned. The authors claim that 

the algorithm can be implemented both in a synchronous (all subproblems are solved before 

proceeding with objective function updates and to the next iteration) and asynchronous fashion 

(local subproblems are updated and resolved as soon as relevant local information is available, 

which implies that faster to solve problems do not wait for a solution from the slowest ones). 
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Further details may be found in [143] where the method is tested in a 3 area 51 bus system. 

Information related to the total number of iterations is not clear. It seems however that the 

asynchronous solutions may produce results faster than the synchronous one, even though no 

mathematical proof is provided regarding the convergence in the former case. Reference [144] 

presents results on a 118 bus system split to three areas. Convergence seems to be achieved in 

about 300 iterations. It is of note however that for certain parameter values the algorithm may fail 

to convergence. The method is also used in [145] to solve the full AC OPF. A test case consisting 

of 2500 buses divided in 20 areas is included and surprisingly the method seems to converge in 3 

iterations. The mathematical details behind this particular application however are unclear and 

possibly these results are due to an algorithm warm start. Overall this method is more complex 

than ADMM and requires the tuning of an increased number of parameters. At the same time 

current literature does not indicate any improved convergence performance. 

3.3.8 Optimality Condition Decomposition (OCD) 

This approach, also known as approximate Newton direction method, was first presented in [146]. 

Its basic advantage is that it does not seem to require any assumptions on the convexity of the 

problem. The latter might have the following general structure: 

min
풙∈

푓 퐱( ), … , 퐱( ) :퐡 퐱( ), … , 퐱( ) = 0  ( 3–29) 

The set 퐶 is assumed to be separable with respect to elements of 퐱, while 퐡 are the complicating 

constraints. The method is based on the decomposition of 퐾퐾푇 optimality conditions, which are 

typically solved with a Newton-Raphson method: 

∇퐱퐱ℒ ∇퐱퐡
∇퐱퐡 ퟎ

Δ퐱
Δ훌 = − ∇풙ℒ

퐡  ( 3–30) 

The underlying idea is to approximate the matrices ∇퐱퐱ℒ and ∇퐱퐡 with block separable matrices 

by fixing certain coupling variables to the value of the previous iteration. As a result, the method 

involves the following steps: 

Algorithm 3-10: OCD 

1. Initialize Lagrange multipliers and fixed variables values. 

2. Execute a single Newton iteration for each block optimization problem, i.e. 

min
퐱( )

푓 퐱( ), … ,퐱( ) , … , 퐱( ) + 훌 퐡 퐱( ), … ,퐱( ) , … , 퐱( ) :퐡( ) 퐱( ), … , 퐱( ), … ,퐱( )  in 

order to calculate search directions Δ퐱( ) and Δ훌( ). 

3. Update subproblem variables 퐱( ) = 퐱( ) + Δ퐱( ) and 훌( ) = 훌( ) + Δ훌( ). 
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4. If the variables variation over a number of consecutive iterations is less than a 

specified tolerance, then the algorithm has converged. Otherwise increase iteration count 

and go to step 1. 

 

The individual optimization subproblems may also be solved to optimality [147]. One basic issue 

is that due to the fixed variables these subproblems may be infeasible. Consequently, a barrier 

method should be used to solve them. Furthermore, for the algorithm to converge, the solution of 

(3-29) should be well defined, and if 퐊 the actual Jacobian and 퐊 its block separable 

approximation then 휌 퐈 − 퐊 퐊 ≤ 1. Where 휌 denotes the spectral radius of the corresponding 

matrix. In case this condition does not hold then some preconditioning method may be used, 

which should adjust the variables and multiplier updates to suitable values. 

The OCD method has been successfully applied in power systems multi-area OPF. In [148] the 

method is applied to a variety of test systems of up to 708 systems, separated in up to 6 areas. The 

algorithm is shown to converge within a few tens of iterations. 

Reference [149] combines this approach with DC load flow equations, carrying out tests in 

systems of up to 6 areas. In [150] further discusses some implementation considerations of this 

approach. Finally, [151] extends the method to full AC equations. Convergence seems to be 

achieved in a few tens of iterations, however the significant effect of tolerance values used to 

check convergence is also illustrated. 

In [152] the OCD method is extended and applied in a power system decomposed to several 

overlapping areas. The latter are selected independently of each other based on the control effects 

of various FACTS devices (i.e. power electronics based devices that enhance system 

controllability). This particular extension however does not seem to hold any interest for 

electricity markets. 

Results in [153] seem to indicate faster convergence for this method compared to LR based 

approaches for small degrees of decomposition. A technique for improving the convergence of 

the latter is presented, based on a master-slave principle, but no mathematical proof of 

convergence is provided. Finally, [154] proposes an asynchronous implementation of the OCD 

method applied to DC equations. The method is tested in the three area IEEE RTS system, and is 

shown to converge faster than the synchronous implementation. 

Despite the potentially better performance of OCD compared to dual decomposition techniques 

this method does not appear to be such a good candidate for decentralized OPF solutions. 

Evaluating whether or not the convergence criterion holds, and performing the required 

preconditioning, might not be easy in a decentralized context. Furthermore, its convergence speed 

for large degrees of decomposition would also need to be investigated. 
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3.3.9 Other Approaches 

One popular term used often in power system papers is that of multi-agent systems. This is not 

unexpected given the rather loose definition of what an agent can be, i.e. a computer system 

situated in some environment that is capable of autonomous action to meet its design objectives 

[155]. As a matter of fact, the distributed optimization methods presented above may be 

considered the basis of a multi-agent system, where an agent is associated with each subproblem. 

However, more often than not, papers which emphasize the multi-agent systems aspects do so in 

order to lend further theoretical foundations to their proposed heuristic solutions. 

As an indicative example, reference [156] proposes an agent based system with a set of heuristic 

rules for load balancing in the system, which is implemented in JADE (a Java based programming 

framework for the development of agent-based applications). The proposed set of rules is 

applicable on radial networks and involves selection of generation sources or demand to shed 

based on a priority list. While the presented results indicate fast solution times, there are no 

guarantees with regards to the optimality of the solution, and communications delays do not seem 

to have been taken into account. 

Another approach is proposed in [157] where a max-sum based algorithm is used to optimize 

generation in a micro grid. A simplified DC network representation is used and the objective is 

minimization of emission costs. It should be noted however that the proposed algorithm has 

proven convergence only on radial networks and thus is not suitable for distributed OPF. 

Reference [158] uses a consensus-based information discovery approach to determine power 

imbalance in the system, information which is utilized for determining load shedding. This 

concept may be easily extended to estimate a market clearing price. Such an extension is detailed 

in [159] and for a 14 bus test system its results are compared to a standard subgradient LR method. 

Though both approaches converge at the same optimal solution, there do not seem to be 

significant benefits in the consensus method. Furthermore, it does not seem to allow the inclusion 

of network constraints. 

A different approach based on bi-level programming is proposed in [160]. At the higher level the 

transmission system including an approximate representation of electric vehicle / demand 

aggregators is optimized. At the lower level, each individual aggregator solves an optimization 

problem that determines individual vehicle schedules while including a penalty for deviations 

from the higher level optimization problem solution. It should be noted that this is not exactly a 

full decomposition method, as the higher level problem includes some representation of the lower 

level problem. In addition, performance of the method in terms of both optimality and speed is 

dependent on the method’s parameters. 
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3.4 Results and Discussion 

The method of choice in this work is ADMM. For each of the proposed decomposition schemes 

an algorithmic flowchart may be seen on Fig. 3-3. ADMM was preferred over other augmented 

Lagrangian based methods due to the fact that only a single parameter requires tuning, and yields 

a relatively simple, easily decomposable multiplier update step. It was also preferred over the 

OCD approach due to the fact that the latter is based on an approximation of the Jacobian derived 

from KKT conditions and may require appropriate preconditioning to ensure convergence. This 

is especially important in large degrees of decomposition (e.g. down to the individual device or 

node level) where the approximation is much coarser. Checking whether the necessary 

 

Fig. 3-3: Flowcharts for the decentralized solution for each of the decomposition schemes 
and indicative illustration of information exchange between different types of agents within 
a single iteration. Initialization would typically use the values of 훌, 퐳  of the last algorithm 
run. Regarding the information exchanges the iteration count is passed in order to facilitate 
agent synchronization. For purposes of error checking 훌 values could also be periodically 
transmitted. It should be noted that all schemes use synchronous implementation of the 
methods where at each iteration all subproblems have to be solved and relevant information 
collected, before progressing to the next. 
Note that schemes A and B use only ADMM. Scheme C uses ADMM at the transmission 
level, and the APDM method for the DSO subproblems. 
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convergence condition holds and carrying out the preconditioning are additional operations which 

may not be easily performed in a decentralized manner. 

Regarding the practical implementation of the distributed schemes we also make the following 

assumption: 

A7. Each agent is assumed to be equipped with a digital device that solves a generic form of 

optimization subproblem and handles all necessary communications. Parameters (e.g. objective 

function costs and constraints values) are provided to the device by the agent, but changes during 

a decentralized optimization run are not registered. 

In terms of communications infrastructure, we make the following simplifying assumption: 

A8. Communications are perfectly reliable, i.e. the signals required to be passed between 

subproblems / agents are transmitted without errors. 

A more detailed discussion regarding A8 may be found in the following chapter. 

3.4.1 Decomposition Example 

In order to further clarify our combined ADMM and APDM approach and clearly illustrate how 

the decomposition methods work we present a simple example for scheme C. Following is the 

initial problem formulation for the simple network illustrated on Fig. 3-4. For brevity and ease of 

presentation we use only active power balance equations where the amplitude of all voltage 

vectors is equal to unity: 

min
퐏

푐 푃
∈{ , , }

:  
퐏 = 푟푒푎푙{푑푖푎푔(퐕)(퐘퐕)∗}
퐕 = [푉 ,푉 ],퐏 = [푃 ,푃 + 푃 ]  
푃 ≤ 푃 ≤ 푃 , 푖 ∈ {1,2,3}

 

Now we introduce fictitious buses and nodes (3, 4 and 5), duplicate the corresponding variables, 

and rewrite the system equations which yields: 

min
푷

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

푐 푃
∈{ , , }

:  

퐏 = 푟푒푎푙 푑푖푎푔(퐕 ) 퐘
2퐕

∗

퐕 = [푉 ,푉 ],퐏 = [푃 ,푃 ]
퐏 = 푟푒푎푙 푑푖푎푔(퐕 ) 퐘

2퐕
∗

퐕 = [푉 ,푉 ],퐏 = [푃 ,푃 ]
푃 ≤ 푃 ≤ 푃 , 푖 ∈ {1,2,3}
푃 − 푃 = 0
푃 + 푃 − 푃 = 0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

ℎ (퐔) ≤ 0

 훿 − 훿 = 0
푃 + 푃 = 0, 푖 ∈ {3,4,5}                  퐡 퐔 = 0⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

Where 훿 = ∠푉 , ℎ (퐔) ≤ 0 denotes the constraints which may be directly decomposed (i.e. there 

is no coupling between separate subproblems), while 퐡 퐔 = 0 denotes the coupling constraints 
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(퐔  is the vector of variables involved in these constraints). With 퐳 = [푃 ,푃 , … , 훿 ,훿 ] 

based on (3-21) for ADMM iteration k we get two TSO subproblems, e.g.: 

min

⎩
⎪
⎨

⎪
⎧−훌 ( )푃 − 훌 ( )푃 − 훌 ( )훿

      +
휌
2 푃 − 퐳( ) + 푃 − 퐳( ) + 훿 − 퐳( ) :

퐏 = 푟푒푎푙 푑푖푎푔(퐕 ) 퐘
2퐕

∗

퐕 = [푉 ,푉 ],퐏 = [푃 ,푃 ] ⎭
⎪
⎬

⎪
⎫

 

In addition, we have the subproblem of the generator: 

min 푐 푃 − 훌 ( )푃 +
휌
2 푃 − 퐳( ) :  푃 ≤ 푃 ≤ 푃

푃 − 푃 = 0
 

And the DSO* subproblem: 

min

⎩
⎪
⎨

⎪
⎧푐 푃 + 푐 푃 − 훌 ( )푃 +

휌
2 푃 − 퐳( ) :

푃 ≤ 푃 ≤ 푃

푃 ≤ 푃 ≤ 푃
푃 + 푃 − 푃 = 0 ⎭

⎪
⎬

⎪
⎫

 

This subproblem is further decomposed using the APDM algorithm, yielding for iteration l two 

MO subproblems based on Algorithm 3-8 (step 2), e.g.: 

min 푐 푃 − 휆 푃 +
휌
2

(푃 − 푃 ) :푃 ≤ 푃 ≤ 푃  

And in addition the DSO price update equation based on Algorithm 3-8 (step 1): 

휆 = 훌 ( ) + 휌 푃 − 퐳( )  푎푛푑 푃 + 푃 − 푃 = 0 

This completes the description of all possible types of subproblems involved. The test cases 

presented in the following section are similar in form, but further extended to include voltage 

amplitudes and reactive power constraints. 

3.4.2 Parameter Selection 

The applied distributed optimization method has two parameters which affect convergence. The 

first is the penalty factor 휌 and the second the convergence tolerance 휀. Regarding the effect of 휌 

on convergence it may be seen from (3-20) for very low values the method nearly degenerates 

into basic Lagrangian Relaxation. This implies that for non-strongly-convex objective functions 

 

Fig. 3-4: Simple decomposition example. 
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the method may fail to converge or exhibit very slow convergence. On the other hand, high values 

of 휌 typically result in highly oscillatory behaviour and subsequently delayed convergence. 

Intuitively the convergence performance would be dependent on the interaction of the last two 

terms in (3-20) and consequently on the value of 휆 /휌. Fig. 3-5 illustrates convergence 

performance for a large variety of cases which involve all our test systems at various degrees of 

decomposition (up to the individual node level) and loading conditions (including cases which 

require demand curtailments), as a function of 휆∗/휌, where 휆∗  is the maximum Lagrangian 

multiplier value at the optimization problem solution. As may be seen the number of iterations in 

all cases is minimized for 휆∗/휌 in the range of 6 to 8. Thus 휌 should be set within that range of 

values. In practice, a good estimate of 휆∗  would generally be available based on forecasts or any 

preceding unit commitment or economic dispatch solutions. In cases where this estimate is far 

from the actually realized prices, simple logical rules could be used to periodically adjust the 

penalty factor during the algorithm execution. 

Fig. 3-6 illustrates the general convergence progress of the method. These results are based on 

the IEEE RTS system at peak demand. The problem is decomposed using scheme A to 24 

subproblems (i.e. down to individual bus level) and the full 퐴퐶 load flow equations with a flat 

start are used (i.e. zero values for all multipliers). As may be seen about 200 iterations are required 

for a tolerance of 10  but about twice as many are needed if tolerance is set to 10 . The increase 

in iterations as a function of the given tolerance after a certain point is quite significant. For 휀 =

10  the maximum error in marginal prices compared to centralized OPF solution was 3.8%. For 

휀 ≤ 10  the error was less than 1%. It should be noted however that in some cases, given that 

the tolerance is not directly related to accuracy in marginal prices, setting a high value on tolerance 

(e.g. even close to10 ) might give completely inaccurate results. Consequently, a low tolerance 

(i.e. on the order of 10 ) is advisable. 

In Fig. 3-7 convergence results are presented for a modified version of the IEEE-24 bus system. 

The capacity in certain transmission lines was reduced resulting in a transmission congested state. 

The problem was decomposed down to the individual bus level. In this case the AC formulation 

leads to an oscillatory behaviour. The reason were the interactions between the reactive and active 

power coupling variables, as it was observed that for the same case the non-linear DC simulation 

did converge. This difficulty can be easily resolved by modifying the Lagrangian penalty terms 

from (휌 2⁄ )‖푼풆 − 풛‖  to (1 2⁄ )(푼풆 − 풛)횸(푼풆 − 풛) . The matrix 횸 was set so that the penalty 

factors associated with voltage magnitudes and reactive power are about an order higher than 

those associated with voltage angles and active power. Intuitively this amounts to solving 

subproblems where from an active power variables viewpoint, duplicated reactive power related 

variables are fixed. 
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3.4.3 Effects of System Size 

In this set of tests two non-convex cases are tested: a full AC and a non-linear DC type of 

formulation derived by simply setting voltages to unity. The test systems include the IEEE-24, 

57, 118, 300 test systems (data available on [161]) and a 707 buses system resembling the UK 

network (data made available through personal communication with professor Janusz Bialek). 

