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ABSTRACT

Accurate duplication of chromosomal DNA is es-
sential for the transmission of genetic information.
The DNA replication fork encounters template le-
sions, physical barriers, transcriptional machinery,
and topological barriers that challenge the faithful
completion of the replication process. The flexibil-
ity of replisomes coupled with tolerance and repair
mechanisms counteract these replication fork obsta-
cles. The cell possesses several universal mecha-
nisms that may be activated in response to various
replication fork impediments, but it has also evolved
ways to counter specific obstacles. In this review, we
will discuss these general and specific strategies to
counteract different forms of replication associated
damage to maintain genomic stability.

INTRODUCTION

The efficient duplication of genetic information demands
the unimpeded progression of the replication fork. DNA le-
sions and physical barriers pose great threats to the faithful
completion of replication. Thus, the cell has developed over-
lapping DNA damage repair and tolerance mechanisms to
ensure that these obstructions do not result in genomic in-
stability.

In most cases, lesions are not absolute impediments to
replication fork progression. Replisomes can replicate over
them, switch template strands, switch polymerases (Pols),
reprime, or pause to give more time for repair. Moreover,
replisome components are flexible, where functional uncou-
pling can occur between helicases and Pols, as well as lead-
ing and lagging strand Pols (1,2). Such dynamics built into
the replication machinery represent the earliest tolerance
mechanisms for template damage. However, due to the high

number of challenges to replication, the eventual collapsing
of the fork, defined as losing the capacity to continue DNA
synthesis, is inevitable. This is where multiple DNA repair
pathways are engaged based on the type of damage.

Some of the common types of lesions encountered
by replication forks are ribonucleotides, base lesions, cy-
clobutene pyrimidine dimers (CPDs), interstrand crosslinks
(ICLs), DNA–protein crosslinks (DPCs), and R-loops.
These impediments represent a serious problem, particu-
larly during replication, due to two reasons. First, although
repair pathways may still remove the damage during repli-
cation, their uncontrolled action could be detrimental, since
the DNA in the vicinity of replication fork is single-stranded
DNA (ssDNA). Excising the lesion from ssDNA, as would
be the case in base excision repair (BER), nucleotide ex-
cision repair (NER), and ribonucleotide excision repair
(RER), would result in a DNA break and fork collapse. Sec-
ond, the replication machinery itself potentially transforms
the latent DNA damage into a more deleterious form. For
example, ssDNA breaks are converted to double-stranded
breaks (DSBs) upon encountering the progressing fork (3),
and the collisions of replication machinery with trapped
topoisomerases generates DSBs by ‘replication run-off’ (4).
These replication-associated DSBs are single ended, requir-
ing recombination for their repair.

The dynamics of replication, coupled with lesion skip-
ping, translesion synthesis (TLS), template switching (TS),
and fork reversal are shared strategies to avoid much of the
replication associated DNA damage, ranging from small
base lesion to large DPCs (Figure 1). Although these shared
strategies are enough to counter most replication associ-
ated damage, specific types of damage still require further
processing. In this review, we will first describe the general
strategies to deal with established forms of replication as-
sociated damage. Then, specific requirements to deal with
genomic ribonucleotides, R-loops, DPCs and ICLs during
replication will be considered in greater detail.
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Figure 1. General strategies to bypass and repair DNA damage during replication. (A) A DNA lesion (black triangle) on the leading strand stops replication
fork movement. (B) The DNA damage leads to the functional uncoupling of DNA polymerases and the replicative helicase, since the helicase can bypass
the lesion without association with the polymerase. Several pathways are employed to bypass or repair the damage through (C) lesion skipping, where
repriming occurs downstream the lesion; (D) template switching, where the newly synthesized DNA strand is used as the template; (E) fork reversal, where
the nascent strands reanneal, giving the chance for DNA repair pathways to remove the damage without collapsing the replication fork; (F) or translesion
synthesis, where specialized TLS polymerases temporarily replace the replicative polymerases to bypass the lesion.

