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Executive Summary 

United Alloy Corporation (UAC), a company specializing in custom aluminum parts for 

aeronautics, needed a fix to their error prone, labor-intensive billet press operation. The current 

process allows the problem of adding the wrong size or wrong alloy billet to the induction oven, 

which results in a waste of raw materials. The billets range from ten to thirty-seven inches in length 

and weigh up to three hundred pounds. Currently, an operator uses a gantry crane to check and lift 

the billets from a rack onto the magazine of an induction oven. The induction oven processes 

around five billets an hour. UAC did not need to speed up the process, but they did want to improve 

safety and quality assurance in which billet goes in the oven. The company tasked Kennesaw State 

University (KSU) with a project to fix the issues presently in the process, using a FANUC robot 

to conduct a pick and place solution. The KSU team then fabricated a gripper to lift the billet, 

designed code to find the rack in space and complete the quality assurance process, and researched 

sensors and fencing to build a safety cell around the gripper and robot.  

The KSU team visited UAC to check the current process and the best way to code the robot, design 

the gripper to pick off the rack, and set up the entire cell with the proper features. The gripper 

needed to lift billets from the rack had to be an end-to-end gripper, which does not exist off the 

shelf for billets of the size used at UAC. The team created a gripper design using pneumatics to 

lift the billets vertically from the rack. The team then coded the robot to find the billet on the rack 

and measure the length to check that the right size billet was going in the oven—this was the first 

stage of the quality assurance portion. The next was a camera that scans a printed QR code and 

checks with the recipe card to make sure the right alloy aluminum is picked. The robot, gripper, 

and camera all work together to solve both the lifting safety and wrong billet problems with the 

process. 

The final step of the project was to fabricate the gripper in a machine shop, test the code with the 

gripper, and add the safety sensors into the cell to stop unsafe operation. The FANUC robot will 

be encased in fencing with doors that allow workers to bring the billet rack to the robot. The safety 

sensors will stop operations when the doors are open, if there is a billet on the floor, or when the 

operator is inside the robot cell.  

After the whole system was completed, UAC took the ASME Y14 drawings for the gripper to 

create the model and set up the robot cell with the recommended fencing and sensors. UAC has 

the commented code and will make any changes needed to the operation in the future. The KSU 

team set up the gripper, cell, and code to function with all aspects of the project in mind. The QR 

code is the last portion to be added and UAC will need to complete the server to finish the quality 
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assurance process. The following goes more in depth on the decisions made through the year and 

the different solutions attempted before the final design was completed.    
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Chapter 1: Problem Statement and Requirements 

 Introduction 

Project Penelope is a Kennesaw State University (KSU) and Universal Alloy Corporation 

(UAC) collaborative design project. The KSU team has been tasked with designing a robot cell 

which will automate a picking and placing job for UAC’s aluminum extrusion production line. 

The main purpose of this automation is to free time for the operator who runs the aluminum 

extrusion process, and to ensure the correct billet is being used for each order. Side benefits to 

UAC will be a safer work environment by eliminating any physical loading and better quality 

control through a billet scanning and measuring process that will be implemented.  

 System Overview 

UAC currently has an induction oven into which aluminum billets are fed and heated so 

that they may be shaped into built-to-order shapes for aerospace companies. The process 

currently includes an operator using a gantry crane—Figure 1—to lift billets from a rack onto the 

oven magazine, which can be dangerous as the billets can weigh a couple hundred pounds. As of 

today, there have been no accidents, but the possibility of one has prompted UAC to find a 

different lifting solution for the billets. The current process also has production problems as the 

human operator can often load the wrong billet length or alloy into the oven. There are currently 

no numbers on the amount of error billets that get lost in the process; however, UAC believes the 

issue is large enough to warrant a quality assurance solution to the lifting process as well. 

 

Figure 1. Extrusion process operator loading billet into oven. 
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The main objective of Project Penelope is to design a robot cell to pick and place 

aluminum billets into an induction oven with a given robotic arm; a FANUC R-2000iB. The 

aluminum billets are all ten inches in diameter and vary from ten inches to thirty-seven inches in 

length. The longest billets weigh three-hundred pounds. The robot cell also needs to be equipped 

with a QR scanning process. Safety is going to be essential for this robot cell as well as guards 

and safety gates that will be incorporated with the full design. The process of the automation is 

shown in Figure 2. 

 

Figure 2: Process Map 

 Concept Design 

The initial design for the robot cell, shown in Figure 3, includes the vision system in the 

cell along with the billet loading area, the loading area of the induction oven, the current billet 

rack, and the robot. The figure below has the dimensions of the caged portion of the cell.   
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Figure 3: Robot cell layout (a) AutoCAD overview and (b) SolidWorks sketch with dimensions. 

The robot controls will remain outside of the cell to comply with the ANSI RIA R15.06-

2012 safety standards followed at UAC (American National Standard for Industrial Robots and 

Robot Systems, 1999). The main concerns when designing the robot cell were the safety 

standards and the available floor space. The current layout is not much different than the 
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designed robot cell. The robot will be placed in front of the crane that is currently used so that if 

the robot malfunctions, the crane can be used as a backup. The area will be fenced off so workers 

will be able to move freely outside the robot working space when the robot is in operation.  

 

Figure 4: Component Decomposition Diagram 

The component diagram shown in Figure 4, depicts the robot cell, programmable logic 

controller (PLC), and the connections made with the rest of the cell. There will be a SQL 

database, scanner, and induction oven talking directly with the PLC through code. The PLC will 

also require the human operator to check with the robot when scanning the billets. The safety 

interlocks and warning lights are also attached to the PLC for constant safety checks within the 

cell and with the operator for a hazard free work environment. The robot arm and gripper will 

run to the robot I/O and communicate to the PLC from there with the vision required. All this is 

broken down in the Function Diagram in Figure 5.  
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Figure 5: Function Decomposition Diagram 

For Project Penelope, UAC gave the team access to a FANUC robot and its operator, 

Brian Norris, to assist with the coding and setting up of the robot. The bulk of the project was 

completed using the FANUC robot and the billets in the billet rack to pick and place the items in 

the induction oven. UAC had a machine shop fabricate the gripper designed in SolidWorks. An 

essential part of this project is the ability to scan a QR code on the side of the billet and check 

with the recipe card of the work order to ensure the billet going in the oven is the right billet for 

the part being made. UAC’s IT manager, Matt Ringer, will be completing the SQL database and 

code because the team is missing a member who would have already had experience with the 

language. These are the current available hardware and software resources UAC has provided. 

The school has provided the Microsoft Office suite and SolidWorks for the papers and gripper 

rendering.  

For the testing of the project, UAC provided the team with safety sensors, a mock 

gripper, and a mock production environment to check the capabilities of the code. The final 

aspect of the project will be to implement and test the robot cell in its entirety and UAC will 

provide the safety standards followed at the facility to complete the cell. These resources will 

help the team create a safe and productive work environment conducive to a quality product.  

An upside to this simple cell layout is there is not much modification needed for the area 

around the cell. The only changes are new fencing will need to be built, the robot will be moved 
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to the floor, and there will be a billet lock-in bolted to the pallet loading area. There will need to 

be guards in place to protect the robot and the lift. There will also need to be faults implemented 

into the robot to stop when a collision is imminent. The floor plan will be updated once the code 

has been designed for the cell and the team knows where everything should be placed on the 

floor. The safety guards in the cell will need to be programmed with information about where the 

robot and billet should be so that it can detect when something is out of place, such as a falling 

billet. 

 Minimum Success Criteria 

UAC provided four areas on which the team’s success would be judged. They are the 

robot cell safety, the gripper design, the PLC code, and a QA system. The success criteria 

decided on is listed below.  

• Robot cell and safety  

o Give a complete robot cell layout with all dimensions that match live production 

▪ Including all safeguards, gates, interlocks, and electrical components 

▪ Fully test safety sensors including gate lock and scanning sensors integrated 

into robot cell  

• Gripper 

o Deliver gripper design with all dimensions and full explanation of design and 

assembly 

o Assemble and successfully test gripper in mock production environment   

• PLC Code  

o Deliver and test working PLC code for mock robot cell with full explanation of its 

functionality 

▪ Functions include finding billets, picking billet, placing billet, alerting when 

billet count is low, alerting when billet rack is empty, and alarm system  

▪ Make any necessary recommendations for implementation of PLC code into 

live production environment  

• QA System  

o Deliver fully vetted QA system that works with current QR scanning project within 

UAC 

o Including camera recommendation, camera placement, and full description of 

scanning system  

▪ Work with assigned personnel from UAC to successfully implement QR 

scanning and SQL database 
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o Create a seamless process as defined by UAC engineering partners 

 Scope of Work 

The project has been in the planning stages for most of the previous semester, this 

semester the team visited the robot and worked with Brian to learn simple movements and focus 

on coding and safety. A few minor issues were found when moving the robot, the knuckle on the 

fifth joint protrudes too much to lift the billets towards the end of the rack straight up. The fix for 

this was to turn the robot at around a 10 angle when lifting billets in rows one and three. The 

code reflects this autonomously for these rows.  

Before the robot was installed, the main focus of the meetings was to get a better 

description of the desired process. The gripper was fabricated, and calculations were performed 

to ensure it could lift the billet with no problems. The budget was determined and the process 

map for the project confirmed. Most aspects of the work done so far are mentioned above. 

