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Abstract
Motivation: Genetically engineering food crops involves introducing proteins from other species into 
crop plant species or modifying already existing proteins with gene editing techniques. In addition, 
newly synthesized proteins can be used as therapeutic protein drugs against diseases. For both 
research and safety regulation purposes, being able to assess the potential toxicity of newly 
introduced/synthesized proteins is of high importance.
Results: In this study, we present ToxDL, a deep learning-based approach for in silico prediction of 
protein toxicity from sequence alone. ToxDL consists of (1) a module encompassing a convolutional 
neural network that has been designed to handle variable-length input sequences, (2) a domain2vec 
module for generating protein domain embeddings, and (3) an output module that classifies proteins 
as toxic or non-toxic, using the outputs of the two aforementioned modules. Independent test results 
obtained for animal proteins and cross-species transferability results obtained for bacteria proteins 
indicate that ToxDL outperforms traditional homology-based approaches and state-of-the-art machine 
learning techniques. Furthermore, through visualizations based on saliency maps, we are able to verify 
that the proposed network learns known toxic motifs. Moreover, the saliency maps allow for directed in 
silico modification of a sequence, thus making it possible to alter its predicted protein toxicity.
Availability: ToxDL is freely available at http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/. The source code 
can be found at https://github.com/xypan1232/ToxDL.
Contact: 2008xypan@sjtu.edu.cn 
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Developing genetically engineered food crops involves modifying an 
already existing protein or introducing proteins from one species into a 
crop plant species, usually with the goal of improving agricultural traits 
such as yield, pest resistance, and herbicide tolerance (Hammond, et al., 
2013). Gene editing technologies are widely used to modify crop genes. 

For example, CRISPR/Cas12a has been used to successfully modify a 
broad range of plant species (Bernabe-Orts, et al., 2019). In addition, 
newly synthesized proteins have emerged as therapeutic protein drugs 
against diseases (Vlieghe, et al., 2010). For both research and regulation 
purposes, being able to assess the potential allergenicity and toxicity of a 
newly introduced or gene-edited protein is of high importance, so to 
ensure food, drug, and environmental safety.
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To date, the specific determinants for pathogenic effects are still unknown 
in many proteins. Indeed, experimental methods based on animal trials to 
verify protein toxicity are time consuming and costly. Moreover, animal 
trials are of limited value: due to inter-species differences and different 
disease models, the results obtained typically offer little guidance to 
human toxicity reactions (Mumtaz and Pohl, 2012). An in silico method 
to assess protein toxicity effects in animals or humans could narrow down 
sets of candidate proteins that need to be experimentally validated, thus 
preventing expenditure of resources on unviable candidate proteins.
Traditionally, potential toxicity is computationally determined by using 
sequence similarity tools, such as BLAST (Altschul, et al., 
1997), inferring protein toxicity from homologous sequences (Negi, et al., 
2017). However, this strategy has a number of limitations:

- The protein of interest is required to have homologous toxic 
proteins.

- Global sequence similarity is used, despite the fact that protein 
toxicity is mainly determined by local domain sequences 
(Negi, et al., 2017).

- An arbitrary sequence similarity or e-value cutoff is required.

Machine learning models can be used to predict protein toxicity with a 
high accuracy, also making it possible to identify biological knowledge 
related to toxicity. For example, ToxinPred (Gupta, et al., 2013) leverages 
a support vector machine (SVM) to classify toxic peptides using features 
derived from various peptide properties. ClanTox, on the other hand, 
analyzes short animal toxins by making use of boosted classifiers that take 
as input 545-D sequence-derived features (Naamati, et al., 2009).
Over the past few years, deep learning has achieved remarkable results in 
various domains, including computer vision and genomics (Eraslan, et al., 
2019; Pan, et al., 2018). Convolutional neural networks (CNNs), in 
particular, have proven to be highly effective when dealing with spatial 
locality in data (Lecun, et al., 1998). Neural networks consist of multiple 
layers of abstraction, allowing for the automatic learning of both low- and 
high-level features from a vast amount of training data. This bypasses the 
need for manual feature engineering using human expertise. Deep learning 
has already been applied for predicting drug and environmental chemical 
toxicity, hereby outperforming other computational models (Klambauer, 
et al., 2017). In addition, deep learning has been demonstrated to be 
powerful in distinguishing venom proteins from non-venom proteins 
(Cole and Brewer, 2019).
Many proteins with experimentally verified toxic effects have already 
been collected, for instance by the Animal Toxin Annotation 
Project (Jungo, et al., 2012) in UniProt, where 6,164 animal toxin proteins 
from different species have been reviewed and curated to date, and by the 
concerted effort presented in (Negi, et al., 2017), where curated toxic 
proteins have been clustered to identify groups similar to protein families 
in the Pfam database (El-Gebali, et al., 2019), so to be able to detect a 
functional sequence signature for toxic proteins.
To represent proteins with more information than just sequence, functional 
domain information can be attached. Indeed, domains co-occurring in 
proteins tend to have more similar functionality than domains occurring 
in separate proteins (Menichelli, et al., 2018). Domain information for 
predicting protein function has been used before. GOLabeler (You, et al., 
2018) for instance integrates 33,879 binary features to predict gene 
ontology terms, representing the presence of a large number of domains 
with other component models. However, GOLabeler assumes that the 

distance between any two domains is the same. This is unrealistic, as co-
occurring domains should enjoy a higher similarity, since most protein 
domains tend to appear with a limited number of other domains on the 
same protein. Thus, a better representation of domains might be beneficial. 
In addition, the use of high-dimensional one-hot encoded domain features 
may lead to model overfitting, especially when the number of training 
examples is much smaller than the number of features.

In this study, we present ToxDL, a deep learning-based approach that 
is effective in distinguishing between toxic and non-toxic proteins using 
both sequence information and protein domain knowledge directly derived 
from that sequence. There are three main modules in ToxDL. The first 
module builds a CNN on top of the sequence, encoded as a one-hot matrix. 
The second module consists of domain2vec, which generates protein 
domain embeddings using a Skip-gram model (Mikolov, et al., 2013). 
After concatenating the outputs of those two modules, a third module, 
consisting of a fully connected layer and an output layer, generates a 
toxicity probability. Considering that protein sequences have variable 
lengths, but that neural networks typically work with a fixed input size, 
we evaluate several techniques to enable ToxDL to handle this 
discrepancy. Additionally, we infer toxicity motifs from the trained CNN 
models, leveraging attribution methods to highlight the local 
subsequence(s) that contribute(s) to the protein toxicity prediction.

