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Executive Summary 

This report provides a comprehensive methodical design of an autonomous flying vehicle, 

for the purpose of transporting medical supplies. Current medical supply transportation 

infrastructure lacks the ability to adequately service the rapidly growing industry, especially in 

times of crisis. To help solve this issue, this report details the design of an unmanned drone which 

can carry a fifty-kilogram payload for fifty kilometers, in twenty-eight minutes. The drone is also 

capable of transporting a fifty-kilogram payload for two hundred kilometers in seventy-five 

minutes or less, all while flying at an altitude of up to one thousand meters. Since the medical field 

often involves emergencies, the drone is designed to load and unload the payload quickly.  

Methods of analysis include the DMAIC approach, which was implored in order to proliferate the 

design process. TOPSIS analysis and flow simulation were analysis methods used as well. The 

final design is a VTOL craft, with a rotating wing design which allows the craft to take off and 

hover like a helicopter, but also fly horizontally like a traditional plane. The final weight of the 

craft is 198.56 kilograms, excluding the payload. The aircraft is electric and powered via lithium 

sulfur batteries. The aircraft carries the payload on the underside of the fuselage, via a system of 

brackets which raise and lower between the landing gear to drop off this payload at its destination 

autonomously. This design has the potential to completely change the way medical supplies is 

transported, and in turn increase efficiency in the medical field. While it is still just a design, this 

craft can be built, refined, and used in the real world with further optimization. 
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1. Chapter 1:   

1.1 Introduction 
Autonomous vehicles provide a promising future in the world of personal 

convenience. Whether it be delivering packages or a daily bus route, removing the need for 

operators who can become fatigued after long hours and a hazard to the public is quickly 

becoming reality. With the recent outbreak of COVID-19, getting medical supplies from 

warehouses to hospitals and other locations has been a significant challenge and one that 

has resulted in more people contracting the disease from lack of proper medical equipment 

than current society should allow. Vertical lift technology, specifically vertical takeoff and 

landing (VTOL) aircraft is a promising approach to delivering medical supplies effectively 

to the communities in need. When paired with autonomous capabilities, medical supplies 

can be delivered to most urban areas and dropped off for safe and contactless distribution. 

Not only can this provide relief for the current pandemic, but future disaster relief can reap 

the benefits of this system and eventually lead to commercialization of autonomous 

delivery systems. 

1.2 Overview 
This document goes over the progress made towards making a VTOL aircraft that 

will carry medical supplies approximately 200 kilometers for distribution. Research has 

been done on various aircraft and methods of flight for the VTOL as well as designs for a 

payload carrier. The document has clear requirements the VTOL must be able to perform 

by April when the final product is needed. With the given requirements, the designing 

process for the VTOL is complete. 

1.3 Objective 
The purpose of this design project is to create an unmanned VTOL with the ability 

to hold approximately 50 kilograms of medical supplies in a rectangular payload and 

deliver it up to 200 kilometers away to various drop off locations for distribution. The 

VTOL must be able to reach its destination and drop off the payload and must be able to 

return to its launch site after delivering the payload to destination without reconfiguring 

the drone and completely autonomous.  

1.4 Justification 
Whether it be a natural disaster, war, or a health crisis, medical supplies are 

necessity for human survival that is not always readily available: roads may be flooded, 

borders may be closed, or disease may put deliverers in harm’s way. A VTOL aircraft can 

get around many of the logistical issues created when the terrain prevents medical supplies 

getting from point A to B by flying above the problems. The aircraft can go from the roof 

of a warehouse to the roof of a hospital without relying on an intact ground transportation 

network. Additionally, an autonomous aircraft can fly to a destination, drop off supplies, 

and return without any human interference. Not only does this reduce the chances of an 

untrained individual messing with the aircraft trying to unload packages, but it reduces the 

spread of communicable diseases. Designing an autonomous VTOL with greater range and 

payload capacity than current options reduce the time required to deliver supplies to people 

in need and may help to reduce the rate of infection for diseases such as COVID-19 when 

used for vaccine delivery. 
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1.5 Project Background and Problem Statement 
Ground transportation is not always reliable in emergency situations, nor is 

traditional aircraft the safest option/logistically practicable for delivering medical supplies 

in certain situations. The outbreak of the COVID-19 virus has shown weaknesses in the 

modern delivery network used every day across the globe. Supplies and vaccines are 

arriving too late or too few are delivered to make an impact. Current delivery drones, with 

low payload capacity and short range, do not meet the need required by the current 

epidemic to help humanity.  

Developing an unmanned vertical lift aircraft that can deliver payloads of 50kg to 

distances 200km away at high speeds is vital for helping COVID-19 relief and lessening 

the impact of future health crises. 
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2. Chapter 2: Literature Review 

2.1 Vertical Takeoff and Land Aircraft 
VTOL aircraft have the advantage of being able to take off and land from an area 

not much larger than the aircraft. The most common VTOL aircraft is a helicopter which 

comes in multiple variations (Figure 1), although each work on the same principle [1]. 

Single main rotor helicopters have a large rotor providing thrust and a secondary rotor on 

the tail providing secondary thrust perpendicular to the main rotor to counteract the 

spinning torque. A tandem rotor, or dual rotor, helicopter uses two equal sized rotors spaced 

horizontally apart from one another and spin in opposite directions to counteract the toque. 

This design requires a larger airframe to hold the rotors, but the rotors are smaller than the 

rotor of a single rotor helicopter [1]. Tandem rotor helicopters have a greater carrying 

capacity and speed since both rotors provide downward thrust compared to helicopters with 

tail rotors which have to waste thrust to counteract torque [2]. Intermeshing rotors are 

similar to tandem rotors except the rotors are spaced closer together and at an angle so they 

can intermesh without colliding. These helicopters have high load capacity and high 

stability [2]. Coaxial rotors also have two rotors rotating in opposite directions to cancel 

out torques, but they are mounted on the same shaft. This creates a large amount of drag 

from interference airflows between the rotors and reduces the overall cruising speed. Tilt-

rotor aircraft look similar to conventional propellor driven airplanes except the rotors are 

at the wing tips and rotate up to provide thrust like a helicopter for takeoff/landing and 

rotate forward to provide thrust for horizontal travel. This design benefits from the 

efficiency of wings for distance travel while retaining the VTOL abilities of a helicopter. 

The fixed wings partially block the downward thrust of the rotors when vertical so there is 

an issue of propwash [3]. To overcome the thrust loss, tilt wing aircraft rotate the wing 

with the rotors (Figure 2). The tilt-wing is lighter, simpler, and more reliable than the tilt-

rotor aircraft but has a high chance of stall during transition when the forward velocity is 

low, and the wing angle of attack is high [4].  

 

Figure 1: Helicopter Rotor Arrangements [5] 

Quadcopters (or multi-copters) are quickly becoming the design choice for 

businesses involved in small delivery aircraft. A quadcopter has four propellors which spin 

at different rates to allow for pitch, roll, and yaw movements. Since this type of aircraft 

requires a high degree of control for each propellor, quadcopters were not very feasible 

with gas engines [4]. Smaller, lighter electric motors have allowed multi-copters to become 
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useful for situations where small loads and precise control are required. Often times, multi-

copters will use many smaller propellors to achieve the same thrust as a few large 

propellors since control relies heavily on changing prop speed and lower rotational inertia 

allows for faster response. For the same reason, quadcopters do not scale up easily and 

require a new airframe design to allow for more motors and propellors [4].  

