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ABSTRACT 12 

The southern Puna plateau is a conspicuous example of a high‐elevation orogenic plateau in 13 

a non-collisional setting. This orogenic sector is currently located above an anomalously 14 

shallow subduction segment, in which timing and relation to upper-plate tectonics have 15 

been widely overlooked. This subduction segment, here referred to as the southern Puna 16 

shallow subduction (SPSS), is characterized by a ~200 km wide shallow area located at 17 

~300 km from the trench at a depth of  ~100-120 km and dipping 10-12° to the east. To 18 

determine the onset of the SPSS and its link to the tectonic and magmatic activity in this 19 

region, we analyzed the tectonomagmatic record of the southern Puna plateau from 20 

preexisting datasets. Also, we present a new approach based on global subduction data that 21 

provides a straightforward methodology to extract potential paleo-slab angles from the 22 



bedrock arc record. This analysis reveals that a pronounced eastward arc-front migration 23 

and magmatic broadening took place at ~26 Ma and was preceded by ~ 4 Ma of reduced 24 

magmatic activity, which we link to the inception of the SPSS. As expected in shallow 25 

subduction settings, a change to basement-cored distributed deformation south of 25°S in 26 

the southern Puna plateau coincides with the beginning of shallow subduction. Also, the 27 

SPSS is coincident with the enigmatic post-Eocene intraplate deformation of the Otumpa 28 

Hills located at ~950 km from the trench. We suggest that this succession of events is not 29 

fortuitous and that the development of the SPSS impacted directly the overriding plate 30 

since the Oligocene contributing to the building of one of the largest topographies (>3 km) 31 

and thickest orogenic crusts (~70-60 km) on Earth. The shallow subduction would have 32 

acted jointly with Cenozoic changes in plate kinematics and climate enhancing Andean 33 

orogenesis at studied latitudes. 34 

Keywords: Central Andes, Puna plateau, shallow subduction, broken foreland. 35 

 36 

1. INTRODUCTION 37 

Flat-slab subduction is characterized by 5° dipping to horizontal angles beyond 38 

the seismogenic zone at a depth of ~100 km (Barazangi and Isacks, 1976). During slab 39 

flattening, the volcanic front migrates and the bulk arc broadens towards the continental 40 

interior and then shuts-off (Dickinson and Snyder, 1978; Coney and Reynolds, 1979) (Fig. 41 

1). Extinction of arc magmatism is attributed to the suppression of the mantle wedge due to 42 

slab flattening (Barazangi and Isacks, 1976). However; there are exceptions, known from 43 

current settings (e.g. SW Japan, Gutscher and Peacok, 2003) and the geologic record (e.g. 44 

Late Cretaceous shallow subduction in the Southern Central Andes, Ramos and Folguera, 45 

2005; Neogene Payenia shallow subduction in the Southern Central Andes, Kay and 46 

https://en.wikipedia.org/wiki/Subduction
https://en.wikipedia.org/w/index.php?title=Seismogenic_zone&action=edit&redlink=1


Copeland, 2006; Ecuador Neogene shallow subduction, Schüte et al., 2010; Neogene 47 

shallow subduction in the Northern Patagonian Andes, Orts et al., 2012; among others), in 48 

which arc broadening does not evolve into a magmatic lull. The latter case has been 49 

interpreted, when other factors discarded (e.g., arc migration due to subduction erosion), as 50 

shallow subduction with intermediate angles between normal (~30°) and flat, usually 51 

between 20° and 10°. Parametric studies based on the analysis of subduction zones around 52 

the globe have recognized a link between slab dip angle and upper-plate deformation, with 53 

lower angles correlating with backarc shortening (Jarrard, 1986; Lallemand et al., 2005; 54 

Schellart et al., 2008) (Fig. 1). In the case of very low slab angles, as those associated with 55 

flat and shallow subduction, an even greater coupling between the upper and subducting 56 

plates is expected (Martinod et al., 2010) often leading to basement-cored distributed 57 

deformation or broken foreland/Laramide-style of deformation as commonly referred in 58 

these settings (e.g. Jordan and Allmendinguer, 1986; Gutsher et al., 2000; Gianni et al., 59 

2018a,b) (Fig. 1). Stress transmission and interplate basal shear in low angle subduction 60 

settings is able to produce intraplate deformation leading to basement-involved tectonic and 61 

kilometric-scale block uplift between 600 and 1500 km from the trench (e.g. Snyder and 62 

Dickinson, 1978; Ramos et al., 2002).  The only known exception to this is the Mexican 63 

flat-slab. The latter is not associated with significant upper plate contraction and has been  64 

explained by a low interplate coupling caused by highly hydrated rocks at the plates contact 65 

(e.g. Manea et al., 2017). Flat subduction also affects the thermal state of the upper-plate as 66 

revealed by medium to low heat-flow values (e.g. Sánchez et al., 2018). The latter is 67 

thought to favor distal stress transmission and deformation in these settings (Gutcher et al. 68 

2000). 69 



Two of the best-known cases of active flat subduction were found in the late seventies in 70 

the western margin of South America. These are the Peruvian (5°-14°S) and the Chilean 71 

flat-slabs (27°30º-33°30’S) (see Ramos and Folguera, 2009 for a review) (Fig. 2A). Andean 72 

flat-slab segments are bounded by three active magmatic arc regions known as the 73 

Northern, Central and Southern volcanic zones in sectors of normal angle subduction, 74 

dipping on average 30°E (Barazangi and Isacks, 1976). The Central volcanic zone (CVZ), 75 

between the Peruvian and Chilean flat-slabs, is placed on the Altiplano-Puna plateau, the 76 

largest non-collisional orogen on Earth (Oncken et al., 2006) (Fig. 2A). The CVZ is 77 

characterized by a southern region in the Puna plateau overlying  a shallower slab angle 78 

between 24°S to 27°30’S, first noticed by Cahill and Isacks (1992) and further documented 79 

in more recent works (e.g. Bianchi et al., 2013; Mulcahy et al, 2014; Álvarez et al., 2015) 80 

(Figs. 2B,C). This zone contrasts with the abrupt flat to normal subduction transitions 81 

usually described in the Nazca plate (Cahill and Isacks, 1992; Scire et al., 2014, 2015). 82 