2 Methods
In this section, we first describe the datasets constructed for benchmarking 
purposes. We then introduce domain2vec for learning protein domain 
embeddings. Next, we detail the network architecture of ToxDL. Finally, 
we describe how to infer toxic domains using the trained models.

2.1 Benchmark dataset construction
Toxic proteins were downloaded from the Animal Toxin Annotation 
Project (Jungo, et al., 2012) in UniProt, where 6,164 animal proteins have 
been annotated as toxic (May 2019) (that is, the aforementioned proteins 
have been annotated with the function toxin activity). All of these 
reviewed toxic proteins were used as positive samples. From the animal 
species studied in the aforementioned project, we randomly extracted 
6,164 reviewed proteins and 903 venom proteins that have not been 
annotated as toxic in UniProt, using these 7,067 proteins as negative 
samples.
For the creation of a training set, about 80% of the obtained toxic and non-
toxic proteins were selected in a random way, and the remaining proteins 
were used for the creation of a validation set and an independent test set. 
To reduce the impact of sequence similarity, we used cd-hit-2d (Fu, et al., 
2012) to remove sequences from the test set with a sequence similarity of 
at least 40% with any sequence in the training set (40% is the minimum 
value for cd-hit-2d). Furthermore, we held out 10% of the original training 
set as a validation set, from which homologous sequences were removed 
in the same fashion. That way, we obtained an initial validation set of 309 
non-toxic proteins and 25 toxic proteins, and an initial test set of 754 non-
toxic proteins and 59 toxic proteins.
To further reduce the sequence homology, we used Pfam clans (El-Gebali, 
et al., 2019)  to ensure the absence of proteins with domains from the same 
Pfam clans between the above sets. To do so, we first downloaded the 
Pfam clans from 
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/Pfam-
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A.clans.tsv.gz, subsequently recording all Pfam clans in the training set. 
We then removed proteins in the validation set and the test set with 
domains belonging to the clans in the training set. After doing so, we 
obtained a test set of 59 toxic proteins and 670 non-toxic proteins, and a 
validation set of 25 toxic proteins and 277 non-toxic proteins, as shown in 
Table 1. In this context, we did not remove similar proteins in the training 
set: such proteins were used as augmented samples, thus making it 
possible to obtain more training samples, a strategy that has shown to be 
highly effective for training deep learning models (Cui, et al., 2014).
In order to test the cross-species transferability of our approach towards 
protein toxicity prediction, we constructed a strictly independent test set 
only consisting of bacteria proteins. The bacteria test set can be directly 
downloaded from BTXpred (Saha and Raghava, 2007), containing 183 
toxic proteins and 500 non-toxic proteins. Furthermore, we used cd-hit-2d 
to remove sequences from the bacteria test set that are similar to sequences 
in the entire animal set, applying a similarity cutoff of 40%.
A summary of the different datasets used for benchmarking can be found 
in Table 1. Following the removal of homologous sequences, a further 
imbalance between the number of positives and the number of negatives 
is introduced, which makes for a more realistic setting.
Table 1. Overview of the different datasets used for benchmarking.

Dataset # of positives # of negatives
Training set (animal proteins) 4,413 5,671
Validation set (animal proteins) 25 277
Test set (animal proteins) 59 670
Test set (bacteria proteins) 180 382

2.2 Protein domains
To integrate information about protein domains into ToxDL, we 
downloaded all UniProt protein domains generated by InterProScan 
(Jones, et al., 2014), providing us with 126,780,787 proteins and 36,713 
domains. These were used for training a Skip-gram model to automatically 
learn protein domain embeddings.
We considered domains with toxin or toxic in their name as toxic. The 
resulting 269 domains, which can be downloaded from 
www.csbio.sjtu.edu.cn/bioinf/ToxDL/Data.htm, were used to check 
whether they can be located in the vicinity of each other in the embedding 
space generated by domain2vec.
Furthermore, we downloaded the HMM models from Pfam v32.0 (El-
Gebali, et al., 2019) for use in our different baseline methods. In total, we 
obtained 34,353,433 Pfam domains, with 75 of these Pfam domains 
having toxin or toxic in their name.

2.3 domain2vec
Most often, one protein contains multiple associated domains that 
determine its function. Some domains may frequently co-occur to function 
together. For example, the PAZ and PIWI domains are often found 
together (Tahbaz, et al., 2004). These co-occurring domains should be 
similar in the embedding space (that is, they should be close to each other). 
However, when using a traditional one-hot vector to represent individual 
domain presence or absence, the distance between all domains is equal. 
To obtain a more in-depth representation of protein domains, we trained a 

Skip-gram model to learn domain embeddings, representing each domain 
by a vector of continuous values.
Given is a set of proteins, with each protein having a number of 
domains . Here, we treat each domain as a word, each protein 𝑑1, 𝑑2…,𝑑𝑛

as a sentence, and all UniProt proteins as the corpus. The Skip-gram model 
trains embeddings based on the co-occurrence of domains within a context 
window, by maximizing the following objective function:

  (1)
1
𝑁∑N

i = 1
∑

-s ≤ j ≤ s, j ≠ 0log p(dt + j│dj; θ)
In the expression above,  denotes the number of proteins,  is the context 𝑁 𝑠

window size, and are the weights of the model. We would like to refer θ 

the interested reader to (Mikolov, et al., 2013) for more details about the 
above objective function.
Once training is finished, the final embedding vector that corresponds to 
a given protein is calculated by averaging the embeddings of all domains 
found in this protein.

2.4 Network architecture
The CNN module of ToxDL takes a one-hot encoded protein sequence as 
input, and subsequently performs convolutional, dropout, and max 
pooling operations. Next, we make use of a specialized layer to deal with 
the variable length of the input sequences. As discussed below in more 
detail, we explored five different approaches to do so. After concatenating 
the output of the CNN module with the averaged domain embedding 
vector, we transfer the resulting vector to the output component, which 
consists of a fully connected layer, a dropout layer, and a softmax output 
unit.