 
Figure 2: Bell Boeing V-22 Osprey Tilt-Rotor Aircraft [6] 

2.2 Private Sector Approaches to Delivery Drones  
Drones in the private aerospace sector have gained huge attention within the past 

decade for anything from amateur photography to land surveying. Drone delivery services 

have existed for decades in science fiction stories, but now there are multiple companies 

trying to deliver goods with drones. Amazon Prime Air uses quadcopters to deliver 

payloads of five pounds or less up to 15 miles away [7]. Alphabet’s Wing uses a hybrid 

design, mixing a conventional fixed wing aircraft with the VTOL capabilities of a 

multirotor helicopter. The Wing drone is capable of flying at speeds up to 112km/h at 45m 

to deliver a 1.5kg payload in a 10km radius [8]. Wingcopter (Figure 3) uses a quad-tiltrotor 

design to travel at speeds of 150km/h at a 5000m ceiling height delivering payloads of up 

to 6kg anywhere from 20km to 60km away (distance varies with payload capacity) [9]. The 

company Zipline delivers medical supplies to rural hospitals in Africa using an autonomous 

plane up to 80km away [10]. The airplane launches from a catapult (Figure 4), delivers 

cargo via parachute, and is caught at the base with a capture wire (somewhat similar to how 

jets land on aircraft carriers). The aircraft is modular, allowing for quick repairs and 

maintenance without slowing down deliveries and battery packs are removed for charging 

to reduce aircraft downtime. The drone, limited to 1.3kg payloads, is commonly used for 

small but urgent medical supplies, such as blood bags [11].  

Figure 3: Wingcopter Tilt-Rotor Quadcopter Design [9] 
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Figure 4: Zipline drone after launch [11] 

2.3 Previous VTOL Design Projects 
Different projects from past design contests of VTOL’s were observed to 

understand their methods of designing a VTOL. The main focus was to look for contest 

winners that focused on travelling far and also projects where the VTOL needed to carry a 

payload. A group from the University of Maryland decided to have a compartment to load 

their payload in the VTOL. There is a rack that allows more flexibility in the payloads 

stored and can be removed to change to different custom racks. However, another group 

from the University of Maryland decided that the payload would be hoisted from inside the 

VTOL that also controls the doors opening and closing for delivery.  

Another design group located in Pakistan took another approach when it came to 

creating a VTOL. They thought incorporating the characteristics of conventional aerial 

vehicles and merging them with rotary wing designs would be the best way to have high 

levels of endurance and speed, while at the same time, having better stability during flight 

[12]. 

2.4 Delivery Methods  
The horsefly drone (Figure 5) was an 

aircraft developed by AMP  Electric Vehicles 

and researchers of the University of  Cincinnati 

specifically for product delivery. The drone 

originally used a cage type method to deliver 

commercial product within a small radius. This 

was because at the time, they valued package 

safety over flight speed. Later, they partnered 

with UPS and improved their old method of 

delivering packages by getting rid of unneeded 

parts of the cage and incorporating a drop-

roping design. This improvement increased the 

stability and increased delivery speed because 

there would be no need descend in order to complete a delivery. The 2020 horsefly drone 

(Figure 6) has fully autonomous flight and landing capabilities, with a maximum speed of 

4.5 kg and maximum flight speed of 46 mph. 

Figure 5: Horsefly 2015 version 

[12]                       
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Figure 6: Horsefly 2020 version [12] 

2.5 Use of Composite Materials for Drone Manufacturing 
A Composite material is a material constructed of two or more types of fibers, 

which have been combined to create a material which is stronger than any one of the fibers 

making up the composite.  The past three decades have seen a rapid increase in composite 

material technology and development.  Composite materials are especially pertinent in the 

unmanned aerial vehicle’s sector, given the demand for lighter and more durable materials.   

A very common type of composite material, in the drone world, are fiberglass 

composites.  Sought after for their attractive, stiffness to weight ratio.  One of the first 

methods used to construct material composites, is known as the hand lay-up process.  In 

this process, first a set of molds are created in the desired end shape.  Once the molds have 

been created, their surfaces are treated to prevent the material from sticking to them.  Then 

the desired fibers are cut to length and placed inside the mold, layer by layer, mixing resin 

in between fiber sheets.  Pressure is applied to the fibers, via a roller, ensuring no air 

bubbles are trapped inside the structure.  Then a gel coating may be applied to the surface 

of the material, ensuring consistency, smoothness, and strength of the surface.  Once this 

is completed the mold is closed and left to cure.  While more advanced methods of 

producing fiber composites exist, the hand lay-up can benefit low volume manufacturers, 

because of its simplicity and economic feasibility [13]. For example, Figure 7 shows a 

UAV created using composite materials. 

  Researchers at the University of Yogyakarta discovered a way to enhance the hand 

lay-up process, by implementing a method called vacuum bagging.  Essentially just adding 

a vacuum packing curing process to the existing hand lay-up process.  The addition of the 

vacuum packing process ensures a tough, stiff, smooth, and consistent makeup of the 

material.   
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Figure 7: UAV Composite [13] 

2.6 Energy Systems 
 VTOL aircraft, which range from toy RC aircraft weighing a few ounces to the 

military multi-ton behemoths, need some sort of energy system to power the propulsion 

system. Most aircraft use fossil fuels because the energy density is one to two orders of 

magnitude greater than current battery storage technology and when weight is the 

difference between taking off and staying grounded, a highly energy dense fuel is the clear 

option [14]. Combustion engines are generally piston engines for general aviation and 

turbofan jet engines for commercial aviation. Piston engines have plateaued as far as 

efficiency is concerned whereas turbofan jet engines are constantly being improved to 

increase the energy extracted from each unit of fuel. Even so, engineers are developing 

alternatives to the traditional jet engine to help with efficiency. Electric propulsion (EP) 

and hybrid electric propulsion (HEP) are two emerging solutions to increase aircraft 

efficiency [15]. EP is a fully electric system using batteries or solar panels to power a 

motor. HEP falls between traditional engines and fully electric aircraft, often with the 

benefits of each [15]. HEP still relies on a jet turbine but the output power is used to drive 

a generator which then directly powers the motors or recharges batteries. The efficiency 

improves as there are fewer mechanical linkages in the system which are points of wasted 

energy transfer. EP can have efficiencies as high as 73% and a comparable turboprop 

engine may only have a 39% efficiency [14]. HEP systems often use electric propulsion 

for takeoff and landing to reduce noise pollution and jet turbine propulsion (either directly 

or to power the motors) for cruise where noise is not as much of an issue.  

2.7 Social benefits of drones during COVID-19  
The rise of COVID-19 has caused social distancing and reduced personal contact 

with others to become normalized throughout the world. This pandemic has shown the 

various flaws and inefficiencies in the current system. This seems the like the perfect 

scenario for drone technology to expand and reach global adoption for medical distribution. 

Use of drones for medical, parcel, and grocery deliveries would be enormously beneficial 

for America’s response to COVID-19 [16] and large demand is already being seen in highly 

concentrated areas.   
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3. Chapter 3:  Project Management 

3.1 Problem Solving Approach  
One plan that is being used is the DMAIC (Define, Measure, Analyze, Improve, 

Control) process, which is an improvement methodology that is mainly used for six sigma 

projects. This is a great way to ensure that the project gets completed smoothly and 

effectively. 

For the Define portion, the problem that needs to be addressed must be identified, 

which is creating a medical drone that meets the needs and requirements of the user base. 

The Drone’s purpose is to transport medical supplies efficiently in a timely order within 

suburban areas. For the measuring, the initial model must be drafted with the proper 

dimensions using Solidworks based on the proper requirements (shown in section 3.2). For 

analyzing, Solidworks needs to be used to examine metrics, like airflow, pressure, thrust, 

etc. For improving the system, increases in aerodynamic effectiveness/efficiency will be 

sought after during the simulation. And for control, the design will be finalized by making 

the proper alterations and looking at things like safety, observing environmental factors, 

and risk to reward aspects. 

3.2 Expected Problems 
As it stands, the VTOL drone is going to use a tilt-wing or tilt-rotor design. 

Analyzing the vertical portion of flight and the horizontal portion of flight should not cause 

any issues but the transition phase will require further research into tilt-wing/rotor aircraft 

aerodynamics. All analysis will have to be taken for accurate values as the team is not able 

to construct a prototype to test the design due to classes currently being held virtually. The 

design will have to be as cheap as possible since the market for medical drones is mostly 

government subsidized and relies on donations. 

