
1 
 

Cell surface protein mRNAs show differential transcription in pyramidal and fast-

spiking cells as revealed by single-cell sequencing 

Lilla Ravasz1,2, Katalin Adrienna Kékesi1,2,3, Dániel Mittli2, Mihail Ivilinov Todorov2, Zsolt 

Borhegyi1,2, Mária Ercsey-Ravasz4,5, Botond Tyukodi4,6, Jinhui Wang7, Tamás Bártfai8,#, James 

Eberwine7,#,*, Gábor Juhász1,2,9,#,* 

1ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of 

Biology, ELTE Eötvös Loránd University, Budapest H-1117 Hungary 

2Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 

H-1117 Hungary 

3Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd 

University, Budapest, H-1117 Hungary 

4Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania 

5Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania 

6Martin Fisher School of Physics, Brandeis University, Waltham, MA, 02451, USA 

7Department of Systems Pharmacology and Translational Therapeutics, University of 

Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA 

8Department of Biochemistry and Biophysics, Stockholm University, Sweden 

9CRU Hungary Ltd. Göd, H-2131 Hungary 

#Authors contributed equally and are co-senior authors. 

*Correspondence should be addressed: Gábor Juhász, email: gjuhasz100@gmail.com ; James 

Eberwine, email: eberwine@upenn.edu 

Short title: Single-cell transcriptomics of mouse PFC neurons 

Keywords: prefrontal cortex, interneuron, pyramidal cell, single-cell transcriptomics, drug 

target, schizophrenia, autism, taxonomy  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/421086867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eberwine@upenn.edu


2 
 

Abstract 

The prefrontal cortex (PFC) plays a key role in higher order cognitive functions and psychiatric 

disorders like autism, schizophrenia and depression. In the PFC, the two major classes of 

neurons are the glutamatergic pyramidal (Pyr) cells and the GABAergic interneurons like fast-

spiking (FS) cells. Despite extensive electrophysiological, morphological and pharmacological 

studies of the PFC, the therapeutically utilized drug targets are restricted to dopaminergic, 

glutamatergic and GABAergic receptors. To expand the pharmacological possibilities as well 

as to better understand the cellular and network effects of clinically used drugs, it is important 

to identify cell type-selective, druggable cell surface proteins and to link developed drug 

candidates to Pyr or FS cell targets. To identify the mRNAs of such cell-specific/enriched 

proteins, we performed ultra-deep single-cell mRNA sequencing (19,685 transcripts in total) 

on electrophysiologically characterized intact PFC neurons harvested from acute brain slices of 

mice. Several selectively expressed transcripts were identified with some of the genes that have 

already been associated with cellular mechanisms of psychiatric diseases, which we can now 

assign to Pyr (e.g. Kcnn2, Gria3) or FS (e.g. Kcnk2, Kcnmb1) cells. The earlier classification 

of PFC neurons was also confirmed at mRNA level and additional markers have been provided. 
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Introduction 

Cortical neurons have extreme molecular and functional heterogeneity. Pathological 

alterations in their cooperative function could initiate psychiatric diseases particularly when the 

cortical neuronal networks are mistuned by subcortical influences. The classical example  is the 

unbalanced excitatory/inhibitory synaptic communication of pyramidal (Pyr) and fast-spiking 

(FS) cells in schizophrenia (Ferguson and Gao 2018) when the decreased feedback inhibition 

results in decreased gamma frequency coupling necessary for cognitive functions (Buzsáki and 

Wang 2012). Therefore, the selective fine tuning of cortical Pyr and FS cells in schizophrenia 

is a potential therapeutic target. Cell-selective targeting is highly developed in cancer treatment 

using cell surfaceome targets (surfaceome database: http://wlab.ethz.ch/surfaceome/), but it is 

in infancy in the field of brain diseases. However, there are evidences about the causality 

between the transcriptomic and electrophysiological profile of a neuron (Cadwell et al. 2016; 

Fuzik et al. 2016; Bomkamp et al. 2019) supporting the idea that development of cell type-

selective fine tuning of cellular electrical activity could be promoted by single-cell 

transcriptomics. 

In the past decades enormous efforts were made to distinguish cortical neuronal 

phenotypes according to morphological and immunohistochemical criteria (Kawaguchi and 

Kubota 1997; Hill 2001). The development of single-cell sequencing of large number of 

neurons automatically separated by cell dispersion methods established several novel neuronal 

subclasses on the basis of their transcriptomic profile (Zeisel et al. 2015; Tasic et al. 2016). 

However, in some cases the taxonomic results are questionable since many of the clusters are 

difficult to link to cortical functions and are mostly unrecognizable in vivo in the functioning 

brain (Zeng and Sanes 2017). On the other hand, a large body of evidence is available about 

the cellular mechanisms of Pyr and FS cell interactions in CNS diseases so the selective tuning 

of them via targeted drug therapy can be an appropriate approach. Thus, we performed single-

http://wlab.ethz.ch/surfaceome
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cell sequencing for answering the question whether the Pyr and FS cells have or have not 

transcript differences significant enough for seriously considering their selective 

pharmacological targeting. 

The two electrophysiologically well-recognizable cell types in the prefrontal cortex 

(PFC) the Pyr and the FS cells have an immense literature describing their role in physiological 

and pathological processes (Zhong and Yan 2011; Hu et al. 2014; Kann 2016). In the present 

study we separated them using patch clamp recording before cell harvesting and used ultra-

deep sequencing to establish mRNA transcript differences coding cell surface receptors and ion 

channels which are functionally relevant members of the neuronal surfaceome. We focused our 

study on the PFC since it plays a crucial role in higher order cognitive functions and psychiatric 

diseases (Goldman-Rakic 1995), such as schizophrenia and autism spectrum disorders (Foss-

Feig et al. 2017). In addition, it is an important target for drug development (Masana et al. 

2013). Functional evidences suggest cell type-selective tuning of PFC neurons for advancing 

pharmacotherapy, but the classical anatomical markers (VGLUT1, GAD67) of Pyr and FS cells 

do not allow cell-selective targeting because of subcellular localization and overall distribution 

in the organism (Esclapez et al. 1994; Vigneault et al. 2015). Thus, there is a need for 

identifying novel cell-specific proteins belonging to the neuronal surfaceome. The mechanisms 

determining the in vivo selectivity of drugs are influenced by many factors such as 

pharmacokinetic properties of drug-target binding or tissue distribution of target molecules 

(Vlot et al. 2017). Furthermore, the effective concentration and the cell type-specificity of target 

proteins are also relevant aspects, in the exploration of which single-cell mRNA sequencing 

may be a useful technique (Bartfai et al. 2012). 