The five approaches to deal with variable input lengths are as follows:
1. Zero-padding only: In this naïve approach, zero-padding is 

performed on the input layer to reach a fixed input length of 1,002 
positions. No extra layer is added to reduce the output size of the 
CNN module, meaning that the outputs of the last max pooling 
layer are flattened and directly connected to the output component. 
As a result, the number of parameters in this architecture will be 
greater than that of the following approaches.

2. Global max pooling: A global max pooling operation is 
performed by pooling over the full width of the previous layer.

3. Gated Recurrent Unit (GRU): The outputs of the last max 
pooling layer are fed into a bidirectional GRU. The final hidden 
states for both directions are concatenated and used as input for 
the output unit.

4. Dynamic max pooling: A max pooling layer is added after the 
previous one, with a dynamic pool size and stride. The pool size 
and stride depend on the length of the input sequence, with longer 
sequences resulting in a higher pool size and stride. They are 
chosen in such a way that the output of the layer always results in 
the same number of output positions. Specifically, the stride is 
chosen to be half of the pool size, yielding overlapping windows. 
For each channel, the outputs after dynamic max pooling are 
calculated as follows:

          (2)𝑑𝑦𝑛𝑥(𝑖) = max (𝑥𝑖
𝑤
2
,… ,𝑥min (𝑙,(𝑖 + 2)

𝑤
2)),

with ,𝑤 = ⌈ 2𝑙
𝑛 + 1⌉

and where  denotes the output at position  after dynamic 𝑑𝑦𝑛𝑥(𝑖) 𝑖
max pooling,  the number of resulting outputs after dynamic max 𝑛
pooling,  the activation output on position  from the previous 𝑥𝑝 𝑝
layer, and  the length of that activation. An illustration of this 𝑙
pooling strategy can be found in Fig. 1A.

5. -max pooling: A dynamic -max pooling layer, as described 𝒌 𝑘
in (Kalchbrenner, et al., 2014), is added after the last max pooling 
layer, resulting in a fixed output size. Instead of keeping one value 
after max pooling, dynamic -max pooling collects the k highest 𝑘
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activations in each channel in the same order of occurrence. An 
illustration of this pooling strategy can be found in Fig. 1B.

0 0 1 3 0 1 0 1 2 5

2 1 0 0 3 3 2 8 0 0

3 2 0 0 5 1 1

0 0 2 2 0 1 0

3 2 5

3 3 8

3 2 5

2 2 1

0 0 1 3 0 1 0 1 2 5

2 1 0 0 3 3 2 8 0 0

3 2 0 0 5 1 1

0 0 2 2 0 1 0

3 2 5

3 3 8

3 2 5

2 2 1

A

B

Fig. 1 (A) An illustration of dynamic max pooling, given two activation maps of length 11 
and 7, respectively, with both activation maps using two channels. The chosen output size 
in this example is 3. (B) An illustration of -max pooling, given two activation maps of 𝑘

length 11 and 7, respectively, with both activation maps using two channels, for  = 3.𝑘

The motivation behind the last three approaches is to be able to reduce the 
output size of the preceding layer to a fixed size, whilst retaining a notion 
of spatial information on where certain features were detected. When 
using the zero-padding only approach, we do not reduce the output size, 
hence including activations that are the result of zero-padded positions in 
the input. When using global max pooling, all spatial information is lost. 
For the GRU approach, the spatial information is handled implicitly in the 
recurrent unit, while dynamic max pooling and -max pooling explicitly 𝑘

retain this information in their output.

2.5 ToxDL
ToxDL is a multi-modal deep learning-based approach for predicting 
protein toxicity. Given a protein, it concatenates the output from a CNN 
module with the average embeddings of all domains found in this protein, 
subsequently feeding the vector obtained into an output component that 
generates a toxicity probability. A flowchart characterizing ToxDL is 
depicted in Fig. 2.

Fig. 2 Flowchart characterizing ToxDL and its three components. First, we have a CNN 
module that takes one-hot encoded sequences as input. In parallel, we have the module 
domain2vec for generating protein domain embeddings. Next, we have the output 
component, taking the concatenated output of the previous components as input, feeding it 
to a fully connected layer and subsequently generating a toxicity probability using a 
softmax output layer.

2.6 Identifying toxic domains using saliency maps
To gain insight into the reasoning process of our trained models, we 
generated saliency maps using the Integrated Gradients approach, as 
described in (Sundararajan, et al., 2017). This technique produces a 
proclaimed contribution score for each amino acid in an input sequence 
with respect to the output in the network. The magnitude of a contribution 
score indicates the importance of the amino acid, with positive values 
steering the network towards a positive prediction, and negative values 
steering the network towards a negative prediction.
As the aforementioned technique requires a reference input, we 
constructed an ‘average’ reference input sequence, based on the 
suggestion made in (Shrikumar, et al., 2017). There, the authors propose 
to construct a reference by taking the amino acid frequency on each 
position, for all negative samples in the training set. However, given the 
variable input size of protein sequences, this scheme requires adaptation. 
Specifically, we calculated the average amino acid distribution for the first 
and last five positions on each position, and for the remainder, we 
calculated the average of all other positions. This approach is illustrated 
in Fig. 3.

Fig. 3 The calculation of the reference input. (a) For each of the first five positions and for 
each of the last five positions, the amino acid frequency is calculated. Finally, the frequency 
is calculated for the remaining amino acids. (b) A reference input is then constructed as 
depicted, using the corresponding frequency vectors on the first five and the last five 
positions, and using  on the remaining positions.𝑓𝑟𝑒𝑠𝑡

2.7 MEME and TOMTOM for detecting toxic protein motifs
MEME (Bailey, et al., 2015) applies expectation maximization to fit a 
mixture model to a set of sequences, finding one or more motifs. We used 
MEME to generate 120 sequence motifs with length 10 from toxic animal 
proteins and toxic bacteria proteins, respectively. To compare the 
similarities between motifs found in toxic animal proteins and motifs 
found in toxic bacteria proteins, we used TOMTOM (Gupta, et al., 2007), 
relying on an e-value of 0.05.