Although observed in previous studies, the occurrence of this low angle subduction 83 

segment in the CVZ and its potential relation to upper-plate deformation in the Puna 84 

plateau have been largely overlooked. The development of this slab geometry could have 85 

had a significant impact on the tectonic and topographic evolution of the southern Puna 86 

plateau associated with one of the thickest crusts on Earth. For instance, a similar slab angle 87 

inferred through magmatic proxies for the ancient Payenia shallow subduction zone (18-5 88 

Ma) has been linked to cordilleran uplift and intraplate contraction in the Southern Central 89 

Andes between 35°S and 38°S (Kay and Copeland, 2006; Ramos et al., 2014).  90 

With a plethora of new geological information published in the last decade it is timely to 91 

reexamine the question of shallow subduction beneath the southern Puna. Hence, we review 92 

and analyze preexisting geological data and integrate it into a new geodynamic model 93 



linking the southern Puna shallow subduction and the tectonic evolution of the Andes  in 94 

the southern Puna plateau. For this, we first compare this anomalously shallow segment 95 

with the Nazca plate geometry beneath the northern CVZ. Then, we analyze the Cenozoic 96 

tectonomagmatic record as a proxy of geodynamic changes in the active margin (Coney 97 

and Reynolds, 1977) to unravel the beginning of shallow subduction and its potential 98 

influence on mountain-building. To track the evolution of slab angles though the Cenozoic, 99 

we used a new approach based on the application of empirical relations between arc-trench 100 

distance and slab angles from current global subduction zones. We demonstrate that this 101 

shallow subduction segment constitutes an ancient configuration that coexisted with major 102 

deformation and crustal thickening and explains several key features in the evolution of the 103 

southern Puna plateau. 104 

2. METHODOLOGY 105 

To compare the subduction segment below the southern Puna plateau with the rest of 106 

the Andean subduction zone beneath the CVZ we extract profiles (P1 to 13) from the recent 107 

Slab2 global subduction zone model (Hayes et al., 2018) (Fig. 3A). The Slab2 is a new 108 

model that describes the 3D geometries of all seismically active subduction zones 109 

worldwide from the near-surface (oceanic trenches for most slabs) to the upper mantle and 110 

hence, constitutes a suitable tool to analyze in detail the subduction zone below the CVZ. 111 

To understand the potential relation between the tectonic evolution of the southern Puna 112 

and the development of the SPSS, we carry out a synthesis of the Andean deformation and 113 

the related sedimentary basin evolution between 24’30° to 27°30’S. Additionally, we 114 

studied the spatiotemporal magmatic arc behavior as a proxy of dynamic changes in the 115 

Andean subduction during the Paleogene to present stages of Andean orogenesis. The 116 

spatiotemporal magmatic evolution is usually considered an indirect indicator of subduction 117 



processes such as increase/decrease in plate coupling manifested on subduction 118 

erosion/accretion (von Huene & Scholl, 1991) and variations in slab dip (Coney & 119 

Reynolds, 1977). 120 

To unravel potential paleo-slab angles throughout the subduction history of the study 121 

area, we used a new method based on the application of an arc-trench distance vs. slab 122 

angle diagram including a current global subduction dataset (Perrin et al., 2018). By means 123 

of this diagram, we compare paleo-arc-trench distances at different times to obtain potential 124 

paleo-slab angles below the arc region. 125 

 126 

3. THE SOUTHERN PUNA SHALLOW SUBDUCTION  127 

Sections in fig. 3B show that profiles P10 to P13 describe a slab shallowing that begins 128 

at about ~300 km from the trench that is characterized by a ~200 km wide shallow portion 129 

at ~100-120 km that dips between 10 to 12° to the east (Fig. 3B). A comparison between 130 

profiles P10 to P13 with the first profile describing a normal angle (i.e. P8) in the northern 131 

CVZ, shows that the overall slab located over the southern Puna plateau is ~30 to ~90 km 132 

shallower than the slab in those areas to the north (Fig. 3B).  133 

This geometrical signature and the existence of an active arc zone allow to classify this 134 

segment as a shallow subduction configuration similar to those suggested in current settings 135 

(e.g. Cascadia and Shikoku subduction zones, Gutscher et al., 2000) and inferred in the past 136 

from spatio-temporal analysis of arc magmatism (e.g. Kay and Copeland, 2006; Folguera 137 

and Ramos, 2011). In this study, we refer to this subduction segment as the southern Puna 138 

shallow subduction (SPSS). 139 

 140 



4. DEFORMATION AND MAGMATISM IN THE SOUTHERN PUNA 141 

PLATEAU 142 

4.1. Deformational history of the southern Puna plateau 143 

The Central Andean plateau is characterized by a high elevation (>3 km), high upper 144 

plate shortening (up to 270 km), significant crustal thickening (70-60 km) and active 145 

magmatism, and is delimited to the north and south by arc-gaps linked to the Peruvian and 146 

Chilean flat-slab segments (e.g. Oncken et al., 2006) (Figs. 2A, B). 147 

 At studied latitudes, the Central Andes holds several morphostructural provinces that 148 

from west to east, these are: The Coastal Cordillera in the forearc region, the high-standing 149 

Puna Plateau, the Eastern Cordillera, the Santa Bárbara System and the northern Pampean 150 

Ranges (Fig. 4). The general orogen structure at analyzed latitudes is dominated by a thick-151 

skinned, and more locally hybrid deformation style, involving high-angle bivergent reverse 152 

faults in a thickened crust (e.g. Allmendinger et al., 1983; Hongn et al., 2010; Carrera and 153 

Muñoz, 2013; Martínez et al., 2020). The oldest deformation in this Andean segment has 154 

been dated as Late Cretaceous-Early Paleocene and produced basin inversion resulting in 155 

hybrid thrust belts and sedimentary basins in the inner forearc region (Arriagada et al., 156 

2006; Martínez et al., 2017; 2018a; 2019; 2020; Bascuñán et al., 2019; López et al., 2019). 157 

In Cenozoic times the orogen expanded and propagated to the east in two possible ways: i) 158 

following a systematic and regular deformation pattern in an orogenic wedge style of 159 

propagation (e.g. Carrapa et al., 2005; Deeken et al., 2006; Carrapa and DeCelles, 2015) or 160 

ii) in a rather distributed or disparate propagation mode of deformation caused by a strong 161 

influence of the preexisting structural framework (e.g. Hongn et al., 2007; Strecker et al., 162 