For the latter there are no reactive power data available. Each test system was decomposed to an 

increasing number of subproblems. While this degree of decomposition might not seem to be of 

practical interest, its theoretical investigation is, as a single bus could be thought of as an area 

which could actually contain many more nodes and subsystems. Fig. 3-8 shows the results when 

using the full AC equations, while the results with nonlinear DC equations are presented in Fig. 

3-9. As may be expected, as the number of agents / subproblems increases, the number of 

iterations to convergence also tends to increase. It is of note that each system scales differently, 

 

Fig. 3-5: Effect of penalty factor on iterations to convergence for a tolerance 휀 ≤ 10  with 
fixed 휌. 

 

Fig. 3-6: Effect of convergence tolerance value on iterations for a penalty factor 휌 = 10. 

 

Fig. 3-7: Convergence in a congested case with uniform (left) and non-uniform (right) penalty 
factors. 
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e.g. the 24 or 57 bus systems on average have a much steeper increase in iterations than the 118 

or 300 bus systems. It may be observed that even for a small number of areas, for the UK network 

there is a significant increase in iterations. The peculiarity of this system, which the other test 

systems do not seem to share, is that due to a small number of active transmission constraints 

there is an increased energy price in specific buses. For a given system partitioning, the effect of 

those constraints on price might not propagate quickly enough through the network, or in other 

words the Lagrangian multipliers update can be very slow. For all systems in many cases the AC 

formulation converged faster than the nonlinear DC despite the fact that the problem in the latter 

case is essentially much simpler. This is simply indicative of the converge properties dependence 

on the problem to be solved. Furthermore, even for a given system, the way the system is 

partitioned greatly affects convergence, something which is indicated by the fluctuating behaviour 

of the presented curves. 

3.4.4 Value of Aggregation 

An important property of any distributed scheme is its ability to manage sufficiently fast a large 

number of network users. This section investigates how the proposed schemes perform for a given 

network structure as granularity on the demand side increases, i.e. when different clients 

connected to the same node are handled individually, rather than as a single aggregate client. Tests 

are based on decomposition schemes B and C. For any single subproblem the total time for a 

single iteration would be 푡 = 푡 + 푡 , i.e. the sum of the subproblem local solution time plus the 

 

Fig. 3-8: Iterations to convergence 
as a function of transmission system 
subproblems using the full 퐴퐶 
formulation. 

 

Fig. 3-9: Iterations to convergence 
as a function of transmission system 
subproblems using the non-linear 
퐷퐶 formulation. 
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communications latency time (time required for sending the information to another agent). The 

total execution time for scheme B and C may be given by the following relations: 

푡 = ∑ max 푡 ( ), 푡 ( ) … , 푡 ( ), 푡 ( ), …  ( 3–31) 

푡 = ∑ max 푡 ( ), 푡 ( ) … , 푡 ( ∗), 푡 ( ∗), …  ( 3–32) 

푡 ( ∗) = ∑ max 푡 ( ), 푡 ( ), … + 푡 ( )  ( 3–33) 

The operator Σ denotes summation over all iterations. Currently there is no fully fledged 

communications standard for the smart grid, and as such it is difficult to predict latency values. 

Therefore, in the examples that follow, we assume for all subproblems 푡 = 0.1푠. This may be 

considered to represent the maximum latency time expected to be observed. In the following 

paragraphs we investigate the comparative performance of the two decomposition schemes 

assuming a single TSO agent. Our test results are illustrated in Fig. 3-10 and involve the 

disaggregation of demand to an increasing number of MO problems by randomly breaking down 

the initial demand blocks. Parameters for the decomposition algorithms were set based on the 

guidelines of the previous sections. 

 Case 1 (IEEE RTS 24bus system – base data): In this case the TSO subproblem is small in size 

and solved fast. The solution of DSO* subproblems takes typically longer. For a fixed penalty 

factor value, iterations for scheme B increase roughly linearly. To a certain extent this may 

be expected as due to the smaller demand block sizes, primal residuals tend to be smaller and 

consequently so are the Lagrangian multiplier updates. On the other hand, the performance of 

scheme C is roughly independent of the number of clients as the iterations remain constant. 

This is due to two reasons: 1) independently of the degree of demand disaggregation iterations 

at the TSO level remain constant; 2) the proximal decomposition algorithm is close in 

principle to a price-based decomposition and thanks to its adaptive penalty update scheme is 

not significantly affected by the number of subproblems. For small degrees of user 

disaggregation scheme B performs better as it does not involve the additional round of 

communications required for the solution of DSO* subproblems. For high degrees of 

decomposition scheme C outperforms scheme B. 

 Case 2 (IEEE RTS 24bus system – contingency): In this case a few generators are assumed to 

be on outage due to a fault. Demand curtailments are required and as such demand sets the 

price. This implies strong interactions between MO subproblems during convergence which 

could make the proximal algorithm convergence more difficult. While some increase may be 

observed in terms of total time for scheme C, convergence time is much better than scheme 

B. It should be noted that compared to the previous case convergence time is also increased. 

This is typical behaviour of ADMM when it has to converge to a particularly high price (in 

this case the VOLL associated with users). The reason for this, is that the difference in power 

schedules between the TSO and MOs determined by the solution of (3-21), would typically 
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be limited by the power constraints involved in the associated subproblems. This power 

difference however has to be used in the Lagrange multiplier update in (3-23). Depending on 

the penalty factor value, a significant number of iterations might be required to converge, if 

the optimum Lagrange multiplier value is far from the initial point. 

 Case 3 (IEEE 300bus system – base data): This case differs from the first in that the TSO 

problem is much larger and its solution takes longer. In this case DSO* subproblems are faster 

to solve, thus the number of TSO-level iterations determines the overall convergence time. 

As may be seen scheme C practically outperforms scheme B in every case. 

It should be noted that in all the above test cases the linear increase in iterations for scheme B 

actually represents a worst case performance, as convergence could be potentially improved 

through a suitable modification of the ADMM penalty factors. However, this could be challenging 

to do for different operating cases in a system without affecting the TSO-level iterations. For large 

systems this is particularly important as a larger number of iterations at that level directly implies 

an increased convergence time. In addition, it should be noted that a more complex and accurate 

latency model would probably reinforce our conclusions as the communications burden for 

scheme B is generally higher than that of scheme C. This would also be the case if the results 

were to be produced using different solvers or equipment (in this case an Intel Core i5-2500 

3.3Ghz, with 4GB of RAM was used). 

It is well-known that aggregators are considered to be a fundamental part of the future smart grid 

[96]. The way these are organized and the algorithms they utilize will have a significant impact 

on the convergence speed of any decentralized power system operation scheme. Given that the 

point of delivery of energy in a power system does matter, a collection of microgrids combined 

with distribution network aggregators could be the natural basis for decentralized power systems 

operations in the future. As it is, our results indicate that this is indeed an efficient decomposition 

structure from a distributed optimization perspective, where increased granularity in demand does 

not necessarily imply slower convergence. 

 
Fig. 3-10: Time to convergence for three different test cases for decomposition schemes B 
and C. As may be seen scheme C consistently outperforms scheme B as the degree of 
disaggregation increases. 
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3.4.5 Convergence Considerations 

ADMM has been proven to converge only for convex problems, whereas the OPF problem is a 

non-linear and non-convex one. As reference [125] points out, convergence for non-convex cases 

cannot be guaranteed. The results presented in Fig. 3-6 are indicative of this fact. On the other 

hand, for a suitable selection of penalty factors, the method always converged. In terms of 

optimality, again as [125] points out, the method should be considered as a local optimization 

method, and as such its performance is dependent on the initial conditions. This however does not 

imply any worse performance than centralized methods [162]. This was also verified through our 

simulation results, where the solution of both centralized (interior point method based) and 

distributed (ADMM-based) approaches was the essentially the same. Overall, while a 

mathematical convergence proof cannot be provided for the general non-convex case, our 

extensive simulation results indicate that ADMM can work reliably for the OPF problem, 

independently of its formulation. Of course, if the recent efforts in convexifying the OPF problem 

(as discussed in the previous chapter) find general application then any such convergence issues 

would be obsolete. 

Another question of interest is convergence performance in degenerate cases. As indicated in 

[163] there are two common types of degeneracy in the OPF problem, related to controls and 

constraints. Control degenerate cases were included in our test set (e.g. load curtailment cases 

where multiple demand blocks at a single bus were marginal at the same time). This type of 

degeneracy is resolved through the quadratic terms included in the subproblems and convergence 

can be ensured. On the other hand, constraint degenerate cases were not involved in our tests. 

Such cases are difficult to identify but could appear on more complex formulations of the problem 

with more complex market rules. Relevant investigation could be a direction for future research. 

3.5 Conclusions & Further Questions 

The results of this chapter may again be summarized in the updated energy management 

schematic shown on Fig. 3-11. Compared to Fig. 2-5 the centralized economic dispatch approach 

has been replaced by our two-level hierarchical decentralized approach to OPF. While only 

limited degrees of network decomposition appear to be feasible, through this structure a 

significant degree of users disaggregation is possible. This in turn would allow considering in 

detail the latter’s individual constraints and objectives. 

While the presented results regarding network decomposition apply in both transmission and 

distribution networks (or a combination of both) It should be noted that in this chapter we have 

not yet explicitly discussed where and how distribution network constraints would be represented 
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in their full detail, and we have not yet covered the time-coupling aspects of demand. These are 

questions that will be answered in the following chapter. 

 

 

Fig. 3-11: The updated schematic from chapter 2. Microgrids are a new structural element 
in the energy management problem. 
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4  
Extended Economic Dispatch 

This chapter extends the optimal power flow formulation to account for the distribution network 
constraints and incorporate the time-linkages of flexible demand, while associating it with the 
economic dispatch problem. This gives a quite specific perspective on how distributed 
optimization methods fit in power systems operation. 

4.1 Extended Economic Dispatch 

Economic dispatch is the basic mechanism used to determine close to real-time the operating set-

points of all controllable devices connected in the power system in an economically efficient way. 

In its traditional form, the OPF formulation presented in chapter 2 forms its basis. However, that 

is not adequate when deferrable demand is taken into account. The value of energy purchased by 

an EV or storage unit now, depends on the price of energy in the future, which is typically 

determined by the large generating units located at the transmission level. As [164] has shown, 

insufficient coordination between demand shifting decisions and generation scheduling can result 

in increased energy price volatility. In addition, the increased flexible demand (mainly in the form 

of EVs), will put considerable strain on existing power distribution infrastructure. If that demand 

is properly managed while taking into account distribution grid limitations, then investments 

could be deferred giving significant financial benefits. As a consequence, the balancing market 

(with the associated economic dispatch problem) should not only determine the price and optimal 

amount of energy trades for the current time-step (as it currently does) but also provide a good 

indication of the demand shifting impact on the value of energy in the near future. Furthermore, 

it would have to incorporate the constraints and peculiarities of distribution networks. 

The reasoning of the aforementioned paragraph leads to two basic considerations: 1) in order to 

account for the time-linkages of flexible demand (and generator ramp rates) optimization has to 

be carried over a time-period comparable to the time an individual flexible device (e.g. an EV) is 

available to be controlled (e.g. 8-14 hours); 2) over such a period of time there will be uncertainty 

related to a variety of factors such as: the output of renewable generation; power required by 

inflexible demand; energy requirements as well as arrival and departure times of EVs. Thus, a 

comprehensive way to describe our problem would be through a multi-period stochastic 

programming formulation, where uncertainty is modelled through a set of scenarios describing 

possible system states: 
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min
퐏,퐐

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

π{ } 푢{ , }
∈{ ,..., }∈{ ,..., }

:

퐏,퐐 ∈
퐶 { , }
퐶 { , }

  푖푓 푖 푖푠 푔푒푛푒푟푎푡표푟
푖푓 푖 푖푠 푑푒푚푎푛푑

∈{ ,…, }
∈{ ,…, }

퐏( , , ) = 퐏( , , )
퐐( , , ) = 퐐( , , )

∈{ ,…, }
∈{ ,…, }

퐶 { , , }
∈{ ,…, }
∈{ ,…, }
∈{ ,…, }

퐶

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 ( 4–1) 

Where: 

퐶  Constraint set describing a demand block or device. 

퐶  Constraint set describing a large generator or wind park. 

퐶  Linear constraints set which couples all other sets together. 

퐶  Constraint set describing an AC network. 

푛  The number of transmission and distribution network areas. 

푛  Number of clients / network users including generators. 

푛  Number of scenarios of possible future power system states. 

푛  Number of time-steps in the optimization period. 

푢 Cost (negative utility) function of a user/client. Specifically, for demand utility represents 

the value of serving the load or alternatively the cost that would be incurred if the load 

was not served. This is typically a function of active and reactive power the user 

consumes/produces. This relation is clearly defined in sections 4.1.2 and 4.1.3. 

퐏,퐐 푛 × 푛 × 푛  matrix of active and reactive power schedules with element (푖, 푠, 푡) 

representing the power schedule of user i in scenario s and time-step t. 

π Probability of a scenario. 

Similar to the OPF discussed in the previous chapter, the above formulation comes with the 

following assumptions: 

A1. We consider a simplified version of the economic dispatch problem in that contingency and 

reserve constraints are not taken into account. 

A2. Prior to the balancing market itself, unit commitment mechanisms have set the conventional 

generators operating status (on/off). As such we do not deal with the associated discrete variables 

or cost non-convexities. Market penalties for deviations are not explicitly considered but could 

be taken into account through the addition of relevant objective function terms. 

A3. The market is cleared at fixed intervals (e.g. every 15 min) and as such variables and 

constraints associated with the first optimization time-step could be considered to be 

deterministic. Thus the decision for the first time step is the same and binding for all scenarios. 

The constraints in (4-1) describe in order: user/device constraints; the non-anticipativity 

constraints implied by assumption A3; and the network and coupling constraints. 
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4.1.1 Network Constraints 

We assume that the network is separated to areas. A single area may represent part of the 

transmission and/or distribution network. The most straightforward way to describe an arbitrary 

ac network is through the standard set of ac constraints (in complex numbers notation): 

퐶 { , , } =

⎩
⎨

⎧퐒 { , , } = 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐕{ } ≤ 퐕{ , , } ≤ 퐕{ }

퐘 { }퐕{ , , } ≤ 퐈 { } ⎭
⎬

⎫
 ( 4–2) 

Where: 

푛  The number of buses/nodes in the network. 

퐒  Bus apparent power injection 푛 × 1 vector. 

퐈  Line current limit vector. 

퐕 Bus voltages 푛 × 1 vector. 퐕 and 퐕 denote the upper and lower bounds on voltage 

magnitude respectively. 

퐘,퐘  Bus admittance and line flow admittance matrix respectively. 

The equations describe in order: bus power balance; voltage magnitude constraints; line capacity 

constraints. 

4.1.2 Generation Constraints 

For a generating unit the relevant constraints are described by the following set of equations: 

퐶 { , } =

⎩
⎪⎪
⎨

⎪⎪
⎧ 푢{ , } = 푐 { }퐏( , , ) + 푐 { }퐏( , , )

∈[ , ]

푃{ , , } ≤ 퐏( , , ) ≤ 푃{ , , } ∀ 푡 ∈ {1, … , 푛 }

푄{ } ≤ 퐐( , , ) ≤ 푄{ }  ∀ 푡 ∈ {1, … ,푛 }

푃 { , } ≤ 퐏( , , ) −퐏( , , ) ≤ 푃 { , } ∀ 푡 ∈ {2, … , 푛 }⎭
⎪⎪
⎬

⎪⎪
⎫

 ( 4–3) 

Where: 

푐 , 푐  Active power variable cost coefficients. In power systems literature these are typically 

assumed to be quadratic (further information may be found in [165]). However, this is not 

restrictive in our formulation and any other function may be used instead. Additional 

utility terms could be added relating to reactive power provision. 

푃  Ramp rate limits. 

For a conventional generator power limits are the same for any value of the index s. For a 

renewable generator the lower bound is zero, the upper bound varies following a given forecast 

error distribution (e.g. [166]), while the ramp rate-constraint is redundant. 

4.1.3 Demand Constraints 

For user-level demand / devices the constraints are: 
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퐶 { , } =

⎩
⎪
⎪
⎨

⎪
⎪
⎧푢{ , } = max 푐 { } 퐸{ , , } −퐸 { , , } , 0

∈[ , ]

푃{ , , } ≤ 퐏( , , ) ≤ 푃{ , , } ∀ 푡 ∈ {1, … ,푛 } 

퐸{ , , } = 퐸{ , , } + 푐 퐏( , , ) ∀ 푡 ∈ {1, … ,푛 }
퐸{ , } ≤ 퐸{ , , } ≤ 퐸{ , } ∀ 푡 ∈ {1, … ,푛 }

퐐( , , ) = 퐏( , , ) 푡푎푛휙 ∀ 푡 ∈ {1, … , 푛 } ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 ( 4–4) 

Where: 

푐  The cost of shedding demand (value of lost load). 