2.8 Baseline methods
In this study, we compare ToxDL with various baseline methods, 
including BLAST-based methods, InterProScan, hmmsearch, and 
machine learning methods. We also perform a comparative analysis of 
different ToxDL variants.

1. BLAST: A protein sequence that needs to be tested for toxicity is 
used as a query against the training sequences using BLAST. If it 
has any similar toxic sequence in the training set with e-
value < 0.001, the given protein sequence is considered to be 
toxic. Otherwise, the protein sequence at hand is considered to be 
non-toxic.

2. BLAST-score: Given a protein sequence that needs to be tested 
for toxicity, BLAST-score first obtains a set E of similar proteins 
from the training set, with e-value < 0.001. It then calculates a 
score for the given protein sequence as follows:

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa656/5874440 by G

hent U
niversity user on 23 Septem

ber 2020



ToxDL for assessing protein toxicity

              (3)score (q) =  
∑

 s ∈ Ebitscore(q, s) ∗ I(s is a toxic protein)

∑
s ∈ Ebitscore(q, s)

where bitscore is a normalized alignment score from the BLAST 
output, measuring sequence similarity independent from the query 
sequence length and the database size (the size of the training set), 
q is the query sequence, s is a similar sequence in the set E, and I 
is the indicator function.

3. InterProScan: Of the 269 toxic domains, the domains that are 
also in the training set are kept, leading to a set of 72 retained toxic 
domains. Given a protein that needs to be tested for toxicity, if it 
has a domain belonging to the aforementioned set of 72 retained 
toxic domains, then this protein is considered to be toxic. 
Otherwise, this protein is considered to be non-toxic.

4. hmmsearch: As described in HMMER (Potter, et al., 2018), we 
run hmmsearch against the test sequences to search for Pfam 
HMM models with an e-value < 1e-5. If a given protein contains 
one of the 75 toxic Pfam domains, then it is considered to be toxic. 
Otherwise, it is considered to be non-toxic.

5. ToxinPred: ToxinPred is a traditional machine learning method 
that uses amino acid and dipeptide composition as input features. 
In this study, we use the features of ToxinPred to train both an 
SVM and a random forest (RF), from here onwards labeled 
ToxinPred-SVM and ToxinPred-RF, respectively. Appropriate 
hyperparameters are selected using a grid search on the training 
set with 3-fold cross-validation. For constructing ToxinPred-
SVM, the grid search covered both a linear kernel and an RBF 
kernel, with [1, 2, 4, 6, 10] as possible values for C and with [0.5, 
1.0, 2.0, 6.0] as possible values for gamma. For constructing 
ToxinPred-RF, the grid search covered the values [20, 50, 100] as 
the number of trees.

6. ClanTox: ClanTox is a meta-classifier consisting of ten boosted 
decision stumps for distinguishing short toxin and toxin-alike 
proteins from non-toxic proteins using 545-D sequence-derived 
features. The final score is defined as the mean of the scores from 
the ten classifiers. We uploaded our test sequences to the ClanTox 
webserver, with this webserver generating detailed mean scores 
and labels for the uploaded test sequences.

7. TOXIFY: TOXIFY is a recurrent neural network-based method 
for classifying venom proteins using a numerical representation 
derived from protein sequences. In this study, we use the TOXIFY 
model that can be found at https://github.com/tijeco/toxify to 
predict probability scores for our test sequences. However, this 
trained TOXIFY model can only predict scores for proteins shorter 
than 500 amino acids. Thus, whenever necessary, we split a 
protein sequence into different parts (e.g., 1-500, 400-900, 800-
1,300, and so on), using an overlap of 100 amino acids. We then 
leveraged TOXIFY to predict scores for each part, using the 
maximum score obtained as the toxicity score for the given protein 
sequence. Of the 729 proteins available in the animal test set, 241 
proteins have a length greater than 500. Of the 562 proteins 
available in the bacteria test set, 235 proteins have a length greater 
than 500.

Variants of ToxDL
ToxDL consists of a CNN module and a domain2vec module, with the 
two aforementioned modules coming before the output module. We 
designed a number of variants of ToxDL, using either a single module or 
different modules.

8. ToxDL-ODE: This variant only uses the 256-D protein domain 
embeddings as its input, which is then directly connected to the 
output component.

9. ToxDL-CNN: This variant only uses the CNN module.
10. ToxDL-One: Instead of using learned embeddings for 

representing protein domains, we use a one-hot encoding for the 
269 toxic protein domains. Specifically, each protein is 

represented using a 269-D binary vector, with a one indicating the 
presence of a particular domain. This vector is directly fed to the 
output component.

11. ToxDL-OD: For this variant, the one-hot encoded vectors for the 
269 toxic protein domains, as described for the ToxDL-One 
variant, are concatenated with the output of the CNN module. This 
combination is then fed to the output component.

2.9 Evaluation metrics
In this study, our experimental analysis is performed using four metrics: 
the F1 score, the Matthews correlation coefficient (MCC), the area under 
the receiver operating characteristic curve (auROC), and the area under 
the precision-recall curve (auPRC). For the baseline methods BLAST, 
InterProScan, and hmmsearch, we only calculate the F1 score and the 
MCC, given that these methods only output a binary value.
Table 2. Details of the network architecture used by ToxDL.