2012; del Papa et al., 2013; Montero-López et al., 2018; Payrola Bosio et al., 2019).  163 



In this study, we focus on the southern Puna plateau which lies above the SPSS. The 164 

southern Puna region between 24°S and 28°S is separated from the northern Puna region by 165 

a major NW-trending structure known as the Olacapato–El Toro lineament (OTL) (Fig. 166 

2B). The general structure of the Central Andean plateau in the Puna and the adjacent 167 

Eastern Cordillera morphostructural units, is related to steeply dipping, bivergent thrust 168 

faults rooted at >25 km depth into the crust (Allmendinger et al., 1997; Kley et al., 1999) 169 

(Fig. 4). The thick-skinned style of deformation in this segment has been explained by the 170 

presence of a structural framework linked to the Mesozoic Salta Rift that occupied the 171 

current Santa Barbara system, parts of Eastern Cordillera, and the Puna plateau (e.g., Kley 172 

et al., 1999) (Fig. 4). Shortening values in these fold and thrust belts yielded a minimum 173 

estimate of 142 km for the total magnitude of shortening at 24–25°S (Pearson et al., 2012). 174 

The Cenozoic tectosedimentary history of the southern Puna plateau is relatively well 175 

understood. Regional studies revealed that south of the 25°S this area held a ~150 km wide 176 

Paleogene foreland basin that extended from the Salar de Antofalla region (B in Fig. 5) to 177 

the Sierra de Laguna Blanca (D in Fig. 5), indicating overall lithospheric flexure at this 178 

stage between ~40 and 28 Myr (Kraemer et al., 1999; Deeken et al., 2006; DeCelles et al., 179 

2011; Sicks and Horton, 2011; Quade et al., 2015; Zhou et al., 2016a;b). This large flexural 180 

depocenter would have coexisted with intraplate contraction to east in the Eastern 181 

Cordillera (e.g. Coutand et al., 2001; Hongn et al., 2007; Del Papa et al., 2013; Zhou et al., 182 

2016a;b; Montero-López et al., 2018) (Fig. 5). However, major orogenic development must 183 

have been located to the west as suggested by the presence of inner forearc thrust-belts 184 

(Arriagada et al., 2006; Martinez et al., 2020), the westward continental tilting reflected in 185 

the asymmetry of the Late Eocene-Early Oligocene flexural basin (Zhou et al., 2016a;b) 186 

and the existence of a ~4 km high topography in the western Puna border inferred from 187 



paleoaltimetry data (Canavan et al., 2014). This basin connected several late Eocene-early 188 

Oligocene synorogenic units that from west to east comprise the Quiñoas Formation, 189 

Antofagasta de la Sierra strata, and Pasto Ventura strata (Zhou et al., 2016b). The basin 190 

asymmetric geometry is inferred based on the presence of the thickest late Eocene-early 191 

Oligocene deposits (>3.4 km) in the western basin sector that diminish to the east to <0.5 192 

km of sedimentary rocks bearing paleosol horizons, burrows and carbonate nodules 193 

indicating protracted subaerial exposure (Carrapa et al., 2005; Zhou et al., 2016a) (Fig. 5). 194 

A change in basin dynamics beginning as early as late Oligocene led to the 195 

compartmentalization of this broad flexural basin by several major basement cored uplift 196 

related to west and east-verging reverse faults forming small-scale flexural depocenters at 197 

the time the deformational front propagated eastwards up to the Late Miocene (e.g., 198 

Kraemer et al., 1999; Carrapa et al., 2005; Deeken et al., 2006; Zhou et al., 2014; Zhou and 199 

Schoenbohm, 2015; Zhou et al., 2016a;b) (Fig. 5). Basin fragmentation took place through 200 

exhumation of the Sierra de Calalaste (29-25 Myr, Carrapa et al., 2005; 25-20 Myr, Zhou et 201 

al., 2016b) (C in Fig. 5) and the Sierra Laguna Blanca (15–10 Myr, Zhou et al., 2014; Zhou 202 

and Schoenbohm, 2015) (D and G in Fig. 5). Exhumation of the southern Puna margin (F in 203 

Fig. 5) took place at a similar time between 25 and 15 Myr as indicated by apatite fission 204 

tracks data (Fig. 14; Carrapa et al., 2006). The latter is coincident with the proposal of the 205 

onset of internal orogenic drainage in the southern Puna from 24°S to 26°S between 24.2 206 

and 15 Myr (Vandervoort et al., 1995; Coutand et al., 2001). Additional factors such as 207 

local lithospheric foundering in the plateau interior (Zhou and Schoenbohm, 2015) and 208 

oscillating basin infill and excavation linked to shifts of orographic precipitation (e.g., 209 

Sobel et al., 2003) may have regulated further uplift of localized basement-cored ranges in 210 

late Cenozoic times. By latest Miocene to Pliocene times contractional deformation reached 211 



the Santa Bárbara System and the Northern Pampean Ranges leading to basin inversion and 212 

basement block uplift, respectively (e.g. Carrapa et al., 2005; Deeken et al., 2006; Strecker 213 

et al., 2012; Carrapa and DeCelles, 2015; Zapata et al., 2019a,b) (the latter referred as H  in 214 

Fig. 5). 215 

 Recently, Giambiagi et al. (2016) based on a regional paleostress analysis in the 216 

southern Puna proposed that between 13 and 8 Myr elevation and crustal thicknesses 217 

reached threshold values needed to generate the orogenic collapse in the hinterland region. 218 

To the east of the Central Andes, Cenozoic intraplate deformation has been first 219 

documented by Rossello (2007) and analyzed in detail by Peri (2012). This feature is 220 

associated with block uplift of Mesozoic and Cenozoic rocks of the Otumpa Hills located at 221 

about 950 km from the Chilean trench (Fig. 4). Interpretation of 2-D seismic lines indicates 222 

that initial deformation took place in the Paleozoic and attained its current expression 223 

during a reactivation episode linked to Andean orogeny in post-Eocene times (Peri, 2012). 224 

