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ABSTRACT 

DEVELOPMENT OF MQCT METHOD FOR CALCULATIONS OF COLLISIONAL 

ENERGY TRANSFER FOR ASTROCHEMISTRY  

AND PLANETARY ATMOSPHERES 

 

 

Bikramaditya Mandal 

 

Marquette University, 2021 

 

A mixed quantum/classical methodology and an efficient computer code, named 

MQCT, were developed to model molecular energy transfer processes relevant to 

astrochemical environments and planetary atmospheres and applied to several real systems. 

In particular, the rotational energy transfer in N2 + Na collisions was studied with the focus 

on quantum phase, differential cross-sections, and scattering resonances, and excellent 

agreement with full quantum results was found. For H2O + H2, detailed calculations were 

carried out with the focus on allowed vs. forbidden transitions between the ortho/para states 

of both collision partners. Again, excellent agreement with full quantum calculations was 

achieved. Calculations of rotational energy transfer in a collision of two asymmetric-top 

rotors, a unique capability of this code, were tested using H2O + H2O system where the 

full-quantum calculations are unfeasible. To make MQCT calculations practical, an 

approximate, very efficient version of the method was developed, in which the classical-

like equations of motion for the translational degrees of freedom (scattering) are decoupled 

from the quantum-like equations for time-evolution of the internal molecular states 

(rotational, vibrational). The code MQCT was made publicly available to serve as an 

efficient computational tool for other members of the community. It can perform scattering 

calculations on larger molecules and at higher collision energy than it is currently possible 

with full quantum methods and codes. To study the rotational quenching of isotopically 

substituted sulfur molecules, such as 32S32S, 32S34S, and 34S34S, a new accurate potential 

energy surface was developed for S2 + Ar system. Rotational state-to-state transition cross 

sections were computed using MQCT, and the master equation modeling of energy transfer 

kinetics was carried out.  It is found that isotopically substituted asymmetric molecules 

such as 32S34S promote energy transfer due to symmetry breaking and transitions with odd 

∆𝑗 that become allowed. This process may be responsible for mass-independent isotopic 

fractionation of sulfur isotopes, typical to the Archean surface deposits.
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Figure 15: Same as Figure 11 but obtained using single-state MQCT calculations for the 
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Figure 16: Energy dependence of excitation cross sections for N2 (j = 0) + Na in a broad 

range of energies (a), and in the low-energy scattering regime dominated by resonances 

(b). Three allowed transitions are indicated on the graph. Full-quantum data from Ref. 56 
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by blue line. ..................................................................................................................... 111 

Figure 18: Comparison of results of the new approximate AT-MQCT method (green dots) 

against the full-coupled CC-MQCT calculations (red symbols) for the initial state 0000 of 

the H2O + H2 system. Final states are listed along the horizontal axis. The values of 

collision cross sections are plotted along the vertical axis using log scale. Eight frames 

correspond to eight values of the kinetic energy, as indicated. Twenty rotational states of 

the basis include both ground and excited rotational states of H2. ................................. 127 
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Figure 25: Potential energy curve of S2 molecule computed using MRCI/aug-cc-pV(5+d)Z 
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CHAPTER 1. INTRODUCTION 

1.1. Significance of the Collisional Energy Transfer 

Inelastic molecular collisions represent a fundamental chemical/physical process,1 

in which the energetically excited molecule in a bath gas exchanges its internal energy 

with quenchers and finally gets stabilized. The process describes energy transfer between 

an energetically excited molecule colliding with a quencher, which involves all degrees 

of freedom, i.e., rotational, vibrational and translational. The energy transfer during an 

inelastic molecular collusion is important in many chemical phenomena like 

recombination reactions,2,3 reactivity of metastable intermediates,4,5 enthalpy released by 

chemical bonds,6 photochemistry,7 astrochemistry,8,9 atmospheric chemistry,10,11 in 

combustion,12,13 or in the reaction of ultracold temperature.14,15 If the rates of the state-to-

state energy transfer processes are known, then many quantitatively accurate predictions 

about the course of collision dynamics, and about its final result/state, can be made. 

First example is the analysis of spectra from a variety of astrochemical 

environments. The collisional rate coefficients are used as input to analyze the radiative 

processes in the interstellar medium (ISM) and other cosmic objects.6 Analysis of such 

spectra is crucial for predictions of physical properties of the ISM, such as pressure, 

temperature, and density, and its chemical composition. This analysis is also very 

important for understanding evolution of the atmosphere. The modeling of gas-phase 

recombination reactions helps to find exoplanets with chemical composition/conditions 

similar to Earth’s atmosphere, thus providing crucial information for understanding the 
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chemical origin of life using molecular signatures. Laboratory experiments are extremely 

limited in providing this information.  

Combustion, such as flames and chemical reactions, is another example of a 

highly reactive chemical environment where the collisional energy transfer plays an 

important role in kinetics. The energy released during the bond formation excites the 

internal states (rotation and vibration), and finally is transferred to the translational 

motion of the molecules. 

The next field of research where inelastic collision plays a crucial role is ultracold 

physics. This filed, the study of collisional energy transfer reactions at ultra-cold 

conditions of molecular traps, is another hot topic these days. This research is crucial for 

testing, and eventually employing, the fundamentals of quantum physics, such as 

quantum computing and communication. 

It is rather challenging to study this process near the dissociation threshold since 

the highly excited molecule exhibits large amplitude of vibrational motion. Also, there is 

a strong coupling between vibrational and rotational degrees of freedom. Finally, in this 

situation, scattering resonance, such as Feshbach resonance (when two molecules are 

trapped together and never leaves the interaction region) or shape resonance (due to 

quantum tunneling), is a common phenomenon. 

1.2. Computational Methodologies to Study Collisional Energy Transfer 

Study of this process with classical trajectory method is sometimes implemented 

to understand the dynamics of collisional energy transfer. But the classical dynamics does 

not have any quantization of states, so it cannot provide any state specific details of 



3 
 

energy transfer process. It provides only a rough picture. People employ the classical 

method because it is computationally affordable. However, in some cases, it has other 

problems as well. The most important issue is the leakage of the vibrational zero-point 

energy. This could significantly change the collision dynamics near the dissociation 

threshold. Although, classical trajectory can describe the Feshbach resonance when two 

molecules are trapped together by exchange of translational and internal (rotational and 

vibrational) energy. But it cannot describe shape resonance populated by tunneling 

because tunneling is a quantum mechanical phenomenon. It lacks quantization of energy 

which is also problematic for the energy transfer process. 

Moreover, classical method does not have any symmetry effect. It cannot restrict 

the process from transferring energy to the states that are forbidden by selection rules of 

quantum mechanics. Therefore, all the state-to-state transitions are allowed in this 

method which is physically incorrect. It has been observed that quantum symmetry plays 

an important role in the energy transfer process in the context of isotope effect, which 

classical trajectory method cannot describe. 

The full quantum method to study the energy transfer is another approach, but it is 

computationally very demanding. The collision processes of two colliding partners 

involve not only the state-to-state transition for the vibrational degrees of freedom, but 

also the rotational states. The vibrational states need to be determined for different values 

of J, the angular momentum quantum number. So basically, the size of the matrix over 

the number of the coupled equations depends on the number of states in the system 

accessed during the collision process. 
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In practice, it can be easily implemented for those cases when the number of 

states is relatively small, such as light molecules H2, OH, NH and at low collision 

energies. When molecules become heavier, such as S2, CO, CH3COOH, H2O and the 

collision energy is larger, like the room temperature and above, then this is problematic. 

This leads to huge number of vibrational and rotational states, large size of the state-to-

state transition matrix and numerically expensive computation time. As a result, the full 

quantum method become unaffordable. 

1.3. Mixed Quantum/Classical Theory (MQCT) of Energy Transfer 

In this work, we develop and implement an alternative method to describe the 

molecular energy transfer process. It is a mixed methodology of both classical mechanics 

and quantum mechanics. It takes advantage of the fact that the relative motion of the 

collision process of two colliding partners can be treated classical mechanically in most 

cases. Even, rotational motion for some molecule can be treated classically since the 

energy spacings are rather small between the rotational states and usually, many 

rotational states are excited. However, in order to stop zero-point energy leakage, we 

have to treat the vibrational degrees of freedom quantum mechanically. 

 Our methodology, the mixed quantum/classical theory (MQCT), treats internal 

degrees of freedom, such as vibration and/or rotations quantum mechanically, while the 

scattering is treated classically (translational motion). The MQCT equations of motion for 

classical and quantum degrees of freedom are discussed in Section 3.2.1. Figure 1 

describes the components of the mixed quantum/classical theory16. The picture represents 

collision of two molecules, N2 + H2. The coordinate Q represents the translational motion 
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while each diatomic molecule has its own quantum rotational states. This approach of a 

mixed theory is not entirely new. It was proposed initially by Billing17 in the 1980s. His 

method was similar to our methodology. In his work, Billing treated the vibrational 

motion quantum mechanically while rotation and translational motion classically and 

applied to a small system, H2 + He with very few rotational states. But our approach is 

better. It is modified specifically to describe the large amplitude of vibrational motion. 

The rotational degrees of freedom are coupled with the vibrational degrees of freedom. 

The energy transfer is allowed between all three degrees of freedom, translational, 

rotational and vibrational, while the total energy is conserved for the system. 

 

 

Figure 1: Classical and quantum components of the mixed quantum/classical treatment of 

molecule-molecule inelastic scattering. Picture is taken from the Journal of Physical 

Chemistry A. 
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The energy transfer process is also important in the field of astrochemistry.8,9 In 

terms of astrochemistry, there are more than 200 different molecules and molecular ions 

found in the ISM till date.8,18,19 Few most abundant molecules are CO, H2 and H2O. Apart  

from these, cyano radical (CN)8, sulfur-bearing compounds20,21, small organic molecules 

(HCOOH, CH3COOH, CH3OH)22, molecular ions (CH+, HCO+, SiH+)23 are also found. 

These molecules are identified by analyzing the radiation from the ISM. This radiation is 

affected by collisional excitation and quenching with the background gases in interstellar 

medium (ISM) which are mostly H2 and He. Therefore, the study of rotational and 

vibrational energy transfer in the collision of molecule + molecule is important. Some of 

the molecules found in space can be larger and heavy. For example, methyl formate, 

CH3COOH. MQCT method was successfully implemented to treat the rotationally 

excitation of methyl formate.24,25 The collision of H2O colliding with He, H2 and other 

H2O molecules is very important in this context and MQCT results for the collisional 

energy transfer of H2O + H2 and H2O + H2O are reported in this document. 

The goal of this work is to develop the mixed quantum/classical theory (MQCT) 

as a methodology to conduct the computational studies of the collision dynamics and 

energy transfer and then to apply MQCT to perform scattering calculations of molecular 

systems relevant to astrophysics (such as H2O + H2 and H2O + H2O) and atmospheric 

chemistry (such as S2 + Ar). 

1.4. Motivation to Study Energy Transfer in Sulfur Recombination 

Sulfur is one of the most important trace elements in the atmosphere of Earth. In 

the periodic table of elements, it is under oxygen, and thus is isoelectronic with oxygen, 
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though it has lower electronegativity. One of the major sources of sulfur in nature is 

through volcanic eruptions. During the volcanic explosion, sulfur is emitted into the 

atmosphere (see Figure 2) in the form of hydrogen sulfide (H2S) and sulfur dioxide (SO2) 

gases. Not only on Earth, but sulfur was also found in the atmospheres of Mars, Venus, 

moons of giant planets (see Figure 3), some exoplanets, and in the shells of some stars as 

SO2, H2S and S2. 

 

Another important property of sulfur is that it exhibits multiple oxidation and 

reduction states ranging from −2 and up to +6, and thus, it can act either as a reducing 

agent or an oxidizing agent, depending on the environment. The atmospheric chemistry 

of sulfur is actively studied by geochemists.26–28 Depending on the abundance of oxygen 

in the atmosphere, the chemical and photochemical processes associated with sulfur 

would follow two distinct pathways (shown in Figure 4 from Ref. 28). In the oxygen-rich 

atmosphere, sulfur would be quickly oxidized to sulphate, removed from the atmosphere  

 

 

Figure 2: A volcanic eruption. Taken from the United States Geological survey, 

downloaded from inhabitat.com. 
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by rain and be dissolved in the ocean. However, in the anoxic conditions, photolytically 

produced sulfur atoms would recombine to form S2 molecule (instead of being oxidized), 

and then form larger and larger sulfur allotropes such as S3, S4, S6 and S8: 

 

 S + S → S2, (1) 

 S + S2 → S3, (2) 

 S + S3 → S4, (3) 

 S2 + S2 → S4, (4) 

 S4 + S2 → S6, (5) 

 S4 + S4 → S8, (6) 

that are deposited on the surface, react in the bulk, and form minerals like pyrite (FeS2), 

gypsum (CaSO4·2H2O) and barite (BaSO4). Analysis of the rock record associated with 

the Archean eon of Earth indicates that the surface deposits of that time were rich in 

 

Figure 3: In the year 2000, an active volcanic eruption was observed on Io, a moon of 

Jupiter. This image was taken from NASA’s Galileo spacecraft. 
   



9 
 

sulfur because these minerals contain a significant amount of sulfur. This was going on 

before the great oxygenation event that happened about 2.3 billion years ago. The 

physical, chemical and photochemical processes in such sulfur rich environment are still 

poorly understood.29 

 

A list of all possible sulfur reactions in the atmosphere was sorted out by Kasting 

and co-workers27,30 over the years. In the kinetics models of the Archean atmosphere 

there are close to two hundred gas-phase reactions overall. Most of them are redox 

reactions, but beside that there are also recombination reactions of sulfur allotropes (Eqs 

1-6), similar dissociation reactions of sulfur allotropes, atom-exchange and the isotope 

exchange reactions between sulfur allotropes. Theoretical interpretation of these reactions 

 

Figure 4: Two different pathways of sulfur reactions depending on the abundance of 

oxygen in the atmosphere. The horizontal axis represents oxidation and reduction states 

of sulfur. The picture is taken from Ref. 28 by Kasting et al. 
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requires rate coefficients as input for the kinetics modelling, but they are mostly 

unavailable as discussed below.  

For the rate coefficient, 𝑘1, of the formation of S2, reaction (1), there are two 

experimental results available. The experiment done by Fair and Thrush31 in the year 

1968 was a study of chemiluminescence of S2 in the reaction of H + H2S. It was not even 

focused on the recombination reaction of S2. The derived value of the rate coefficient was 

𝑘1 = 2.8 × 10-33 cm6/s. Ten years later another experiment was done by Nicholas et al.32 

in 1978. This study was done using a special bath gas CS2 (S=C=S) which is an Archean 

analogue of CO2. The derived rate coefficient, 𝑘1 = 1.19 × 10-29 cm6/s, deviates from the 

former value by four orders of magnitude, creating large uncertainty. 

Kasting used the result of Fair and Thrush in his kinetics modelling. There are no 

available experimental data for the rate constant for the formation of S3. So, for reaction 

(2), the rate coefficient was simply taken as a scaled rate of formation of ozone, since O + 

O2 → O3 is similar to reaction (2). Namely, the proposed rate constant for reaction (2) 

was 𝑘2 = 2.8 × 10-34 cm6/s. Then, for the formation of S4, S6 and S8, the rate coefficients 

were set all equal: 𝑘3 = 𝑘5 = 𝑘6 = 2.8 ×10-31 cm6/s, which is empirical.  

This empirical approach was used because there are no reliable experimental data 

available. It is impossible to perform experiment individually for each recombination 

reaction in the list of Eqs (1-6).33 The reason for this is that these recombination reactions 

proceed as a chain of coupled reactions and cannot be studied separately. Namely, two 

sulfur atoms would form S2, but then S2 would recombine with other atoms or molecules 

to form S3, S4, S6 and S8 as shown in Eqs (1-6). Another problem is that the vapour 

pressure of all sulfur allotropes is rather low. So, as soon as a smaller sulfur allotrope is 
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formed, such as S2 or S3, the deposition on the walls of reaction chamber starts and keep 

recombining in the condensed phase. So, production and deposition of different sulfur 

allotropes occurs simultaneously and at the end, we get a mixture of all allotropes which 

makes the experimental analysis of individual steps rather complicated, basically 

impossible. Not only the experimental studies are difficult, theoretical studies are also 

very hard for this process and so far, we are limited to only a few simplified models and 

several exploratory papers29,34,35 that address different aspects of the problem, as 

discussed in Section 1.5 below. 

There are four stable isotopes of sulfur that are found in nature. These are 32S, 33S, 

34S, and 36S. About 95% of sulfur is found as 32S. About 4% is 34S, 0.75% is 33S and 

0.01% is 36S isotope36. These isotopes are likely to play an important role in the 

recombination reactions of sulfur since the rate of the reactions could be affected by the 

isotopic composition of the reactants and/or products. First, the mass of the molecule 

changes due to the substitution of a rare isotope, which affects the density of rotational 

and vibrational states and the reduced mass of collisions with bath gas, which in turn 

affects the speed of collision, the probability of tunneling through activation barrier, and 

the overall reaction rate. These lead to the mass-dependent isotope effects. Moreover, 

symmetry of a molecule is distorted due to substitution of an isotope, which may be 

responsible for the mass-independent isotope effect. As I mentioned earlier, Archean 

deposits contain a lot of sulfur, but most important is that this sulfur exhibits an unusual 

mass-independent fractionation (S-MIF), which is in sharp contrast with the mass-

dependent fractionation in the oxygen-rich atmosphere of today’s Earth. Interestingly, 

this S-MIF is more similar to the mass-independent fractionation of oxygen (O-MIF) that 
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we see in the ozone in today’s atmosphere. Hence, this study of sulfur recombination 

reactions is urgently needed to explore several aspects as discussed below. 

Modelling the processes of sulfur recombination theoretically will help 

geochemists to resolve several outstanding problems in the history of Earth. First, it will 

help atmospheric chemists to analyse the atmospheric condition when early life emerged, 

and the first microbes started producing and releasing oxygen into the atmosphere (the 

great oxygenation event). Then, evolutionary chemists will be able to understand the 

evolution of the atmosphere from the ancient Earth to the present time. Eventually, the 

same can be applied to the atmosphere of other planets (exoplanets) where a significant 

amount of sulfur is often found. 

1.5.  Theoretical Studies of Sulfur Recombination 

The formation reaction of the simplest sulfur allotrope, S2, in the bath gas of Ar 

was studied by Peterson and co-workers:34 

 S + S + Ar → S2 + Ar. (7) 

A potential energy surface was built for S2 + Ar system and the dynamics study was 

performed using the method of classical trajectories. It is inefficient to sample the initial 

conditions for collision of three free moving particles (S + S + Ar) such that the diatomic 

molecule would be produced, because the probability of such reactive event (formation of 

S2) would be extremely low. So, for this technical reason, Peterson and co-workers 

studied this process in the reverse direction, that corresponds to the collision-induced 

dissociation (CID): 

 S2 + Ar → S + S + Ar. (8) 



13 
 

The third order recombination rate constant was then computed using the principle of 

microscopic reversibility: 

 𝑘 =
𝑘CID
[Ar]𝐾

 (9) 

 where K is the equilibrium constant computed statistically. The rate constant for the 

formation of S2 was found to be 𝑘1 = 4.19 × 10-33 cm6/s. This result agrees quite well 

with the experiment done by Fair and Thrush,31 but disagrees with the other experiment 

by Nicholas et al.32 

This classical trajectory method for the description of recombination correspond 

only to the direct three-body recombination mechanism, when the reaction (7) goes in 

one single step (not through any intermediate). However, this mechanism is efficient only 

at very high concentration of the bath gas, i.e., high pressure of Ar, which is not typical 

specific to the atmospheric range of pressure values (~1 atm and lower) and room 

temperature. 

The most important mechanism for recombination at the atmospheric condition is 

the energy transfer mechanism3,29,37 that has two consecutive steps: 

 

S + S ⇌ S2
∗ , 

S2
∗ + Ar → S2 + Ar. 

(10) 

 

The first step describes the formation and decay of the metastable intermediate species, 

S2
∗ , which was studied theoretically by Babikov et al.29 In fact, this was the only quantum 

dynamics study of sulfur recombination where the metastable species, S2
∗ , were described 

as scattering resonances. Moreover, this was the only computational study of the isotope 

effects in the sulfur recombination reaction (other authors considered only the major 

sulfur isotope 32S). However, the stabilization step, the second step in this S2 



14 
 

recombination reaction (9), was not studied by Babikov et al. in details because it is 

harder to study as it involves three atoms. It was treated approximately assigning the 

same value of stabilization cross section for all states of S2
∗  and for all isotopes. But, this 

second step is the most important in the energy transfer mechanism because this is the 

rate limiting step, that may also be responsible for the isotope effect. The stabilization 

step has never been studied by anyone, neither for S2, nor for S3, nor for any other sulfur 

allotropes. In fact, there are very few articles associated with accurate theoretical 

treatment of the stabilization processes. Examples include H2
∗  + He,38 Ne2

∗  + H,39 and O3
∗  

+ Ar.2,3,6,40 

The formation of S3 molecule through the “chaperone” mechanism in the bath gas 

Ar was studied by Francisco, Peterson and co-workers.41 According to this mechanism 

the reaction could proceed through two alternative pathways. One route is through 

formation of ArS* intermediate: 

 

Ar + S
 
↔ArS∗, 

ArS∗ + S2 → S3 + Ar
∗. 

(11) 

The other path is through ArS2
* intermediate: 

 

Ar + S2
 
↔ArS2

∗  

ArS2
∗ + S → S3 + Ar

∗ 

(12) 

In either case the chaperone mechanism involves two steps. In the first step, one of the 

reagents forms a weekly bound metastable state with the bath gas, and the collision with 

the second reagent releases the bath gas atom. Francisco and co-workers used the method 

of classical trajectories to study the second step, which is the release of the Ar atom from 

the metastable intermediate complex. The first step in the chaperone mechanism was 
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studied statistically. They found that the contribution of reaction (12) for the formation of 

S3 is dominant while the reaction (11) is minor. The final predicted rate for the formation 

of S3 was found to be 𝑘2 = 2.66 × 10-33 cm6/s. 

Note that the chaperone mechanism goes through the formation of a non-

covalently bonded intermediate (ArS* or ArS2
*) and this species is a weakly bound van 

der Waals complex. At room temperature or even at the reduced temperature specific to 

the stratosphere, this metastable intermediate is not expected to be stable. This means that 

the energy transfer mechanism should be considered for S3. 

 

From this survey, we can conclude that the sulfar recombination reactions of Eqs 

(1-6) are still poorly studied. Table 1 summarises major research done on sulfur 

recombination reaction. Concerning the potential energy surfaces, only the one for 

bleinteraction of S2 with Ar was constructed in the past. There is no accurate global PES 

for S3, but there was one approximate Ar + S3 PES used to study the second step in the 

chaperone mechanism, in reactions (11) and (12). For S4, full dimensional 6D PES does 

not exist yet. Recently Gaidai constructed a simplified two-dimensional PES for a model 

of S2 + S2 → S4 process and the construction of 3D PES is in progress. For S8, the full 

Table 1. Summary of research on sulfur recombination reaction. 

Substance PES 

Reaction dynamics 

Energy transfer 

mechanism 

Chaperone 

mechanism 

Direct three-body 

mechanism 

S2 
Peterson, 2008 

Mandal, 2018 

Babikov, 2017 

(1st step only) 
− − Peterson, 2008 

S3 Peterson, 2011 − − 
Peterson, 2011 

(2nd step only) 
− − 

S4 
Gaidai, 2018 

(2D only) 
− − − − − − 

S8 − − − − − − − − 
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dimensional PES for S8 would need 18 degrees of freedom. Such surface is unlikely to be 

built with an accurate method but may be an approximate PES can be built using a 

simplified force-field approach. 

More recently, Babikov et al.29 studied the first step, i.e., the formation of the S2
∗  

intermediate, from the point of view of scattering resonances. He identified the mass-

dependent and mass-independent isotope effects in this process, and clearly indicated that 

in order to build a reliable theoretical model, one needs a reliable theoretical description 

of the second step of the energy transfer mechanism, S2
∗
+ Ar
→  S2. Our focus here is to study 

this second step, the energy transfer process for the rotationally excited S2 molecule: 

S2(𝑗) + Ar → S2(𝑗
′) + Ar, 

including both quenching (𝑗′ < 𝑗) and excitation (𝑗′ > 𝑗) in a broad range of the 

rotational states of S2, in order to offer quantitative description of symmetry-driven mass-

independent isotope effect. In particular, to study this energy transfer process for different 

isotopes such as 32S32S, 32S34S, and 34S34S, all collided with Ar bath gas. It is important to 

realize that half of the rotational states in the homonuclear symmetric molecules 32S32S 

and 34S34S are missing, just like in O2. While for the case of heteronuclear molecule 

32S34S, all the rotational states are present. These additional states may provide additional 

energy relaxation pathways, which is expected to facilitate the energy transfer process. 

1.6. Objectives and Structure of This Dissertation 

The goal of this dissertation is twofold. The first objective is to develop mixed 

quantum/classical methodology (including theory and computer code) and make it 

available to other scientists as an efficient tool to study the energy transfer processes in 
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general. It is important to stress that the methods available to the community nowadays 

are either computationally demanding (like the full-quantum methods) or not accurate 

enough (classical trajectory methods). The second objective is to apply this methodology 

to study the inelastic scattering of molecules relevant to astrophysics (molecular 

collisions in the interstellar medium) and in the atmospheric conditions (such as gas 

phase recombination reactions). 

In Chapter 2, a description of the mixed quantum/classical methodology and the 

user-friendly code that we develop and test, named MQCT, is presented. This can be used 

as a user guide for non-experts to understand the major components of this approach and 

to perform calculations using the mixed quantum/classical theory of rotational and 

vibrational transitions for several types of molecule + quencher systems, starting from the 

simplest diatomic + atom and going to the most general asymmetric top rotor + 

asymmetric top rotor (such as H2O + H2O). Our code is the only one existing that can do 

this type of calculation. 

In Chapter 3, MQCT is applied to study the inelastic scattering of molecules that 

are important in astrophysics, such as H2O + H2 and H2O + H2O. A rigorous study was 

performed to prove the accuracy level of the results computed by our code, and the 

obtained cross sections for state-to-state transitions and thermally averaged cross sections 

are then benchmarked against available full-quantum methods and experimental results. 

In Chapter 4, MQCT is developed further and tested by doing calculations on a 

well-studied system of astrochemical interest, N2 + Na. A benchmark study of the 

inelastic and elastic integral cross sections is presented. A focused study is performed on 

the differential cross sections, and the significance of quantum phase and scattering 
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amplitude is studied in detail. For the first time, the inelastic differential cross section is 

computed within the MQCT framework. This study also includes the description of the 

quantum phenomenon of resonance within the MQCT framework.  

In Chapter 5, a hierarchy of approximate methods is proposed to solve the 

equations of motion within the mixed quantum/classical theory (MQCT) framework of 

inelastic molecular collisions. Of particular interest is a limiting case – the method in 

which the classical-like equations of motion for the translational degrees of freedom 

(scattering) are decoupled from the quantum-like equations for time-evolution of the 

internal molecular states (rotational, vibrational). Trajectories are pre-computed during 

the first step of calculations, with driving forces determined solely by the potential energy 

surface of the entrance channel, which is an adiabatic trajectory approximation (AT-

MQCT). Quantum state-to-state transition probabilities are computed during the second 

step of calculations, with an expanded basis and a very efficient step-size adjustment. 

Chapter 6 is dedicated to the development of the potential energy surface of the S2 

+ Ar system valid up to the dissociation limit in S2. Our surface is more accurate than the 

one of Peterson and co-workers since we consider a broader range of interatomic 

distances, particularly in the region of close S + Ar encounter where the repulsive 

interaction is strong. We use an explicitly correlated method CCSD(T)-F12/VTZ-F12 

method for the computation of the ab initio data points. The dynamics of S2 + Ar is then 

studied using the mixed quantum/classical methodology. The rotationally inelastic cross 

sections are computed for the rotationally excited symmetric molecules 32S32S and 34S34S 

to characterize mass-dependent isotope effect and for one asymmetric molecule, 32S34S, 

to determine the magnitude of the symmetry-driven mass-independent isotope effect. 
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Finally, in Chapter 7, I present a summary of the important outcomes of this work 

together with the description of future projects, made possible by the developments 

carried out in this dissertation. 
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CHAPTER 2. DEVELOPMENT AND TESTING OF A USER-

READY PROGRAM FOR CALCULATIONS OF 

INELASTIC SCATTERING OF TWO MOLECULES 

2.1.  Introduction 

Inelastic collisions of molecules in gas phase play important roles in atmospheric 

chemistry3,6,40, in astrophysical phenomena8,42,43 and in combustion44–46. In these 

processes, energy is exchanged between translational degrees of freedom (kinetic energy 

of collision) and internal degrees of freedom of the molecules, such as rotations and 

vibrations. Theoretical treatment of excitation and quenching of rotational-vibrational 

molecular states requires quantum mechanics, since these states are quantized, and quite 

often the state-specific information about collision process is needed (e.g., in 

spectroscopy, for analysis of state populations during absorption and emission of light47–

49). The work-horse of theorists today is the coupled-channel approach49, in which not 

only the internal states of molecules are treated quantum mechanically, but also their 

collision process is described using the quantum scattering formalism50. Such full-

quantum approach is essential in the ultra-cold physics regime, due to a small number of 

scattering waves involved in the process and their resultant interference effects51,52, and 

when the quantum tunneling is important, for example, for description of scattering 

resonances15. Two popular computer codes are in use nowadays, MOLSCAT53 and 

HYBRIDON54, that allow users to carry out the full-quantum inelastic scattering 

calculations for small molecules. 
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Numerical effort associated with such calculations becomes very significant for 

larger and heavier molecules, due to their dense spectra of rotational states, and more so 

at higher collision energies and with heavier collision partners, when many values of the 

orbital angular momentum states (partial waves) should be taken into account for 

description of the scattering process. This is because in the full-quantum approach the 

internal states of molecules couple through partial scattering waves, which leads to a 

large system of coupled differential equations. Computationally affordable cases include 

diatomic + atom55,56, triatomic + atom9,57, and diatomic + diatomic58,59 collisions. 

Rotationally inelastic scattering calculations for triatomic + diatomic systems are very 

demanding42,60. For polyatomic molecules, calculations appear to be affordable at low 

scattering energies only, and only with the simplest and lightest collision partner, such as 

He atom61–63. Even more complexity is brought by vibrational (in addition to rotational) 

excitations, that become possible in larger and floppier molecules (e.g., lower-frequency 

modes, such as torsions or internal rotations) and/or at higher collision energies, when the 

vibrational bending modes may also become accessible64,65. There is a strong need for 

such calculations in the field of chemistry, physics and engineering, but, using the 

existing methods and codes, they are still outside of our reach.  

An astonishing example is a water + water rotationally inelastic scattering process 

that has never been studied computationally in sufficient detail, H2O + H2O
66,67. Each of 

the water molecules in this process should be treated as an asymmetric-top rotor, but 

neither of the codes available to the community today can treat a collision of two 

asymmetric top rotors53,54. Another representative example includes a group of 

polyatomic molecules, such as HCOOCH3
61, HC3N

68, H2CO69, CH3OH70, C6H and C6H
– 
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62,63. For these and other systems of comparable complexity the potential energy surfaces 

can be computed nowadays (using the methods and codes of the electronic structure 

theory), but the scattering calculations are nearly impossible using the standard full-

quantum scattering approach.  

In the last few years we developed and tested a simplified mixed 

quantum/classical theory (MQCT) for inelastic scattering in which the relative motion of 

collision partners is described approximately, classically, whereas their internal motion is 

still described rigorously using quantum mechanics16,24,71–78. A significant speed up of 

this approach is achieved by classical-trajectory treatment of the scattering process that 

uses numerically inexpensive Newtonian mechanics, instead of the Schrodinger equation. 

Further computational advantage is due to the intrinsic massive parallelism of the MQCT 

approach, in which different trajectories are independent and can be propagated 

simultaneously using different processors, without any message passing. The resultant 

computational gain is very substantial, enabling inelastic scattering calculations for larger 

molecules and at higher collision energies, compared to the standard full-quantum 

approach. For example, we could run MQCT calculations for HCOOCH3 + He at 

collision energies up to 1000 cm-1 24, in contrast to the full-quantum calculations 

affordable only up to 30 cm-1 61. Semenov et al. also carried out the first ever calculations 

for H2O + H2O rotational excitations, in a broad energy range79. Accuracy of MQCT has 

been rigorously tested in a series of recent papers74,78, and this question will not be 

reexamined in this chapter. We recommend “blending” the full-quantum calculations at 

low collision energies (where those are indispensable and often affordable), with MQCT 
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calculations at higher collision energies, where they are expected to be accurate, and 

where no other known method is practical. 

In this chapter, we present a user-ready code we named “MQCT”, that can be 

employed for efficient calculations of rotationally inelastic scattering of any two 

molecules, and for some rotationally-vibrationally inelastic scattering calculations. We 

want to stress again that, to our best knowledge, no other code can do the inelastic 

scattering calculations of two general asymmetric top rotors. Potential users of the code 

are among the members of astrophysics community, atmospheric chemists and, of course, 

physical chemists. Our code is written in FORTRAN and is parallelized using MPI. 