Layer Details Output size

one-hot encoded input 
sequence

zero padded (for 
practical 
implementation 
reasons)

(1002, 20)

conv layer (+ReLU) 200 filters of size 9 (1002, 200)

dropout layer 𝑝 = 0.5 (1002, 200)

max pooling layer pool size 3, stride 3 (334, 200)

conv layer (+ReLU) 200 filters of size 7 (334, 200)

dropout layer 𝑝 = 0.5 (334, 200)

max pooling layer pool size 3, stride 3 (111, 200)

conv layer (+ReLU) 200 filters of size 7 (111, 200)

dropout layer 𝑝 = 0.5 (111, 200)

N
N

 m
od

ul
e

max pooling layer pool size 3, stride 3 (37, 200)

Five approaches, choose one

zero-padding no extra layer 
present

(37, 200)

global max pooling pool size 37 (200)

GRU hidden state size 
256

(512)

dynamic max pooling 10 outputs per 
channel

(10, 200)

-max pooling𝑘 𝑘 = 10 (10,200)

do
m

ai
n 

em
be

dd
in

g
m

od
ul

e

average domain 
embedding as input

embedding size 256 (256)

concatenated layer output size depends 
on the approach 
chosen

(x + 256)

fully connected layer 64 neurons (64)

ou
tp

ut
 

co
m

po
ne

nt

sigmoid output unit 1 neuron (1)
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2.10 Experimental settings
Protein domain embeddings are learned by training a Skip-gram model for 
10 epochs with a context window of 5 and an embedding size of 256. A 
context window of 5 was chosen since the number of proteins with five 
domains is the highest.
For the CNN module, we truncated all input sequences to a maximum 
length of 1002, for practical implementation reasons. The 
hyperparameters for the convolutional, max pooling, and dropout layers 
of the network are listed in Table 2; these hyperparameters were optimized 
using an independent dataset constructed for the gene ontology (GO) term 
prediction task of the CAFA2 challenge. These hyperparameters can thus 
also be applied to other protein function prediction tasks using variable-
length protein sequences. We used the Adam optimizer with a learning 
rate of 0.001 to optimize the categorical cross-entropy cost function. 
Training lasted for 10 epochs, finally retaining the model with the lowest 
validation loss for performing an evaluation on our test sets.
For each method, the average effectiveness over 10 experiments was 
calculated. The different architectures tested used the five different 
approaches to deal with variable input lengths, as well as a combination 
of dynamic max pooling and k-max pooling, where the results of both were 
simply concatenated. The latter approach was used when determining the 
ToxDL results presented below.

3 Results
In this study, we first evaluate the effectiveness of ToxDL on the 
independent animal protein test set. Next, we report the cross-species 
effectiveness of ToxDL in order to evaluate its generalizability to other 
species. We also compare the effectiveness of different ToxDL network 
architectures. Lastly, given the trained CNN model, we investigate to what 
extent we are able to infer toxic domains and motifs that align well with 
experimentally verified toxic domains and motifs available in public 
databases.

3.1 The effectiveness of ToxDL
In this experiment, we perform a comparative investigation of the 
effectiveness of ToxDL on the animal test set. The results obtained can be 
found in Table 3. Despite the removal of homologous sequences from the 
test set, BLAST obtains the highest F1 score among the different baseline 
approaches (that is, the BLAST-based approaches, InterProScan, and 
hmmsearch). When compared to TOXIFY, BLAST achieves an F1 score 
of 0.800 and an MCC of 0.801, yielding a relative improvement over 
TOXIFY of 11.9% and 16.1%, respectively. When doing a comparison in 
terms of auPRC, BLAST-score yields an auPRC of 0.818, which is higher 
than the auPRC obtained by TOXIFY, ClanTox, ToxinPred-SVM, and 
ToxinPred-RF. However, ToxinPred-RF does have a higher auROC of 
0.948, where BLAST-score only reaches an auROC of 0.868.
When comparing our final ToxDL architecture to the best results obtained 
by ToxinPred-RF and BLAST-score, we can see that ToxDL improves 
upon the auROC of ToxinPred-RF from 0.948 to 0.989 (a relative 
improvement of 4.3%), and upon the auPRC of BLAST-score from 0.818 
to 0.913 (a relative improvement of 11.6%). At a cutoff of 0.5, ToxDL 
reaches an F1 score of 0.809, outperforming all other approaches. 
However, again at a cutoff of 0.5, the MCC of 0.793 obtained by ToxDL 

is slightly lower than the MCC of 0.801 obtained by BLAST (with the 
latter only generating binary output). On the other hand, when scanning 
for the optimal cutoff threshold, we find that the highest F1 score and the 
highest MCC obtained by ToxDL is 0.870 and 0.864, respectively. We can 
thus conclude that ToxDL is the most effective approach across all 
metrics. In addition, we compare ToxDL with TOXIFY on the subset 
consisting of 488 proteins with a size shorter than 500. As shown in 
Supplementary Table S1, we find ToxDL to be superior to TOXIFY.
Table 3. The effectiveness of ToxDL and our baseline methods on the 
animal protein test set. For the deep learning-based methods, we report the 
average after having performed each experiment ten times, along with the 
standard deviation. ClanTox uses its default mean score of -0.02 as the 
threshold for toxic protein classification.

Method F1 score 
(threshold 
= 0.5)

MCC
(threshold 
= 0.5)

auROC auPRC

BLAST 0.800 0.801 - -
BLAST-
score

0.789 0.775 0.868 0.818

InterProScan 0.347 0.402 - -
hmmsearch 0.185 0.307 - -
ClanTox 0.620 0.604 0.903 0.612
TOXIFY 0.715 0.690 0.930 0.743
ToxinPred-
RF

0.667 0.638 0.948 0.716

ToxinPred-
SVM

0.677 0.648 0.938 0.712

ToxDL-One 0.356 
(±0.000)

0.435 
(±0.000)

0.609 
(±0.001)

0.572 
(±0.002)

ToxDL-OD 0.769 
(±0.029)

0.749 
(±0.032)

0.977 
(±0.004)

0.852 
(±0.024)

ToxDL-ODE 0.599 
(±0.007)

0.599 
(±0.009)

0.954 
(±0.002)

0.648 
(±0.014)

ToxDL-CNN 0.761 
(±0.030)

0.743 
(±0.033)

0.978 
(±0.004)

0.846 
(±0.020)

ToxDL 0.809 
(±0.022)

0.793 
(±0.024)

0.989 
(±0.002)

0.913 
(±0.014)