3.3 Requirements for Success 

The unmanned vertical takeoff and landing aircraft will need to follow a list of 

requirements and specifications when created to solve the problem of a transport needed 

for medical supplies. The requirements are split between the functional and non-functional 

requirements necessary to complete the project. The functional requirements are that the 

VTOL: 

• Must be able to carry 50kg (110lb) in a predefined 120cm x 80cm x 80cm 

container 

o Table 1 below shows the estimated weight of basic medical bundles. It 

was decided that carrying medicine and supplies (including insulin) of 

50 kilograms would be ideal to carry on a single trip based on the Table 

1 trends.  

• Must reach and stop at 50km (31 miles) 

o Average radius between hospitals in theoretical suburban area. 

• Must reach and stop at 200km (124 miles) 

o Average radius from warehouse in theoretical suburban area to site that 

needs medical supplies delivered. 

• Must be autonomous 

o Only a single operator is allowed at a remote site to monitor the status 

of the VTOL without actively controlling it. 
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• Must be able to return to launch site or reach destination with full payload 

On the other hand, the non-functional requirements, which are requirements not 

necessary to complete the main mission of this project but useful towards improving the 

design, are that the VTOL:  

• Must not exceed 6.1m x 6.1m x 6.1m maximum size 

• Must determine destination is safe to unload payload 

• Must be able to load and unload payload quickly in time of emergency 

• Must be able to arrive at destination 50km away in 28 minutes (200km away in 

75 minutes) or less after takeoff. 

 
Table 1: World Health Organization Disease Emergency Supply Recommendations [17] 

 
 

3.4 Gantt Chart/Schedule 
 

 
Figure 8: Gantt Chart 
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Table 2: Break down of each section of Gantt Chart 

 
The Table listed above is the breakdown of Gantt chart that the VTOL Squad plan 

on following throughout the design process of the medical drone. This gives a more 

detailed overview of the Gantt chart seen in Figure 8. 
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3.5 Flow Chart  

 
Figure 9: Flow Chart 

The flowchart above in Figure 9 is a brief walkthrough of the way the VTOL Squad 

plans on completing the project. It follows the DMAIC model design process, starting with 

defining the objective of the project, measuring/drafting the initial design, 

analyzing/simulating the design, improving the design, and controlling/finalizing the 

design. These steps are the core of the DMAIC design methodology. [18] 
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3.6 Responsibilities  

 
Figure 10: Individual Progress Reports 

The figure above are the current responsibilities and total progress of each team 

member so far. The progress and tasks of each team member will be updated as time goes 

on until the deadline of the project. 
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3.7 Budget 
Table 3: Proposed Budget for Materials 

Budget 

Carbon Fiber $1,600 

Aluminum $600 

Styrofoam $180 

Epoxy $400 

Adhesive $200 

Vacuum Packer $250 

Nuts and Bolts $175 

Motors $15,460 

Electronic Speed Controllers $10,000 

Propellers $720 

Flight Controller $500 

Power Distribution Board $350 

Sensors $900 

FPV Camera $900 

Video Antenna $50 

Video Transmitter $600 

Battery $4,000 

Transmitter and Control Setup $2,000 

Design Software $2,000 

Labor, Equipment, Assembly $15,000 

Total Cost $55,885 

 

 The budget, as seen in Table 3, presents the estimated cost of building a VTOL 

drone described in the following sections. The costs are estimated around the size of the 

craft and the required materials. 
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3.8 Material Required/Used  
Below is a list of the materials and parts that are planned to be used to construct the craft 

 

Wings:  
•      Carbon Fiber Sheets 

•      Styrofoam Molds 

•      Adhesive Solution 

•      Epoxy Solution 

•      Plastic Vacuum Packing Sheets 

•      Vacuum Packer 

Fuselage: 
•      Aluminum Sheet Metal 

•      Screws and Bolts 

•      Epoxy Solution 

•      Carbon Fiber Sheets 

•      Adhesive Solution 

 Frame: 
•      Aluminum Sheet Metal 

•      Screws and Bolts 

•      Adhesive Solution 

•      Epoxy Solution 

 Propellers: 
•      Wiring 

•      Propeller System 

•      Nuts and Bolts 

Flight Control System: 
•      Flight Controller 

•      Electronic Speed Controller 

•      Sensors 

•      FPV Camera 

•      Video Antenna 

•      Video Transmitter 

•      Adhesive Solution 

•      Nuts and Bolts 

•      Wiring 

 Ground Control System: 
•      Flight Control Monitor 

•      Flight Control Transmitter 

•      Flight Control Ground Computer 

•      Flight Control Software 

•      Video Antenna 

•      Flight Control Antenna 

  

Design Resources: 
•      Design Software 

•      Labor 

•      Manufacturing Equipment  
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3.9 Resources Available  
The following is a list composed of the resources available that will be used during 

this project. These resources are useful in determining the best method to design the VTOL 

and calculate its efficiency in practice. 

 

• Vensim 

• Solidworks 

• Fusion360 

• KSU Library 

• Aircraft Design: A Conceptual Approach by D. Raymer (Sixth Edition)  

• Elements of Propulsion: Gas Turbines & Rockets by Mattingly and Boyer 

(Second Edition) 

• Project Management in Practice-John Wiley & Sons, Inc. (2017) 

• Excel 
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4. Chapter 4: Sizing Analysis 

4.1 Mission Profile  

  
Figure 11: Left, Hospital Mission Profile; Right, Warehouse Mission Profile 

Figure 11 shows the mission profile the VTOL must undertake to deliver medical 

supplies to the next hospital in a suburban area and a trip from a warehouse. As seen in the 

hospital mission profile, the VTOL will take a vertical takeoff and cruise 50km in 28 

minutes to reach the hospital and drop the payload. After dropping the payload, the VTOL 

will perform another vertical takeoff and cruise back to its original destination for either 

recharging or collecting another payload. The mission profile for a trip from a warehouse 

is the same as the mission profile from hospital to hospital but has a longer range of 200km 

in 75 minutes.  

4.2 Initial Sketches 

4.2.1 Quadcopter Sketch 

 

 
Figure 12: Quadcopter Design Sketch 
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The design from Figure 12 above utilizes four propellers and four wings to 

make the VTOL work. The design’s VTOL is a tilt-wing aircraft where the tilting 

occurs at the halfway point of each wing. As seen in the sketch, the propeller is 

attached to the far end of the wing so that it will also tilt when necessary, for the 

VTOL to either takeoff or cruise to its destination. The payload would be secured 

by a claw that will withstand the aerodynamic forces acting upon it during flight. 

This design was ultimately not used due to the added complexity of four wings and 

the stall caused by half tilted wings. 

 

4.2.2  VTOL Sketch 

 

Figure 13: VTOL Sketch 

 The VTOL from Figure 13 Above uses three propellers, two in front and 

one on the tail, to provide lift and stability. The rear propeller works to counteract 

any moments created and adding forward momentum to the aircraft during the 

vertical to horizontal transition phases where stall is likely to happen. An H-tail is 

added to allow the rear propeller to interact with freestream air. For vertical flight, 

the wings rotate 90 degrees. The two front propellers are rotating in opposite 

directions to counteract torque. While not shown, the payload will be stored 

underneath the fuselage with a latch mechanism that can be autonomously operated.  
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4.2.3 Initial Design 

 
Figure 14: The Initial Design, Dash-1 

 The VTOL shown in Figure 14 above uses wings that can rotate 90 degrees 

to direct the thrust in the desired direction. Only two propellers are used to reduce 

the complexity, compared to three or four propellers. Control is reliant upon the 

two propellers and the conventional tail is for countering moments. The payload is 

stored underneath the aircraft similar to the first sketch with a claw latch.  