Efficiency of massively parallel calculations (scaling) is explored using the example of 

water + water rotationally inelastic scattering. Several typical input files are given for 

calculations on H2O + He, H2O + H2 and H2O + H2O systems, as examples. Readers will 

find that MQCT calculations are very easy to set up and run using defaults. The most 

useful options are discussed in this chapter, but many more are described later in the 

User-Manual. Current users of the full-quantum code MOLSCAT53 will recognize that 

our input files are very similar to those they are used to. This was done intentionally, to 

facilitate familiarization with new program. Indeed, the input files for MOLSCAT 

calculations can be used for MQCT calculations with minimal modifications. An efficient 

parser allows communications with the code in a rather efficient way. This would be the 

first release of the program. This work is done with collaboration with former group 

member, Alexander Semenov. Its development is ongoing. Several exciting avenues are 

discussed in Conclusion section. 
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2.2.  Three Components of the Input 

MQCT calculations of inelastic scattering include time-propagation of the 

Newtonian-like equations of motion for collisional degrees of freedom (trajectories 

driven by the mean-field potential, Eqs. (5-6) in Ref. [78]), and the Schrodinger-like 

equations for evolution of quantum state populations of the molecules (driven by state-to-

state transition matrix and the Coriolis coupling, see Eqs. (2-3) in Ref. [78]). The initial 

conditions for each of those are defined separately in two blocks of the input file, called 

$SYSTEM and $BASIS. The potential energy surface describes interaction between the 

quantum and classical parts of the system and is defined in the third block of the input 

file, called $POTENTIAL. This block should be the last in the input file, while the order 

of the first two blocks is interchangeable, since they are independent. Example below sets 

up input for the default calculations of H2O + He rotational excitation: 

$BASIS 

SYS_TYPE=4, A=27.877, B=14.512, C=9.285 

$END  

 

$SYSTEM  

MASS_RED=3.2748, RMIN=4.5, RMAX=20.0, 

NMB_ENERGS=1, U_ENERGY=200., JTOTL=0, JTOTU=20, 

TIME_STEP=15.0, TIME_LIM=3.5E+6 

$END  

 

$POTENTIAL 

LABEL="H2O+He", E_UNITS=A.U., R_UNITS=A.U., 

GRD_R=50, GRD_ANG1=8, GRD_ANG2=25, GRD_ANG3=25 

$END 

 

Each block starts with its name and is finalized by the $END. All entries inside the 

block are separated by coma. You can have as many spaces, lines or tabs as you want 

between the keywords and their values, all is taken care of by the parser.  
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First keyword of the block $BASIS indicates type of the system (SYS_TYPE=4 

corresponds to the asymmetric-top rotor molecule + atom, see below), followed by three 

values of the rotational constants of the molecule (in the units of wavenumber). The 

block $SYSTEM contains reduced mass of the collision partners (MASS_RED, in atomic 

mass units), the minimum and maximum values of distance between collision partners to 

initialize and terminate trajectories (RMIN and RMAX in the units of Bohr), the number of 

collision energies to compute NMB_ENERGS (here one only) and their effective values 

(U_ENERGY in wavenumbers), the range of total angular momentum quantum number J 

(from JTOTL to JTOTU), propagation time-step TIME_STEP and the time limit 

TIME_LIM to terminate trajectories (both in atomic units). In the block $POTENTIAL, 

besides the text LABEL, the units of energy and distance for the potential energy surface 

subroutine (supplied by the user, see below) are indicated first, followed by the number 

of quadrature points for integration of matrix elements for state-to-state transitions.  

As one can see the default input is very short. Below we discuss the three input 

blocks in more detail, and some of the most useful options. 
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2.2.1. Quantum Degrees of Freedom, Block $BASIS 

In this first release of MQCT there are ten system types, summarized in Table 2, 

from the simplest diatom + atom, to the most general case of two asymmetric top rotor 

molecules. For each system, the required rotational and vibrational constants are listed in 

the Table. Those are used by the code to set up and diagonalize Hamiltonian matrix for 

Table 2. Types of systems handled by MQCT, with required and optional input data. 

SYS_TYPE Collision 

Partners 

Required 

Constants 

Channel 

Labels 

Optional 

Input 

1 
rigid diatom  

+ atom 

Be, De j  

2 
vibrating diatom  

+ atom 

Be, De, e, xe j, v vibrational 

functions, grid 

3 
symmetric top  

+ atom 

A, C j, k  

4 
asymmetric top  

+ atom 

A, B, C j, ka, kc expansion over 

sym. top basis 

5 
rigid diatom  

+ rigid diatom 

Be1, De1,                

Be2, De2 

j1,  j2  

6 
vibrating diatom  

+ vibrating diatom 

Be1, De1, e1, xe1,  

Be2, De2, e2, xe2 

j1, v1, j2, v2 vibrational 

functions, grid 

7 
symmetric top  

+ rigid diatom 

A, C,  

Be, De 

j1, k1,  j2  

8 
asymmetric top  

+ rigid diatom 

A, B, C,  

Be, De 

j1, ka1, kc1, j2 expansion over 

sym. top basis 

9 
asymmetric top  

+ symmetric top 

A1, B1, C1,             

A2, C2 

j1,ka1,kc1, 

j2,k2 

expansion over 

sym. top basis 

0 
asymmetric top  

+ asymmetric top 

A1, B1, C1,             

A2, B2, C2 

j1,ka1,kc1, 

j2,ka2,kc2 

expansion over 

sym. top basis 
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rotational motion (using basis set of oblate symmetric-top functions), in order to 

determine rotational states of the system. An option of invoking the externally-computed 

user-supplied rotational-vibrational states (e.g., vibrational wave functions defined on a 

grid of points, or vibrationally distorted rotational states, such as those of Kyro model 

Hamiltonian, expanded over basis set of the oblate symmetric-top functions) are 

indicated, where available. When symmetric tops are involved in collisions, the case of 

an oblate top is handled in a standard way, with rotational constants indicated such that A 

> C, while for a prolate top the input should be in the form A < C, opposite to the 

standard notation. In both cases it is assumed that B = A. Although the case of spherical 

top is not explicitly included, it can be handled also, by indicating A = C. By default, the 

program will form a basis set of six lowest energy channels of the system (and will 

include all corresponding degenerate states, see below), and will choose the ground state 

as the initial channel. Alternatively, one can indicate the number of channels, list them 

explicitly, and choose the initial channel using optional keywords. For example, for the 

H2O + He system discussed above, an equivalent input would be:  

NMB_CHNLS=6,  

CHNLS_LIST=0,0,0, 1,0,1, 1,1,0, 1,1,1, 2,0,2, 2,2,1,  

INIT_CHNL=0,0,0 

 

Here the rotational states of the asymmetric top rotor are labelled using the 

standard notation: j, ka, kc (where ka and kc are projections of j onto the principal axis with 

smallest and largest moments of inertia, respectively). Another useful optional keyword 

allows forming basis set out of all states below given energy, for example: EMAX=135.4 

commands to include in the basis set all states at energies below 135.4 cm–1 (which, 

again, would be the same six channels, see Table C1 in Ref. [79]). Rotational quenching 
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calculations can be initiated by choosing the excited state as initial, for example (in the 

H2O + He system): INIT_CHNL=2,0,2. 

By default, the most general fully-coupled version of MQCT calculations is 

carried out, in which the transitions due to the Coriolis coupling are included. Such 

“coupled-channel” calculations are referred to as CC-MQCT. One important option, 

initiated by the keyword CS_APPROX=YES, is to run the so-called coupled-states 

calculations, CS-MQCT24,74,78, where the Coriolis-driven transitions are neglected. Speed 

up is a factor of ~ 20, due to a much simpler form of the mean-field potential in this case, 

and a much smaller number of states accessible from a given initial state24,74,78. Recall 

that (within each channel) the Coriolis force couples 12 12 +j  degenerate states labelled 

by 12m , which is projection of 12j  on the molecule-molecule axis, where 12j  is the 

internal angular momentum quantum number of two molecules, also quantized in 

MQCT16,75,78,79. (If one of the collision partners is an atom, then 12j  is simply equal to j 

of the second partner, the molecule.) So, in CS-MQCT these Coriolis couplings and 

transitions are neglected, and the calculations are done independently for various fixed 

values of 12m . 

2.2.2. Classical Degrees of Freedom, Block $SYSTEM 

Initial conditions for MQCT trajectories are generated by the code using RMAX as 

the initial distance between the colliding partners at time equal zero. Initial velocity is 

defined by reduced mass MASS_RED and the effective collision energy U_ENERGY. If 

several values of energy are indicated, the program will run NMB_COLL_ENER 

independent calculations, for example: 
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NMB_ENERGS=4, U_ENERGY=200.5, 345.3, 1203.7, 45.637  

Equally spaced collision energies can be defined using the smallest value and an 

increment: 

NMB_ENERGS=6, UMIN=175.0, DU=25.0 

Or, alternatively, the largest value and the decrement:  

NMB_ENERGS=6, UMAX=300.0, DU=25.0 

The last two inputs are equivalent. 

Collision impact parameters are generated automatically by the code, using the 

indicated range of values of the total angular momentum J of the system, and the values 

of individual angular momenta 1j  and 2j  of collision partners in the initial rotational 

state (defined by INIT_CHNL or zero by default, see above). Namely, for given 1j  and 

2j  the range of possible values of 12j  which is internal angular momentum quantum 

number of two molecules is 211221 || jjjjj +−  (these degenerate states are also 

quantized in MQCT16,75,78,79). Moreover, for each 12j  there are 12 12 +j  space-degenerate 

states labeled by 12m  (which is projection of j12 on the molecule-molecule axis). 

Independent calculations with different initial values of 12j  and 12m  are required, and all 

are done automatically by the code. For each of these initial degenerate states the allowed 

values of orbital angular momentum   (integer, quantized in MQCT) are varied in the 

range 
1212 jJjJ +−  . These are used to initiate MQCT trajectories with different 

impact parameters, since   is closely related to the collision impact parameter b.  

There is an option of setting the maximum value of impact parameter, in the units 

of Bohr, for example: B_IMPCT=9.50. If this is specified, then the upper and lower 

limits of J are not required (JTOTL and JTOTU are ignored, even if indicated). This 

option is convenient for calculations in a broad energy range, since the maximum impact 
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parameter is less sensitive to collision energy. At each collision energy, the upper limit of 

J is determined individually, based on the indicated value of maximum impact parameter. 

By default, fourth-order Runge-Kutta method is employed to propagate MQCT 

trajectories (together with quantum equations for state populations) using a constant step-

size TIME_STEP. Optionally, one can choose an adaptive step-size method from 

Numerical Recipes80, by indicating:  

PROPAGATOR=ODEINT, MIN_TMSTP=0.0, EPS_ODEINT=1.0E-3 

This method will adjust time-step in the range between MIN_TMSTP and TIME_STEP 

to keep the accuracy below EPS_ODEINT.  

Trajectories in MQCT are integrated trough the interaction region and are 

terminated when the molecule-molecule distance exceeds RMAX. If optional time-limit is 

indicated (by TIME_LIM, as in the example above) the trajectory is terminated as soon 

as either condition is fulfilled. This is recommended at low collision energies, when 

orbiting trajectories are possible (analogous to quantum scattering resonances, see 

below). 

2.2.3. Potential Energy Surface Block $POTENTIAL 

In this block, the units for user-supplied potential energy subroutine must be 

specified. For the units of distance (keyword R_UNITS) Bohr and Angstrom are 

available, as defined by A.U. and ANGS, respectively. For energy units (keyword 

E_UNITS) possible values are CM-1, KLVN and KCAL that correspond to wavenumbers, 

Kelvin and kilocalories per mole, respectively. Note that angles are always assumed to be 

in radians.  
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By default, state-to-state transition matrix elements are computed by direct 

numerical integration over all internal degrees of freedom. The number of Gauss-

Legendre quadrature points should be indicated for each angular coordinate, as in the 

example above (three Euler angles for an asymmetric top rotor, such as H2O). Integration 

over angles is carried out at each point of the molecule-molecule distance grid (GRD_R 

equally-spaced points in the range between RMIN and RMAX). In the collision dynamics 

calculations, each matrix element is splined over the distance between the grid points, 

using 3rd-order one-dimensional spline80. Optionally, computed matrix elements can be 

saved to a file, using keyword SAVE_MTRX=YES. By default, this would be in the binary 

form (unformatted). Formatted matrix output can be requested by the keyword 

UNFORMAT=NO, e.g., for visual inspection by the user.       

Alternatively, user can expand the potential energy surface over the basis set of 

spherical harmonics, as it is usually done in the full quantum inelastic scattering 

calculations, and is implemented in the existing popular codes MOLSCAT53 and 

HYBRIDON54. We implemented this approach in MQCT as well, as an option, to 

facilitate comparison with full-quantum calculations. But, users should be aware that 

although this procedure is routinely done for small molecules, it is known to produce 

unphysical results for larger molecules due to truncation issues61, and is also 

computationally inefficient. For this representation of the PES, the following keywords 

are needed (e.g., for H2O + He76): 

EXPANSION=YES, NMB_TERMS=12, TERMS=  

0,0, 1,0, 2,0, 2,2, 3,0, 3,2, 4,0, 4,2, 4,4, 6,0, 6,2, 6,4 

 

where the expansion terms taken into consideration are explicitly listed (labeled by  and 

, see Eqs. (11-12) in Ref. [76]). The externally generated file 
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PES_EXPAN_TERMS.DAT is also needed in this case, which should contain radial 

dependencies of the expansion coefficients on the equally-spaced or non-equidistant grid 

of points in the range between RMIN and RMAX. Examples of such files are distributed 

with the code. These expansion coefficients will be used to compute analytically 

elements of the state-to-state transition matrix. In the course of trajectory, those will be 

splined between the grid points by the code. The code can also generate a suitable 

expansion, using keyword CALC_EXPANSION=YES, for all system types except 2 and 6 

where the vibrational motion is included. 

2.3. Efficient Use of the Code 

2.3.1. Compiling and Running the Code 

User supplied subroutine for the PES should be compiled first, to create an object 

file, for example PES_H2O+He.o. It should be copied into (or linked to) the main 

program directory /MQCT_v1.01. The MQCT code itself is compiled independently 

from the PES to create the object file head.o, and then is linked with the desired PES to 

create an executable file. Examples of this procedure are given in the files comp_MQCT 

and link_ALL. These can be executed as commands, after changing access:  

> chmod +x comp_PES comp_MQCT link_ALL 

> ./comp_PES  
> ./comp_MQCT  
> ./link_ALL 

Input file for MQCT should have the extension *.inp, and its name should be 

placed in the file INPUT_NAME.inp. This permits user to store multiple input files 

(e.g., for different molecules) in the program directory, but run actual calculations with 

one specific input file.  
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There are two general ways of running the code. In the straightforward approach, 

which is also the default, the program computes elements of the state-to-state transition 

matrix and then propagates trajectories for collisions, all in a single run. In the optional 

two-step approach, which we recommend following, the program is run first with small 

number of processors to compute transition matrix, save it into the file and stop (without 

doing the calculations of collision). This is done by indicating the following optional 

keywords: 

SAVE_MTRX=YES, PROG_RUN=NO 

Then the program is run again to read the transition matrix (computed previously) and 

perform massively parallel trajectory calculations using large number of processors. 

Keywords required for this are: 

READ_MTRX=YES, PROG_RUN=YES 

This approach is also convenient when multiple calculations are needed with different 

input parameters (such as collision energy, initial state, number of trajectories, time step, 

etc.) but with the same basis set, which determines the matrix size. Clearly, the matrix 

must be computed only once, can be saved in the file, and then reused later as many times 

as needed. The file name is MTRX_UF.dat for the binary form (unformatted) and is 

MTRX.dat for the formatted option of the matrix. Note that all intermediate data files 

created or used by in the code have extension *.dat. 

There are two levels of parallelization in the code. At the first level, propagation 

of each trajectory can be done by multiple processors used as a group (e.g., all processors 

of a node) to compute right-hand sides of the classical and quantum equations of motion. 

This requires some minimal message passing. At the second level, propagation of 

different trajectories can be assigned to different groups, which requires virtually no 
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message passing. The program attempts to evenly split all requested trajectories between 

the groups. For example, if the code is submitted for execution using 60 nodes of the 

machine with 32 cores per node (1920 processors total) the following option, indicated in 

the $SYSTEM block: 

MPI_PERTRAJ=32, NMB_TRAJ=300 

will result in formation of 60 groups, and assignment of 5 trajectories per group. 

Typically, trajectories with larger impact parameters are shorter and faster to propagate. 

Thus, for an equalized load, and optimal use of resources, it is recommended to assign 

several trajectories per group, not just one. Note that NMB_TRAJ is an optional keyword 

used only in conjunction with Monte-Carlo sampling of the initial states (see below). If it 

is not used, the code automatically determines the required number of MQCT trajectories 

and attempts to split them evenly between the groups.   

The equations of motion represent a system of ordinary differential equations, and 

their right-hand sides contain a matrix-vector product (for quantum degrees of freedom) 

and a vector-matrix-vector product (for classical degrees of freedom). Calculations of 

these right-hand sides are parallelized very efficiently in our code using inter-

communication protocol within MPI. In Figure 5 we present the wall-clock data collected 

from Cray XC40 machine at NERSC (the Cori, http://www.nersc.gov/systems/cori/). 

They represent CC-MQCT calculations for the H2O + H2O system79 with 91 channels 

(3483 states total, including the degenerate states), using one head-on collision trajectory 

with kinetic energy 8000 cm-1. The figure shows a nearly perfect scaling of MQCT code 

up to 256 processors. With 1024 processors some small overhead becomes visible. These 

data correspond to a well parallelized code.  
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Overall, the two levels of parallelization discussed above (first distributing 

trajectories over the groups of processors, and then distributing the load of trajectory 

propagation between processors of a group) enable massive parallelization of MQCT 

calculations. If the number of trajectories varies from say 100 to 1000 (depending on the 

system, degeneracy of the initial state and the collision energy), then one can employ 

rather efficiently, without any significant overhead, on the order of ten thousand to 

hundred thousand processors using the present version of MQCT code. 

2.3.2. Understanding the Output 

All output files have extension *.out. System setup is written into the file 

USER_INPUT_CHECK.out and should be checked by user for correctness. The file 

STATES.out (written if the option PRNT_STATES=YES is chosen) contains the list of 

 

Figure 5: Performance of MQCT in terms of parallelism. The figure represents the time 

complexity. 
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all quantum states involved in calculations, including the channel number, the values of 

j12 and m12, and the assigned quantum numbers. Major results are found in 

CROSS_SECTIONS.out. Other, problem-specific output files are discussed in the next 

section. Here we cover only the major parts of the output.  

Examples of output files for the H2O + He system are also distributed with the 

code. Cross sections for transitions from the initial state to the final states (all states of the 

basis, including the elastic channel) are listed in the output file 

CROSS_SECTIONS.out, for each effective collision energy specified in the input. For 

each transition, the actual collision energy E_COLL is also given in the output file, which 

depends on the effective collision energy U_ENERGY and the state-to-state energy 

difference. These are different for different transitions (particularly at lower collision 

energies), which is a property of the mixed quantum/classical approach, discussed in 

detail in several recent papers72,75. Next in the output file goes an important information 

about the largest values of energy conservation error, and the probability conservation 

error (both given as % of the initial value) encountered during the propagation. User 

should check these numbers to ensure that they are reasonable (say below 1.0E–03). 

Excessive values indicate that modification of the propagation parameters in the input file 

is needed. The last in the output file is CPU-time statistics of the code execution.  

More detailed information about propagation accuracy can be found in the file 

INTEGRATOR_ERRORS.out, where the data collected for the less accurate (worst) 

trajectory in the batch are printed, for each collision energy. Other generally useful 

information about behavior of MQCT trajectories (classically-treated translational 

degrees of freedom) is found in the file DEFLECTION_FUNCTION.out. Final 
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probability amplitudes of the internal states (quantum degrees of freedom) can be found 

in the file OPACITY_FUNCTIONS.out. These files are generated by default. We 

recommend that users inspect all these dependencies after each program execution, to 

make sure that the overall behavior of the system is reasonable. 

2.3.3. Random Sampling of the Initial Conditions 

For larger and heavier molecules (with large J and  ) and/or highly excited 

rotational states (with large 1j  and/or 2j ), the number of initial states that should be 

taken into account may become prohibitively large, especially at high energies. Running 

MQCT trajectories for all possible initial states, which is a default in our code, may 

become computationally expensive and, in fact, unnecessary. In such cases, it is more 

efficient to sample the values of J,  , 12j  and 12m  randomly and simultaneously, using an 

efficient multi-dimensional Monte-Carlo procedure16,74,75. This option is initiated by the 

following keywords: 

MONTE_CARLO=YES, NMB_TRAJ=300 

where NMB_TRAJ is the user-defined number of trajectories to compute. In such 

calculations, the semi-classical values of J and   as well as quantum numbers 12j  and 

12m  are all integers. Also note that in the case of Monte-Carlo sampling the elastic cross 

section is computed only approximately, while the differential cross section is not 

computed (due to the lack of accurate phase information, see below). 

Evolution of the Monte-Carlo errors during this sampling process is written into 

the file MONTE_CARLO_ERROR.out for each state of the system individually and can 

be monitored by user. The final standard errors of transition cross sections are written 
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into the main output file CROSS_SECTIONS.out, for each transition individually. 

Also, the projection is made for the number of trajectories needed to reach the desired 

accuracy, as indicated by the keyword EPS_MONCAR. After one Monte-Carlo run, the 

user can increase the value of NMB_TRAJ accordingly, set RESTART=YES and run the 

code again to finalize calculations, starting from the checkpoint file 

CHECK_POINT.DAT. 

2.3.4. Convergence Studies 

Convergence studies with respect to several input parameters should be carried 

out by user. For the quantum part of the system sensitivity of results (cross section 

values) should be checked with respect to the basis set size NMB_CHNLS, the range of 

molecule-molecule distances used to compute transition matrix elements RMIN and 

RMAX, the corresponding number of points GRD_R, and the number of integration points 

for each internal degree of freedom (e.g., parameters GRD_ANG1, GRD_ANG2 and 

GRD_ANG3 in the case of H2O + He system). If the PES is represented by expansion over 

spherical harmonics, then the convergence parameter is the number of terms 

NMB_TERMS (and, of course, what terms are included). For trajectory propagation, 

sensitivity of energy and probability conservation errors should be checked with respect 

to step size TIME_STEP, and, if the adaptive step-size is used, the value of tolerance 

EPS_ODEINT. For sampling of the initial conditions, convergence parameter is the 

upper limit of total angular momentum JTOTU (or, optionally, the maximum value of 

collision impact parameter B_IMPCT). If optional Monte-Carlo sampling of the initial 

states is chosen (MONTE_CARLO=YES) then the number of trajectories NMB_TRAJ is 
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also a convergence parameter. The value of RMAX may also affect MQCT trajectories, 

since it is used to set up the initial molecule-molecule separation. Note that RMAX can be 

specified larger than the range of the PES. In this case, the code will automatically 

extrapolate matrix elements using an attractive 6/1 R−  function in the asymptotic range 

of distances (a linear function is used for extrapolation in the repulsive short-distance 

range). 

Often, user will want to increase the number of channels relative to the previously 

run calculations, for example, in order to check convergence with respect to the basis set 

size, or to do calculations at higher collision energy, where the number of channels is 

typically larger. In this case our code allows to add new needed elements to the existing 

transition matrix, without re-computing the entire matrix. This is achieved, simply, by 

rerunning the code with new increased number of channels, using any method of channel 

specification available, for example,  increasing the value of keyword NMB_CHNLS and 

adding new channels to the list CHNLS_LIST (or increasing the value of keyword 

EMAX, or using other appropriate keywords indicated in Table 3 of Section 2.6). The code 

will read the existing matrix from file, check whether all needed matrix elements are 

present, automatically compute the missing elements, update the matrix file and/or 

proceed with trajectory calculations, depending on what options are indicated by the user. 

One requirement is that R-grid remains identical to the one used in the previous 

calculations. However, the way of computing elements of the state-to-state transition 

matrix can be changed, for example, by increasing the number of integration points for 

the internal coordinates, or increasing the number of terms in the PES expansion. The 
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only requirement is that new channels are added at the end of the list, not at the beginning 

or stuffed in the middle (automatically taken care of if EMAX is used).  

Also, user can always run calculations of dynamics with the number of channels 

smaller than that in the saved matrix file MTRX_UF.dat. The code will read the file and 

chose only those matrix elements that are necessary for this run. Again, the requirement 

is that the active channels are listed continuously from the beginning of the list, and only 

the channels at the end of the list can be omitted. If the user wants to exclude some states 

from the beginning or from the middle of the list, the keyword EXCLUDE_STATES can 

be used (the corresponding data file should be provided). 

2.3.5. Propagation Options 

Besides the default RK4 propagator, one can choose an adaptive step-size method 

by indicating: 

PROPAGATOR=ODEINT, TIME_STEP=500.0, MIN_TMSTP=10.0, 

EPS_ODEINT=1.0E-3 

This method adjusts time-steps along each trajectory trying to keep accuracy below 

EPS_ODEINT, and is a slightly modified version of the code from Numerical Recipes1. 

Our version of this propagator enforces MIN_TMSTP to avoid an excessively long 

integration near the turning point. We recommend that users run their first calculations 

using the default RK4 propagator to determine a suitable value of TIME_STEP for their 

system and collision conditions, (by monitoring energy and norm conservation in the 

output file). Then, one can try to switch to the ODEINT by simultaneously setting 

MIN_TMSTP equal to this value, and increasing the value of TIME_STEP by an order of 



41 
 

magnitude or even more (which in ODEINT plays the role of the maximum time step 

allowed). We found that for the systems with deep molecule-molecule attraction 

potentials, such as dipole-dipole, this approach gives a considerable computational 

advantage. Also, the ODEINT propagator has an option SINGLE_STEP that commands 

to integrate the entire trajectory in one step. In this case the code automatically estimates 

the termination time for each trajectory (based on the impact parameter, the initial 

separation of collision partners, and the collision energy) and uses this number as 

maximum time step. This is the most efficient propagation option recommended for the 

production runs. Note that if SINGLE_STEP is chosen, then no propagation information 

is printed along the trajectory, no phases are computed, and thus no elastic or differential 

cross sections are calculated. 

2.4. Special Cases of MQCT 

2.4.1. Vibrational States and Transitions 

For the vibrating-diatom cases, SYS_TYPE=2 and 6, the code will automatically 

generate a specified set of vibrational states using Morse parameters indicated in the 

input file. Vibrational energies are computed using a standard Dunham’s formula. 

Vibrational wave functions are computed using recurrent relations81, and then are used to 

compute matrix elements for the corresponding state-to-state transitions. Integration is 

between the points RMIN_VIBGRID and RMAX_VIBGRID (indicated in the block 

$BASIS) using a constant-step quadrature of GRD_VIB points (indicated in the block 

$POTENTIAL). These are convergence parameters and should be checked by the user.  
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Note that this way of describing ro-vibrational transitions is expected to be 

reasonably accurate for low to moderate rotational and vibrational excitations, since it 

neglects ro-vibrational interaction. More reliable approach, accurate up to dissociation 

limit, is to compute numerically accurate ro-vibrational states using an external code (not 

provided) and feed them as input for the MQCT code. This is achieved by the keyword 

LEVELS_FILE=YES. If specified, the file named USER_DEFINED_BASIS.DAT is 

also required (copied or linked to the code directory), that should contain energies and 

wave functions of pre-computed states. The number of states in the files should be equal 

to NMB_CHNLS (indicated in the block $BASIS). The values and weights of grid points 

for numerical integration (can be non-equidistant) should also be specified. The number 

of points should be equal to GRD_VIB (indicated in the block $POTENTIAL). 

2.4.2. Differential Cross Sections and Elastic Scattering 

Calculations of differential cross sections involves phase information and 

computation of a coherent sum over all partial scattering waves74, and thus requires 

propagation of MQCT trajectories for all allowed integer values of J and  82, which is 

default in the code. The keyword DIFF_CROSS=YES that can be used to request 

construction of the differential cross section. Angular resolution of the differential cross 

section is defined by ANG_RES. Angular dependence of differential cross section is 

printed into the file DIFF_CROSS.out. 

 However, when the Monte-Carlo sampling of the initial conditions is requested 

(for numerical efficiency, see above) the values of J and   will be chosen randomly and 

only a few of them may be available for each initial degenerate state ( 12j 12m ). In this case 
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the meaningful determination of the deflection function, scattering phase and the 

differential cross section is technically challenging and is not implemented in the code. 

So, MONTE_CARLO=YES should not be used simultaneously with calculations of the 

differential cross section. Same considerations apply to the integral cross section for the 

elastic scattering channel, since it also requires the scattering phase. If the 

MONTE_CARLO=YES option is used, the value of elastic cross section should normally 

be ignored. In this case, the code prints the value of elastic cross section as zero. In many 

applications, the elastic and/or differential cross section are not needed. Then 

MONTE_CARLO=YES is the best option. 

If the elastic and/or differential cross sections are needed for complex systems, 

the most efficient and robust approach is to use the optional keyword DL, in order to skip 

some values of   and thus make the overall calculations more affordable. For calculation 

of the differential cross section the code still computes a coherent sum over all  , but 

within the “boxes” of size DL the same values of scattering phase and probability 

amplitudes are used. The magnitude of DL becomes a convergence parameter in this case 

and should be carefully checked by convergence studies. Note that the full-quantum 

calculations often follow a similar approach, by skipping some values of the total angular 

momentum J of the system. 

2.4.3. Trajectory Analysis and Resonances 

There are several options in the code that allow users to visualize MQCT 

trajectories, or their most important properties. Opacity functions and deflection functions 

are printed by default, which gives dependencies of transition probabilities and scattering 
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angle on   and b (but only for MONTE_CARLO=NO, which is default). Another useful 

option is to use keyword PRN_TRJCT to print out all information for a trajectory with 

indicated value of  . By default, the information from trajectories with the initial 

),max( 2112 jjj =  and 012 =m  is printed. Other values of the initial 12j  and || 12m  can be 

specified using optional keyword, for example: PRN_J12M12=3,3. Plotting and 

inspecting the deflection function, opacity functions and trajectories is recommended, 

particularly at low scattering energies, when trajectories may be trapped at certain values 

of  .  

There are options in the code to deal automatically with trapped trajectories, if 

those occur. For such trajectories the number of loops (due to mutual rotation of collision 

partners around the origin), and the number of periods (due to mutual oscillations of 

collision partners along the intermolecular distance R) is determined. The option 

NMB_LOOPS=2 commands to stop propagation of orbiting trajectories after two full 

loops (the default value is 1). The option NMB_OSCIL=5 commands to stop propagation 

at the fifth outer turning point (the default value is 1). When such trapped trajectory is 

forced to stop, it is still analyzed in a standard way. However, the result of such analysis 

is somewhat arbitrary, since the termination point is also arbitrary. The option 

NO_RESONANCE=YES tells the code to remove looping and oscillating trajectories from 

analysis, which can be used for calculation of non-resonant contribution to the integral 

cross sections. 

Note that differential cross sections and the elastic channel integral cross sections 

can’t be computed rigorously at collision energies when at least one resonant trajectory is 

present, since in such cases the deflection function is undefined in the range of small 
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values of  74,82. Good recipe for extracting resonance information from trapped 

trajectories is yet to be found82. In any case the code automatically detects trajectories 

that exhibit resonant behavior and prints some basic information about these trajectories 

in the file RESONANCE_TRAJECT.out, including the relevant values of  . Then, if 

desired, the user can rerun the code with the option PRN_TRJCT employed, to obtain 

more detailed information for each resonant trajectory. 

2.5. Summary 

In this chapter we presented the code MQCT for calculations of rotationally 

inelastic scattering of molecules using mixed quantum/classical theory. MQCT 

calculations are now possible for collision of two general asymmetric top rotors, which is 

a feature unique to this code, unavailable in other existing codes, to our best knowledge. 

Vibrational states of diatomic molecules can be included in the basis set expansion, to 

carry out ro-vibrational calculations of excitation and quenching. The simplest input for 

our code uses defaults and thus is very short, easy to set-up and run by non-experts. The 

options available to expert users are listed in Section 2.6. The code was tested and 

debugged under Unix environment using two different compilers, Intel and GNU (Cori 

machine at NERSC), under the Linux on Cray XC30 (Edison at NERSC), but also on a 

PC under Windows 7 and 10. 

The code takes advantage of intrinsic parallelism of the mixed quantum/classical 

approach, and is suitable for massively parallel calculations. A Monte-Carlo sampling 

procedure, implemented as option in the code, enables calculations for rather complicated 

systems. The coupled-states approximation can also be employed, at high collision 
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energies. Integral and differential cross sections can be computed for the elastic channel, 

through reconstruction of the deflection function and calculation of the scattering phase. 

Rotational symmetry of each molecule, and the permutation symmetry of two collision 

partners are both implemented. Orbiting trajectories can be identified and analyzed to 

gain some insight into resonant behavior at low collision energies.  

Examples of the program input were given for H2O + He above. Example 

calculations is presented later for H2O + H2 in a broad range of collision energies. 

Performance of the code (scaling) was studied in the most demanding calculations on 

H2O + H2O. The version of the code distributed with this publication includes potential 

energy surfaces for H2O + He, H2O + H2, and H2O + H2O. Example input files are also 

provided for these systems, to demonstrate several useful options of the code.   

In the future, third level of parallelization can be implemented in the propagation 

subroutine of the code. Moreover, calculations for different collision energies, that are 

sequential in this version of the code, could in principle be parallelized, as well as 

calculations for different initial states of the system (current version starts at one chosen 

initial state, and should be launched for each initial state). More advanced techniques for 

propagation of the equations of motion, such as preconditioned Lanczos method83, could 

also be implemented in MQCT. Another significant development would be to expand the 

code for calculations of ro-vibrational transitions beyond diatomic molecules, for 

example, for the bending mode in triatomic molecules, which typically has the lowest 

frequency and thus is the most important (e.g., in H2O). 
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2.6. MQCT User Guide for Experts 

2.6.1. Input Parameters for MQCT calculations 

Three tables below give a comprehensive list of all required and optional input 

parameters for three blocks of the program input file: blocks $BASIS, $SYSTEM, and 

$POTENTIAL. Default values are indicated, where applicable. A keyword has to be 

specified only if the value different from the default is desired. Datatype “real” 

corresponds to double precision. The values “YES” and “NO” correspond to logical 

datatype. 

Special note for Table 5: For Gauss-Legendre integration of matrix elements user 

must indicate the number of quadrature points for each degree of freedom, but this 

depends on the system type. For all molecule + atom systems (SYS_TYPE=1 to 4) only 

one integer value should be assigned to each of GRD_VIB, GRD_ANG1, GRD_ANG2, and 

GRD_ANG3. But for all molecule + molecule systems (SYS_TYPE=5 to 0) two integer 

numbers should be given sequentially, separated by coma. Note, however, that depending 

on the system type, some of these numbers are dummy (not used) and can be arbitrary. 

 



48 
 

Table 3. Description of keywords for the block $BASIS. 