When comparing the different ToxDL variants, we can observe that the 
use of protein domain embeddings is indeed beneficial. ToxDL-ODE only 
uses protein domain embeddings, and it outperforms ToxDL-One, which 
only uses a one-hot representation for the protein domains, improving the 
auROC from 0.609 to 0.954 (a relative increase of 56.7%) and the auPRC 
from 0.572 to 0.648 (a relative increase of 13.3%). This is also confirmed 
when evaluating the aforementioned models with the CNN module added. 
ToxDL (which uses protein domain embeddings) outperforms ToxDL-OD 
(which uses a one-hot representation for the protein domains), by 
improving the auROC from 0.977 to 0.989 and the auPRC from 0.852 to 
0.913. Finally, we can also observe that ToxDL-CNN already achieves a 
high effectiveness, with an auROC of 0.978 and an auPRC of 0.846. 
However, adding the protein domain embeddings to this CNN-only 
architecture makes it possible to increase the auROC to 0.989 and the 
auPRC to 0.913 (relative improvements of 1.1% and 7.9%, respectively). 
We can thus conclude that including protein domain embeddings indeed 
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boosts the prediction effectiveness. Note that the output generated by all 
approaches can be found in the supplementary data.
To better understand the benefits of using the CNN and protein domain 
embedding modules in parallel, we investigate the sequence length of 
toxic proteins that are correctly predicted by ToxDL-CNN and ToxDL-
ODE, respectively. The average length of toxic proteins correctly 
predicted by ToxDL-CNN is 102.4 (±5.2) amino acids, which is 15.8% 
shorter than the average length of 118.6 (±4.4) amino acids for ToxDL-
ODE. This suggests that the CNN module is able to better handle shorter 
protein sequences than the protein domain embeddings module, as 
InterProScan often struggles to find relevant domains in shorter protein 
sequences.

Table 4. The cross-species effectiveness of ToxDL and our baseline 
methods, using the animal protein training and validation sets, as obtained 
for the bacteria protein test set. For the deep learning-based methods, we 
report the average after having performed each experiment ten times, 
along with the standard deviation. ClanTox uses its default mean score of 
-0.02 as the threshold for toxic protein classification.

Method F1 score 
(threshold 
= 0.5)

MCC
(threshold 
= 0.5)

auROC auPRC

BLAST 0.000 -0.128 - -
BLAST-
score

0.000 -0.224 0.575 0.160

InterProScan 0.011 0.062 - -
hmmsearch 0.000 0.000 - -
ClanTox 0.022 0.054 0.654 0.274
TOXIFY 0.128 0.108 0.721 0.506
ToxinPred-
RF

0.090 0.061 0.545 0.351

ToxinPred-
SVM

0.123 0.051 0.612 0.410

ToxDL-One 0.356 
(±0.000)

0.398 
(±0.000)

0.608 
(±0.000)

0.734 
(±0.000)

ToxDL-OD 0.126 
(±0.025)

0.073 
(±0.043)

0.625 
(±0.026)

0.417 
(±0.012)

ToxDL-ODE 0.604 
(±0.012)

0.408 
(±0.019)

0.782 
(±0.010)

0.418 
(±0.024)

ToxDL-CNN 0.110 
(±0.023)

0.048 
(±0.043)

0.622 
(±0.038)

0.415 
(±0.025)

ToxDL 0.097 
(±0.022)

0.022 
(±0.028)

0.786 
(±0.021)

0.525 
(±0.030)

3.2 Cross-species effectiveness of ToxDL
To evaluate the transferability of ToxDL, the models that we trained on 
animal proteins were leveraged to predict toxicity for bacteria proteins. 
The results obtained are shown in Table 4. BLAST-score no longer 
outperforms the other baseline methods, due to the heterogeneity between 
the training set and the test set. In particular, BLAST-score has an F1 score 
of 0.000 for a cutoff of 0.5, an auROC of 0.575, and an auPRC of 0.160. 
The highest F1 score among the different baseline methods used is 
achieved by TOXIFY (0.128). TOXIFY also yields the highest auROC 

and auPRC among the different baseline methods used: 0.721 and 0.506, 
respectively.
When comparing the different architectures of ToxDL, we can observe 
that the CNN-only model (ToxDL-CNN) struggles to perform well, as it 
reaches an auROC of 0.622 and an auPRC of 0.415. Here, the 
predetermined protein domain knowledge proves crucial, as the one-hot 
protein domain representation (ToxDL-One) already improves the auPRC 
to 0.734, making for a relative improvement of 76.9%, while the auROC 
is only slightly lower (0.608). Furthermore, the use of protein domain 
embeddings no longer outperforms the use of a one-hot protein domain 
representation on all metrics, as the auPRC drops from 0.734 to 0.418, 
although the auROC increases from 0.608 to 0.782. Additionally, adding 
the CNN module to the one-hot protein domain representation no longer 
increases the effectiveness, although this is still the case when adding it to 
the protein domain embeddings.
Given the above-mentioned inconsistency between the auROC and auPRC 
values obtained by ToxDL-One, compared to the values obtained by the 
other approaches, we perform a detailed check of the output generated by 
ToxDL-One, finding that ToxDL-One outputs the same probability score 
for all non-toxic proteins and most toxic proteins in the test set. One 
potential reason for doing so is that the animal and bacteria toxic proteins 
almost have no domains in common with the 269 toxic domains identified 
by InterProScan (see Fig. 4B). Indeed, most of the one-hot encodings of 
the animal and bacteria toxic proteins do not have values of one in their 
respective vectors, implying that most proteins (both positives and 
negatives) are represented by a vector that only consists of zeros. As a 
result, ToxDL-One cannot learn patterns that are truly related to protein 
toxicity, which is supported by the low auROC of 0.608. Furthermore, this 
is also supported by the standard deviations, which are equal to zero for 
both the auROC and the auPRC. In addition, when calculating the entropy 
of the predicted output values, we find that the entropy of ToxDL and 
TOXIFY is 0.998 and 0.994, respectively. However, the entropy of 
ToxDL-One is 0.067, which is close to 0, indicating that the predicted 
values of ToxDL-One are almost the same for all test proteins.