Here, we report on ion channel and receptor (e.g. GPCR) mRNA differences between Pyr 

and FS cells in the mouse PFC remarkable enough to propose the coded proteins for selective 

targeting after the protein level validation. It is the first study applying the patch-seq technology 



5 
 

combined with ultra-deep sequencing for uncovering cell surfaceome differences between the 

two investigated neuronal types. We are aware of the limitations of patch-seq technology and 

single-cell sequencing of the harvested neurons, but it seems to be a substantially robust method 

for ex vivo characterization of neurons before harvesting, and the applied ultra-deep sequencing 

allows to detect cytoplasmic mRNAs of very low copy number. Consequently, we should take 

into consideration the difficulties of validation of our transcriptomic results at protein level, but 

we propose our finding for further investigations aiming the selective fine tuning of Pyr and FS 

cells. 

 

Materials and Methods 

Animals 

Cell harvesting was made in acute slices, obtained from male C57BL/6N mice (n=73) of 

age between 27 and 40 days (Innovo Kft., Isaszeg, Hungary). Animals were housed in an animal 

room maintained in a specific pathogen-free animal facility having HEPA filtered air and they 

were tested serologically regularly. All procedures of animal care and minimalizing suffer and 

pain for the animals were done under the local ethical rules of Eötvös Loránd University which 

is in accordance with the EU Ethical Rules of Using Animals for Research Purposes 

(2010/63/EU revising Directive 86/609/EEC) and the Hungarian Act of Animal Care and 

Experimentation (1998, XXVIII). 

 

Brain slice preparation and patch clamp electrophysiology 

All reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and all solutions 

were made from autoclaved (120ºC, 20 min) PCR quality, RNase/DNase free water (Merck 

Millipore, Billerica, MA, USA). During the experiments three different artificial cerebrospinal 

fluid (ACSF) were used: (i) 85 mM NaCl, 2.5 mM KCl, 2.0 mM MgCl2, 1.125 mM NaH2PO4, 
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25 mM NaHCO3, 25 mM glucose, 60 mM sucrose, 1 mM CaCl2, at pH 7.4 for preparing the 

slices, (ii) 125 mM NaCl, 2.5 mM KCl, 2.0 mM MgCl2, 1.125 mM NaH2PO4, 25 mM NaHCO3, 

25 mM glucose, 1 mM CaCl2, at pH 7.4 for incubating the slices, and (iii) 125 mM NaCl, 2.5 

mM KCl, 1.0 mM MgCl2, 1.125 mM NaH2PO4, 25 mM NaHCO3, 25 mM glucose, 2 mM CaCl2, 

at pH 7.4 during recording. 

The patch pipettes were filled with RNase-free intracellular solution (130 mM potassium 

gluconate, 20 mM KCl, 10 mM HEPES, 0.16 mM EGTA, 4.0 mM ATP, 2.0 mM MgCl2, 0.3 

mM GTP, at pH 7.4). A silver-silver chloride electrode was inserted into the pipettes which was 

freshly chlorided before each session. Pipettes were pulled right before use to avoid 

contaminations. 

We used standard brain slice preparation technology. Briefly, mice were anesthetized in 

2% isoflurane, and quickly decapitated. Brains were removed and placed into ice cold ACSF. 

Slices were cut by vibratome (Leica VT1000 S, Leica Biosystems, Wetzlar, Germany) under 

ice cold cutting ACSF supplied with carbogen (5% CO2 in 95% O2), then were incubated in 

storage ACSF at room temperature in a chamber and permanently supplied by carbogen for at 

least 1 hour before recording. Three hundred µm coronal slices were cut from the brains so that 

we were able to collect cells from different layers from the PFC. 

Patch pipettes were pulled to 4-10 Mohm resistance by a David Kopf 720 vertical pipette 

puller (David Kopf Instruments, Tujunga, CA, USA) using a patch pipette puller gear. 

Whole-cell patch clamp measurements were performed at 34°C using a standard setup 

built on a Leica electrophysiology microscope DM6000 FS (Leica Microsystems, Wetzlar, 

Germany) equipped with DIC optics and a 40x magnification water immersion objective. The 

microscope had an optical magnification controller from 0.35x to 1.25x for amplification of the 

image. A QImaging Rolera-XR high resolution camera (QImaging, Surrey, BC, Canada) was 

used for visualizing the cells. We used Sutter MP-285 micromanipulator (Sutter Instrument, 
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Novato, CA, USA) for 3D movement of microelectrodes. All equipments were placed on a 

Gibraltar platform and X-Y stage (Burleigh Instruments, New York, NY, USA). The patch 

clamping protocol started with targeting the selected cell and achieving Gohm seal resistance. 

Then we used a step-gradient depolarization protocol in bridge mode at sampling rate 10 kHz 

which started at -0.1 nA using 0.05 nA step size and 0.5 sec step duration. We continued 

recording up to the highest firing rate of the neurons and stored the data of all steps in CED 

1401 file format. Electrophysiological signals were amplified by an AxoClamp 2B amplifier 

(Axon Instruments, Foster City, CA, USA). Analog data were digitized by a CED 1401 MK II 

(Cambridge Electronic Design, Cambridge, UK) data capture device using Signal 4.11 software 

for data capture and processing. All data were stored in a data bank in a standard form. We 

stored pictures from before patch clamping, during recording and after harvesting of the cells 

and also we stored a low magnification picture showing the position of the recorded cell in the 

PFC. 

For cell identification we used anatomical and physiological markers. Pyr cells were 

identified based on their visible apical dendrite, the larger, triangular cell body and the regular 

firing of action potentials. The identification of FS cells in slices was done by their smaller, 

spherical cell body and the high frequency firing of narrow action potentials. It is important to 

note that we harvested at most 2 cells from each type from one animal to preserve the individual 

genetic variation. We harvested altogether 75 Pyr and 29 FS cells and after quality control we 

sequenced 59 Pyr and 25 FS cells. 

 

Amplification and sequencing 

Following electrophysiological recording, the cytoplasmic mRNA of the recorded cells 

was harvested, reverse transcribed into cDNA, amplified through two rounds of aRNA 

amplification (Van Gelder et al. 1990; Eberwine et al. 1992), and performed into barcoded 
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libraries for sequencing. Each cell was individually amplified through three rounds of aRNA 

amplification. A 1:4,000,000 dilution of ERCC RNA Spike-In (Life Technologies, Carlsbad, 

CA, USA) was added to each sample to control for technical variation between samples. For 

the first round of amplification, a synthesized oligo(dT)-T7 primer that contained a poly-T and 

phage T7 RNA polymerase promoter sequence was annealed to the poly-A tail of the mRNA. 

Double-stranded cDNA was synthesized using SuperScript III reverse Transcriptase 

(Invitrogen, Carlsbad, CA, USA), and DNA polymerase I (Invitrogen, Carlsbad, CA, USA) 

following the manufacture’s protocols. The double-stranded cDNA served as the template for 

aRNA transcription using the MEGAscript T7 kit (Invitrogen, Carlsbad, CA, USA). For second 

and third round of amplification, aRNA was converted into cDNA using random 

hexanucleotide primers for first strand and oligo(dT)-T7 primer to initiate second strand. The 

amplified aRNA was purified with AGENCOURT RNACLEAN X beads (Beckman Coulter, 

Brea, CA, USA). The quality and quantity of the aRNA were assessed using Bioanalyzer RNA 

Picochip and Nanochip (Agilent, Santa Clara, CA, USA). 