According to morphotectonic studies the Otumpa Hills are still active as indicated by recent 225 

drainage reorganizations in this area (Peri and Rossello, 2010).  226 

The Late Oligocene to present contractional stage in the Puna region was 227 

accompanied by a significant crustal thickening from ~40-45 km to current values of ~60-228 

70 km as inferred from La/Yb ratios from arc-related igneous rocks (Haschke et al., 2002; 229 

Kay et al., 1994, 2013) (Fig. 6). Notably, the significant crustal thickening in this orogenic 230 

sector is associated with relatively small amounts of shortening that does not overcome the 231 

30% of the present crustal cross-section area (Kley and Monaldi, 1998; Pearson et al., 232 

2012). Recent numerical modeling and geochemical studies indicate that the origin of the 233 

remaining crustal area is likely associated with along strike ductile lower crust flow leading 234 

to orogen inflation (Kay and Coira, 2009; Ouimet and Cook, 2010).  235 



 236 

4.2. Spatial and temporal evolution of magmatism in the southern Puna plateau 237 

In the last decades, several works have produced and compiled a significant amount of data 238 

of igneous rocks in the Central Andes in an effort to unravel crustal evolution and the 239 

geodynamics processes behind the central Andean magmatism (Scheuber and Reutter, 240 

1992; Coira et al., 1993; Allmendinguer et al., 1997; Reuter et al., 2006; Trumbull et al., 241 

2006; Mamani et al., 2010;  DeCelles et al., 2015; Guzmán et al., 2014; Kay and Coira, 242 

2009; Goss and Kay, 2009, among others). However, the spatio-temporal and 243 

compositional changes in arc rocks, as well as its relation to deformational events are still 244 

discussed (e.g., DeCelles et al., 2015; Kay et al., 2013). In this section, we focus on 245 

magmatism emplaced on the southern Puna plateau between 25°S and 27°30’S where the 246 

spatial, temporal and geochemical changes in igneous rocks are relatively well resolved. 247 

Extensive references to studies dealing with the geology, volcanology, and geochemistry of 248 

the southern Puna plateau and the arc region can be found in Kay et al. (1994), Kay and 249 

Coira (2009), Kay et al. (2013), and Guzmán et al. (2014).   250 

The Mesozoic to early Paleogene arc constituted a narrow belt of ~50–100 km located 251 

at ~100-230 km from the trench that records a steady shifting to the east at about 1.5 252 

km/Myr (e.g., Scheuber and Reutter, 1992) (Fig. 5). This arc migration has been explained 253 

by subduction erosion in the context of normal subduction (Trumbull et al., 2006). In the 254 

latest Paleogene times, at about 30 Ma, magmatic activity was significantly reduced for ~10 255 

Ma to the south of 20°S (Kay and Coira, 2009; Trumbull et al., 2006). However, a more 256 

recent analysis of geochronological datasets shows that this interval of reduced magmatic 257 

activity was shorter, about 4 Ma from 30 to 26 Myr (Guzmán et al., 2015). To date, the 258 

origin of this reduced arc activity is still discussed (e.g., Coira et al., 1993; DeCelles et al., 259 



2015; Kay and Coira, 2009). In the study area, Zhou et al. (2016a;b) associated this event to 260 

a low-flux stage related to the Cordilleran cycle (DeCelles et al., 2015). Between the latest 261 

Oligocene to Holocene, magmatic activity became volumetrically significant throughout 262 

the CVZ (Mamani et al., 2010; Trumbull et al., 2006). At analyzed latitudes, Neogene to 263 

recent arc rocks present an evolutionary trend towards enriched isotopic signatures, steeper 264 

REE patterns, and more crustal-like signatures likely resulting from interaction with a 265 

progressively thickened crust. This is well illustrated in the calc-alkaline medium to high-266 

K2O andesitic to dacitic rocks of the Maricunga Belt (26–6 Myr) (Coira et al., 1993; Kay 267 

and Coira, 2009; Kay et al., 2013). In the 25–28°S segment, magmatism experienced an 268 

impressive broadening at ~26 Ma whose origin remains enigmatic (Allmendinger et al., 269 

1997; Guzmán et al., 2014) (Fig. 5). Furthermore, Guzmán et al. (2014) noticed a coeval 270 

eastward arc front shifting based on the analysis of an extensive database constructed from 271 

their own field studies and a compilation of existing data (Trumbull et al., 2006; Pilger: 272 

http://www.pilger.us/id3.html, and CAGD: http://andes.gzg.geo.unigoettingen.de/). In fig. 273 

6A we have corrected the spatiotemporal analysis of Guzmán et al. (2014) restituting the 274 

paleo-trench for 40 km of subduction erosion after 8 Ma (Goss and Kay, 2009). 275 

Noteworthy, these arc-to trench distances represent a minimum estimate as we did not take 276 

into account shortening in the upper-plate. Hence, arc migration and broadening 277 

magnitudes could have been larger.  From 26 Ma onwards, the magmatism width varied 278 

with time, but it did not migrate substantially (Guzmán et al., 2014) (Figs. 5 and 6A). 279 

Contrarily, north of the southern Puna plateau between 12°S and 20°S, trenchward 280 

migration of magmatism has been described since ~24 Ma (Coira et al., 1993; Kay and 281 

Coira, 2009; Mamani e al., 2010) and since ~17 Ma at 20-23°S (Allmendinger et al.,1997; 282 

Reuter et al., 2006).  283 

http://www.pilger.us/id3.html
http://andes.gzg.geo.unigoettingen.de/


Kay and Coira (2009) through the analysis of the Neogene magmatic evolution between 284 

24° and 28°S identified an additional eastward broadening of andesitic to dacitic 285 

stratovolcanoes, starting at 16 and enhancing at 8 Ma, and the production of voluminous 286 

ignimbrites from 6 to 2 Myr. These observations were interpreted as produced by a slab 287 

shallowing with subtle steepening at ~6 Ma, facilitating lithospheric delamination (Bianchi 288 

et al., 2013; Kay et al. (2013) (Fig. 6). Chemical and isotopic signatures of arc rocks 289 

erupted between ~28.2 and 26.7°S, present a particular trace element signature associated 290 

with variable heavy REE slopes (Sm/Yb=2–9), wt% Na2O (3–5.5), HFSE depletion 291 

(La/Ta=15–110) and Ba/La (15–55). This has been explained as produced by contaminants 292 

from the lower crust and source contamination in the mantle wedge by fluids resulting from 293 

melting of forearc material linked to the tectonic removal of ~40 km of forearc crust from 8 294 

to 3 Myr (Goss and Kay, 2009; Kay and Coira, 2009; Kay et al., 2013). Coetaneous 295 

magmatic activity to the north emplaced in a thick arc crust north of 26.7°S have lower 296 