COMMON STRATEGIES TO DEAL WITH REPLICA-
TION BLOCKS

Replisome-intrinsic features

The presence of lesions on leading and lagging strands have
different consequences for replication. In general, damage
in the lagging-strand template is more tolerable due to the
frequently initiated Okazaki fragments that delay the pro-
cessing of the damage, leaving gaps behind that can be filled
in post-replication (2,5). On the other hand, damage in the
leading strand is more problematic because of its continu-
ous nature of replication. This raises a question of how the
cell coordinates between leading and lagging strand synthe-
sis during repair occurring in one strand. It has been as-
sumed that DNA synthesis on both strands must be coor-
dinated to avoid strand uncoupling and ssDNA accumu-
lation, yet this dogma has been recently challenged. Inves-
tigation of Escherichia coli DNA replication has revealed
that polymerases act fully independently, and such coordi-
nation is absent (1). Similarly, human DNA polymerases
have also been shown to function independently in vivo. Af-
ter reducing the rate of lagging strand synthesis, cells sustain
persistent levels of strand uncoupling and ssDNA accumu-
lation without activation of replication checkpoint signal-

ing (6). Therefore, this independent and stochastic behavior
suggests that at any given time the leading strand synthesis
could be slower or faster than the lagging-strand synthe-
sis. Although the mechanisms behind this are not yet clear,
these studies highlight the unexpected flexibility of the repli-
cation machinery to tolerate DNA damage.

In addition to leading-lagging polymerase uncoupling,
leading strand lesions cause the replicative CMG (CDC45-
MCM-GINS) helicase and DNA synthesis to become func-
tionally uncoupled, because CMG can bypass the damage
while the polymerase is paused. This event generates ss-
DNA as the leading-strand template is exposed (7–9) (Fig-
ure 1A and B). During polymerase pausing, DNA unwind-
ing continues but at markedly reduced rate (∼20% of nor-
mal), preventing CMG helicase from running far away from
the polymerase and generating excessive ssDNA. This fail-
safe mechanism is called the ‘dead man’s switch’ (1). Con-
sistently, a recent report has suggested that the act of lead-
ing strand polymerization by itself increases template un-
winding rate by CMG (10). While the underlying mecha-
nism is unknown, the nascent leading strand may prevent
backtracking of the CMG. This provides an additional fail-
safe to the ‘dead man’s switch’ to limit excessive uncoupling
that can lead to significant ssDNA accumulation.
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Polymerase repriming, template switching, and fork reversal

After induction of polymerase-stalling damage such as UV-
induced thymine dimers, discontinuous DNA synthesis oc-
curs on both the leading and lagging strands in Saccha-
romyces cerevisiae, suggesting that repriming downstream
of the lesions is a commonly used option during replica-
tion (7). The new primer allows DNA synthesis to resume,
leaving behind a ssDNA gap (Figure 1C). Escherichia coli
reinitiates leading strand synthesis downstream of the dam-
age via DnaG-dependent repriming (11,12), while in meta-
zoans, the repriming at the leading strand preferentially uses
a specialized primase called PrimPol (13–16). The mecha-
nisms responsible for activation of repriming are largely un-
known, although a recent report has found that cells adapt
to repeated cisplatin exposure by increased expression of
PrimPol under certain conditions (16). PrimPol interacts
directly with RPA, and it is possible that increased RPA-
coated DNA, which would signal the presence of markedly
damaged template, is the primary trigger to recruit Primpol
(17,18). An alternative mechanism of avoiding a damaged
DNA template is template switching (TS). This is an error-
free mode of DNA synthesis that allows the stalled replica-
tion fork to use the newly synthesized strand as the template
to avoid the lesion. TS activity is regulated by ubiquitina-
tion and SUMOylation of PCNA, and involves recombina-
tion between the nascent sister strands (19,20). Upon initi-
ation of template switching, a DNA Pol extends the stalled
nascent DNA along the nascent sister strands (Figure 1D).
The paired nascent strands can be resolved by a dissolution
mechanism akin to termination of homologous recombina-
tion (21). In budding yeast, it has been demonstrated that
replicative helicase-coupled repriming by Pol�/Primase fa-
cilitates TS. As a result, defects in Pol�/Primase cause de-
fects in strand annealing and reversed fork formation (22).

Another mechanism to deal with common template ob-
structions is fork reversal. Fork reversal results in reanneal-
ing of the nascent strands without further DNA Pol activ-
ity, leading to the formation of a ‘chicken foot’ structure
(Figure 1E). Replication fork reversal (i) allows additional
time for repair, (ii) protects ssDNA at the stalled fork, (iii)
could serve as a mechanism of TS and (iv) avoids the col-
lision of replication machinery with DNA lesions present
ahead of the fork (23). It is estimated that about 15–30%
of the forks are reversed after treatment with various geno-
toxic agents. This suggests that fork reversal is a global
response to replication stress (24). Fork reversal is medi-
ated by several proteins including ZRANB3, SMARCAL1,
HLTF, FBH1, WRN, RAD54, FANCM, as well as RAD51
(25,26). It is largely unknown if they act in coordination
with each other, or independently in different regions of the
genome, or in different damage contexts. Once a reversed
fork is formed, it creates a DSB that needs to be protected
from nucleases, such as MRE11 and DNA2, which degrade
and collapse the reversed fork. This protection is generally
thought to be RAD51-dependent (27–29).