푐  Factor accounting for energy conversion losses. 

휙 Angle between active and reactive power. 

퐸 Energy stored at the end of a time step. We assume that 퐸{ , , }=0 and that the energy 

bounds have been appropriately shifted. 

퐸  Energy target at a given time step. Note that by definition demand is negative, thus the 

utility function penalizes cases where energy consumed is less than the desired. 

In this work we consider the following types of demand / devices which are adequately modelled 

by the above equations: 

Inflexible demand: The upper power bound would be 0, and the lower would vary in different 

scenarios following a certain forecast error. Energy bounds are redundant, while 퐸 { , , } =

∑ 푃{ , , }∈[ , ]  and 0 for all other time steps.  

Small scale renewables: These are simply assumed to be negative demand (i.e. 0 lower bound 

on power and 푐 = 0) 

Electric vehicles: For an EV 퐸  represents the energy requirements for travelling purposes. 

Power bounds are set to 0 if the vehicle is not connected. Typical probability distributions for 

vehicle connection / disconnection times and energy requirements may be found e.g. in [167]. 

We do not model self-discharge energy losses for battery systems as these typically amount to 

less than 5% during the first 24h [168], and are unlikely to affect a system-wide optimization 

results. Based on [169, 170] we assume that the majority of EVs operate in a unidirectional 

manner. 

The reasoning behind focusing on these particular devices is that their combined use would likely 

be the main cause of issues with respect to distribution network operation. However, there is a 

number of other types of demand that have their own role to play in energy management such as: 

storage (battery based storage is actually covered by the above), household wet appliances, 

heating systems, industrial processes, etc. Modelling the flexibility of each individual type of 

device/demand is a considerable task that goes beyond the purposes of this work. However our 

formulation and solution approach are generic and it is easy to add additional constraint sets or 

modify existing ones. 
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4.1.4 Coupling Constraints 

The various constraint sets described above are linked together through an additional set of linear 

constraints: 

퐶 = {퐂 퐔{ , } = 0 ∀ 푠 ∈ {1, … ,푛 }, 푡 ∈ {1, … ,푛 }} ( 4–5) 

The vector 퐔 is derived from the concatenation of 퐏( , , ),퐐( , , ), 퐒 { , , }, and 퐕{ , , } for all 

constraint sets. Matrix 퐂  has elements of 1, 0, -1 establishing coupling variables equality. 

While the above problem would in general represent the energy management problem we would 

ideally like to solve, it should be clear that, through centralized methods, it is probably intractable. 

Regarding its solution, the following points could be made: 

• When considering energy scheduling decisions in terms of each individual device it might not 

be possible to carry out a sufficient system-wide scenario reduction as e.g. done in UC. A more 

detailed representation of uncertainty could be required to manage variables at the distribution 

level (e.g. scheduling EVs at a heavily loaded low voltage feeder would depend on uncertainties 

related to the local network loading conditions, requiring efficient micromanagement of local 

resources; the transmission level would simply see a feeder absorbing almost constant power over 

time). 

• While distributed methods could help in dealing with the size of this problem, a price-based 

decomposition (e.g. Lagrangian Relaxation based method) would imply that 2 × 푛 × 푛  prices 

would have to be updated at each decomposition point (to account for active and reactive power, 

twice as many to account for voltage), while also tracking which prices correspond to which 

scenario. This would be challenging and would imply significant requirements in terms of 

communications bandwidth and reliability. 

• Even if it were possible to somehow avoid the scenario building process and coordinate 

subproblems through the exchange of probability distributions (for power and price), this would 

imply that at each iteration of a distributed optimization approach, probabilistic optimal power 

flow problems would have to be solved. In terms of computational burden, this is not very 

realistic. 

It should be noted however that – discrete controls exempted – this problem starts to bear some 

similarities with UC, and the concept of partially decentralized management of uncertainty 

through aggregators could be appropriately adjusted to simplify the current form of the ED 

problem. 
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4.2 Economic Dispatch Simplifications 

The basis of our proposed simplifications is the concept of market aggregator (MA), i.e. an entity 

that manages subsets of the constraints. The MA interacts with the rest of the system through his 

energy schedule at specific nodes. The simplification we propose lies in that MAs are forced to 

submit a single power value for each time step of the optimization period for these specific nodes, 

set to be equal to the expected value of their power schedule. Mathematically it is equivalent to 

substituting the coupling constraint set 퐶  with: 

퐶∗ =
퐂 퐔{ , } = 0

∀ 푠 ∈ {1, … ,푛 },
푡 ∈ {1, … , 푛 }

∩
퐂 훑( )퐔{ , }

∈{ ,..., }

= 0

∀  푡 ∈ {1, … , 푛 }
 

( 4–6) 

Where 퐶  corresponds to coupling constraints (part of 퐂  and 퐔) handled internally by the MAs, 

while 퐶  corresponds to constraints at nodes where different MAs interact (remaining part of 퐂  

and 퐔). This decouples the stochastic elements of MA subproblems and extends our list of 

assumptions: 

A4.  For each time step connected MAs are forced to submit a single power value at their 

coupling nodes. As a consequence, they interact through a single price which they assume to be 

a good estimate of the expected energy price. In addition, possible scenarios need only be 

considered locally by each MA rather than for the whole system. This allows the MA to keep a 

sufficiently high degree of uncertainty representation locally, without hindering the system-wide 

solution process. 

The proposed simplification in principle does not differ much from what is currently done in 

forward markets, i.e. the problem is solved in a semi-deterministic way by passing part of the 

uncertainty management to market players. Potentially MAs could face market penalties for 

deviations, which would have to be calculated and be applied based on an ex-post assessment of 

the market solution. These could be taken into account through additional objective function terms 

for each MA and potentially by relaxing the equality in 퐶  to allow the MA to submit any desired 

schedule. The actual design of the market rules (i.e. calculation and application of such penalties) 

is however outside the scope of this work. It should be noted that despite this reformulation it is 

still not possible to solve this problem in a centralized manner due to the number of constraints 

and the fact that thousands of users would have to communicate with one central controller. A 

distributed solution is necessary and presupposes the determination of the constraint subsets that 

MAs would manage. 
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4.2.1 Market Aggregator Structure 

The overall multi-period problem structure may be visualized on the table-like structure of Fig. 

4-1. As may be observed the problem has a hierarchical structure which is indicative of how it 

should be decomposed and of the interrelations between the generated subproblems. First a 

number of MAs would be managing parts of the transmission system. As such we have the 

transmission system operator (푀퐴 ) type of subproblems which manage subsets of the 

transmission constraints. Linked with them are the problems of distribution system operators 

(푀퐴 ) managing parts of the distribution network at a specific bus, and the problems of 

independent large generators (푀퐴 ). At an even lower level one could find a small number of 

medium voltage nodes and/or all users at a low voltage feeder managed by a microgrid operator 

(푀퐴 ). The initial optimization problem may be decomposed into these general types of 

subproblems. At this point we further extend the assumptions regarding our solution approach: 

A5.  Each MA is equipped with a digital device which solves a generic subproblem formulation 

(as described in the next section) and handles the necessary communications with the rest of the 

system. Constraint parameters values and forecasts are provided by the user / aggregator but 

changes are not possible during an optimization run. 

 

Fig. 4-1: Left: Schematic representation of involved constraint sets. Each block represents a 
constraint set. The columns and rows correspond to time-steps and constraint set type 
respectively. There is a third dimension to this table as multiple copies of the same constraint 
type may exist (indicated by blocks piled on top of each other). Each arrow-line indicates 
coupling between sets (part of 퐶 ). Note that blocks with time-linkage constraints, e.g. 
flexible demand (퐶 ), cover multiple columns. For the illustrated example there exist three 
copies of 퐶  for each time-step at the transmission level. The constraint set of area 1 is linked 
with the distribution constraints of buses 2 and 4, the generators at bus 2 and the other two 
transmission area constraint sets. The distribution network constraint set of bus 4 is in turn 
linked with various low voltage network constraint sets and the individual users. Right: 
Schematic representation of the underlying decomposition structure. Each block represents 
a market aggregator and arrow-lines indicate coupling and required bi-directional 
communications links. 
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A6. The size of an MO is such that the uncertainty regarding its expected power schedule can 

be reasonably small. From a market perspective this size could be indirectly determined through 

imposed penalties for deviations. Following [171] we assume that marginal pricing is also 

applied to 푀푂s. 

4.2.2 Decentralized Solution 

With respect to the decomposition structure at the transmission level the following observations 

may be made: 

• As the analysis of distributed solutions for the OPF problem indicates, for large degrees of 

decomposition especially in certain congested or contingent cases convergence can be slow [172]. 

In addition, contingency constraints typically involved in ED are not necessarily easy to 

decompose. Thus it can be expected that at this level decomposition would be limited to a rather 

small number of areas implying that TSO subproblems would remain computationally intensive. 

• Following the above, it is of interest to limit as much as possible iterations at this level (i.e. 

number of TSO problems that have to be solved). However, these are bound to increase with 

increasing disaggregation (i.e. larger number of MOs) [172]. At the same time however it is also 

of interest to disaggregate demand and represent it in as much detail as reasonably possible, given 

that ED is the last attempt to coordinate resources system-wide in an economically optimal way. 

Any dispatch / control mechanisms that follow would have to act locally and as a consequence 

cannot possibly be optimal in that same sense. 

As a consequence, we will retain here the two level decomposition structure introduced in the 

previous chapter. This would give four types of subproblems. For each 푀퐴  we have the 

following subproblem: 

min
퐱풂

훌 : 퐱 :

 

+ 휌‖퐱 : − 퐳 ‖
  

:
퐱 ∈ 퐶 { , , } ∩ 퐶 :

∗  ∀ 푠 ∈ {1, … ,푛 }, 푡 ∈ {1, … ,푛 }
 ( 4–7) 

The index ‘a’ indicates subsets of variables and sets managed by the aggregator. For each 푀퐴  

we have: 

min
퐱풂

푓 : (퐱 )
 

+ 훌 : 퐱 :

 

+ 휌‖퐱 : − 퐳 ‖
  

:
퐱 ∈ 퐶 { , } ∩ 퐶 :

∗  ∀ 푠 ∈ {1, … ,푛 }
 ( 4–8) 

For each 푀퐴  we have: 

min
풙

⎩
⎪⎪
⎨

⎪⎪
⎧

훌 : 퐱 :

  
 

+ 휌‖퐱 : − 퐳 ‖
  

+

+ 훌 : 퐱 :

 
 

+ 휌 ‖퐱 : − 퐳 ‖
  

:
퐱 ∈ 퐶 { , , } ∩ 퐶 :

∗  ∀ 푠 ∈ {1, … ,푛 }, 푡 ∈ {1, … ,푛 }⎭
⎪⎪
⎬

⎪⎪
⎫

 ( 4–9) 
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Where ‘′’ indicates variables related with the DSO level decomposition pass. Finally for each 

푀퐴  we have: 

min
퐱풂

푓 : (퐱 )
 

+ 훌 : 퐱 :

 

+ 휌 ‖퐱 : − 퐳 ‖
  

:
퐱 ∈ 퐶 { , } ∩ 퐶 { , , } ∩ 퐶 :

∗  ∀ 푠 ∈ {1, … ,푛 }, 푡 ∈ {1, … ,푛 }
 ( 4–10) 

Effectively this represents the only hard stochastic subproblems that have to be solved. Note that 

since network constraints are fully separable in time the TSOs and DSOs can actually solve their 

푛  network subproblems in parallel. 

4.2.3 Microgrid Operator Subproblems 

Considering in particular the solution of MO subproblems with a potential further decomposition 

to the individual user the following observations may be made: 

• For similar reasons to those mentioned earlier decomposition might not be easy. On the other 

hand, given the much smaller size of the microgrid level problem centralized solutions might be 

tenable, albeit not fast enough to work within a decentralized solution framework. 

• Most of the available controls at the individual user level may be expected to be discrete in 

practice. One decentralized method which could deal with such constraints is presented in [173] 

however it does not deal with uncertainties and it is not clear how it would perform as part of a 

larger decomposition scheme. 

• There might not be any actual benefit from privacy of information. Individual users would 

receive bills which would reflect how well their aggregate demand was managed and as such 

would be inclined to reveal their flexibility and actual utility to the MO. In addition, with a large 

scale deployment of smart meters and real-time measurements the MO could identify what 

devices e.g. a household uses at a given time, even if the latter did not directly disclose such 

information. 

• At a nodal basis (when looking at a single or a few households) demand variance can be expected 

to be quite high compared to its expected value. Under presence of such uncertainty one can have 

nothing more than an educated guess regarding system quantities (voltage, power, etc.) at a 

significant computational cost. In UC formulations (e.g. [24]) in such cases simpler, more abstract 

models are used. The same concept could be applied in ED. 

Considering the above we extend our list of assumptions regarding our ED solution: 

A7.  For managing users we use a practical three-step approach similar in principle to [15] where 

users communicate in a single round their requirements and willingness to pay to the MO, and 

the latter builds an approximate aggregate model which is used to determine the optimal 

aggregate demand at each iteration. After market clearing the MO breaks down the aggregate 

demand to individuals. 
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A8. The approximate aggregate model is built right before a decentralized ED run commences. 

As such the time required to build the model will affect only how recent measurements / 

forecasts may be used for its creation and will have no impact whatsoever in ED convergence 

time. 

The aggregate model should adequately represent the feasibility region of the aggregate demand 

power but at the same time be sufficiently fast to solve. One possible approach to aggregation is 

through various scenario reduction techniques [174, 18]. However, the resulting number of 

constraints can still be quite large. An analytical method is presented in [12] but considers only 

the state of charge as a stochastic variable. In [175] an approach based on heuristics is proposed 

but the computational cost is still significant. Another approach is modelling an EV fleet as a 

single vehicle [23] which is based on expected values of the constraints. Along similar lines an 

aggregate model for an EV fleet is presented in [15] which calculates and sets bounds on the total 

energy that the fleet can consume. With respect to power it considers an upper bound which 

incorporates grid capacity constraints. The model was extended in [176] to take into account 

uncertainty on EV arrival and departure times. Given the excellent scalability and solution speed 

we use a modified form of that model, which combines both flexible and inflexible demand and 

allows demand curtailments. 

4.2.4 Microgrid Level Aggregation 

In order to build the aggregate model first a set of scenarios is generated by sampling probability 

distributions to determine power for inflexible demand, energy requirements and availability for 

flexible demand (i.e. EV arrival and departure times). Then the aggregate power and energy 

bounds for each of those scenarios are estimated. While these power bounds are not generally a 

one-to-one function of aggregate power they may fall in a rather limited band as e.g. shown on 

Fig. 4-2 and could be approximated by linear constraints. Using the expected values of points A 

to E allows rewriting the MO subproblem as: 

min
퐏 ,퐏퐜

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧푐 퐏 ( )

∈{ ,…, }

+ 훌 : [퐏 ;퐐 ] + 휌 ‖[퐏 ;퐐 ]− 퐳 ‖ :

퐸 { } ≤ 퐸 { } = 푐 퐏 ( ) −퐏 ( ) + 퐸 { }

푃 { } ≤ 퐏 ( ) ≤ 푃 { }  (lines A,B)

푢 { }퐸 { } + 푢 { } ≤ 푐 퐏 ( ) (line C-D)
푃 { } ≥ 푐 퐏 ( ) − 퐏 ( ),   퐏 ( ) ≥ 0 (line E)

퐐 = 퐏  푡푎푛휙 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 ( 4–11) 

Where: 

푃  Power which if not drawn will imply curtailments based on the target 퐸  and power limits 

of individual devices. 
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푃 , 푃  Minimum and maximum aggregate power devices could draw irrespective of energy 

capacity but including network limitations (due to capacity, voltage drop/rise, voltage 

imbalances). The latter may be derived by solving a maximum flow problem given the 

devices connected at each time-step, or roughly be approximated by the maximum 

aggregate power the network has been observed to be able to draw in practice. 

푐풂 Average cost of shedding demand. 

푐풍 A coefficient ∈ [0,1] approximating losses (e.g. considering a single battery with 95% 

charging efficiency and assuming a further 5% losses for transferring the power through 

the network, then this coefficient would be about 0.9). 

휙 Average active / reactive power angle. Note that the relevant constraint could be replaced 

by bounds on reactive power if there is local reactive power control capability. 