 

4.3 Motor Selection from Trends 
A motor for each propeller on the VTOL is selected from observing previous trends 

of electric powered aircrafts in Table 4 below. Table 4 is a simplified version of the table 

in Appendix E that describes the motor used in the aircraft, the payload it could carry, and 

its max speed.  
Table 4: Electric Aircraft Classifications 

Aircraft (Single Engine) Motor (kW) 
Payload 

Weight (kg) 
Max Speed 

(km/h) 
Alisport Silent Club 13 165 200 
Pipistrel Taurus Electro 40 265 130 
Rutan Long ESA   279 298 
Pipistrel WATTsUP 50 236 194 
Bye Aerospace eFlyer 2 90 200 250 

 

From observing the data in Table 4, a selection of two 30kW motors is selected for 

the VTOL. This gives a total power of 60kW which should be more than enough for the 
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payload of 50kg. The power is also on the higher end due to it being a tilt-wing VTOL that 

will need more power to vertically takeoff.  

 

4.4 Power Loading and T/W 
For VTOL’s, the power loading is an important deciding factor on its capabilities 

and performance. Due to trends from other VTOL’s and helicopters, a power loading is 

guessed for initial calculations. From Table 5, the power loading for this VTOL is 

approximately 2.1 kg/kW.  With the power loading and total power provided from the 

motors, the takeoff gross weight is calculated using:  

 

𝑊0 =
𝑊

𝑃
∗ 𝑃 (1) 

 

 The takeoff gross weight is calculated to be 126 kg. 
Table 5: Typical VTOL Power Loading [4] 

 

 

With the initial power loading assumed, the thrust-to-weight ratio is calculated 

using the following equation: 

 
𝑇

𝑊
=

(𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)

𝑆𝑝𝑒𝑒𝑑
∗

𝑃

𝑊
  (2) 

 

The propeller efficiency is typically between a range of 82%-92% and thus 85% is 

chosen to represent the propellers on this VTOL. The speed is chosen from the 

requirements the VTOL must meet, reaching 50km in 28 minutes and reaching 200km in 

75 minutes. The speed needed to reach the 200km is higher than the speed needed to reach 

the 50km and is chosen to represent the speed in the thrust-to-weight ratio. Calculating 

thrust-to-weight gave a value of 0.0091. 

 

   

4.5 Airfoil Selection 
The airfoil for both wings needs to be decided initially to further test the aircraft. 

To find an airfoil for this aircraft, the lift coefficient and thickness ratio (t/c) are required 

to choose a known airfoil. The lift coefficient was chosen to be 0.3 based on trends of 
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similar aircrafts. The t/c can also be found from trends in Figure 15 below using the highest 

cruise Mach number. 

 
Figure 15: Thickness Ratio Historical Trend [4] 

 

The Mach number of 0.132 gave a thickness ratio of approximately .155 or 15.5%. 

Due to the Mach number being below supersonic, a four or five series NACA airfoil can 

be selected. For the initial selection, a NACA 23015 was chosen as the airfoil for initial 

analysis. 

 
Figure 16: Left, Cl v Alpha; Right, Cd v Alpha [22] 
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Referring to Figure 16, the coefficient of lift is around 0.18 for the NACA 23015 

airfoil at a zero angle of attack. Similarly, the coefficient of drag is about 0.08 at zero angle 

of attack. There is a positive moment coefficient at a zero angle of attack (Figure 17) so 

the airfoil will rotate about the quarter chord unless it is at an angle of attack around -7, -

5, and 6. The coefficient of lift over coefficient of drag is about 1.25 for the airfoil. 

  

4.6 Initial Sizing in Airplane Configuration 
 Sizing the aircraft presents two issues: electric aircraft are relatively new and lack 

historical trends, and tilt wing VTOL aircraft are equally as uncommon and lacking 

information. Determining the empty weight of an aircraft usually involves using fuel 

fraction estimates to find the fuel weight along with historical trends for particular types of 

aircraft. The weight of an electric airplane is slightly less complicated since batteries do 

not become lighter as the energy is consumed unlike a jet engine plane. By looking at small 

one to two passenger electric aircraft, a trend appeared to show that the empty weight was 

1.15-1.3 times the weight of the payload. With the required payload being 50kg, an 

estimated takeoff weight (using the 1.3 factor) is 115kg. The takeoff weight calculated 

using power loading returned a gross takeoff weight of 126kg, a difference of less than 

10%.  

 The wingspan is limited to 6.1m (maximum) by the problem statement and that was 

reduced to 5.5m if an increase in size was later required. To find the ideal aspect ratio for 

the wingspan and selected airfoil, Solidworks Flow Simulation was used (see Appendix F, 

G, H) to compare a six, eight, and ten aspect ratio wing for various angles of attack at 

cruise. An aspect ratio of 6 provides the greatest lift for the NACA 23015 airfoil with a 

5.5m wingspan (Figure 18). The initial sizing for the chord becomes 0.8403m, from the 

equations: 

𝑏 = √𝐴 ∙ 𝑆   (3) , 𝑐 =
2𝑆

𝑏(1+𝜆)
  (4) 

Figure 17: Left, Cm v Alpha; Right, Cl/Cd [22] 
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Figure 18: Coefficient of Lift vs Angle of Attack for a given Aspect Ratio 

 Wing loading is determined for stall, cruise, and loiter while in the plane 

configuration to calculate the design lift coefficient and some aspects of drag. Wing loading 

is calculated using the following equation: 

 
𝑊

𝑆
=

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑊𝑖𝑛𝑔 𝐴𝑟𝑒𝑎
  (5) 

 

 For the initial design with a mass of 126 kg and reference area of 4.62 m2, the wing 

loading is 27.3 kg/m2. This value is an estimate based on past trends and a more accurate 

wing loading is calculated using more variables. The equation for wing loading based on 

stall is: 
𝑊

𝑆
=  𝑞𝑠𝑡𝑎𝑙𝑙𝐶𝐿,𝑚𝑎𝑥  (6) 

Where: 𝑞 =
1

2
𝜌𝑉2 

 

 Usually Vstall is Vapproach/1.3 but there is no Vapproach for this aircraft design (as it 

does not land in the conventional way) so Vstall was calculated as Vcruise/1.3 (Vcruise is 

44.44m/s). CL,max was estimated to be 1.8 from Figure 19 for an aircraft with plain flaps 

and no sweep to the wings. W/S,stall becomes 119.30 kg/m2. Cruise wing loading is solved 

similarly using the equation:  
𝑊

𝑆
= 𝑞√𝜋𝐴𝑒𝐶𝐷𝑜  (7) 

 
Where e and CDo are estimated values from [4], 0.8 and 0.03 respectively. W/S,cruise 

ends up being 75.34 kg/m2. The final wing loading to calculate in the plane configuration 

is loiter, using the equation: 

 
𝑊

𝑆
=  𝑞√3𝜋𝐴𝑒𝐶𝐷𝑜  (8) 
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Using the same values as used for cruise, W/S,loiter becomes 130.5 kg/m2. The 

lowest wing loading result is the value that should be used to calculate wing reference area; 

the lower the value, the larger the reference wing will be which ensures the aircraft is 

designed properly for every situation. Since cruise is the lowest airplane configuration wing 

loading, the reference wing area becomes 3.32 m2. Applying Eq. 3 and 4, the span is 3.17 

m and the chord is 0.528 m. 

 
Figure 19: Maximum Lift Coefficient [4] 

4.7  Initial Sizing in Helicopter Configuration 
 Based on historical trends, the disk loading for the propellers on the VTOL is 245 

kg/m2. The disk loading is useful for determining the takeoff weight and disk area required 

for flight; however, neither are officially known. However, the solidity of each propeller is 

calculated as 0.15915 after using Eq. 9 and deciding that each propeller should have three 

blades and an aspect ratio of 6. Using the solidity, the area of each propeller blade is found 

after calculating the disk area. The power required for the VTOL will be used to determine 

a takeoff weight to calculate the disk area of the propellers. 