Besides its role in fork protection, RAD51 promotes
fork reversal (24,29), and mediates the restart of stalled or
collapsed forks (30). Surprisingly, a recent study demon-
strated that RAD51 DNA binding activity alone is suffi-
cient for both replication fork reversal and protection, and

only the strand exchange enzymatic activity is required for
replication fork restart (31). These roles of RAD51 at the
fork could be positively or negatively regulated, and many
of the canonical factors involved in Rad51-mediated ho-
mologous recombination (HR) are also involved in fork
protection. For example, BRCA2 functions during HR
by displacing the single-stranded DNA-binding protein,
RPA, with RAD51 to promote the strand exchange re-
action (32). Moreover, BRCA2 protects stalled replication
forks from extensive nucleolytic degradation through sta-
bilization of the RAD51 filament (28). Besides BRCA1
and BRCA2, which promote RAD51 recruitment, RAD51
paralogs, MMS22L–TONSL, and BOD1L also positively
support RAD51 function in fork protection (33–35). The
BRCA1 antagonist, 53BP1, has also been reported to play a
role in fork protection, although this was not observed con-
sistently between various groups (36–39). Recently, this con-
tradiction was resolved by showing that the role of 53BP1
in fork protection is dependent on the chronic versus acute
inactivation of 53BP1 (40). This suggested that distinct
molecular pathways may exist for fork protection; indeed,
the requirement of fork protection proteins depends on
the pathway used in fork remodeling. Specifically, BRCA2,
FANCD2, and ABRO1 protect forks generated by SMAR-
CAL1, ZRANB3, and HLTF, whereas 53BP1, FANCA,
FANCC, FANCG, BOD1L and VHL protect forks re-
modeled by FBH1 (40). Other proteins, including RADX,
FBH1 and RAD52 prevent excessive fork reversal by neg-
atively regulating RAD51 activity (41–43). This illustrates
the importance of restricting RAD51 activity at forks, be-
cause RAD51 overexpression promotes excessive fork re-
versal, leading to fork degradation and DSBs (42,44).

In addition to the nucleases that degrade nascent DNA
strands during fork reversal, other structure-specific nucle-
ases may process stressed forks following prolonged stalling
(45). Therefore, the requirement for the fork protection
from nucleases is not limited to fork reversal. For exam-
ple, cancer cells with microsatellite instability are syntheti-
cally lethal with defects in WRN helicase (46,47). Recently,
Nussenzweig and colleagues have revealed that the TA re-
peats form secondary structures that stall replication forks
and require unwinding by the WRN helicase. In the ab-
sence of WRN, the TA-dinucleotide repeats are cleaved by
MUS81 nuclease, leading to double strand breaks, DNA
end resection, RPA exhaustion, and cell death (48).

Translesion synthesis (TLS)

When replication forks stall, low fidelity TLS Pols tran-
siently replace the replicative Pols to help bypass the lesion
(Figure 1F). Mammalian cells have at least seven enzymes
with TLS activity, including four Y-family Pols (�, �, � and
REV1), one B-family Pol (� ), and two A-family Pols (� and
�). In general, TLS Pols have larger catalytic pockets that al-
low them to accommodate templates lesions. Furthermore,
TLS Pols lack 3′-5′ proofreading domains (49). Therefore,
TLS Pols confer damage tolerance at the cost of reduced
replication accuracy. Although TLS Pols are inherently er-
ror prone, certain TLS Pols can mediate error-free repair of
specific lesions. For example, TLS Pol� accurately bypasses
UV-induced CPD lesions (50). Accordingly, mutations in
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the gene encoding Pol� result in a genetic predisposition
to skin cancer (51). Other TLS Pols, such as Pol�, Pol�,
Pol� and Pol� make errors while replicating UV-induced le-
sions (49). Due to the mutagenic potential of Pol�, it was
suggested to contribute to skin-cancer development. Sur-
prisingly, Prakash and colleagues have found that Pol� plays
a protective role against skin cancer caused by UV. This is
attributed to the role of Pol� in promoting replication fork
progression in response to UV, which counteracts the for-
mation of DSBs and genome rearrangements. This suggests
that both error-prone and error-free TLS Pols may act as
effective barriers to genomic instability and tumorigenesis
(52). Similar to the mechanisms described above, PCNA
monoubiquitination appears to be a key component reg-
ulating TLS polymerase recruitment (53), yet how the cell
‘chooses’ which TLS Pol is activated at any specific time is
largely unclear.