The robot’s extremes were tested in the cell and the dimensions were determined after 

simulating the gripper on the robot with a cardboard box. The team now knows to keep the billet 

rack 25 inches from the robot base to ensure the gripper does not collide with the robot. The 

gripper must also make right angle turns to find the billet edge, which is discussed more in 

Finding the Billet. The vision system has been simplified as has the picking process when it was 

determined UAC did not want complicated cameras and microcontrollers mapping out the robot 

cell. A camera will still be used for QR scanning, but Matt Ringer will need to complete that 

project to integrate the systems.  

Calculations were performed on the gripper with different materials to see which 

materials were the strongest and lightest. The robot movements were created for the pick and 

place programs. The main components for the gripper UAC will provide is a proximity sensor 

from their warehouse and a laser to measure the billets. UAC is also fabricating the gripper in the 

machine shop as the project is closing.  

The team has created safety relays and circuit diagrams for UAC to utilize when creating 

the cell. There are 3D renderings UAC has access to when they fully implement the robot in live 

production. All code created was run with a simulated push button box and the head of robotics 

has the commented code which vividly describes the entire process the code undergoes to pick 

and place the billets. The final step of the project is implementation, which will be performed by 

UAC with all of the KSU team’s designs and recommendations.  
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Figure 6. Work assignment breakdown. See Appendix C for a higher resolution image. 

 House of Quality 

The house of quality (HoQ) shown in Figure 7 was made in the high-level planning 

phase. For that reason, several potential engineering characteristics are missing. More of these 

quantitative engineering characteristics are dependent on what style of gripper /pallet/scanner are 

chosen. Part of the agile approach that the team chose allows for periodic redefinition the 

problem statement as the project progresses. 

The customer requirements on the other hand, are well defined. In meetings with UAC, it 

was evident that their main goal with the robot, was increased safety. That is reflected in the 

customer importance ratings. Items related to budget or cost are rated much lower because the 

Director of Engineering indicated that the budget was open to negotiation. The speed items 

received similar ratings for the same reason. 

Other highly-rated requirements are related to engineering and company standards. These 

rank highly both because they go hand in hand with safety, and they were emphasized by the 

Electrical Engineering Manager.  
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Figure 7. Rooms one, two, three, and four of the House of Quality. A higher resolution HoQ is in Appendix B. 

 UAC’s Desired Cell Layout 

While UAC left much of the design open for the team’s interpretation, they did lay out 

specific requirements for the robot cell, gripper, and billet scanning. 

1.7(i) Robot Cell Layout 

The robot cell will need to allow UAC’s loaded billet racks to be brought in, and empty 

racks removed. It also needs to have fencing to keep workers out when the robot is moving. If 

workers enter the cell—either for maintenance or to deliver billet racks—the cell needs to cut 

power to the robot. For this reason, the gripper needs to fail safe such that it does not drop the 

billet if power is cut. 
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Controller should be off-the shelf and no black boxes 9 7% |||||||||||||||||| 19
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1.7(ii) Billet Gripper 

The production line where this robot will be installed, processes ten-inch diameter billets 

that range in length from ten inches to thirty-seven inches. The longest billets weigh around 

three-hundred pounds. The gripper needs to attach to the end of a FANUC R-2000iB robot arm 

and—when holding a billet—weigh less than the four-hundred and sixty-pounds weight limit of 

the arm. The gripper needs to be serviceable and replaceable in case of damage. 

1.7(iii) PLC and Interaction with the Entire Process 

PLC code needs to be written and laid out so that it directs the robot for picking and 

placing billets. The code needs to handle errors, such as an incorrect billet being on the stack, a 

billet not being positioned correctly, or a trip in the security fence. The code also needs to 

communicate with the oven PLC that controls the whole production line. This will tell the robot 

when it needs to add a billet to the oven. 

1.7(iv) Billet Scanning 

The robot cell needs to scan a QR code printed on each billet. It then needs to send the 

billet ID to the oven PLC to confirm that this billet is part of the current recipe card. 

As an additional task, UAC would like the robot to measure the billet and compare it 

against the billet length listed on the recipe card. 
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Chapter 2: Literary Reviews 

This chapter discusses a few papers that the team read. Each section breaks down a research 

paper, journal, or book section that helped with the engineering design process. 

 Robotic Research and Development with a FANUC 

With the increased use of robotics in industrial settings, engineers need to understand 

PLC coding and ladder logic to properly run and code machines. Industrial robots are designed 

and developed by different companies and can follow their own internal coding, but still use 

basic ladder logic components in the programing (Parmar, 2017). The FANUC robot that UAC 

has procured to complete this project comes equipped with joint and linear movements like most 

robots. There are also various I/O interfaces the engineer must know to properly code the tools 

and hardware attached to the FANUC. Companies will offer training packages for their robots to 

teach technicians the basic coding platform for the PLC.  UAC has an engineer, Brian Norris, 

who focuses on coding all the robots in the facility and is helping the team with the logic for 

picking and placing. The team will bring an idea to Brian and have him streamline and increase 

the efficiency of the desired robot moves.  

As a part of this project, the team has created a gripper design for the end effector and 

will in turn need to create a tool frame for the gripper. The gripper will most likely just use an 

offset from the center of joint six. The team will also create user frames to assist with the 

creation of points in the different codes called from the main program. The way to create user 

frames is to create a rectangular shape and to use them as a frame of reference to jog the robot in 

the program (Parmar, 2017). Without formal training on the FANUC system, the team relies on 

Brian to assist with the programming of the pick and place process and creation of the tool and 

user frames. 

 FANUC Collision Detection 

FANUC, the company that makes the robot arm UAC purchased, has a collision 

detection protocol natively in the robot’s software. For this system to work properly, the operator 

needs to tell the robot the weight of the payload it is handling. Then, the FANUC can rotate 

about its J5 and J6 axis. The resistance that the motors encounter, coupled with the payload the 

user input, can be used to find the mass moment of inertia of the payload. If the robot knows the 

payloads mass moment of inertia, it can calculate the amount of resistance the motors should 
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encounter for any movement the robotic arm makes. If the robot encounters more resistance than 

this, it knows it has had a collision. 

This collision detection can be used for things other than just shutting off the robot when 

it hits something. By measuring how much a surface is resisting the movement of the arm, a 

FANUC robot can follow a contour of a surface, or course correct to grab something. This is a 

feature of some models of FANUC robots and is referred to as “SOFTFLOAT.” (Cheng, 2010) 

 Need for the Pick and Place Correction and Alternative Solutions  

The current process is potentially harmful to the safety of the human operator and lowers 

the production rate of the plant. As discussed in the system overview, the current operation 

requires the operator to do a dangerous pick movement with a gantry lift on billets that can be up 

to three hundred pounds. If the billet were to fall the only thing keeping the operator safe would 

be their steel toed boots. The lift is also heavy, clunky, and difficult to move in the pallet area. 

Currently, the operator keeps up with the induction oven since the process is an average of five 

billets per hour. The implementation of the robot is not to increase production, but to ensure the 

correct billet is going into the oven and to keep the operator from harm’s way when placing the 

billets in the oven. The design and structural analysis of a good robotic arm reduces manpower 

and can help on some production aspects (Reddy, 2016). 

Some alternatives to the pick and place system would be a conveyor belt with the billets 

lined up on front of the magazine that would index forward when the induction oven needed a 

billet. Problems with this method would be the transportation from the billet cutting station to the 

induction oven. The plant is not equipped to easily transport the billets in anything beyond the 

billet rack, so the billets would have to be loaded from the rack onto the conveyor belt, which 

would add an unnecessary step in the process. Another solution would be a pulley system 

different from the gantry crane that adds more stability to the billet picking. This solution still 

requires a human operator and UAC wanted an automated solution. UAC purchased the FANUC 

robot for this specific problem and the KSU team was tasked to fully work with just the robot.  

 Pneumatic Controls 

The gripper in this project—which is the focus of Chapter 3:—utilizes pneumatic controls 

to open and close the arms that will lift the billet. These arms need to have enough strength to 

hold up to three hundred pounds. More research had to be done to determine how to choose the 

correct pneumatics and if air was the most efficient way to lift heavy items. The cylinder being 

used on the robot is heavy duty and double acting. On a study done with a double acting 

cylinder, the force of gravity on the time of displacement was tested to determine if the 
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horizontal or vertical position was most affected. The study showed that having the cylinder in a 

horizontal position lacked the effect of gravity on the time. For both horizontal and vertical 

positions, the higher the pressure the faster the displacement time (Jiménez, 2020). The cylinders 

on the UAC gripper could have been used in the vertical direction, but the billets would have 

been too heavy on the cylinder with any gravitational force.  

A single acting cylinder is also useful in not having to find the exact force needed to lift 

the billet. The gripper arms will close and want to close all the way, the billet will stop the 

gripper arms from getting to their shortest length, and forks on the end of the gripper will lift the 

billet while the cylinder is still pressurized and in a closed position. Had there been a need for 

force calculations with a double acting cylinder, a closed feedback control loop would have been 

useful to achieve the desired strength (Ngo, 2017). The loop would give better control of the 

system and hold the correct pressure while the arm is in motion. This solution would be better for 

smaller applications with fragile items being lifted, such as in prosthetics. The billets are made of 

aluminum and can be squeezed up to the maximum pressure of the cylinders in use, making the 

force feedback loop unnecessary to create.  