Keyword Type, Range, Units Description Relevant 
SYS_TYPE 

SYS_TYPE integer, 0 to 9 1 -- rigid diatom + atom 

2 -- vibrating diatom + atom 

3 -- symmetric top + atom  

4 -- asymmetric top + atom  

5 -- diatom + diatom (both rigid) 

6 -- vibrating diatom + vibrating diatom 

7 -- symmetric top + diatom (rigid) 

8 -- asymmetric top + diatom (rigid) 

9 -- asymmetric top + symmetric top 

0 -- asymmetric top + asymmetric top 

 

NMB_CHNLS     integer Number of channels all 

CHNLS_LIST              integers Quantum numbers to specify channels all 

INIT_CHNL integers Quantum numbers to specify the initial channel all 

EXCLUDE_STATES default is “NO”  User can exclude specified states from the basis set, e.g., the weekly 

coupled states or the states with certain j12, m12. 

all 

BE, DE real, positive, cm-1 Rotational constants Be, De (exp. format for De)  1,2,7,8 

A, B, C real, positive, cm-1 Rotational constants A, B, C 3,4,7,8 

BE1, DE1 real, positive, cm-1 Rotational constant Be, De for molecule #1 5,6 
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BE2, DE2 real, positive, cm-1 Rotational constant Be, De for molecule #2 5,6,7,8 

A1, B1, C1 real, positive, cm-1 Rotational constant A, B, C for molecule #1 9,0 

A2, B2, C2 real, positive, cm-1 Rotational constant A, B, C for molecule #2 9,0 

WE, XE real, positive, cm-1 Vibrational constant e, xe 2 

WE1, XE1 real, positive, cm-1 Vibrational constant e, xe for molecule #1 6 

WE2, XE2 real, positive, cm-1 Vibrational constant e, xe for molecule #2 6 

JMIN, JMAX integer The range of rotational number j included in the basis set; optional, 

used to avoid listing all levels individually 

1,2 

VMIN, VMAX integer The range of vibrational number v included in basis set; optional, used 

to avoid listing all levels individually 

2 

JMIN1, JMAX1, 

JMIN2, JMAX2 

integer The range of rotational numbers included in basis sets for molecules 

#1, 2; option, used to avoid listing the levels 

5,6 

VMIN1, VMAX1, 

VMIN2, VMAX2 

integer The range of vibrational numbers included in basis sets for molecules 

#1, 2; option, used to avoid listing the levels 

6 

NCHL1, NCHL2 integer Number of lower energy channels included for molecules #1, 2; 

optional, used to avoid listing the levels individually 

5,6,7,8,9,0 

EMAX real, cm-1 Channel energy cut-off; only the states below it are included in 

calculations; option, to avoid listing all levels 

all 

EMAX1, EMAX2 real, cm-1 Channel energy cut-offs for molecules #1 and #2; only the states below 

this energy are included in calculations 

5,6,7,8,9,0 
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SYMMETRY default is “NO” If “YES”, only the states coupled to the initial state are retained in the 

basis (ortho vs para states). 

3,4,7,8,9,0 

ATOMIC_MASSES real, positive, amu Masses of atoms in the diatomic; to determine COM 2,6 

MORSE_DEPTH real, positive, cm-1 Depth parameter of Morse oscillator (dissociation energy) 2,6 

MORSE_WIDTH real, positive, Bohr Width parameter of Morse oscillator 2,6 

MORSE_POSITN real, positive, Bohr Equilibrium Distance of Morse oscillator 2,6 

RMIN_VIBGRID real, positive, Bohr Minimum diatomic bond length 2,6 

RMAX_VIBGRID real, positive, Bohr Maximum diatomic bond length 2,6 

WGHT_POSPAR real, positive, ≤1.d0 Weight of positive total parity wave functions in the case of identical 

particles collision. Default is 1.d0 

5,6,0 

CHNL_ENERGS real, cm-1 User can list energies of states (e.g., computed externally) all 

LEVELS_FILE default is “NO” If “YES”, user provides energies, wave functions and assignments of 

externally-computed states, in a file  

all 

CS_APPROX default is “NO” If “YES”, the coupled-states approximation will be used all 

IDENTICAL default is “NO” If “YES”, collision partners are treated as indistinguishable 5,6,0 

PRINT_STATES default is “NO” If “YES”, prints out states and structure of coupling matrix all 
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Table 4. Description of keywords for the block $SYSTEM. 

Keyword Type, Range, Units Description 

LABEL text Name of your job 

MASS_RED real, positive, amu Reduced mass of two scattering partners 

RMIN, RMAX real, positive, Bohr Minimum and maximum values of distance between partners 

B_IMPCT real, positive, Bohr Maximum value of collision impact parameter 

JTOTL, JTOTU integer Lower and upper limits of total angular momentum J  

DL integer Step size for orbital angular momentum  , default is 1  

NMB_ENERGS integer Number of collision energy values U to propagate 

U_ENERGY real, positive, cm-1 List of collision energies U to propagate 

UMIN, UMAX real, positive, cm-1 Minimum and maximum collision energies U 

DU real, positive, cm-1 Step size for setting collision energies U 

TIME_STEP real, positive, au Propagation time step (for RK4, ODEINT, etc.) 

MIN_TMSTP real, positive, au Minimum time step allowed in ODEINT 

TIME_LIM real, positive, au Time limit for propagation 

EPS_ODEINT real, positive, <1.d0 Relative error for step-size control in ODEINT 

EPS_MONCAR real, positive, % Desirable error in Monte Carlo sampling of initial conditions 

PROPAGATOR text RK4 is default, ODEINT is optional 



52 
 

NMB_LOOPS integer, default is 1 Number of full loops (360 deg.) to propagate for orbiting trajectories 

NMB_OSCIL integer, default is 1 Number of outer turning points to propagate for oscillating trajectories 

NO_RESONANCE default is “NO” If “YES”, orbiting trajectories are removed from analysis 

DIFF_CROSS default is “NO” If “YES”, differential cross section is computed (elastic only) 

ANG_RES integer, default is 1000 Number of points for angular resolution of the differential cross section 

MONTE_CARLO default is “NO” If “YES”, initial conditions are sampled randomly  

NMB_TRAJ integer, default is 100 Number of trajectories to sample using Monte Carlo (total number of trajectories) 

CHECK_POINT integer Wall clock time (minutes after the start) to start writing a checkpoint file 

RESTART default is “NO” If “YES”, program will start from a check point file 

PRN_TRJCT integer Indicates the value of   for which all the trajectory data will be printed 

PRN_J12M12 two integers Indicates the desired values of j12 and m12 for the option above 

MPI_PERTRAJ integer, default is 1 Number of CPUs (MPI tasks) to use for calculations of each trajectory 
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Table 5. Description of keywords for the block $POTENTIAL. 

Keyword Type, Range, Units Description Relevant SYS_TYPE 

READ_MTRX default is “NO” If “YES”, read the potential coupling matrix from file all 

SAVE_MTRX default is “NO” If “YES”, write the potential coupling matrix to file all 

UNFORMAT default is “YES” Saves matrix in binary form; set “NO” to save it as text all 

PROG_RUN default is “YES” Propagates trajectories; set “NO” to compute matrix only all 

E_UNITS text Energy units of PES: “A.U.”, “CM-1”, “KCAL” or “KLVN” all 

R_UNITS text Distance units for supplied PES: “A.U.” or “ANGS” all 

GRD_R integer Number of points for R-grid all 

GRD_VIB integer / two integers Number of points for vibrational grid / grids 2 / 6 

GRD_ANG1 integer / two integers Number of points for -grid / grids  1,2,3,4,5/6,7,8,9,0 

GRD_ANG2 integer / two integers Number of points for -grid / grids 1,2,3,4,5/6,7,8,9,0 

GRD_ANG3 integer / two integers Number of points for -grid / grids 3,4 / 5,6,7,8,9,0 

VGRID_FILE default is “NO” If “YES”, PES values at grid points are stored/read to the file  6,7,8,9,0 

EXPANSION default is “NO” If “YES”, the PES is represented by expansion over basis  except 2, 6 

NMB_TERMS integer Number of PES expansion terms except 2, 6 

TERMS sets of integers List of the expansion terms (labeled appropriately) except 2, 6 

TERMS_ONFLY default is “NO” If “YES”, computes PES expansion on-the-fly for each R except 2, 6 
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TERMS_FILE default is “NO” If “YES”, reads externally-computed PES expansion terms except 2, 6 

CALC_EXPANSION default is “NO” If “YES”, the expansion coefficients are computed. except 2, 6 

IR_BGN, IR_FIN integer The range of R-grid points used; defaults are 1 to GRD_R all 

RGRID_EQDS default is “YES” If “NO”, non-equidistant R-grid is generated by the code  all 

RGRID_FILE default is “NO” If “YES”, user-defined R-grid is read from file  all 

L_MAX integer Maximum value of index l in the expansion of the PES all 

M_MAX integer Maximum value of index µ in the expansion of the PES 3,4 

L1_MIN, L1_MAX integer Min. and max. values of index l1 in the expansion of the PES 5,7,8,9,0 

L2_MIN, L2_MAX integer Min. and max. values of index l1 in the expansion of the PES 5,7,8,9,0 

M1_MAX integer Maximum value of index µ1 in the expansion of the PES 5,7,8 

M2_MAX integer Maximum value of index µ2 in the expansion of the PES 9,0 

PRINT_DIAGONAL default is “NO” IF “YES”, prints diagonal elements of transition matrix  all 
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2.6.2. Description of user-supplied data files and the corresponding subroutines 

 

For several special cases (discussed further below), some of the input data must 

be generated externally by users and supplied in separate files. The following table gives 

brief description of these data files (extension *.DAT). Examples can be found in the 

directory ROUTINES of the code. In order to create properly formatted files users can 

employ our subroutines supplied with the code, all located in the file user_input.f. 

They are listed in the table below. Note that these are not ready-to-use utility programs to 

generate these data, but merely the examples of data formats required by the MQCT 

code. 

Table 6. Description of the input data files for MQCT calculations.  

Data File Name Generating Subroutine Brief Description 

 

USER_DEFINED_RGRID.DAT 

 

DEFINE_RGRID 

Contains user defined (e.g., non-

equidistant) grid for the molecule-molecule 

distance R. Can be useful for deep short-

range interaction potential energy wells. 

 

 

USER_DEFINED_BASIS.DAT 

 

 

DEFINE_BASIS 

Contains channel labels (quantum 

numbers), energies, and wave functions of 

the externally computed ro-vibrational 

states. For SYS_TYPE=2 and 6 the 

vibrational wave functions should be pre-

computed on a grid. For system types 4, 8, 

9 and 0 the rotational states (e.g., of Kyro 

Hamiltonian) should be represented by 

expansion over the basis set of symmetric-

top eigenstates. 

 

PES_EXPAN_TERMS.DAT 

 

EXPAND_PES 

Contains R-dependence of the expansion 

coefficients for analytic representation of 

the PES using the basis sets of spherical 

harmonics. Works for all values of 

SYS_TYPE, except 2 and 6 where the 

vibrational motion is involved. 

 

STATES_TO_EXCLUDE.DAT 

 

EXCLUDE_STATES 

Optional. Undesired states can be excluded 

by listing in this file the state numbers (as 

they appear in the file STATES.out), and 

setting the keyword 

EXCLUDE_STATES=YES.  
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2.6.3. Options for PES representation and computation of the transition matrix 

Within MQCT code there are four ways of computing the potential coupling 

matrix. Differences are in how the PES is represented and how the data are handled.  

Description of the format for four options can be found in the file 

user_suppl_pot.f in the directory PES_USER, and the file pes_sys_type.f 

in the main code directory MQCT_v1.01 

Option 1: keyword EXPANSION=NO, which is the default. In this case user 

should provide the potential subroutine USER_DEFINED_PES that generates the value 

of potential energy as a function of the molecule-molecule distance R and the internal 

coordinates (Euler angles in the body-fixed reference frame, and bond lengths). MQCT 

code will use this subroutine to compute elements of the state-to-state transition matrix 

directly, by numerical integration over the internal molecular degrees of freedom. Multi-

dimensional Gauss-Legendre quadrature is employed with the number of points indicated 

by the corresponding keyword in the input file (GRD_VIB, GRD_ANG1, GRD_ANG2, and 

GRD_ANG3). Such calculations are done for every grid point of the molecule-molecule 

distance R and the data are stored in the memory. For calculations of the collision 

process, when the values of matrix elements and their derivatives (for classical equations 

of motion) are needed at certain values of R along trajectory, one-dimensional cubic 

spline of each matrix element is computed. 

Option 2: keyword EXPANSION=YES. In this case user should provide 

subroutine USER_DEFINED_TERMS that generates coefficients of expansion of the PES 

over basis set of spherical harmonics (different for different system types, see section 

2.6.4). Description of the format can be found in the file user_suppl_pot.f. Using 
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these coefficients MQCT code will calculate elements of the state-to-state transition 

matrix analytically at every grid point of the molecule-molecule distance R, store them in 

the memory and finally spline (during the dynamics calculations, just like in the Option 1 

above). This option is specifically created for users of MOLSCAT, since an identical 

subroutine is used there (called VSTAR) and can be employed here without 

modifications. The other benefit of this approach is that transitions forbidden by 

symmetry, and the corresponding states, can be excluded a priori to ease calculations and 

slightly improve accuracy. Finally, Option 2 can be used to confirm convergence of 

Option 1 (where forbidden transitions should show up negligible probabilities), and vice 

versa. 

Option 3: keywords EXPANSION=YES, TERMS_FILE=YES. This case is 

methodologically equivalent to the Option 2 above, except that here user is required to 

supply the data file PES_EXPAN_TERMS.DAT that contains the externally computed 

expansion coefficients at every grid point of the molecule-molecule distance R (instead of 

the subroutine to compute them). This is convenient when these data are already 

available, say from literature. Format of the data file is described in the subroutine 

EXPAND_PES, see section 2.6.2. MQCT code will read these data as input, calculate 

elements of the state-to-state transition matrix analytically, store them in the memory and 

then spline for trajectory calculations as needed, like in the Options 1 and 2. Of course, 

the user-supplied subroutine suitable for Option 2 can also be used to pre-compute the 

expansion coefficients and create the data file for Option 3. Or, user can pre-run the 

MQCT code with the optional keyword CALC_EXPANSION=YES to generate the file 

PES_EXPAN_TERMS.DAT. In this case projection integrals are computed using multi-
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dimensional Gauss-Legendre quadrature with the number of points indicated by 

GRD_VIB, GRD_ANG1, GRD_ANG2, and GRD_ANG3. 

Option 4: keywords EXPANSION=YES, TERMS_ONFLY=YES. In this case no 

grid over the molecule-molecule distance R is employed, no data are stored in the 

memory, and no splining is involved. The user should supply the subroutine 

USER_DEFINED_COEFFS that will generate both the potential expansion coefficients 

and their R-derivatives at any value of R. The required format is described in the file 

user_suppl_pot.f in the directory PES_USER. Using this subroutine MQCT code 

will compute analytically the matrix elements and their R-derivatives on-the-fly, as 

requested by propagator along the trajectory. This approach is only practical if generation 

of the expansion coefficients and their derivatives is computationally inexpensive, for 

example, if their R-dependencies are described by simple analytic model (e.g., for simple 

molecular system). Other options, within the USER_DEFINED_COEFFS subroutine, 

would be to spline the expansion coefficients, or to re-compute the expansion at every 

point by projection, but those, again, would be practical for the simplest systems with 

smallest basis sets. Moreover, in the current version of the code Option 4 is implemented 

only for calculations with one processor per trajectory (i.e., without the second level of 

parallelization). It can be used for debugging, for machines with small number of 

processors and small memory, and for model systems. 

2.6.4. Expansion of the PES over the basis set of analytic functions 

In the current version of MQCT we use PES expansions identical to those 

implemented in the MOLSCAT package for these system types: 
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SYS_TYPE=1: for diatomic + atom the PES is expanded over the basis set of 

Legendre polynomials84. To define the expansion terms by the keyword TERMS, user will 

specify only one integer number for each term, the value of l, which is a rank of Legendre 

polynomial. The values for different terms are separated by coma. The order of indicated 

terms defines the order in which they will be handled (read from 

PES_EXPAN_TERMS.DAT, computed by the subroutine USER_DEFINED_TERMS, 

summed into the matrix element, etc.). Note, that the total number of terms employed 

must be specified by the keyword NUMB_TERMS, before they are listed one by one. If 

user does not wish to list all terms, the code can automatically assign them based on the 

keyword L_MAX. 

SYS_TYPE=3 and 4: for any top + atom the PES is expanded over the basis set 

of spherical harmonics57. User should specify two integer numbers for each term, l and its 

projection m (in this order, separated by coma), that define spherical harmonic functions. 

If user does not wish to list all the terms, the code can automatically assign them using 

the optional keywords L_MAX and M_MAX. Note that in the literature the symbols  and 

 are often used, instead of l and m. 

SYS_TYPE=5: for diatom + diatom the PES is expanded over the basis set of 

generalized spherical harmonics85. For each term listed the user should specify three 

numbers: l1, l2, and l (in this order, separated by coma). Alternatively, the optional 

keywords can be employed to generate the terms automatically up to L1_MAX, 

L2_MAX and L_MAX. 
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However, for the following system types the PES expansions of MQCT are 

different from those used in MOLSCAT, since MOLSCAT uses the molecule-fixed 

reference frame53, while MQCT exploits the body-fixed reference frame25. Namely: 

SYS_TYPE=7 and 8: for any top + diatom MQCT code uses expansion over 

normalized functions which are products of Wigner D-functions and spherical harmonics. 

Users should indicate four integers for each expansion term: l1, m1, l2 and l (in this order, 

separated by coma). The option of generating these terms automatically is also available, 

through L1_MAX, M1_MAX, L2_MAX and L_MAX. The same expansion was used 

in the HYBRIDON package86 and also in some earlier calculations but with different 

symbols: p1, q1, p2 and p 53. Subroutine MFTOBF_CONV (in the file 

user_suppl_pot.f) is available for conversion of the PES from the more standard 

molecule-fixed reference frame to the body-fixed reference used by MQCT. 

SYS_TYPE=9 and 0: top + top collisions have never been studied before, 

although similar expansion was proposed in the past61. In the MQCT code the PES is 

expanded over the basis set of normalized functions which are products of Wigner D-

functions for each molecule. The expansion terms are labeled by l1, m1, l2, m2 and l. Note 

that value of m2 can be negative integer and the code will read it without an error 

message. As in all previous cases, automatic generation of the terms is enabled by 

L1_MAX, M1_MAX, L2_MAX, M2_MAX and L_MAX. Note that in the literature 

symbol  was used, instead of m. 

Also note that, if desired, the keywords L1_MIN and L2_MIN can be used for 

several system types, as indicated in the Table 5, to define the minimum values of labels 

for the expansion basis in the case of automatic generation of terms. 
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2.6.5. Computation of coupling matrix and/or potential expansion over the basis set 

Both the direct calculation of transition matrix (default) and the expansion of PES 

over basis set of analytic functions (optional keyword CALC_EXPANSION=YES) deal 

with numerical integration over the internal degrees of freedom using multi-dimensional 

numerical quadrature. For both cases, the number of quadrature points should be 

indicated by user in the input file using keywords GRD_VIB, GRD_ANG1, GRD_ANG2, 

and GRD_ANG3. Integration over vibrational coordinate uses weights indicated for each 

point in the file USER_DEFINED_BASIS.DAT, or uses Gauss-Legendre quadrature for 

automatically-generated Morse oscillator states. Integration over Euler angles always 

uses Gauss-Legendre quadrature. Some of these are essential internal degrees of freedom, 

others are dummy variables, depending on the system, as described below: 

SYS_TYPE=1: for diatomic + atom integration is carried out along -angle only, 

with the number of points GRD_ANG2. The values of GRD_ANG1 and GRD_ANG3 are 

dummy. Vibrational degree of freedom is dummy for all SYS_TYPE but 2 and 6. 

SYS_TYPE=2: for vibrating diatomic + atom, besides -angle described above, 

the integral includes GRD_VIB points for vibration. The values of GRD_ANG1 and 

GRD_ANG3 are dummy, just as in SYS_TYPE=1. 

SYS_TYPE=3 and 4: for any top + atom the number of points for angles  and  

is indicated by GRD_ANG2 and GRD_ANG3, respectively. The value of GRD_ANG1 is 

dummy. 

SYS_TYPE=5: for diatom + diatom the number of points along two -angles is 

given by two entries of the keyword GRD_ANG2, while the number of points for -angle 
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is indicated by the first entry of the keyword GRD_ANG3. The second entry of the 

keyword GRD_ANG3, and both entries of the keyword GRD_ANG1 are dummy. 

SYS_TYPE=6: for vibrating diatom + diatom the number of points along each 

bond length is indicated by two entries of the keyword GRD_VIB, in addition to the 

angular coordinates of SYS_TYPE=5. 

SYS_TYPE=7 and 8: for any top + diatom the number of points along two -

angles is given by two entries of the keyword GRD_ANG2, the number of points along  

is given by the second entry of GRD_ANG1 (the first entry is dummy), while the number 

of points along  is given by the first entry of the keyword GRD_ANG3 (the second entry 

is dummy). 

SYS_TYPE=9 and 0: for top + top systems the number of points along  is given 

by the second entry of GRD_ANG1 (only the first entry is dummy), the number of points 

along two -angles is given by two entries of the keyword GRD_ANG2, the number of 

points along two -angles is given by two entries of the keyword GRD_ANG3. 

Several practical aspects of multi-dimensional integration for computing 

transition matrix directly, and/or for expanding the PES over the basis set, should be 

discussed. First of all, as mentioned previously, it is recommended to compute and store 

the transition matrix (into the file MTRX.DAT, or MTRX_UF.DAT) in a separate program 

run, independently from the main run of collision dynamics. This is optional for the case 

when the matrix is calculated by direct integration (Option 1 of section 2.6.3), but is 

mandatory in the case when the PES expansion is computed (e.g., prior to using Option 3 

of 2.6.3). Moreover, in the first run, initiated by the keyword CALC_EXPANSION to 

generate the PES expansion coefficients, the number of processors must be equal to the 
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number of requested expansion terms, since each processor will be responsible for 

computing one expansion coefficient. The code will compute the expansion coefficients 

and will stop, without proceeding to calculations of matrix elements or collision 

dynamics. Then, user should replace CALC_EXPANSION in the input file by 

EXPANSION=YES and run the code again with the number of processors appropriate for 

calculations of matrix elements (keywords SAVE_MTRX=YES, PROG_RUN=NO). 

Finally, the code should be run third time for the actual trajectory calculations (keywords 

READ_MTRX=YES, PROG_RUN=YES), with an appropriate value of MPI_PERTRAJ 

set up. In this procedure, one should be careful about the units of distance and energy. 

The file of expansion terms, printed by the code, PES_EXPAN_TERMS.DAT, will 

always contain the distance in Bohr and energy in wavenumber, irrespectively of the 

units of the potential energy surface routine used for the calculations of the expansion. If 

the expansion is used further (to compute the state-to-state transition matrix and/or the 

collision dynamics), the units should be set as Bohr and wavenumber in the 

$POTENTIAL block of the input file, to comply with the expansion file, rather than with 

the original PES routine that is not anymore used. 

If the angular grid (for Option 1) is very large, or the number of expansion terms 

(for Option 3) is large, and in particular when the number of R-grid points is large, it may 

be convenient to split calculations of the matrix or the PES expansion into several runs. 

To do that, user can specify the range of R-grid to cover in one run, using keywords 

IR_BGN and IR_FIN. Results of successive runs are combined automatically into a 

single file for the matrix, or for the expansion terms and coefficients. 
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When computing the state-to-state transition matrix by direct integration (Option 

1), or computing the PES expansion by projection (e.g., Option 3), it may be 

advantageous, in terms of CPU time, to keep in the memory the values of potential at the 

grid points, rather than calling the PES subroutine each time when the value for new 

point is needed. However, a very large grid (for larger molecules and complicated PES) 

may not fit as a whole into the memory of one CPU. For this case the option 

VGRID_FILE=YES is recommended. The code first generates the PES at the points of 

the grid and saves these data to the unformatted file VGRID_UF.DAT. The number of 

processors should be at least equal to the number of points of R-grid, or larger. Then the 

code loads this information into the memory of processors to compute matrix elements 

(or the expansion coefficients) but does it by slices, sequentially for each value of R on 

the grid, since calculation at each value of R is independent. Different processors will be 

responsible for computing different elements of the matrix, or different expansion terms. 

Note that if the expansion is being computed the code will save the data file 

VGRID_UF.DAT and will normally stop (except a rare special case when the number of 

R-grid points is equal to the number of the PES expansion terms). It should be run again 

with the number of CPUs equal to the number of the expansion terms. The code will read 

the data file VGRID_UF.DAT and proceed to calculations of the expansion coefficients, 

one term per processor. Calculations of matrix elements and the collision dynamics 

should be done in the following independent runs, as explained above. 

In order to take the full advantage of symmetry (when the symmetry is not 

obvious) the code automatically neglects transitions described by matrix elements with 

absolute values smaller than MIJ_CUTOFF=1.d-12. If needed, an alternative value of 
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the cut-off criterion can be specified. This keyword can also be used to make calculations 

more efficient by disregarding transitions between the weakly coupled states. For this, a 

suitable value of MIJ_CUTOFF should be determined by the convergence studies. 

Another relevant keyword is MIJ_SHIFT. By default, each matrix element is 

automatically shifted by its value at the last point of R-grid, to ensure that no transitions 

occur in the asymptotic region. This shift can be disabled by indicating 

MIJ_SHIFT=NO. 

2.6.6. User-supplied PES subroutine 

Formally, the potential energy surface subroutine USER_DEFINED_PES 

operates with the same coordinates for all system types, but, as it follows from section 

2.6.5 (above), for certain system types, some of these coordinates are dummy variables. 

Namely, the input for the PES subroutine requires, besides the molecule-molecule 

distance R, one vibrational coordinate and three Euler angles for each collision partner 

(see the file user_suppl_pot.f in the directory PES_USER, or the file 

pes_sys_type.f in the code directory MQCT_v1.01). However, the vibrational 

coordinate is a dummy variable for all values of SYS_TYPE, except 2 and 6 where the 

vibrational motion of the diatomic is explicitly described. In the future, our plan is to add 

one vibrational degree of freedom (such as bending motion in triatomic molecules) for 

other system types, but this is not yet implemented in the present release of the code. 

Concerning the angular coordinates, some of them are dummy as described in section 

2.6.5. For completeness, we summarized these properties in the Table 7 below, where 

dash denotes a dummy variable. We want to emphasize one more time that our reference 
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frame, called the body-fixed reference frame, tied to the molecule-molecule vector, is 

different from coordinates used in some other codes (such as MOLSCAT) where the 

reference frame is tied to one of the molecules (see section 2.6.5). 

 

  

Table 7. Degrees of freedom in the user-supplied PES subroutine. 

SYS_TYPE R r r       

1 distance -- -- -- polar -- -- -- -- 

2 distance vibration -- -- polar -- -- -- -- 

3 distance -- -- -- polar azimuthal -- -- -- 

4 distance -- -- -- polar azimuthal -- -- -- 

5 distance -- -- -- polar azimuthal -- polar -- 

6 distance vibration vibration -- polar azimuthal -- polar -- 

7 distance -- -- -- Euler Euler azimuthal polar -- 

8 distance -- -- -- Euler Euler azimuthal polar -- 

9 distance -- -- -- Euler Euler Euler Euler Euler 

0 distance -- -- -- Euler Euler Euler Euler Euler 
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CHAPTER 3. APPLICATION OF MQCT TO STUDY 

ROTATIONAL INELASTIC SCATTERING OF H2O + H2 

AND H2O + H2O COLLISIONS  

3.1. Introduction 

Water is one of the key molecules in chemistry. In the nature, water acts as a 

solvent, temperature buffer, metabolite, and habitat for many creatures.87 On Earth it is 

present everywhere in different physical states (solid, liquid, or gas)88 and therefore it 

played an important role in the appearance and evolution of living organisms. Not only 

on Earth, but it is also ubiquitous in astrophysical environments. For example, it is one of 

the main components in cometary ices in the solar system. In the interstellar medium the 

water molecules in molecular clouds keeps the energy balance and promote star-

formation due to significant abundance in the environment as well as strong dipole 

moment. Water is the third most abundant molecule in the interstellar medium (ISM)89, 

and it is among the molecules that contain most of the oxygen.90 It acts as the primary 

source of oxygen in warm astrochemical environments due to evaporation of the icy grain 

mantles,91,92 and all the gaseous oxygen transforms into the water during an endothermic 

reaction.93 For all these great many aspects, the modeling of water molecules in space is 

in the focus of astrochemists. 

The study of the energy transfer during collisional excitation and quenching of the 

water rotational states are crucial in this context. It is found that the most abundant 

species in cold molecular clouds (where T = 10 K roughly) are He or H2. On the other 

hand, atomic or molecular hydrogen and He are found to be most abundant in relatively 
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warm environments (such as translucent clouds where T = 70 K roughly and photon-

dominated regions where T = 200 K approximately). Thus, the collision of the water 

molecule with He, H2, or even other water molecules in the ISM environments and the 

theoretical modeling of these rotational energy transfer processes is very important.  

The study of rotational excitation and quenching of H2O + He has been done 

rigorously using the MQCT method and benchmarked with available full quantum results 

by Semenov et al.94 In this chapter, we apply our methodology to study the collision of 

H2O + H2 and compare with available full quantum results. As for the collision of H2O + 

H2O, I would like to point one more time that none of the full quantum codes available in 

the community can do calculations on this system. Our code MQCT enables scattering 

calculations of two asymmetric top rotors, which was not possible in the past.79 The 

results obtained using our method (state-to-state transition cross sections) for H2O + H2O 

collision are then converted to thermally averaged cross sections to compare with other 

available data. 

In this chapter, we first discuss the equations of motion for quantum and classical 

degrees of freedom of our method and then introduce necessary steps within the mixed 

quantum/classical framework to appropriately treat the symmetry of molecules, such as 

inversion symmetry and exchange parity. Cross sections for state-to-state transitions 

obtained by our method are then benchmarked against full quantum results for H2O + H2 

and thermally averaged cross sections compared with available semi-classical data for 

H2O + H2O system. 
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3.2. Theoretical Framework 

3.2.1. MQCT Classical and Quantum Equations 

Here we briefly outline the major components of the mixed quantum/classical 

theory of inelastic scattering. More detailed description can be found in the recent 

literature.1,79 The collision event can be thought of classically: At the initial moment of 

time two collision partners are in the asymptotic range, separated by large distance R , 

that shortens during the time of collision and increases again as collision partners leave 

the interaction region. The deflection process is determined by change of the azimuthal 

angle  . Time evolution of these continuous classical variables and their conjugate 

momenta RP  and P  is described by the classical-like equations of motion: 

 
𝑅̇ =

𝑃𝑅
𝜇

 
(13) 

 

 
Φ̇ =

𝑃Φ
𝜇𝑅2

 
(14) 

 

 
𝑃𝑅̇ = −∑∑𝑒𝑖𝜀𝑛

𝑛′𝑡∑
𝜕𝑀𝑛

𝑛′

𝜕𝑅
𝑎𝑚𝑛′
∗ 𝑎𝑚𝑛 +

𝑃Φ
2

𝜇𝑅3
𝑚𝑛′𝑛

 
(15) 

 

 

         𝑃Φ̇ = −𝑖∑∑𝑒𝑖𝜀𝑛
𝑛′𝑡∑𝑀𝑛

𝑛′

𝑚𝑛′𝑛

× [𝑎𝑚−1,𝑛′
∗ 𝑎𝑚𝑛√𝑗′(𝑗′ + 1) − 𝑚(𝑚 − 1)

+ 𝑎𝑚+1,𝑛′
∗ 𝑎𝑚𝑛√𝑗′(𝑗′ + 1) − 𝑚(𝑚 + 1)

− 𝑎𝑚𝑛′
∗ 𝑎𝑚−1,𝑛√𝑗(𝑗 + 1) − 𝑚(𝑚 − 1)

− 𝑎𝑚𝑛′
∗ 𝑎𝑚+1,𝑛√𝑗(𝑗 + 1) − 𝑚(𝑚 + 1)] /2  

(16) 
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In these equations 
nn

n

n EE −= 

  is used to label energy differences between the 

initial (lower index) and the final (upper index) internal states of the system, whereas 

)(tamn
 represent time-evolving probability amplitudes for these quantized states: 

 

𝑎̇𝑚𝑛 = −𝑖∑𝑒𝑖𝜀𝑛′
𝑛 𝑡∑𝑀𝑛′

𝑛 𝑎𝑚𝑛′

𝑚𝑛′

− 𝑖Φ̇ [𝑎𝑚−1,𝑛√𝑗(𝑗 + 1) − 𝑚(𝑚 − 1)

+ 𝑎𝑚+1,𝑛√𝑗(𝑗 + 1) − 𝑚(𝑚 + 1)] /2  

(17) 

 

The last term of Eq. (17) describes Coriolis coupling between states with 

1=m , driven by classical angular speed )(t . Neglecting this term leads to the 

coupled-states (CS) approximation within MQCT, while retaining this term corresponds 

to the fully-coupled version of MQCT (or coupled-channel MQCT). Matrix )(RM n

n
 in 

Eqs. (15)-(17) is a potential coupling matrix, its R-dependent elements are real, time 

independent, and are different for different values of m. The range of m is between 

),min( jj −  and ),min( jj + . The total angular momentum of two molecules 21 jjj +=  is 

quantized in MQCT. The corresponding eigenfunctions can be formally expressed 

through states of two coupled rotors: 

 Ψmn(Λ1, Λ2) = ∑ (𝑗1𝑚1𝑗2𝑚2|𝑗𝑚)Ψm1n1(Λ1)Ψ𝑚2𝑛2(Λ2)

𝑚1𝑚2

 (18) 

 

Coefficients of this expansion, )|( 2211 jmmjmj , the so-called Clebsch-Gordan 

coefficients, are non-zero only if 21 mmm +=  and 2121 jjjjj +− , where m is 
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projection of j  onto the molecule-molecule vector ( , )R= Q . A composite index n is 

used to label the total set of quantum numbers for the system, }{ 222111

CACA kkjkkjjn = . For 

the two scattering partners the sets of state labels are }{ 1111

CAkkjn =  and }{ 2222

CAkkjn = , 

thus, one can also write }{ 21nnjn = . The rotation of each scattering partner is treated 

quantum mechanically and is described by a set of usual Euler angles: ),,( 1111 =  

for molecule one and ),,( 2222 =  for molecule two. According to standard 

notation, rotational states of an asymmetric top are labelled (in addition to 1j  and 1m  for 

molecule one) by quantum numbers Ak1  and 
Ck1  that represent projections of 

1j  onto the 

principal axis of inertia with smallest and largest values of rotational constants, 

respectively. And similar for Ak2  and 
Ck2  for the angular momentum 

2j  of molecule two 

(in addition to 
2j  and 

2m ). 