Libraries were constructed from the aRNA using the TruSeq Stranded mRNA Library 

Prep Kit (Illumina, San Diego, CA, USA) without the initial fragmentation incubation step. The 

resulting libraries were quantified using Bioanalyzer DNA1000 chip (Agilent, Santa Clara, CA, 

USA). Libraries were sequenced either on HiSeq2500 to produce 100-base paired-end reads, or 

NextSeq500 to produce 75-base paired-end reads. The GEO accession number for the data is 

GSE135060. 

 

Hierarchical clustering based on electrophysiological parameters 

To measure parameters of electrophysiological signals we used a script of CED written 

for evaluation of patch clamp data (Intracellular spike analysis, Cambridge Electronic Design, 
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Cambridge, UK, http://ced.co.uk/downloads/scriptsiganal). We measured 22 parameters for 

each cell at each depolarization step. We show these in details in Figure S1. 

Anatomical evaluation of the cells was made by scoring different parameters based on 

low and high magnification pictures made before and after the recordings using Paxinos mouse 

brain atlas as reference (Paxinos and Franklin 2006). Layer position score was equal with the 

layer number. Dorso-ventral position score was 0 for cingulate, 1 for prelimbic and 2 for 

infralimbic location. Antero-posterior position score was made so that the middle range of 

medial prefrontal area (mainly prelimbic area) was scored as 1 and if the cell was more anterior 

than scored 0 and 2 if it was more posterior. A cell score was also applied based on its visible 

details: 0 if only a round-shaped soma could be seen, 1 if apical dendrite could be seen also, 2 

if the cell was multipolar, 3 for dendrite with uncertain morphology and 4 for bipolar cells. The 

position of the anchoring rod (keeping the slice fixed in position) was also scored if it was so 

close to the recording site that it might have interfered with the physiology by pressing cells 

and cell processes. Finally, a score was also applied if the cytoplasm removal was full and the 

nucleus could be seen clearly on the tip of the pipette when it was pulled out from the tissue. 

Physiological data were organized in frames meaning that neuronal response to each 

depolarization step was stored in a separate frame. The first frame was defined as the frame in 

which the cell fired at least three action potentials throughout the entire depolarizing current 

pulse. The last frame was the depolarization step which induced the highest firing rate of the 

neuron. For clustering based on the electrophysiological measurements we used data from the 

first frame because first frame and last frame data resulted very similar clusters. The following 

22 features were taken into account: 1st, 2nd, middle spike: time, threshold, amplitude, 10-90% 

rise time, half width, after hyperpolarization value (AHP); frequency: 1st-2nd spike, 2nd-last 

spike average; last spike time; 2nd-last spike average amplitude (see Figure S1). 
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Each of these 22 features was normalized such that they have zero average and unit 

variance (Choromanska et al. 2015). Clustering being a complex optimization problem, using 

too many parameters could result in difficulties. For this reason a principal component (PC) 

analysis was applied to these features (Tipping and Bishop 1999) and the first 3 PCs were 

considered for the clustering. 

For these three PCs a hierarchical agglomerative clustering was carried out (Müllner 

2011). Between the data points an Euclidean distance was considered in the 3D space (the 3 

PCs being the coordinates) and the Ward linkage criterion was applied (Bar-Joseph et al. 2001). 

The basic idea of agglomerative clustering is that it starts form all points being in different 

clusters and at each step it merges two different clusters such that an objective function is 

optimized. The method we used is called Ward's minimum variance criterion and it minimizes 

the total within-cluster variance. This agglomerative process can be illustrated through a 

dendrogram (Figure 1D) and one can choose to study the clusters at any level (choosing any 

number of clusters). 

 

Contrast analysis of hierarchical clustering 

There are many statistical methods for contrast analysis (ANOVA tests, F-tests, etc.) and, 

however, the number of cells in our case is so small that performing complex statistical methods 

could provide results that are hard to interpret and not necessarily meaningful or correct. For 

this reason, we decided to use a very simple approach by measuring different contrast variables 

calculated from the experimental values. 

For each gene G and cell C we have an x(G,C) measure. These show a very large variance, 

there are also many 0 values. Some former experiments indicate that the distribution is 

lognormal. For our analysis the best would be to have values close to a normal distribution. For 

this reason, we used the measures y(G,C)=ln(1+x(G,C)). (The 1 inside the logarithm is needed 
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to avoid obtaining –infinity in case of x=0.) The y variables will span over a much smaller 

interval having a distribution closer to a Gaussian. 

Next we identified the clusters we wanted to compare, we cut the dendrogram provided 

by the hierarchical clustering at a level that provided 4 clusters. The average of y(G,C) variables 

inside a cluster j (j=1,…,4) will be denoted as 



jCj

j CGy
n

G ),(
1

)( , where nj denotes the 

number of cells in cluster j. 

A contrast variable can be defined as )()( GcGV
j

jj  , where 0
j

jc . We have 

defined three different contrast variables that are orthogonal to each other, each of them 

describing a separate comparison (see Table S5). V1 compares the two large clusters of FS and 

Pyr cells: clusters (1 and 2) vs. (3 and 4). V2 compares the two clusters inside the FS cells 

(cluster 1 vs. 2) and V3 the two clusters inside the Pyr cells (clusters 3 vs. 4). 

 

Normalization of raw single-cell sequencing data 

Because of the extreme low sample volumes and difficulties to collect them from the cells 

of the living tissue, and also of the expectable differences in the actual state of the individual 

cells, the raw data of single-cell sequencing exhibits large fluctuations in the number of genes 

transcribed and also in their copy numbers. Therefore, the data normalization is a critical issue 

in differential expression analysis of a heterogeneous neuron population. First, the sequencing 

data were normalized using the DESeq R program package originally developed for bulk 

sequencing data. We expect that if a dataset is properly normalized, the sum of normalized copy 

numbers should correlate with the number of observed genes. Verifying this correlation is a 

simple test of the reliability of the normalization. Using plain DESeq data resulted in a poor 

correlation (see Figure S2A) indicating an insufficient normalization procedure. Transcript 

copy number data could be normalized on the housekeeping gene products which are 
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indispensable for the homeostasis of the cell and expected to be transcribed at a constant level 

(low dispersion). However, normalizing the raw sequencing data for 46 housekeeping genes 

(29 genes that are generally accepted as housekeeping reference genes and 17 genes of the citric 

acid cycle, Table S6) provided also poor correlation (see Figure S2B). We found that even these 

genes were not transcribed in all of the cells and none of the cells expressed all of them. The 

incomplete transcript pattern of housekeeping genes could be the result of technical 

uncertainties and, however, it has little if any chance because when they are transcribed, the 

transcript copy number is high above the technical limit. As it is known, gene transcription is 

performed in bursts and several of the genes could be in OFF state in the time point of 

harvesting. In fact, we observed that several genes are transcribed in large copy numbers but 

only in small number of cells, we assume that mainly gene OFF state is responsible for the zero 

transcription values. In turn, the reference genes for normalization should be transcribed in most 

of the cells and their transcription levels should be high and stable. Using these criteria, we 

searched for reference genes in a non-biased way (i.e., without knowing their house-keeping or 

any function). 