Considering that an acceptable classifier should have an auROC > 0.7 
(Mandrekar, 2010), ToxDL, ToxDL-ODE, and TOXIFY are the only three 
approaches that meet this criterion. In addition, ToxDL has a higher 
auPRC (0.527) than both ToxDL-ODE (0.418) and TOXIFY (0.506). As 
mentioned above, 0.5 is not necessarily the optimal cut-off threshold for 
calculating the F1score. Over all possible threshold values, ToxDL yields 
a maximum F1 score of 0.688 and a maximum MCC of 0.529, which are 

Fig. 4 Common (A) motifs and (B) toxic protein domains between the animal and 

bacteria protein test sets.
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higher than the respective values obtained by the different methods used. 
Our results indicate that ToxDL is the best choice for cross-species 
toxicity prediction when considering both auROC and auPRC. Note that 
the output generated by all methods can be found in the supplementary 
data.
The cross-species effectiveness of ToxDL is inferior to the effectiveness 
it obtained for the test set consisting of animal proteins. One possible 
reason is that the toxic protein domains between animal species and 
bacteria differ greatly. As shown in Fig. 4, of the 269 toxic protein 
domains found by making use of InterProScan, 71 were found in the 
animal protein test set, and 97 were found in the bacteria protein test set. 
However, as shown by Supplementary Table S2, only ten similar toxic 
protein domains can be found between the animal and bacteria toxic 
proteins.
Additionally, we also investigated the detected motifs in the animal and 
bacteria toxic proteins. We used MEME to generate 120 motifs for the 
animal and bacteria toxic proteins, respectively. These are then compared 
using TOMTOM to detect similar motifs between animal and bacteria 
toxic proteins. As shown in Fig. 4A, only five such motifs (see 
Supplementary Figure S1) could be detected. Our results suggest that there 
are indeed differences between toxic protein domains in animal species 
and bacteria, thus justifying that the cross-species effectiveness of any 
strategy for protein toxicity prediction is inferior to its effectiveness on the 
animal protein test set. 

3.3 Comparison of different network architectures with and 
without domain embeddings

In this experiment, we evaluate the different strategies to deal with a 
variable input size, both with and without domain embeddings. The results 
obtained are shown in Fig. 5A. All strategies except GRU improve on the 
naïve zero-padding approach, which reaches an auPRC of 0.893. 
Moreover, incorporating the domain embeddings improves all network 

architectures with a large margin, demonstrating the effectiveness of 
domain embeddings. The most effective strategy is the combination of -𝑘

Fig. 6 A number of protein domains detected by ToxDL. The motif shown in (A) is observed to have a high correspondence with the verified protein domain PF00537 in the Pfam 

database, whereas the motif shown in (B) is newly found by ToxDL

Fig. 5 Different network architectures for dealing with a variable input size. (A) 

Effectiveness of the different network architectures with and without adding protein 

domain embeddings. (B) The number of parameters of the different network 

architectures (with protein domain embeddings added).  Note that 0-padding refers 

to zero-padding only, global refers to global max pooling, k-max refers to -max 𝑘

pooling, and dynamic refers to dynamic max pooling.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa656/5874440 by G

hent U
niversity user on 23 Septem

ber 2020



ToxDL for assessing protein toxicity

max pooling and dynamic max pooling, for which an auPRC of 0.913 is 
measured. However, the difference with other strategies is minimal.
For the sake of completeness, we also compare the number of parameters 
used by the individual network architectures. As shown in Fig. 5B, we can 
see that zero-padding comes with a considerably larger number of 
trainable parameters when compared to the other architectures, for which 
the number of parameters is similar.
Compared to ToxDL with the combination of -max pooling and dynamic 𝑘

max pooling, the network architecture with global max pooling yields a 
similar effectiveness for the animal test set at a lower computational 
complexity (a fewer number of parameters). However, the architecture 
with global max pooling yields an auROC of 0.718 and an auPRC of 0.462 
on the bacteria test set, which is much lower than the auROC of 0.786 and 
the auPRC of 0.525 of ToxDL, respectively. In addition, on the bacteria 
test set, the single -max pooling strategy yields an auROC of 0.781 and 𝑘

an auPRC of 0.521, whereas the single dynamic max pooling strategy 
achieves an auROC of 0.743 and an auPRC of 0.475. Both strategies are 
superior to the use of global max pooling, demonstrating better 
transferability. Thus, the combination of -max pooling and dynamic max 𝑘

pooling is used in ToxDL.

3.4 Identifying protein domains related to toxicity
By using Integrated Gradients to generate saliency maps, we can identify 
important motifs associated with protein toxicity. In the saliency map 
visualizations of Fig. 6, larger letters denote amino acids that come with 
higher contribution to the toxicity prediction. As shown in Fig. 6A, we 
can observe a high correspondence between the motif detected by 
ToxDL and the toxic Pfam domain PF00537 (Scorpion toxin), as we 
observe a regular occurrence of C amino acids that substantially contribute 
to the prediction in a positive way. In addition to verified toxic domains, 
ToxDL is also able to detect novel candidate motifs that can possibly be 
associated with protein toxicity. Such a motif can be found in Fig. 6B. 
However, no experimental evidence is currently available that shows that 
this motif is effectively related to protein toxicity.

3.5 Visualization of the learned protein domain embeddings 
and the impact of order

In this experiment, we use the protein domain embeddings learned by 
domain2vec to investigate whether the toxic protein domains are more 
similar than other protein domains. To that end, we map the 256-D 
embeddings of the 36,713 UniProt protein domains to a 2-D space using 
-SNE (van der Maaten and Hinton, 2008). As shown in Fig. 7 (red circle), 𝑡

about 30 of the 269 toxic domains are very close in distance, indicating 
that certain toxic domain embeddings are similar. We can also observe 
that some domains are much more similar than others in the embedding 
space; this is a characteristic that cannot be captured by one-hot encodings.
In nature language processing, sentences come with word order. However, 
in proteins, we only know which domains are located in proteins, and not 
their order. Thus, we also learn protein domain embeddings from a corpus 
consisting of shuffled domains for each protein. We calculate the pairwise 
distances between protein domains using the embeddings learned from (1) 
a corpus consisting of protein domains of which the order has been 
preserved and (2) a corpus consisting of protein domains of which the 

order has been shuffled. For each of the 36,713 protein domains, we 
randomly select another protein domain to create a protein domain pair. 
As shown in Supplementary Figure S2A, the pairwise distance between 
protein domains in both embedding spaces is similar: the R-value of the 
best-fitting line is 0.953. Furthermore, as shown in Supplementary Figure 
S2B and S2C, no substantial difference in effectiveness can be observed 
for the two test sets used, indicating that the order of the domains in 
proteins does not have a significant impact on the learned embeddings. 
This can possibly be attributed to the fact that each protein has a limited 
number of domains within a context window of size five (see 
Supplementary Figure S3).