The potential coupling matrix is diagonal in m (i.e., its elements for transition 

mnnm   are non-zero only if mm = ) but the actual values of non-zero matrix 

elements do depend on m . For given m  the matrix element for transition nn   is: 

 
𝑀𝑛′
𝑛 (𝑅) = 〈Ψmn(Λ1, Λ2)|𝑉(𝑅, Λ1, Λ2)|Ψ𝑚𝑛′(Λ1, Λ2)〉 

(19) 

 

Here ),,,,,,( 222111 RV  is the potential energy hypersurface for the 

molecule-molecule interaction, expressed through the same variables. 

It should be stressed that here we use the so-called body-fixed reference frame, 

where z-axis is defined to pass through the centers of mass of two molecules (i.e., is tied 

to the classical molecule-molecule vector Q). As collision progresses, this axis turns 

together with collision partners relative to the space-fixed reference frame (same as 
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vector Q), and this effect is incorporated into the equations of motion (13)-(17). 

Projection 1m  of momentum 1j  and projection 2m  of momentum 2j  are made onto this 

body-fixed z-axis, or equivalently on Q. 

3.2.2. Molecular Symmetry 

Rotational states of asymmetric-top molecules are split onto two groups, called 

para- and ortho-states. We define them based on what values of the quantum number k 

participate in expansion of wave function over the basis of symmetric-top eigenstates. 

Namely, for each j even values of k produce para-states, while odd values of k produce 

ortho-states. Even and odd values of k never mix95. For symmetric molecules, such as 

H2O, transitions are allowed within each group only, and are exactly forbidden between 

the para- and ortho-states, due to the symmetry of potential of interaction of the molecule 

with a quencher (any quencher). Including all states would not cause a problem, but 

would be meaningless since the efficiency of calculations would be reduced. If the states 

are specified explicitly as a list, the user should take care of this issue manually (for 

assignments of rotational states of water as ortho/para see Table C1 in Ref. [79]). But, if 

the basis set is generated automatically (e.g., using the keyword EMAX), user has an 

option to indicate SYMMETRY=YES, for reducing the basis set size to one symmetry 

only, depending on symmetry of the initial state. 

Note that in asymmetric molecules, such as methyl formate96, all transitions are 

allowed, and all states should be included in the basis. Thus, indicating the keyword 

SYMMETRY=YES, would lead to unphysical results in this and other cases with no 

symmetry, and normally should not be done. In the molecule + molecule case, symmetry 
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consideration will be applied to the states of each molecule individually, for example, one 

can compute collisions of para-water with ortho-hydrogen, etc. 

3.2.3. Collisions of Identical Molecules 

When identical molecules are collided (e.g., H2O + H2O) one should choose to 

treat them as indistinguishable, by indicating the keyword IDENTICAL=YES in the 

input file. In this case only one set of rotational quantum numbers is needed on input, and 

the unique channels only should be specified. For example, if the state (1,1,1, 0,0,0) of 

H2O + H2O is already specified, one should not include the state (0,0,0, 1,1,1) since two 

molecules are treated as indistinguishable. 

Symmetry considerations discussed in the previous subsection apply to each 

molecule individually, which results in three manifolds of uncoupled rotational states for 

the system of two indistinguishable molecules: para + para, ortho + ortho, and para + 

ortho collisions. If the basis set is specified explicitly as a list of states, the user should 

make efforts to exclude the uncoupled states. If the basis set is generated automatically 

(employing the keyword EMAX, or keywords EMAX1 and EMAX2), user has option to 

minimize the number of channels by choosing SYMMETRY=YES. Again, only the states 

coupled to the initial state would be included, based on symmetry considerations. 

For scattering of two identical collision partners there is one more effect of 

symmetry, related to swapping the two molecules, which can be done in two ways, by 

adding or by subtracting their wave functions. The resultant states are energetically 

degenerate, of course, but transitions between them are forbidden79. To distinguish 

between the two manifolds of uncoupled states one should use the exchange parity )( . 
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This sign, together with the orbital angular momentum quantum number   of collision, 

affect the values of state-to-state matrix elements through a factor of 
)1(− , as it was 

demonstrated by Eq. (25) in Ref. [79]. It appears that in general, two separate MQCT 

calculations are needed in the case of identical particle scattering: first run for 
even)1(−+  

and 
odd)1(−− , and second run for 

odd)1(−+  and 
even)1(−− . Note that each of these two 

calculations includes all vales of  , both even and odd. The results are converted then 

into four cross sections: )evn(+  and )odd(−  from the first run, and, )odd(+  and )evn(−  

from the second run, respectively. If IDENTICAL=YES is chosen in the input file, user 

can also employ the optional keyword WGHT_POSPAR. The default value is one, which 

leads to the overall cross section computed as )odd()evn()( +++ +=   from results of the 

two runs (done independently and consequently by the code). The value of zero for 

WGHT_POSPAR, in contrast, commands to do produce )odd()evn()( −−− +=   based on 

results of the two runs.  For any value of this keyword in the range between zero and one, 

both )(+  and )(−  will be computed and included into the final cross section with 

appropriate weights (such that their sum is unity). 

Trivial cases occur when both molecules are in the same initial state, such as 

(0,0,0, 0,0,0) state of H2O + H2O system. In this case, negative values of 
)1(−  turn 

wave function of the system into null (since the total internal parity p  is positive, (Note, 

this is different from the total “internal” parity of the state defined in Ref. [79] as 𝑝 =

(−1)𝑗(−1)𝜅1+𝜅2𝑝1𝑝2, where 𝑗 is the value of total angular momentum of two molecules, 

𝜅1 and 𝜅2 are their ortho/para assignments, 𝑝1 and 𝑝2 are their inversion parities. The 

value of 𝑝 remains unaffected by the swap.) see Eq. (21) and Table C1 of Ref. [79]). 
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Thus, only one MQCT run is needed, which produces )evn()( ++ =  and ( ) ( )odd − −= . 

Moreover, if the spin weight of the positive parity is one, as indicated by the keyword 

WGHT_POSPAR, then the overall cross section is equal to just )evn(+ , which requires 

calculations with even values of   only. The case of negative total internal parity of the 

initial state would be handled similarly and would require only odd values of  . This 

would be true for 1j =  component of the (1,1,1, 1,1,1) state of H2O + H2O system. Our 

MQCT code recognizes such special cases and caries out only the necessary calculations. 

3.3. Results 

3.3.1. Comparison of CC-MQCT with Full Quantum results for H2O + H2  

Here we present new data obtained with MQCT code for H2O + H2. Note that in 

the past the mixed quantum classical approach has not been applied to any asymmetric 

top rotor + diatom system, so, these are the first calculations of this sort. 

 

 

Figure 6: Cross sections for quenching of the excited rotational state 211 of H2O onto the 

lower levels: 000, 111, and 202. Black and blue lines represent the elastic H2 channels with 

𝑗2 = 0 and 𝑗2 = 2, respectively. Red line represents excitation of H2 from 𝑗2 = 0 to 𝑗2 = 2 

while green line describes quenching of H2 from 𝑗2 = 2 to 𝑗2 = 2. Results of MQCT are 

indicated by symbols; full-quantum results of MOLSCAT are shown by lines. 



76 
 

In Figure 6 we show results for quenching of the excited rotational state 211 of 

H2O into three lower energy states: 000, 111 and 202. Collision energy varies through four 

orders of magnitude range of values, from 10 to 10,000 cm-1. Each frame of Figure 6 has 

four cross section dependencies that correspond to various initial/final states of H2. 

Namely, black and blue symbols describe elastic H2 channels 𝑗2 = 0 and 𝑗2 = 2, red 

symbols describe rotational excitation of H2 from 𝑗2 = 0 to 𝑗2 = 2, whereas green symbols 

describe rotational quenching of H2 from 𝑗2 = 2 to 𝑗2 = 0 (all happening simultaneously 

with rotational quenching of H2O, as explained above). From Figure 6 one can see that 

the overall quenching processes (black, green, blue) have no energy thresholds and in the 

low energy range the values of cross sections slowly grow as collision energy is reduced. 

In contrast, the overall excitation processes (red in three frames of Figure 6) all have a 

well-defined threshold energy, where the value of cross section drops sharply as energy is 

reduced. This happens because the excitation of H2 from 𝑗2 = 0 to 𝑗2 = 2 requires more 

energy than can be released by the quenching of H2O (211), so, even when combined 

these transitions require some minimal amount of energy, which should come from the 

relative motion of the colliding partners.  

In order to benchmark the accuracy of these MQCT predictions we carried out the 

full-quantum calculations using MOLSCAT package53, for the same collision processes 

in the H2O + H2 system. The size of rotational basis set was also the same: for water the 

states up to j = 4 and for hydrogen the states up to j = 2 were considered, but only the 

states with combined rotational energy below 600 cm-1 were retained. These full-quantum 

data are presented in Figure 6 as solid lines (of matching colors), and thus can be 

compared with MQCT results (symbols). One can see that, overall, the two sets of data 
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are very similar. The behavior of cross section near threshold energy for the excitation 

process is predicted correctly by MQCT (red symbols vs lines), as well as the overall 

dependencies of cross sections on collision energy. At higher energies the results of 

MQCT become nearly identical to the full-quantum results of MOLSCAT, as expected. 

At lower collision energies the differences become somewhat larger, as one could also 

expect, but the relative magnitudes of all state-to-state transition cross sections in the 

system still remain correct. For simplicity, we removed resonances from Figure 6, but it 

should be stressed that the mixed quantum/classical approach can offer some useful 

insight into the resonant phenomena too (through analysis of orbiting trajectories82). 

It can also be noted that MQCT data presented above are in very good agreement 

with results of the most rigorous and complete study of water quenching, carried out by 

Dubernet and coworkers42. Three frames of Figure 6 here can be compared with Figs. 

1(a-c) of Ref. [42], which indicates good agreement, although it should be noted that our 

convergence parameters were not identical to those of Ref. [42], where the basis sets size 

was progressively increased as a function of collision energy.  

We also carried out calculations for the excitation of para- and ortho-water in 

their ground states, H2O (000) and H2O (101) respectively, by para- and ortho-hydrogen (j 

= 0, 1, 2) for one value of collision energy, 574 cm-1. Again, for the purpose of 

benchmarking, two sets of calculations were conducted, using our MQCT code and using 

the full-quantum code MOLSCAT53, with the same rotational basis set as above. The 

resultant cross sections are presented in Figure 7, in the upper row for the states of para-

water, and in the lower row for the states of ortho-water. Their values vary through three 

orders of magnitude range and demonstrate a systematic very good agreement between 
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MQCT (red) and MOLSCAT (blue) for all kinds of transitions. This comprehensive 

survey servs to show that symmetry properties of rotational states are captured correctly 

by our method and code, describing allowed and forbidden transitions between the ortho- 

and para- states of molecules. In particular, here we carried out separate calculations for 

four combinations of allowed transitions between the para and ortho states in water and in 

hydrogen molecules. But also, we carried out additional calculations where all these 

states were included to check that, for the transitions forbidden by symmetry (such as 

between ortho- and para-states of the same molecule), the values of cross sections would 

come out close to numerical zero. In practice it is also useful to run such test in order to 

determine the level of convergence of the code. 

 

It can finally be noted that the data presented in Figure 7 are in very good 

agreement with results of Wiesenfeld and coworkers60 computed using MOLSCAT, but 

 

Figure 7: Cross sections for excitation of the ground state para-H2O (000) and ortho H2O 

(101) by para-H2 (𝑗2 = 0, 2) and ortho-H2 (𝑗2 = 1). Upper row is for para-H2O, lower row 

is for ortho-H2O. The final state of water is indicated in each frame, while the initial and 

final states of H2 are listed along the horizontal axis. Results of MQCT are in red; full-

quantum results of MOLSCAT are in blue. 
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with somewhat larger basis set (see Fig. 6 and Table 3 in Ref. [60]). Those data, in turn, 

were shown to be in excellent agreement with experimental results, and thus we can 

claim that cross sections obtained by MQCT compare favorably against the available 

experiments. Therefore, the code MQCT can be used for reliable computational 

prediction of state-to-state transition cross sections in the inelastic molecular collision 

processes. 

3.3.2. Scattering Calculation of H2O + H2O 

After successfully testing our code with H2O + H2 calculations, it was time to 

apply to the most complicated scattering calculation possible, a system of two 

asymmetric top rotors. A set of MQCT calculations was carried out for H2O + H2O 

system at one collision energy U = 533.3 cm−1 that corresponds to thermal energy at T = 

800 K. We focused on transitions between the states 𝑗 = 0, 1, and 2 of the target water 

molecules. Since we are here computing the thermally averaged cross-sections, the state-

to-state inelastic cross-sections are summed over the final states of the quencher 

molecule, the ‘Billing correction’ of the collision energy U was not employed. ODEINT 

integrator was used to propagate MQCT trajectories. First of all, we found that largest 

contributions to the transition probability come from the relatively large impact 

parameters 𝑏 and correspond to the long-range interaction between the two water 

molecules. We determined that in these conditions we can include only 1 out of 20 values 

of the orbital angular momentum quantum number, i.e., Δ𝐿 = 20 (1 out of 20 trajectories 

is propagated, skipping 19). The error associated with this approximation is about 6 per 

cent of the cross-section value on average (4 - 8 per cent for various individual 
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transitions). We found, however, that we must start these trajectories relatively far, at a 

distance of 𝑅𝑚𝑎𝑥 = 100 Bohr between the molecules, and we must cover a broad range of 

impact parameters, up to 𝑏𝑚𝑎𝑥 = 60 Bohr. 

We have opted to treat the two water molecules as distinguishable and count their 

degenerate states as belonging to the same channel. Namely, if before the collision the 

initial states are 000 and 111 for molecules 1 and 2, but after the collision the states are 111 

and 000 for molecules 1 and 2 (i.e., swapped), we say that the corresponding probability 

contributes to the elastic channel, and is not counted in the inelastic transition probability. 

Note that normally the probability of such transitions (i.e., 000111 → 111000) is large since 

the states are degenerate. With this ansatz, we tested convergence of the thermally 

averaged cross-sections with respect to the basis set size of the target molecule and found 

that if we are looking at the transitions between 𝑗 = 0, 1, and 2 then excluding the states 

with j = 3 and above leads to the differences of cross-section values about 5 per cent on 

average (0.3 - 13 per cent for individual transitions). It is therefore safe to exclude 𝑗 = 3 

and above from the basis set of the target molecule. Then we tested convergence of cross-

sections with respect to the basis set size of the projectile molecule and found that this is 

the most demanding aspect. First, we included the states up to 𝑗 = 2, then up to E = 200, 

250, and finally 300 cm−1, but we cannot really claim that the result is converged. Indeed, 

this part of spectrum is within the collision energy. Adding more states to the basis set of 

the quencher does affect cross-sections. Including more states is computationally 

expensive, so we stopped without reaching convergence. The results presented in the 

paper were obtained with the basis set that includes six lowest lying states for the target 

H2O (up to E = 200 cm−1) and 10 lowest lying states of the quencher H2O (slightly above 
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E = 300 cm−1). The overall convergence is estimated to be of the order of 25 per cent of 

the cross-section values. Numerical cost of these calculations exceeded 100000 CPU 

hours at the Cori machine at NERSC. 

 

Using MQCT code,1 we carried out a set of calculations of excitation and 

quenching of several states of para- and ortho-H2O by collisions with another H2O 

molecule. The target and quencher molecules in these MQCT calculations were 

considered distinguishable, and a thermal distribution of rotational states was assumed for 

the quencher H2O at T = 800 K. The obtained thermally averaged cross-sections result is 

presented in Figure 8. One can see that, overall, the results of the MQCT method and  

 

 

Figure 8: Comparison of results of the semi-classical method (red) vs. those obtained 

using MQCT method (black) for para-H2O (left) and ortho-H2O (right). Thermal 

distribution of the rotational states in the quencher H2O and the collision energy 

corresponds to T = 800 K. 
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semiclassical theory developed by Dubernet et al 97. are in good semiquantitative 

agreement. Importantly, both methods predict the same propensity pattern for state-to-

state transitions in H2O + H2O collisions, namely: the transitions with od Δ𝑘𝑎 = 1 are 

characterized by systematically larger cross-sections, whereas the transitions with even 

Δ𝑘𝑎 = 0 and 2 always exhibit smaller cross-sections. Moreover, this trend is found in 

both para-H2O and ortho-H2O. For several transitions that describe quenching to the 

ground state, such as 111 → 000, 202 → 000 and 220 → 000 in para-H2O and 212 → 101 in 

ortho-H2O, the two methods gave very similar values of cross-sections (less than 5 per 

cent difference). Larger differences are typical for other transitions presented in the 

figure. In particular, we found that for the transition 220 → 202 in para-H2O our code gave 

much larger value of cross-section than the semiclassical method. However, we want to 

stress that one should not expect a perfect agreement because, first of all, the MQCT code 

uses a different built-in potential energy surface of Szalewicz and coworkers61 and 

therefore some differences are expected. Secondly, MQCT calculations for H2O + H2O 

system are very demanding computationally and therefore these were carried out with a 

relatively smaller basis set and with relaxed convergence criteria. For the sake of 

comparison, the results of Buffa et al.98 are also included in Figure 8. Transitions 

dominated by the quadrupole interaction (Δ𝑘𝑎 = 0 and 2) are zero in results of Buffa et 

al. and for most of the Δ𝑘𝑎 = 1 transition, but not all, our results seem closer to the 

semiclassical results. 
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3.4. Summary 

In this chapter, we applied MQCT to study the inelastic scattering of water 

molecule with other molecules in the vacuum conditions, such as H2 and H2O, specific to 

astrophysical environment. The rotational excitation and quenching of water molecules 

are rather important in the field of astrophysics, and the collisional rate constants for 

these processes would be useful for astronomers. MQCT is the only code in the 

community that allows the study of the collision of two asymmetric top rotors. 

Application of this methodology to H2O + H2 rotationally inelastic scattering shows 

excellent accuracy as demonstrated by benchmarking against the full-quantum coupled-

channel and experimental calculations from literature. MQCT was able to correctly 

predict the energy threshold observed for rotational excitation of H2. Moreover, MQCT 

appropriately handles the molecular symmetry by properly treating allowed vs. forbidden 

transitions. As for the calculation of H2O + H2O, the state-to-state transition cross 

sections computed by MQCT methodology are converted to thermally averaged cross 

sections and compared with available results by other methods. The MQCT data are in 

good agreement with the results of semi-classical methods. In conclusion, it is safe to 

state that the MQCT methodology proves to be a promising tool for the computational 

treatment of molecular collisions and energy exchange. 
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CHAPTER 4. CALCULATIONS OF DIFFERENTIAL 

CROSS SECTIONS USING MIXED 

QUANTUM/CLASSICAL THEORY OF INELASTIC 

SCATTERING 

4.1. Introduction 

In the last few years the mixed quantum/classical theory (MQCT) for inelastic 

scattering of gas-phase molecules went through a significant and successful round of 

revisions, which included careful derivation of equations of motion in space-fixed and 

body-fixed reference frames,72 benchmark studies of rotational state-to-state transitions in 

simple molecules collided with atoms,77 applications to larger molecules,25 extension to 

molecule-molecule inelastic collisions,16 and even some work on ro-vibrational 

transitions.77  In such approach to molecular collisions, the internal rotational (and/or 

vibrational) states of the molecules are treated rigorously using quantum mechanics, 

whereas the relative motion of scattering partners is treated classically by trajectories. 

This method allows very efficient scattering calculations for systems and collision 

regimes inaccessible using the standard full quantum scattering methodology (such as 

heavier atoms, larger molecules and higher collision energies). 

This is an approximate method, and one fundamental question is which quantum 

features and phenomena “survive” in the mixed quantum/classical treatment of molecular 

scattering, and what could be done to improve MQCT and make it more general? It is 

already clear that MQCT is able to give insight into some quantum phenomena. For 

example, it was demonstrated that state-resolved cross sections computed using MQCT 

for transitions between quantized rotational states of many molecules remain surprisingly 
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accurate even at low collision energies, down to the process threshold (if scattering 

resonances are not present or if they are sufficiently narrow). It was also demonstrated 

that quantum symmetry can be built into MQCT calculations to describe allowed vs. 

forbidden transitions in a symmetric molecule,16 and to implement permutation symmetry 

of two identical collision partners.75 Finally, it was shown that quantum oscillations of 

differential cross section in the forward scattering direction (quantum-scattering regime) 

can be reproduced well by MQCT.74 This is possible due to incorporation of quantum 

phase, which also enables rigorous calculations of converged cross section for the elastic 

scattering channel (impossible within purely classical or any known semi-classical 

framework99). All this progress is rather encouraging. 

In this chapter, we expand on calculations of differential cross sections using 

MQCT and propose solution to the problem encountered in the past. Namely, in Ref. [74] 

we reported calculations of differential (over scattering angle) cross sections for the 

elastic channel of N2 + Na system, for ground rotational state of the nitrogen molecule, 

𝑗 = 0. In the quantum scattering regime (forward scattering) we found excellent 

agreement between our MQCT results and the full-quantum results of Dalgarno and co-

workers56 for the same system. But in the backward scattering regime the results of 

MQCT were incorrect (noisy, see Figure 9 below), which at that time was tentatively 

attributed to numerical issues. 
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Figure 9: Differential cross sections for the elastic scattering channel of N2 (j = 0) + Na at 

three collision energies: a) E = 50 cm−1; b) 100 cm−1; and c) 700 cm−1. Full-quantum data 

from Ref. 56 are shown by red line, whereas MQCT results are shown by black line 

(obtained using the older semiclassical sampling approach, with randomly generated non-

integer values of l). 
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In this chapter, we show that the unphysical behavior of differential cross section 

we saw in the past was caused by a methodological flaw. We identified the problem, and 

we found that fixing it allows reproducing quantum differential cross sections through the 

entire range of scattering angles, from forward to backward scattering, without any 

further adjustments to MQCT. Moreover, our finding sheds new light on how, in general, 

the mixed quantum/classical theory should be implemented, and what is the correct 

correspondence between the quantum and classical moieties in molecular scattering. 

4.2. Theoretical Approach 

4.2.1. Traditional Approach for Continuous Sampling of Initial Conditions 

Consider full-quantum equations for the scattering of an atom off a diatomic 

molecule in the rotational state 𝑗𝑚 (such as in the N2 + Na system). Integral cross 

sections are computed using elements of scattering matrix in the body-fixed reference 

frame: 57,100–103 

 𝜎𝑗→𝑗′ =
1

2𝑗 + 1
∑ ∑ 𝜎𝑗𝑚→𝑗′𝑚′

𝑗′

𝑚′=−𝑗′

𝑗

𝑚=−𝑗

 (20) 

where 

 𝜎𝑗𝑚→𝑗′𝑚′ =
𝜋

𝑘𝑗
2 ∑(2𝐽 + 1) |𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

𝐽
|
2

𝐽𝑚𝑎𝑥

𝐽=0

 (21) 

Here 𝑗′𝑚′ is the final rotational state. Quantum numbers 𝑚 and 𝑚′ correspond to 

projection of molecular angular momentum onto the rotating z-axis that connects centers 

of mass of collision partners at every moment of time. Summation in the last formula is 
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over the values of total angular momentum of the system, 0 ≤ 𝐽 ≤ 𝐽𝑚𝑎𝑥, where 𝐽𝑚𝑎𝑥 is a 

convergence parameter that depends on the system and on collision energy.  

It was recognized in the past that,104–108 in order to be quantitatively comparable 

to the full-quantum calculations, MQCT method should stay close to these equations, and 

should attempt to retain (in the mixed quantum/classical theory) as many quantized 

moieties as possible. Thus, in MQCT we also consider integer values the total angular 

momentum 𝐽 of the system and vary it in the range 0 ≤ 𝐽 ≤ 𝐽𝑚𝑎𝑥. However, in the mixed 

quantum/classical calculations elements of the scattering matrix do not depend on 𝐽. 

Instead, they depend on the value of initial orbital angular momentum, 𝑙, that 

corresponds to the relative motion of collision partners (to their scattering) and is related 

to collision impact parameter. In order to take this dependence into account we followed 

the prescription of Billing,14–17 and introduced average over 𝑙 into Eq. (21): 

 

𝜎𝑗𝑚→𝑗′𝑚′ =
𝜋

𝑘2
∑(2𝐽 + 1)

1

2𝑗 + 1
∑ |𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑙)
|
2

𝐽+𝑗

𝑙=|𝐽−𝑗|

 

𝐽𝑚𝑎𝑥

𝐽=0

 

≈
𝜋

𝑘2
∑

2𝐽 + 1

2𝑗 + 1
∫ |𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑙)
|
2

𝑑𝑙

𝑙𝑚𝑎𝑥

𝑙𝑚𝑖𝑛

𝐽𝑚𝑎𝑥

𝐽=0

 

(22) 

For given value  𝑗 of the internal angular momentum of the molecule, 𝑙 changes 

through the range |𝐽 − 𝑗| ≤ 𝑙 ≤ 𝐽 + 𝑗, which is (2𝑗 + 1) values, again, by analogy with 

full-quantum approach, since 𝐉 = 𝐥 + 𝐣.  In our past work,74 also following Billing, we 

adopted a semi-classical approximation for scattering motion, and treated the orbital 

angular momentum 𝑙 as a continuous (classical, not quantized) variable. Consequently, 

the sum over 𝑙 was replaced by the classical-like integral (compare first vs. second lines 

of Eq. (22)).  



89 
 

This seemed to be logical and attractive, since a numerically efficient Monte-

Carlo procedure could be implemented to compute the sum over J and the integral over l 

in Eq. (22) simultaneously, in one step, as follows: Each trajectory in the batch was 

initiated with different values of 𝐽 and 𝑙. Namely, for each trajectory, first, an integer 

value of 𝐽 was drawn randomly and uniformly from the range 0 ≤ 𝐽 ≤ 𝐽𝑚𝑎𝑥. Then, a non-

integer value of 𝑙 was drawn randomly and uniformly from the range |𝐽 − 𝑗| ≤ 𝑙 ≤ 𝐽 + 𝑗, 

and used to define classical impact parameter 𝑏 for the trajectory using semi-classical 

relation 𝑙(𝑙 + 1) = 𝑘2𝑏2. The total cross section was simply an average over trajectories 

in the randomly sampled batch: 

 
𝜎𝑗𝑚→𝑗′𝑚′ =

𝜋

𝑘2
∙
𝐽𝑚𝑎𝑥
𝑁
∑(2𝐽(𝑖) + 1) |𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑖)
|
2

𝑁

𝑖=1

 
(23) 

Here index 𝑖 labels trajectories in the batch, the factor (2𝑗 + 1) is absorbed by 𝑁 

which is the number of sampled trajectories, 2𝐽(𝑖) + 1 and 𝑆
𝑗𝑗′𝑚𝑚′
(𝑖)

 are space degeneracy 

and scattering matrix element computed for trajectory number 𝑖. Obviously, in such 

quasi-classical sampling procedure the number of trajectories is a convergence 

parameter (and this happens to be related to the critical point, as you will see below). 

Recently, Eq. (23) was applied to several molecular systems, to compute integral cross 

section for inelastic transitions,1-6 and was found to work well. In such applications the 

phase of the scattering matrix is unimportant, since the transition probability is simply:  

 
𝑃𝑗𝑚→𝑗′𝑚′ = |𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑖)
|
2

= |𝑎
𝑗′𝑚′
(𝑖)
|
2

 
(24) 

where 𝑎
𝑗′𝑚′
(𝑖)

 is probability amplitude in the final state 𝑗′𝑚′ at the end of trajectory 

𝑖, initiated with the initial population being in the state 𝑗𝑚. Phase of scattering matrix 
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becomes important for the elastic channel, and for the differential cross section, as 

discussed below. 

4.2.2. Improved Sampling Method Using Integer Values of 𝑱 for the Differential 

Cross Sections 

The semi-classical approach discussed above has a flaw, which becomes obvious 

if we try to apply this theory to compute scattering amplitude 𝑓(𝜃) for differential cross 

section. The full-quantum equations in the body-fixed reference frame are: 57,100–103 

 

𝑑𝜎𝑗→𝑗′(𝜃)

𝑑Ω
=

1

2𝑗 + 1
∑ ∑ |𝑓𝑗𝑚→𝑗′𝑚′(𝜃)|

2 

𝑗′

𝑚′=−𝑗′

𝑗

𝑚=−𝑗

 

𝑓𝑗𝑚→𝑗′𝑚′(𝜃) =
𝑖

2𝑘
∑(2𝐽 + 1) (𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

𝐽
)  𝑑

𝑚𝑚′
𝐽

(𝜃).

𝐽𝑚𝑎𝑥

𝐽=0

 

(25) 

where 𝑑
𝑚𝑚′
𝐽

(𝜃) is an element of the reduced rotation matrix.109 Let’s consider the case of 

initial 𝑗 = 0, when elements of the reduced rotation matrix can be expressed through 

associated Legendre Polynomials and their weights:103 

 

𝑓𝑗𝑚→𝑗′𝑚′(𝜃) =
𝑖

2𝑘
 ∑(2𝐽 + 1) (𝛿𝑗𝑗′𝛿𝑚𝑚′

𝐽𝑚𝑎𝑥

𝐽=0

− 𝑆
𝑗𝑗′𝑚𝑚′
𝐽

) 𝑃𝐽
|𝑚′|
(cos 𝜃)√

(𝐽 − |𝑚′|)!

(𝐽 + |𝑚′|)!
 

(26) 

The weights turn out to be same for both positive and negative values of 𝑚′ [see 

Ref. 109, p. 59)], and the first non-zero weight occurs for 𝐽 = |𝑚′| + 1.  

Summation over 𝐽 in Eq. (26) can be replaced by summation over 𝑙, since 𝑗 = 0. 

Note, however, that Eq. (26) contains coherent sum over partial scattering waves. If the 
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values of 𝑙 are sampled continuously and randomly for the batch of MQCT trajectories, 

then it is simply impossible to associate these trajectories with any Legendre polynomials 

or partial waves! In our previous work on N2(j=0) + Na,74 we used the following trick: In 

order to compute differential scattering amplitude 𝑓00→00(𝜃) from the batch of randomly 

sampled MQCT trajectories (already computed for calculation of the integral cross 

section, see section 4.2.1 above) we simply rounded the value of 𝑙 for each trajectory to 

the nearest integer 𝑙𝑖, and used the corresponding Legendre polynomial for that 

trajectory: 

 
𝑓00→00(𝜃) ≈

𝑖

2𝑘
∙
𝐽𝑚𝑎𝑥
𝑁
∑(2𝐽(𝑖) + 1)(1 − 𝑆00,00

(𝑖)
)𝑃𝑙𝑖(cos 𝜃)

𝑁

𝑖=1

 
(27) 

The sum in Eq. (27) is still over all 𝑁 trajectories in the batch, labelled by 𝑖. 

Figure 9(a)-(c) show differential cross sections for the elastic scattering channel of 

N2(j=0) + Na obtained using MQCT method with large number of randomly sampled 

trajectories (on the order of N = 2000) and employing an ad hoc rounding trick described 

above, in comparison with full-quantum results of Dalgarno and co-workers56. We see 

that rounding the values of 𝑙 worked well for the forward- and side-scattering regimes, 

but it did not work for scattering in the backward direction.  

At that time we were puzzled,74 since back-scattering is considered to be a 

classical scattering regime, where the mixed quantum/classical theory was expected to 

work the best. Note, however, that back-scattering corresponds to small values of orbital 

angular momentum. For example, scattering by 𝜃 = π is observed for zero impact 

parameter 𝑏, or “head on” collision, which corresponds to 𝑙 = 0. Thus, rounding the 

values of 𝑙 to the closest integer 𝑙𝑖 does, indeed, have the most adverse effect on the back 
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scattering. Now it becomes rather clear that the problem was not with MQCT method 

itself (such as equations of motion for the quantum and classical degrees of freedom72), 

but rather with the way of sampling the initial conditions for MQCT trajectories. Instead 

of computing the integral cross section, and then using the same batch of randomly 

generated trajectories to construct differential cross section, one should go the other way 

around. Namely, having in mind that we will have to construct differential cross section, 

let’s try to propagate only the trajectories with integer values of 𝑙, and include them in the 

coherent sum of the quantum-like expression below, without any rounding, using the 

corresponding associated Legendre polynomials (for 𝑗 = 0): 

 
𝑓𝑗𝑚→𝑗′𝑚′(𝜃) =

𝑖

2𝑘
 ∑(2𝑙 + 1) (𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑙) ) 𝑃𝑙
|𝑚′|
(cos 𝜃)√

(𝑙 − |𝑚′|)!

(𝑙 + |𝑚′|)!
 

𝑙𝑚𝑎𝑥

𝑙=0

 
(28) 

Numerical tests of this formula will be presented in section 4.3.1. For 𝑗 > 0, 

MQCT version of Eq. (25) can be written as: 

 
𝑓𝑗𝑚→𝑗′𝑚′(𝜃) =

𝑖

2𝑘
∑(2𝐽 + 1)

1

2𝑗 + 1
∑ (𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑙) )  𝑑
𝑚𝑚′
𝐽 (𝜃)

𝐽+𝑗

𝑙=|𝐽−𝑗|

𝐽𝑚𝑎𝑥

𝐽=0

=
𝑖

2𝑘
∑

1

2𝑗 + 1
(𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′

(𝑙) )

𝑙𝑚𝑎𝑥

𝑙=0

∑ (2𝐽 + 1) 𝑑
𝑚𝑚′
𝐽 (𝜃)

𝑙+𝑗

𝐽=|𝑙−𝑗|

. 

(29) 

This formula will be elaborated and numerically tested elsewhere. 

4.2.3. Integral Cross Sections Using New Approach 

These same considerations can be applied to the integral cross sections to update 

Eqs. (22) and (23). Since now 𝑙 is again integer, and is varied in the range |𝐽 − 𝑗| ≤ 𝑙 ≤

𝐽 + 𝑗, the number of trajectories is not a convergence parameter anymore. We should not 
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call this a “batch”. The number of trajectories is strictly determined by integer values of 𝐽 

and 𝑗. The only remaining convergence parameter is 𝐽𝑚𝑎𝑥, just like in the full-quantum 

approach. Note that molecular orientations in space are described by rotational wave 

function (all at once) and, therefore, don’t require a separate sampling in MQCT 

calculations.  

However, it should be realized that the value of total angular momentum 𝐽 in Eqs. 

(22-23) does not affect trajectories directly (or their outcome, such as elements of the 

transition matrix), since initial conditions are defined by the orbital angular momentum 𝑙. 