푢 ,푢  Coefficients calculated based on expected values of C,D. 

The above process may be executed iteratively until no noticeable changes are observed in 

expected bounds or a certain time has passed. While this model for the first few optimization 

time-steps can be accurate (given the limited aggregate uncertainty and choice in distributing 

aggregate energy), for the remaining time-steps it is approximate in terms of power limitations 

and equivalent utility, as these depend on the individual state of each user and this information is 

lost on aggregation. We would like to stress that this model is not expected to give a definitive 

decision on individual devices schedules. Rather it is expected to produce with very low 

computational burden, an adequately good estimate of the expected power injection of the 

microgrid to the rest of the network. This formulation is not meant to be restrictive. Use of more 

complex models to cover other device types, or uncertainty and network constraints in more detail 

 

Fig. 4-2: Simple example illustrating bounds on power at time-step 6 for a randomly 
generated population of 100 EVs and sets of randomly selected charging schedules. These 
limits could be approximately represented by three linear constraints with A 0, 푃 , B 0, 푃 , 

C (determined through a simple search process by gradually increasing and allocating 
aggregate energy, 푃 , D (0, sum of total energy that could be stored to all devices connected 
by that hour), E 0,푃 . 
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is possible, as long as the computational time is not significantly increased (not more than that of 

the solved in parallel DSO subproblems) - e.g. a stochastic counterpart to this type of models may 

be also found in [14], where multiple equivalent battery scenarios are used. 

4.2.5 An Indicative Example 

To clarify further our decomposition approach, we use the simple example of Fig. 4-3. In this 

example, 푃  is a conventional generator, 푃  is inflexible demand with three possible scenarios 

(high/medium/low power), 푃  represents a set of EVs with four possible scenarios (early/late 

connection time and high/low energy requests), resulting in a total of 12 possible scenarios for 

the whole system. Thus: 푛 = 12,  푛 = 3 and we set 푛 = 8. For brevity we present only the 

constraints associated with real power and omit the non-anticipativity constraints. As such our 

example does not include voltage coupling constraints (the relevant extension is straightforward). 

With respect to decomposition we set 풛{ } = 퐏(1,푡),푃푏1{푡}
′ ,푃푏2{푡},푃푏2{푡}

′ , 풛 { } = 푃푎{푡},푃푏4{푡}  and let 

흀 { },흀 { } be the corresponding Lagrange multipliers. The constraints based on the centralized 

formulation, MA-based simplifications, and the corresponding MA subproblems based on 

equations (4-7) to (4-10) may be summarized on the following table. These problems are solved 

in each iteration of the distributed optimization algorithm after the necessary updates on 퐳,훌. 

Centralized Formulation Simplified by MAs  

퐶 { , , } =

⎩
⎨

⎧퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐏 { , , } = 푃 { , },푃 { , }, 0

퐕{ , , } = 푉 { , },푉 { , },푉 { , } ⎭
⎬

⎫
 퐶 = 퐶 { , , }

푡∈[1,8]

 

Given that constraints are 

deterministic, power and 

voltages have the same 

values independent of 

scenario. Thus in the 

simplified equations 

index s is dropped. 

퐶 { , , } =

⎩
⎨

⎧퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐏 { , , } = 푃 { , },푃 { , }

퐕{ , , } = 푉 { , },푉 { , } ⎭
⎬

⎫
 퐶 = 퐶 { , , }

푡∈[1,8]

 

The DSO network 

constraints also simplify 

to a deterministic 

problem. 

 

Fig. 4-3: Simple decomposition example. For each bus/node we may define two power 
vectors, e.g. for bus 4: 푃 + 푃 = 0. 

 
 
 



85 
 

퐶 { , } =

⎩
⎪
⎨

⎪
⎧푢{ , } = 푐 { }퐏( , , ) + 푐 { }퐏( , , )

∈[ , ]

푃{ } ≤ 퐏( , , ) ≤ 푃{ }

푃 { } ≤ 퐏( , , ) − 퐏( , , ) ≤ 푃 { } ⎭
⎪
⎬

⎪
⎫

 퐶 = 퐶 { , } 

These are the constraints 

of the generator. They too 

become deterministic. 

퐶 { , , } =

⎩
⎨

⎧퐏 { , , } = 푟푒푎푙 푑푖푎푔 퐕{ , , } 퐘{ }퐕{ , , }
∗

퐏 { , , } = 퐏 { , },퐏 { , }

퐕{ , , } = 퐕 { , },퐕 { , } ⎭
⎬

⎫

퐶 { , }   =
푢{ , } = 푐 { } 퐏( , , )

∈[ , ]
푃{ , , } ≤ 퐏( , , ) ≤ 0 

퐶 { , }  =
푢{ , } = max 푐 { } 퐸{ , , } − 퐸 { , } , 0
푃( , , ) ≤ 퐏( , , ) ≤ 0 
퐸{ , } ≤ 퐸{ , , } = 퐸{ , , } + 푐 퐏( , , )

 퐶 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧푃 { } = 훑( )

∈[1,12]

푃 { , }

퐶 { , , }
푡∈[1,8]
푠∈[1,12]

퐶 { , }
푠∈[1,12]

 

퐶 { , }
푠∈[1,12] ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

The constraints of the low 

voltage network and the 

two demand devices 

combine into the 

constraints of the MO. 

This is still a stochastic 

problem and the MO 

interacts with the rest of 

the network through 푃 . 

Coupled with 퐶  these 

would correspond to the 

푀퐴∗  type of problem. 

퐶 =

⎩
⎪
⎨

⎪
⎧

   

⎣
⎢
⎢
⎢
⎡퐏( , , ) − 푆 { , }
퐏( , , ) + 퐏( , , ) − 푃 { , }

푃 { , } + 푃 { , }

푃 { , } + 푃 { , } ⎦
⎥
⎥
⎥
⎤

= ퟎ

⎭
⎪
⎬

⎪
⎫

 
퐶 =

⎩
⎪
⎨

⎪
⎧

   

⎣
⎢
⎢
⎢
⎡퐏( , ) − 푃 { }
푃 { } − 푃 { }

푃 { } + 푃 { }

푃 { } + 푃 { }⎦
⎥
⎥
⎥
⎤

= 0

⎭
⎪
⎬

⎪
⎫

퐶 = 퐏( , , ) + 퐏( , , ) − 푃 { , } = 0

 

The coupling constraints 

may be written as two 

sets: 퐶  which is used in 

the decomposition and 

퐶  which is handled 

internally by the MO. 

Decomposition Subproblems  

min
퐱풂{ }≡ { }

{ }

훌 { }( ),훌 { }( ) 퐱 { } +
 

휌 퐱 { } − 퐳{ }( ),퐳{ }( )

  

: 퐱 ∈ 퐶
∈{ ,…, }

 
TSO subproblem 

based on (4-7) 

min
퐱풂{ }≡퐏( , )

푢{ , }(퐱 )
 

+ 훌 { }( )퐱 { }

 

+ 휌 퐱 { } − 퐳{ }( )

  

∈[ , ]

:퐱 ∈ 퐶  
IG subproblem 

based on (4-8) 

min
퐱 { }≡ { }

{ }

⎩
⎪
⎨

⎪
⎧

⎝

⎜⎜
⎜
⎛ 훌 { }( )퐱 ( )

  
 

+ 휌 퐱 ( ) − 퐳{ }( )

  

+훌 { }( )퐱 ( )

 
 

+ 휌 퐱 ( ) − 퐳{ }( )

  

⎠

⎟⎟
⎟
⎞

∈{ ,…, }

:퐱 ∈ 퐶

⎭
⎪
⎬

⎪
⎫

 
DSO subproblem 

based on (4-9) 

min
퐱풂{ }≡[ { }]

⎩
⎪
⎨

⎪
⎧

푢{ , } + 푢{ , }
∈{ ,..., }

 

+

⎝

⎜
⎛ 훌 { }( )퐱 { }

 

+휌 퐱 { } − 퐳{ }( )

  

⎠

⎟
⎞

∈{ ,…, }

: 퐱 ∈ 퐶 ∩ 퐶

⎭
⎪
⎬

⎪
⎫

 

MO subproblem 

based on (4-10) – 

may instead be 

approximated based 

on (4-11) 

These types of subproblems (but extended with voltage constraints) are involved in the larger 

scale examples presented in the following section. 
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4.3 Results and Discussion 

Following are a series of tests which provide some insight regarding the workings of the proposed 

approach and particularly convergence speed. 

4.3.1 Base Test Case 

Our test system is a slightly modified version of the RBTS 6 bus system, which is the only IEEE 

test system that includes distribution network (data and schematics may be found in [177]). The 

transmission network operates at 230kV (we used an 100MVA base for calculations at this level), 

while the distribution network involves 33kV and 11kV feeders (where we used a 1MVA base 

for calculations). Regarding our test case: 

 We assume that approximately 6kW of peak demand correspond to a residential user, 30% of 

whom own an EV, 30% of which are connected at the start of the optimization period. The 

maximum EV charging power is assumed to be 6.6kW [12] while the battery size is assumed to 

be 50푘푊ℎ. The resulting demand with the addition of EVs if left uncontrolled would create 

congestion or significant voltage drops at the distribution level. However, if controlled the 

existing network is sufficient for meeting requirements in terms of energy without curtailments. 

 The optimization period is divided into 12, 1h time-steps, which is assumed to be an adequate 

look-ahead period for managing EVs. The time-step length could of course be selected to be 

smaller or vary depending on the distance from the first time-step. 

 In order to illustrate the ability of the method to coordinate TSO subproblems the transmission 

network was separated into 3 areas as seen on Fig. 4-1. The demand at each distribution node is 

managed by an MO aggregator. This is not restrictive however; the demand at a node could have 

been managed by multiple MOs or multiple nodes could have been managed by one MO. In 

general, assuming aggregate models are used, as the number of MOs decreases, convergence 

speed may be expected to increase (fewer iterations at the distribution level), but the quality of 

modelling detail in terms of devices and distribution network would be worse. In practice the 

relation between distribution nodes and MO aggregators is uncertainty dependent. Investigating 

this relation based on actual measurements would be a subject of particular interest. As it is our 

test case involves: 3 TSOs, 181 MOs and 5 DSOs. Building the aggregate models took less than 

1 min for each MO. 

 Stochastic inflexible demand forecast errors are assumed to follow a uniform distribution (ud). 

For an EV not connected at the first time-step truncated normal distributions (tnd) are used. The 

selected parameters are: 
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 distribution (휇,휎) [푚푖푛,푚푎푥] 

inflexible demand ud - [−푡, 푡] ∙ 1.5% 

EV arrival time tnd (3,1) [2,8] 

EV departure time tnd (12,1) [7,14] 

EV arrival charge state tnd (75%, 25%) [25%, 95%] 

These data are representative of the level of uncertainty which might be found in practical 

situations (e.g. similar data may be found also in [167, 178]) and are chosen for illustrative 

purposes. Any other distributions derived from particular real situations could equally well be 

used. 

Regarding the time required by a subproblem for a single iteration we follow the assumptions of 

the previous chapter (with an assumed value of 0.1s for the latency). Regarding the results: 

 As may be seen on Fig. 4-4 in terms of transmission level iterations convergence is achieved 

in about 140 iterations at the TSO level. During each such iteration each DSO problem requires 

 
 
 

 

 

Fig. 4-4: Convergence results for the IEEE RBTS: 
a-b. Active and reactive power marginal prices convergence for each transmission bus and 
all time-steps. 
c-d. Iterations and time required for DSOs subproblems. 
e. First time-step real power marginal prices for all system nodes (different color used for 
nodes belonging to different buses - bus 1 only has a set of generators and no other 
distribution network, and as such is not easy to distinguish here). Specifically for the 
transmission nodes the corresponding prices are: 16.6, 16.6, 17.6, 17.8, 17.9, 17.6 
m.u./MWh. Due to losses higher prices are observed at the end of distribution feeders 
(particularly so for a lengthy 33kV feeder on bus 6). 
f. Aggregate convergence time for the fully decentralized solution. 
g-h. System-wide power and energy schedules and indicative representation of the 
corresponding extreme bounds (shaded area indicates normal operation without 
curtailments). 

0 50 100 150
0

5

10

15

20

pr
ic

e 
(m

.u
./M

W
h)

TSO iterations (k)
0 50 100 150

-0.5

0

0.5

1

pr
ic

e 
(m

.u
./M

V
ar

h)

TSO iterations (k)

a b
0 50 100 150

0

2

4

6

8

tim
e 

(s
ec

)

TSO iterations (k)
0 50 100 150

0

10

20

30

40

50

D
SO

 it
er

at
io

ns
 (l

)

TSO iterations (k)

dc

1 294
15

16

17

18

19

20

node

pr
ic

e 
(m

.u
./M

W
h)

0 50 100 150
0

1

2

3

4

tim
e 

(m
in

)

TSO iterations (k)

 

 
e f

2 4 6 8 10 12
-250

-200

-150

-100

-50

0

time-step

(M
W

)

2 4 6 8 10 12
-2000

-1500

-1000

-500

0

(M
W

h)

time-step

curtailment
region

curtailment
region

hg
infeasible
region

infeasible
region



88 
 

its own number of iterations. Note that the latter as the optimization progresses tend to decrease 

thanks to the fact that the TSO level marginal prices stabilize near their optimal values, while 

the DSO subproblems have the good initial points provided by the previous TSO level iteration. 

 The system involves 6 transmission buses and 286 distribution nodes. This means about 7k 

power balance and 3.5k line capacity constraints. The constraints number for MO subproblems 

would be on the order of 17k. Despite the small size of the system the resulting problem is large. 

The results indicate the ability of the proposed scheme to coordinate energy management within 

a time frame (in this case less than 4min) acceptable for market applications. As may be seen 

the first optimization time step corresponds to a time of high demand with domestic consumption 

near its peak. The flexible part of demand is shifted towards later hours. The end result is a rather 

flat price and demand profile. 

It should be noted that the time to convergence could potentially be improved if instead of a flat 

start (i.e. 휆 = 푧 = 0) the simulation was initialized based on a solution of the previous time-

step. More efficient implementations of the used optimization algorithms are also possible than 

our current ones (done in MatLab). For the optimization subproblems we used closed-form 

solutions if possible, and a primal-dual barrier interior point algorithm. The simulations were run 

on an Intel Core i5-2500 3.3Ghz, with 4GB of RAM. The iterative nature of this distributed solution 

could allow for improved constraint management heuristics which would remove inequality 

constraints that are not expected to become active in the subproblems, thus reducing 

computational burden. 

4.3.2 Time-wise Scalability 

In this section we investigate the impact of look-ahead period in terms of convergence. Based on 

the RBTS 6 bus test case a series of simulations were performed with a gradually decreasing 

number of time-steps. The results may be seen on Fig. 4-5. The differences in convergence time 

and iterations are due to the fact that, as the time-steps number changes, these are effectively 

different optimization problems with slightly different solutions. Nevertheless, the changes in 

 

 
Fig. 4-5: Effect of number of time-steps 푛  on convergence speed. 
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time are not significant. The reason is that MO subproblems (which increase in size) are solved 

in parallel with the more computationally intensive DSO network subproblems which do not 

change in scale (network subproblems for the new time-steps are solved in parallel with the 

existing ones). The results indicate that it is possible to increase the number of time-steps without 

any negative impact on convergence time. 

4.3.3 Network Scalability & Implementation Challenges 

In this section we try to gain some insight with respect to scalability in terms of network size. 

Unfortunately, data describing a large network including both transmission and distribution were 

not available. Therefore, we set up an additional test case based on the IEEE 118 bus network 

(base data available on [161]). We retained the transmission level system data as is, and we added 

distribution data as copies of the RBTS feeders, e.g. for the 118 system bus 59 (277MW), three 

copies of the RBTS bus 3 distribution feeders (85MW) were added with inflexible demand 

slightly scaled to give the total of 277MW. This yielded a problem with a total of 1024 distribution 

nodes, i.e. about 4 times larger than our base test case. In all other respects (e.g. EV penetration) 

the test case was constructed in a similar fashion with the base case. With respect to 

decomposition structure: the transmission network was considered as a single area/subproblem; 

for buses with large distribution networks, sets of feeders were considered as separate 

subproblems (e.g. for the previously mentioned bus 59 three equivalent DSO subproblems were 

 

 

Fig.4-6: Convergence results for the modified IEEE-118 bus network: 
a-b. Active and reactive power marginal prices convergence. 
c. Iterations required for DSO subproblems. 
d. Aggregate convergence time for the fully decentralized solution. 
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created) giving a total of 102 DSOs and 731 MOs. As may be seen on Fig. 4-6 convergence is 

achieved in about 5.5 min. This increase in time was due to the slightly increased number of 

iterations required at both the transmission and distribution level, and also the larger size of certain 

subproblems. 