 

     𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝑛

𝐴𝑝∗𝜋
 (9) 

Where: n = 3 blades 

    Ap = 6 

 

Using Eq. 10 for hover momentum theory, the induced velocity at the rotor disk 

(V1) is correlated to the thrust and power needed to keep the VTOL in hover.  Eq. 11 below 

calculates V1 using the thrust disk loading (T/S) of the VTOL. Typically, T/S should equal 

the disk loading, but due to the downwash acting on the aircraft, it will be increasing by 

3% to 252.35 kg/m2. As shown in Eq. 12, V1 is used with thrust to calculate the ideal power 

for the VTOL. However, to gain an accurate reading of how much power is actually needed, 

the ideal power is divided by a Measure of Merit (M) of 0.7.  
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                      𝜌𝑉1
2𝑆𝑉2 =

1

2
𝜌𝑉1𝑆𝑉2

2  (10) 

 

     𝑉1 = √(𝑇
𝑆⁄ )/2𝑟       (11) 

Where: 𝑟 = 1.1117 𝑘𝑔/𝑚3 
𝑇

𝑆
= 252.35 𝑘𝑔/𝑚2 

                
             𝑃𝑖𝑑𝑒𝑎𝑙 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑥 𝑉1          (12) 

 
 Due to the propellers not being completely efficient, the total power required for 

the VTOL is the actual power divided by the mechanical efficiency of 97%. With this, all 

the power needed for the VTOL can be calculated, but due to the thrust not being known 

yet, the power is interpolated until the guessed power is equal to the total power. Table 6 

below shows the values guessed until a power of approximately 119 kW is calculated to be 

the total power. It also shows the takeoff weight, disk area, and thrust needed in helicopter 

configuration.   
Table 6: Total Power Interpolation 

 
 

With the total power calculated, the power necessary for the VTOL to climb up to 

the required altitude of 1000 meters is found using Eq. 13. From the equation, the power 

needed to climb to 1000 m altitude is 94.42 kW. 

 

𝑃𝑐𝑙𝑖𝑚𝑏 = [(
1.3965∗9.8∗𝑊0

0.7
√

1.3965∗(𝑊 𝑆)⁄

2𝜌
) +

9.8∗𝑊0∗𝑉𝑐𝑙𝑖𝑚𝑏

2
] [

𝑃𝑖𝑑𝑒𝑎𝑙

0.7∗𝑃𝑡𝑜𝑡𝑎𝑙
]   (13) 

Where: W0 = 249.9 kg 
W/S = 245 kg/m2 

     Vclimb= 30 m/s 

     Pideal = 80.86 kW 

Ptotal = 119.09 kW 

 

Table 6 showed the final disk area (S) chosen for the propellers is 0.98 m2 with 

each propeller having a disk area of 0.49. Using the disk area and the solidity calculated 

before, the area of each propeller blade is calculated using Eq. 14. The area of each 

propeller blade is 0.07807 m2 with a radius of 0.395 m and chord length of 0.0658 m. 

 

𝐵𝑙𝑎𝑑𝑒 𝐴𝑟𝑒𝑎 = 𝑆𝑝𝑒𝑟 𝑟𝑜𝑡𝑜𝑟 ∗ 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦  (14) 

 

 

P, guess W/P W W/S S T/S T P,ideal P, total

60 2.1 126 245 1.944 252.35 4808.67 160.37 236.2

80 2.1 168 245 1.458 252.35 3606.5 120.28 177.14

90 2.1 199.5 245 1.228 252.35 3037.05 101.29 149.17

120 2.1 252 245 0.972 252.35 2404.33 80.19 118.09

119 2.1 249.9 245 0.98 252.35 2424.54 80.86 119.09
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4.8  Adjusted Sizing 
 After determining the initial sizing for the VTOL in the helicopter configuration 

and the weight increasing compared to the plane configuration as a result (250 kg vs 

126kg), the reference wing area is recalculated using the same wing loading equations as 

in Section 4.6. Since the variables are the same as before, the cruise wing loading is as it 

is still the lowest of the calculated W/S values. Utilizing Eq. 5, 3, and 4, the reference 

wing area is 3.32 m2, the span is 4.46 m, and the chord is 0.744 m.  

4.9  Geometry Sizing 

4.9.1 Fuselage  

 The optimal fuselage fineness ratio, or the fuselage length compared to the 

diameter, is 3 for the lowest drag induced by the fuselage. The length of the fuselage 

can be estimated based on past trends using Table 7 the equation: 

𝐿𝑒𝑛𝑔𝑡ℎ = 𝑎𝑊0
𝐶  (15) 

Where: 
Table 7: Length Equation Variables [4] 

Type of Plane a C 

Homebuilt-composite 1.28 0.23 

GA-twin engine 0.366 0.42 

  

 The length is calculated as 4.56 m based on homebuilt factors and 3.72 m 

based on GA factors. Since this aircraft is somewhere between the two types, the 

average length is chosen for the fuselage length, 4.14 m. For the optimal fineness 

ratio, the diameter should be 1.38 m. For the VTOL, the diameter was rounded up 

to 1.40 m to ensure there is enough room around the cargo for structure and battery 

storage.  

4.9.2 Tail 

 The tail is used to counter the moments created by the wings and provide 

stability and control. The horizontal and vertical tail reference wing area is found 

through the equations: 

𝑆𝐻𝑇 =
𝑐𝐻𝑇𝐶̅𝑊𝑆𝑊

𝐿𝐻𝑇
 (16) 

𝑆𝑉𝑇 =
𝑐𝑉𝑇𝑏𝑊𝑆𝑊

𝐿𝑉𝑇
 (17) 

 Where CHT is 0.65 and CVT is 0.055, which are averaged from typical values 

for homebuilt and GA aircraft. SW is the wing reference area, �̅�𝑊 is the mean wing 

chord, and bW is the wingspan. Solving the equations, SHT becomes 0.776 m2 and 

SVT becomes 0.393 m2.  

 A lower aspect ratio is used on the tail than the wing to retain control of the 

aircraft in case of wing stall. For the initial design, an aspect ratio of 3 is used for 

the horizontal tail and 1.3 for the vertical. The taper ratio is the same for both 

horizontal and vertical at 0.4 (based on averages from [4]). The tail airfoil will be 

the same NACA 23015 airfoil used for the wing with a thickness-to-chord ratio of 

0.15. With these values known, the same equations used for determining wing 

geometry can be used on the tail and result in the following values in Table 8: 
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Table 8: Horizontal and Vertical Tail Sizing Values 

 Horizontal Tail Vertical Tail 

S 0.776 m2 0.393 m2 

b 1.526 m 0.715 m 

Croot 0.726 m 0.785 m 

Ctip 0.290 m 0.314 m 

�̅� 0.539 m 0.583 m 

�̅�* 0.327 m 0.306 m 

 * �̅� is doubled in the equation for vertical tails. 

4.10  Motor Selection and Battery Estimation 

4.10.1 Motor Selection 

 The power required for the vertical portions of the flight paths was 

determined in Section 4.7 to be 94.42 kW to climb to 1,000 meters and 119.09 kW 

in total. For the horizontal portions of the flight paths, while in conventional plane 

configuration, the power used for level, cruise flight is given by the equation: 

𝑃𝑢𝑠𝑒𝑑𝜂𝑝 =
𝑚𝑔

𝐿/𝐷
𝑉  (18) 

Where 𝜂𝑝 is the propeller efficiency (generally around 80%), L/D is 10.34 

(further detail in Section 4.11), and velocity is 29.76 m/s or 44.44 m/s depending 

on the mission. The power required for level cruise is 8.81 kW when traveling at 

29.76 m/s and 13.16 kW when traveling at 44.44 m/s. 

Since the highest power usage – 120 kW – is the maximum power 

requirement, the motor will be selected based on that value. Two motors are being 

implemented in the VTOL design and as such, each motor should be rated for 60 

kW. However, for most of either mission profile, the aircraft is in plane 

configuration and using much less than the maximum power requirement. The max 

power usage will only be needed for a few seconds as the aircraft climbs vertically 

from ground to 1,000 meters in under one minute. Each motor needs to be rated for 

60 kW, but the continuous usage motor rating can be considerably less. An MGM 

Compro REB 60 motor fits the requirements with 60 kW peak power and 35-45 

kW continuous power at 15.14 kg each [19].  