The values of total angular momentum 𝐽 only give weights to trajectories. It is possible to 

account for these weights analytically, which reduces the double sum of Eq. (22) to a 

single sum, as follows:  

 
𝜎𝑗𝑚→𝑗′𝑚′ =

𝜋

(2𝑗 + 1)𝑘2
∑(2𝑗 + 1)(2𝑙 + 1)

𝑙𝑚𝑎𝑥

𝑙=0

|𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′
(𝑙)

|
2
 

(30) 

where the limit of summation is defined as 𝑙𝑚𝑎𝑥 = 𝐽𝑚𝑎𝑥 + 𝑗. Since 𝐽𝑚𝑎𝑥 is a convergence 

parameter, 𝑙𝑚𝑎𝑥 can simply be considered as an alternative single convergence parameter. 

Note that two factors 2𝑗 + 1 in numerator and denominator of Eq. (30) cancel, so, only 

the “geometric” factor 2𝑙 + 1 remains. The final expression for degeneracy-averaged 

cross section, after substitution of Eq. (30) into Eq. (20), is: 

 
𝜎𝑗→𝑗′ =

𝜋

(2𝑗 + 1)𝑘2
∑ ∑ ∑(2𝑙 + 1)

𝑙𝑚𝑎𝑥

𝑙=0

|𝛿𝑗𝑗′𝛿𝑚𝑚′ − 𝑆𝑗𝑗′𝑚𝑚′
(𝑙)

|
2

𝑗′

𝑚′=−𝑗′

𝑗

𝑚=−𝑗

 
(31) 

This formula is valid for any 𝑗, for rotationally inelastic and for the elastic 

scattering processes too (if phase information is properly included in 𝑆
𝑗𝑗′𝑚𝑚′
(𝑙)

, as 

explained in the next section).  
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To our best knowledge, this relatively straightforward approach (with integer 

values of 𝑙 within the mixed quantum/classical framework), has not been tried in the past, 

neither by Billing,17,107,108,110–112 nor by his followers3,6,120–123,40,113–119. Application of 

Eqs. (28) and (30) to the N2(j=0) + Na system is reported in Results and Discussion 

section below. 

4.2.4. Description of the Scattering Phase by MQCT Method 

For completeness, we briefly recap the treatment of scattering phase within 

MQCT,74 since it is important in Eq. (28-30) for differential cross sections, in Eq. (31) for 

integral cross section in the case of elastic scattering, but also for analysis of scattering 

resonances, as discussed below.  

First, a smooth deflection function Θ(𝑙) should be constructed from MQCT 

trajectories.74  Then, according to the semi-classical approach,99 deflection angle Θ is 

determined by the total phase shift:  

 
Θ(𝑙) =

𝑑(𝛿𝑗 + 𝛿𝑙)

𝑑𝑙
 

(32) 

Two components of the total phase are seen in Eq. (32), phase 𝛿𝑗(𝑙) of the internal 

molecular state (e.g., rotational state 𝑗 in MQCT) and the scattering phase 𝛿𝑙. The former 

can be computed from analysis of the probability amplitude 𝑎𝑗𝑚
(𝑙)

 at the end of MQCT 

trajectories, but the latter is absent in MQCT, since scattering is treated classically. 

However, the differential equation (32) can be integrated over 𝑙 to determine the missing 

scattering phase:  
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𝛿𝑙 = − ∫ Θ(𝑠)𝑑𝑠

𝑙

𝑙𝑚𝑎𝑥

− 𝛿𝑗(𝑙) 
(33) 

This scattering phase can be inserted into the element of scattering matrix to 

impose coherence into MQCT trajectories in Eqs. (28) and (31), namely: 

 
1 − 𝑆𝑗𝑗𝑚𝑚

(𝑙) = 1 − exp(𝑖𝛿𝑙) 𝑎𝑗𝑚
(𝑙)  

(34) 

One condition is that 𝑙𝑚𝑎𝑥 corresponds to a trajectory that passes through the 

asymptotic range, where all the phase shifts are zero and the deflection angle is zero. This 

is always possible to satisfy by choosing large impact parameter. Second condition is that 

the deflection function Θ(𝑙) is continuous through the entire range of 𝑙𝑚𝑎𝑥, which is 

typically the case at higher scattering energies. However, at low scattering energies the 

trapping of MQCT trajectory in the interaction region can occur, the so-called orbiting, 

which is a classical analogue of a scattering resonance. In such cases the integration can 

only be done from 𝑙𝑚𝑎𝑥 down to the value of 𝑙∗ at which the orbiting trajectory occurs, 

but not through the entire range of 𝑙. As result, at these values of collision energies the 

phase can’t be constructed, and the cross section cannot be computed rigorously within 

MQCT framework. Consequences of this problem are explored in section 4.3 below.  

Last point to mention is that, in the case of the elastic scattering channel, equation 

(34) can be transformed into a more transparent form:  

 
1 − 𝑆𝑗𝑗𝑚𝑚

(𝑙)
= 1 − exp(𝑖𝛿𝑙) exp(𝑖𝛿𝑗) |𝑎𝑗𝑚

(𝑙)
| 

=  1 − exp(𝑖𝛿) |𝑎𝑗𝑚
(𝑙)
| 

(35) 

Here we introduced the total phase 𝛿 = 𝛿𝑗 + 𝛿𝑙 determined by the deflection 

function only:  
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𝛿 = − ∫ Θ(𝑠)𝑑𝑠

𝑙

𝑙𝑚𝑎𝑥

 
(36) 

This shows that for the elastic scattering channel, for both integral and the differential 

cross sections, the phase of survival amplitude 𝑎𝑗𝑚
(𝑙)

 appears to be not important. The 

value of cross section is determined by the modulus |𝑎𝑗𝑚
(𝑙) |, and by the total scattering 

phase 𝛿 that, in turn, depends only on the deflection function Θ(𝑙).  

Finally, one can come out with an approximation: 

 
1 − 𝑆𝑗𝑗𝑚𝑚

(𝑙)  ≈  1 − exp(𝑖𝛿) 
(37) 

applicable in the case of weak inelastic transitions, when the final probability amplitude 

in the elastic channel is very close to one. This approximation is also tested in section 4.3 

below. 

4.2.5. Inelastic Differential Cross Section Using MQCT 

Phase information is also important for calculation of inelastic differential cross 

sections. For transition 𝑗𝑚 → 𝑗′𝑚′ during the trajectory defined by orbital quantum 

number 𝑙 and propagated through time interval 𝑡 we should write, similar to Eq. (34): 

 
𝑆
𝑗𝑗′𝑚𝑚′
(𝑙)

= exp(𝑖𝛿𝑙) 𝑎𝑗′𝑚′
(𝑙)
 𝑒
−𝑖𝐸

𝑗′
𝑡
 

(38) 

The last time-dependent phase factor in this formula is needed because in practice the 

time of propagation is finite (rather than −∞ ≤ 𝑡 ≤ +∞ ) and is different for trajectories 
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with different values of 𝑙. Typically, trajectories with large values of  𝑙, close to 𝑙𝑚𝑎𝑥, are 

very short, since they just “touch” the interaction region and stop (see Figure 10 below), 

while trajectories with intermediate values of 𝑙 pass through the interaction region and 

spend there a significant amount of time. The resultant phase shift is taken into account 

by the last term in Eq. (38), and depends on energies of the final states 𝐸𝑗′  (energy of the 

initial state can always be taken as reference 𝐸𝑗 = 0). This formula can be re-expressed as 

follows: 

 
𝑆
𝑗𝑗′𝑚𝑚′
(𝑙)

= exp{𝑖(𝛿 − 𝛿𝑗)} exp(𝑖𝛿𝑗′) |𝑎𝑗′𝑚′
(𝑙)

| exp(−𝑖𝐸𝑗′𝑡) 

= exp{𝑖(𝛿 − 𝐸𝑗′𝑡 + 𝛿𝑗′ − 𝛿𝑗)} |𝑎𝑗′𝑚′
(𝑙)

| 

(39) 

 

Figure 10: A set of MQCT trajectories for E = 16 cm-1, which is the highest collision energy 

at which one can observe orbiting in the N2 (j = 0) + Na system. This trajectory (l* = 31) is 

shown by red line. Trajectories with larger impact parameters are green, while trajectories 

with smaller impact parameters are blue. Here all values of 𝑙 are integer. 
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Comparing this equation with Eq. (35) for elastic scattering we see that now, for 

inelastic scattering, in addition to the modulus of transition amplitude |𝑎
𝑗′𝑚′
(𝑙)
| and the 

total phase 𝛿, we also need phases of the initial and final states 𝛿𝑗 and 𝛿𝑗′ , since their 

difference enters Eq. (39). 

4.3. Results and Discussion 

4.3.1. Elastic Cross Sections for Na + N2 

Figure 11(a)-(c) show differential cross sections for the elastic scattering channel 

of N2(j=0) + Na obtained using MQCT method with a modified sampling approach, 

where only integer values of 𝑙 are employed. Again, the full-quantum results of Dalgarno 

and co-workers56 are shown for comparison, and we see that the agreement between 

MQCT and the “exact” benchmark is almost perfect. MQCT results are accurate through 

the entire range of scattering angles, for different scattering energies, and through six 

orders of magnitude range of cross section values. Not only near the maxima, but even at 

the dips of cross section dependence, the agreement remains excellent. Every single 

oscillation is reproduced, in all frames of Figure 11. 
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Figure 11: Same as Figure 9 but with MQCT trajectories generated for all integer values 

of orbital angular momentum l, just as in quantum mechanics. 
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Figure 11 can be directly compared with Figure 9, where the problem was 

observed at large scattering angles. We see that now this problem is completely fixed. 

Remember, results presented in Figure 9 were obtained using randomly sampled non-

integer (continuous) values of 𝑙. The number of trajectories was a convergence parameter 

in that case, and was found to be rather large, on the order of 2000. In contrast, in Figure 

11 the number of MQCT trajectories is directly determined by 𝐽𝑚𝑎𝑥 (equal to 𝑙𝑚𝑎𝑥 

because 𝑗 = 0 in our case). Here we used only 92 trajectories for collision energy E = 50 

cm-1 (which corresponds to 𝑙𝑚𝑎𝑥 = 91), only 130 trajectories for E = 100 cm-1 (𝑙𝑚𝑎𝑥 =

129) and only 343 trajectories for E = 700 cm-1 (𝑙𝑚𝑎𝑥 = 342). In fact, the proposed new 

implementation of MQCT requires fewer trajectories, and less numerical effort. 

Note that the horizontal axis of Figure 11(a) is linear, while it is logarithmic for 

Figure 11(b) and (c). This is done to reveal in detail the forward scattering peak in Figure 

11(b)-(c), but also to make visible the rainbow point in Figure 11(a), that occurs at ~ 66 

degrees. One can see that the differential cross section dependence given by MQCT 

method remains regular near the rainbow point, just as the full-quantum result, in contrast 

to other known semiclassical ways of treating the differential cross section.  

Integral elastic cross section can be obtained either by integrating the differential 

cross section over scattering angle,99 or by using the same set of MQCT trajectories in the 

sum of Eq. (31) directly. Both ways require building the deflection function and 

reconstructing the scattering phase using Eq. (33-36). Examples of deflection functions 

Θ(𝑙) and scattering phase dependencies 𝛿(𝑙) are given in Figure 12(a)-(b), respectively, 

for several values of collision energy. The resultant integral cross section for the elastic 

scattering of N2(j=0) + Na is presented in Figure 13(a) in a broad range of scattering 
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energies. Comparison with full-quantum results of Dalgarno and co-workers56 is again 

very good. As expected,74 MQCT is somewhat more accurate at higher collision energies, 

but even at lower collision energies the results are reasonable. 

 

 

Figure 12: Deflection function (upper frame) and the total phase (lower frame) from 

MQCT calculations for several values of scattering energy. Red, green, blue & violet 

lines correspond to E = 16 cm-1, 50 cm-1, 100 cm-1 and 700 cm-1, respectively. In the case 

of E = 16 cm-1 the orbiting trajectory is found at l* = 31, where the value of deflection 

angle is undefined. To compute the phase for this energy, the resonance was “removed”, 

by linear interpolation of the deflection angle between two neighboring points (𝑙 = 30 

and 𝑙 = 32, where the deflection angle is defined). The phase dependence computed in 

this way for E = 16 cm-1 looks rather smooth. 
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Figure 13: Energy dependence of integral cross section for the elastic scattering channel 

of N2 (j = 0) + Na in a broad range of energies (a), and in the low-energy scattering 

regime dominated by resonances (b). Full-quantum data from Ref. 56 are shown by red 

line, whereas MQCT results are shown by blue line. The spikes in MQCT data are due to 

looping trajectories, while the gaps (indicated by green arrows) are due to orbiting 

trajectories. The corresponding values of 𝑙 are indicated under each gap or spike. Here all 

values of 𝑙 are integer. 
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We also tried to explore the validity of the approximate formula of Eq. (37). We 

did it in two ways. In one set of calculations, we simply ignored the value of survival 

probability amplitude and used only the phase, just as Eq. (37) prescribes. In the other set 

of calculations, we removed all the excited states from the rotational basis, keeping only 

the elastic scattering channel of N2(j=0) + Na and running one-state scattering  

 

 

calculations only, that give unitary survival probability by construct. We obtained very 

similar results that are also in good agreement with the full quantum results (see Figure 

14 and Figure 15). This demonstrates very clearly that the dominant factor in the elastic 

scattering is the scattering phase, rather than probability amplitude neglected in the 

approximate formula of Eq. (37), and this phase is well captured by MQCT calculations. 

It also gives a rather powerful way of computing elastic scattering cross sections, 

including the differential cross sections for elastic scattering, by running just one-state 

MQCT calculations, that would be very efficient for virtually any molecular system and 

any collision energy. 

 

Figure 14: Same as Figure 13 but obtained using single-state MQCT calculations for the 

elastic scattering process. This is an approximate way of computing the elastic cross 

section. 
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Figure 15: Same as Figure 11 but obtained using single-state MQCT calculations for the 

elastic scattering process. This is an approximate way of computing the elastic cross 

section. 
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4.3.2. Resonances at Low Collision Energies 

At very low collision energies, below E = 30 cm-1 in Figure 13(a), multiple 

features similar to scattering resonances are predicted by MQCT calculations. This is 

emphasized by Figure 13(b). We analysed MQCT trajectories in order to understand why 

these spiky features occur in the cross-section dependence as the collision energy is 

reduced. We found that in the energy range from E = 30 cm-1 down to 17 cm-1 there are 

well resolved periodically occurring resonant structures (see Figure 13(b)). We looked 

closer at those energy points and found that in each case there is one value of 𝑙 at which 

the MQCT trajectory makes a loop around the interaction region, with the effective 

deflection angle going over 180 degrees. Those values of 𝑙 are indicated next to each 

spike in Figure 13(b). For energies between E = 17 and 25 cm-1 the values of orbital 

quantum number between 𝑙 = 32 and 36 are found to produce looping trajectories. Such 

trajectories leave the interaction region at the end, so, the deflection angle can be 

determined, the phase reconstructed, and the differential and elastic integral cross 

sections computed.  

However, below 17 cm-1 we start seeing trajectories that are trapped in the 

interaction region. One example of orbiting trajectory is shown in Figure 10 Such 

trajectories don’t leave the interaction region within a reasonable number of cycles, say, 

even after ten loops. And again, they occur at one value of the orbital quantum number 

which seem to follow the previous progression. Namely, in the range of energy between 

E = 10 and 16 cm-1 the values of orbital quantum number between 𝑙∗ = 27 and 31 are 

found to produce orbiting trajectories. In Figure 13(b) these values of energy are seen as 

gaps in the cross-section dependence, because if the trajectory keeps cycling and never 
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leaves the interaction region the deflection angle can’t be uniquely specified. The 

deflection function is discontinuous (see Figure 12a), it cannot be integrated in Eq. (33) 

or (36), the scattering phase is undefined and neither the differential, nor the integral 

elastic cross section can be computed within MQCT framework. One can argue that the 

mixed quantum/classical description of inelastic scattering breaks down at this point 

(locally, at this collision energy and for this value of  𝑙∗). 

Nevertheless, the overall picture given by MQCT seems to be semi-quantitatively 

correct even down to collision energies of 8 cm-1 or so, and thus is practically useful. It 

shows a sharp growth of cross section at very low energies, and a smoother “hill” near E 

= 20 cm-1, all superimposed with periodically occurring resonant structures. Looking at 

the numbers, one sees that in the middle of the resonance region, say around E = 15 cm-1, 

the value of MQCT cross section is 20% lower than the quantum result, on average. This 

is very reasonable. It is hard to expect more from the classical-like approach in the 

quantum scattering regime, with multiple resonances. Moreover, the finding that our 

“resonances” occur at one selected value of the orbital quantum number 𝑙∗ is consistent 

with recent analysis of resonances in the full-quantum scattering calculations,124 where it 

was found that quantum resonances also occur due to contribution of one particular value 

𝑙∗ into each resonance. 

Another important question is a nature of “resonances” observed in MQCT 

calculations. Typically, one defines either Feshbach resonances that occur because of the 

loss of translational energy (due to excitation of the internal states of collision partners), 

or shape resonances populated by tunneling through centrifugal barrier (and trapped 

behind it). These are often said to be two different types, although in the rotationally 



107 
 

inelastic processes the transfer of kinetic energy into rotation also leads to increase of the 

centrifugal barrier, so, the two types of resonances may finally be closely related. 

Leaving these fine questions on aside, one can argue that since translational motion is 

treated classically by MQCT, we cannot possibly have resonances populated by 

tunneling, so the only option is a Feshbach-type process, due to the kinetic-to-internal 

energy transfer. In order to prove this statement, we carried out an additional set of 

MQCT calculations with only one internal state in the basis, the initial state (here, the 

ground rotational state j=0 of N2). This removes possibility of rotational excitation, and 

the loss of kinetic energy into the internal states of the molecule and is expected to 

eliminate the Feshbach-type processes. Results of such calculations showed no trajectory 

trapping (although looping trajectories were still observed at low energies), which 

demonstrates clearly that in MQCT calculations we are dealing with Feshbach-type 

resonances. 

4.3.3. Inelastic Cross Sections for Na + N2 

The same approach of MQCT with trajectories defined by integer values of 𝑙 was 

applied to compute inelastic integral cross sections for rotational excitation of N2(j=0) by 

Na. Results are presented in Figure 16(a) in a broad range of collision energies. Three 

processes are shown, all with even Δ𝑗 values, because odd values are forbidden by 

symmetry (this quantum selection rule is perfectly captured by MQCT). One of these 

cross sections decreases as a function of energy, the second increases, while the third 

passes through the maximum, according to the full-quantum results of Dalgarno and co-

workers56. Figure 16(a) demonstrates that MQCT describes all these features really well, 
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giving nearly perfect results at higher energies and reasonable results at energies near the 

process threshold. Our focus, again, will be on scattering resonances. 

 

 

Figure 16: Energy dependence of excitation cross sections for N2 (j = 0) + Na in a broad 

range of energies (a), and in the low-energy scattering regime dominated by resonances (b). 

Three allowed transitions are indicated on the graph. Full-quantum data from Ref. 56 are 

shown by red line, whereas MQCT results are in blue. The gaps in blue line correspond to 

orbiting trajectories, where the final state populations are undefined. These gaps are filled 

with green line, obtained by averaging state populations over several periods. 
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Resonances are more pronounced near threshold of the excitation channel 0 ⟶ 2, 

which is emphasized by Figure 16(b). Full-quantum calculations indicate multiple 

resonances at collision energies below E = 30 cm-1, down to the process threshold at E = 

12 cm-1. In MQCT calculations the orbiting trajectories start showing up at energies 

around E = 22 cm-1, and become more common at lower energies. Below E = 15 cm-1 all 

trajectories show orbiting (see Figure 16(b)). The phase is not important for the integral 

cross section of the inelastic channel, but the question of transition probability still 

requires some discussion, since orbiting trajectories never stop, and the final moment of 

time cannot be rigorously defined. Populations of rotational states keep evolving.  

We tried to monitor evolution of state populations during twenty periods or so, 

and found that state populations oscillate periodically. Thus, the values of state 

populations averaged over some period of time could serve as a reasonable measure of  

transition probabilities. Here we propagated resonant trajectories for 15-20 periods and 

averaged the values of state populations over the last ten periods. These average values 

were used to fill the gaps in energy dependence of the excitation cross section in Figure 

16(b), when orbiting occurs. These data are shown in Figure 16b by green color, mostly 

at low scattering energies, near the process threshold. At these conditions, the results of 

MQCT agree qualitatively with full-quantum results. 

Differential cross sections obtained by MQCT method for excitation of N2(j=2) 

starting from N2(j=0) are presented in Figure 17 for two energies of Na impact. Upper 

and lower frames of the Figure 17 correspond to low energy collision, E = 40 cm-1, and 

high energy collision, E = 700 cm-1, respectively. The full-quantum benchmark data of 

Dalgarno and co-workers (red curves) are again presented, for comparison. Overall, the 
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agreement is very good, although it is not as good as that for the elastic scattering channel 

(e.g., in Figure 11). The frequency of cross section oscillations seems to be reproduced 

correctly by MQCT at both high and low energies. The largest differences are observed at 

lower collision energies for scattering angles near the forward scattering peak, in the most 

quantum scattering regime. At higher energy, and for deflection angles above 𝜃~10°, 

when quantum oscillations vanish, the agreement is nearly perfect. 

4.4. Summary 

In this chapter, we demonstrated that mixed quantum/classical approach to 

molecular scattering is considerably improved by refraining from description of the 

orbital angular momentum as classical continuous moiety. It should be kept integer, just 

like in the quantum theory. Excellent accuracy of the modified theory for prediction of  

differential cross sections (at various values of collision energy) strongly supports this 

conclusion and justifies new sampling strategy, in which one MQCT trajectory is 

generated for each integer value of l. One can argue that trajectories in MQCT 

calculations serve to represent partial scattering waves, rather than merely to sample the 

collision conditions (such as continuous impact parameter). The new approach requires 

less MQCT trajectories, compared to the Monte-Carlo random sampling. The only 

convergence parameter in MQCT is 𝑙𝑚𝑎𝑥, similar to 𝐽𝑚𝑎𝑥 in the full quantum theory. This 

applies to both elastic and inelastic scattering channels. 
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Figure 17: Differential cross sections for inelastic scattering channel into N2 (j = 2), 

starting from N2 (j = 0), at two collision energies with Na atom: a) E = 40 cm−1, and b) 

700 cm−1. Full-quantum data from Ref. 56 are shown by red line, whereas MQCT results 

are shown by blue line. 
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More insight was also obtained in how, within the MQCT framework, phase 

information can be utilized to describe interference between different values of l, and 

how the phase can be employed to determine differential and elastic integral scattering 

cross sections. These observables represent quantum properties of the system, since both 

rely on interference between different values of l. Phase appears to be a dominant factor 

in the elastic scattering cross section. A simplified expression is proposed for 

computationally affordable (single-channel) MQCT calculations of the elastic cross 

sections. Differential cross sections for inelastic scattering were reported here for the first 

time, but only for the initial rotational level 𝑗 = 0. In the future, it would be interesting to 

carry out similar MQCT calculations of the differential inelastic cross sections for 𝑗 > 0 

initial states, for those molecules where the full-quantum results are available for 

comparison (since they are not available for N2 + Na). 

Finally, we explored in detail the range of very small collision energies dominated 

by quantum scattering resonances. MQCT calculations produce qualitatively similar 

spiky energy dependence of cross section, due to the looping and orbiting trajectories. 

We studied properties of these trajectories, and found that at each collision energy there 

is, typically, only one value of l that leads to looping or orbiting. Removing such 

resonance from deflection function (by interpolating between the neighboring points) 

works and permits to restore phase-dependence in the entire range of l. Accuracy of 

MQCT is lower in this regime, compared to the high energy regime. 

In the future, the developments of this work could be expanded onto other more 

complicated molecular systems, for example, onto the dipole dominated scattering, such 

as found in CO + CO or in H2O + H2O collisions. 
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CHAPTER 5. ADIABATIC TRAJECTORY 

APPROXIMATION WITHIN THE FRAMEWORK OF 

MIXED QUANTUM/CLASSICAL THEORY 

5.1. Introduction 

Inelastic collisions of molecules with atomic gasses125–128, with other gas-phase 

molecules129–133 or with solid surfaces134–139 lead to the energy exchange between 

translational, rotational and vibrational degrees of freedom, which is a fundamentally 

important phenomenon in the field of Chemical Physics. On the applied side, the inelastic 

molecular collisions play critical roles in many processes that span a huge range of sizes 

and time scales, from the man-made micro-traps140–143 to the galaxies and extra-galactic 

sizes8,42,43,96,144. Therefore, theoretical prediction of inelastic cross sections has been and 

still is actively pursued, including practical applications of the well-known codes to more 

and more complex molecular processes15,48,52,127,128,142, development of new 

computational tools1,86,145,146 and exploration of new theoretical methodologies6,71,97,147–

149. 

During the last decade we developed the mixed quantum/classical theory of 

inelastic molecular scattering78,79,96,150–152 and implemented this method in a recently 

released ready-to-use code named MQCT1. Our method is approximate, but it appears to 

work well in a wide range of collision regimes and for a broad variety of molecular 

systems16,75,79,94,96. It offers significant computational advantages in both the overall CPU 

cost required to solve the inelastic scattering problem (due to a simplified physics) and in 

the user’s wall-clock time (enabled by efficient massive parallelization). 
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Within the framework of MQCT, the internal molecular degrees of freedom are 

treated quantum mechanically using the time-dependent Schrodinger equation. Therefore, 

this method takes into account many quantum features of molecular rotations and 

vibrations, such as state quantization and zero-point energy preservation3, symmetry 

restrictions on allowed and forbidden transitions1, propensities of state-to-state transition 

cross section97, quantum interference effects153 and several other quantum features that 

we keep investigating. At the same time, the translational motion of colliding partners, 

responsible for their scattering in space, is treated classically within the Ehrenfest mean-

field trajectory approach17,107. This simplification was found to work well even for the 

lightest collision partners such as He atom and H2 molecule, in a broad range of collision 

energies1,75,94,151. Since the quantum treatment of scattering is avoided, the mixed 

quantum/classical method enables an affordable computational treatment of heavier 

collision partners and/or at higher collision energies – the limits when the standard full-

quantum methods are not affordable computationally anymore. 

During the last few years, our efforts were focused mainly on proving, to 

ourselves and to the community, that the mixed quantum/classical methodology can be 

sufficiently accurate, and thus practically useful. Namely, we demonstrated that for many 

molecules the results of MQCT calculations become nearly identical to the full-quantum 

results in the range of high collision energies78,151,152, which is a theoretically important 

limiting case and a practically important collision regime. Moreover, we showed that the 

results of MQCT remain reasonably accurate even at low scattering energies, near the 

excitation threshold1, which historically was thought of as a quantum scattering regime, 

not amenable to any semi-classical treatment. At this point it becomes clear that MQCT 
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represents a generally reliable method, with a potential of becoming a practical 

alternative to the full quantum description of molecular inelastic scattering (except, 

perhaps, in the ultracold physics conditions). 

One interesting feature of the MQCT formalism is that it includes the Coriolis 

coupling effect, in a mixed quantum/classical fashion, through transitions between the 

(quantum) states with different projections of molecular angular momentum that are 

driven by the (classical) orbital angular momentum of the relative motion of collision 

partners. This most rigorous version of MQCT calculations was named CC-MQCT, by 

analogy with a well-known quantum coupled-channel method which is considered to be 

exact. Besides CC-MQCT, we also developed and tested an approximate version of 

MQCT, in which the Coriolis coupling is neglected, leading to a simpler set of equations 

of motion propagated at a reduced numerical cost. This is a mixed quantum/classical 

analog of a well-known coupled-states (CS) approximation85,101,154–156, and therefore we 

named our approximate MQCT version as CS-MQCT151. We found that it gives 

acceleration by an order of magnitude, which is quite attractive. Unfortunately, we also 

found that for some molecules the results of CS-MQCT deviate appreciably from the 

results of more rigorous CC-MQCT, and more so at low collision energies151. Again, this 

is analogous to the performance of the full-quantum coupled-states method, that is known 

to be less reliable at lower collision energies. 

Therefore, it makes sense to examine other alternative methods for the 

computational treatment of inelastic molecular scattering (and for the description of 

rotational-vibrational-translational energy exchange in general) still within the MQCT 

framework, but such that solve the problem in an approximate way, and hopefully at a 
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fraction of the computational cost. At the moment this territory is largely unexplored, and 

we envision a development of a hierarchy of approximate methods of solving the MQCT 

equations of motion. 

In this chapter we introduce one such option that we want to name AT-MQCT, 

where the prefix stands for the adiabatic trajectory version of MQCT. This 

approximation is specific to the time-dependent mixed quantum/classical theory, and thus 

it does not have any direct quantum analogue, to our best knowledge. In this method the 

classical and quantum equations of motion are decoupled in a sense, by conducting 

MQCT calculations in two consecutive steps. During the first step the molecular basis 

size is restricted to the degenerate states of the initial rotational channel only (with 

different projections of the molecular angular momentum). This information is recorded 

and used during the second run, to propagate the quantum equations of motion along this 

pre-computed adiabatic path. The Coriolis-like coupling terms are included during both 

steps of such calculations, which preserves an important physical effect, in contrast to the 

CS approximation where it is entirely neglected. 

In the Theory section we review the formalism of MQCT and introduce the AT-

MQCT version of the method. In the section Results we apply this theory to the H2O + 

H2 system and demonstrate that it produces the systematically reliable and rather accurate 

results. New method is benchmarked vs the well-established CC-MQCT version, but also 

vs the full-quantum CC calculations of Dubernet and coworkers for the same system42. In 

the Discussion section we determine acceleration due to the adiabatic trajectory 

approximation, which approaches the factor of ×200, making these mixed 

quantum/classical calculations relatively cheap. Opportunities for further development of 
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a hierarchy of approximations within MQCT are also discussed. Summary is presented in 

the final section of the chapter. 

5.2. Theory 

Rigorous derivation and detailed discussion of the MQCT equations of motion 

can be found in the recent literature,1,79 and a brief summary is provided in section 3.2.1. 

Efficient methodologies for generation of the initial conditions for MQCT trajectories, 

and for constructing cross sections from the final values of probability amplitudes 𝑎𝑚𝑛, 

have been discussed earlier and will not be repeated here1,79,96,150,153. 

5.2.1. Adiabatic Trajectory Approximation 

Formula (13)-(17) represent a system of coupled differential equations of first 

order. Note that the classical system of Eqs. (13)-(16) and the quantum system of Eqs. 

(17) contain the same variables and thus are coupled. In the most rigorous MQCT 

treatment they are propagated in time all together. Such straightforward approach was 

implemented in the released version of MQCT1. 

Although the mixed quantum/classical treatment is more affordable than the full 

quantum treatment, there are still molecular systems and collision conditions where even 

the MQCT calculations become computationally demanding. Let’s consider the H2O + H2 

system covered in this research. Assume that in the basis for para-H2O molecule we want 

to include lowest 45 rotational states, with the upper state 𝑗1 = 8 at 1442.095 cm-1 (𝑘𝑎 = 

6, 𝑘𝑐 = 2) and the largest value of 𝑗1 = 11 at 1332.166 cm-1 (𝑘𝑎 = 1, 𝑘𝑐 = 11), whereas 

for the para-H2 we want to include two rotational states, with upper state 𝑗2 = 2 at 
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365.118 cm-1. This gives us 90 energetically non-degenerate asymptotic rotational states 

overall in the basis for the H2O + H2 system. Within each of these asymptotic states, the 

complete basis contains all 𝑗12 states in the range | 𝑗1 − 𝑗2| ≤ 𝑗12 ≤ 𝑗1 + 𝑗2, that here we 

will call the channels. In the example above, the largest value of the total molecular 

angular momentum is 𝑗12 = 13, and there are 264 channels overall. Within each 

molecular channel there are 2𝑗12 + 1 projection states with different values of 𝑚. 

Altogether this gives 3486 unique quantum states in the basis, and a huge state-to-state 

transition matrix 𝑀𝑛
𝑛′(𝑅;𝑚). In the MQCT code1, zero matrix elements are identified and 

excluded, but still, for the example above the number of unique non-zero matrix elements 

included in the triple-summation of Eqs. (15) and (16) is 336595, which represents a 

numerical challenge since these summations need to be re-computed at each time step 

(several times) along each trajectory. Indeed, from the extensive profiling of MQCT 

calculations we found that over 50% of the total numerical effort was used to compute 

the right-hand sides of Eqs. (15) and (16), and over 65% to propagate Eqs. (15) and (16), 

despite the fact that these are just two equations in a huge system of coupled differential 

equations (6976 equations total in our example, out of which 4 are for the classical 

degrees of freedom while 6972 are for the real and imaginary parts of 3486 quantum 

probability amplitudes). 

It is also important to realize that, when computed, the triple-summations in the 

right-hand sides of the classical equations produce just two numbers – the average 

gradient for Eq. (15) and the average torque for Eq. (16). How sensitive are these average 

values to the contribution of each term in the sum? Do we really need to take into account 

all these terms? Can we neglect the contributions of some terms? Which terms contribute 
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more and thus must be retained? Clearly, more than one truncation scenario is possible 

here, depending on the answers to these questions, and we will discuss various 

alternatives in detail further below (see Discussion). Here we will propose and test a 

simple solution that, in a sense, goes to the extreme. It is discussed next. 

It is clear that the largest contributions to the right-hand sides of Eqs. (15) and 

(16) will normally come from the most populated states, those with larger values of 

probability amplitudes 𝑎𝑚𝑛(𝑡). For many molecular systems and many collision 

conditions the inelastic transition probabilities are relatively small, and thus the survival 

probability (in the initial channel) is dominant. Therefore, one simple way to truncate the 

sum in Eqs. (15) and (16) is to retain only the states of the initial channel. This can 

include all the degenerate 𝑚-states, since the number of such states within one channel is 

usually manageable, 2𝑗12 + 1. With this choice, the MQCT trajectories will be driven by 

the potential energy surface associated with one quantum channel only (the initial 

channel), rather than by the average Ehrenfest potential. Such trajectories are not 

sensitive to excitation or quenching of the initial state and, strictly speaking, are not the 

mean-field trajectories anymore. These are adiabatic trajectories, which suggests the 

name AT-MQCT for this approximation. 