Unavoidably when one moves to even larger systems, as the solution time of the network 

subproblems increases, so will the overall convergence time. Based on the presented results the 

proposed method appears to be applicable to small or medium sized systems. To determine its 

applicability on larger systems further testing is required considering that: 

 If the communications delays are ignored (i.e. latency is set to 0) then the solution time for 

the RBTS-6 and IEEE-118 reduces to about 1 and 2 minutes respectively. Further investigation 

into communications structures and modelling expected delays realistically is an important issue, 

as is the directly related subject of efficient implementation (in software & hardware) of the 

optimization subproblems solvers. 

 Investigating what are the most efficient distributed solution methods, especially at the 

distribution level (potentially exploiting their radial structure), is also an important subject. 

 Decomposing a very large transmission network into even a small number of areas could 

imply a much faster solution of TSO level subproblems, despite an increase in terms of 

iterations. However, the inclusion of security constraints and investigating efficient methods for 

their decomposition are key issues. 

Overall, the presented approach serves as the basic solution concept. Several extensions are 

required before a full practical application can be implemented. 

4.3.4 Coordination 

As pointed out in A1 ED presupposes coordination with UC mechanisms. In addition, the fact 

that we cannot have a definitive decision regarding individual microgrid level devices schedules 

as part of our overall ED solution, implies that an additional microgrid dispatch (MD) mechanism 

is required. The latter should operate at a time resolution much faster than that of ED, and should 

be capable satisfying user requirements, handling microgrid network constraints in their full 

detail, while following the ED solution as closely as possible. A wide variety of methods have 

been proposed in the literature (e.g. [173, 63, 179, 180]) which could be suitably adapted to serve 

this purpose. 

4.4 Conclusions & Further Questions 

The overall energy framework we envision in this work is illustrated in Fig. 4-7. Electricity 

markets (through UC and ED) are there to achieve coordination over time and utility 

maximization across the whole network; dispatch at the microgrid level will be there to follow 
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the ED signals to the best of its ability while satisfying user energy requirements. It should be 

noted that a similar in principle idea and time-frame separation of the subproblems is already 

utilized today for the purpose of voltage control at the transmission level. More specifically once 

ED is completed a simpler and faster reactive power only OPF is solved based on data gathered 

from phase measurement units (PMUs) placed around the system. The objective of that problem 

is to adjust the reactive power output of various generators in response to any unexpected events, 

thus potentially reducing losses and improving stability [98]. 

Overall, our proposed framework provides clear answers to the three key issues associated with 

flexible demand i.e.: overall energy optimization problem tractability; handling flexible 

appliances time-linkages; and providing set-points for their operation. It should be noted that we 

have assumed that unbalanced network details are to be handled in the microgrid dispatch time 

frame. This problem’s solution is discussed in the following chapter. 

 

Fig. 4-7: Conceptual energy management framework. The arrows represent transmission of 
information. This framework and presented solution approach may be extended to take 
particular market rules and penalties into account. 
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5  
Microgrid Dispatch 

Once economic dispatch is carried out individual distribution level operators would have to 
assign power schedules to individual users / devices. While the literature with regards to 
distribution network management is extensive there does not appear any reference method for the 
solution of associated problems. Various existing solution approaches differ in terms of: the 
nature of the controls (discrete or continuous); the constraints formulation; consideration of 
uncertainty and device time-coupling; and the degree of decentralization. In this chapter we 
discuss these various aspects of energy management problems and provide one possible solution 
approach akin to a sequential optimization technique coupled with an appropriate heuristic for 
handling discrete controls. The proposed method is suitable for managing small flexible devices 
(e.g. electric vehicles) in unbalanced networks and may be integrated directly into the energy 
management framework presented in the previous chapter. 

5.1 Problem Perspective 

The preceding chapters placed more emphasis on optimization at the transmission level and as 

such the methods already presented mostly dealt with how optimality in terms of energy 

management may be achieved at a system-wide level. Part of the distribution network constraints 

was included in the final formulation of Chapter 4 using balanced ac equations, while the 

remainder along with end-user constraints were approximately taken into account through the 

aggregate models at the microgrid level. As such the full network constraints and controls down 

to the individual user level have not yet been considered in detail. Given that the initial motivation 

behind the present work is optimizing individual devices at distribution level, we have now come 

full circle. Fig. 5-1 gives a typical illustration of the problem at the distribution level. The 

objective is to relieve any existing voltage or line capacity constraints deviations while following 

the reference microgrid set-point assigned through economic dispatch, or in other words to 

disaggregate the economic dispatch decision to individual users / devices. 

5.2 Microgrid Controls 

Within the context of this work at its core the microgrid would be a mostly low voltage 

distribution network, with several controllable devices located at each network node. Regarding 

the control at this level there are two possible paths current literature takes: 1) fast control systems 

for individual devices acting based on local measurements; 2) optimization. The former mostly 

ignores the details of the network itself and focuses on stability aspects in relation to control 



94 
 

parameters setting of individual devices. The latter either solves complete optimization problems 

ahead of time, or uses some continuously executing distributed solution approach. While fast 

controls and optimization normally belong to different time frames, depending on how often the 

microgrid level optimization subproblem is solved, it could be possible to entirely dispose of the 

traditional local measurement based control approach for certain devices and just optimize them 

along with the rest of the microgrid. Following is a brief overview of relevant literature along 

with a description of the various approaches used. 

5.2.1 Pure Control 

In terms of fast controls acting on local information (i.e. voltage or frequency measurements), 

literature may be further categorized in to two groups. The first deals with frequency or voltage 

control in isolated systems, placing particular emphasis on stability. The second relates to the 

more traditional transformer tap voltage control approaches in distribution networks. 

Several papers discuss various aspects of stability in microgrids (i.e. distribution networks), as 

when a significant number of devices respond to a frequency or voltage signal, dynamic stability 

may be an issue. For example [181] focuses on the individual frequency and voltage controls of 

distributed generation and provides relevant models. An important point however is that the 

authors identify the need for a central controller for determining load sharing among DG units 

 

Fig. 5-1: An indicative illustration about what the microgrid dispatch problem is about. The 
figure illustrates the IEEE-123 nodes distribution test feeder which in the context of this work 
we consider as a microgrid. Numbered items correspond to system nodes, while circles 
correspond to transformers or voltage regulators. Each node may have any number of devices 
connected in any possible configuration. 
The colour-map is associated with voltage (large deviations from 1p.u. in red, closer to 1 p.u. 
green). This corresponds to a case with high EV penetration, assuming the latter are left 
uncontrolled. The network is connected to transmission through node 149 (located bottom 
left). 
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and maintaining power quality and required stability margins, i.e. the equivalent of the microgrid 

dispatch mechanism. Reference [182] follows similar lines focusing on individual local controls. 

In a more traditional context, where only transformer tap controls are available, reference [183] 

proposes a solution which is based on an approximate network model. The underlying principle 

is that following various transformer actions, measurements taken can be used to estimate the 

Thevenin equivalent of the low-voltage side circuit. Subsequently that model could be used to 

determine the tap operations. Note that this paper does not appear to necessarily refer to 

distribution level transformers only. A similar in principle approach is also proposed in [184] for 

controlling photovoltaic generators in order to prevent overvoltage, as well as in [185]. While 

these approaches are relevant to traditional tap-changer control practices, they do not quite fit in 

coordinated energy management schemes, which could instead concurrently optimize all involved 

control variables based on a predetermined system model. 

While the above hardly cover published work on these areas, they are representative enough to 

make two basic points. First, certain traditional methods to voltage control, while important by 

today’s standards, could be irrelevant in a ‘smarter’ network where optimality is pursued through 

device coordination. Second, especially when it comes to managing demand, it is very important 

in terms of use of available controls to differentiate between optimal energy management and 

system support in contingency cases. The former relates to the procurement of requested energy 

and sufficient control margins (i.e. operating the device at such a power set-point that its output 

may be adjusted up or down as necessary in the future); the latter makes use of the aforementioned 

control margins by responding to local signals (e.g. frequency) which may exhibit very fast 

changes. It should be clear that these two functions have to be served in two significantly different 

time scales. 

5.2.2 Centralized Energy Management – Network Unconstrained 

A significant number of papers look into the optimal scheduling of flexible demand devices (most 

commonly electric vehicles) without any consideration of the ac network constrains, other than 

possibly a capacity limit on the aggregate demand. This yields a rather simple, yet still quite large 

optimization problem, which due to the lack of network limitations, is amenable to a wide range 

of algorithms and solution approaches. 

Reference [186] proposes the idea of defining a preferred operating point for individual EVs. This 

may be determined through a variety of simplified ‘smart’ algorithms (which may be actually 

suboptimal), or through a continuous multi-period (profit maximizing) optimization carried out 

by the aggregator. A total of 3 different formulations are presented that seem to prioritize charging 

either based on expected prices, or state of charge, or expected demand. Overall the need or actual 

benefit for all these proposed formulations is not quite clear. 
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Reference [187] makes an interesting contribution by considering both scheduling and dispatch. 

A linear programming based approach is proposed for the scheduling time frame and a heuristic 

for the dispatch. Note however that it does not consider system-wide coordination - it rather uses 

price forecasts. In terms of dispatch a simple ranking scheme is used which assigns demand to 

slots by looking only at EVs which have already arrived. The proposed heuristic is capable of 

handling both continuous and discrete variables. 

Reference [188] again supports the hierarchical control concept of the microgrid and formulates 

an optimization problem that includes bidding from demand. However, in many respects the 

proposed approach appears to be oversimplified, given that once more a simple priority list is 

used for scheduling individual devices. A ranking heuristic to determine demand scheduling in 

real-time applications is also proposed in [189]. This heuristic assigns quadratic utility functions 

to individual devices, yielding a single time-step quadratic programming problem. 

Reference [190] considers a variety of both continuous and integer controls in a multi-period 

formulation using point-estimates for uncertain quantities and a heuristic to determine allocation 

of reserves. The exact time frame of application of this control and its connection with the rest of 

the power system is not clear. A similar approach is followed in [191] which proposes a multi-

period mixed integer formulation for managing day-ahead scheduling of a smart grid, using a 

particle swarm optimization method for its solution. A mixed integer linear programming 

formulation is also proposed in [192] to schedule EVs at the aggregator level. The objective 

function includes a penalty for unserved demand, the cost of energy to the aggregator and a term 

for losses or operational costs due to energy exchanges within the network. The time-frame of 

application is yet again not clear. 

Reference [193] for the purpose of managing EVs in grid-connected microgrids uses continuous 

variables for individual EV states, within a multi-period deterministic formulation. Again this is 

of limited practical value as it does not consider distribution constraints and coordination with the 

markets. A similar model is presented for cases where the microgrid is islanded and load shedding 

is required, which assigns an energy value to each EV based on fuzzy rules and their current state 

of charge. A more refined continuous optimization approach appears in [12]. A lognormal 

distribution is assumed to adequately describe individual vehicle daily energy requirements. 

Based on the central limit theorem the paper suggests that for a large number of vehicles the 

charging requirements may be expected to follow a normal distribution. The objective of the 

derived quadratic programming problem is minimization of demand variance over a day, with a 

control variable being the percentage of EVs which would start charging at a specific hour. 

However, the paper does not consider any stochastic variables other than energy requirements 

themselves and the approach does not appear to be easily extensible. 
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Reference [194] proposes a rolling horizon optimization formulation for EVs. This involves 

typical charging constraints with the inclusion of battery lifetime penalties in the objective 

function. No network constraints are included and costs are assumed to follow a quadratic 

function. While the proposed approach appears to be of little interest, the paper identifies potential 

tractability issues and the difficulties associated with management of uncertainty. 

Reference [195] presents an algorithm to facilitate charging subject to given scheduling 

obligations. First the authors solve a 5 day ahead scheduling problem to determine demand 

requirements. To reduce the dimensions of the problem vehicles are clustered into fleets. The 

solution of this problem generates prices for each of the EV clusters. When a new vehicle plugs-

in its charging is scheduled based on these prices. However, it should be noted that the scheduling 

obligations appear in the form of a capacity cap, rather than actual market penalties. 

In [196] a method is proposed for coordinated voltage control in a distribution network that 

proposes a quite complex heuristic based on a ‘beliefs’ and ‘intentions’ agent based framework. 

This involves the exchange of a series of voltage measurement values between closely located 

agents, which eventually allow each agent to form an estimate of the network state, and 

subsequently make a control decision. The overall approach appears to be unnecessarily 

complicated. 

While there are several different methods appearing to deal with EV energy management, none 

of them is essentially complete. The reason for this is not only due to the fact that they do not take 

into account network constraints, but they also do not consider coordination with the transmission 

level and do not specify their time-frame of application. As such this body of work does not appear 

to lead to any definitive direction towards the solution of the microgrid level optimization and 

control problem. 

5.2.3 Centralized Energy Management – Network Constrained 

A much more challenging optimization problem arises when network constraints are actually 

taken into account. As already discussed in Chapter 2 of this work, there is a variety of options in 

terms of how these constraints are represented. This is reflected in relevant literature which adds 

to the existing exact mathematical models a number of arbitrary, rough approximations. 

Reference [197] once again indicates the requirement for a hierarchical control structure for the 

microgrid with the slowest of those controls optimizing active and reactive power set-points. This 

paper focuses on storage device control which may be assumed to operate in a continuous manner, 

using standard non-linear power flow equations, with the objective being the minimization of 

energy imports. The paper uses dynamic programming to solve the corresponding deterministic 

multi-period optimization problem. 
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In [198] an energy management approach is proposed where the distribution system operator 

attempts to determine the right prices for the system through the solution of a single-time-step 

optimization problem. It is assumed however that the DSO can predict the consumers’ response 

to the given price signals. Given the uncertainty involved at this level and the fact that this is 

actually a scheme involving communications between individual users and the system operator, 

this approach appears to be of limited practical interest. 

In [199] a real time optimal power flow approach is suggested for managing renewable generation 

in a medium voltage distribution network. From a theoretical perspective there is nothing 

particularly new here, however an interesting point is the use of a last-in-first-out logic in 

determining the objective function for the optimal power flow problem. This is a continuous 

variables optimization approach, with standard balanced ac power flow constraints. A variant of 

this scheme appears in [200] which instead of non-linear programming uses a constraint 

satisfaction approach. Beyond the fact that this alternative approach handles integer controls only, 

there do not appear to be any clear benefits to it. The authors improve upon this scheme in [201] 

by extending the formulation to a multi-period one but without any specific mention about how 

uncertainty is modelled. 

In [202] a centralized losses minimization problem is formulated for EV scheduling, and proceeds 

to compare the results of a deterministic quadratic and a stochastic formulation. The proposed 

approaches are suitable for handling continuous variables only and appear to include an 

approximate representation of network constraints. Uncertainty is considered in the form of a 

predetermined number of scenarios without however providing sufficient justification for this 

particular choice. For the stochastic formulation a dynamic programming technique is used but 

no specific information regarding solution times is provided. 

Reference [203] proposes a continuous variables formulation, using approximate convex network 

models, which minimizes demand variance and in turn losses. The approach appears to be of 

limited practical value as it is unclear how it could be extended to overall cost minimization. An 

approximate formulation is also used in [180] in the form of a current-based DC approximate 

formulation for the system including voltage drop and phase unbalance. The latter is considered 

in terms of phase load deviation from the average node load, rather than in percentage of the 

negative sequence voltage component. This approach gives a linear programming problem 

however the proposed model, while accurate perhaps for limited length networks, is unlikely to 

prove accurate for larger cases. 

Reference [204] proposes an algorithm for optimizing EV charging in low voltage networks so 

that system voltage and thermal constraints are taken into account. This iterative centralized 

algorithm is based on a linearized unbalanced load flow. The linearization uses sensitivities which 

are calculated based on the network solution prior to the connection of EVs. The selection of 
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objective function is somewhat peculiar, as it tries to maximize total power delivered within a 

given time period. An interesting point to note is that the paper proposes state of charge based 

utility functions in order to balance out the fact that demand closer to the feeder will tend to be 

satisfied faster due to lower losses. A similar in principle approach had also been used the authors 

in [205] and it was compared with a basic distributed control scheme where each vehicle manages 

its energy consumption based on local voltage and conductor capacity limitations. However, the 

details about how the latter works and considerations regarding its stability were not adequately 

discussed. 