(i) First, we sorted out 1,000 genes that were present most frequently in all cells. 

(ii) To find the most constantly expressed genes, we carried out a “pre-normalization” on the 

sequencing data using these 1,000 genes as reference. For each cell, a scaling-factor was 

determined as the factor resulting in the lowest root-mean-square deviation (RMSD) related to 

the average values on all expressed genes out of the 1,000 selected genes in the cell. The cells 

were “pre-normalized” with these factors. 

(iii) In the next step, on the “pre-normalized” data to the most frequent 1,000 genes, we sorted 

out the 500 most stable ones showing the lowest standard deviation. 

(iv) Because the main goal of this single-cell sequencing study is to determine the transcription 

differences between FS and Pyr cells, the reference genes were further filtered for those 
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showing less than tenfold difference between FS and Pyr cells (Figure S3). The resulting 409 

genes were taken as reference genes with frequent and stable expression both in FS and Pyr 

cells and represent an “equi-phenotype” of the sequenced neuronal cell transcriptomes. The 

“pre-normalized” data was not used any further. 

(v) We have to note, that for most of the genes, single-cell sequencing data showed zero copy 

numbers in majority of the cells. The great number of zero transcription dramatically shifts 

(lowers) the average transcription values. The use of median for single-cell data could be 

misleading also. Therefore, we calculated the average copy numbers only for the non-zero 

values. The rationale behind our calculation is that the non-zero values average represents the 

expectable average transcription level when the gene is in ON state. Together with the 

frequency of the gene ON state, our estimation provided a more real description of single-cell 

transcription than the overall average or median that include zero values. 

(vi) The selected 409 genes of the “equi-phenotype” were used to normalize the raw data of the 

cells for expression difference analysis. The normalization factor for a cell was the 

multiplication-factor that provided the lowest RMSD on the 409 reference genes compared to 

the averages of the non-zero values. The correlation between the number of recovered genes 

and the sum of copy numbers on the normalized dataset is presented in Figure S2C and indicated 

that our normalization was more reliable than other normalization processes. 

 

Investigation of the reliability of the comparison of FS and Pyr cells – the difference 

reliability score 

Our aim was to compare the transcription levels for the sequenced genes between FS and 

Pyr cells. Because of the relatively low number of sequenced cells and because most of the 

genes were only present in a fraction of the cells resulting lot of zero values, it was difficult to 

find an appropriate statistic to verify the reliability of comparison and eliminate false discovery 
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rate. Outlier data, defined as higher than the median of the log-transformed data (for non-zero 

values) with more than twice of the standard deviation, were discarded. To validate the data 

quality for differential expression analysis, we randomly divided the FS cells into two groups 

of equal number of cells and added to these groups the randomly selected two halves of Pyr 

cells. Thus, we randomly selected cells to two mixed-type cell groups of identical FS and Pyr 

cell numbers in each. If the data is solid and suitable for quantitative analysis, comparison of 

that two randomly composed groups should give similar copy numbers even if the gene exhibits 

large differences between FS and Pyr cells. If the copy numbers are not reliable (e.g. largely 

fluctuating) or the gene could be detected only in a very few cells, such a randomized group 

comparison should show large fluctuations. We evaluated one million random distribution of 

the cells into the two groups of equivalent composition and defined a gene reliable if in >95% 

of the random choices resulted less than tenfold difference between the two groups in the copy 

numbers. This filtering verifies the reliability for differently expressing genes between FS and 

Pyr cells (Figure S4). The same method was applied in the comparison of layer 2, 3 and layer 

5, 6 Pyr cells. 

The raw sequencing data sets of FS and Pyr cells were compared on the 409 genes of 

“equi-phenotype” and on all the genes observed. As an average, the harvesting of the cytosol 

resulted in twice higher amount of mRNA molecules from Pyr cells which might be explained 

by their larger size and volume (Table S7). 

 

Verification of the sequencing data by PCR 

The mRNA content of the single-cell was subjected to one round of aRNA amplification, after 

the aRNA was converted into cDNA using random hexanucleotide primers. This cDNA was 

used as template for the PCR reactions. We used synthetic oligonucleotide primers derived from 

the Celsr1, Kcnmb1, Gria3 and Adora1 mRNA for amplification of the corresponding mRNA 
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fragments. PCR amplification was conducted in a 50 µl reaction mixture containing 1 µl of 

each cDNA template, 2.5 µl of each 10 µM primer, 4 µl dNTP (2.5mM), 1U of Q5 High-

Fidelity DNA polymerase (NEB, #M0491L), and 10 µl of 5x reaction buffer according to the 

manufacture’s protocol. The PCR reaction went for 40 cycles in a Bio-Rad T100 thermal cycler. 

Each cycle consisted of denaturation at 98°C for 10 sec, annealing at 55°C for 30 sec, and 

elongation at 72°C for 30 sec. The amplified PCR products were detected using D5000 

Screentape (Agilent Santa Clara, CA, USA). PCR products were purified after electrophoresis 

through 2% agarose gels in the presence of 0.5 µg of ethidium bromide per ml and submitted 

for sequencing. 

 

Results 

Electrophysiological classification of PFC neurons 

We used a step gradient depolarization protocol for electrophysiological characterization 

of FS and Pyr cells (Figure 1B). Twenty-two parameters of their electrical activity were 

measured as described in Figure S1. The PC analysis showed that the first 3 PCs provide 89% 

accuracy in clustering the PFC neurons into Pyr cell group and FS interneuron group, in 

agreement with previous publications (Krimer et al. 2005) (Figure 1C). Clustering on the basis 

of the first frame of continuous firing and the last frame of highest firing rate showed the same 

results. Therefore, we relied upon the first frame data in our study. Based on this cluster 

analysis, out of the 25 cells previously selected as FS, two cells were classified as Pyr cell and 

only two out of the 59 Pyr cells were found to be FS. This indicates the accuracy of 

electrophysiology-based cell selection for single-cell transcriptome analysis of PFC neurons. 

There were sub-clusters of FS and Pyr cells discernible on the basis of their electrical activity. 

We were unable to correlate these sub-clusters with any of the assessed brain functions or 
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location (layer) and, therefore, we used only the main cluster of FS and Pyr cells in further 

analysis. 

 

Figure 1. Physiological clustering of PFC cells. (A) The canonical network of PFC containing inputs (I1-I12) and outputs 

(O1-O2) of FS and Pyr cells. (B)Typical firing pattern of Pyr and FS cells. Representative frames from step-gradient 

measurements. (C) Principal component (PC) analysis of 22 physiological parameters and contribution of each physiological 

parameter to the first 10 PCs. These contributions are comparable within and between PCs, because of the proper normalization 

(see Materials and Methods and Figure S1). (D) Hierarchical clustering of FS and Pyr cells confirmed that FS and Pyr cells are 

clearly distinguishable and physiologically determined clusters of PFC neurons. Green represents the FS cell cluster (only 2 

Pyr cells are included), red represents the Pyr cluster (only 2 FS cells are included). 