Using truncation of the right-hand sides in Eqs. (15) and (16) one could still hold 

the overall system of MQCT equations (13)-(17) coupled as before, to propagate in time 

all the equations of motion together. Or, alternatively, one could go beyond just 

truncation and, following the spirit of the adiabatic ansatz, try to completely decouple the 

propagation of four classical equations of motion, Eqs. (13)-(16), from the huge system 

of quantum coupled equations, Eq. (17). In practice, this can be implemented as follows: 
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• In the first run, propagate all MQCT equations of motion rigorously coupled, 

as before, but using an adiabatic basis that includes only 2𝑗12 + 1 states 

(labelled by 𝑚 in Eqs.(13)-(17) above) of the initial quantum channel. Since 

the basis is small, such MQCT calculations would be trivial for any molecular 

system, without any other approximations. The existing MQCT code can be 

used without modifications. These would be adiabatic MQCT calculations, 

since no rotational excitation or quenching of the internal molecular states is 

possible within such basis, but the goal is to record the trajectory data as a 

function of time, to use this information during the second run. For example, 

one can record all classical variables: 𝑅(𝑡), Φ(𝑡), 𝑃𝑅(𝑡) and 𝑃Φ(𝑡), or one can 

record only 𝑅(𝑡) and Φ̇(𝑡) that are specifically needed in the second run. As 

you will see, it is also beneficial to record average potential 𝑉(𝑡) along the 

trajectory. 

• In the second run the basis is increased to the desired size, in order to describe 

all the state-to-state excitation and quenching transitions (e.g., 90 states in the 

H2O + H2 example above), but now only the quantum system of coupled 

equations is propagated in time, using Eq. (17), to determine the evolution of 

probability amplitudes 𝑎𝑚𝑛(𝑡). The value of 𝑅 for the state-to-state transition 

matrix 𝑀𝑛
𝑛′(𝑅;𝑚) and the value of Φ̇ for the Coriolis coupling (in the first 

and second terms of Eq. (17), respectively) are “borrowed” from the adiabatic 

trajectory data saved during the first run (e.g., using a 1D spline along the 

trajectory, which is a computationally cheap trick). Only minor technical 

modifications to the code are needed. 
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Of course, such decoupling of classical and quantum degrees of freedom in the 

AT-MQCT method is an approximation which needs to be tested by numerical 

simulations (see next Section). One downside of this assumption is that the total energy 

of the system is not conserved anymore. However, the norm of the wavefunction is still 

conserved and can be monitored to ensure the convergence of numerical integration. One 

important advantage of this method, compared to the CS-MQCT approximation, is that 

the Coriolis coupling terms in Eqs. (16) and (17) are included during both steps of the 

AT-MQCT calculations: during the first adiabatic step as well as during the second non-

adiabatic step. 

5.2.2. Adiabatic Step-Size Predictor 

The previously released version of MQCT1 had 4th order Runge-Kutta integrator 

built in, for the propagation of the total system of coupled equations: the classical Eqs. 

(13)-(16) and the quantum Eq. (17), altogether. By default, the constant step-size was 

used, with an option of adaptive step-size control from Numerical Recipes157. We found, 

however, that the adaptive step-size control routine gave advantage only for the 

molecular systems with long-range interaction potential, such as H2O + H2O
1,79,97. For 

other cases, such as H2O + H2 system considered here, the “black-boxed” step-size 

control gave no noticeable increase of performance. But, we realized that the adiabatic 

trajectory approximation introduced above gives us opportunity to implement a very 

efficient method for the variable-step integration of the quantum system of equations, Eq. 

(17), propagated during the second step of the AT-MQCT calculations (which is the only 
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costly part of new method). For this, we can take advantage of the 𝑉(𝑡) dependence, 

recorded along the adiabatic trajectory during the first step of AT-MQCT calculations. 

Indeed, the form of the right-hand side of Eq. (17) suggests that the time-

evolution of probability amplitudes 𝑎𝑚𝑛(𝑡) is driven by the magnitudes of matrix 

elements 𝑀𝑛
𝑛′(𝑅;𝑚) as molecule-molecule separation 𝑅(𝑡) first decreases and then 

increases along the trajectory. Although individual matrix elements 𝑀𝑛
𝑛′  change slightly 

differently as a function 𝑅, the potential 𝑉(𝑡) recorded during the first step gives us a 

reasonable prediction of their overall behavior (as they increase from the asymptotic 

region to the interaction region). Importantly, the numerical error of integration is also 

expected to depend on the magnitude of matrix elements 𝑀𝑛
𝑛′ , and therefore the variable 

integration step-size ∆𝑡 may be efficiently predicted using the 𝑉(𝑡) dependence. 

If we keep using 4th order Runge-Kutta method, in which the integration error 𝐼 is 

proportional to ∆𝑡4 , and also take into consideration that numerical error is proportional 

to the interaction potential 𝑉(𝑡), we can write: 

 
𝐼 = 𝛼 ∙ 𝑉̃ ∙ ∆𝑡4 

(40) 

where 𝛼  is a proportionality coefficient that takes care of units, and 𝑉̃ is the average 

value of 𝑉(𝑡) during the time step ∆𝑡. This average can be computed, for example, by 

taking 𝑁 tiny steps 𝜏 through the interval ∆𝑡, from 𝑡 to 𝑡 + ∆𝑡: 

 
𝑉̃ =

1

𝑁
∑𝑉(𝑡 + [𝑖 − ½]𝜏)

𝑁

𝑖=1

 
(41) 

Then, ∆𝑡 = 𝑁𝜏. The goal is to vary ∆𝑡 as 𝑉̃ changes along the trajectory in such a 

way that the numerical error remains constant, for example, does not exceed a specified 

value of 𝐼max. This is achieved by setting, based on Eq. (40): 



123 
 

 
∆𝑡 = √

𝐼max

𝛼 ∙ 𝑉̃

4

 
(42) 

From Eqs. (40) and (41) it follows that this can be implemented by taking tiny 

steps 𝜏 along the trajectory, accumulating the predicted value of error: 

 𝐼

𝛼
= (𝑁𝜏)4 ∙

1

𝑁
∑𝑉(𝑡 + [𝑖 − ½]𝜏)

𝑁

𝑖=1

 
(43) 

and monitoring that within each time step it does not exceed 𝐼max/𝛼. The value of 𝐼max 

can be defined by considering a hypothetic trajectory with very weak interaction such 

that the potential remains negligibly small at any moment of time: 𝑉(𝑡) < 𝑉tiny. In this 

case the integration of entire trajectory can be done in one step, ∆𝑡 = 𝑇, where 𝑇 is the 

duration of trajectory (the time 𝑡 when the molecule-molecule separation reaches 𝑅max, 

also determined during the first step of AT-MQCT propagation). From these 

considerations, and using Eq. (40), we obtain: 

 𝐼max
𝛼
= 𝑇4 ∙ 𝑉tiny 

(44) 

It is more convenient to introduce a unitless measure of precision: 

 
𝜖 = √

𝑉tiny

𝑈

4

 
(45) 

where 𝑈 is a characteristic value energy, say the kinetic energy of collision. The values of 

kinetic energy in typical MQCT calculations vary in range from 1 cm-1 to 10,000 cm-1. 

The typical values of 𝜖 are 0.01 and below, say down to 10-5. With these definitions, the 

final formula for the variable time-step is obtained from Eqs. (42), (44), and (45): 
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∆𝑡 = 𝜖 𝑇 ∙ √

𝑈

𝑉̃

4

 
(46) 

We checked by extensive calculations and confirmed that this method of step-size 

prediction works efficiently along the entire trajectory (as it goes from the asymptotic 

range to the interaction region and back), and for all trajectories in the batch (from the 

most intense head on collisions, to more typical side-scattering, forward scattering, and 

the asymptotic trajectories that barely touch the interaction region). Varying one 

convergence parameter 𝜖 permits to achieve monotonic convergence for all trajectories in 

the batch, which is very convenient and numerically efficient. 

We checked and found that our step-size prediction works for a broad range of 

collision energies, but the value of 𝜖 needs to be adjusted. Namely, at higher energies the 

collision is faster, so the time step needs to be reduced, according to ∆𝑡~1/√𝑈. This 

relationship occurs simply because ∆𝑡 = ∆𝑅/𝑣 where velocity depends on collision 

energy as 𝑣 = √2𝑚𝑈. Thus, if we want the integration to proceed with roughly the same 

steps through space (through the potential energy surface) at different energies, we have 

to adjust the time-step accordingly. This adjustment is analytic, and we found a simple 

way to scale the value of 𝜖 inside the code (without user’s intervention), to take this 

effect into account. We also found, by trial and errors, that at the very low collision 

energies a higher accuracy is needed and the value of 𝜖 has to be reduced too. Based on 

our experimentations with the H2O + H2 system we derived an empirical dependence of 

this effect and have also hardcoded it into the MQCT program. As it stands now, the user 

can enter one single value of 𝜖 that will guarantee the same level of accuracy for all AT-

MQCT trajectories at all collision energies. For the H2O + H2 system we observed that, as 
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the value of 𝜖 is reduced, all AT-MQCT trajectories converge monotonically. We hope 

that this behavior is general, and plan checking the performance of adiabatic step-size 

predictor for other molecular systems, in the near future. 

To avoid confusion, we would like to stress one more time that this adiabatic 

predictor scheme is not used to propagate the classical-like equations of motion (13)-(16). 

This method is used only for the quantum-like Eq. (17) for evolution of probability 

amplitudes 𝑎𝑚𝑛(𝑡) along the precomputed trajectories. While classical equations of 

motion include the gradient of potential (the force), the quantum time-dependent 

Schrödinger equation includes the potential itself. This difference manifests in Eqs. (15) 

vs. (17), where the right-hand side of the first (classical-like) formula contains gradients 

of matrix elements, while the right-hand side of the second (quantum-like) formula 

contains matrix elements themselves. 

5.3. Results 

In order to benchmark the accuracy and performance of the newly developed 

approximate AT-MQCT methodology, we carried out a series of calculations for a 

reasonably complex real molecular system of astrophysical importance, H2O + H2. It was 

studied in the past by various groups42,158 and a fair amount of data are available from 

literature. In order to make the comparison meaningful we used the same potential energy 

surface42. 
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5.3.1. Comparison of AT-MQCT vs CC-MQCT 

The initial distance between the collision partners was set to 𝑅𝑚𝑎𝑥 = 30 𝑎0, and 

the maximum impact parameter was selected as 𝑏𝑚𝑎𝑥 = 𝑅𝑚𝑎𝑥 at all collision energies 

(which automatically defines the maximum value of the orbital angular momentum at 

each collision energy). The range of collision energies covered in this test was from 20 

cm-1 to 7000 cm-1. The rotational basis incorporates 20 asymptotic rotational states of 

H2O + H2 with energies below 500 cm-1, which includes 4 states with hydrogen molecule 

excited to 𝑗2 = 2. For water, the upper rotational state in this test was 440, where two 

subscripts stand for 𝑘𝑎 = 4 and 𝑘𝑐 = 0, of 𝑗1 = 4.  The standard CC-MQCT calculations, 

that are expected to serve as a reference and thus need to be perfectly converged, were 

carried out in a standard way, using the RK4 integrator with a constant time-step set to a 

rather small value, ∆𝑡 = 10 𝑎. 𝑢. Convergence of the approximate AT-MQCT 

calculations with adiabatic step-size predictor was also rigorously checked, by varying 

the value of 𝜖. The results presented in Figure 18 and Figure 19 are found to be entirely 

converged when 𝜖 = 10-3. 

First, we looked at the excitations from the ground rotational state of the system, 

H2O (𝑗1 = 0) + H2 (𝑗2 = 0), which we denote here as 0000. Figure 18 reports cross 

sections for 20 transitions, including the elastic channel, for eight values of collision 

energies (one may notice that at lower collision energies some channels are closed). One 

can see that results of the approximate AT-MQCT (green symbols, dashed lines) follow 

closely the trend of the benchmark CC-MQCT data (red symbols, solid lines), through all 

transitions and all collision energies, systematically. We did not see even one transition 

when the adiabatic trajectory approximation would fail miserably. It should be 
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emphasized that the values of cross sections vary through seven orders of magnitude, 

still, the results of the approximate AT-MQCT method remain very close to the results of 

the original CC-MQCT method. At higher energies the agreement is generally better, 

which is somewhat counterintuitive, since one would expect that the error of adiabatic 

trajectory approximation (single-state) may increase together with possibilities of 

multiple state excitations, enabled by higher collision energies. But this does not happen. 

Higher errors are found at lower collision energies, when only a few channels are open, 

and for lower rotational states, which is also somewhat unexpected. 

 

Next, we looked at the quenching and excitations of the first excited rotational 

state of water, H2O(𝑗1 = 1, 𝑘𝑎 = 1, 𝑘𝑐 = 1) + H2(𝑗2 = 0), which we denote here as 1110. 

Figure 19 reports cross sections for transitions into the same 20 states of the basis, at the  

 

 

Figure 18: Comparison of results of the new approximate AT-MQCT method (green 

dots) against the full-coupled CC-MQCT calculations (red symbols) for the initial state 

0000 of the H2O + H2 system. Final states are listed along the horizontal axis. The values 

of collision cross sections are plotted along the vertical axis using log scale. Eight frames 

correspond to eight values of the kinetic energy, as indicated. Twenty rotational states of 

the basis include both ground and excited rotational states of H2. 
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same collision energies as in Figure 18 (with all the same convergence parameters 

chosen). These data again indicate an excellent systematic agreement between the 

approximate AT-MQCT method (green symbols, dashed lines) and the benchmark CC-

MQCT method (red symbols, solid lines), through all transitions, all collision energies, 

and seven orders of magnitude of cross section values. 

 

A different viewpoint is obtained by plotting the values of cross sections as a 

function of collision energy. This is done in Figure 20 for transitions into the five lower 

energy states of H2O + H2, starting from the ground state 0000, and in Figure 21 for the 

rotationally excited initial state 1110. In these figures different colors correspond to 

different transitions. Vertical dashed lines indicate energy thresholds of the individual 

processes. From Figure 20 and Figure 21 we can see clearly that the results of the 

adiabatic trajectory approximation do approach monotonically the results of the full-

coupled MQCT calculations as collision energy is increased. Larger deviations are found  

 

 

Figure 19: Same as Fig. 1, but for the initial state 1110 of the H2O + H2 system, which is 

first excited rotational state. 
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at lower collision energies, often at threshold. The positions of thresholds are correctly 

captured by the approximate AT-MQCT method, but the values of cross sections just 

above the threshold are usually underestimated. For the transitions plotted in Figure 20 

and Figure 21 the largest underestimations of this kind are by about 40%, found for 

transitions 000 → 111 and 111 → 202 near their thresholds, at collision energies 37.158 and 

about 33.001 cm-1, respectively. 

 

To summarize, the results of adiabatic-trajectory approximation, within the 

MQCT framework, appear to be systematically accurate, particularly at higher collision  

 

 

Figure 20: Comparison of results of the new approximate AT-MQCT method (empty 

circles, solid line) against the full-coupled CC-MQCT calculations (filled symbols, 

dashed lines) for the initial state 0000 of the H2O + H2 system. The values of collision 

cross sections are plotted along the vertical axis using log scale.  Kinetic energy of 

collision (including Billing’s correction) is plotted along the horizontal axis. Color 

corresponds to five different final rotational states, as indicated in the picture. Excitation 

thresholds are shown by the vertical dashed lines. 
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energies. When it concerns only the trajectory of collision, we do not lose much by 

restricting the basis size to include only the states of the initial quantum channel. Such 

approach is found to be less accurate at the limit of low collision energies, near the 

process threshold, but this collision regime is often amenable to the full-quantum 

treatment of scattering, which we discuss next. 

 

5.3.2. Comparison of AT-MQCT vs full-quantum CC method 

For the H2O + H2 system, the results of full-quantum coupled-channel 

calculations are available from the detailed work of Dubernet and coworkers42. Besides 

thermal rate coefficients they also reported the energy dependencies of cross sections for 

a number of individual state-to-state transitions. Their results are reproduced in Figure 22 

 

Figure 21: Same as Fig. 3 but for the first excited state 1110 of H2O as the initial channel. 
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(with permission of the author). For the same transitions, we carried out the approximate 

AT-MQCT calculations. In those, all the convergence parameters were kept as in the 

previous test, except that the rotational basis size was dramatically increased, to match 

the basis size in the calculations of Dubernet and coworkers at higher collision energies. 

Namely, 90 asymptotic rotational states of H2O + H2 with energies below 1810 cm-1 were 

included, with two states of the hydrogen (𝑗2 = 0, 2) and the states of water up to 862. In 

Figure 22 four colors correspond to four state-to-state processes in H2, two elastic ones: 0 

→ 0 (black) and 2 → 2 (blue), one quenching 2 → 0 (green) and one excitation 0 → 2 

(red). Three initial states of water are considered: 211 (three frames on the left side), 322 

(three frames in the middle of the picture), and 440 (three frames on the right side). The 

final states of water are different for each frame, as indicated in the figure caption, and 

include 000, 111, 202, 211, 331 and 524. 

Overall, Figure 22 contains energy dependencies of 36 transitions, which is a 

rather comprehensive set of data for the benchmarking of new methods. In all these cases 

the results of our AT-MQCT method show very good systematic agreement with the full-

quantum results of Dubernet and coworkers42 . Some differences are present, but they are 

relatively small and typically vanish at high collision energies. One possible source of 

small differences at higher energies is likely to originate in the fact that a Kyro-type 

Hamiltonian for water molecule was used by Dubernet and co-workers, while we employ 

a simpler rigid-rotor model. Also, given the difficulty of achieving convergence of the 

full-quantum calculations at high energies, we would cautiously assume that some of 

these differences may originate in the full quantum calculations too. The AT-MQCT 

results are expected to be quite reliable in the high energy regime. 
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Moreover, it is also quite encouraging that in the low collision energy regime the 

results of AT-MQCT remain close to the full-quantum results that are considered to be 

exact. Out of 36 state-to-state transition processes in this figure, we spotted only one 

transition (frame 1a, dashed vs solid black lines) where the results of AT-MQCT 

calculations deviate significantly from the full-quantum results: 2110 → 0000 at collision 

energies below 10 cm-1. Note that this particular process has a number of narrow  

 

 

Figure 22: Comparison of results of the new approximate AT-MQCT method (dashed 

lines) against the full-coupled quantum calculations (solid lines) of Ref. [42] for the H2O 

+ H2 system. The values of collision cross sections are plotted along the vertical axis, 

while the kinetic energy of collision is plotted along the horizontal axis, both in log scale. 

Black, red, green, and blue color is for 0→0, 0→2, 2→0 and 2→2 transitions in H2, 

respectively. In H2O the transitions are from state 211 to states: 1a) 000, 1b) 111, 1c) 202; 

from state 322 to states: 2a) 000, 2b) 111, 2c) 211; from state 440 to states: 3a) 111, 3b) 311, 

3c) 524. 
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resonances densely packed in the range of collision energies between 10 cm-1 and 100 

cm-1. These quantum features cannot be described within AT-MQCT method, which may 

explain the asymptotic difference observed at very low collision energies in the frame 1a 

of Figure 22. 

5.3.3. Time-dependent insight from AT-MQCT 

Indeed, quantum resonances are entirely absent in our calculations, but this is 

expected since the adiabatic trajectory approximation, by construct, prohibits energy 

transfer during the first step of AT-MQCT calculations, and therefore disables the 

mechanism of Feshbach resonance formation153. If the resonant behavior is present in the 

low energy range and happens to be important, then the full-quantum calculations are 

probably indispensable. 

However, there are number of interesting phenomena where the MQCT results 

appear to capture the physics correctly. Take a closer look at the frame 3a, red lines, that 

describe the 4400 → 1112 transition. Notice that among nine processes represented by red 

lines in Figure 22 this is the only one that has no energy threshold! The value of cross 

section keeps increasing as collision energy is decreased, and our AT-MQCT method 

(dashed red line) reproduces this behavior very well in comparison with the full-quantum 

result (solid red line). This particular process can be thought of as a direct energy 

exchange between the two collision partners: the hydrogen molecule is excited, 0 → 2, 

while the water molecule is quenched, 440 → 111. Energy released by one molecule is 

sufficient to excite the other molecule directly, without using the kinetic energy of 

collision.  
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Since MQCT offers a useful time-dependent picture, we tried to gain more insight 

into this quasi-resonant energy-exchange process. In Figure 23 we plotted the values of 

state populations along a typical AT-MQCT trajectory with impact parameter 𝑏 = 4.602 

𝑎0, which corresponds to the orbital angular momentum 𝐿 = 6 at collision energy 𝑈 = 

56.5 cm-1. Population of the elastic channel (survival probability) corresponds to the 

initial state 4400 of the H2O + H2, i.e., hydrogen is in the ground state whereas water is 

excited. Figure 23 shows that population of this state (black) drops quickly as two 

molecules start colliding, then it slightly oscillates right after the collision, and finally 

goes to an asymptotic value close to ~ 0.8. Population of the final state 1112 (red in Figure 

23), shows a roughly opposite trend but is not a mirror image of the initial state 

 

Figure 23: Time evolution of state probabilities along a typical MQCT trajectory (see 

text) that indicate a direct exchange of populations between the excited water state and 

the excited hydrogen state – a quasi-resonance energy exchange process 4400 → 111. 
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population, and the final probability in the 1112 state is only ~ 5.63×10-3 (notice the scale 

factor). So, where does the rest of the initial state population go? 

We inspected time evolution of all probability amplitudes 𝑎𝑚𝑛(𝑡) and computed 

the total probability for the excitation of hydrogen to 𝑗2 = 2 (summed over all states of 

water molecule, namely: 0002, 1112, 2022, 2112, etc.) This dependence is shown in blue in 

Figure 23 and we see that it is closer to the mirror image of the survival probability. The 

remaining small contribution is a probability for hydrogen to survive in the ground state 

𝑗2 = 0, while the water molecule is quenched and/or excited. This missing piece is 

plotted in Figure 23 in green. Now we see that in a time-dependent picture all these 

energy exchange processes happen synchronously. 

5.4. Discussion 

5.4.1. Numerical speed-up 

Now let’s address the question of computational speed-up of the MQCT method 

due to the adiabatic trajectory approximation, AT-MQCT. The overall speed-up is very 

substantial, but it comes from two separate sources. The cost of running the first 

(adiabatic) step of the AT-MQCT calculations is insignificant since the size of the 

adiabatic basis is rather small. Associated numerical cost can be neglected for the sake of 

transparency.  

One substantial contribution to the speed-up comes from the fact that in the 

second part of AT-MQCT calculations we only need to propagate the quantum system of 

equations for the probability amplitudes, Eq. (17), instead of the Eqs. (13)-(17) 

propagated together in the original CC-MQCT method. As explained above, when the 
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basis size is large, the cost of computing the average gradient and torque in the right-hand 

sides of Eqs. (15) and (16) is dominant, and the overall cost associated with these two 

classical-like equations is about 65% (in the original version of the MQCT method). But 

this is not anymore required in the AT-MQCT, so, the numerical gain of the approximate 

method is expected to be on the order of ×3. We carefully monitored the numerical cost 

of the full-coupled CC-MQCT (the original method) and of the AT-MQCT calculations 

(new approximate method) and confirmed that the acceleration close to the factor of three 

is indeed achieved in our code. 

 

The second contribution to the speed-up comes from the efficient adiabatic step-

size predictor, used to accelerate integration of the quantum-like system of equations, Eq. 

(17), during the second step of the AT-MQCT calculations. Associated computational 

 

Table 8. Computational speed-up due to employment of the adiabatic step-size predictor 

in the AT-MQCT calculations, at different values of the kinetic energy of collision, for 

H2O + H2 system. 

U (cm-1) Speed-up 

20 22.5 

30 25.8 

50 32.2 

200 49.5 

500 69.5 

700 63.7 

2000 48.0 

7000 33.1 
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speed-up can be obtained by determining the number of time steps taken by the older 

version of integrator with constant step-size, and by new version with an adjustable step-

size predictor, and then dividing one by the other (note that both versions use the RK4 

integrator with the same numerical cost of one time step). We collected such data in a 

series of the numerical tests, making sure that both the constant step-size and the variable 

step-size calculations converge to about the same accuracy. We found that the numerical 

speed-up is sensitive to the collision energy, and these data are presented in Table 8. 

They indicate that the numerical gain associated with adiabatic step-size predictor is very 

substantial. The largest acceleration, by a factor of close to ×70, is found at intermediate 

collision energies. At higher collision energies this is reduced to the factor of about ×33. 

Overall, taking into account both sources of the computational speed-up, the AT-

MQCT calculations appear to be faster than the original MQCT method by a factor 

ranging from about ×200 at intermediate scattering energies, to about ×100 at high 

scattering energies. Since MQCT is more reliable at high collision energies, and the 

intended use of this approximate method is at high collision energies, we can deduce, as a 

take-home message, that the adiabatic trajectory approximation within MQCT framework 

reduces the numerical cost of scattering calculations by two orders of magnitude. 

This makes many previously expensive calculations quite affordable now. As 

example, we want to report the cost of two runs we made during this work, at collision 

energies 500 cm-1 and 2000 cm-1 (the initial rotational state was 2112 in both cases). These 

calculations were performed on Cori computer at NERSC159, using only one node with 32 

processors (2.3 GHz Intel Xeon). The wall-clock time of the run at U = 500 cm-1 was 

about 9 minutes, while at U = 2000 cm-1 it was about 23 minutes. It should also be taken 
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into account that out of this CPU time, only about 60% was spent on the actual 

propagation of the MQCT equations of motion, while about 40% is an overhead of the 

code associated with distribution of the initial data (array allocation, etc.) and collection 

of the final results (including MPI barrier). These costs can be substantially reduced by 

code optimization. It should also be kept in mind that the cost of MQCT calculations 

depends on the level of rotational excitation, since the number of initial states to be 

sampled, and the basis size itself, both depend on 𝑗12. The corresponding cost scales 

linearly as 2𝑗12 + 1. 

5.4.2. On a hierarchy of the approximate MQCT methods 

The adiabatic trajectory approximation considered here, AT-MQCT, can be 

thought of as one member of the family of approximate solutions of the MQCT equations 

of motion (13)-(17). Indeed, in the second step of AT-MQCT calculations the quantum-

like system of coupled equations (17) for the probability amplitudes 𝑎𝑚𝑛(𝑡) is 

propagated decoupled from the classical-like trajectory, pre-computed during an 

independent first run. However, using the same overall two-step approach, we could 

explore various options for pre-computing the MQCT trajectory. Indeed, it does not 

necessarily have to be an adiabatic single-state trajectory. One can include more than one 

rotational state in the basis during the first run! Of course, this would increase the 

numerical cost of the first run, but hopefully not by much. 

If we have a good physical intuition about what quantum states need to be 

included into the molecular basis to pre-compute the trajectory, we could include these 

states into the basis of the first run right away. Then, in a sense, we would operate with 
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two basis sizes: one relatively small (reduced) basis for pre-computing the mean-field 

trajectories and recording the  𝑅(𝑡), Φ̇(𝑡) and 𝑉(𝑡) dependencies, and the second 

(complete) basis for the propagating the probability amplitudes 𝑎𝑚𝑛(𝑡) and computing 

the state-to-state transition cross sections. One can recall that similar algorithms of 

varying the basis size between different stages of calculations are routinely used in the 

electronic structure theory. 

If we don’t know a priori what molecular states need to be included into the 

trajectory calculations, we can either experiment by including several states energetically 

close to the initial state (since transition probabilities normally decrease as 𝜀𝑛
𝑛′ increases) 

or, we could simply run the adiabatic AT-MQCT calculations (both first and second 

steps, since their cost is relatively low), and analyze its results to identify the most 

important molecular states. Then, the basis for the mean-field trajectory could be 

increased by including these states, and a new set of trajectory calculations is re-run with 

a meaningful (still reduced) basis, followed by the final propagation of the quantum Eqs. 

(17) to determine 𝑎𝑚𝑛(𝑡) and calculate the cross sections. If needed, this procedure could 

be repeated in an iterative fashion. Again, the exclusion of unnecessary states from the 

basis is often done in the electronic structure calculations.  

In order to demonstrate this general approach, we carried out some of such 

iterative calculations. The results are presented in Figure 24 for the initial ground state of 

the H2O + H2 system, 0000, with twenty rotational states in the basis, same as in the 

calculations reported in Figure 18. Collison energy here was U = 200 cm-1. Three sets of 

calculations are compared in Figure 24. Green bars correspond to the AT-MQCT method, 

with only one rotational state included into the basis to pre-compute the trajectory info 
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(the adiabatic trajectory approach). From these calculations one can see that besides the 

initial ground state #1, six excited rotational states gain significant populations during the 

collision. Large cross sections are found for the states #2, 3, 5, 6, 8 and 15. In particular, 

state #15 at high energy corresponds to the excitation of H2 to the 𝑗2 = 2 state. It makes 

sense to include these six excited states for pre-computing the mean-field trajectory data. 

The results of such calculations, with seven rotational states in the basis (expanded 

relative to the adiabatic trajectory case, but still reduced relative to the overall basis of 20 

states) are presented in Figure 24 by blue bars. They indicate a consistent trend towards 

the results of the full-coupled CC-MQCT calculations shown by red bars (where all states 

are included, and all equations of motion are propagated together in a coupled fashion). 

 

 

Figure 24: Comparison of results of the single-state AT-MQCT method (green bars) with 

calculations where seven rotational states are included in the trajectory prediction (blue 

bars), and with the full-coupled CC-MQCT calculations in a basis of twenty rotational 

states (red bars). The initial state is the ground state 0000 of the H2O + H2 system. 

Collision energy is 200 cm-1. Final states are listed along the horizontal axis. The values 

of collision cross sections are plotted along the vertical axis using log scale. 
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Therefore, we conclude that, in principle, one could employ a hierarchy of the 

approximate treatments that converge monotonically to the most accurate solution, and 

thus one can always achieve the desired degree of accuracy, if needed. The single-state 

AT-MQCT method is a limiting case in this hierarchy, which is also the fastest to run and 

the simplest to implement. Moreover, the results of calculations presented in this work 

indicate that AT-MQCT is accurate enough for many applications, and thus is a good 

starting point of exploration of any molecular system. It may become the “work horse” 

within the MQCT series of methods. 

We also want to note that a similar hierarchy of approximations can be formulated 

without decoupling the classical-like equations of motion (13)-(16) from the quantum-

like equations for probability amplitudes (17). In this case we would only talk about 

truncation of the triple sum in the right-hand sides of the Eq. (15) for the average gradient 

and Eq. (16) for the average torque. In a limiting case, the summation would be restricted 

to the 𝑚-states of one rotational channel that corresponds to the initial state of collision 

partners (aka adiabatic). Or one could expand this summation to include more rotational 

states into the estimate of the right-hand sides of Eqs. (15) and (16) And, in principle, one 

could do this iteratively, monitoring convergence. We tried some of such calculations 

too, and found that they also work, and give some computational advantage relative to the 

full-coupled CC-MQCT. However, without decoupling it is harder to take the full 

advantage of the computational speed up enabled by the adiabatic step-size predictor. 

Therefore, we have chosen to stick with the decoupled AT-MQCT method. This 

option is now coded and will be made available to users in the new release of the 

program that will happen later this year. 
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5.5. Summary 

In this chapter we reviewed the formalism of the mixed quantum/classical theory 

(MQCT) for calculations of molecular inelastic scattering and proposed a hierarchy of the 

approximate methods for solutions of the corresponding equations of motion. In the 

simplest limiting case, which we named AT-MQCT, we decouple the classical-like 

equations of motion from the quantum like equations for the propagation of probability 

amplitudes. The MQCT trajectories are pre-computed during the first step of calculations, 

where the driving forces are determined by the potential energy surface of the entrance 

channel alone, which is an adiabatic trajectory (AT) approach. The quantum state-to-state 

transition probabilities are computed during the second step, with an expanded basis and 

using the precomputed trajectory information for an efficient variable step-size 

integration. 

This method was applied to a real system H2O + H2 and it was found that a very 

significant acceleration, by two orders of magnitude, is obtained at high collision 

energies. The results of the approximate propagation scheme are still rather accurate, as 

determined by comparison against more rigorous CC-MQCT calculations, in which the 

quantum and classical equations of motion are propagated together in a coupled fashion, 

but also against the full-quantum CC calculations from the literature (using the same 

potential energy surface). 

Therefore, we conclude that our new AT-MQCT method represents a practical 

option for solving the inelastic scattering problem at high collision energies and for 

complex molecular collision partners (heavy molecules with many internal states, and 

heavy collision partners), when the standard full-quantum calculations become 
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computationally unaffordable. The next step would be to apply this theory to much more 

demanding molecular systems and scattering processes, such as H2O + H2O rotationally 

inelastic scattering. Another avenue of the research could be to replace the generic 

Runge-Kutta integrator by another more specific routine, such as a velocity-Verlet160, a 

preconditioned Lanczosh83 or a symplectic161,162 integrator, in conjunction with the 

adiabatic step-size predictor. 
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CHAPTER 6. ON SYMMETRY-BREAKING IN THE 

RECOMBINATION REACTION OF TWO SULFUR 

ATOMS: ROTATIONAL ENERGY TRANSFER 

6.1. Introduction 

Sulfur is an element that plays key role in the cycle of matter on Earth, and is also 

important for other planets.163–168 It takes part in volcanic eruptions, microbiological 

respiration processes, water evaporation, decay of organisms, and industrial processes.169–

175 During the period of volcanism billions years ago, huge amount of sulfur compounds 

was ejected into the atmosphere and the traces of that sulfur are still present in minerals 

and in surface deposits from that time.29 The most important phenomenon is that sulfur 

stable isotopes preserved in these rocks exhibits unusual mass-independent fractionation 

(S-MIF) and the molecular level origin of this anomaly remains unexplained.29,34 The 

recombination reactions of sulfur are important in this context and here, we focus on the 

formation of the simplest sulfur allotrope by the energy transfer mechanism: S + S ⇌ S2
∗

+M
→ S2. The second step in this process is the energy transfer from the metastable 

intermediate to bath gas M. This step is the rate limiting step, and thus is important for 

this process. However, the second step has never been studied by anyone. Molecular 

symmetry is expected to play role in this process and this may help us to understand the 

origin of the mass-independent fractionation in sulfur (S-MIF). 

The present work is focused on the collision of the S2 molecule with argon as a 

bath gas: 

 S2(𝑗) + Ar → S2(𝑗
′) + Ar. (47) 
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The rotational energy transfer is being studied for the initial j in the broad range (up to 

𝑗 = 51), and the final 𝑗′ in the range from 𝑗′ = 0 (quenching) to 𝑗′ = 101 (excitation). To 

study this rotational energy transfer, we need to build an accurate potential energy surface 

for S2 + Ar system. 