 Sensor Implementation  

When considering the type of vision needed on the robot cell, the team investigated 

lasers, cameras, proximity sensors, and LIDAR. The LIDAR was discounted quickly due to the 

high price and complex coding required to run in the plant. The solution seemed too complicated 

for what UAC was looking for, which was also the reason cameras were ruled out. The camera 

solution was found to be unreliable in certain lights and needed a microchip to code the process 

of finding the billet. Some other downsides to these two are they require time to scan the billet 

area, are not fast at data processing, can both be expensive if the camera needed add-ons, and 

reacted poorly in changing environments (Pajor, 2014).  The team ultimately decided to go with 

distance lasers, but only to measure the billet length, and proximity sensors to find the billet. The 

simple sensor solution is what UAC prefers and will be easy to implement when testing starts. 

The rack has to be more controlled to make sure the gripper can go to the correct locations, but 

the production team has said this will be achievable in the future.  
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Table 1: Trade Study of Sensor Options 

 

The team quantified the results for the different vision options to determine which was 

the best option for the cell. In Error! Reference source not found., each category was given a 

weight above to see how important the team would find the item. The lower the weight, the less 

important. Accuracy was one of the biggest factors when initially considering vision. The higher 

the score of the solution, the better the solution would be to our cause. The highest scored 

solution was the laser, camera, lock-in combination as chosen by the team. When this was 

presented to UAC, they requested the use of a proximity sensor in place of a camera to help 

cheapen the complexity of the system.  

As vision systems and industrial robots get more advanced, 3D sensors have become 

more common place for mapping a cell (Parmar, 2017). The team initially wanted to implement 

the laser and camera combination to allow the rack and billets more freedom around the cell, but 

the UAC’s engineering team prefers 2D methods of sensors as it is what they have on hand. 

UAC also wants the quickest to test and run solution with minimal training for their current 

operators, making the laser and sensor combination the best approach for the customer’s needs.  

 Safety Research 

Safety in robotics is a big concern in manufacturing and industrial environments. The 

articles researched are overviews of safety in these environments. Industrial robot safety, 

managing industrial risk is about lowering risk factors when working with robots. For example, 

taking the motion of the robot into account is a huge risk factor that can be minimized when 

thinking about making sure the motion is slow and away from unsafe areas. (Hoske, 2018). 

Robotic Safety Guarding is about the safety measures that are beneficial to control a robot cell.  
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This article also gives a straightforward breakdown of what a robot cell needs, which is spot on 

to the initial assessment of items needed for the robot cell (Mantel, 2019). 

 Proximity Sensor Research 

A look at the industrial sensors landscape is an article evaluating different sensors in the 

industrial environment. In exploring the vision system, a vast complexity was found that UAC 

did not want to take on. This led to the use of proximity sensors in conjunction with control of 

the billet and rack in the robot cell. In the evaluation of proximity sensors, the inductive 

proximity sensor was noted as the most reliable in a metallurgic industrial environment. 

“Inductive proximity sensors are durable and extremely reliable solid-state technology” (Waugh, 

2020). Most inductive sensors have a hard time picking up on aluminum because they are 

designed to be used with steel, but luckily there are specially designed sensors for nonferrous 

sensors. 

“Nonferrous sensors will detect metals such as aluminum better than 

they sense iron, while all-metal sensors will pick up on all kinds of metal at the 

same sensing distance” (Consider All The Factors When Selecting The Proper 

Inductive Proximity Sensor, 2020). 

 Safety Relay Research 

In looking into safety relays and assessing a multifunctional safety relay the team ran 

across the below statement. 

“Very simple applications are often best served by one or two single-

function safety relays and don’t require the added expense of multi-function 

relays. A machine, robot, or other system that may only have an E-stop along 

with a set of light curtains or door switches is an example of an application 

where a single-function safety relay would be the best choice.” (Filipkowski, 

2014) 

This is exactly what UAC wants implemented. A small single function robot cell only 

really needs a single function safety relay.  It would be less expensive for UAC to incorporate a 

multifunctional safety relay for their whole extrusion process, but because they are implementing 

automation in a piecemeal way and the cells can operate somewhat independently, a 

multifunction relay is not needed. 
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 Cable Management Research 

One of the biggest issues with robot arms is cable management. Robot arms have wiring 

and tubing on them that needs to move with the robot arm. If the wiring is not allowed to move 

with the robot, it will wear out faster and eventually break when operating. In an industrial 

environment this could result in revenue losses and damaged products. Currently, cables are tied 

down in a restrictive way and not allowed to move. This also can cause them to wear out faster. 

The prefer methods are to relieve restrictions “with service loops, and a junction box that 

contains and protects the electrical connectors joining the cables” (igus, 2021). For the team’s 

purposes, only cables that travel between joints six through four on the robot need to be relieved. 

The rest of the cables are already wired and/or have extra room in the built-in cable carrier on the 

robot. The four to six joint segments will need to have extra slack provided by the service loop. 

This will allow the end of the robot arm a lot of freedom to move without compromising the 

cables. The robot will also have a cable carrier on this segment to protect the cables in an 

enclosure and make sure they don’t get caught on anything while moving. 

  Electrical Wiring Research 

One portion of the project is the electrical wiring. While all of the physical labor of 

wiring will be done by UAC, the team does need to make sure the solution provided is a strong 

design that will define the wiring that needs to be done. Understanding the wiring is a basic but 

important portion of any industrial electrical project. Review on Electrical Wiring (Types, Sizes 

and Installation) breaks down different types of wiring, what situations they should be used in, 

and their correlation to power, voltage, and amperes (Mustafa T. Mohammed Alhashimi, 2019). 

This is applicable to the project because there are different wiring situations in the robot 

cell. The main power to the robot is 480-volt three phase power that runs about 18 amps. This 

will need to be a multi-conductor cable with 3 conductors and a neutral wire. Power also needs to 

be run via wires to the sensors in the robot cell. This will be 24 volts but will not require a high 

ampere level, so it can be a low gauge. Other wirings will be input and outputs; these will mostly 

be somewhere around 24 volts and will include digital, analog, and OSSD signals. Again these 

are low ampere levels so a small gauge wire is all that is needed.  
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Chapter 3: End Effector/Gripper 

This chapter focuses on the design of the gripper. It explains the philosophy that led to the 

current design, as well as reviewing some of the alternatives that were considered. 

 Examples of Alternatives 

This section explores gripper style, construction method, material selection, and fork 

placement. The design, model, evaluate, loop that was used resulted in many alternatives not 

being fully fleshed out. The next section details some of the smaller design changes that did not 

have formal alternatives. 

3.1(i) Selection of Gripper Style 

UAC left most design choices open to the team. One such choice is the style in which the 

gripper picks billets. Reference images of the styles considered are in Figure 8. These three 

styles are discussed and compared in detail below. 

 

 

Figure 8. Examples of end-effectors considered. (a) Vacuum gripper from Schmalz (SCHMALZ, 2021). (b) 

Claw in middle from Schunk (SCHUNK, 2021). (c) SolidWorks model of the picker at both ends. 

(a) (b) 

(c) 
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The UAC engineering manager suggested using a vacuum gripper—such as the one 

shown in Figure 8(a)—to grab the billet and so this was the first alternative investigated. 

Unfortunately, vacuum grippers able to conform to such a large diameter are not offered off-the-

shelf (OTS). 

The next gripper style considered was a picker that grabs the billets by the ends—such as 

the one shown in Figure 8(c). This mechanism requires a large stroke to accommodate the billets 

UAC loads into the oven. 

 

Figure 9: UAC’s current solution for picking up billets. 

Currently, UAC operators use a claw that grabs the billets by their middles as shown in 

Figure 9. This method was the next one investigated—such as the one shown in Figure 8(b). 

However, the current process requires an operator to manually maneuver the gripper into place 

over the billet at an awkward angle. It was deemed that this level of tactile feedback was too 

complex to program. 

Ultimately, the picker at both ends was chosen as the best design. The criteria considered 

are tabulated below in Error! Reference source not found.. The highest weighted category 

(“Probability of Success”) looks at the probability that the gripper style will meet all of UAC’s 

requirements. For example, the vacuum gripper scores poorly because no OTS vacuum flange 

exist for Ø10 inch cylinders. As such, the team would have to design a custom flange, which 

would not be anywhere as reliable as an OTS option. Similarly, the vacuum scores poorly in the 

“Reparability/Replaceability” category because the custom flange would require a specialized 

machine shop to make replacement parts. The vacuum and claw in the middle score best on the 

“Footprint” category because they are small. The Picker at Ends would need to be longer than 

the longest billet, so it will take up a lot of floor space. The Claw in the Middle would require a 

change to UAC’s billet rack, so it scores low on the “does not interrupt current operations” 

category. 
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Table 2: Trade study of gripper style options. 

 

3.1(ii) Selection of Gripper Construction Method 

Four styles of gripper construction were originally considered. They were primarily 

judged on cost, weight, manufacturability, repairability, and probability of success. 

The first and most obvious end-to-end gripper construction method is an OTS gripper. 