Sm/Yb (2–4) and La/Ta (15–45) ratios and wt% Na2O (3–4) than those to the south. A 297 

process of deep crustal flow in these rocks has been inferred based on a temporal trend 298 

towards more upper crustal-like trace element and isotopic signatures (Kay et al., 2013). 299 

  More recently, Guzmán et al. (2014) refined the Neogene magmatism dynamics and 300 

documented a southward migration of broadening arc activity between ~18 and 8 Myr. 301 

These authors indicate that the 25–26°S segment experienced maximum broadening in the 302 

18–14.5 Myr interval; the 26–27°S segment in the 14.5–11.5 Myr interval; and the 27–28°S 303 

segment in the 11.5–8.3 Myr interval (Fig. 6A). Although still discussed, this migration has 304 

been related to the southward swept of the Juan Fernandez aseismic ridge that subducted 305 

obliquely at those times producing transient changes in the slab angle (Guzmán et al., 2014; 306 

Kay and Coira, 2009; Yañéz et al., 2001) (see current location on Fig. 2A).  307 



To summarize, a reduced arc activity took place at ~30 Ma and was followed by a 308 

significant eastward arc migration and magmatic broadening in the 25–27°30’S segment of 309 

the CVZ is observed at ~26 Ma. From then onwards, the arc experienced local variations of 310 

transient character in width during middle to latest Miocene due to fluctuations in slab 311 

angle. 312 

5. DISCUSSION 313 

5.1. Geodynamic mechanism behind the spatio-temporal arc evolution 314 

Spatiotemporal arc migrations and expansions have been mostly attributed to 315 

modifications in convergence rates, variations in slab dip, crustal thickening and absolute 316 

trench motion produced by subduction erosion or accretion (e.g., von Huene and Scholl, 317 

1991; Kay et al., 2005; Haschke et al., 2002; Mamani et al., 2010; Karlstrom et al., 2014). 318 

Subduction erosion is expected to produce arc advance as the forearc area is reduced (e.g., 319 

von Huene and Scholl, 1991). The removed forearc crustal material may enter the mantle 320 

wedge contaminating the source of arc magmatism and hence, can be successfully tracked 321 

through the analysis of geochemical data (e.g. Stern, 1991; Kay et al., 2005). In the study 322 

area, the absence of significant source contamination in the mantle wedge at 26-18 Myr, 323 

inferred from isotopic data from arc rocks, indicates that subduction erosion was not a 324 

dominant process when the arc migrated (Kay et al., 2013). Arc shifting due to subduction 325 

erosion as well as those produced by alternative mechanisms such as crustal thickening 326 

(Karlstrom et al., 2014), are expected to produce a net arc migration but not necessarily an 327 

arc broadening as observed in the study area (Fig. 4, 5 and 6A).  328 

Guzmán et al. (2014) analyzed the relationship between the arc dynamics in the 329 

study area and the convergence rate and found that these processes are poorly correlated. 330 

Indeed, most recent numerical modeling studies suggest that convergence controls arc-to-331 



slab depth (England and Katz, 2010), but does not correlate well with the location of the 332 

melting region in arcs (Grove et al., 2009, 2010). More recent studies indicate that a 333 

trenchward arc expansion could be expected with increasing convergence rates (Karlstrom 334 

et al., 2014; Fig. 10a). If the latter is valid, taking into account the increment in 335 

convergence rates between ~26 and 25 Myr (Somoza, 1998), we would expect a 336 

trenchward arc migration and expansion at those times in the study area, which opposes the 337 

magmatic evolution followed in the southern Puna Plateau (Fig. 6A).  338 

Additional factors such as upper crust structures may have influenced to a certain 339 

degree the location of the magmatic activity (e.g. Riller et al., 2006; Trumbull et al., 2006). 340 

This is well illustrated by the Neogene magmatic activity that followed NO-striking 341 

structures (Viramonte and Petrinovic, 1990; Coira et al., 1993; Matteini et al., 2002; 342 

Richards et al., 2006; among others). However; in some cases, the opposite could have also 343 

been true as several studies also indicate that thermomechanical weakening induced by 344 

magmatic intrusions tends to control the location of upper-crust structures (e.g. Ramos et 345 

al., 2002; Sagripanti et al., 2012).  346 

Changes in slab dip are expected to control arc-trench distance as the mantle wedge is 347 

pushed-forward (Coney and Reynolds, 1977). Numerical modeling and the global analysis 348 

of subduction zones of Grove et al. (2009, 2010) show that changes in slab dip control arc 349 

width, causing narrowing or widening of magmatism, as well as net arc position causing 350 

forelandward or trenchward motion of the arc activity. The eastward frontal arc migration 351 

combined with eastward rear arc migration and the bulk arc broadening between ~30 and 352 

26 Myr along with the change to a widespread upper-plate contraction and broken foreland 353 

formation is compatible with a progressive slab shallowing (Kay and Mpodozis, 2002, 354 

Ramos and Folguera, 2005; Schüte et al., 2010). More importantly, this hypothesis is the 355 



most compatible with the shallow subduction configuration currently observed beneath the 356 

study area and hence, most likely indicates the onset of the SPSS in the Late Oligocene.  357 

5.2. Determination of potential paleo-slab angles 358 

Two main methods are often applied to reconstruct paleo-slab angles. One approach is 359 

based on obtaining slab angles by assuming that the arc activity or its ancient bedrock 360 

record should intersect the top of the slab at a constant oceanic lithosphere dehydration 361 

depth around 100-150 km (e.g. Coney and Reynolds, 1997, Ramírez de Arellano, 2012). 362 

However, recent studies have shown that slab dehydration could be affected by plate 363 

kinematics such as variations in the convergence rate and hence, limiting this approach 364 

