CP-15 Malware Analysis Using Reverse Engineering

INTRO/ABSTRACT
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This project aims to analyze malware applications using open source T h I S C a Sto n e ro e Ct
tools such as IDA Pro and WinDbg to identify malicious activities by
reverse-engineering binary and source code. We've researched best
methods and mitigation strategies for malware prevention and have
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included supporting documentation for other related areas such as fO c u s e d O n u t I I I Z I n two
malware recovery, training manuals, and an employee quiz. We
created a secure and safe test environment for malware reverse o o
engineering, pulled real malware samples, and put our selected tools
to the test. We then found that IDA Pro provides a better UX and far a p p I Ca I O n s y ro a n
B
WinDbg, to debug real
WinDbg: Some of the methods that were used to debug the malware
were setting multiple breakpoints at certain addresses to inspect the
code & see what it was doing, getting information about the memory m a Wa re u r res e a rc a s o
address by doing 'address and stopping it before it gets returned and -
then saving it to a dump file by using the info that was given from t - t t -
IDA Pro: We utilized the Imports tab to locate the GlobalAlloc memory I I g
call. From here, we went into the Graph view to find the dword
variable, renamed for readability purposes, and traced the malware
call. Using breakpoints from WinDbg, we could follow the malware call
to then end.

being a decompiler, whereas WinDbg is only a debugger.
when executing.

lower learning curve than WinDbg, and has the added benefit of
laddress so that we could further review it and see what the code did
areas such as industry
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WinDbg was able to help debug the malware into simple code
that made it easy to read and understand what the malware was
doing by allowing us to download step by step information and
save It to inspect later.

IDA Pro was able to show a manipulative call to the system
memory & corrupted the users system by abusing user
privileges, the clipboard, disabling the firewall, and other
malicious intentions.

Resource:

https://www.youtube.com/watch?v=QuFJpH3My7A

Utilize this QR code, and visit our website to
access all our presentations and reports, as well
as a full testing demonstration video, where we
reverse engineer a piece of malware, utilizing the
tools researched in this project!
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