4.10.2 Battery Estimation 

Battery energy storage is available in various energy contents, or the energy 

per unit mass. The higher the energy content, the more ideal the battery is for 

aircraft. Estimating the necessary mass of batteries for a given mission is 

accomplished using the equation: 

𝐸 =
𝑚𝑏𝐸𝑠𝑏𝜂𝑏2𝑠

1000𝑃𝑢𝑠𝑒𝑑
   (19) 

 Where E is endurance in hours, mb is the battery mass (kg), Esb is the battery 

specific energy (wh/kg), and 𝜂𝑏2𝑠 is total system efficiency (about 93%). 

Rearranging Eq. 19 for mb during climb and substituting 0.00926 hours for E, 94.42 

kW for Pused, and 500 wh/kg for Esb returns a mass of 1.872 kg. 500 wh/kg is the 

energy density of some lithium sulfur (LiS) batteries. Battery mass needed for level 

flight can be calculated from the equation:  
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𝑚𝑏 =  
𝐸∙𝑚

3.6
𝐿

𝐷
[𝐸𝑠𝑏∙𝜂𝑏2𝑠∙𝜂𝑝/𝑔𝑉]

   (20) 

  Where m is the aircraft mass and V is the velocity in km/h. Solving for 

various mission segments, Table 9 presents the mass of batteries required for the 

segments. 
Table 9: Battery Mass for Each Mission Segment 

Battery Mass 

Distance (km) Payload (kg) Velocity Mass (kg) 

1, Vertical 50 30 m/s 1.87 

50 0 107 km/h 7.08 

50 50 107 km/h 8.85 

200 0 160 km/h 28.31 

200 50 160 km/h 35.36 

 

 For the 50 km legs mission profile, the total battery mass required is 23.42 

kg. For the 200 km leg mission profile, the battery mass required is 39.1 kg. To 

ensure the aircraft can handle either mission at any moment, 40 kg of LiS batteries 

should be installed. 

4.11  Aerodynamics 

  4.11.1 Lift 

As stated in section 4.6, the maximum lift of the aircraft (CL) is found to be 

1.8 due to this VTOL having plain flaps and no sweep angle. 

4.11.2 Lift Curve Slope 

The equation for the lift curve slope used in Eq. 21 is due to this VTOL 

never achieving supersonic or transonic speed, which leads the lift curve slope to 

equal 5.611 per radian. 

        𝐶𝐿𝛼
=

2𝜋𝐴

2+√4+
𝐴2𝛽2

𝜂2

∗ (
𝑆𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑆𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) ∗ 𝐹         (21) 

Where: A = 6 

  = 0.9825 

     = 95% 

Sexposed/Sreference = 0.6867 

        F = 1.8466 

4.11.3 Parasite Drag 

 Parasite drag is the drag the VTOL will experience at zero lift. It is found 

using the skin friction coefficient and the ratio between the wing’s wetted area and 

reference area as seen in Eq.22.  

𝐶𝐷𝑜
= 𝐶𝑓𝑒 ∗

𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
  (22) 

The skin friction coefficient is found from Table 10 under the assumption that the 

VTOL is considered a twin-engine light aircraft. 
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Table 10: Aircraft Skin Friction Coefficient [4] 

 
 

With a skin friction coefficient of 0.0045, Swet of 4.685 m2, and Sref of 3.32 m2, the 

parasite drag is calculated to be 0.0063502. 

4.11.4 Lift to Drag Ratio  

The lift to drag ratio (L/D) was used to determine the amount of power is 

needed for level flight. Using the lowest wing loading calculated and the parasite 

drag, L/D is calculated from Eq. 23. 

                                      
𝐿

𝐷
=

1

𝑞∗𝐶𝐷𝑜
𝑊

𝑆⁄
+

𝑊
𝑆⁄

𝑞∗𝜋∗6∗0.869121

  (23) 

Where: W/S = 75.34 kg/m2 

      q = 1097.98 Pa 

 

Eq. 21 gives an L/D value of 10.34. 

 

4.12  Weights 
Using the equations in Appendix I and the values in Table 11, the weight for each 

component is calculated to find a more accurate empty weight for the VTOL. From the 

table, all the weights for each component are added together and the empty weight is found 

to be 195.86 kg. With the 50 kg payload included, the takeoff gross weight is 245.86 kg, 

which is very close to the initial takeoff gross weight of 249.9 kg. 
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Table 11: Empty Weight Calculations 

 

 

4.13  Loading and Unloading Payload Procedures 
The drone’s payload will be loaded manually before flight, via an open space on 

the bottom of the craft.  The shape of the payload will always be a uniform box, as that is 

what the craft is designed to secure.  The payload will be securely attached to a series of 

brackets, which will grasp the load from underneath the box as well as on the sides. 

Before takeoff someone will manually position the payload underneath the craft, and 

once in place, will trigger the brackets to secure the payload.  While the loading process 

will be performed manually, the unloading process will occur autonomously.  For the 

unloading process, a pre-determined drop off area will be chosen, and the craft will locate 

this area via GPS coordinates.  The craft will land and approach this drop off area in the 

hover mode, positioning itself directly over top the drop-off area.  Once in position the 

craft will touch down, and then allow the payload brackets to lower the package and 

release the box onto the ground.  Once the box has been placed on the ground, the 

payload brackets will retract, and the drone will move onto its next scheduled position. 

 

British Units British Units

W dg (N) 2449.02 550.56 Ht/Hv 0 0

Nz 10.5 10.5 Nz 10.5 10.5

Sw (m^2) 3.32 35.74 Wdg 2449.02 550.56

A 6 6 q 1097.98 22.93

t/c 15% 0.15 Svt 0.39 4.23

Taper ratio 1 1 t/c 15% 15%

Sweep 0 0 A 1.3 1.3

Aileron Span/Wing Span 70% 70% Taper ratio 0.4 0.4

Aileron Span (m) 3.12 10.25 W Verti Tail 1.25 2.75

Aileron Chord/Wing Chord 0.15 0.15 British Units

Aileron Chord (m) 0.11 0.36 Sf 18.03 194.10

Scsw (m^2) 0.35 3.73 Nz 10.5 10.5

Dynamic Pressure (pascals) 1097.98 22.93 Wdg 2449.02 550.56

W wing (kg) 22.71 50.02 Lt 2.07 6.79

British Units L 4.14 13.58

Wdg 2449.02 550.56 D 1.4 4.59

Nz 10.5 10.5 q 1097.98 22.93

Sweep ht 0 0 W Fuselage 59.59 131.28

Ah 3 3 British Units

q 1097.98 22.93 Wen (N) 148.37 33.36

Sht 0.78 8.35 Nen 2 2

Taper Ratio 0.4 0.4 Motor Controller 82.32 18.51

t/c 15% 15% W installed engine 67.71 149.17

W Hori Tail (kg) 2.29 5.05 Batteries British Units

British Units W Batteries (kg) 40 88.13

Fuselage Length (m) 4.14 13.58

Bw 4.46 14.64

Nz 10.50 10.50

Wdg 2449.02 550.56

W Flight Control (kg) 2.31 5.09

Wing

Horizontal Tail

Flight Controls

Vertical Tail

Empty Weight (kg) 195.86

Installed Engine

Fuselage
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4.14  Final Sizing and Specifications 
Table 12 below shows the summarized sizing of the unmanned VTOL. Using the 

sizing below, a final CAD model is shown later in section 5.3. Two MGM Compro REB 

60 engines were chosen to power the aircraft and due to it being electric, there will be 

batteries stored in the fuselage to provide energy. 