These exist and UAC purchases grippers from Schunk for their other robots. However, to do the 

end-to-end gripping, the gripper needs at least a twenty-seven-inch total stroke. Neither Schunk, 

nor any other end-effector manufacturers offer an end-effector with this large of a stroke. 

The first custom method considered was a welded frame constructed of hollow structural 

steel (HSS). This design maximized strength and simplicity of manufacture given that all parts 

could be cut from OTS HSS members and welded together. This design would potentially be 

heavy, and the welded construction would make repairs more difficult. 

The second design involved assembling the gripper using machined chunks of solid 

aluminum. This design is almost as strong as the HSS frame, but given the size of the billet, 

would require large—and expensive—custom machined components. 

The third design uses sheet metal components that would be waterjet, and then bolted 

together. This is a compromise between the simplicity of the components in the welded HSS 

frame, and the interchangeability and ease of repair provided by machined components. 

3.1(iii) Material Selection 

UAC’s original recommendation was to construct the frame out of stainless steel. This 

recommendation was made because of stainless steel’s hardness and abrasion resistance. 

However, given the large size of the picker style gripper that was chosen, the team is 

recommending a hot rolled steel (HRS) instead. Stainless steel (SS) has a higher material cost 

and machining cost. While it does provide additional hardness as mentioned, the team does not 
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feel that these offsets it’s additional cost. After meeting with him, UAC’s engineering manager 

agreed. HRS was not the only alternative considered. The team looked at constructing the frame 

from 304SS ASTM A-240, AISI 1045 HRS, AISI 1018 CRS, and 5052-H52 Al. Error! 

Reference source not found. below breaks down some of the quantitative differences of these 

metals, but ultimately, the choice came down to either 1045 HRS or 1018 CRS. 

Table 3. Notable properties of compared materials.1 

 

While the lower price of the 1045 HRS was nice, ultimately it was concern over residual 

stress that drove the decision to use 1045 HRS. Because so much material is being cut out. The 

team determined that the residual stresses within a CRS will likely deform the sheets that make 

up the gripper after it is waterjet, and the gripper will not perform properly.  

3.1(iv) Design of Billet Picking Forks 

The first end-to-end picker used friction to hold the billets in place. The motion study in 

Figure 10 was performed to find a pneumatic piston powerful enough to hold onto the billet. 

UAC ultimately vetoed this design because it would fail deadly. If an airline were cut, or the 

compressed air failed, the billet would slip out of the gripper and potentially damage something. 

 

1 These values come from Table-20 and Table-24 of Shigley’s Mechanical Engineering Design (Budynas & Nisbett, 

2016). 

Materal Grade Yield Stress Hardness

Cost for 1'x1' x 

1/4" Sheet

304 SS ASTM A-240 30 ksi 215 BH $66.02

AISI 1045 HRS 45 ksi 163 BH $33.26

AISI 1018 CRS 64 ksi 126 BH $48.36

5052-H32 Al 27 ksi 62 BH $33.15
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Figure 10. Screenshot of the setup for the motion study in #03-0000-0. The study includes gravity and friction 

between the arms and billet ends. 

The next billet holding method considered was a pair of forks beneath the billet. The arm 

uses two forks because any more increases the grippers chances of hitting the billet end when the 

jaws close. Because only two forks were used, extra care had to go into making sure they would 

be strong enough, and the billet would be securely cradled by the forks in all modes of operation. 

Hand calculations were completed to ensure the diameter and length of the forks would 

lift the heaviest billets without failing. The hand calculations (see Figure 11) were completed 

with a high Factor of Safety (FoS). The calculations are shown to demonstrate that the forks with 

a diameter of three quarters inch and length of three inches are more than adequate for the three-

hundred-pound billet. Refer to Error! Reference source not found. as the legend for the hand 

calculations. 
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Figure 11: Gripper Arm Hand Calculations 

Table 4: Hand Calculations Legend 

 

Symbol Definition 

yield Yield Stress 

A Area 

D Diameter of Forks 

L Length of Forks 

 Stress 

In addition to the size of the forks, the placement of the forks is important. The forks 

need to cradle the billet when the gripper lifts straight up, and when it lifts at a 10° angle. The 

forks also need to not hit the other billets. Figure 12 show the sketches that were drawn in 

SolidWorks to find what position of the forks satisfy these criteria. Figure 12(a) shows the billet 

being picked up, surrounded by five other billets. Figure 12(b) shows a billet that is next to the 

rack upright and the three adjacent billets. These need to be picked up at a 10° angle. 
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Figure 12. Sketches showing the interactions between the billets, rack, and forks when (a) picking straight up 

in the middle of the rack and (b) when at a 10° angle picking up the edge billets. 

 Parametric Design 

The team’s design philosophy is fueled by the agile approach. A section of the gripper is 

designed. It is simulated, it is perfected in a vacuum, and then the next section is added. Next 

both sections were simulated together, and their interactions are perfected. This was continued 

until the entire design was completed. 

This design philosophy resulted in many incremental decisions as opposed to large 

decisions that necessitate a formal trade study. Its results can be seen in the gradual shaping of 

the gripper shown in Figure 13. 

 

Figure 13: Changes in the gripper design (a) #03-0000-0 is the first iteration of the gripper. It is made from 

304SS and uses friction to hold the billet. (b) #03-0000-D uses a different frame made of 1045 HRS and forks 

to hold the billet. 

This section will show a few key examples of the agile design approach and explain why 

the design decisions were made. 

3.2(i) Integration of Vision Systems 

An early concept for the design involved the use of many laser measurement devices on 

the gripper, but this idea was discarded in favor of using cheaper proximity sensors. The original 
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idea was to use the laser sensor to detect the billets in space from above, but modifications to the 

frame allowed for features that contour to the billet, which can guide the gripper into place. 

These features, in conjunction with proximity sensors can generate a closed-feedback loop that 

will locate the gripper over the billet without expensive lasers. 

3.2(ii) Cut-out for Fitting around Rack Upright 

The first three versions of the gripper assembly use a side plate that spans the entirety of 

the gripper’s length. However, in testing it was discovered that when picking billets at the ends 

of the racks, this side plate would collide with the uprights of the billet rack (see Figure 14). 

 

Figure 14. Gripper side plate impacting with the billet rack upright. This screenshot shows the gripper 

assembly #03-0000-A and is from the plant layout assembly #00-0000-0. 

To fix this, #03-0000-B was reworked. The weldment that makes up the frame was split 

in half, and a new weldment was created at the middle that the two sides bolt to (see Figure 15). 

 

Figure 15. Split frame design. This image is from #03-0000-B 
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3.2(iii) Changing Movable Jaw Frame for Better Visibility 

In the middle of the project, the team changed their approach to scanning billets. Because 

of this, a camera needed an unobstructed view of the billet end when it was in the gripper. This 

required a simple change to the geometry of the movable jaw frame. A before and after can be 

seen in Figure 16. 

  

Figure 16. Movable jaw frame changed for better visibility. (a) #03-0210-C with the straight bottom support 

and (b) #03-0210-D with a curved bottom support. 

 Testing and Simulations  

Because of the expense of manufacturing a prototype of the gripper, SolidWorks suite of 

simulation software will be relied upon to inform design. 

3.3(i) UAC’s Simulation Request 

UAC understands the industrial environment that the gripper will operate in. They expect 

collisions between the gripper, billet racks, the oven, the robot arm, etc. They have requested that 

the team simulate these conditions. 

They have also asked from simulations to show the grippers normal operating conditions. 

They want to confirm that the gripper will not yield when moving 300 lbs. billets. 

3.3(ii) Execution of UAC’s Simulation Request 

The collisions will be simulated using the “Impact Studies”. The goal is to confirm and 

maintain a FoS against yield of 1.5 for low-speed collisions with the billet rack and oven. These 

collisions are being considered “normal operating conditions”. High speed collisions will also be 
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simulated to represent the robot arm being controlled manually, or a fault in the program. The 

goal of the high-speed collisions simulations is to machine a FoS of 2 against fracture. The 

assumption is that these collisions will be lost time incidents and may require replacement of 

parts of the gripper. 

The static studies of the gripper holding a 300 lbs. billet will all aim for a FoS against 

yield of 2.0. These will simply simulate the force of gravity on the gripper and billet, as well as 

the stress on the bolted connections. 

3.3(iii) Static Study Setup 

This sub-section details the setup and results of a static study run on #03-0000-F—the 

top-level forked gripper assembly. Figure 17 below shows the simulation symbols of #03-0000-

F. 

 

Figure 17. Static simulation screenshot of #03-0000-F. 

The static study that was run focuses on stress in the frame, bolts, and forks. Thus, 

pneumatic components, linear bearings, and foam padding was excluded from the study. The 

billet needs to be included because it resists the force from the pitons, but because its 
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deformation is not the focus of the simulations, it was treated as a rigid body, all other bodies 

were meshed as solids. Figure 18 shows all the bodies in the simulation. 

 

Figure 18. Bodies list for static simulation of #03-0000-F. 

As mentioned above, bolt strength was a key factor, so all bolts were modeled as rigid 

connectors. Bolt torque values are tabulated below in Table 5. 
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Table 5. Bolt 

torque values 

used in the 

static 

simulation of #03-0000-F. Preload values assume no lubrication, and a K value of 0.2. 