Reference [206] proposes a deterministic mixed integer linear programming formulation for 

scheduling EV charging at the distribution level in a day-ahead context, assuming fixed energy 

prices for each time slot. However, it uses a DC power flow formulation – presumably solving 

individually all three phases – which can have significant errors. To counter this error, the authors 

added an arbitrary parameter in the line capacity constraints to ensure the results were on the safe 

side. The latter, while not a bad idea, appears to be poorly executed. It is of interest though that a 

DC approximation is also used in [171], as part of the proposed solution for the same problem. In 

this case a continuous multi-period formulation is proposed, assuming exact forecasts regarding 

energy prices at the transmission level and any demand at the distribution network level. 

Finally, reference [207] proposes a simple algorithm for determining power set-points for 

distributed generation based on calculated sensitivities. However, it is not particularly clear how 

well the proposed scheme performs in terms of coordination of demand of several different 

generators. This approach accounts for both continuous and discrete controls, considering a 

linearized version of the power flow equations. 

While the mathematics behind the various approaches mentioned above are certainly more 

interesting compared to the network unconstrained approaches, overall there is nothing conclusive 

about the current literature. The limitations of individual methods in terms of problem scale are 

not clear, hence there is also no clear indication with regards to what formulation should be ideally 

used. It is also unclear what the practical challenges are expected to be, and the time-frame of 

application for these solutions is typically not specified. 

5.2.4 Decentralized Perspective 

In terms of energy management at the distribution level decentralized methods have recently 

become quite popular. The vast majority of relevant papers however uses simplified network 

unconstrained forms of the problem. In [208] a basic distributed agent-based power management 

scheme is proposed where each agent optimizes his own operation assuming a fixed grid energy 

price. The mechanism for agent cooperation is not particularly sophisticated however and does 

not seem suitable for problems of larger scale, or in cases where a mathematically optimal solution 
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is of interest. Reference [209] proposes an auction mechanism based on a so-called symmetric 

assignment algorithm for managing energy within a microgrid. The overall model is however 

quite simplistic, takes no account of network constraints or time-linkages, and there does not 

appear to be a way to extend it to include these considerations. 

In [210] a seemingly decentralized voltage control by distributed generators scheme is proposed. 

The scheme is based on linearized power flow equations and the simple reasoning that the 

generator with the highest sensitivity should respond first. The scheme involves each generator 

estimating locally its sensitivity, broadcasting this information to a central agent, who responds 

with an estimate of the amount of reactive power required by each generator. 

Dynamic programming (DP) as a means for stochastic control in the smart grid was presented in 

quite general terms in [211]. A more specific relevant approach is proposed in [212] where the 

authors use two distributed optimization heuristics, both with dynamic programming origins, for 

managing flexible users. The first heuristic is quite similar to LR where user subproblems are 

simply solved via dynamic programming. The second method is based on a DP variant called Q-

learning approach, which allows to a certain degree the combination of stochastic characteristics 

of different users. Both approaches seem to have comparable convergence characteristics and are 

shown to be close to optimal. In any case, the Bellman equation seems to provide a basis for 

decomposing the problem in terms of time. 

In [213] a bi-level programming structure for solving a single time-step network unconstrained 

energy management problem is proposed, where the microgrid aggregator sends demand 

information to a central production unit and receives back price information. The mathematical 

background and the actual value of the proposed scheme are rather unclear. 

Proximal decomposition methods similar to the one used in a previous chapter are also quite 

popular in the EV management problem. A variant is proposed in [214] where each player has 

knowledge of the utility function and the power schedules of other players. Subsequently he 

optimizes his potential benefits (including the proximal term) with the assumption that other 

players’ schedules remain fixed. This algorithm is proved to converge to a Nash equilibrium for 

a suitable selection of the proximal term penalty factor. Quite a similar approach is proposed in 

[215]. For a test case with 10 users / subproblems convergence is achieved within 20-30 iterations. 

Another proximal method variant used in [216]. This reference also involves a detailed analysis 

on the marginal price signal used in this scheme, but the point behind this analysis is not entirely 

clear. Note that the methods in the above papers handle deterministic problems with continuous 

variables only, and have not been proven to work with the full network constraints. 

Reference [217] instead of a proximal term, penalizes the deviation of an EV charging strategy 

for the average behaviour of the EV fleet. This approach is proven to converge to a Nash 

equilibrium. However, it is not clear how devices of a different type could be incorporated into 
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this approach and as such its use is rather limited. Some latency values are also mentioned in the 

experiments carried out as a part of this work (60푚푠 between aggregator and EV, 500푚푠 between 

aggregator and agent at HV/MV substation). However, the related communications infrastructure 

is not explained in detail and as a consequence it is not clear how close in practice these values 

are. A similar approach is used in [218]. It should also be noted that this algorithm does not 

necessarily fully converge at a globally optimal point in the case where the EV population is 

heterogenous (i.e. different charging times and characteristics among various vehicles). This is a 

disadvantage that the previously mentioned methods do not have and as such this algorithm is of 

no further interest. Despite this fact a similar approach is also used in [219]. 

Another variant of the proximal penalty schemes may be found in [220]. In that paper individual 

devices are allowed to reside in discrete states. In their optimization subproblems a penalty term 

is introduced which actually penalizes big scheduling changes from one iteration to the next. For 

a set of 100 users the algorithm is shown to converge within a few tens of iterations. In principle 

this algorithm can handle both continuous and discrete variables but does not appear to take into 

account any network constraints or any associated uncertainties. As may be expected this 

algorithm is a heuristic and care should be taken when selecting the penalty factor as it may yield 

results far from the optimum. 

Reference [221] proposes an ADMM based solution to the EV charging problem. While charging 

power is initially assumed to take discrete values, all discrete variables are relaxed into 

continuous. Furthermore, a utility function dependent on state of charge and time to go is used. 

Regarding convergence, it is assumed that only a certain number of iterations are allowed. It is of 

note that the proposed structure involves a series of sub-aggregators (MOs) and one central 

aggregator (DSO) essentially for the purpose of managing the discrete nature of the controls. 

Overall what is proposed is a method which approximately considers discrete controls through 

the aggregators themselves but does not consider network constraints and the various sources of 

uncertainty. Note that the solution is decentralized only as far as the continuous relaxation is 

concerned. The ADMM approach is also used in [222], albeit in a much simpler problem 

formulation which involves continuous controls only. Note that this paper reports very fast 

convergence (i.e. within 10-20 iterations), but this is probably a direct result of the assumed highly 

convex energy cost function. An even more simplified formulation is used in [223], this time 

solved via LR. In terms of network constraints, the paper considers only a single capacity 

constraint, and only expected energy prices are used which are not affected by the EV scheduling. 

Reference [224] proposes an LR based scheme for coordinating devices schedules where the 

distribution system operator broadcasts and updates prices. The proposed method solves a 

deterministic problem, is able to handle continuous variables only, and does not appear to include 

any network constraints. The authors additionally consider the effect of lost messages between 
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the residential smart meters and the operator, showing that the algorithm still converges in near 

optimal solutions. 

In [225] a consensus based algorithm is proposed for EV charging. This approach however is 

applicable to continuous variables problems only and cannot possibly take into account any 

network constraints. In terms of papers that do take into account network constraints reference 

[226] uses a semi-definite programming formulation coupled with a Lagrangian Relaxation based 

scheme. This is a single-time step optimization focusing on controlling voltage through any 

available distributed energy sources. This approach is in principle similar to [130], which however 

considers the full 3-phase unbalanced power flow. 

5.2.5 Concluding Remarks 

Overall, with respect to the developing trend of using decentralized approaches and a possible 

dilemma between which type of method should be preferred, there are two points to be made. 

First, determining operating set-points for individual devices presupposes the knowledge of both 

the network and individual device status. It would be unrealistic to assume that individual users 

will be given access to full information of the distribution network. As such for both centralized 

and decentralized solutions, all relevant information will always go through one central entity (i.e. 

the DSO or MO) who could respectively provide directly the solution or coordinate individual 

responses (e.g. by broadcasting suitable price signals). As such there is no apparent benefit in 

terms of reliability if a decentralized approach is selected. At the same time privacy of energy use 

on the individual user level when usage information is measured is purely an illusion. Second, an 

important difference between a centralized and a decentralized approach is that the former would 

require only one round of communications (one for receiving user requirements / measurements 

and one for broadcasting results), while the latter would require one round for each iteration until 

convergence. As such a decentralized approach would imply much larger requirements in terms 

of communications. 

It is a fact that distribution networks have never been optimized in real-time as transmission 

typically is, and microgrids are a relatively new concept. As such there is no reference problem 

formulation. In turn, given the lack of clear problem definition and identification of its most 

important parameters, as a research area, distribution and the concept of smart grids provide a 

fertile ground for the application of a wide range of methods. However, their supporting problem 

formulation, and as a consequence some of the methods themselves, can be of little practical 

value. 

In terms of decentralized methods, it is worth pointing out that, only a very limited number of 

papers take into account network constraints (e.g. [130]) and fewer still consider the discrete 

nature of certain controls [173]. Achieving optimality in this sort of problem in a decentralized 
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fashion is not easily accomplished. In addition, with respect to approximate continuously 

executing decentralized energy management methods, it is unclear how they would work along 

with any faster individual device controls intended to cope with contingencies (related e.g. to 

frequency or voltage) – unless of course there are no such controls. Based also on the 

considerations of the previous paragraph it is reasonable to assume that at the microgrid level, as 

long as the scale of the problem is manageable, a centralized solution would probably be 

preferable. Consequently, in the following we focus on centralized optimization approaches 

which should be able to incorporate discrete control decisions. 

5.3 Utility Functions for Demand 

In the general case, both the value of the high penalty typically set for not serving the demand and 

the actual utility gained from supplying it, are hard to define clearly. The potential availability of 

a large number of similar controllable devices in a small network implies that if losses are not 

taken into account any relevant optimization formulation can have an infinite number of possible 

solutions. On the other hand, if losses are considered, end node customers will always be the last 

ones to be served and the first ones to be curtailed if necessary. The idea of using appropriately 

selected utility functions to induce a unique solution or a fair allocation of resources, or simply 

allow the implementation of certain control or optimization techniques has been discussed in 

several papers. 

One such class of papers is based on similar concepts used in telecommunications. Reference 

[227] proposes a logarithmic function of the form 푢 = 푤 log(푃) where 푤 represents the user’s 

willingness to pay. Using such a utility function is said to lead to proportional fairness among 

network users, i.e. a Nash equilibrium where the energy each user consumes at equilibrium is 

proportional to 푤. The reasoning behind this approach is based on rate control applied to 

communication networks as proposed in [228]. This logarithmic function appears again in [229] 

and also in [230]. In the latter the decentralized approach is assumed to run continuously and the 

schedule updates are directly applied, rather than applied once after the algorithm’s convergence. 

In terms of more centralized approaches [205] proposes scaling of EV utility functions based on 

their state of charge so that it is ensured that end-node customers get served. A much more 

elaborate utility function is used in [231]. A quadratic function for EVs is used, which depends 

on the state-of-charge and every other parameter possibly related to the vehicle battery charging 

requirements. 

A common characteristic of all the above papers is that they use single time-step problem 

formulations. In that case the modified utility functions could allow to take into account in an 

indirect approximate way the requirements of demand over time. An additional benefit of course 

could be a strongly convex objective function for the overall problem, which would imply 
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improved convergence for any applied distributed solutions. It should be noted that within the 

context of a multi-period formulation the value of modified utility functions could be hard to 

justify, especially when a solution that satisfies all user requirements exists. 

5.4 Problem Formulation 

Based on the considerations of the previous chapters and our developed framework, in this chapter 

we formulate and solve the microgrid dispatch problem based on the following assumptions: 

A1. Dispatch at the microgrid/distribution level has the objective to assign power set-points to 

individual devices while satisfying user requirements, and following as close as possible the 

microgrid-system power exchange levels promised in the last economic dispatch solution. As 

such the time available for solving the microgrid dispatch problem should be less than the time-

resolution of solving the economic dispatch problem. 

A2. The microgrid operator utilizes sufficiently accurate models in terms of aggregate power for 

its participation in energy markets. As such possible deviations from the market position in 

future time-steps need not be considered within the microgrid dispatch problem. 

A3.  We opt to use the three-phase reference frame assuming that in terms of energy management 

any return (neutral conductor / earth) currents are not of interest. As such Kron’s reduction is 

carried out where applicable. 

A4.  The problem of network reconfiguration, if it were of interest for a given network, would 

be solved on a different time scale. The reasoning is that this is a problem of significant 

complexity involving also protection considerations. At the same time, it is unlikely that the 

network operator would allow a significant number of switching actions during a day. 

A5. Rather than formulating a multi-period MD problem a single time-step formulation is used 

on the assumption that the impact of the device time-linkage characteristics has been 

adequately considered through the aggregate models used in during ED. As such following the 

microgrid aggregate set-points provided by the ED solution is sufficient. To ensure that end-

node users are served in all possible cases, we scale their utility functions based on their state-

of-charge or electrical distance. 

The downside of assumption A5 would be slightly increased losses compared to the case where 

a multi-period formulation would be used. However, the computational burden of such 

approaches can be significant. As such our overall optimization problem may be written as: 

min
퐬,퐬

⎩
⎪
⎨

⎪
⎧ 푢 { }

∈

+ 푐 |푃 − 푃 | ∶

퐶
퐶 ( )
퐶 ( )

   푖푓 푑푒푣푖푐푒 푖 푖푠 푖푛푓푙푒푥푖푏푙푒
푖푓 푑푒푣푖푐푒 푖 푖푠 푓푙푒푥푖푏푙푒

∈ ⎭
⎪
⎬

⎪
⎫

 ( 5–1) 
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퐶 =

⎩
⎪
⎨

⎪
⎧풆 푑푖푎푔{∠퐕}퐜 퐈 = 퐈

퐈 = 퐘 (퐬 )풆 퐕 퐾푖푟푐ℎℎ표푓푓′푠 푙푎푤푠

|퐜 퐕| ≤ ퟏ 푛푒푡푤표푟푘 푐푎푝푎푐푖푡푦
0.95 ≤ |퐕| ≤ 1.05 푣표푙푡푎푔푒 푎푚푝푙푖푡푢푑푒
|풄 퐕| ≤ 0.02|풄 퐕| 푣표푙푡푎푔푒 푢푛푏푎푙푎푛푐푒⎭

⎪
⎬

⎪
⎫

 ( 5–2) 

퐶 { } =
푢 { } = 푐 { } 1− 퐬( )

퐈( ) = 퐬( , )푒 푐 { } + 푐 { }|퐕| + 푐 { }|퐕|
퐬( ) ∈ {0,1}

 ( 5–3) 

퐶 { } =

⎩
⎪
⎨

⎪
⎧푢 { } = 푐 { }퐬( , )|퐕|
퐈( ) = 퐬( ) + 푗퐬( )

푐 { }|퐕| ≤ 퐬( ) ≤ 푐 { }|퐕|
푐 { }|퐕| ≤ 퐬( ) ≤ 푐 { }|퐕| ⎭

⎪
⎬

⎪
⎫

 ( 5–4) 

Where: 

푁  Set of 푛  devices / users currently connected in system. 

푁  Set of the 푛  nodes in the system. 

퐬 Device / user operating status vector. 

퐬  Voltage regulators tap position. 

푢  Cost function (negative utility) for individual device / user power or energy requirements. 

푐  Penalty associated with deviation from market schedule. 

푃  Power injection of the microgrid to the power system. 

푃  Power injection of the microgrid to the power system as a result of the MO participation 
in energy markets (i.e. unit commitment, economic dispatch mechanisms). Note that with 
푃 = 0 and 푐 ≪ VOLL, the above is reduced to a standard loss / power minimization 
problem. 

퐘  Nodal admittance matrix: this is a function of 퐬 . 

퐕 Complex node voltages 푛 × 1 vector in the a-b-c reference frame. The bounds in this 
case are set at ±5% which is typical for medium voltage networks. For low voltage 
networks these may be further increased to ±10%. Voltage is expressed in rectangular 
coordinates, i.e. 퐕 = 퐕 + 푗퐕 . 

퐈 Complex current injection 푛 × 1vector of devices at a reference frame aligned to the 
voltage angle of the device. 

퐜  Matrix 푛 × 푛  associating current injections with nodes, e.g. 퐜 ( , ) = 퐼 { } if the single 
phase device k is connected at node j and 0 otherwise; where 퐼 { } the nominal current of 
the device. 

퐜  Matrix 3(푛 − 1) × 푛  associating node voltages with branch flows; each equation is 
normalized by the corresponding current limit. 