 
Table 12: VTOL Final Sizing 

Final Sizing 

Propeller Sizing Tail Sizing 

No. of Rotors 2 Horizontal Tail Aspect Ratio 3 

No. of Blades 3 Horizontal Tail Area (m2) 0.78 

Prop. Aspect Ratio 6 Horizontal Tail Taper Ratio 0.4 

Solidity 0.16 Horizontal Tail t/c 15% 

Disk Area per rotor (m2) 0.49 Vertical Tail Aspect Ratio 1.3 

Propeller Radius (m) 0.40 Vertical Tail Area (m2) 0.39 

Propeller Chord (m) 0.07 Vertical Tail Taper Ratio 0.4 

Propeller Blade Area (m2) 0.08 Vertical Tail t/c 15% 

Wing Sizing Fuselage Sizing 

Reference Area (m2) 3.32 Wetted Area (m2) 18.03 

Aspect Ratio 6 Length (m) 4.14 

t/c 15% Diameter (m) 1.4 

Aileron Span (m) 3.12     

Aileron Chord (m) 0.11     

Control Surface Area (m2) 0.35     

    

 

Table 13 and Table 14 provide the specifications this unmanned VTOL will have 

to successfully fulfill its purpose of transporting medical supplies. Table 14 shows that the 

empty weight of the aircraft being 195.86 kg and a payload of 50 kg will lead to a takeoff 

weight of 245.86 kg. However, Table 13 shows that the takeoff weight used is 249.90 kg. 

The extra weight allows more leeway that the VTOL will be able to carry and still fly.   

 
Table 13: Aircraft Specs 

Aircraft Specifications 

Desired Altitude (m) 1000 Power Loading (kg/kW) 2.1 

Range (km) 200 Thrust (N) 2424.54 

Takeoff Weight (kg) 249.90 Thrust-to-Weight Ratio 0.99 

Payload Weight (kg) 50 Disk Loading (kg/m^2) 245 

Cruise Speed (m/s) 44.44 Wing Loading (kg/m^2) 75.34 

Stall Speed (m/s) 34.19 Parasite Drag 0.01 
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Climb Speed (m/s) 30.00 Aircraft Drag Coefficient 0.03 

Induced Velocity (m/s) 33.35 Airfoil Lift Coefficient 0.30 

Power for Hover (kW) 80.86 Aircraft Lift Coefficient 1.80 

Total Power (kW) 120 Lift-to-Drag Ratio 10.34 

Wing Airfoil NACA 23015 Tails Airfoil NACA 23015 
 

Table 14: Final Empty Weight Analysis 

Empty Weights 

Wing 22.71 

Horizontal Tail 2.29 

Vertical Tail 1.25 

Fuselage 59.59 

Installed Engine 67.71 

Flight Controls 2.31 

Batteries 40 

Total Empty Weight 195.86 
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 5.  Chapter 5: Computer-Aided Design 

5.1 Initial CAD Design 
Figure 20 shows the first initial CAD design made for the VTOL. As seen, the 

VTOL has two propellers with two blades as well as the ability to tilt the entire wing 

depending on if it is taking off or cruising. Since it is unmanned, there is no space needed 

for passengers and the fuselage only has to hold the batteries, controls, and payload. 

 

 
Figure 20: Initial CAD Design 

5.2  Revised CAD Design 
Figure 21 to Figure 25 show a revised CAD model of the VTOL. The main changes 

to the CAD model are adding the correct airfoil to the tail and attempting to streamline the 

fuselage for better aerodynamics. The fuselage length needed to be increased to allow for 

additional battery storage and more space for the cargo. 

   

 
Figure 21: Revised CAD Design 
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Figure 22: Revised CAD, Front View 

 
Figure 23: Revised CAD, Side View 

 
Figure 24: Revised CAD, Bottom View with Cargo Visible 
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Figure 25: Revised CAD, Side View with Wings Tilted and Cargo Lowered 

5.3  Final CAD Design 
The final design (Figure 26 to Figure 29) changes the propellers from two blades 

to three. Besides the blades, the CAD design does not differ much from the revised design 

besides changing the color scheme of the VTOL to KSU colors and adding the KSU logo. 

Figure 30 is a render of the aircraft just after touchdown with the cargo lowered and the 

wings in the helicopter configuration. 

 
Figure 26: Final CAD, Front View 
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Figure 27: Final CAD, Bottom View 

 
Figure 28: Final CAD, Side View 

 
Figure 29: Final CAD, Top View 
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Figure 30: Final CAD Render in Helicopter Mode with Package Lowered 

5.4  Flow Simulations 
 The Solidworks Flow Simulations reveal that the final CAD design could benefit 

from some future modifications to make the aircraft more aerodynamic. Figure 31 shows 

the simulated airflow velocity around the aircraft through the freestream air (shown as 

orange) at 44 m/s. The static propellors in the design caused the airflow to circulate 

(vortices, shown in blue) shortly behind the motor location but in practice the propellors 

should increase the airflow, not reverse it. The top of the aircraft appears to be more or less 

streamlined in level flight, but the bottom suffers from additional vortices caused by design 

choices. The fuselage portion from the cargo compartment to the elevators is slightly 

concave, leading to flow separation from the body and vortices which increase drag (Figure 

32). Airflow going around the landing gear also separates and causes unwanted vortices, 

as seen in Figure 33.  

 
Figure 31: Flow Simulation of Forward Velocity (44 m/s) in Level Flight 
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Figure 32: Bottom View of Flow Simulation in Level Flight 

 
Figure 33: Flow Simulation around Landing Gear 

During vertical flight in the helicopter configuration, the flow separation around 

the body is more severe than in level flight. As the aircraft rises at 30 m/s, the underside of 

the fuselage has a lower pressure (green arrows) than the upper surface (yellow arrows) 

which adds drag and increases the thrust needed (Figure 34). Similarly, when the 

freestream (blue) velocity encounters the aircraft, the flow goes around the body but there 

is significant airflow (red)towards the bottom of the fuselage and tail (Figure 35). The 

rising airflow interacts with the downflow and creates more drag inducting vortices. 
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Figure 34: Pressure Flow Simulation in Vertical Flight 

 
Figure 35: Airflow Velocity around Fuselage in Vertical Flight 
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6. Chapter 6: TOPSIS Analysis 

6.1 TOPSIS 
The TOPSIS method or Technique for Order Preference by Similarity to Ideal 

Solution is a decision-making methodology that is often used to find an ideal alternative 

based on certain criteria. We compared our model to various aircrafts using metrics like 

flight speed, payload, range, reliability, and maneuverability to determine which alternative 

could be seen as ideal, but range, reliability, and maneuverability can be seen as highly 

subjective. Since the weights placed on each criterion are highly subjective, they were 

determined by group consensus.  
Table 15: Qualitative Scale 

 

 
Table 16: Decision Matrix 

 
 

 
Figure 36: Initial Data Matrix [20] 

l represents the alternative index (l = 1, 2, ..., q), while n is the number of potential 

alternatives and m represents the criteria index (m =1, 2, ..., p).  The elements R1, R2, ..., 

Rq for the DM define the criteria while A1, A2, ..., Ap define the alternatives. [20] 

 

Flight Speed(km/h) Payload(kg) Range Reliability Maneuverability 

Our model 162.00 50 5 7 5

Wingcopter 150.00 6 5 5 7

Alphabet Wing 112.00 1.5 7 5 3

Zipline 100.00 1.75 9 7 3

Horsefly 74.00 4.5 3 7 9

F/Chretien Helicopter 40.00 170 3 7 3
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Table 17: Normalized Matrix 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑀𝑎𝑡𝑟𝑖𝑥 = 𝐿𝑙𝑚 =
𝑐𝑙𝑚

√∑ 𝑐𝑙𝑚
2𝑞

𝑙=1

  (24) 

The equation above represents the relative performance of each alternative within the 

Normalized Decision Matrix. 

 
Table 18: Criteria Weights 

 
 

Table 19: Weighted Data Matrix 

 

𝑉 = 𝑉𝑙𝑚 =  𝑊𝑚 ×  𝐿𝑙𝑚 (25) 

By multiplying the element for each column of the normalized decision matrix, the 

weighted decision matrix was determined. 