Because the gripper is symmetric through the center, it has a symmetric fixture applied to 

cut down on simulation time. The flange where the FANUC robot mounts has eight M10 

foundation bolts and a circular fixture around the ring. The global contact is no penetration with 

a friction factor of 0.3. 

A downward gravity of 32.2 ft/s² and a force of 40 lbf where the piston attaches were also 

applied. Figure 19 shows the different materials that bodies were modeled as. 

 

2 Minimum proof strength of A574 comes from Table 8-10 of Shigley’s Mechanical Engineering Design (Budynas 

& Nisbett, 2016). 

3 Minimum proof strength of Class 12.9 comes from Table 8-11 of Shigley’s Mechanical Engineering Design 

(Budynas & Nisbett, 2016). 

Bolt size and grade 

Bolt Proof 

stress 

Torque in 

Simulation 

Resulting Axial 

Preload 

#10-32, A574 153 ksi2 42 lbf-in 840 lbf 

#8-36, A574 153 ksi2 36 lbf-in 1098 lbf 

1/4-28, A574 153 ksi2 10 lbf-ft 2160 lbf 

M10 X 1.5MM, CLASS 

12.9 

140 ksi3 56 lbf-in 457 lbf 
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Figure 19. #03-0000-F colored to represent what material each body is made from. Blue is AISI 1045 steel, 

Green is 440C stainless steel, Purple is 6061-T6 aluminum, and Red is 7050 aluminum. 

The assembly was meshed using a blended curvature-based mesh, with local mesh 

refinement at the tabs and slots. Figure 20 shows the mesh. As explained above, the mesh is finer 

around the tabs, slots, and bolt holes. The goal was to have the plates be represented at least three 

elements thick in those regions. The mesh is made of 293718 elements. The maximum element 

ratio is 100.85, but only three elements have aspect ratios this high, and those elements are not in 

critical regions. 
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Figure 20. #03-0000-F static simulaiton mesh. 

3.3(iv) Static Study Results 

The simulation was run, and results were recorded. In the first revision, some areas were 

yielding, while other regions were underutilized. This can be seen in the Figure 21. Figure 21(a) 

shows a one of the original shaft flanges that was to be constructed of cast aluminum. The part is 

below the desired FoS, so a different shaft collar was chosen for subsequent versions. Figure 

21(b) shows the close-up of the anti-racking plate. The entirety of this part has a FoS greater than 

8.0, so the lightening holes were increased to remove the unnecessary material. 

 

Figure 21. Results from static simulation of #03-0170-A. (a) Regions that yielded around the shaft flanges. (b) 

The anti-racking plat is being severely underutilized as none of it has a FoS lower than 8. 
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The version of the top-level assembly that was sent to UAC for approval and fabrication 

was #03-0000-F. Figure 22 shows the von Mises stress plot of the static study. As expected, 

higher stress values are round around the bolt holes and the interface with the robot flange. A 

more  

 

Figure 22. Results plot of von Mises stress in the #03-0000-F study. 

A more telling picture of the results comes from the FoS plot. Snips of it can be seen in 

Figure 23. Figure 23(a) show the FoS of the entire model. The minimum FoS is greater than 

1.5—as was desired. The other snips show areas of interest. Figure 23(b) show the side plate 

lightening holes with FoS of ~5 at the inside radiuses. Figure 23(c) shows the inside of the bolt 

holes that connect the side plate to the robot flange plate. This was a high stress region in 

previous versions, but because of sizing of the bolts, and alterations to the tabs, the minimum 

FoS in this region is now ~4. 
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Figure 23. FoS Plots from #03-000-F static study. (a) The whole model. (b) A close-up of the lightening holes. 

(c) A close-up of the back side of the mounting holes. 

The final result plot shown in this report is in Figure 24. It shows the displacement of the 

model. Because it is critical that the linear rails remain parallel, deflection of the linear rails 

needed to be held to a minimum. As shown, the rails only deflect by 50 thousand at its steepest. 

This deflection causes the rails to be at a 0.26° angle, which is within the 1° out of parallelism 

that the bearings can accommodate (McMaster Carr, n.d.). 

(a) 

(b) 

(c) 
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Figure 24. Deformation results from #03-0000-F simulation. (a) Deformation across the whole model. (b) Peak 

deflection of the linear shaft. 

3.3(v) Impact Study Results 

In talks with UAC, it was deemed that impact simulations were not necessary. Because 

cycle times were low, it was deemed that the arm could move slowly, and impacts would be low 

speed and not likely cause damage. 

 Design for Manufacture/Assembly 

Because this project will be manufactured, the team considered the tools and methods 

that will be used to manufacture the gripper. These points have been raised throughout this 

chapter, but this section will focus on some prime examples of design for manufacture (DFM) 

and design for assembly (DFA). 

3.4(i) Use of GD&T for Drawings 

The interface between the robot arm and gripper is formed by a FANUC ISO-flange. The 

flange—mounted to the robot arm—uses eight M10 bolts, two locating pins, one internal 

locating bore, and one external locating lip. The gripper design will use the outer lip for 

positioning, and the eight M10 bolts for securing. This interface needs to be made with tight 

tolerances to allow the robot code to accurately know the position of the gripper in relation to the 

world. For these reasons, the flange mounting plate will be one of the parts that utilize GD&T to 

ensure accurate manufacture (see Figure 25). 
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Figure 25: Example of GD&T used on the machining drawing #03-0411-0-A. 

3.4(ii) Increased Precision for the Movable Components 

The movable elements of the gripper require a higher level of precision to ensure they 

function smoothly and reliably. This informed the selection of the linear rails, linear bearings, 

and shaft flanges. The rails were specifically chosen because of their tight dimensional and 

geometric tolerances, as well as the hardness which allows them to withstand wear from use. The 

bearings were chosen for their ability to accommodate some out of parallelism of the linear rails. 

The shaft flanges and accompanying weld nuts were chosen for their ability to adjust the position 

and angle of the linear rails. 

3.4(iii) Hardware Selection 

The gripper is assembled using only five different sizes of bolts. The frame is held 

together almost entirely with #10-32 x 5/8” and 1/4”-28 x 3/4" socket head cap screws (SHCS). 

The other bolts are for connecting OTS components to the frame. This standardization makes 

maintenance easier on the gripper. This is also an easy place to implement poka-yoke. By using 

just one length of #10-32, and one length of 1/4-28, it is not possible to install the wrong sized 

fastener into a hole. 

SHCS were chosen for most of the frame because they offer superior strength as opposed 

to even Grade 8 hex bolts (Rufe, 2013, p. 296). Because of high stresses observed at some of the 

tabs during the FEA stage, the stationary frame is constructed with 1/4”-28 12-point screws. 

These screws provide more resistance to shear forces. But the larger bolts are chosen primarily 
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because they allow for a higher axial preload. That makes the tab and slot connection more rigid. 

Increasing the axial preload also requires more torque during installation. The 1/4"-28 bolts are 

12-point bolts to give more surface are for applying the extra 6 lbf-ft. 

3.4(iv) Drawings and Standards Followed 

The drawings submitted to UAC were made inside of SolidWorks. The complete drawing 

package can be seen in Appendix . They are compliant with three drawing standards. The general 

drawing standard ASME Y14.100-2013 was followed for the drafting standard. One drawing has 

GD&T which is drawn in accordance with ASME Y14.9-2009. Finally, one drawing has some 

welding symbology compliant with AWS A2.1:1998. Examples of the GD&T and AWS weld 

symbology can be seen in Figure 26. 

 

Figure 26. Snips from the drawings submitted to UAC. The snips show (a) an example of GD&T from #03-

0411-C-A and (b) one of the weld symbols on #03-0300-C-A. 

 Pneumatic system 

The gripper is opened and closed by pneumatic cylinders which are actuated using air 

pressure. The air pressure system is going to be operating at 100 psig. The FANUC robot has a 

built-in air pressure system that will allows users to plug the hose into the base and have 

pressurized air available at the robot arm. In the team’s design, there will be a fore pressure 

regulator put in place to make sure the pressure does not deviate from 100 psig. Also at the base, 

will be a digital pressure sensor and a lock out valve. The pressure sensor will be set to 

deactivate the robot if pressure is lost in the system. This is to keep the robot from operating in 

the event the system loses pressure. The lock out valve’s function allow an operator will be to 

turn off the air pressure to the robot manually so that maintenance can be done.  

The air pressure system is operated by the FANUC controller. The digital air pressure 

sensor will feed a digital signal to the controller when the air pressure is on. The robot won’t 

operate unless the air pressure signal is running a high. The controller will have an open gripper 

close gripper output. This runs to 5-2 solenoid mounted on the robot. When the open gripper 



Hudlow, Spencer, Bharadwaj   Project Penelope 

Chapter 3 | Page 44 

output runs high, the inner port is pressurized and the outer port is vented, then the gripper opens. 

There is also a close gripper output that runs high and pressurizes the inner port and vents the 

outer port closing the gripper.  
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Chapter 4: PLC and Robot Code 

This section provides some insight into the coding methodology of the team, and the manner in 

which code picks and places the billets from the billet rack into the induction oven magazine.  