 

Transcriptional profiling of Pyr and FS cell surfaceome 

After deep single-cell sequencing (10 million reads per cell) we found 19,685 transcripts 

in total of PFC neurons. Normalization of single-cell transcriptomics data, especially when the 
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sample is harvested from the living cell by patch clamp technique, presents some special 

challenges because of the great number of zero expression values. The application of the 

normalization process described above resulted in the positive correlation between the number 

of recovered transcripts and the observed gene number of raw data (Figure S2C). Plotting the 

average normalized copy numbers of transcripts in FS and Pyr cells against each other, we 

identified expression differences between the two types of neurons (Figure 2). The expression 

levels were tested for reliability (see reliability test in Materials and Methods). 

 

Figure 2. Transcriptomic differences between Pyr and FS cells. (A) Average copy numbers in Pyr cells vs. FS cells on 

logarithmic scale. Points represent individual genes. Genes representing the “equi-phenotype” and used for normalization are 

presented in green. Those reliable genes that show higher than tenfold difference in transcription levels between FS and Pyr 

cells are presented in orange. The histograms show the distribution of these genes as a function of average expression level in 

FS cells (top) and in Pyr cells (right), furthermore as a function of FS/Pyr average expression level ratio (bottom). Note that 

the indicated values belong to the diagonal dashed lines. (B) Comparison of receptor (purple) and ion channel (black) transcripts 

in FS and Pyr cells. Only genes with reliable copy numbers are highlighted. 

 

The scatter plot of FS and Pyr cell transcript abundances (Figure 2A) revealed that at least 

54% of the transcripts are evenly expressed and 22% of them were highly reliable in both major 
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neuron types. The evenly expressed transcripts are coding housekeeping proteins and 

scaffolding proteins as well as proteins related to neurogenesis, neuronal differentiation and 

development. The abundant expression of housekeeping genes (e.g. Actb and Gapdh) indicates 

the accuracy of harvesting and the reliability of dataset (van den Hurk et al. 2018). We found 

that Actb was expressed by 87% and Gapdh by 60% of the cells, other housekeeping genes like 

Eef1a1 and Tuba1a were also detected in the vast majority of cells (in 85% and 92% of them, 

respectively). A fraction of evenly expressed transcripts were used for normalization labeled 

by green on Figure 2A. In addition, transcripts of several neurotransmitter and neuropeptide 

receptors (Figure 2B) were evenly expressed, such as some of the acetylcholine, adenosine, 

angiotensin, histamine, lysophospholipid, neuropeptide FF, NPY, cholecystokinin A and 

melanocortin receptors (Table S1). Transcripts coding receptors that facilitate lateral synaptic 

communication in the PFC, such as glutamate and GABA receptors transcripts were expressed 

abundantly in both Pyr and FS neurons in agreement with pharmacological and 

electrophysiological studies (Mclennan 1983; McCormick et al. 1993). Further the mRNAs of 

receptors for cytokines, chemokines, and purinergic receptors, normally assumed to be 

expressed by microglia, astroglia, dendritic cells and to lesser extent by neurons in the PFC 

(Hanisch 2002; Ambrosini et al. 2005; Kataoka et al. 2009) were found evenly distributed in 

FS and Pyr neurons. The pan-neuronal marker genes Snap25 (Tasic et al. 2016), Stmn2 and 

Thy1 (Fuzik et al. 2016) showed stable expression in the sequenced neurons (they were detected 

in 86%, 76% and 65% of the cells, respectively). We also found the mRNAs of classical Pyr 

and FS cell immunostaining markers in the single-cell transcriptomes (Figure 3B). The 

glutamatergic Pyr neurons expressed the classical vesicular glutamate transporter marker gene 

Vglut1 (mouse gene symbol: Slc17a7) at 25-fold higher level than the FS cells. Camk2b, an 

excitatory neuron marker gene (Jones et al. 1994) also showed enriched (13-fold) expression in 

Pyr cells. The expression of the GABAergic cell marker gene Gad1 was 65-fold higher in FS 
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cells, however some of the Pyr cells also expressed it. The mRNA level of Slc6a1 coding the 

GABA transporter GAT-1 was also 27-fold higher in FS interneurons. Thus, our results 

regarding the expression pattern of pan-neuronal, pan-excitatory and pan-inhibitory markers 

seem to be consistent with earlier single-cell sequencing studies based on patch-seq (Fuzik et 

al. 2016) and sort-seq (Zeisel et al. 2015; Tasic et al. 2016) techniques. 

The transcriptome of FS and Pyr cells contained large number of differentially expressed 

mRNAs showing 10-20-fold differences in copy numbers. Relying on the copy numbers and 

expression probability, we identified receptor and ion channel mRNAs for further investigation 

as candidates for cell-specific pharmacological targeting of Pyr and FS cells (Figure 2B, 3, 

Table 1). The expression levels of the potassium channel subunit encoding genes like Kcnf1, 

Kcnk4, Kcnn2, Kcnq2, Kcnq5, Tmem175 were more than tenfold higher in Pyr cells than in FS 

cells. Voltage-dependent calcium channel subunit alpha-2/delta-1 (Cacna2d1) and L-type 

calcium channel subunit beta-3 (Cacnb3) were also highly expressed in Pyr cells. Also, Pyr 

cells highly expressed the mitochondrial voltage dependent anion-selective channel (Vdac2) 

mRNA. The Ryr3 coding ryanodine receptor 3, an endoplasmic reticulum calcium channel was 

also highly expressed in Pyr cells. The transcript numbers for GABA receptor subunit beta-3 

(Gabrb3) and the ionotropic glutamate receptor AMPA type subunit-3 (Gria3) were several 

times higher in Pyr cells than in FS cells. In Pyr cells, the cholecystokinin B receptor (Cckbr) 

was also highly expressed (118-fold higher than in FS cells). There was high expression of 

adenosine A1 receptor (Adora1), proton/chloride exchange transporter 4 (Clcn4), C-X3-C motif 

chemokine receptor 1 (Cx3cr1) and NK-tumor recognition protein (Nktr). Opioid receptor Mu 

1 (Oprm1) was found exclusively in Pyr cells. The nuclear receptors Nr2c2, Nr4a1 are also 

remarkable because they express ligand dependent transcription factors activated by hormones 

(e.g. steroids) and other signaling molecules (e.g. retinoic acid) acting on neurons  (Chen et al. 