(England and Katz, 2010; Grove et al., 2009, 2010). The other methodology was mostly 365 

applied to the spatiotemporal magmatic evolution of several Andean segments (e.g. Kay 366 

and Abbruzzi, 1996; Kay and Copeland, 2006; Kay and Coira, 2009). It is based on the 367 

extrapolation of a current Wadati-Benioff zone and its associated arc-trench system to a 368 

neighboring area with a similar paleo-trench-arc distance and geochemical similarities. 369 

Below we use a different approach that considers a global subduction database of arc-370 

trench distances and dip angles, which can be easily applied to reconstruct paleo-slab 371 

angles.  372 

Fig. 7 shows the distribution of arc-trench distances and slab dips from Perrin et al. (2018), 373 

which is based on the global subduction zone compilation of Syracuse et al. (2010). This 374 

dataset base uses well-constrained slab geometries and is the most comprehensive 375 

compilation available. Similarly to previous studies (e.g. Jarrard, 1986; Syracuse and 376 

Abers, 2006; England et al., 2004), this diagram shows that arc-trench distance, D, 377 

correlates negatively with slab dip, δ. This diagram was originally built along 2-D 378 

numerical modeling to understand the thermal structure of the mantle wedge and its 379 



influence in arc location (Perrin et al., 2018). In this study, we take advantage of this 380 

diagram to track the potential evolution of slab dip though time by plotting the average D 381 

values from the three latitudinal segments analyzed in Fig. 6B (25-26°, 26-27°, and 27-28°) 382 

at 80-30 Myr, 26-18 Myr, 14-11 Myr, and 2.5 Ma arc stages. This analysis shows a 383 

subducting plate shallowing from dips of ~54° to ~16° that took place between 30 and 26 384 

Myr and attained a minimum slab angle of ~7° at 14-11 Myr. Then, a subtle decrease to 385 

current values around 10° is observed associated with the SPSS (Fig. 7). 386 

 387 

5.3. Linking the tectonomagmatic evolution of the southern Puna plateau with the 388 

SPSS 389 

A new synthesis of the tectonomagmatic history of the southern Puna plateau sheds 390 

light on the onset of the SPSS and its relation to the southern Puna plateau tectonics. The 391 

observation of  migration and broadening of the magmatic activity at ~26 Ma from a former 392 

westward arc position likely indicates that the SPSS began to develop since the Late 393 

Oligocene (Figs. 5 and 6A). This process was preceded by ~4 Ma of reduced magmatic 394 

activity that may indeed indicate the onset of the reconfiguration of the slab angle at ~30 395 

Ma. At this time, a large Eocene-early Oligocene flexural basin located south the 25°S 396 

(Zhou et al., 2017) was compartmentalized by the distributed growth of basement-cored 397 

structures lasting up to Miocene times (Kraemer et al., 1999; Carrapa et al., 2005; Deeken 398 

et al., 2006; Zhou et al., 2016a;b) (Fig. 5). Also, during this same period, the forearc region 399 

experienced a reactivation in the fold and thrust belts preserved in Oligocene to Miocene 400 

syn-kinematic sequences described in 2-D seismic reflection lines (Martínez et al., 2019; 401 

2020). In addition, after Eocene times intraplate deformation took place at ~950 km from 402 

the trench causing surface uplift of the Otumpa intraplate Hills (Rossello, 2007, Peri, 2012) 403 



(Fig. 4). Although this deformation style is not unique to flat/shallow subduction zones 404 

(e.g. Kley et al., 1999; Gianni et al., 2017), we suggest that distributed deformation and 405 

intraplate deformation likely resulted from an increased interplate coupling as expected in 406 

these geodynamic settings and as documented in several recent and ancient shallow and 407 

flat-slab settings (Dickingson and Snyder, 1978; Jordan and Allmendinger, 1986; Gianni et 408 

al., 2018a,b) (Figs. 1 and 8). At this moment, an applied end load stress favored by a higher 409 

plate coupling would have triggered stress propagation through the plate margin 410 

lithosphere, spatially concentrating deformation along inherited plate weaknesses (Kley et 411 

al., 1999; Weil et al., 2014; Zhou et al., 2016a; Axen et al., 2018). In Miocene-Pliocene 412 

times, further changes in the slab angle, produced local variations in arc width and upper 413 

plate contraction in the Santa Barbara and Northern Pampean ranges (Carrapa et al., 2005; 414 

Deeken et al., 2006; Kay and Coira, 2009; Zapata et al., 2019a,b). Also at this time, the 415 

influence of transverse lineaments in magmatic location appears to be stronger (Trumbull et 416 

al., 2006). We suggest that as the high plate coupling triggered distal stress propagation, the 417 

eastward migration of the magmatic activity provided the most favorable conditions for 418 

significant the basement cored deformation in the plate margin sector. This is because 419 

under intense magmatic activity the initial thermomechanical conditions of the lithosphere 420 

are modified and tectonic reactivations and new faulting are more easily produced (e.g. 421 

Ramos et al., 2002; Martinez et al., 2018b). 422 

The numerical simulations of Ouimet and Cook (2014) indicate that late Cenozoic 423 

Andean orogen-parallel crustal flow did not penetrate into the cold regions of stronger 424 

lower crust above the Chilean and Peruvian flat-slab segments (Fig. 1). In the study area, 425 

the Chilean flat-slab blocked this southward flow and inflated the lower crust beneath the 426 

Puna plateau. In this context, the SPSS must have allowed the existence of a mantle wedge 427 



and a hot upper-plate, as currently seen (Mulcahy et al., 2014) favoring orogen-parallel 428 

crustal flow.  429 

The progressive upper plate contraction linked to slab shallowing acted in concert with 430 

the lower crustal flow to thicken the crust up to 60-70 km driving lower lithosphere 431 

delamination at ~6-4 Myr (Bianchi et al., 2013; Kay et al., 2013) (Figs. 6B and 8). Kay and 432 

Coira (2009) indicated that the lithospheric delamination took place after a slab steepening. 433 

However, despite the relatively steeper slab beneath the Cerro Galán caldera (CGC, in Fig. 434 