퐜 , 퐜  Matrix 푛 × 푛  converting a-b-c voltages to corresponding zero and positive sequence 
components. 
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풆  Diagonal matrix 푛 × 푛 , with 풆 ( , ) = 푒 , where 훿  is an estimate of the 푖 − 푡ℎ voltage 
angle, e.g. one possible estimate is: 0, 240, 120 for phases a, b, c respectively with the 
addition of any phase-shifts due to transformer connections. 

c  Curtailment penalty / cost: 
• for inflexible demand it is typically set equal to the value of lost load (assumed to be 10x 
the transmission level marginal energy price). Note that utility gained for discrete devices 
is dependent on whether or not the device is operating. This implies that the system 
operator can e.g. reduce power by operating the system at lower voltage at times when 
power is scarce or expensive. 
• for generators this corresponds to a rough estimate of running costs. 
• for renewable generators it is set to a very low negative value (the latter would indicate 
a loss for utility if e.g. 푃  is met through increased losses) 
• for flexible demand it is set to a very low positive value (again to indicate a loss for utility 
if e.g. 푃  is met through increased losses) 

푐 , 푐 , 푐  Coefficients corresponding to the constant current and constant impedance and constant 
power part of the load respectively. 

휙 Device current angle with respect to voltage. 

In terms of network constrains, the approximate current injection model first presented in Chapter 

2 is used. The constraint set 퐶  describes any type of discrete (on/off) demand operating at a 

fixed power factor, including EVs and flexible appliances if time-linkage constraints are 

neglected. The set 퐶  represents fully controllable in terms of active and reactive power devices 

(e.g. a generator or a power electronics interfaced device). In 퐶 the third equation represents 

power limitations including those related to available solar or wind energy or energy stored in the 

device; while the fourth equation relates to any additional reactive power limitations (e.g. rough 

approximation of the limit due to the field current in a synchronous generator). For the sake of 

simplicity, we have assumed that active and reactive power control capabilities are independent 

but additional linear constraints may certainly be added to represent in greater detail the behaviour 

of a device. 

5.5 Solving for the Continuous Controls 

Even if a problem contains integer variables, the starting point for its solution is typically the 

corresponding continuous relaxation. Algorithm 2-1 provides an efficient way to solve OPF at the 

distribution level assuming transformer tap positions are fixed. With the assumptions of section 

2.8.1 the optimization problem (5-1) to (5-4) takes the form: 

푓∗ = min
퐬,퐬

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 푢 { }

∈

+ 푐 (푃 − 푃 )

+ 푐 ‖{0.95−퐕 } ‖ + 푐 ‖{퐕 − 1.05} ‖
 

+ 푐 ‖{풄∗퐕 −  퐛 } ‖
 

+ 푐 ‖{퐜∗퐕 − 퐛 } ‖
 

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 ( 5–5) 
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퐶∗ = {풆 퐜 퐈 = 퐘 (퐬 )풆 퐕} ( 5–6) 

퐶 ( )
∗ =

푢 ( ) = 푐 ( ) 1− 퐬( )

퐈( ) = 퐬( )푒 푐 ( ) + 2푐 ( ) + 푐 ( ) − 푐 ( ) 퐕
퐬( ) ∈ {0,1}

 ( 5–7) 

퐶 ( )
∗ =

⎩
⎪
⎨

⎪
⎧푢 ( ) = 푐 ( )퐬( )
퐈( ) = 퐬( ) + 푗퐬( )

2푐 ( ) − 푐 ( )퐕 ≤ 퐬( ) ≤ 2푐 ( ) − 푐 ( )퐕
2푐 ( ) − 푐 ( )퐕 ≤ 퐬( ) ≤ 2푐 ( ) − 푐 ( )퐕 ⎭

⎪
⎬

⎪
⎫

 ( 5–8) 

Note that in the equations above the network capacity and voltage limits have been relaxed as 

penalties in the objective function. The reasoning behind this is that if those constraints were tight, 

they could result in significant demand curtailments even for small voltage deviations, or in 

infeasibility (i.e. voltage or line current getting values slightly outside the allowable limits) 

depending on the connected inflexible demand devices or as discrete controls are fixed within an 

integer programming approach. Rather than introducing slack variables we opt to use quadratic 

terms yielding a convex problem with linear constraints. 

In case tap positions are not fixed (5-6) becomes again a non-linear and non-convex set of 

constraints which could imply that the computational advantage from having linear constraints is 

lost. A linear formulation within a mixed integer optimization approach is still possible [232] by 

introducing several transformer models for different tap positions, only one of which can me 

active. However, this would result in a significant increase in the number of required constraints 

and optimization variables. Another approach was proposed in [233] however assumes a radial 

network structure and is accompanied by additional computational burden due to the semi-definite 

formulation. In this work we make the following further assumption: 

A6. Voltage regulators are typically capable of adjusting output voltage within ±10% of the 

primary winding voltage in 32 steps [28]. As such each step would change voltage by 0.625% 

which implies that the maximum voltage error which could result from treating this as a 

continuous variable is about 0.3%. This loss of accuracy does not justify a possibly significant 

computational burden in treating them as discrete variables. Consequently, tap changes will be 

generally treated as continuous. 

In terms of solving the resulting equations we propose a trust region approach which bears some 

similarities with more traditional sequential linear programming approaches [75]. First we modify 

the power flow constraint set as follows: 

퐶∗ =

⎩
⎪
⎨

⎪
⎧풆 퐜 퐈 = 퐘 퐬 , 풆 퐕+

흏(퐘 (퐬 )풆 퐕)
흏퐬 퐬 , ,푽

횫퐬

풔 , − 0.9 ≤ 횫퐬 ≤ 1.1− 풔 ,
|횫퐬 | ≤ Δ ⎭

⎪
⎬

⎪
⎫

 ( 5–9) 
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Where 횫퐬 = 퐬 − 퐬 , . This linear approximation especially in terms of minimization of losses 

will only be accurate for a limited range of tap changes around 퐬 , , as such a trust-region has to 

be established. This is the role of the third constraint. Our solution algorithm 2-1 is then modified 

as follows: 

Algorithm 5-1: Trust-region based OPF 

0.  Initialization: Set 푒  to best available estimate of voltage angles and taps position s ; 
and set 푐 = 10 . Solve (5-5) with fixed tap values subject to (5-6) to (5-8). Let this most 
current OPF solution be denoted as 푃 . 
1.  Tap update: Update 푒  from 푃  and solve (5-5) subject to (5-7) to (5-9). Let this 
solution be denoted as 푃 . 
2.  Convergence check: If |Δs | ≤ 휖  then the algorithm has converged, else go to next 
step. 
3.  Tap update check: Update 푒  and s  from 푃 ; solve an ac power flow and estimate 
the objective function value of (5-5). Let this solution be denoted as 푃 . If 푓∗| <
푓∗|  then set 푃 = 푃  and go to step 1, else go to step 4. 
4.  Trust-region update: Set Δ = 0.5 min{max|Δs | }. 
5.  Reference-frame update: If for 푃  푚푎푥{푖푚푎푔(V)} > 휖 , update 푒  from 푃  and 
update 푃  (similar to O1-step 2). Go back to step 1. 

 

The reasoning behind applying the trust-region approach to the approximate formulation, rather 

than using an exact linearization, is that this significantly simplifies any considerations related to 

the trust-region itself (i.e. the trust region needs to be defined based only on similarly scaled tap 

change variables). A notable advantage is also that issues related to feasibility in terms of voltage 

constraints, as e.g. in [94], are not a concern. To test the method’s performance, we use the same 

IEEE distribution feeders test cases of Chapter 2, with the only difference being that taps are now 

optimized. The results are summarized in the following table. 

Table 5-1: Performance of algorithm 5-1 and tap-changers approximation errors: 
(voltage bounds ±10; tap are optimized for power minimization) 
 Solution 

time (sec) 
Iterations Max. tap 

rounding error 
Power 

reduction 
IEEE-13 0.32 5 0.0029 -3.78% 
IEEE-34 0.89 4 0.0038 -5.16% 
IEEE-37 0.49 4 0.0030 -8.03% 
IEEE-123 2.62 16 0.0031 -4.42% 

 
The following points are of interest: 

• Given that our formulation includes constant impedance devices the total demand is actually 

reduced compared to the base case through the action of the tap-changers which reduce voltage 

at the load (losses do not significantly vary and remain slightly above 3%). 
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• The actual difference between the nearest integral tap value is negligible as is the associated 

rounding error which justifies assumption A6. Note that given the penalties for voltage deviations 

introduced in the objective function, issues related to feasibility in terms of voltage constraints, 

as e.g. in [94], are not a concern. 

• The solution time is acceptable for close to real-time applications. This could further be 

improved through a more efficient constraint management scheme between successive iterations 

and possibly the optimization solver itself. For larger systems if solution time constraints apply it 

is possible to simply stop algorithm 5-1 at any iteration and a feasible solution would still be 

recovered. 

5.6 Integer Programming for OPF 

A comprehensive review of mathematical programming methods suitable for solving mixed 

integer problems may be found in [234]. The basic principle behind any mathematical solution is 

a sequence of solving relaxations to the original problem, followed by appropriate enforcement 

of the relaxed constraints. Typically available methods are variants of branch & bound (i.e. 

constructing a tree with all possible solutions by solving successively tighter versions of an initial 

continuous relaxation of the problem) and cutting planes methods (i.e. solving a successively 

tighter optimization problem through the addition of appropriate constraints) or heuristics. 

5.6.1 Branch & Bound (BB) 

This method is a systematic way to enumerate efficiently possible solutions of the optimization 

problem. Consider the following generic integer problem: 

푚푖푛
퐱

{푓(퐱):퐡(퐱) = 0,퐱 ∈ ℤ } ( 5–10) 

Where n is the length of vector x. The underlying algorithm is simple, e.g. [235]: 

Algorithm 5-2: Branch & bound 

0.  Relax all discrete variables into continuous (i.e. allow 퐱 ∈ ℝ) and solve the resulting 

continuous relaxation. 

1.  For the given solution select an element of x that is not an integer and consider the two 

nearest acceptable integer values, i.e. 퐱 ,퐱 . Create and solve two new subproblems, by 

adding the constraint 퐱 ≤ 퐱  and 퐱 ≥ 퐱  respectively. This is the so-called branching 

process. 

2.  Repeat step 1 for any given solution. 
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This process generates a tree with each node being a solution to some form of continuous 

relaxation of the initial problem. It should be clear that if any node yields an infeasible problem 

then that node may be ignored and no further branching is required. The same is true if a node 

yields an objective function value that is higher than that of any known feasible solution to the 

original problem. The reason is that, as a particular node’s problem is further constrained to reach 

an (integer) feasible solution, its objective function value will only increase. Overall, the 

performance of the branch and bound method depends upon three important factors: the solution 

speed of individual continuous relaxations; the tree generation or branching selection process; 

and the ability to find quickly an initial feasible solution to the problem as this would allow 

pruning early-on certain branches of the tree. 

If certain discrete variables are meant to take discrete values which differ little from one another, 

solving the continuous relaxation and fixing these into the closest integer values could actually 

produce the optimal solution. For example, reference [236] in terms of tap-changer controls 

suggests solving simply a continuous relaxation and then fixing the taps to the nearest position. 

The authors claim that the effect of discretization is negligible, based on their results on a 1500-

bus transmission network. This is in accord with out selected approach to handling tap-controls 

as presented above. 

There are certain papers which formulate and solve mixed integer problems to optimality (or 

imply the use of a BB method through commercial packages). For example, [237] is focused on 

the control of small microgrids considering both discrete and continuous controls of generation 

(conventional and photovoltaic) and demand in a multi-period mixed integer programming 

formulation which involves a single power balance constraint based on point-estimates for 

uncertain quantities. The solution appears fast enough to apply in a rolling horizon fashion, 

however it only has to deal with a limited number of discrete variables (e.g. there is just one diesel 

generator). 

A more solid mathematical formulation for the distribution voltage control problem may be found 

in [238]. The proposed formulation corresponds to a mixed integer problem which minimizes the 

weighted deviation of control means with respect to current values (decision variables include 

switches for network reconfiguration). The formulation uses non-linear forms of balanced ac 

equations looking at a single period in time. The problem is centrally solved using the BB method, 

which as stated is able to find a feasible solution within a few 10s of seconds, but might require 

significant time (>600s) to reach the optimum. Note that in this problem the decision variables 

are again rather limited to a few capacitor banks and a number of reconfiguration switches. 
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5.6.2 Cutting Planes 

This class of methods iteratively introduces linear constraints (cuts) in the continuous relaxation 

original problem. These cuts are intended to exclude non-integral optimal points from the feasible 

set of the modified relaxation, eventually restricting the remaining optimal points to an integer 

points. The cutting planes method can be very efficient when used within a branch and bound 

approach [239]. It should be noted that these cuts are easier to generate for linear programming 

problems. In OPF types of problems a cutting planes approach is used in [240], which involves 

the following three basic steps: 

Algorithm 5-3: Cutting planes for discrete OPF 

0.  Solve a continuous relaxation of the initial problem; 

1.  Linearize the problem at that initial feasible point; 

2.  Solve the linearized problem through an IPM. If the discrete variables do not take 

feasible values then find the corresponding Gomory cut, and resolve the relaxation with these 

additional constraints. 

 

The authors of [240] indicate that in case the linearized problem is degenerate or has multiple 

optimal solutions it might not be possible to generate the aforementioned cuts, but propose a 

suitable workaround. 

5.6.3 Feasibility Heuristics 

One popular approach for finding a feasible integer solution is the so-called feasibility pump 

proposed in [241]. Considering the generic problem (5-10) the method involves the following 

simple steps: 

Algorithm 5-4: Feasibility Pump 

1.  Given an integer point x∗ solve the continuous relaxation of the initial problem 

minimizing instead the L1 norm from the given integer point, i.e. |x − x∗|. If the norm is 

equal to 0 then a feasible solution has been found, else go to step 2. 

2.  Round the result to the nearest integer, update x∗ to that value and go back to step 1. 

 

The underlying idea behind the method is that two (hopefully converging) trajectories are 

generated: one that satisfies the constraint feasibility and another which satisfies the integral 

requirements. However, there is a possibility that the method can enter a cycle when the rounded 

solution of step 2 is equal to the initial integer point at the start of step 1. In that case one possibility 

is a random perturbation of the integer point. 
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Another type of feasibility heuristics is the so called diving approach. The idea behind this type 

of heuristics is to explore quickly a branch of the BB tree in the hope that this will lead quickly 

to a feasible solution. A simple heuristic [242] is simply fixing a single discrete variable to its 

closest integer value and resolving the resulting continuous relaxation; and repeating this process 

until either a feasible solution is found, or the relaxation becomes infeasible or the objective 

function value becomes less that the best known integer solution. In terms of branching variable 

selection, one possibility is to select the variable with the smallest distance from an integer value. 

Another possibility is selecting the variable with the smallest ratio: Δ푥 + 10 /(퐴 + 1) 

where A is the number of functions for which the variable x exists. The reasoning is that hopefully 

the more rows affected by the rounding, the larger the number of variables that will be at their 

bounds in future solutions of the resulting relaxations. In order to avoid resolving a relaxation 

multiple times one could fix several discrete variables at the same time, or prioritise the fixing of 

variables that appear in non-linear terms so that the resulting subproblem becomes linear. 

An example of approaches similar to diving applied to power systems may be found in reference 

[243] which reviews a variety of related heuristics. The general diving algorithm applied to non-

linear OPF problems may be summarized in the following table: 

Algorithm 5-5: Diving approach for OPF 

1.  Solve the continuous relaxation of the original problem and linearize around the 

solution. 

2.  For each discrete variable estimate linearly the change in the objective function and 

constraints and calculate the value of a merit function which is a weighted sum of the two 

aforementioned changes. 

3.  Rank the variables based on their merit function values. 

4.  Pick any number of the top ranking variables which are not integral at the solution and 

set them to an appropriate discrete value. 

5.  If all variables are discrete then a solution has been found, else go to step 2. 

 

The above is essentially a greedy search heuristic. Another simpler diving variant (effectively a 

progressive round-off approach) may be found in [244], in each iteration a number of variables 

are fixed to their nearest discrete values followed by the solution of a linear relaxation. Note that 

in [243] a basic comparison may be found between: the basic round-off to the closest discrete 

solution approach; the progressive round-off; the sensitivity based approach of algorithm 5-4; a 

Lagrange multipliers based approach (which solves a continuous relaxation which allows the 

discrete variables to move within a very limited range); and a successive linear approximation of 

the original continuous OPF problem type of approach (where successive mixed integer linear 
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problems are solved via branch & bound). The concluding result of that paper is that a merit 

function approach based on sensitivities is the most appropriate for handling discrete variables in 

OPF. 