2008; Y. Chen et al. 2014). 
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In FS cells, the transcript number of transient receptor potential cation channel (Trpv4) 

permeable for calcium was ~580-fold higher than in Pyr cells (Figure 2B, 3, Table 1). Also, the 

average expression of calcium-activated potassium channel subunit beta-1 (Kcnmb1) was ~270 

times higher in FS cells than in Pyr cells. The transcripts of potassium voltage-gated channel 

subfamily C member 2 (Kcnc2) and potassium channel subfamily K member 2 (Kcnk2) were 

also enriched in FS cells. Additional significantly enriched mRNAs in FS cells are coding 

angiotensin receptor (Agtr2), prolactin receptor (Prlr), histamine receptor (Hrh2) and cadherin 

EGF LAG seven-pass G-type receptor 1 (Celsr1). The highly selective expression of the gastrin 

releasing peptide (Grp) is also noteworthy in FS cells. 

 

Figure 3. The distribution of differentially expressed transcripts. The figure shows the normalized copy numbers and the 

distribution by cell type of some of the differentially expressed receptor and ion channel transcripts (A) and classical marker 
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genes (B). Points represent individual cells. Only genes having at least 0.95 reliability score are presented. Please note the 

difference between the number of the sequenced FS (n=25) and Pyr (n=59) cells (*: p < 0.05, **: p < 0.01, ***: p < 0.001 

according to the two-sample t-test). 

 

For verification of the sequencing results we performed PCR experiments on 12 Pyr and 

5 FS cells and, however, we note here that single-cell sequencing is more appropriate for 

identifying endogenous cell sequences as it is more specific and sensitive. We examined the 

presence of 4 differentially expressed transcripts and similarly to the sequencing results found 

varying densities in the investigated cells (for a representative gel image see Figure S5). PCR 

products from Gria3 analysis were confirmed by sequencing.  

We compared our differentially expressed mRNA results to the cell surfaceome database 

(http://wlab.ethz.ch/surfaceome/) (Figure 4). The surfaceome database was constructed on the 

basis of the human genome and only about 6000 genes could be matched to the mouse genome, 

thus we limited our analysis on them. The surfaceome scores in the database represent the 

probability of a protein to be located on the outer surface of the cell membrane. Our data showed 

a marked overlap with the human surfaceome database and the transcripts of GPCRs and other 

receptors having tenfold or higher difference between Pyr and FS cells (Figure 4B) have high 

surface score as well (above 0.9). We note here that beyond receptors and ion channels of more 

than tenfold transcript number differences we found also other differentially expressed 

transcripts of high surface location score. The focus of this study was on receptors and ion 

channels and, however, some of the other proteins having high surface location score could be 

used for cell-selective targeting in the future. 

http://wlab.ethz.ch/surfaceome/
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Figure 4. Comparison of our data and the human surfaceome database. The figure shows only those ~6000 mouse genes 

that have human orthologs in the database. (A) The surfaceom (SURFY) score as a function of average copy numbers in FS/Pyr 

cells. Highlighted genes: genes with reliable copy numbers (filled orange dots), genes coding receptors (empty purple dots), 

reliable genes coding receptors (filled purple dots), genes coding ion channels (empty black squares) and reliable genes coding 

ion channels (filled black squares). (B) The reliable differentially expressed genes with high surfaceome score (>0.9) suggesting 

cell surface localization of the coded protein. In addition to the above identified cell type-enriched receptor transcripts (purple), 

the in silico analysis revealed several other differentially expressed genes coding potential cell surface proteins (black). 

 

Transcriptional differences between layer 2, 3 and layer 5, 6 Pyr cells 

Layer 2, 3 and layer 5, 6 Pyr cells in the PFC are directly connected by axon collaterals 

projecting to the dendritic layer (lateral connections) while Pyr cells of different layers have 

distinct efferent projections (Figure 1A). The anatomical connection differences between Pyr 

cells of layer 2, 3 and layer 5, 6 suggest functionally different roles in healthy and diseased 

PFC; however, the parameters derived from the step gradient depolarization paradigm did not 

cluster them as electrophysiologically different groups (Figure 1D). 
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Figure 5. Gene expression differences between Pyr cells of layer 2, 3 and layer 5, 6 in PFC. (A) Average copy numbers in 

layer 2, 3 cells vs. layer 5, 6 cells on logarithmic scale. Points represent individual genes. Genes that show higher than tenfold 

difference in transcription levels are presented in orange. The histograms show the distribution of these genes as a function of 

average expression level in layer 2, 3 Pyr cells (top) and in layer 5, 6 Pyr cells (right), furthermore as a function of layer 2, 

3/layer 5, 6 average expression level ratio (bottom). Note that the indicated values belong to the diagonal dashed lines. (B) 

Comparison of receptor (purple) and ion channel (black) genes in layer 2, 3 and layer 5, 6 Pyr cells. Only genes with reliable 

copy numbers are highlighted. 

 

We found several differences between the transcripts of layer 2, 3 and layer 5, 6 Pyr cells 

supporting layer specific functional differences (Figure 5, Table 1, Table S4). Layer 2, 3 Pyr 

cells expressed Kcnc1 inward rectifying rapid potassium channel ~17 times higher than layer 

5, 6 Pyr cells. Also, layer 2, 3 Pyr cells transcribed Cacna2d1 at a ~15 times higher level than 

layer 5, 6 Pyr cells. The transcript number of sodium and potassium dependent excitatory amino 

acid (glutamate and aspartate) transporter 1 (Slc1a3) was ~16 times higher in layer 2, 3 Pyr 

cells suggesting more efficient glutamate reuptake after excitation in layer 2, 3 than in layer 5, 

6. The non-essential component of volume regulated anion channel (Lrrc8c) expression was 

~tenfold higher in layer 2, 3 Pyr cells. Also, the glycine-gated hyperpolarizing ion channel 
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(Glrb) expression was ~13 times higher in layer 2, 3 Pyr cells suggesting enhanced glycine 

sensitivity of upper layer Pyr neurons. There were other potassium channels highly expressed 

in layer 2, 3 Pyr cells, such as Kctd3, Kctd12 and Kctd17. 

The only neuronal GPCR transcript difference is the ~11-fold enrichment of Grm5 in the 

layer 2, 3 Pyr cells. The ~14-fold higher presence of Nr4a1 mRNAs is currently difficult to 

interpret. We found 243 miscellaneous protein transcripts (mostly metabolic and scaffolding 

proteins) that are highly expressed in layer 2, 3. They are not cell-surface molecules and, 

therefore, not easily druggable or useful for selective cell targeting. 

Layer 5, 6 Pyr cells showed fewer highly transcribed mRNAs compared to layer 2, 3 cells 

(Figure 5B). Two genes coding GPCRs, the Celsr1 and frizzled-5 (Fzd5) were highly expressed 

in layer 5, 6 Pyr cells. We have to note that Celsr1 showed the most abundant expression in FS 

cells (~89-fold enrichment), we merely mention it here because of the layer-specific expression 

in Pyr cells. We did not find any ion channel mRNA which had at least tenfold higher copy 

number in layer 5, 6, than in layer 2, 3 Pyr cells. Also, 21 miscellaneous protein transcripts 

were selectively transcribed (with more than tenfold difference) that do not code cell surface 

molecules. 

