CP-15 Malware Analysis Using Reverse Engineering

INTRO/ABSTRACT

B B
This project aims to analyze malware applications using open source T h I S C a Sto n e ro e Ct
tools such as IDA Pro and WinDbg to identify malicious activities by
reverse-engineering binary and source code. We've researched best
methods and mitigation strategies for malware prevention and have

B B B
included supporting documentation for other related areas such as fO c u s e d O n u t I I I Z I n two
malware recovery, training manuals, and an employee quiz. We
created a secure and safe test environment for malware reverse o o
engineering, pulled real malware samples, and put our selected tools
to the test. We then found that IDA Pro provides a better UX and far a p p I Ca I O n s y ro a n
B
WinDbg, to debug real
WinDbg: Some of the methods that were used to debug the malware
were setting multiple breakpoints at certain addresses to inspect the
code & see what it was doing, getting information about the memory m a Wa re u r res e a rc a s o
address by doing 'address and stopping it before it gets returned and -
then saving it to a dump file by using the info that was given from t - t t -
IDA Pro: We utilized the Imports tab to locate the GlobalAlloc memory I I g
call. From here, we went into the Graph view to find the dword
variable, renamed for readability purposes, and traced the malware
call. Using breakpoints from WinDbg, we could follow the malware call
to then end.

being a decompiler, whereas WinDbg is only a debugger.
when executing.

lower learning curve than WinDbg, and has the added benefit of
laddress so that we could further review it and see what the code did
areas such as industry

——
e= _TOKEN_PRIVI GES pt

mmmmmmm [>-]Ed

POV LUl UUUU/SLLL OLO/JUULY UUUUY S FLLL 0LADOUUY nivll Uull A

ModLoad: 00000000°779b0000 00000000° 77b53000 ntdll dll

ModLoad: 00007fff 8dd40000 00007£f£f 8dd93000 C:\Windows:

@BEFEEEFFh

buah simode
mov h+uExitCode], ebx
mov [es , offset aErrorWritingTe o i .
mov [es ebx
mov [es , 26h
call ds:
: C s\System32\vowb4 .dl1l call ds:
ModLoad: 00007fff’'8eeS0000 00007fff’ 8eed3000 C:\WVindows\Systen32\vowb4dwin .dll o s, Jon
(1£b0.1040): Break instruction exception — code 80000003 (first chance) bt 33—84y7x'ev
ntdll | LdrpDoDebuggerBreak+0x30 ; jz short loc_4@337A
00007£££ R2£940C720 o int 3 . . r] f r] 5
L 0005 Ne) Saen g Figure 1: A screenshot of the P
)))))) ad. 00000000 779a0000 00000000° 779aa000 C:\Windows\Systen32\wvowbdcpu.dll . . call sw_wgmc
ModLoad: 00000000° 76630000 00000000° 76720000 C:\Windows\SysWOW64\KERNEL32 . DLL f k) I(S haraan S
ModLoad: 00000000° 77170000 00000000° 77384000 C : \Windows\SysWOW64\KERNELBASE .d11 exeCUtlon O a rea pOInt = I R
ModLoad: 00000000°75690000 00000000 7585a000 C:\Program Files\SentinelOne\Sentinel A o v
Modload: 00000000° 7Sce0000 00000000° 75d45a000 C:\Windows\SysWOWE4\ADVAPI32 dll d h f h) (55
ModLoad: 00000000 75c20000 00000000° 75cd£f000 C:\Windows\SysWOW64\msvcrt .dll Comman On t e entry O t e push ocoeh
ModLoad 1 chost .dll
ModLoad 00 “77720 BAR CRT4 .d11
ModLoad 0 75b86 C:\V 232
ModLoad 0 7 S5\ dows\SysWOU64\win32u.dll
ModLoad 2, dows\SysWOU64\GDI32 .dll

aaaaaaa

executable. aee—

00000000° 76720000 00000000° 76796000 C:A\Wi
(0° 77660000 00000000 77720000

loc_4@e337A:
mov esi, offset String

Figure 2: A screenshot of how the screen looks

ModLoad . 00000000 75490000 00000000 75060000 C.“WindoweSyeWOVedNgdi32full dll
ModLoad: 00000000° 75370000 00000000° 759eb000 C:\Windows\Sy=WOWE4\nsvep_win.dll
ModLoad: 00000000°76£c0000 00000000° 77020000 C:\Windows\SysWOW&4\ucrtbase.dll
ModLoad- 00000000° 7540000 00000000 76584000 G- \Windows\Sy=WOW64\SHELL32 d11 v
| > _
0:000:x86> | after a file is decompiled in IDA Pro. The user is
e s O u I O n S

WinDbg was able to help debug the malware into simple code
that made it easy to read and understand what the malware was
doing by allowing us to download step by step information and
save It to inspect later.

IDA Pro was able to show a manipulative call to the system
memory & corrupted the users system by abusing user
privileges, the clipboard, disabling the firewall, and other
malicious intentions.

Resource:

https://www.youtube.com/watch?v=QuFJpH3My7A

Utilize this QR code, and visit our website to
access all our presentations and reports, as well
as a full testing demonstration video, where we
reverse engineer a piece of malware, utilizing the
tools researched in this project!

KENNESAW STATE | Author(s): Andy Pham, Cynthia Marcellus, Josh Rowland, Nathan Rowe, Shamour Jones

RS-V LI Advisors(s): Dr. Hossain Shahriar

SOFTWARE ENGINEERING