 

 

Figure 27: Billet Rack with labeled billet positions 

 

The current rack can hold up to 14 billets as shown in Figure 27. The bottom portion of 

the rack will be welded with three pegs to keep the bottom four billets from rolling while the 

8 9 10

3 

11 

5 6 7 

1 2 3 4 

14 13 12 
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rack has less than three billets. Billets can be placed anywhere along the center of the rack; 

therefore, the code will need to reflect different possibilities of centers for each billet. Both the 

oven PLC and the robot PLC will communicate throughout the whole process to run the pick and 

place as seamlessly and simply as possible. The rack will need to be controlled to run without a 

complex vision system as UAC wants this process to be easily replicated. UAC has confirmed 

the reasoning behind the need for control of the rack and the FANUC operator, Brian Norris, has 

approved the process.  

 Robot and Oven PLC Communication 

While the FANUC robot has a very complex and intelligent system to code on, the PLC 

in the oven is easier to set up and stronger to use. The operator will set the oven PLC with the 

recipe card and it will talk to the robot and send the signals for when a billet is needed, the length 

and alloy required, and the number of billets in the order. The oven PLC will also have separate 

alarms from the robot and performs tasks separate from this process in relation to the induction 

process.  

 Pick and Place Process 

This section will cover the different codes and ideas set into the billet picking and placing 

solution using the robot, sensors, and oven to complete the minimum success criteria.  

4.2(i) Finding the Billet 

 

Figure 28: FANUC Robot “Find” Code Snippet  
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To start, the robot will hover above the center of the billet rack and move to position 

fourteen labeled on the rack, Figure 27, and check if the billet is there with a proximity sensor. 

The proximity sensor has a range of around seventeen inches to clear the gripper arms and more 

than halfway through the billet.  If the billet is there the arm will move in the positive and 

negative X positions to find the end points of each billet. The arm needs to turn at a 90 as to not 

hit the robot when moving back and forth while searching for each edge. The robot PLC saves 

the positions as registers when the proximity sensor turns off, meaning the end of the billet has 

been reached. The next step is to subtract these positions from each other, giving the length of 

the billet for the quality assurance portion of the project to confirm with the oven PLC. The oven 

PLC is smarter and more capable than the robot PLC and will do most of the heavy lifting 

process wise. If billet fourteen is not there, the PLC will repeat the process with thirteen and 

decrement down until the sensor turns on. A portion of the code is shown in Figure 28 as the 

FANUC robot is coded in the proper syntax. The longest billet will be the starting billet and will 

have to be chosen first, so UAC will need to make sure the starting billet is at the highest 

position on the rack according to the PLC. The registers are all set to each different billet 

position and will send the robot to the exact position it needs to make sure the robot will make 

the correct moves to get the billet, such as if there needs to be a tilt for the movement.  

4.2(ii) Lifting the Billet 

 

Figure 29: FANUC Robot “Get” Code 
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As shown in Figure 29, after the billet and its endpoints have been found, the code can 

then compute how off center the billets are to move in the correct X direction to lift the billet 

without damaging the arms. Say the highest billet is in position eight with an offset of two inches 

and a total length of thirty-seven inches. The gripper arm can hit the billet at this offset and 

damage the forks at the end. With this pick process, the robot will adjust to the correct center 

then move to position eight with the offset. The gripper arms will then turn off and close and a 

laser will read the distance between the grippers to get the length again. This will reassure the 

system that it has the correct billet lengthwise. The reason for the pneumatics being set as open is 

on and closed is off, is so that if the power cuts off and the gripper loses power, the arms will 

stay closed and not drop the billet. After closing the arms and measuring the length, the robot 

will move back to the center rack and go to the placing code. 

4.2(iii) Placing the Billet in the Oven 

This code starts with the assumption that the robot already has a billet in the arms and is 

currently hovering above the rack. The robot will then move with the billet towards a camera to 

read the QR code stamped at the side of the billet. The code can be on either side, so if the oven 

PLC does not confirm a read, the robot will pull back and turn the billet around to check if the 

other side has a code. If there is no code the robot will throw an alarm, as well as if there is a 

code but it does not match the recipe card. If the QR code is wrong, the billet will put the billet 

back in the rack and wait for the operator to start the process again  after making sure the new 

recipe card and billet rack match. If the QR code is correct and says the alloy is the one needed 

for the order, the robot will use the length taken from the measurements in the find and lift code 

and subtract it from the length of the magazine. This ensures the billet is placed close enough to 

the proximity sensor in the magazine that the oven PLC can read the billet there. After the billet 

has been placed, the robot moves back to the rack and will restart the code to lift the next billet 

until the oven indicates the last billet in the order has been picked.  

 User Alarms 

The robot will have several alarms that will raise and warn the operator when the system 

is not working effectively as possible. In the picking and placing portion of the code, the user 

alarms will be for when there are no billets on a rack and there should be. The operator will need 

to bring in a new rack at this point and restart the process. The next alarms would be for the 

quality assurance portion of the project. If the billets are the wrong length or alloy, the operator 

will be called and informed the rack is wrong. Other user alarms will raise when the billet is 

dropped and will be able to tell from the floor sensors talked about in Safety. Lastly, the robot 

will need to inform the operator when power is cut off from the cell or the robot has had a 
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catastrophic problem that prevents the robot from continuing with the process. The operator will 

then need to go to the cell and use the gantry crane currently in place to manually lift the billets 

into the oven. This is the backup solution to issues occurring with the robot.  

 Testing and Implementation 

The robot is set up in an offsite warehouse near the facility where the code was written 

and worked on. The code was tested setting up a pushbutton box to send high and low signals to 

the robot to simulate the PLC oven and camera inputs. Brian set up the pushbutton box to give 

the robot the expected outcomes for any production run. The team also checked that the robot 

performed the user alarms and wrong alloy/ billet length portions correctly. If there was a 

testable outcome for the robot, the team performed it at the warehouse before bringing the code 

to UAC. After the gripper is fabricated, it will be attached to the robot and tested with the code 

as well. Once all the outcomes have confirmed the expectations of the robot, it will be brought to 

the production floor and run in the new environment. The safety features will be added and 

implemented into the facility, and the project will have been completed from UAC’s end once 

the robot can run without problems. UAC may make alterations to the code as the needs of the 

facility change, but the PLC code is commented on to reduce any confusion on the performance 

of the robot.   

 Alternative Solutions 

The controllability of the rack is severe due to the lack of a vision system in place. The 

team considered adding a camera to find the circles from the side of the rack and rectangles over 

the top of the rack. The camera would need a microcontroller to compute the number of billets 

and the position the robot would need to go to and pick the billet. The robot does not have a 

strong enough system to get the data from the microcontroller, it would have to be converted in 

some way and then sent over to the camera. This solution was too complex for UAC’s liking and 

they offered the proximity sensor process for the team to follow. There have been many changes 

made along the way and will continue to have many more as the live testing begins and the 

system is ensured with the gripper and sensors.  

The team also tried to work on collision management with different sensors and cameras, 

but the system became too expensive for the process. UAC is not concerned about collisions with 

the robot as the robot will be moving slow to keep up with the low through put of the oven and 

will be enclosed in a cage. The SOFTFLOAT function mentioned above in FANUC Collision 

Detection would be a good way to avoid collisions and fault the robot, but the function is an add-

on UAC does not want to purchase. The team will use the safety features involved in the cell to 

stop the robot if any dangerous moves start to occur. 
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Chapter 5: Safety 

A very important aspect of every robot cell is safety. With automation in the industrial 

environment robot cells are required to meet safety standards. This robot cell is going to use a 

robot arm to lift heavy metal billets, perform a radial swing about 75° then place that billet. 

There are many hazards associated with this automation and the design of the cell will need to 

account for all of them in order to keep the people who work at UAC and UAC’s products safe.  

The first task to providing a safe robot cell is to conduct research. Section 2.6 shows 

literature reviews conducted research on safety. From the research, the team learned not only 

about the safety requirements, but also the vast amount of safety techniques and sensors that are 

used in the industry. The article, “Robotic Safety Guarding,” states the task in simple terms. 

First, the team needs to get the space dialed in. Then, the team will design where the guards and 

gate should be positioned. Next, the team chooses safety sensors that relate to the functionality of 

the robot cell. Finally, the team designs the safety circuit and test how the different parts interact 

(Mantel, 2019). 

 Cell Layout  

Before safety was considered, the team had to design how the robot cell was going to 

function. Once functionality was ironed out, the area of operation was known, the billets entering 

and exiting the cell was known, and amount of human interaction was known. With this 

information the first thing that was obvious was that guarding needed to go around the perimeter 

of the cell with certain equipment remaining outside. “Controls and equipment requiring access 

during automatic operation shall be located outside the safeguarded space,” (ANSI/RIA R15.06-

1999) is the standard for installation of robotic machinery. Below is another excerpt of the ANSI 

RIA that has to do with keeping emergency shut offs unobstructed.   