2B) respect to the Chilean flat-subduction in the south (Fig. 10; Mulcahy et al., 2014), the 435 

existence of the SPSS, suggests that this process took place under an essentially shallow 436 

angle configuration to the west. In this context, delamination would have been allowed only 437 

after a slight steepening of the easternmost slab sector (Fig. 6 and 8). A similar example of 438 

syn-convergent delamination during shallow subduction has been proposed for the early 439 

stages of the Late Neogene-Pliocene Peruvian flat-slab (Coldwell et al., 2011).  440 

Although the Andes began its uplift in Early Late Cretaceous times, the most significant 441 

deformation took place during the Paleogene and Neogene. At this time, changes in several 442 

geodynamic processes such as upper-plate velocity (Silver et al., 1998), slab age, 443 

subduction length and depth (e.g. Capitanio et al., 2011; Faccena et al., 2017) as well as the 444 

onset of critical climatic conditions (e.g. Lamb and Davis, 2003)  acted in concert to trigger 445 

plate margin-scale contraction and crustal thickening. Our observations do not preclude the 446 

role of these first-order tectonic factors in the tectonic evolution of the study area. 447 

However, the close relationship between the evolution of the southern Puna plateau and the 448 

onset of shallow subduction lead us to conclude that the development of the SPSS was a 449 

key geodynamic process in the last building stages of this region of the Central Andes. This 450 



process would have acted as an enhancement factor in Andean orogenesis at studied 451 

latitudes contributing to the formation of one of the thickest orogenic crust on Earth.  452 

Commonly invoked causes for shallow or flat-subduction are highly diverse including i) 453 

subduction of thickened and buoyant oceanic crust such as oceanic plateaus or aseismic 454 

ridges (e.g. Gutcher et al., 2000), ii) hydrodynamic suction due to the presence of a thick 455 

cratonic keel (~200 km) next to the active margin (Manea et al., 2012) or iii) a low 456 

asthenosphere viscosity (Manea and Gurnis, 2007), and overriding of an old and slowly 457 

retreating slab (Schellart, 2020). More recent studies indicate that the most favorable 458 

conditions for full flat-slab development are met when several of these factors act in 459 

concert (Hu et al., 2016). 460 

Potential candidates for triggers of the SPSS are the Taltal and Copiapo aseismic ridges 461 

currently subducting west of the study area (Fig. 2A). However, their timing of interaction 462 

with the trench at ~10 Ma (Bello-Gonzalez et al., 2018) does not correlate with the onset of 463 

the SPSS in Oligocene times precluding any influence in the onset of shallow subduction in 464 

the southern Puna plateau. Moreover, the effect of aseismic ridge subduction as a driving 465 

mechanism for Andean flat-slabs has been disregarded based on recent kinematic 466 

reconstructions (Skinner and Clayton, 2013). Also, 2-D numerical modeling studies 467 

indicate that the buoyant lithosphere is not sufficient to yield a shallow subduction 468 

configuration (e.g. Gerya et al., 2009). However, at least the Copiapo ridge is suggested to 469 

have acted as a lower plate asperity that influenced the pattern of upper plate deformation at 470 

27°S (Álvarez et al., 2015).  471 

The lack of a sufficiently deep lithosphere (~200 km) next to the Puna plateau 472 

enhancing slab hydrodynamic suction hampers invoking this mechanism for the 473 

development of the SPSS. Alternatively, it could be argued that shallow subduction beneath 474 



the southern Puna plateau is somewhat sustained or influenced by the Chilean flat-slab to 475 

the south between 27º30’and 33ºS (Fig. 2A).  However, the fact that the main arc migration 476 

in the study area took place much earlier than the one related to the development of the 477 

Chilean flat-slab (~18 Ma, Ramos et al., 2002) makes this possibility untenable. Between 478 

~26 and 20 Myr, the region occupied by the Chilean flat-slab was under extension related 479 

to a steeply dipping slab (Coira et al., 1993, ay et al., 2013; Winocur et al., 2015; Jones et 480 

al., 2016). Moreover, if the Chilean flat-slab can indeed influence subduction angles far 481 

from its location we would expect a similar shallowly dipping transition to the south of this 482 

flat-slab, which strongly contrast with the normal slab angle described in that area (Cahill 483 

and Isacks, 1992; Mulcahy et al., 2014). Alternatively, we suggest that the change in the 484 

subduction angle in the SPSS since Late Oligocene times could have occurred from local 485 

changes in the viscosity of the mantle wedge. Depth-dependent slab dehydration transports 486 

fluids into the mantle wedge where the viscosity is decreased. Numerical models show that 487 

in cases of increased fluid-flux such a decrease in viscosity could form a low viscosity 488 

wedge that enhances suction in the mantle wedge inducing slab shallowing (Manea and 489 

Gurnis, 2007). These models predict that there could be a larger volatile input into the 490 

wedge when arcs migrate toward the trench, which is compatible with the progressive slab 491 

fluid contents inferred for the southern Puna Magmatism (Kay et al., 2013) and the 492 

suggestion of a hotter asthenospheric wedge based on seismology surveys (Mulcahy et al., 493 

2014). However, the reason why this mantle wedge obtained these characteristics is 494 

puzzling. Therefore, further studies are necessary to assess the origin of the SPSS. 495 

 496 

6. CONCLUSION 497 



The analysis of subduction zone profiles indicates that the Nazca plate beneath the 498 

southern Puna plateau is characterized by a ~200 km wide shallow portion at a depth of 499 

~100-120 km that dips 10-12°E at 300 km from the trench. In general, this slab segment is 500 

between ~30 and 90 km shallower than the rest of the slab beneath the CVZ.  A new 501 

synthesis of the tectonomagmatic record in this region indicates that changes in slab angle 502 

began in the late Oligocene times, as revealed by an eastward arc-front migration and 503 

magmatic broadening that took place at ~26 Ma. This process was preceded by ~4 Ma of 504 

reduced arc activity that we relate to the onset of the subduction reconfiguration. A new 505 

approach based on the application of an arc-trench distance vs. slab dip diagram including 506 

global subduction zone dataset shows that slab shallowing took place progressively 507 

changing from ~54° to ~16° between ~30 and 26 Myr. The slab attained minimum values 508 

of 7° at 14 Ma and steepened subtly afterward to the current SPSS angle of ~10°, consistent 509 

with the proposal of a slab steepening between 6-3 Myr (Kay and Coira, 2009). We 510 

encourage the use of this straightforward methodology to extract paleo-angles from the 511 

bedrock record in future studies dealing with similar problems. We envision that an applied 512 

end load favored by an increased interplate coupling resulting from slab shallowing would 513 

have triggered a significant crustal thickening and the destruction of a pre-existing Eocene-514 

early Oligocene foreland basin south of 25°S (Zhou et al., 2017). An effective stress 515 

transmission linked to the SPSS would have caused the enigmatic late Cenozoic surface 516 

uplift of the Otumpa Hills at ~950 km from the trench similar to intraplate deformation in 517 

other shallow/flat subduction settings. The close link between the evolution of the southern 518 