To demonstrate the usability of our single-cell transcriptomic results we chose Prlr 

(highly expressed in FS cells), which has not been previously investigated in PFC FS or Pyr 

cells and, however, its electrophysiological effect was described in hypothalamic neurons 

(Brown et al. 2012). Thus, we tested the PRL-R functionality with 500 ng/ml prolactin (R&D 

Systems, Minneapolis, MN, USA) bath-application on acute brain slices during whole-cell 

patch clamp recordings. We have seen an increase in 4 and a decrease in 1 out of 5 FS cells in 

the first-second spike frequency during prolactin application (106.33±7.56% compared to 

control). In turn, out of 5 Pyr cells 2 showed an increase and 3 showed a decrease in frequency 

of the two first spikes (101.04±15.45% compared to control). Since we applied prolactin on 
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brain slices containing a complex neuronal network only the presence of the functional PRL-R 

was confirmed but we cannot tell anything about the detailed mechanisms of the response. 

 

Discussion 

Using patch-seq analysis in cell-selective target discovery 

Single-cell transcriptomic studies in the CNS aimed unbiased discovery of neuronal 

subtypes (Zeisel et al. 2015; Tasic 2018), thus in the past decade large number of cells were 

sequenced in clustering studies (Valihrach et al. 2018). Beside of electrophysiological 

clustering the aim of this study was to discover transcriptomic differences between the two 

classical cell types of the PFC because the knowledge about Pyr/FS cell interplay in 

pathological functions raise the need for selective fine tuning of them in brain diseases. 

Druggability of cell surface molecules suggests uncovering differences in mRNAs coding cell 

surface receptors and ion channels beyond the already known markers of the two cell types 

(Bartfai et al. 2012). 

To avoid modifications of the transcriptome induced in transgenic animals, as well as the 

gene expression alterations due to cell dissociation techniques, we used acute brain slices, 

where the neurons had their local synaptic system organizing the excitatory/inhibitory 

connections in the PFC mainly preserved. Performing single-cell sequencing based on cell 

dispersion methods can investigate the transcriptome of thousands of cells and, however, our 

goals required the electrophysiological identification of neurons and ultra-deep sequencing. In 

addition, as Pyr cells are larger than FS cells, during the dispersion procedure the cell isolating 

wells may contain more than one FS cell. For these reasons we preferred to use the patch-seq 

technique. 

In general, former patch-seq studies were performed on a limited number of neurons 

(Tripathy et al. 2018) allowing ultra-deep sequencing up to the complete transcriptome analysis 
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of cells. Ultra-deep sequencing requires different data processing and quality controlling 

strategies than the low-depth sequencing studies (Sims et al. 2014). The detection of extremely 

low copy number of transcripts generates the problem of high number of zero copy numbers. 

As for the interpretation of zero expression values, Levine et al. (2013) reviewed the pulsatile 

nature of cellular processes suggesting pulsatile dynamics for the gene expression as well. Thus, 

some of the genes might are transcribed in bursts at certain frequency determined by the 

function of the coded proteins in pulsatile cellular functions (Suter et al. 2011; Liu et al. 2016). 

Since mRNA transcription is oscillating, at a certain time point several genes can be in OFF 

state while others in ON state (Munsky et al. 2012). Therefore, the zero expression value of a 

gene in a cell could be of biological origin at a certain time point as well (Lin et al. 2017). It 

cannot be excluded that zero expression values might derive from methodological uncertainties. 

We emphasize that zero expression values of technical origin may influence the data quality 

obtained from a cell which cannot be restricted to certain genes but can result low copy number 

for several genes. In turn, we got rid of the cells in which all copy numbers were extraordinarily 

low. 

A technical and theoretical problem in patch-seq data processing is the normalization of 

the raw data. Using different normalization methods, we revealed that in some cases the total 

mRNA copy number in a cell does not correlate positively with the total number of genes in 

the raw sequencing dataset as it should be. In some studies the copy numbers of housekeeping 

protein mRNAs were used for normalization (Lin et al. 2019), but it is known that the 

expression of them can show pulsatile dynamics at single-cell level (Liu et al. 2016). However, 

when we applied the lowest dispersion and highest copy number transcripts for normalization 

without any respect to the function of the coded proteins, positive correlation was established 

between the total normalized copy number and the total original gene number (Figure S2C). 
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Receptor and ion channel differences are linked to brain diseases and drug effects 

We were able to identify many differentially expressed mRNAs which are coding proteins 

of pathological importance. The proteins coded by some of the uncovered cell-selective 

transcripts (Table 1) have functions already described in pathophysiology pathways of brain 

diseases (Table S2, S3). Differential transcription patterns are important in Fragile-X syndrome 

(Martin et al. 2016), circadian rhythm regulation (Gannon and Millan 2011), mental retardation 

(Lehman et al. 2017) and autism (C.-H. Chen et al. 2014). In particular, PRL-R (transcribed 

highly in FS cells) can enhance neuronal firing (Brown et al. 2012) and is associated with 

schizophrenia (Albayrak et al. 2014), Hrh2 (transcribed highly in FS cells) plays a role in 

Fragile-X syndrome (Wright et al. 2017), and Gabrb3 (transcribed highly in Pyr cells) is 

associated with epilepsy and autism (C.-H. Chen et al. 2014). Many of the receptors and ion 

channels that showed cell type-specific mRNA expression are involved in the regulation 

neuronal excitability (e.g. Adora1, Oprm1, Trpv4, Kcnf1 and Kcnq2) (Shibasaki et al. 2007; 

Cioli et al. 2014; Soh et al. 2014; Rombo et al. 2016; Wang et al. 2018). The proteins coded by 

Kctd3, Kctd12 and Kctd17 are tetramerization domain members of potassium channels and are 

involved in Tic-disorder and myoclonic diseases (Cao-Ehlker et al. 2013; Correale et al. 2013; 

Mencacci et al. 2015). Agtr2 has a role in X-linked intellectual disability (Vervoort et al. 2002) 

and Alzheimer’s disease (Ge and Barnes 1996). Kcnmb1, highly transcribed in FS cells (Table 

1), codes the regulatory subunit of the high conductance voltage and calcium dependent 

potassium channel. It controls the calcium sensitivity and gating mechanisms of the channel 

indicating an efficient dampening regulatory role of fast depolarization (Jiang et al. 1999). The 

most important finding of the present study is that we revealed many unevenly distributed 

mRNAs in Pyr and FS cells of the murine PFC, coding proteins involved in psychiatric diseases 

in human. Moreover, the mechanism of action of some drug candidates can be linked to certain 

cell types of the PFC. 
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Table 1. Transcripts encoding putative drug targets that are differently expressed at high 

levels in FS vs. Pyr cells. Only genes with reliable copy numbers are listed* 

Transcript 

expression 

Ion channel subunit GPCR and other 

receptor subunit 

Classical markers 

High in FS cells Kcnmb1#, Kcnk2, 

Trpv4#, Kcnc2 

Agtr2#, Celsr1#, 

Hrh2#, Prlr# 

Calb1, Calb2, 

Gad1†, Gad2, Pvalb, 

Sst, Vip, Slc6a1† 

High in Pyr cells Cacnb3, Cacna2d1, 

Kcnf1, Kcnk4#, 

Kcnn2, Kcnq2, Kcnq5, 

Tmem175, Vdac2 

Adora1#, Cckbr, 

Cx3cr1#, Gabrb3, 

Gria3, Nktr, Nr2c2, 

Nr4a1, Oprm1#, Ryr3# 

Cck†, Slc17a7†, 

Camk2b† 

High in layer 2, 3 vs. 