“Every robot system shall have a system emergency stop circuit and a 

safety stop circuit. Each robot system operator workstation and any locations 

capable of controlling motion shall be provided with a readily accessible, 

unobstructed emergency stop device.” (American National Standard for 

Industrial Robots and Robot Systems, 1999) 

With this standard it becomes obvious what needs to be inside the guard and outside the 

guard. 
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5.1(i) Guarding  

The guards need to be at least 6 feet high to keep people and other objects from 

encountering the machinery inside and keep anything that is supposed to be in the cell from 

going outside the cell. The gate to the cell needs to be equipped with a lock and sensors to 

confirm the gate is shut, which will keep the machinery from operating when open. This cell 

needs an opening of at least 6 feet wide to allow an operator to load and unload a rack of billets 

into the cell. Because of this, the team chose a double door approach that will open outwardly 

and lock from the outside. The guard will also need to be strong enough to withstand an impact 

from the robot arm. The cell is not big enough to cover the area of a robots reach, but since the 

guard will be strong enough to withstand an impact, this will not be needed. ANSI/RIA requires 

a 

“…mechanical limiting devices, including mechanical stops integral to 

the robot, shall be capable of stopping motion at rated load, maximum speed 

conditions, and at maximum and minimum extension for the device” (American 

National Standard for Industrial Robots and Robot Systems, 1999). 

To meet this standard, the fence chosen must be strong enough to contain the robot arm. 

In looking at fences online they come in a variety of strengths and most are rated to meet this 

standard. 

5.1(ii) Rendering of Cell Layout 

Figure 30 shows a bird’s eye view of the current layout design. 8-foot-tall guarding 

surrounds the cell and the overarm crane. A 6-foot-wide double door is on the right side for 

bringing in the billet racks. Four Keyence SZ-01S floor sensors are placed throughout the cell to 

provide full coverage. One of them can be seen beneath the fence in the lower right-hand corner. 

The fencing is placed such that it interfaces with the existing fence and does not block off access 

to the panels in the billet oven. Finally, the FANUC control cabinet is located outside of the cell 

in the upper right corner of the image. 
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Figure 30. Bird’s eye rendering of #00-0000-D. 

 Sensors  

“Once the physical barrier is designed, the specifications for the 

electronic safety devices can then be determined. These devices include safety 

interlock switches for door and removable access panels, safety light curtains 

and safety laser scanners for frequently accessed areas and all the required 

safety controllers, relays, cables and hardware to design the proper safety 

circuit.” (Mantel, 2019) 

The first thing that needs to be put in place is a sensor that makes sure the robot will not 

activate unless the gate is closed. Non-contact interlock sensors are magnetic-based sensors that 

will only allow the robot to activate if they are a closed switch and will deactivate the cell if they 

are an open switch.  

The physical barrier is in place to keep people out while the cell is in operation, but how 

would one know if a human is already in the cell before you start operating? Robot cells also 

need to be equipped with scanners that scan the floor and will deactivate the machinery when 

tripped. This ensures that nothing is in the cell that shouldn’t be when the robot is active. To 

achieve this, as close to complete floor coverage as possible from the floor scanners is required. 

Example of the OSHA standard below   

“One or more methods of machine guarding shall be provided to 

protect the operator and other employees in the machine area from hazards 
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such as those created by point of operation, ingoing nip points, rotating parts, 

flying chips and sparks. Examples of guarding methods are barrier guards, 

two-hand tripping devices, electronic safety devices, etc.” (Occupational 

Safety and Health Administration, 2001)   

There is a myriad of devices to use for this function, but the reason floor scanners were 

chosen is because they are specifically built to complete this task. Light curtains are good for 

horizontal openings or specific areas where someone could enter the cell. Safety mats are also an 

option but too expensive when having to cover the whole cells floor with mats.  

 

Figure 31. Floor layout showing safety pucks. 

Figure 31 is a breakout of floor scanners in the robot cell. The scanning areas are in pink 

and the floor scanners are labeled as safety pucks in black. This is a preliminary drawing and is 

subject to change once the floor scanners are selected and UAC reviews our design. 
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5.2(i) Relay 

The relay is the heart of the safety system. This is where all safety sensors are feeding 

their output signals. When the signal is changed or cut off, the relay sends another signal to the 

robot arm’s faulting mechanism and the robot is essentially turned off in a safe way. Because this 

is such an essential function, there are multiple relays in the safety system and a complex input 

and output system is put into place to ensure if there is a minor malfunction in any of the safety 

sensors or relays, the robot is triggered to fault. The two-relay system is what UAC currently 

uses. There is a main relay module that connects to all the sensors and a second relay that 

connects to the main relay and directly to the robot. Understanding more about safety relays and 

the best methods for them to operate is one of our future items. 

 

Figure 32. Preliminary safety circuit diagram. 

Figure 32 shows a preliminary circuit diagram of the safety sensors for the robot cell. In 

it is the four floor scanners and the interlock sensor. There is also the main relay and the output 

relay. 

5.2(ii) Air Pressure Safety  

Because the team is using pneumatic cylinders, pressure safety sensors are needed as 

well. This is a future item for prospective research and design into the system.  
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5.2(iii) Wire covers  

There are some safety measures that are less obvious, but just as important.  For example, 

when machinery is operating, the electrical wiring that powers that machinery needs to be 

protected from that machinery if it falls or drops something. In this instance, the robot is picking 

and placing up to 300lbs billets, so whatever wiring put in the cell must withstand a 300lbs 

impact. The wiring put within the cell will have an industrial covering on it.  

 Current Safety for the Robot Test Cell   

Safety sensors have been ordered by UAC to test with the robot. The safety system of the 

cell is designed completely and has been approved by UAC. There may be a redesign based on 

results from testing. 
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Chapter 6: Electrical 

The electrical work up for this project is a simple work up and will be relatively easy to wire. 

There are a few reasons for this, the first being the availability of massive amounts of power 

close to the robot cell. The robot cell function is to load billets into an induction oven. The 

induction oven runs over a thousand amps. Luckily, the 480-volt three phase robot only needs 18 

amps. This is a very little power draw in the industrial complex so it is not something that will 

increase the power bill. 

 Digital I/O Wiring 

The second reason this is an easy implementation is that the robot is already wired with 

inputs and outputs. The FANUC robot arm comes prewired with inputs and outputs as well as 

24-volt power supply (see Figure 33 for a circuit diagram of the inputs and outputs). The sensors 

on the gripper can be wired on the arm and will show up on the controller to be coded. The 

exception to this rule is the analog input the team will need for the laser length measurement. 

Luckily, the analog input wire from the laser can go into the wire covering on the robot and run 

directly to the controller.   

 

Figure 33. Digital I/O circuit drawing showing all digital inputs and outputs from the robot. 
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The third reason this electrical implementation is going to be easy is that the FANUC 

controller has a safety shut off built into it. Despite the safety circuit generally being complex, 

the FANUC has a plug and play system that allows users to just plug in digital safety switches. 

The controller has a faulting input plug in its hardware that will fault the robot when tripped. 

This is user friendly and if it were not built into the robot, then it would have had to been coded 

into the PLC. 

 Wiring Layout  

 

Figure 34. Electrical wiring image showing all electrical wiring in the robot cell 

As shown in Figure 34, the power wiring goes from the oven to the robot controller. The 

controller then runs power to the robot and power to the sensors on the robot. From the 

controller, power will be run to all the safety sensors on the floor. The inputs and outputs will all 

be run to the robot controller as well. The controller has an ethernet cable that is run from the 

controller to the oven PLC for communication. In addition to the ethernet cable, an input wire 

will be run to the PLC to make sure communication is working. Without this, the robot arm has 

potential to keep running based on old communication if the PLC goes out or gets stuck.  

The electrical design still needs to be reviewed by UAC, but the team is confident it will 

be accepted. 
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Chapter 7: Project Management 

 Gantt Chart 

The current Gantt chart has been updated to include the final hand off KSU and UAC need to 

coordinate. The gripper has yet to be completed as well as the QR scanning. The official design 

for the project has been tested by the team and ensured before adding the gripper.  See Appendix 

A for the updated detailed Gantt chart that covers the previous gripper assignments, the vision 

system, the rack, the robot cell, and system implementation and testing. The team has completed 

the assignment as best they can with the resources provided.   

 Budget 

The budget was originally set at $94,000 with the robot costing $60,000, the safety gates 

and fencing at $10,000, gripper at $10,000, and new racks at $700 a piece needing 20 racks total. 

With the project farther along now, the current budget, is coming out to $79,610 (see Error! 

Reference source not found.).  

Table 6: A) Current Budget (above) B) Itemized Budget Including Consulting (below) 
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If UAC had gone to a consulting firm the labor cost would be around $135 per hour. This 

team works around three hours a week together that would be considered billable. For the two 

semesters worked at UAC the team has completed around a total of thirty-two weeks totaling up 

to $38,880 of man hour worked. The rest of the man hours such as in the gripper fabrication and 

the billet rack build are included in the cost of each system. Error! Reference source not 

found. also includes the consulting fees but will not be a part of the actual budget UAC 

provided. 

The robot is still $60,000 but the gripper is much less expensive than anticipated at 

maximum of $4,000. The safety features are at nearly $10,000 using the saved money from the 

gripper for the floor sensors. The last portion of the budget goes to the billet picking format used, 

which is the laser and proximity sensor combination with a lock-in for the billet rack. The cost of 

the vision system is around $300, and the lock-in station should be $200 to weld in a machine 

shop. The camera needed for the system is only for scanning the QR code on the billet and is its 

own separate project with IT now, and not added into the budget for the Pick and Place project. 

The requirements for the camera include it be pixelated enough to pick up the QR code on the 

shiny material of the aluminum billet, lighting may be required to make sure the camera can pick 

up the code in the robot cell. The labor has not been factored in as UAC has not offered guidance 

on the man hours required or paid to workers and operators. 