Puna plateau and the onset of shallow subduction lead us to conclude that this geodynamic 519 

process was a key factor prompting mountain-building in this region. This process likely 520 

acted jointly with major changes in plate kinematic and climatic conditions in the Cenozoic 521 



enhancing Andean orogenesis at studied latitudes. In general, our observations do not 522 

contradict previous studies mostly concentrated in the post-18 Ma evolution of this area 523 

(e.g. Kay and Coira, 2009; Kay et al., 2013) but integrate them into a larger geodynamic 524 

evolution that began earlier than previously acknowledge. The tectonic role of the SPSS 525 

was probably overlooked and obscured by the formation of the predominant Chilean flat-526 

subduction to the south since ~16 Ma that captured the attention of most studies dealing 527 

with subduction geometry and its link with magmatism and deformation. 528 

 529 
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 1046 

Fig. 1. Conceptual model of flat slab development and related tectonic, magmatic , and 1047 

thermal modifications in the upper-plate based on Barazangui and Isacks (1976), Dickinson 1048 

and Snyder (1978), Coney and Reynolds (1979) and Gutsher et al. (2000), Martinod et al. 1049 

(2010), Ouimet and Cook (2010), and Axen et al. (2018).  1050 



 1051 

Fig. 2. (A) Tectonic setting of the Central Andes. Slab profiles are from the Slab2 model of 1052 

Hayes et al. (2018). SPSS stands for southern Puna plateau subduction discussed in this 1053 

study. (B) Image showing the Altiplano-Puna plateau and the southern Puna plateau south 1054 

of the Olacapato-Toro lineament (OTL). CGC in stands for Cerro Galán caldera. (C) 1055 

Subduction zone profiles from Hayes et al. (2018) in the northern and southern terminations 1056 

of the CVZ.  1057 

 1058 



 1059 

Fig. 3. (A) Depth map of the Nazca slab from the Slab2 model of Hayes et al. (2018). P1 to 1060 

P13 indicate subduction profiles locations. SPSS stands for southern Puna shallow 1061 

subduction discussed in this study. (B) Variation in subduction geometries along the CVZ 1062 

showing progressive slab shallowing towards the southern Puna region. (C) Depth 1063 

difference between profiles P10 to P13 and profile P8. 1064 
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 1073 

Fig. 4.  Compiled regional geologic map based on SERNAGEOMIN (2003) and Caminos 1074 

and González (1997) showing the main morphostructural units of the Central Andes. Note 1075 



the small stepwise migration of the Mesozoic arc, related to steady subduction erosion, and 1076 

the significant arc expansion since Oligocene times here associated with the onset of the 1077 

SPSS. Inset map of the Otumpa intraplate hills is modified from Peri (2012).  1078 
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 1096 



Fig. 5.  Data compilation of Andean magmatism from Guzmán et al. (2014), Trumbull et al. 1097 

(2006), Pilger: http://www.pilger.us/id3.html, and CAGD: 1098 

http://andes.gzg.geo.unigoettingen.de/ and tectonic evolution of the southern Puna Plateau 1099 

displayed in generalized cross-sections at 26–27◦S modified from Zhou et al. (2016a). 1100 

Abbreviations are A: Sierra Quebrada Honda (Zhou et al., 2016b); B: Salar de Antofalla 1101 

región (Kraemer et al., 1999; Canavan et al., 2014; Carrapa et al., 2005); C: Sierra de 1102 

Calalaste (Carrapa et al., 2005; Zhou et al., 2016b); D: Sierra Laguna Blanca (Zhou et al., 1103 

2014); E: Sierra Chango Real (Coutand et al., 2001); F: Southern Puna margin (Carrapa et 1104 

al., 2006); G: Pasto Ventura región (Zhou et al., 2016a);  H: Northern Pampean Ranges.  1105 

http://www.pilger.us/id3.html
http://andes.gzg.geo.unigoettingen.de/


 1106 

Fig. 6. (A) Spatio-temporal analysis of magmatism from Guzmán et al. (2014), after 1107 

correction of 40 km of subduction erosion for rocks older than 8 Ma (Goss and Kay, 2009).  1108 

(B) Crustal thickening after 26 Ma from Haschke et al. (2002) expressed by La/Yb ratios of 1109 

Andean igneous rocks, which are thought to positively correlate with crustal thickness.  1110 



 1111 

Fig. 7. Correlations between arc-trench distance D and slab dip modified from Perrin et al 1112 

(2018) with plotted average D values for the three latitudinal segments in Fig. 6B (25-26°, 1113 

26-27°, and 27-28°) at 80-30 Myr, 26-18, 14-11 Myr and 2.5 Ma arc stages. Ocean–ocean 1114 

subduction zones in blue symbols, ocean–continent zones in black. Black line is a linear fit 1115 

to the complete dataset and r and p values represent correlation coefficients and the 1116 

likelihood that no linear correlation exists, respectively. Stars are data from the global 1117 

database of Syracuse et al. (2010). This diagram shows the potential evolution of slab dip 1118 

through time depicting an over slab shallowing since 26 Ma. This process peaked at 14-11 1119 

Ma and is follwed by a subtle slab steepening achieving current shallow angles associated 1120 

with the active SPSS.  1121 
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 1125 

Fig. 8. Late Paleogene to present evolution of the southern Puna Plateau at 26ºS. See text 1126 

for further details. Continental lithosphere not to scale. Abbreviations are PEC: Proto 1127 

Eastern Cordillera, OTH: Otumpa intraplate Hills. 1128 