3.6 Using the ToxDL web service to modify protein toxicity
We provide an online version of ToxDL for predicting protein toxicity, 
with this web service only requiring the input sequence of a protein to 
predict its toxicity. For this web service, we trained a new prediction 
model on a combination of the original training and validation sets, doing 
subsequent validation using the original test set. That way, we have more 
data to train on, making it possible for the web service to produce 
predictions that are more accurate. The ToxDL source code and the 
underlying datasets are available at https://github.com/xypan1232/ToxDL.
The ToxDL web service can also be used to estimate toxicity after 
applying one or more mutations to a protein sequence. As an example, we 
consider the annotated toxic protein TMC_CINAN without the toxic 
domain information generated by InterProScan (see Fig. 8). ToxDL 
predicts TMC_CINAN to be a toxic protein with a probability of 0.722, 
though InterProScan does not detect any toxic domains in this protein. As 
suggested by the detected motif shown in Fig. 8A, cysteine amino acids 
(highlighted in red) seem crucial for toxicity.

Given the above, we mutate the amino acid C to R (requiring only a single 
nucleotide mutation) in the two occurrences of C that provide the highest 
positive contribution to the prediction. As shown in Fig. 8B, the 
probability for the protein to be toxic drops to 0.405. This demonstrates 

Fig. 7 Visualization of the learned protein domain embeddings in a 2-D space using 

-SNE.𝑡
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that we can use ToxDL to modify the proclaimed toxicity of a protein in a 
directed way, by changing the important subsequences in the in silico 
detected motif. As another example, the protein TXCL1_CALPA with 
two toxic protein domains (highlighted in yellow) was modified to be non-
toxic (see Supplementary Figure S4) by again changing C to R, with the 
toxicity probability decreasing from 0.990 to 0.369.

4 Discussion
Known protein domains are highly informative for function prediction. In 
ToxDL, we represent each domain by making use of an embedding (that 
is, a vector of numerical values), with this embedding encapsulating 
domain context information such as co-occurrence. Indeed, compared to a 
one-hot encoded vector that merely indicates the presence of specific 
domains, domain embeddings can leverage contextual similarity. Our 
experimental results show that integrating protein domain embeddings 
into ToxDL significantly improves the effectiveness of toxicity prediction.
Due to the fact that the average length of a protein in the Animal Toxin 
Annotation Project database is substantially shorter than the average 
length of any protein (see Supplementary Figure S5; in the training set, 
the average length of toxic and non-toxic proteins is 124.18 and 478.98, 
respectively), we evaluated ToxDL on an animal test subset consisting of 
419 proteins with a length between 100 and 500. As shown in 
Supplementary Table S3, ToxDL yields an F1 score of 0.710 (±0.032), an 
MCC of 0.696 (±0.035), an auROC of 0.981(±0.005), and an auPRC of 
0.836 (±0.030). These values are lower than the values obtained for the 
full animal test set, but still superior to the values obtained by the other 
baseline methods that have been applied to this test subset. Furthermore, 
we added the normalized protein length (i.e., the protein length is in [0, 1]) 
as an additional feature to ToxDL, denoting this new method as ToxDL-
length. ToxDL-length yields an F1-score of 0.812 (±0.023), an MCC of 
0.797 (±0.025), an auROC of 0.987 (±0.003), and an auPRC of 0.897 
(±0.026). As shown in Supplementary Table S4, ToxDL-length yields a 
similar effectiveness as ToxDL. These results demonstrate that adding the 
protein length to ToxDL does not improve the prediction effectiveness. 
Moreover, as shown in Supplementary Figure S6, the protein length 
distributions of toxic and non-toxic proteins in the bacteria test set are 
similar but different from those of the training set, with ToxDL being 
superior to the baseline methods used. In addition, ToxDL is able to 

identify known motifs related to protein toxicity, as shown in Fig. 6. These 
results show that ToxDL learns patterns truly related to protein toxicity 
instead of being biased towards protein length. In future work, a more 
stringent benchmark dataset consisting of toxic and non-toxic proteins 
with a similar length distribution could be constructed.
Our experimental results also indicate that cross-species effectiveness 
obtained for bacteria proteins is much lower than the effectiveness 
obtained for animal proteins, since toxic domains are dissimilar between 
bacteria and animals. However, given the small number of annotated toxic 
proteins available for bacteria, it is currently still infeasible to train a 
standalone deep learning model for predicting bacteria protein toxicity. As 
more and more annotated toxic proteins are becoming available for 
bacteria, we expect that, in time, it will become possible to train an 
equivalent ToxDL model for bacteria.

5 Conclusions
In this paper, we proposed ToxDL, a deep learning-based approach for 
protein toxicity prediction, with this in silico approach being able to deal 
with variable-length sequences in input. In addition, we developed 
domain2vec, a tool for generating protein domain embeddings, and where 
this tool is part of ToxDL. We trained ToxDL on toxic proteins from 
animal species like snakes and spiders, given the relatively large amount 
of data made available through the Animal Toxin Annotation Project, as 
well as the potential for numerous applications in pharmacology and drug 
research. We demonstrated that ToxDL is outperforming other state-of-
the-art approaches, even when generating cross-species predictions. 
Furthermore, ToxDL is able to highlight toxic motifs, as supported by 
evidence available in the public domain. Finally, the ToxDL webserver 
allows for directed in silico modification of a protein sequence, thus 
making it possible to alter its predicted toxicity.
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Fig. 8 Changing the toxicity of the toxic protein TMC_CINAN using our ToxDL web service. (A) ToxDL predicts TMC_CINAN to be a toxic protein with a probability of 0.722. (B) 

ToxDL predicts that the modified protein comes with a toxicity probability of 0.405. The modified amino acids can be found in the red circles. The key residues with a contribution 

score that is at least 50% of the maximum score are highlighted in red.
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