6.2. Potential Energy Surface 

Overall, our methodology for construction of the potential energy surface is 

similar to the methodology described by Peterson and co-workers,34 but we made several 

improvements to it, as described below. The potential energy surface is represented as a 

sum of the pairwise interaction potentials of S + S and S + Ar, plus the three-body 

interaction term: 

 𝑈 = 𝑈S2 +𝑈ArS + 𝑈ArS + 𝑈3b. (48) 

The pairwise potentials, 𝑈S2 of S + S ⟶ S2 and 𝑈ArS of S + Ar, are determined using 

rather accurate methods while the three-body term, 𝑈3b, is constructed using a simpler 

and numerically less expensive method, because the three-body interaction is expected to 

be smaller and has to be computed for a large number of points on the potential energy 

surface. All the ab initio calculations were done using MOLPRO176–178 suite. 

6.2.1. Ab Initio Calculations of Pair Interactions for S2 and Ar + S 

The pairwise potentials were computed with an accurate method and a large basis 

set. The potential, 𝑈S2, was computed using two different methods. We used the multi-

reference configuration interaction (MRCI)179–181 theory with Davidson correction (+Q). 

From the previous work on sulfur and ozone, O2, O3, S2, S4, it is known that the multi-
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reference configuration interaction method is needed to describe the bond 

breaking.29,182,183 This is why we use the MRCI method for the potential energy curve for 

S2. We used one of the largest basis set available, aug-cc-pV(5+d)Z, for this 

calculation.184,185 The potential energy curve is shown in Figure 25 by red line.  

Another method we used is the explicitly correlated coupled-cluster method and 

smaller basis set, CCSD(T)-F12/VTZ-F12.186–189 To be specific, we used unrestricted 

F12a method.186 We considered this method because we decided to perform the three 

atom calculations using this method which will be discussed in the Section 6.2.2. The 

reason for choosing the F12 method was that it provides faster convergence towards the 

 

Figure 25: Potential energy curve of S2 molecule computed using MRCI/aug-cc-

pV(5+d)Z method is shown by the red line while the blue line represents the one 

computed with CCSD(T)-F12/VTZ-F12 method. The green line with circle is the S2 

curve computed by CCSD(T)-F12/VTZ-F12 method from three atom calculations of S2 + 

Ar system with Ar moved to a distance of 33.0 Bohr. 
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complete basis set limit even with a smaller basis set since the three-atom calculations are 

needed to be done for many points on the space. This calculation is represented as blue 

line in the same figure. 

The equilibrium distance and dissociation energy are obtained by fitting Morse 

potential:190 

 𝑉(𝑟) = −𝐷𝑒 + 𝑑[𝑒
−(𝑟−𝑟𝑒) /𝑎 − 1]

2
, (49) 

 

with different number of points in different energy range. These fitting coefficients were 

then used to compute the harmonic frequency and the anharmonicity parameter190, as 

follows: 

Table 9. Fitting of the ab initio data to obtain the spectroscopic and geometric parameters 

for S2 molecule. 

Method 
Energy 

Range 

Number of 

points used 

for fitting 

 𝒓𝒆 

(Bohr) 

𝝎𝒆 

(cm-1) 

𝝎𝒆𝝌𝒆 

(cm-1) 

𝑫𝒆 

(cm-1) 

MRCI/ 

aug-cc-pV(5+d)Z 

0.5𝜔 4 3.587 724.74 1.97 35408.47 

1.5𝜔 7 3.588 720.92 3.14 35408.64 

2.5𝜔 9 3.588 720.68 3.05 35408.19 

3.5𝜔 11 3.588 720.87 3.04 35408.61 

CCSD(T)-F12/ 

VTZ-F12 

0.5𝜔 4 3.579 729.81 3.14 − − 

1.5𝜔 7 3.579 730.35 3.07 − − 

2.5𝜔 9 3.579 730.39 2.99 − − 

3.5𝜔 11 3.579 730.77 2.97 − − 

CCSD(T)-F12/ 

VTZ-F12 with Ar at 

R = 33.0 Bohr 

1.5𝜔 4 3.555 759.95 3.01 − − 

2.5𝜔 6 3.555 760.50 3.01 − − 
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ω𝑒 =
1

a
√
2𝐷𝑒
𝑚
 , 

𝜔𝑒𝜒𝑒 =
1

2𝑚𝑎2
 , 

(50) 

 

where m is the reduced mass of 32S32S. Table 9 summarizes the computed spectroscopic 

and geometric parameters obtained by fitting different number of points within different 

ranges of energy. The equilibrium distance and the dissociation energy did not change as 

we considered more points with different energy. The equilibrium bond distance is found 

to be 𝑟𝑒 = 3.59 Bohr and he dissociation energy is 𝐷𝑒 = 35408.2 cm-1. However, the 

harmonic frequency and anharmonicity parameter is more sensitive to the fitting with 

different energy range. The fit with smaller energy range of 0.5𝜔 is less anharmonic, on 

the order of 2 cm-1 and shows slightly higher frequency, about 725 cm-1 which is the 

experimental value. But, the fit with larger energy shows more anharmonicity. Finally, 

the fit with 2.5𝜔 was considered as the final results.  

 

Table 10. Computed spectroscopic and thermochemical parameters of the S2 molecule. 

Reference Method 
 𝒓𝒆 

(𝐁𝐨𝐡𝐫) 

𝝎𝒆 

(𝐜𝐦−𝟏) 

𝝎𝒆𝝌𝒆 

(𝐜𝐦−𝟏) 

𝑫𝒆 

(𝐜𝐦−𝟏) 

𝑫𝒆 

(𝐤𝐜𝐚𝐥/𝐦𝐨𝐥) 

Peterson 

and co-

workers34 

ACPF/aV(T+d)Z 3.61 703.6 2.85 33377.1 95.43 

ACPF/aV(Q+d)Z 3.60 715.2 2.87 34748.2 99.35 

ACPF/aV(5+d)Z 3.59 718.0 2.84 35258.2 100.81 

ACPF/CBS 3.59 720.3 2.81 35680.0 102.00 

Present 

work 

MRCI/aV(5+d)Z 3.59 720.9 3.05 35408.2 101.24 

CCSD(T)-F12/VTZ-F12 3.58 730.4 2.99 − − − − 

Experiment191 3.57 725.65 2.844 35601.6 101.79 
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The harmonic frequency is 𝜔𝑒 = 720.68 cm-1 and the anharmonicity parameter has the 

value of 𝜔𝑒𝜒𝑒 = 3.05 cm-1. 

The CCSD(T)-F12/VTZ-F12 method agrees reasonably well within the range of 

about 4.0 Bohr of S2 distance. But, above 7.5𝜔, it starts deviating considerably. However, 

the similar fitting procedure was implemented with the data computed by CCSD(T)-

F12/VTZ-F12 method and the spectroscopic and geometric parameters were obtained. 

The equilibrium bond length is different by 1 milli-Bohr. We cannot determine the 

dissociation energy because we cannot break the bond of the S2 molecule by coupled 

cluster method. However, the frequency is about 10 cm-1 higher than the frequency 

computed by MRCI/aug-cc-pV(5+d)Z and the anharmonicity parameter is in the same 

order.  

These data can be compared with previously available theoretical and 

experimental data191. The summary is presented in Table 10. The equilibrium distance of 

S2 molecule deviates only by 0.02 Bohr. Our calculated harmonic frequency is very close 

to that of experiment and it deviates by only 4.97 cm-1. The dissociation energy deviates 

by 193.4 cm-1 or 0.55 kcal/mol, which is about 0.5% of 𝐷𝑒. The data obtained by 

Peterson and co-workers using aug-cc-pV(5+d)Z basis set is pretty far from the 

experiment. The dissociation energy computed using aV(5+d)Z basis set is smaller from 

the experiment by almost 1 kcal/mol while the dissociations energy obtained by complete 

basis set extrapolation exceeds the experimental value by 0.21 kcal/mol. But our results 

of MRCI/aug-cc-pV(5+d)Z method is calculation with one basis set and the results are 

comparable. Although, CCSD(T)-F12/VTZ-F12 method cannot describe the dissociation 

energy, but the obtained frequency and anharmonicity parameter is pretty well. 
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Interaction of sulfur with argon was also computed using two different methods. 

The first one is the coupled cluster singles and doubles method with a perturbative 

treatment of triple excitations [CCSD(T)].192–195 Unrestricted CCSD(T) method was 

implemented for this calculation where the reference orbitals were determined from 

restricted Hartree-Fock calculations. The basis set chosen for this calculation was aug-cc-

pV(5+d)Z. The reason for using this method and basis set is that Peterson and co-workers 

used the same. The result is shown in Figure 26 by the red line. The second method is 

CCSD(T)-F12/VTZ-F12. We decided to use it because it is known that F12 method 

converge faster to the complete basis set limit even with a smaller basis set. Our result 

shown in Figure 26 by the blue line do really demonstrate that. 

 

Figure 26: The red line represents the potential energy curve of S‒Ar interaction 

computed by CCSD(T)/aug-CC-pV(5+d)Z method and blue line represents the potential 

interaction computed by CCSD(T)-F12/VTZ-F12 method.. The green line is representing 

the analytic fit of the S2 + Ar data as discussed in section 6.2.3. 
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Various geometric and spectroscopic parameters were obtained by similar 

methodology as discussed above by using Eqs. (49) and (50). Table 11 summarizes the 

results of different fit within several energy range. The obtained results are not changing 

much for both methods. The equilibrium distance is found to be in the order of 𝑟𝑒 = 7.08 

Bohr. The harmonic frequency is in the order of 𝜔𝑒 = 36.4 cm-1 and the anharmonicity 

on the order of 𝜔𝑒𝜒𝑒 = 2.5 cm-1. However, these two methods yield two different depths 

of the well. The depth of the well computed by CCSD(T)/aug-cc-pV(5+d)Z method is 

14.6 cm-1 deeper than that of F12 method. The CCSD(T)/aug-cc-pV(5+d)Z method gives 

the dissociation energy closer to the experimental value. 

Table 12 summarizes these results compared with previously available 

experimental results and theoretical results. The minimum energy point deviates from 

experimental data by 0.08 Bohr. The depth of the well is rather shallow and deviates from 

the experimental result by 13.9 cm-1. There is no experimental data for the harmonic 

frequency and the anharmonicity parameter. However, these spectroscopic parameters are 

Table 11. Fitting of the ab initio data to obtain the spectroscopic and geometric 

parameters for S + Ar interaction. 

Method 
Energy 

Range 

Number of 

points used 

for fitting 

 𝒓𝒆 

(Bohr) 

𝝎𝒆 

(cm-1) 

𝝎𝒆𝝌𝒆 

(cm-1) 

𝑫𝒆 

(cm-1) 

CCSD(T)/ 

aug-cc-pV(5+d)Z 

0.5𝜔 9 7.083 36.22 2.44 134.43 

1.5𝜔 19 7.082 36.42 2.47 134.42 

2.5𝜔 24 7.082 36.40 2.46 134.39 

CCSD(T)-F12/ 

VTZ-F12 

0.5𝜔 9 7.103 34.68 2.51 119.83 

1.5𝜔 19 7.103 34.87 2.54 119.82 

2.5𝜔 24 7.103 34.85 2.53 119.80 
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in good agreement with previous theoretical data computed by Peterson and co-workers34 

using the same method and basis set. The harmonic frequency deviates by 0.83 cm-1 and 

the anharmonicity parameter deviates by 0.02 cm-1. The attraction between sulfur and 

argon is relatively weak, resulting in a van der Waals interaction. The most significant 

part in this curve is the S‒Ar repulsion region.  

In principle, for a diatomic system like S + S or S + Ar, there is no problem to 

build a one-dimensional potential energy curve just by using a 1D spline interpolation of 

the ab initio data points. Such spline goes through the ab initio data points and between 

any two points it uses interpolation by a quadratic or cubic function, depending on the 

order of the spline. Here, cubic spline was used for interpolation. Let us assume that, one 

needs potential at the point 𝑟 between points 𝑟𝑖 and 𝑟𝑖+1. The method then considers four 

points, 𝑟𝑖−1, 𝑟𝑖, 𝑟𝑖+1, and 𝑟𝑖+2 and four values of the potentials at those points 𝑉(𝑟𝑖−1), 

𝑉(𝑟𝑖), 𝑉(𝑟𝑖+1), and 𝑉(𝑟𝑖+2). Now, for a cubic spline, the method runs a function to fit 

these data, such as  

Table 12. Computed spectroscopic and thermochemical parameters of the minimum 

energy point of the S‒Ar interaction. 

References Method  𝒓𝒆(𝐁𝐨𝐡𝐫) 𝝎𝒆(𝐜𝐦
−𝟏) 𝝎𝒆𝝌𝒆(𝐜𝐦

−𝟏) 𝑫𝒆(𝐜𝐦
−𝟏) 

Peterson 

and co-

workers34 

CCSD(T)/aV(T+d)Z 7.18 34.4 2.45 129.06 

CCSD(T)/aV(Q+d)Z 7.10 34.5 2.46 131.51 

CCSD(T)/aV(5+d)Z 7.07 35.6 2.44 136.4 

CCSD(T)/CBS 7.04 36.5 2.39 140.6 

Present 

work 

CCSD(T)/aV(5+d)Z 7.08 36.4 2.46 134.4 

CCSD(T)-F12/VTZ-F12 7.10 34.85 2.53 119.8 

Experiment204 7.16 − − −− 148.3 
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 𝑉(𝑟) = 𝑎𝑟3 + 𝑏𝑟2 + 𝑐𝑟 + 𝑑, (51) 

to obtain four fitting parameters, a, b, c, and d by solving a linear system of equations. 

The codes I used for this purpose are SPLINE and SPLINT, taken from the Numerical 

Recipes.80,196 

6.2.2. Ab Initio Calculation for the Three-Atom System S2 + Ar 

 

After exploring the pair potentials, we step forward to build the potential energy 

surface. In order to build the three-atom potential, we decided to take the less numerically 

expensive method, the explicitly correlated coupled-cluster method and a smaller basis 

set as CCSD(T)-F12/VTX-F12.186–189 We used unrestricted F12a method speifically.186 

As I mentioned earlier, the reason for choosing the F12 method was that it provides faster 

convergence towards the complete basis set limit even with a smaller basis set. For this 

calculation, Jacobi coordinates were used as in Figure 27. In this coordinate system, r is 

 

Figure 27: Jacobi coordinates of S2 + Ar system. Here, r is the distance between two 

sulfur atoms, R is the distance of argon atom from the geometric center of S2, and α is the 

angle of approach. 
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the interatomic distance of the S2 molecule. The coordinate R represents the distance of 

Ar from the geometric center of S2, and α is the angle of approach. The bond distance of 

the S2 molecule was fixed at its equilibrium distance, 𝑟𝑒 = 3.59 Bohr. Thus, the S2 

molecule is considered in this subsection as rigid. The potential energy surface then was 

built for the remaining two degrees of freedom, R and α. The distance of argon from S2 

molecule was varied in the range 3.5 ≤ 𝑅 ≤ 24.0 Bohr (61 grid points) and the angular 

 

Figure 28: Potential energy surface of the S2 + Ar system in two degrees freedom. The S2 

bond distance is set fixed for this case at its equilibrium distance of 3.59 Bohr. The global 

minimum energy point was found to be in T-shaped geometry and the energy of this 

point is V = −210.5 cm-1 and the local minimum energy point was at linear geometry with 

energy V = −166.1 cm-1. 
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coordinate was changed in the range 0° ≤ 𝛼 ≤ 90° with a step of 5°. Symmetry was used 

to reflect the data into the range 90° < 𝛼 ≤ 180°. Thus, we have N1 = 61 points along R 

coordinate and N2 = 19 points along α coordinate. Overall, we have 61 × 19 = 1159 

points for this 2D PES. 

The potential energy surface is shown in Figure 28. The global minimum point is 

found in the T-shaped geometry (when the angle of approach is 90°) and the energy of  

 

 

Figure 29: Potential energy surface of the S2 + Ar system with two degrees freedom. The 

S2 bond distance is set fixed for this case at its equilibrium distance of 3.59 Bohr. The 

minimum energy point at T-shaped geometry and small wells at linear geometry is better 

reflected in this figure. 



156 
 

this point relative to the dissociation limit of S2 + Ar is about 𝑉 = −210.5 cm-1. There are 

two more shallower wells in linear geometries when the angle of approach is either 0° or 

180°. The energy of this secondary minima is about 𝑉 = −166.1 cm-1 relative to 

dissociation limit. The transition point is found around the angle of approach of 𝛼 = 45° 

or 135°. The energy for the transition state was found as V = −140.0 cm-1. 

An alternative, more intuitive way of showing the PES is presented in Figure 29. 

In this figure, Ar approaches the S2 molecule from various direction. As I mentioned 

earlier, the global minimum (deeper well) is observed when Ar approaches S2 in 

perpendicular direction and the local minima is in the linear direction. This image has 

101x101 points generated from those ab initio data of Figure 28 using a two-dimensional 

spline interpolation to plot this figure. 

6.2.3. Calculation of the Three-Body Interaction Term 

The global potential energy surface requires one more degree of freedom, which 

is the bond distance of S2 molecule, r, responsible for vibration. I computed 𝑈(𝑟, 𝑅, 𝛼) 

potential energy surface on a three-dimensional grid of points, 𝑟, 𝑅, 𝛼 using CCSD(T)-

F12/VTZ-F12 method. We have N3 = 11 points along S2 bond distance (r coordinates) in 

the range 2.7 ≤ 𝑟 ≤ 8.0 Bohr, N1 = 19 points along the distance of Argon from the S2 

molecule (coordinate R) ranged from 4.5 ≤ 𝑅 ≤ 33.0 Bohr and N2 = 7 points the angular 

coordinate (α) is ranged from 0° ≤ 𝛼 ≤ 90°. A total of 1463 ab-initio data points in 3D 

computed and out of which only 820 points were converged. 

One reason of this convergence failure is that when the Ar atom approaches one 

of the sulfur atom, i.e. the value of R1 and/or R2 in Figure 27 getting smaller, then the 
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interaction of sulfur with argon changes its electronic state and the calculations start 

failing. So, we can see that there are “holes” in our potential energy surface. Another 

problem is that the coupled cluster method can give reasonable description of bond 

breaking, but within a limited range of S2 bond distance, coordinate r. In Figure 25, the 

coupled cluster results are close to the MRCI results only within a very limited range up 

to r = 4 Bohr. Significant differences between these data observed between the range 5.0 

< 𝑟 ≤ 8.0 Bohr and beyond 𝑟 ≥ 8 Bohr, the calculations did not even converge. Thus, 

the coupled cluster method gives wrong shape of the surface and wrong dissociation 

energy. However, our goal is to build a potential energy surface up to dissociation limit. 

One can probably perform these ab initio calculations with MRCI method, but it will be 

numerically expensive since both sulfur and argon have many electrons. 

Therefore, we followed a simplified methodology of Peterson and co-workers34. 

The potential energy was expressed as a sum of pairwise additive potential and the three-

body term: 

 

𝑈(𝑟, 𝑅, 𝛼) = 𝑈S2(𝑟) + 𝑈ArS(𝑅1) + 𝑈ArS(𝑅2) 

+𝑈3b(𝑟, 𝑅, 𝛼).        
(52) 

Here as before, r is the distance between two sulfur atoms, as in Figure 27, R1 and R2 are 

the distance of Ar from two sulfur atoms respectively. In order to extract the three-body 

terms from the ab initio data one can use the expression that follows from Eq (52): 

 

𝑈3b(𝑟, 𝑅, 𝛼) = 𝑈(𝑟, 𝑅, 𝛼) − 𝑈S2(𝑟) 

                                  −𝑈ArS(𝑅1) − 𝑈ArS(𝑅2). 
(53) 

The behavior of the three-body term, 𝑈3b, is shown in Figure 30. Here four 

different colors represent four different values of interatomic distances of the S2 
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molecule. Black, green, red and blue circles correspond to S2 molecule for 𝑟 = 3, 4, 5 and 

6 Bohr respectively. Three different curves for each color represents three different 

angles of approach, 𝛼 = 0°, 45° and 90°.  Note that the three-body term computed in this 

way changes its sign. It is positive in T-shape and near it, but becomes negative and very 

large in linear configurations (see Figure 30). Such anisotropic behavior of the three-body 

term is difficult to fit or spline. We tried two different methods described below, but 

neither of them worked satisfactorily.  

We suppose that this approach of obtaining the three-body term worked for 

Peterson and did not work for us because our range of R is considerably broader than his 

 

Figure 30: Slices of the three-body term U3b(R) were computed following the 

methodology of Peterson and co-workers is shown here. Black, green, red, and blue 

symbols correspond different S2 distance: r = 3.0, 4.0, 5.0, and 6.0 Bohr respectively. 

Three different lines for each color corresponds to three different angles of approach: α = 

0°, 45° and 90°. 
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range. In particularly, it is extended further into the range of small values of R down to R 

= 4.5 Bohr while for his grid started much further, at R = 10.02 Bohr. Therefore, the 

values of R1 and R2 are smaller for ours case while he was looking at the long range of 

the potential energy surface only where the interaction is not that strong. Therefore, our 

potential energy surface is expected to be more accurate in a broader range of values of 

the interatomic distances, but we have to find a way to deal with accurate representation 

of the three-body term. 

What is the reason for this three-body term to be negative? Clearly, the S + Ar 

potentials are too repulsive at smaller values of R1 and/or R2 in linear configuration when 

the Ar−S interaction is important. So, instead of taking this potential from a separate ab 

initio calculation, why simply we don’t try to obtain the alternative pairwise potentials 

from analysis of the ab initio data points, 𝑈(𝑟, 𝑅, 𝛼), we computed. One possibility is to 

find the diatomic potential in a simple analytic form 𝑈ArS
Morse(𝑅) that would give a good 

description of these pairwise interaction but would never exceed the value of PES, 

𝑈(𝑟, 𝑅, 𝛼): 

 𝑈ArS
Morse(𝑅1) + 𝑈ArS

Morse(𝑅2) ≲ 𝑈(𝑟, 𝑅, 𝛼) − 𝑈S2(𝑟). (54) 

Thus, we want to reproduce the repulsive S−Ar interaction at short distance of R (smaller 

values of R1 and R2) without exceeding the actual values of potential so that the three-

body term remains always positive. We considered a subset of points from the repulsive 

part of the potential at energies, 𝑈(𝑟, 𝑅, 𝛼), in the range 200 < 𝑈 ≤ 2000 cm-1. This range 

Table 13. Morse parameters representing the interaction of S‒Ar. 

𝑫𝒆(𝐜𝐦
−𝟏) 𝑹𝒆(𝐁𝐨𝐡𝐫) 𝒂(𝐁𝐨𝐡𝐫) 

157.1 7.1 1.41 
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was chosen because at thermal energies majority of Ar + S2 collision have energy above 

200 cm-1 and beyond 2000 cm-1. There are 286 points in this energy regime. This subset 

of data was then used to tune parameters of two Morse functions: 

 𝑈Morse(𝑅1) = −𝐷𝑒 + 𝐷𝑒[𝑒
−(𝑅1−𝑅𝑒) / 𝑎 − 1]

2
. (55) 

The same function was used for R2 as well. Root mean square deviation (RMSD) was 

computed in order to determine the set of parameters that provides the smallest possible 

error.  

The fitted parameters found for this Morse potential with minimum RMSD are 

given in Table 13. The analytic Ar + S potential energy curve, 𝑈Morse, obtained this way  

 

 

Figure 31: Three-body terms computed following our methodology. Here again, black, 

green, red, and blue lines correspond different S2 distance, r = 3.0, 4.0, 5.0 and 6.0 Bohr 

respectively and three different lines for each color corresponds to three different angles 

of approach, α = 0°, 45° and 90°. 
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is also shown in Figure 26 by the green line. This curve indicates the minimum at 

approximately the same value S−Ar distance, R1 = 7.07 Bohr. However, this curve is 

deeper by 22.67 cm-1 than the one computed with CCSD(T)/aV(5+d)Z. Although, the 

experimental dissociation energy is right in between of red line and green line. These two 

curves give similar energies beyond R = 12.0 Bohr. But most importantly, the analytic 

curve is less repulsive in the range of shorter distance of R1 (S−Ar close approach). This 

is one difference from the approach of Peterson and co-workers. 

We have also made the second modification to this procedure. Instead of 

subtracting the S2 curve computed separately, we subtract our data. The S2 potential was 

simply taken as the last slice of 𝑈(𝑟, 𝑅, 𝛼): 

 𝑈S2(𝑟) = 𝑈(𝑟; 𝑅 = 33 Bohr). (56) 

We checked that when Ar is very far from the S2 molecule, then there is no change of 

potential due to the change of angle 𝛼, i.e. S2 curve at the last slice (𝑅 = 33.0 Bohr) was 

isotropic with respect to the angle. So, from the ab-initio data, we subtracted the last slice 

of our ab initio data cube, 𝑈(𝑟; 𝑅 = 33.0 Bohr), when Ar is very far which makes the 

difference of 𝑈(𝑟, 𝑅, 𝛼) − 𝑈S2(𝑟) zero asymptotically, R → ∞. It is represented in Figure 

25 by the green line. 

Finally, the three-body term can be computed as: 

 

𝑈3b(𝑟, 𝑅, 𝛼) = 𝑈(𝑟, 𝑅, 𝛼) − 𝑈S2(𝑟, 𝑅 → ∞) 

                              −𝑈ArS
Morse(𝑅1) − 𝑈ArS

Morse(𝑅2). 

(57) 

This gives us an alternative description of the three-body term and it is represented in 

Figure 31. From the figure, we can see that this form of the three-body term is always 

positive in all slices. The R dependence is monotonic, and the α dependence is less 
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anisotropic and is smooth. The value of 𝑈3b is now always positive in all slices. So, these 

data are much easier to fit. 

6.2.4. Representation of the Three-Body Term by Fitting 

We tried fitting the three-body term data points with the following functional 

form: 

 
𝑈3b
fit(𝑅1, 𝑅2, 𝑅3) =∑∑𝑑𝑖𝑗𝑘𝑙𝜌1

𝑖𝜌2
𝑗
𝜌3
𝑘 (1 +∑ cos (𝜃𝑛)

3

𝑛=1

)

𝑙𝑀

𝑖𝑗𝑘

𝐿

𝑙=0

 
(58) 

suggested by Peterson.197 Here, 𝑑𝑖𝑗𝑘𝑙 is a set of fitting coefficients, 𝜃1, 𝜃2 and 𝜃3 

represent three angles between three atoms (as represented in Figure 32 below). R1, R2, 

and R3 are three distances between the atoms and 𝜌1
𝑖 (𝑅1), 𝜌2

𝑗(𝑅2) and 𝜌3
𝑘(𝑅3) are the 

basis functions of the distance coordinate: 

 

𝜌𝑚(𝑅𝑚) = 𝑒
− 
𝑅𝑚
0

𝑅𝑚𝑒−𝛽𝑚(𝑅𝑚−𝑅𝑚
0 ), 

(59) 

where, 𝑚 = 1, 2 or 3. The 𝑅𝑚
0  is the reference interatomic distance which was set to be 

equal to the minimum energy point of each pair potential. For S ‒ S bond distance, m = 1, 

the value is 𝑅1
0 = 3.59 Bohr, and for S − Ar distance, 𝑚 = 2 and 3, it is 𝑅2

0 = 𝑅3
0 = 7.08 

Bohr. In the Eq (59) the 𝛽𝑚 is a nonlinear fitting parameter. The values of L and M in Eq. 

(58) determine the size of the basis set. There are two constraints on the choice of the 

basis set: 

 
(𝑖 + 𝑗 + 𝑘) ≤ 𝑀 

(60) 

 

 
(𝑖 + 𝑗 + 𝑘) ≠ 𝑖 ≠ 𝑗 ≠ 𝑘 

(61) 
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Equation (60) implies that M is the total number of functions. Equation (61) set the 

condition that any of i, j or k could be equal to zero, but any two cannot be zero at the 

same time. 

A FORTRAN code was written for this fitting method which used Levenberg-

Marquardt algorithm196 for solving this non-linear system of equations. There were four 

different loops for each of 𝑖, 𝑗, 𝑘, and 𝑙 and optimized value for each was found such that 

the value of root mean squared error (RMSE) is minimum. The maximum initial values 

up to L = 8 and M = 5 were tried. Finally, the best fit was found for the values of 𝐿 = 5 

and 𝑀 = 6 for which the value of RMSE was 2.51 cm-1. There was a total of 390 linear 

fitting parameters which is represented as 𝑑𝑖𝑗𝑘𝑙 in equation (58) and three nonlinear 

parameters, 𝛽1, 𝛽2 and 𝛽3, as in equation (59). We can see that the function chosen for 

this fitting is rather flexible. But we found that for configurations of small R1 and R2 near 

the linear geometry where we do not have enough ab initio points, the fit of 𝑈3b(𝑟, 𝑅, 𝛼) 

exhibits large-amplitude oscillation. The problem is shown in Figure 33 as a function of 

 

Figure 32: Graphical representation of the coordinates for the fitting function. 
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R. It goes to large negative numbers as you see in Figure 33. In fact, at smaller distances 

of R, it goes back again to large positive values and thus oscillates. 

Although this fitting method is rather general and can be used even for larger 

molecules, it does not work for us, unfortunately, due to the insufficient number of points 

for the shapes of close Ar−S approach where R1 and R2 are small. 

6.2.5. Representation of the Three-Body Term by Spline Interpolation 

Alternatively, the three-body term can be interpolated using the Reproducing 

Kernel Hilbert Space (RKHS) method of Ho and Rabitz198. The expression is as follows: 

 

Figure 33: The fitted three-body term for the S2 + Ar system. The divergence behavior in 

linear configuration can be seen here. Black, green, red, and blue lines correspond 

different S2 distance, r = 3.0, 4.0, 5.0 and 6.0 Bohr respectively. Three different lines for 

each color corresponds to three different angles of approach, α = 0°, 45° and 90°. 
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𝑈3b
spline(𝑟, 𝑅, 𝑆) = ∑ 𝐶𝑖 𝑞1(𝑟, 𝑟𝑖) 𝑞2(𝑅, 𝑅𝑖) 𝑞3(𝑆, 𝑆𝑖)

𝑁TOT

𝑖

, 
(62) 

Here, NTOT is total number of data points, 𝐶𝑖 are a set of the RKHS coefficients that needs 

to be determined. The functions 𝑞1, 𝑞2 and 𝑞3, which is called reproducing kernel, play 

role of the basis functions for three degrees of freedom, r, R and α. Let’s consider the first 

one. It has the following form:198 

 
𝑞1(𝑟, 𝑟𝑖) =

1

14𝑟>
7 (1 −

7𝑟<
9𝑟>
). 

(63) 

For each point 𝑟𝑖 along the grid, one would have to define 𝑟> = max of (𝑟, 𝑟𝑖) and 𝑟< =

 min of (𝑟, 𝑟𝑖) where r is the arbitrary point where the potential energy surface has to be 

computed. For example, consider point 𝑟1 in Figure 34. The grid point is located before 

the point r which is indicated by the red cross in the figure. So, 𝑟> = 𝑟 since the value of 

𝑟 is larger than 𝑟1 and 𝑟< = 𝑟1. From the figure, all the points in the blue region would 

correspond to 𝑟< with respect to point r and all the points in the pink region would 

correspond to 𝑟>. Basically, for a given arbitrary point r, one can define the value of this 

kernel for each point on the grid 𝑟𝑖 as shown in the figure. According to this definition we 

can construct the same number of kernels as the data points 𝑟𝑖. The value of this function 

 

Figure 34: Dependence of kernel on the grid of coordinate. A schematic representation is 

also provided to determine 𝑟< and 𝑟>. 
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is determined by the actual grid ri and position of the point. Each of these kernels is 

computed at the corresponding point r and shows how different points in the grid affect 

the value here. 

The kernel 𝑞2 is same as kernel 𝑞1 since both are the distance like coordinate: 

 
𝑞2(𝑅, 𝑅𝑖) =

1

14𝑅>
7 (1 −

7𝑅<
9𝑅>

). 
(64) 

The kernels 𝑞1 and 𝑞2 are defined in the range of interval 𝑟 ∈ [0,∞) for the distance like 

coordinates 𝑟 and 𝑅. The behavior of this distance kernel is illustrated by Figure 35. This 

picture shows that the set of kernels show large values only for the short distance 

approach between r and 𝑟𝑖. It corresponds to strong repulsion due to close approach of 

two atoms. The kernels exhibit the minimum at intermediate distances between r and 𝑟𝑖 

and then, it goes smoothly to zero in the asymptotic range when the atoms are far. 

For the angular coordinate, the kernel 𝑞3 is as follows: 

 
𝑞3(𝑆, 𝑆𝑖) = 1 + 𝑆<𝑆> + 2𝑆<

2𝑆> (1 −
𝑆<
3𝑆>

). 
(65) 

The variable S: 

 
𝑆 = (1 + cos𝛼)/2. 

(66) 

represents the angle like coordinate scaled such that the values of the coordinates remain 

in the interval [0,1]. 

The angle-like kernel is represented in Figure 36. This figure illustrates that at 

linear configurations, S = 1, the repulsion would be higher and then decreases smoothly 

towards the T-shape configuration. The value of the kernel 𝑞3 changes in the limit 

[1, 3.5] while the value of kernels 𝑞1 or 𝑞2 change form [0,∞). 
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Figure 36: The reproducing kernel q3 for the angle like coordinate S, where 𝑆 = (1 +
cos𝛼)/2. 

 

Figure 35: The reproducing kernel q1 for the distance coordinate r. The kernel q2 for the 

distance coordinate R is exactly the same. 
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In equation (62), the three kernels for r, R and α are multiplicated together to give 

the three-dimensional basis function. The coefficients 𝐶𝑖 were computed by matrix 

inversion method. This computation of coefficients was done using the MATLAB199 

software package. The spline representation of the three-body term using this method is 

shown in Figure 37. The behavior is now rather smooth, and all the curves are positive 

representing the behavior of actual data even for linear configuration in contrast with 

Figure 33. Therefore, this method of RKHS spline interpolation worked well to represent 

the behavior of three-body term. 