layer 5, 6 Pyr cells 

Cacna2d1, Kcnc1, 

Kctd3, Kctd12, 

Kctd17, Lrrc8c# 

Glrb, Grm5, Nktr, 

Nr4a1  

 

High in layer 5, 6 vs. 

layer 2, 3 Pyr cells 

Not above the average 

of Pyr cells  

Celsr1#, Fzd5  

* For comparison, we list the transcripts encoding the classical markers of these neuron types and note that these are also 

differently i.e. more than tenfold higher expressed in one than in the other cell type. †classical markers expressed differently 

based on transcriptomics, #labels transcripts of subliminal expression in Allan Brain Atlas 

 

The proteins coded by the differentially expressed mRNAs are in conjunction with 

pharmacological experiments done on drug candidates commercially available. It was shown 

on mice that Spadin (Borsotto et al. 2015), a novel antidepressant is the inhibitor of TREK1 

channel (coded by Kcnk2) which was highly expressed in PFC FS cells suggesting its FS cell-

specific action. Riluzole, a TRAAK channel (coded by Kcnk4) antagonist decreases the 

glutamate release and is clinically used for the treatment of amyotrophic lateral sclerosis (ALS) 

(Duprat et al. 2000). Kcnk4 was exclusively expressed by Pyr cells. Linopirdine and XE991 are 
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cognitive enhancers acting on ACh release and are antagonists of voltage-gated potassium 

channel subunit Kv7.5 (coded by Kcnq5) (Schnee and Brown 1998; Wang et al. 2000) which 

was highly transcribed in PFC Pyr cells. Finally, Erastine (Yagoda et al, 2007) is a VDAC-2 

and glutathione synthesis inhibitor (Yagoda et al. 2007) and the Vdac2 was also highly 

expressed in Pyr cells. Since changes in excitatory/inhibitory balance of the PFC require 

selective modulation of FS and/or Pyr cells, the pharmacological data indirectly support the 

differential expression of the target proteins suggested by our data. 

The in silico comparison of our data to the human cell surfaceome database confirmed 

the surface localization of the selected receptors and ion channels but also showed several other 

differentially expressed mRNAs coding miscellaneous cell surface proteins (Figure 4B). We 

note here that these membrane proteins having no known receptor or ion channel functions 

could attract interest as anchor proteins for cell-selective drug targeting; however, the currently 

available technologies are developed for investigating receptors (e.g. GPCRs) and ion channels. 

We suggest further studies on these proteins in the future. 

The layered architecture of the mammalian neocortex and the functional differences 

between Pyr cells of different cortical layers suggest that the mRNA and protein expression 

patterns could be layer-specific (Shepherd 2004). Indeed, we report here layer-specific mRNA 

differences, but the number of remarkable expression differences between Pyr cells of 

superficial and deep layers was limited in comparison with the Pyr/FS cell differences. Thus, 

we assume that layer-specific targeting of Pyr cells despite of its functional relevance probably 

cannot be performed. 

 

Uncertainties in the relationship between mRNA and protein levels 

Because of the limitations of single-cell proteomics, the most useful way for getting 

reliable information about the molecular composition of individual cells is the single-cell 
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mRNA sequencing. The correlation between the transcript copy numbers and the concentration 

of the coded protein might be weak in the case of steady state level mRNAs but it can be high 

in the case of variable level mRNAs (Maier et al. 2009). In addition, the correlation between 

mRNA and protein levels is gene and tissue specific, and the correlation factors might be 

determined by the current condition of the cells (Liu et al. 2016). 

Assuming that the synthesis intensity of a certain protein in different neurons may be 

similar, the mRNA differences could reflect protein differences in some extent. Therefore, we 

assume that a tenfold or higher difference in mRNA copy numbers may indicates a difference 

of similar magnitude in the protein levels as well, which could be high enough for selective 

targeting of cells. It should also be noted that the presence of a receptor transcript in a cell do 

not allow a direct conclusion on the functionality of the receptor protein, but it may indicate the 

potential of a cellular response (Bartfai et al. 2012). We also should take into account the 

probable correlation between mRNA copy numbers and cell size, considering Pyr cells are 

usually two or three times larger than FS cells. The same density of a receptor or ion channel 

in the cell membrane probably needs twice as much mRNAs in a Pyr cell then in an FS cell. It 

can explain the generally higher mRNA copy numbers in Pyr cells than in FS cells. Thus, based 

on transcriptomic differences we offer here a cell surface receptor and ion channel set probably 

differentially expressed in Pyr and FS cells which might enable the selective pharmacological 

targeting of the two cell types. We should emphasize that it is only an assumption because the 

exact validation of the results by single-cell proteomics is unrealistic at the current state of the 

art and the in vivo target selectivity of drugs depends on several complex mechanisms (Vlot et 

al. 2017). Probably the understanding of mRNA copy number and protein level correlation is 

one of the challenges in the future single-cell OMICS. In conclusion we propose classical 

experimentation to demonstrate how the proteins coded by evenly or differentially expressed 

transcripts could selectively tune the cellular activity in the PFC. 
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Conclusion 

As a consequence of the extreme sensitivity of ultra-deep single-cell sequencing we 

uncovered several transcriptomic differences between Pyr and FS cells that have not been 

detected in the mouse PFC before (Table 1. # labeled differences). Also, we confirmed the 

mRNA expression differences of the already known Pyr and FS cell marker proteins. The 

results support our principal idea that application of single-cell sequencing to reveal novel 

druggable surfaceome differences can be achieved efficiently on electrophysiologically 

characterized neuronal cell types. We suggest the application of this workflow for discovery of 

molecular differences between functionally and pathologically important cell types of the 

neocortex to improve drug development for connectome diseases like schizophrenia, autism or 

depression. The present data suggest that the cell type-selective drug targeting of Pyr and FS 

cells is a feasible possibility. The layer-selective targeting of Pyr cells may prove to be more 

challenging as there are less selective transcript differences between the Pyr cells of layer 2, 3 

and layer 5, 6. Beyond identifying several cell-specific surfaceome differences in the PFC, we 

demonstrated that single-cell sequencing of electrophysiologically selected, genetically 

unaltered and morphologically intact neurons is useful in novel and cell type-specific drug 

target discovery. Moreover, it can provide important insight into the molecular mechanism of 

action of psychoactive compounds that is envisioned to support drug discovery efforts for 

treatment of mental illnesses. 
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