After more testing, the team decided to use proximity sensors within the range of $50 to 

find the billet. The billet rack will need to be welded with three blocks, so that the bottom rack of 

billets will not roll around when the billet rack is less than full. Most of the sensors for the safety 

gates will be in-house items from the warehouse and will be added after the robot is coded. The 

code was test ready with sensors by the end of March and the budget was finalized as well.
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Chapter 8: Results and Discussion 

 What Was Delivered 

The team has given UAC a drawing package that details how to construct the design 

gripper, FANUC code to control the gripper and run the production sequence, and a wiring and 

safety diagram that shows how to construct the cell. The team has provided UAC with 

everything they need to pick up the project at a testing stage and move into implementation. 

8.1(i) Gripper 

The team has given UAC ASME Y14.100, production-ready prints to fabricate and 

assemble the gripper to. The team has provided UAC with proof that the designed gripper will 

perform as desired. The team has done this through SolidWorks simulations and experimental 

testing with a cardboard mock-up. 

8.1(ii) PLC and Robot Code 

The team has written code for the FANUC robot capable of performing the pick and 

place operations, the billet position scanning, and moving the billet into position to be scanned.  

8.1(iii) Safety 

The team has worked with Brian to identify what sensor model numbers are needed for 

the cell. The team was generated a floor plan that shows where the sensors need to be placed, as 

well as the layout of the guarding. 

8.1(iv) Wiring 

The team created diagrams that show how the safety sensors will be wired to the robot 

PLC and to the oven PLC. The team has also shown how to run the cabling for the robot, as well 

as the positioning of all electrical components. 

 Next Steps for UAC 

Because the gripper was not fabricated in time to test, the team was unable to build UAC 

a functioning production cell in a test environment. UAC will need to perform the testing of the 

design that the team created. 
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Because of the lack of testing, UAC will need to modify the FANUC code to fix 

collisions that may occur when the fabricated gripper is on the end of the robot. They may also 

discover issues that the team’s testing was not able to uncover. 

The team did not receive a chance to test the safety features in a live environment, so 

UAC will need to test the recommended sensors, and ensure they function with the robot cell. 

Finally, UAC needs to implement the cell in live production. 
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Chapter 9: Conclusions 

While the team was not able to hit all the success criteria, the team has presented UAC 

with a finished design for them to implement and test. The gripper succeeded in the simulations 

requested by UAC, the electrical design met UAC’s standards, the safety design meets industrial 

standards, and the team wrote PLC code that should function in the production environment. 

This project has exposed all three members of the team to subjects not typically covered 

in their respective curriculum. The project also served to encompass the teachings of the three 

disciplines, and this paper is a good representation of the knowledge the team gathered through 

their entire college experiences. 

UAC’s next step needs to be testing the cell. The team has provided all the 

documentation UAC needs for a testing environment implementation of the cell, so UAC needs 

to construct the cell and perform the prescribed testing. Finally, UAC needs to implement the 

cell into production after correcting any errors that arise during testing.
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Chapter 11: Appendix A (Gantt Chart) 
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Chapter 12: Appendix B (House Ofof Quality) 
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Chapter 13: Appendix C (Work Assignment Breakdown) 
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Chapter 15: Appendix E (Contact Information) 

Please feel free to contact us with any questions.  

Tharkun Hudlow 

Electrical Engineer 

 Email: Tharkun.Hudlow@gmail.com 

 Phone #: 404-542-4593 

 

Kathryn Bharadwaj:  

Mechatronics Engineer 

 Email: KathrynBharadwaj@gmail.com 

 Phone #: 678-787-8054 

 

Logan Spencer 

Mechanical Engineer / Manufacturing Engineering Minor 

 Email: lspencer9349@gmail.com 

 Phone #: 404-719-0551 
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Chapter 16: Appendix F (Reflections ) 

 Tharkun Hudlow:  

The interdisciplinary project was a great experience for me. It was great working with 

other engineers and bouncing ideas around with them. I was amazed by the abilities of the other 

engineers on my team. Logan is a wizard with SolidWorks and great at explaining static and 

dynamic mathematics. Kathryn is a robot whisperer and did a great job developing the robot 

code for our project despite never having written any similar code before, this experience 

working with UAC gave me great insight into the day to day of an engineer especially in 

manufacturing. Our contact, Brian, at UAC was very knowledgeable in many areas and knows 

every detail of the manufacturing process at UAC.  

I think this project was a great practical experience. The second semester was dominated 

by this research paper and did not allow for as much designing and practical work, but I think it 

was helpful for us to put our ideas on paper versus just thinking them and using them practically. 

Unfortunately, this project will still need more work after we are done. Because we never got a 

software engineer on the team, we were not able to complete the database. The QR scanning 

portion is also not finished because the internal project at UAC is not finished. Those two 

portions will be completed by UAC internally. We are hopeful that the gripper will come in from 

the machine shop soon and we can do some live testing this semester. If this doesn’t happen 

UAC will have the do the testing without us. We are going to work up our designs and a 

description of their function for UAC. 

 Kathryn Bharadwaj: 

This interdisciplinary approach to the senior project, with heavy company involvement, 

was a very interesting and pragmatic solution to students graduating from college with little to no 

experience working in the field. I loved the way I got to interact and learn from mechanical and 

electrical engineers and see how far their schooling progressed past mine in our respective fields. 

It was also very useful to have a company give us a project to set our goals with and to guide us 

on the path of how real engineering works. While the class gave us a look into the inner 

workings of companies reaching out for consulting information, some problems we faced 

focused on a lack of prompt communication from our business partners. Understandably, these 

companies had many other aspects of the business to look after and got busy, but this made it 

harder for us to receive feedback and to know how to successfully complete the project without 
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their input on hurdles along the way. There was also the contingency that the project be 

completed and tested with the gripper in place, but the gripper getting held up at a machine shop 

for weeks put the testing on hold and required the team to work with stand ins. While we feel we 

completed the project to the best of our ability, having frequent contact with UAC would have 

helped us complete this project to the fullest.  

 Logan Spencer: 

Overall, I viewed this project as a valuable learning experience. I think that one of the 

biggest oversights of the Mechanical Engineering department, is a lack of exposure to the 

electrical engineering and mechatronics department. In my five years, I never learned anything 

about robot coding, electrical routing, or project management. While I am by no means now an 

expert in any of those areas, I enjoyed listening to my teammates discuss solutions, and feel that 

next time I work on a project involving robots, I will be able to actively participate in those 

discussions. 

I think the reason we failed to meet all of our minimum success criteria was twofold. 

Primarily, I think we underestimated the work UAC wanted us to do. Initially, we thought our 

role was as design consulting, and they did not want much in person testing. Secondly, the 

transition from Dr. McFall’s teaching style to Dr. Khalid’s style was very jarring. Dr. McFall’s 

focus was on our interactions with the UAC, and only wanted us to do presentations. Dr. Khalid 

on the other hand was focused on a paper. I do not think that either style is better, but we went 

into the 2nd semester expecting more of the same, and struggled to balance the workload of the 

paper, and our direct work with UAC.
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Chapter 17: Appendix G (Team Member Contributions) 

The following two tables breakdown which member did which work. 

Table 7. Chapter Contributions by each member. 

CHAPTER 

NUMBER 

PRIMARY 

CONTRIBUTOR 

SECONDARY 

CONTRIBUTOR 

CHAPTER 1 Tharkun  

CHAPTER 2 Whole Group 

CHAPTER 3 Logan  

CHAPTER 4 Kathryn Tharkun 

CHAPTER 5 Tharkun  

CHAPTER 6 Tharkun  

CHAPTER 7 Kathryn  

CHAPTER 8 Logan Kathryn 

CHAPTER 9 Logan  

CHAPTER 10 Whole Group 

CHAPTER 11 Kathryn  

CHAPTER 12 Logan  

CHAPTER 13 Tharkun  

CHAPTER 14 Kathryn  

CHAPTER 15 Whole Group 

CHAPTER 16 Whole Group 

CHAPTER 17 Logan  

CHAPTER 18 Logan Kathryn 
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Table 8. Work contributions by each member. 

CHAPTER 

NUMBER 

PRIMARY 

CONTRIBUTOR 

SECONDARY 

CONTRIBUTOR 

GRIPPER 

DESIGN 

Logan  

GRIPPER 

SIMULATION 

Logan  

GRIPPER 

DRAWINGS 

Logan  

ROBOT CODE Kathryn  

OPERATION 

ORDER 

Kathryn Tharkun 

MEMES Whole Group 

ELECTRICAL 

DESIGN 

Tharkun  

SAFETY 

DESIGN 

Tharkun  

SAFETY 

REVIEW 

Tharkun  

GRIPPER 

RESEARCH 

Logan  

ROBOTIC ARM 

RESEARCH 

Kathryn Logan 

ELECTRICAL 

RESEARCH 

Tharkun  

SAFETY 

RESEARCH 

Tharkun  

 

 



Hudlow, Spencer, Bharadwaj   Project Penelope 

Chapter 18 | Page 74 

Chapter 18: Appendix G Gripper Drawings 
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Chapter 19: H (Gripper Drawings) 

 

This appendix includes the drawings the team sent to UAC.  
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