 

Figure 37: The fitted three-body term for the S2 + Ar system. Black, green, red, and blue 

lines correspond different S2 distance, r = 3.0, 4.0, 5.0 and 6.0 Bohr respectively. Three 

different lines for each color corresponds to three different angles of approach, α = 0°, 
45° and 90°. The behavior is same for all slices. 
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6.2.6. The Global 3D PES for the Reaction S + S + Ar → S2 + Ar 

Finally, the three-dimensional potential energy surface is constructed as: 

 

𝑈(𝑟, 𝑅, 𝛼) = 𝑈3b
spline(𝑟, 𝑅, 𝛼) 

                +𝑈S2
MRCI(𝑟) 

                                                  +𝑈ArS
Morse(𝑅1) + 𝑈ArS

Morse(𝑅2). 

(67) 

Note that, in this equation (67), besides the three-body term there are the pairwise 

interactions. For the S2 potential, we are adding the MRCI/aV(5+D)Z calculations which 

describes the dissociation. Although in the equation (57), we extracted the S + S 

interaction computed using CCSD(T)-F12/VTZ-F12 in a limited range of r value, this 

equation (67) contains the global S2 curve computed using MRCI/aug-cc-pV(5+d)Z from 

Section 6.2.1 as shown in Figure 25 red line which is good in a broad range of r, r → ∞, 

and thus describes the dissociation. So, the overall constructed surface is accurate up to 

dissociation limit. 

Figure 38 shows the overall three-dimensional PES where one can see the 

dependence of the potential energy surface as the S2 molecule is allowed to vibrate and 

eventually dissociate. One can see a similar picture as of Figure 29 which describe the 

interaction of Ar with the S2 molecule and another coordinate shows the evolution of 

interaction as r is increased. On top of the figure, we can see a small interaction between 

one sulfur atom and Ar as both approaches closer to each other due to the extension of S2 

bond length. The potential behaves smooth in all parts of space (𝑟, 𝑅, 𝛼). 

In the present version of PES, we included the points up to r = 6.0 Bohr because 

beyond that the coupled cluster calculations converged but we observed wrong behavior. 

However, in the range not covered by our grid, the three-body term is basically given by 
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extrapolation by equation (62). The extrapolation is not necessarily physical because we 

observed that the three-body term does not die quickly. So, we decided to apply a 

damping cosine function to avoid this unphysical behavior. So, we made a small 

additional correction to the PES.  

 

Figure 38: Potential energy surface of the S2 + Ar system with all degrees of freedom. 

The dependence of potential on S2 bond distance can be seen on the top surface of the 

figure. 
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Our potential energy surface is better because we considered the three-body term 

in a broader range of space, particularly smaller distance of Ar−S distance R1 and R2 than 

the surface by Peterson and co-workers.34 Also, his ab initio data points was restricted to 

the range of relatively large r distances, particularly he did not include the geometries for 

𝑟 ≲ 5.76 Bohr. But the S2 molecule is smaller than that. The equilibrium bond distance of 

S2 was found to be 3.59 Bohr. We considered the r grid down to r = 3.0 Bohr. Hence, our 

surface is more general and better. 

6.3. Study of the Rotational Energy Transfer 

6.3.1. Inelastic Scattering Cross-Sections for Isotopically Substituted S2 

After the potential energy surface had been constructed, the method of mixed 

quantum/classical theory (MQCT) was applied to describe the process of energy transfer 

from the rotationally excited S2 to the bath gas, argon. The collision energy is 𝐸 = 300.0 

cm-1, which is typical at room temperature. Figure 39 reports collisional cross sections 

𝜎(𝑗, 𝑗′) for transitions to various possible final values of 𝑗′ starting from 𝑗 = 51 in the 

most abundant (usual) isotopomer of S2, symmetric 32S32S, which has only odd rotational 

states. Cross section for the elastic scattering channel (𝑗′ = 51) is larger by almost two 

orders of magnitude, as represented by the red point in the figure. The frame (a) 

represents the collisional cross section, 𝜎, as a function of final rotational level, 𝑗′. 

Transitions to 𝑗′ < 51 correspond to quenching, while transitions to 𝑗′ > 51 correspond 

to excitation. These two wings of this dependences are clearly seen in Figure 39. As the 

magnitude of Δ𝑗: 
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 Δ𝑗 = 𝑗′ − 𝑗, (68) 

increases, the value of cross section drops, and it drops faster for excitation. For example, 

for excitation, with Δ𝑗 on the order of 20, the cross section decreases by a factor of 7. But 

for quenching, with Δ𝑗~ 20, the value of the cross section drops by only a factor of 5. 

 

 

Figure 39: Energy transfer of rotationally excited S2 molecule at initial rotational level 

𝑗 = 51 as a function of final rotational state (a) and final rotational energy (b). 



173 
 

A different version of this plot is shown in frame (b), where the horizontal line represents 

the final rotational energy, Erot:  

 𝐸rot =
𝑗(𝑗 + 1)

2𝜇𝑟𝑒2
. (69) 

The excitation wing drops sharper than quenching in this figure too, similar to the frame 

(a). As the magnitude of Δ𝐸: 

 Δ𝐸 = 𝐸rot(𝑗
′) − 𝐸rot(𝑗), (70) 

reaches 200 cm-1, the value of cross section drops by a factor of 10 for excitation, while it 

drops by a factor of 4 for quenching. 

 

Similar calculations were done using MQCT for several initial rotational states: 

𝑗 = 21, 31, 41 and 51, and are presented all together in Figure 40. The black, blue, green, 

and red circles represent cross sections for initial rotational level 𝑗 = 51, 41, 31, and 21, 

respectively. One trend we see is that when the value of the initial 𝑗 is increased, the  

 

 

Figure 40: Energy transfer of rotationally excited S2 molecule for initial rotational level 

𝑗 = 51, 41, 31, and 21 in black, blue, green, and red respectively as a function of ∆𝑗. 
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quenching cross section also increases, but the excitation cross section drops, and these 

variations are larger for the quenching process (the data are further apart) than for the 

excitation (the data are closer together). The second observation is that at the far end of 

the quenching wing the value of cross section drops faster, especially for lower values of 

the initial rotational excitation such as 𝑗 = 21. 

 

Calculations of the same sorts were done for S2 molecule with several different 

isotopic compositions, namely for symmetric 34S34S and asymmetric 32S34S. Cross 

sections were computed for both excitation and quenching for several values of the initial 

rotational excitation. The state-to-state transitions cross sections for isotopically 

substituted symmetric S2 molecule, 34S34S (Figure 41), has similar behavior to 32S32S 

(Figure 40). However, for the asymmetric molecule, 32S34S, where the rotational states 

with even 𝑗 are allowed, the dependence of cross section exhibits a qualitatively different  

 

 

Figure 41: Same as Figure 40, but for isotopically substituted symmetric rotationally 

excited S2 molecule 34S34S. 
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behavior. Figure 42 reports the cross sections for the initial rotational level 𝑗 = 21 in 

asymmetric 32S34S as an example. One could notice from the previous figures (Figure 40 

and Figure 41) that only transitions for the even values of Δ𝑗 = ± 2, 4, 6, … are allowed.  

This is the case for the homonuclear molecules (32S32S and 34S34S), and it is caused by the 

fact that the center of mass is exactly at the geometric center of the molecule. But, for the 

heteronuclear molecules, such as 32S34S, the center of mass is shifted, the symmetry is 

broken, and thus Δ𝑗 = ± 1, 3, 5, … show up. Although, the magnitudes of cross sections 

for transitions with odd Δ𝑗 values are still much smaller than those with even Δ𝑗, they are 

not negligible. In particular, cross sections for transitions with odd Δ𝑗 are larger than the 

difference of cross sections in two considered homonuclear molecules, 32S32S and 34S34S, 

 

Figure 42: Energy transfer of rotationally excited asymmetric S2 molecule (32S34S) for 

initial rotational level 𝑗 = 21 as a function of shift of final rotational state is shown here 

by green, while blue and red represents symmetric S2 molecule 32S32S and 34S34S, 

respectively. 
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with even Δ𝑗. So, these smaller allowed cross sections must be computed and included 

into the kinetics of energy transfer. 

 

6.3.2. Rotational Energy Transfer Model 

The analytical energy transfer models are often exponential.40 However, one can 

notice from Figure 40 and Figure 41 (plotted in the exponential scale) that the slope for 

the cross section dependence changes as we go from the elastic peak further towards the 

wings. Therefore, a double-exponential model is more appropriate, in which one of the 

exponents describe the behavior near the elastic peak, while the second exponent 

represents the results near the wing40: 

 𝜎𝑒𝑥𝑐𝑖𝑡𝑒 = 𝜎0 (𝑒
− 
|∆𝑗|
𝛾 + 𝑐𝑒− 

|∆𝑗|
𝑑 ). (71) 

Equation (71) can be applied to describe the excitation wing reasonably well in Figure 40 

and Figure 41. But the quenching cross sections show a sharp drop for transitions with 

large Δ𝑗 values. In order to describe that behavior using our analytic model, we 

incorporated the hyperbolic sine function as an argument into one of the exponents of the 

analytic expression: 

 𝜎𝑞𝑢𝑒𝑛𝑐ℎ = 𝜎0 (𝑒
− 
|∆𝑗|
𝛾 + 𝑐𝑒− 

sinh {|∆𝑗|/𝑒}
𝑑 ). (72) 

Furthermore, one can notice from Figure 40 and Figure 41, that the curves are different 

for different initial rotational states, which means that one needs separate sets of 

parameters for each data set. In order to capture this dependence of the fitting parameters 

on the initial rotational state, 𝑗, we introduced a Taylor-like expansion up to the 3rd order 

for 𝜎0, 𝛾, 𝑐, and 𝑑 as given below: 
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 𝜎0 = 𝑎0 + 𝑎1𝑗 + 𝑎2𝑗
2 + 𝑎3𝑗

3. (73) 

 

 𝛾 = 𝑏0 + 𝑏1𝑗 + 𝑏2𝑗
2. (74) 

 

 𝑐 = 𝑐0 + 𝑐1𝑗 + 𝑐2𝑗
2. (75) 

 

 𝑑 = 𝑑0 + 𝑑1𝑗 + 𝑑2𝑗
2. (76) 

 

The values of these fitting parameters, determined by iterative procedure for quenching 

and excitation cross sections are listed in Table 14 and Table 15, respectively. Low 

values of RMSE, on the order of 0.1 Å2 and 0.03 Å2 for quenching and excitation wings 

Table 14. Fitting parameters for the cross sections of quenching wing of S2 molecules. 

Parameters 32S32S 34S34S 32S34S (even ∆𝒋) 32S34S (odd ∆𝒋) 

RMSE 9.89E-02 1.01E-01 4.57E-02 4.68E-02 

𝒂𝟎 1.83E+02 1.79E+02 1.46E+02 2.72E+01 

𝒃𝟎 -1.39E+00 1.26E-01 1.63E+00 1.82E-01 

𝒄𝟎 2.23E-01 2.11E-01 1.98E-01 4.60E-02 

𝒅𝟎 -3.83E-01 1.05E-01 -1.92E-01 3.42E+03 

𝒂𝟏 -1.26E+01 -1.18E+01 -9.46E+00 -6.16E-01 

𝒃𝟏 1.73E-01 6.52E-02 -2.22E-02 5.16E-03 

𝒄𝟏 3.24E-03 3.80E-03 6.56E-03 -5.16E-04 

𝒅𝟏 1.26E-02 -1.01E-02 2.58E-02 -2.92E+02 

𝒂𝟐 3.03E-01 2.80E-01 2.24E-01 -9.50E-03 

𝒃𝟐 -1.67E-03 -1.21E-04 6.22E-04 -1.36E-04 

𝒄𝟐 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝒅𝟐 1.56E-03 1.33E-03 -1.24E-04 6.19E+00 

𝒂𝟑 -2.41E-03 -2.21E-03 -1.79E-03 5.93E-04 

𝒆 1.41E+01 1.60E+01 2.15E+01 4.48E+00 
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respectively, attest for sufficient flexibility of the fitting function and good quality of the 

fit.  

The fitted function is shown in Figure 43 by the orange line, while black, blue, 

green, and red circles represent the cross sections for initial rotational level 𝑗 = 51, 41, 

31, and 21 respectively. The agreement between cross sections computed using MQCT 

method and the analytical fit is good enough for the purpose of describing the energy 

transfer model. 

 

 

Table 15. Fitting parameters for the cross sections of excitation wing of S2 molecules. 

Parameters 32S32S 34S34S 32S34S (even ∆𝒋) 32S34S (odd ∆𝒋) 

RMSE 2.90E-02 3.64E-02 2.91E-02 6.49E-02 

𝒂𝟎 2.60E+02 2.12E+02 2.23E+02 5.13E+03 

𝒃𝟎 1.75E+00 2.47E+00 3.09E+00 4.06E+01 

𝒄𝟎 -1.14E+00 -7.63E-01 -9.07E-01 -1.00E+00 

𝒅𝟎 2.59E+01 2.75E+01 1.85E+01 4.06E+01 

𝒂𝟏 -1.81E+01 -1.44E+01 -1.52E+01 -6.71E+01 

𝒃𝟏 -2.78E-02 -5.79E-02 -1.11E-01 -5.29E-01 

𝒄𝟏 7.99E-02 5.38E-02 6.29E-02 -2.21E-06 

𝒅𝟏 -7.76E-01 -7.92E-01 -5.30E-01 -5.28E-01 

𝒂𝟐 4.35E-01 3.43E-01 3.64E-01 -1.96E+00 

𝒃𝟐 7.25E-04 9.96E-04 1.62E-03 -2.50E-03 

𝒄𝟐 -9.08E-04 -5.32E-04 -6.04E-04 -1.85E-09 

𝒅𝟐 8.56E-03 8.31E-03 5.52E-03 -2.51E-03 

𝒂𝟑 -3.45E-03 -2.71E-03 -2.91E-03 1.15E-01 
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After successfully representing the cross sections by the analytic model, we step 

forward to apply this method to other isotopically substituted S2 molecules. The same 

approach with the analytical function of equations (71)-(76) was used to fit both 

excitation and quenching for 34S34S. The cross sections of even and odd ∆𝑗 transitions for 

the asymmetric S2 molecule (32S34S) were fitted separately since the magnitude of even 

∆𝑗 transition cross sections are larger compared to odd ∆𝑗. All these fitting parameters are 

provided in Table 14 and Table 15 for 32S32S, 34S34S, and 32S34S. The analytical energy 

transfer model is plotted in Figure 43, Figure 44, and Figure 45 for 32S32S, 34S34S, and 

32S34S. The color scheme in all these pictures is the same as before. It can be concluded 

that the analytical model worked well to describe the energy transfer process in all 

isotopically substituted S2 molecules. 

 

 

Figure 43: Analytic representation of the energy transfer of rotationally excited S2 

molecule (32S32S) for initial rotational level 𝑗 = 51, 41, 31, and 21 in black, blue, green, 

and red respectively as a function of ∆𝑗. The orange line represents the analytic fit. 
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6.3.3. Kinetics of Energy Transfer and Symmetry-Driven Isotope Effect 

From the review of the literature, it is found that the principle of microscopic 

reversibility is not automatically satisfied for the calculations of cross sections within the 

 

Figure 44: Analytic representation of the energy transfer of rotationally excited 

symmetric S2 molecule (34S34S) as Figure 43. 

 

 

 

Figure 45: Analytic representation of the energy transfer of rotationally excited 

asymmetric S2 molecule 32S34S. The left frame and right frame represent data for even 

and odd Δ𝑗 values respectively. 
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mixed quantum/classical approach.77,78,200 Literature survey from the previous research 

on CO + He77, CO + CO200, N2 + Na78 concluded that MQCT could represent the state-to-

state transition cross sections for excitation processes better compared to quenching. 

Therefore, we used the excitation cross sections computed for the S2 + Ar collision and 

analytically fit using the double exponential model as described by equations (71)- (76) 

earlier. The energy transfer model for the state-to-state excitation transitions is built from 

ground rotational state 𝑗 = 1 to 𝑗 = 81 for symmetric molecule and 𝑗 = 0 to 𝑗 = 81 for 

the asymmetric molecule. Then the rate coefficients are computed using these excitation 

cross sections as: 

 

 𝑘𝑒𝑥𝑐𝑖𝑡𝑒 = √
8𝑘𝐵𝑇

𝜇𝜋
𝜎𝑒𝑥𝑐𝑖𝑡𝑒 . (77) 

Here, 𝑘𝐵 is the Boltzmann’s constant, 𝑇 is temperature corresponding to room 

temperature, 300 K, and 𝜇 is the reduced mass of the system S2 + Ar. 

Using the principle of microscopic reversibility, we computed the rate constants 

for the quenching process using the excitation rate constants as: 

 𝑘𝑠𝑡𝑎𝑏 = 𝑘𝑒𝑥𝑐𝑖𝑡𝑒 ∗
(2𝑗 + 1)𝑒

− 
𝐸𝑗
𝑘𝐵𝑇

(2𝑗′ + 1)𝑒
− 
𝐸𝑗′

𝑘𝐵𝑇

. (78) 

Here, 𝑗 and 𝑗′ are initial and final rotational states, respectively. 𝐸𝑗 and 𝐸𝑗′  are internal 

energy of the initial and final rotational state. The rate constant has the unit of 𝑐𝑚3𝑠−1. A 

matrix of rate constants for 81 and 41 state-to-state transitions was built for asymmetric 

and symmetric S2 molecules, to be used as an input for the study of kinetics for S2 + Ar 

energy transfer. 
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After that, we needed the master equations to simulate the energy transfer process 

for the collisional event. We followed the steps suggested by Pack et al.39,201–203 for our 

system as described next. The concentrations of molecules in each quantum state [𝑖] are 

introduced and are assumed to be affected (decreased/increased) by state-to-state 

transitions (to/from) all other states [𝑓]. The rate is assumed to follow the second order 

kinetics with a set of corresponding state-to-state rate coefficients: 

 𝑅 =
𝑑[𝑖]

𝑑𝑡
= −∑𝑘𝑖→𝑓[𝑖][Ar]

𝑓

+∑𝑘𝑓→𝑖[𝑓][Ar]

𝑓

. (79) 

 

Equation (79) can be transformed into a more useful expression where the unitless 

population of each state 𝑛𝑖 is monitored as a function of time: 

 
𝑑𝑛𝑖
𝑑𝑡
= −∑𝑘𝑖→𝑓[Ar]𝑛𝑖

𝑓

+∑𝑘𝑓→𝑖[Ar]𝑛𝑓
𝑓

. (80) 

The population for each state is defined as 𝑛𝑖 = [𝑖]/∑[𝑖] , where summation runs 

through all states of the system. 

 

Figure 46: Decay of initially populated rotational state j = 51. Red, green, and blue line 

represents 32S32S, 32S34S, and 34S34S molecule. 
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We propagated equation (80) using the 4th order Runge-Kutta method (from 

Numerical Recipes) to solve the ordinary differential equation.196 Initially, we populated 

a typical rotational state, such as 𝑗 = 51, and started monitoring for 100 𝜇sec. We found 

that during the early stage of simulation (up to about .01 𝜇sec) the decay of the initial 

state is slower in the asymmetric 32S34S compared to symmetric 32S32S and 34S34S (Figure 

46). This is because the asymmetric molecule has somewhat lower values of rate 

constants for even ∆𝑗 transitions, compared to symmetric S2. However, after .01 𝜇sec, the 

asymmetric molecules take over, due to the presence of odd ∆𝑗 transitions, and relax to 

the equilibrium significantly faster compared to the symmetric S2 molecules. 

 

Overall, the time scale of energy equilibration is almost 2 times faster for the 

asymmetric molecule compared to the symmetric molecules. This is also reflected in 

Figure 47, where the evolution of the deviation of the average energy of the system from 

the Boltzmann energy is represented. One can notice that the energy relaxation process  

 

 

Figure 47: Comparison of energy relaxation for several isotopic composition of S2 

molecule. Red, green, and blue line represents 32S32S, 32S34S, and 34S34S molecule. 
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for the asymmetric molecule is way faster compared to the symmetric molecules. The 

reason for the quicker stabilization for the asymmetric S2 molecule is the presence of the 

odd ∆𝑗 valued transitions. Although, the magnitude of these transitions is significantly 

smaller compared to even ∆𝑗, but the presence of these transitions in between even ∆𝑗 

works as intermediate steps and thus, reaching the equilibrium becomes easier. In 

conclusion, stabilization of metastable S2
* is faster for asymmetric molecule and the 

presence of odd ∆𝑗 states facilitate the energy transfer process by making the energy gap 

less. 

6.4. Summary 

In this chapter, our focus was to apply MQCT methodology to study the energy 

transfer process during S2 + Ar collision, a system with relevance to atmospheric 

chemistry. For this purpose, the potential energy surface for the S2 + Ar system was built, 

valid up to the dissociation limit. This surface is better than the one available from the 

literature because it considers a broader range of geometries of the molecule, particularly 

in the range of smaller S-Ar distances. We also used an explicitly correlated method 

CCSDT-F12/VTZ-F12 for the computation of the three-body terms, and MRCI/aug-cc-

pV(5+d)Z was used for S2. The smooth representation of the three-body term 

𝑈3b
 (𝑟, 𝑅, 𝛼) was obtained using RKHS spline interpolation by Ho and Rabitz. The global 

PES was constructed by adding up the pair-wise potential with the three-body term. 

The PES was then used to carry out the computational study of S2 colliding with 

bath gas Ar using MQCT methodology. Rotational excitation and quenching cross 

sections were computed for the energy exchange between the rotationally excited S2 
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molecule to argon. Several isotopically substituted S2 molecule was studied to understand 

the symmetry driven isotope effect. An analytic model for the description of the energy 

transfer process was built using a double exponential function. Using this model and the 

principle of microscopic reversibility, a matrix of 41 and 82 state-to-state transitions was 

built to serve as the input for the kinetics study. Then simulation of the energy transfer 

process was conducted to find the role of symmetry in the process of energy transfer. It is 

found that the symmetry-driven isotope effect in the stabilization of metastable S2
* 

molecule is significantly larger than mass induced isotope effect. The S2 molecule with 

one sulfur substituted by a rare isotope, namely asymmetric 32S34S, reaches thermal 

equilibrium faster than symmetric molecules 32S32S and 34S34S. It happens because of the 

presence of transitions with odd ∆𝑗 values, which facilitates the energy transfer process in 

the asymmetric molecule by reducing the energy gap between the even ∆𝑗 values of 

rotational states on the contrary to the symmetric S2 molecules, namely 32S32S and 34S34S, 

where only even ∆𝑗 values of states are present. It helps the 32S34S molecule to reach 

equilibrium almost twice faster than 32S32S or 34S34S. 

The rotational energy transfer for the ground vibrational state considering highly 

excited rotational states was performed in the current study. In the future, one can 

perform calculations including the vibrational states of the S2 molecule to study the 

stabilization step of the recombination reaction S + S 
+Ar
↔  S2 up to dissociation threshold, 

with a focus on the isotopic effect. 
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CHAPTER 7. SUMMARY AND FUTURE WORK 

 

The study of surface sediments from the Archean eon of Earth identifies a 

significant amount of sulfur. This sulfur exhibits mass-independent isotope fractionation 

(S-MIF) specific to the gas phase recombination reactions in the anoxic atmosphere of 

early Earth. It is assumed that sulfur would participate in a chain of recombination 

reactions in the anoxic atmosphere to form several sulfur allotropes, such as S2, S3, S4, S6, 

and S8. But it is impossible to study these recombination reactions experimentally in 

sufficient detail. In terms of theoretical approach, we are also limited to the exploratory 

models that address some aspects of the overall problem. In this work, we studied the 

energy transfer for the collision of S2 with bath gas argon for several isotopic 

compositions to study the mass-independent isotope effect. 

Mixed quantum/classical theory (MQCT) was developed, as a methodology and a 

code, to serve as a practical tool for calculations of energy transfer processes during an 

inelastic scattering applicable to astrophysics and atmospheric chemistry. A diagram is 

presented in Figure 48 to compare performance of several methodologies within the 

MQCT framework vs. full quantum code, MOLSCAT. One can notice that a calculation 

with a basis set of about 150 channels took more than two months using MOLSCAT, 

while the full-coupled version of MQCT (named CC-MQCT) took only a few hours. 

Moreover, we also demonstrated that a simplified version of MQCT (named AT-MQCT) 

is even more affordable by finishing this calculation within few minutes. Calculation of a 

more complicated system, like the collision of methyl formate CH3COOH with He at 
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temperatures around T ≈ 20 K with about 400 quantum channels included, would take 

years to finish using MOLSCAT (i.e., computationally unaffordable), while AT-MQCT 

makes it possible within few hours. It is clear that MQCT proves to be a very useful tool 

for computational chemists. 

 

 

Figure 48: Comparison of complexity of calculations as performed by different codes and 

methods. The full-quantum code, MOLSCAT, can perform calculations for collision of 

two water molecules in several months. The CC-MQCT method outperforms MOLSCAT 

easily and extend the opportunity for users. Finally, the AT-MQCT, as the most efficient 

methodology, can perform efficiently quite heavy calculations in reasonable amount of 

time. 
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The MQCT code we developed is capable to study various complicated systems, 

such as two asymmetric top rotors, which was not possible before because no other code 

in the community can perform the calculation of this type of molecular collision. The 

diatomic vibrational system is also included in this version of the code. It is easy to set up 

calculations using MQCT as the input is simple since it has almost all the default values 

for the keywords. There are many options available within the code for expert 

calculations. The code takes parallel computing advantage using message passing 

interface (MPI), which enables massive speed-up. The code is publicly available for other 

scientists to use in the following link: 

https://github.com/MixedQuantumClassicalTheory/MQCT. 

 

MQCT is becoming noticed by the scientific community rather quickly, and 

several researchers have started using it. Last year, we published a collaborative study for 

the collision of two water molecules with Prof. Marie-Lise Dubernet from Paris 

Observatory, France. Recently, we received invitations to collaborate with Prof. Cecilia 

Coletti from D'Annunzio University, Chieti-Pescara, Italy to study the reactive scattering 

of N2 colliding with oxygen, and with Prof. Ad van der Avoird, Radboud University 

Nijmegen, The Netherlands to study the collision of ND3 + D2 (deuteride NH3 and H2) 

and ND3 + NO. Fellow students from the Center for Astrophysics of Harvard & 

Smithsonian at Massachusetts, ICTP-EAIFR at Rwanda, and Institute of Mechanics of 

Chinese Academy of Sciences at China have contacted us for a consultation to perform 

their research using MQCT. The code has been published for about a year now and has 

already been downloaded 27 times. We plan to release the second version in 2021 

https://github.com/MixedQuantumClassicalTheory/MQCT
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including important updates like AT-MQCT, parallel input-output (I/O), new manual, 

and more examples of the collision of different system types. 

Another important aspect of MQCT is the study of differential cross sections. It 

was achieved within our methodology by sampling the integer values of the orbital 

angular momentum l, by analogy to the full-quantum calculations. It resulted in excellent 

agreement with full quantum results for the collision of Na + N2, a system of 

astrochemical interest. An improved sampling procedure of the initial condition was also 

embedded. This new approach of MQCT requires fewer trajectories with respect to the 

previous method of the Monte-Carlo random sampling procedure. The only convergence 

parameter is now 𝑙𝑚𝑎𝑥 in MQCT, which is very similar to the full quantum framework 

where 𝐽𝑚𝑎𝑥 is the convergence parameter. 

The significant role of the phase information was also demonstrated. It has been 

shown that the phase can be used to trace the interference behavior between different 

orbital angular momentum. The phase information can also be applied to compute the 

differential cross section and the elastic integral cross section. In this work, the 

differential inelastic cross section was reported for the first time within the MQCT 

framework. This was done for the initial rotational level 𝑗 = 0. Another important aspect 

is the quantum phenomena of resonance. The low collisional energy regime was explored 

in detail to reproduce within the MQCT framework the highly oscillatory behavior of the 

cross-section dependence. The reason behind this behavior is the energy exchange 

between the colliding partners, which led to trapping and orbiting of the quencher. 

The methodology is further advanced by decoupling the classical-like equations 

of motion for the translational degrees of freedom (scattering) from the quantum-like 
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equations for time-evolution of the internal molecular states (rotational, vibrational). 

Application of this method (AT-MQCT) to H2O + H2 rotationally inelastic scattering 

shows a significant computational speed-up, by two orders of magnitude. The results of 

this approximate propagation scheme are still accurate, as demonstrated by benchmarking 

against more rigorous calculations in which the quantum and classical equations of 

motion are held coupled, and against the full-quantum coupled-channel calculations from 

literature. It is concluded that AT-MQCT method represents a promising tool for the 

computational treatment of molecular collisions and energy exchange. It is important to 

stress out here that AT-MQCT has been applied to compute the thermally averaged cross 

section for H2O + H2O collisions. An excellent agreement is observed with the CC-

MQCT results, as shown in Figure 49 while achieving speed up of more than a factor of 

150. 
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As for the application of MQCT to systems relevant to atmospheric chemistry, we 

carried out calculations for the simplest sulfur allotrope, S2, with several isotopic 

compositions using an improved potential energy surface (PES) that was built to describe 

the collision of the S2 + Ar system. The electronic structure calculation for the three-atom 

system, S2 + Ar, employed the explicitly correlated method CCSD(T)-F12/VTZ-F12. 

This method is faster computationally and gives better convergence towards the complete 

basis set limit. For the description of S2 dissociation, MRCI/aug-cc-pV(5+d)Z method 

was used. The three-body interaction term is considered in a broader range of S2 bond 

 

Figure 49: Comparison of thermally averaged cross-sections obtained by the AT-MQCT 

(blue) vs. the CC-MQCT method (red) for para-H2O (left) and ortho-H2O (right). 
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distance (𝑟), particularly r goes to 3.0 Bohr and the distance of Ar from S2 (𝑅) down to 

4.5 Bohr. 

The PES was then used to study the collision dynamics using MQCT 

methodology. The energy transfer process was studied between the rotationally excited S2 

molecule (𝑗 > 0, 𝑣 = 0) and the Ar atom as bath gas. Both quenching and excitation 

processes were considered. The effect of isotopic substitution was also studied during the 

energy transfer process. One or both of the 32S atoms in the S2 molecule is replaced by 

34S. It is confirmed that for the homonuclear S2 molecule (32S32S or 34S34S), the transition 

with odd Δ𝑗 values is forbidden due to symmetry. But for the heteronuclear S2 molecule 

(32S34S), the transitions with odd Δ𝑗 show up. The values for these transitions are not as 

large as the transitions of even Δ𝑗, but they are significant and play an important role. A 

model was built to describe the rotational energy transfer analytically for three different 

isotopically substituted S2 molecules, two symmetric molecules (32S32S & 34S34S) and one 

asymmetric molecule (32S34S). The asymmetric S2 molecule facilitates the stabilization 

steps almost by a factor of 2 faster compared to symmetric isotopic variants due to the 

presence of odd ∆𝑗 states, which shows the mass-independent isotope effect in S2 

recombination. 

In this work, we studied the rotational energy transfer in a broad range of initial 

rotational excitations, including highly excited species near the dissociation threshold (up 

to 𝑗 = 81) but without the vibrational excitation. In the future, one can expand this 

research by including vibrationally excited states in addition to the rotational excitation 

simultaneously and go above the dissociation threshold to the scattering resonances. The 

rate constant for the stabilization step of the recombination reaction S + S ↔ S2
* + Ar → 
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S2 can be computed to study S-MIF with vibrational levels included. In further 

perspective one can potentially look at larger sulfur allotropes, such as S3 and S4. An 

accurate description of the potential energy surface is needed for these systems of 

molecules to study the energy transfer processes. 

In terms of the development of the current MQCT program, it can be done in two 

major directions. First avenue is to make the code more efficient numerically. During the 

development phase, I made the program about 7 times faster by incorporating efficient 

memory access and matrix operations. To make it numerically even more efficient, the 

following implementations can be done. 

Although the calculations for individual state-to-state transitions for a complex 

system, such as H2O + H2O, are possible within fully-coupled MQCT methodology, they 

are too costly when many rotational states are needed, to compute thermally averaged 

cross sections, and to produce the data suitable for the modelling of kinetics.97 The AT-

MQCT method needs to be made more general and applicable to other systems, namely 

H2O + H2O and other complicated molecules. It needs to be rigorously tested for different 

system types and incorporated within the code for users. 

MQCT has a significant bottleneck when it comes to writing and reading files for 

large, complicated systems, namely the state-to-state transition matrix. The matrix file is 

reusable for the same system to perform calculations for different initial states, several 

collision energies, and even smaller basis set sizes. The current version of the code reads 

and writes the matrix file sequentially, which takes a significant amount of time. To solve 

this problem, one can implement parallel input-output procedures. Moreover, one can 

exploit the fact that the transitions with the same value of helicity quantum number are 
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different only by a sign (phase) to reduce the size of state-to-state transition matrix, 

roughly by a factor of two, and boost the performance significantly. 

The current version uses RK4 to solve the differential equations of motion, which 

is a 4th order method. Within an approximated theory, such as the adiabatic trajectory 

method, it is more convenient to use some simple propagator to reduce the total number 

of calls to the integrator within each time-step. To solve this issue, the code requires the 

addition of another propagator, such as preconditioned Lanczos method, for the 

propagation of the Ehrenfest trajectories of motion and solution of the time-dependent 

quantum equation of motion. 

The second direction for the development of MQCT code is to expand the theory 

to more system types. As of now, the vibrational motion is limited to diatomic molecules 

only. It is important to include another mode, bending, for triatomic molecules, crucial 

for linear triatomic systems, such as CO2, or other molecules of astrophysical importance, 

such as H2O. One can incorporate another level of parallelization within the code using 

MPI to propagate trajectories and calculations of many collisional energies in parallel. 

The present version of the code was focused on the collision of the water 

molecule with several background gases typical to the interstellar medium. Therefore, the 

input files were prepared for H2O + He (asymmetric top rotor + atom), H2O + H2 

(asymmetric top rotor + diatom), and H2O + H2O (asymmetric top rotor + asymmetric top 

rotor). We were contacted by potential users and asked to provide more example files, 

such as vibrating diatom + atom, vibrating diatom + vibrating diatom, symmetric top 

rotor + diatom, symmetric top rotor + symmetric top rotor.  
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One of our future goals is to produce collisional data that would be useful for 

astronomers to model kinetics. So far, our work was mostly focused on methodology 

development and serve the scientific community by providing MQCT as an efficient 

computational tool. Now we are ready to make a database consisting of collisional rates 

of sulfur recombination to model the atmosphere of planets and water calculations to be 

used for cometary applications. 
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