 
Table 20: Ideal Solution Matrix 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑑𝑒𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐼+ = {𝑉1
+, 𝑉2

+, … , 𝑉𝑞
+} 𝑤ℎ𝑒𝑟𝑒: 𝑉𝑚

+ = {𝑀𝑎𝑥(𝑉𝑙𝑚)}  (26) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐼𝑑𝑒𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐼− = {𝑉1
−, 𝑉2

−, … , 𝑉𝑞
−} 𝑤ℎ𝑒𝑟𝑒: 𝑉𝑚

− = {𝑀𝑖𝑛(𝑉𝑙𝑚)}  

Flight Speed Payload Range Reliability Maneuverability 

Raw Weight 8 4.5 7 7 3.5

Weights 0.267 0.150 0.233 0.233 0.117
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The above table represents the positive and negative ideal solutions for flight speed, 

payload, range, reliability, and maneuverability. They can be identified by finding the 

lowest and highest possible values for each criterion or column in the weighted data matrix. 

 
Table 21: Distance from Positive and Negative Ideal Solution Matrixes 

 

𝑆𝑙
+ = √∑ (𝑉𝑚

+ − 𝑉𝑙𝑚)2 ; 𝑙 = 1, 2, … , 𝑞
p
m=1  (27) 

𝑆𝑙
− = √∑ (𝑉𝑚

− − 𝑉𝑙𝑚)2 ; 𝑙 = 1, 2, … , 𝑞
p
m=1   

Where l = Alternative index 

m = criteria index 

The table above shows the separation distances from positive ideal solution and negative 

ideal solution of each alternative. The formula used is listed above. 

 
Table 22: Final Rankings 

 

𝐶𝑙 =
𝑆1

−

(𝑆1
+ + 𝑆1

−)
 , 0 ≤  𝐶1 ≤ 1 (28) 

The chart above shows that the VTOL model was closest to ideal when flight speed, 

payload, and reliability were made the heaviest weighted criteria. The formula above was 

used to determine the closeness to ideal for each criterion. 

Closeness

to Ideal

Our model 0.511834

Wingcopter 0.421923

Alphabet Wing 0.366282

Zipline 0.421697

Horsefly 0.262648

F/Chretien Helicopter 0.473985
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7.  Chapter 7: Conclusions  
 The aircraft design process is very iterative and achieving even the simplest of goals 

becomes a grand undertaking in which solving one aspect will change another which in 

turn changes the original values which changes another….  On and on the process repeats 

until a semblance of an answer presents itself and the next part of the process can 

commence. Designing an aircraft is less of creating a finished product that is perfect and 

more of deciding when a design is good enough for the required needs of the job, even if 

more improvements could be made. 

Based on the minimum success criteria, the VTOL designed and modeled in the 

preceding sections is a success. The aircraft has the capability to transport 50kg of medical 

supplies in a predefined 120cm x 80cm x 80cm container autonomously without human 

intervention excluding the initial loading of the package. It can vertically take off from a 

launch site up to 1,000 meters and transition to horizontal flight, like a traditional plane, to 

reach locations 50km away where it will return to the helicopter configuration to vertically 

descend.  After unloading the supplies, the craft will reverse the process to get back to the 

initial launch site. For the secondary mission, the aircraft can also transport the same 50kg 

of medical supplies one way to warehouses and logistic centers 200km away from the 

launch site without recharging, in similar fashion to the previous mission. 

 Additionally, the aircraft satisfies the less vital criteria for success. The entire 

aircraft is within a 6.1m x 6.1m x 6.1m maximum size: the wingspan is 5.5m and the length 

is 4.14m. The loading and unloading process can be done quickly through the use of a latch 

system and the only human input is placing the package. Lastly, the aircraft can takeoff 

from dense urban centers by taking off vertically while also reaching destinations 50km 

away within 28 minutes and 200km away in 75 minutes by converting to a fast and efficient 

plane.  

 Although the minimum requirements have been met and the aircraft is sufficiently 

designed, there is room for optimization/improvement in the future.  

• Aircraft Fuselage Design Optimization 

The aircraft fuselage could be optimized to reduce areas of flow separation to 

reduce drag. The landing gear could also be modified to retract which will allow 

for a more streamlined body. The fuselage is boxy as is and a round shape would 

be more ideal. 

• Designing with Other Disciplines 

Discussing the design with other experts (electrical engineers, structural engineers, 

manufacturing engineers, etc.) will vastly improve the quality and overall design of 

the aircraft. Aerospace engineers and industrial systems engineers do not have all 

the knowledge needed for producing an aircraft from start to finish. 

• Safety Requirements 

Increasing the safety of the system to achieve FAA approval for commercial use 

will allow for the aircraft to have the potential of being commercially viable. 

Medical suppliers will not want to send expensive supplies in an aircraft that may 

injure people or property. 

• Building a Physical Prototype 

Allows regulatory approval and will lead to a more thorough analysis of the craft 

in the “real world.”  
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Appendix C: Reflections 
Throughout the design process, we were able to utilize different concepts and skills 

learned from each of our respective fields in order complete the project. Some large challenges 

that we faced were dealing with project management and not really being able to meet face to 

face due the COVID-19 Pandemic. Even so, we had to make the best of the unexpected situation. 

We overcame this problem by focusing on each team member having individual tasks and 

conveying our individual findings, calculations, and results weekly. (Miles Mack) 

Throughout this project we exercised lots of different skills, and the project tested our 

competency.  The area where I felt most challenged, was the project management side of things.  

It was difficult to imagine where to start the project.  You start with a single goal, in this case 

designing a drone which can carry a payload of 50kg, and it branches out into all these intricate 

processes and problems.  I now see how important it is, to have a clear vision of your goals.  

When you have a clear vision of what needs to be done, you can allocate all your time and 

energy into completing the task.  (Andrew Payne)   

 A major problem that occurred was trying to complete this project during the pandemic. 

Without in person classes, it made it difficult to catch up with everyone and make sure we were 

consistently on the right track. I personally had difficulties keeping all of the calculations and 

formulas organized enough to actually gleam any information from them. It was also difficult 

working with electric VTOLs because it was something I didn’t have a lot of knowledge on and 

allowed us to work outside my usual comfort zone. This project was a great learning experience 

on aircraft design and working in teams.  (Elijah McDonald) 

 This assignment has made me appreciate aircraft designers much more than I used to. 

The amount of work that is involved with aircraft design is staggering and it is a wonder aircraft 

get designed when everything starts with estimations based on historical trends. When we started 

this project, I did not think about the complications of tilt-wing aircraft and the complications to 

designing electric, let alone them combined. Many of the equations and problem-solving 

approaches for this type of aircraft were not taught in a course so if there is a silver lining to 

picking a challenging aircraft, it is that I learned a lot of new information and how to apply it. 

Having more time to complete this project would have led to more refined results but there is 

only so much time in each semester. (Kyle Nottage) 
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Appendix D: Detailed Gantt Chart
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Appendix E: Electric Aircraft Specifications 

 

 
  

kW hp
Weight

(kg)
Weight (kg) Power (kWh) Blades

Diameter

(m)

Alisport Silent Club 13 17 40 1.4 12 10.3 14 125 290 165 200 1 2 1.6

Pipistrel Taurus Electro 40 54 14.97 12.33 18.6 285 550 265 130 2

Rutan Long ESA 258 7.96 7.617 322 601 279 298 2

Pipistrel WATTsUP 50 67 10.5 9.51 11.3 314 550 236 194 2 2 1.8

Pipistrel Alpha Electro 60 80 11 126 6.5 9.51 2 2

Bye Aerospace eFlyer 2 90 12 12 662 862 200 250 2 3

Aircraft
Wing Area

(m^2)

Empty Weight

(kg)
Aspect Ratio

Gross Weight

(kg)

Max Speed

(km/h)
Capacity

PropellersMotor
Payload 

Weight

Battery
Wingspan

(m)
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Appendix F: NACA 23015 Pressure Plots @ Aspect Ratio 6 
Angle of Attack: 
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Appendix G: NACA 23015 Pressure Plots @ Aspect Ratio 8 
Angle of Attack: 
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Appendix H: NACA 23015 Pressure Plots @ Aspect Ratio 10 
Angle of Attack: 
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Appendix I: General Aviation Component Weight Equations [4] 
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