A somewhat similar to the one above approach for handling discrete controls (e.g. capacitor bank 

switching) is presented in [245] where using a linearized formulation, a continuous relaxation is 

solved first, and then the discrete controls which did not initially take a discrete value are set to 

their nearest discrete value based on their effect on the objective function. The latter is easy to 

estimate given the linear formulation. This approach can yield quickly feasible but sub-optimal 

solutions. 

Finally reference [179] proposes a simple heuristic approach for EV charging. The proposed 

algorithm solves a full ac power flow, computes cost sensitivities, builds a priority queue for 

vehicle charging based on those sensitivities, and produces a solution by serving as many vehicles 

as the network constraints allow following the priority queue. As new vehicles arrive the 

algorithm is rerun. A simpler heuristic bearing some similarity to this approach is also proposed 

by the authors in [246]. While no clear indication of performance in terms of optimality is given, 

the proposed approach is generally claimed to be fast in reaching a solution. 

An interesting observation here is that quite often in terms power systems applications, discrete 

optimization starts (and stops) with a good diving feasibility heuristic. It might very well be that, 

in problems with a large number of discrete variables, that is all that is needed to produce a 

reasonably good for practical purposes solution, within given time constraints. 

5.6.4 Improvement Heuristics 

One such heuristic is the local-branching approach first proposed in [247] which involves the 

following steps: 

Algorithm 5-6: Local branching 

1.  Given a feasible solution 푥∗ generate two new subproblems by adding the constraints 

∑|푥 − 푥∗| ≤ 푘 and ∑|푥 − 푥∗| > 푘 + 1 respectively. 

2.  Solve the left (first) subproblem via a BB method. If a new improved solution is found 

update 푥∗ to that value go back to step 1. If no improved solution can be found solve the 

right (second) subproblem via BB. 

 

The parameter k essentially sets the number of variables that could change state and should be 

selected in such a way that the left (first) branch would be a smaller mixed integer problem, and 

easier to solve than the original one. As such it may be expected that through this procedure one 

can reach good quality solutions much faster. 
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A variant of the local branching technique was proposed in [248]. The approach here follows the 

reasoning that, given a feasible integer solution and any solution to a continuous relaxation of the 

problem, then the former can be improved through the following steps: 

Algorithm 5-7: Relaxation induced neighbourhood search 

1.  Given a feasible solution 푥∗ and the result of the continuous relaxation at any point of 

a BB tree, fix the discrete variables that have the same values in the current continuous 

relaxation and the available feasible solution. 

2.  Solve a mixed integer subproblem for the remaining discrete variables, without 

necessarily taking into account bounds added to the original problem due to branching. 

Solution of this subproblem may been limited in terms of nodes depth. 

 

This approach would be applied within a BB method once per certain number of nodes. The 

author’s results indicate that it can yield improved solutions faster than local branching or guided 

diving. However, whether or not the method’s results directly affect the branching process is not 

clarified in the paper. 

Both of these methods attempt to create smaller mixed integer subproblems which may be solved 

to optimality faster than the original problem, yielding fast high quality solutions which may 

allow further pruning of the BB tree. Nevertheless, in terms of application to the microgrid 

dispatch problem, the benefits they might offer are rather unclear as even for relatively small 

neighbourhoods a significant number of OPFs might be required for the solution of the local 

subproblems. 

5.6.5 Other Approaches 

Reference [249] proposes introducing penalties for discrete controls moving into non-discrete 

settings. More specifically the algorithm involves the following: 

Algorithm 5-8: Penalty based method for discrete variables fixing 

1.  Formulate the continuous relaxation of the initial problem; 

2.  Perform a Newton step towards the solution of the first order optimality conditions; 

3.  If the changes in discrete variables are higher than a certain tolerance go to step 2, else 

introduce / update penalties for discrete controls and go to step 4; 

4.  If for any discrete control the deviation from its nearest discrete value is less than a 

certain tolerance, and the power mismatch at the particular bus where it is connected is 

sufficiently small (i.e. the Newton method has practically converged for that particular bus) 

then fix the control to its nearest discrete value. 
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5.  If all discrete controls are fixed and the mismatch in the optimality conditions is less 

than a given tolerance then the algorithm has converged, else go to step 2. 

 

Note that the penalties introduced have a quadratic (concave) form and as such they are non-

convex. To ensure convergence the authors linearize the penalties at each point and adjust their 

magnitude when necessary based on certain empirical rules. A similar approach is presented in 

[250] discussing further these issues within the context of an interior point method. In that work 

the penalty magnitudes are however maintained at a fixed value. 

An ordinal optimization based approach is presented in [251] which is effectively a heuristic that 

tries to ensure getting to one of the best available solutions. The proposed algorithm involves the 

following steps: 

Algorithm 5-9: Ordinal optimization based method 

1.  Solve a continuous relaxation of the initial problem; 

2.  Select an arbitrary number of possible solutions by setting discrete controls to their 

closest integer values. 

3.  Determine the change in objective function introduced due to the above adjustment 

and rank the solutions accordingly. 

4.  Select an arbitrary number of the top ranking solutions, fix the discrete variables and 

solve the now continuous optimization problem. The solution finally selected is as might be 

expected the one with the best objective function value. 

 

An issue here could be that a significant number of OPF solutions could be required to reach a 

sufficiently good solution. 

5.6.6 Modified Penalty-Based Method 

Considering the penalty methods discussed in the previous subsection, intuitively the introduced 

penalties would push variables towards their nearest discrete values, while allowing sufficient 

flexibility for some of them to completely change state so that system constraints are satisfied. In 

the present work we propose the use of a penalty based approach for fixing the discrete controls, 

however rather than introducing a penalty in the objective function, we introduce an inequality 

constraint on the L1 norm of deviations from the nearest integer solution, i.e.: 

Algorithm 5-10: Penalty-based feasibility heuristic approach 

1.  Relax all flexible discrete devices in set 퐶∗  to continuous as in set 퐶∗  (with 
appropriate constraints in 푠 to account for the fixed power factor and/or 
generation/consumption only capability). Assume inflexible demand fixed to ‘on’ as it is 
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reasonable to assume that the network is designed to serve it. Solve the resulting approximate 
OPF using O2. If there are voltage violations, then also relax inflexible demand and repeat 
the solution. 
2.  Let 푥∗ denote the solution of this problem with respect to the discrete variables, 푥∗ the 
nearest integer solution and let Δ푥 = |푥∗ − 푥∗|. Resolve the relaxed problem using 
algorithm O2 with the additional constraint |푥 − 푥∗| ≤ 휌Δ푥, where 0 < 휌 ≤ 1. 
3.  Update 푥∗, Δ푥. If Δ푥 ≤ 휀 then a feasible solution has been found, else go back to 1. 

 

The reasoning behind our approach is that a penalty in the objective function would either be too 

small (as such it would have little impact on the outcome) or significantly large (as such it would 

directly force the solution to the nearest integer). On the contrary the inequality constraint should 

force the variables to which the solution is less sensitive to, to their nearest discrete values, while 

allowing for the remaining to change state so that there is no significant deviation in terms of 

objective function value. The parameter 휌 may be used to adjust the expected convergence speed 

(i.e. a lower value would imply less iterations but possibly less optimal solution). 

Our test cases involve modified versions of IEEE test feeders, where we have introduced at each 

node one EV per 6kW of demand (assuming this is the average household consumption), set 푃  

at 1.5 times the original feeder demand (i.e. not all EVs can be covered at the current time step) 

and 휌 = 0.4. The following table summarizes the test results: 

Table 5-2: Performance of algorithm 5-10 
 Tap controls 

number 
Added EVs 

number 
Solution 

time (sec) 
IEEE-13 3 592 7.7 
IEEE-34 9 316 4.3 
IEEE-37 3 409 4.9 
IEEE-123 9 623 14.9 

 

The cases studied were characterized by a large number of discrete controls of small individual 

size. As such the discrete solution was generally close to the initial continuous relaxation. Of 

course for problems where a limited number of large controls is also available, then the proposed 

method could be used as a local search in a branch and bound algorithm at the nodes of which the 

large controls are fixed to discrete values. Typically, given that this problem is assumed to be 

solved every few minutes, a good initial point would generally be available. With this taken into 

account the presented solution times could be significantly shorter. 

5.7 Conclusions & Further Questions 

The overall changes in our framework our summarized in Fig.5-2, and effectively relate to the 

centralized solution approach of the microgrid problem. It should be noted that in terms of integer 

device controls our approach is essentially a heuristic and cannot guarantee the actual optimum. 
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Nevertheless, most current literature appears to indicate that for real-time applications a full 

branch & bound solution might be untenable. Especially if a large number of discrete device 

controls is involved. Furthermore, given the uncertainty that is prevalent in distribution (i.e. 

network parameters, exact power drawn from individual devices) an exact optimal solution in 

terms of losses might be of little practical interest. Losses at distribution may be a problem of 

infrastructure rather than energy management. As such, a reliable heuristic that guarantees a 

‘good’ feasible solution in whatever time is available might be all that is needed here. After all, 

that is also a fundamental component of any branch & bound method that looks for the actual 

optimum. 

 

 

Fig.5-2: Conceptual energy management framework. The arrows represent transmission of 
information. This framework and presented solution approach may be extended to take 
particular market rules and penalties into account. 
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6  
Conclusions 

The work presented in the previous subsections constitutes a first step towards building an energy 
management framework for future energy networks with significant flexible resources penetration 
and an extensive integrated telecommunications infrastructure. But there are several more 
questions that need to be answered. The following paragraphs provide an overview of the 
presented work and identify what needs to be done next. 

6.1 A Brief Summary 

The major contribution of this work is the development of a novel general framework that 

addresses the two basic shortcomings of today’s energy management mechanisms: 1) managing 

flexible devices (such as EVs, etc.) located at any level in the power system and coordinating 

them over time; 2) optimizing energy management in the system subject to distribution network 

constraints. An important and perhaps most distinctive characteristic of our approach is that each 

ensuing optimization problem is clearly associated with a specific scope and time-frame of 

application. The proposed framework consists of two basic close to real-time mechanisms / 

optimization problems: an extended Economic Dispatch and a newly formulated Microgrid 

Dispatch. Within each of these mechanisms, through the proposed formulations and solution 

approaches, several smaller research contributions arise from the present work. More specifically, 

within the context of ED: 

 (Chapter 3) One fully parallelizable distributed optimization technique (ADMM) has been 
applied to the solution of the optimal power flow, which to our knowledge had not been used 
before in the full ac problem. 
 (Chapter 3) The ADMM method is one of the most promising distributed optimization 

techniques for decentralized solution purposes and quite representative of a larger class of relevant 
methods. The investigation carried out with regards to the extent to which decentralization can be 
pushed, both in terms of network decomposition and user disaggregation provides insight into 
how these methods work and how they could be used. 
 (Chapter 3) Different decomposition structures for the centralized problem were investigated 

and a two-level decomposition scheme was proposed for decentralized operations in the power 
system. This would allow combining different optimization techniques based on the 
characteristics of each subproblem, and could significantly improve convergence. 
 (Chapter 4) A new multi-period formulation for the economic dispatch problem was proposed 

based on the uncertainty associated with each node (or sets of nodes) in the system. Within this 
context we redefined the concept of the microgrid as a collection of devices / part of the network 
for which a reasonably accurate power injection forecast is feasible. 
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Furthermore, with respect to the MD mechanism: 

 (Chapter 2) We propose a novel formulation and solution approach for optimal power flow 
problems on unbalanced ac networks. This approach is based on the observation that voltage 
angles in such networks are typically small, and uses a number of appropriate voltage reference 
frame transformations to ensure accurate results. 
 (Chapter 5) We build a trust-region based approach to further optimize tap changing positions. 

This iterative approach solves a series of convex, largely linearly constrained, subproblems 
compared to the non-linear original problem. 
 (Chapter 5) We propose a simple penalty based approach for determining discrete controls 

settings. This approach is efficient when dealing with problems where a large number of small 
discrete controls are available, and as such the optimal integral solution may be expected to be 
quite close to that of the continuous relaxation. 

Overall our framework may also be summarized in the algorithmic flowcharts of Fig.6-1. As may 

be seen apart from the general contributions mentioned above several other issues were involved 

and investigated, namely: the formulation of balanced ac network constraints; representation of 

unbalanced ac network constraints and relevant power quality requirements; mathematical 

methods for the centralized solution of optimal power flow problems; and mathematical methods 

for integer problems. In their full detail these are all subjects with much research potential. 

As it stands our framework puts the application of decentralized methods in power systems into 

perspective, and provides a basic reference formulation and solution to the optimization problems 

associated with close to real-time energy management. The presented results throughout this work 

appear promising in terms of a possible practical application of such an approach. However, as 

we discuss in the following, several more steps need to be taken towards that goal. 

6.2 Further Improvements & Extensions 

The flowcharts of Fig.6-1 illustrate the problems solved as part of this work, but also indicate 

improvements that could be made. Following is a list of the latter along with a brief explanation: 

 Modelling aggregate microgrid flexibility (1): The model we presented in Chapter 4 is one 

practical approach for modelling this flexibility when considering mainly renewables and 

unidirectional EVs. But an extension would be required to take into account any smart household 

appliances, storage, or any other flexible devices. 

 Network partitioning for optimization (2): In this work we used a spectral partitioning 

approach in order to split the network, but it may be that for the purpose of distributed 

computations more efficient approaches are available. This however might be a question of 

mostly academic interest. 

 Contingency constraints (2): Practical transmission-level optimisation problems typically 

include an additional set of constraints which ensure safe system operation in case of a component 

outage. This presupposes identifying a subset of important (problematic) contingencies and 
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extending the OPF formulation to account for the actions that need to be taken if these occur. This 

would lead to an even larger transmission network subproblems which would need to be 

efficiently solved, but also make any attempt at network decomposition much harder. 

 Constraint management (3), (4), (5), (6): Given that decentralized approaches are iterative 

techniques, introducing a more efficient management of active constraints within these 

subproblems could greatly improve computational efficiency. 

 Auxiliary services (reserves) (3), (4), (5), (6): Apart from reactive power, another quantity 

that is of interest in OPF problems is reserves, i.e. how much power a device could additionally 

supply (or withdraw) from the network in case that is urgently needed (either due to demand / 

renewables variations or certain faults). This is one additional parameter that could be 

incorporated into the decentralized framework. 

 Communications reliability & delays (7), (9): This is an important question that has not been 

considered in detail. As it should be clear from the preceding chapters, communications latency 

 

Fig.6-1: Algorithmic flowcharts summarizing the parts involved in our proposed energy 
management framework (top) and the interior point method developed and used for the 
solution of the vast majority of optimization subproblems in this work (bottom). The numbers 
indicate smaller individual problems. 
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can have a big impact in the viability of any decentralized scheme. Modelling more accurately 

the associated delays and evaluating their impact is a subject of particular interest. 

 Managing microgrid uncertainty (1), (11): Uncertainty in our scheme is managed in two 

steps: when building the aggregate flexibility model, and when formulating the microgrid 

dispatch problem. However, one aspect that has not been fully explored in this work is how these 

two different formulations interact. 

 Improving the trust-region mechanism (13), (14), (16): Within this work we use the interior 

point method for most individual subproblems. However, it may be that other algorithms could 

perform better in these types of problems, e.g. by taking better advantage of a warm-start. In 

addition, instead of solving a second exact subproblem for evaluation of the tap updates, there 

might be an approximate calculation that could be used to speed up solution times. 

 Solving for discrete controls (17): The simple penalty approach proposed here will work 

effectively with problems where a variety of smaller discrete controls contribute to the solution, 

as in the cases tested. However, if a number of high impact controls were available then this 

approach might not necessarily produce the best possible solution and alternative methods might 

have to be investigated. However relevant testing requires adequately good real-world test cases. 

 Improving the interior-point solver: While this general purpose solver works adequately well, 

how it could be improved is an important consideration. Given the vast number of individual 

subproblems that have to be solved even a small improvement here, could mean a significant 

improvement for the overall scheme convergence time. 

These summarize several considerations which could help towards getting the proposed 

framework closer to practical application. Of course the hardware part for its implementation is 

an open question by itself. Once all possible improvements on the power systems side have been 

made, the scope of the present work may be directly extended beyond power systems in their 

classical form, i.e. towards larger scale optimization problems integrating also other types of 

energy systems. 
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