How lesion skipping, TLS, TS and fork reversal are regu-
lated, and how a replisome activates one mechanism over
another when encountering a particular type of lesion is
still largely unknown. Recent evidence suggests that fork re-
versal and repriming may be mutually exclusive pathways
(16,54). In support of this, UV damage induces an increase
in RAD51 loading onto chromatin in PrimPol depleted cells
(13), whereas the same type of damage induces excessive
elongation of nascent DNA by PrimPol in RAD51-depleted
cells (55). More recently, HLTF has been shown to activate
replication fork reversal and to prevent alternative tolerance
mechanisms. Interestingly, while the loss of HLTF makes
the cells rely on the PrimPol for unrestrained replication,
defect in the HLTF DNA binding HIRAN domain makes
cells rely on translesion synthesis (54). RAD52 could also
play a role in regulating the switch between fork reversal and
repriming (43) Together, these data strongly suggest an an-
tagonistic interplay between the pathways involved in main-
taining replication fork dynamics during damage.

Replication fork restart

Dormant origins are licensed origins (i.e. have loaded
MCM helicase) that are not activated during replication.
They serve as an important backup to restore replication
when forks are stalled. The high number of dormant ori-
gins in mammalian cells reduces the necessity of replica-
tion fork restart (56). Moreover, a reversed fork could just
simply merge with a converging fork. Nevertheless, fork
restart does occur in mammalian cells. This restart could
be achieved by repriming (discussed above), helicases, or
break-induced replication (BIR).

Specific helicases, such as RECQ1, WRN and BLM, have
important roles in reversed fork restart. RECQ1 promotes
fork reversal restart, an activity that is negatively regu-
lated by PARP1 to prevent unscheduled fork reversal restart
to give more time for repair (23). Moreover, WRN and
DNA2 induce the resection of regressed arms, leading to
fork restart (57).

Alternatively, if a fork encounters a ssDNA break or
other type of damaged template that collapses the fork,
BIR, a unique type of HR mechanism, can be employed.
Similar to other HR mechanisms, BIR requires extensive
end processing to generate a 3′ ssDNA end that allows

RAD51-ssDNA filament formation. RAD51 invades the
homologous template to generate a displacement loop (D-
loop) that allows replisome assembly and DNA synthe-
sis. Unlike HR, which typically involves small regions of
DNA synthesis, BIR engages in extensive DNA replica-
tion for many kilobases of DNA until the end of the chro-
mosome (58). There are many differences between canon-
ical replication forks and those established during BIR.
First, unlike canonical replication, BIR involves a single
ended DNA that acts independently, and progresses via a
migrating bubble or D-loop (58). Second, BIR synthesis
is asynchronous; the leading strand is synthesized as ss-
DNA, then the lagging strand uses the leading strand as the
template (59–61). Third, BIR assembles a modified repli-
some, where an additional Pol	 subunit, human POLD3,
is added, and the DNA helicase PIF1 activity is required
(60–62). In yeast, the Srs2 helicase is also required to pre-
vent the formation of toxic structures during the invasion
of leading strand into the DNA template (63). Fourth, com-
pared to canonical DNA replication, BIR is associated with
loss-of-heterozygosity, high mutation rates, and chromoso-
mal rearrangements (58). This mutagenic synthesis is due
at least in part to frequent dissociations of modified Pol	
from the template (58,64,65), and the reduced efficiency
of mismatch repair during BIR (66). BIR synthesis is ei-
ther rescued by a replication fork coming from the op-
posite direction or terminated by MUS81 cleavage of the
recombination intermediate (31,67,68). Although canoni-
cal BIR is RAD51-dependent, RAD51-independent BIR
has also been identified. The exact mechanism of RAD51-
independent BIR is unknown, and the relative contribu-
tions of RAD51-dependent and independent BIR to repli-
cation restart are currently unclear (58).

The above tolerance and repair strategies can be deployed
to deal with virtually all types of DNA damage during repli-
cation. Yet, these are insufficient to maintain genome sta-
bility. In the next section, we will discuss the additional re-
quirements to deal with specific types of damage during
replication, which are commonly encountered during nor-
mal replication or during the presence of certain genotoxins.

GENOMIC RIBONUCLEOTIDES AND R-LOOPS

Ribonucleotide triphosphates (rNTPs) and deoxyribonu-
cleotides triphosphates (dNTPs) are the precursors for
RNA and DNA, respectively. The extra 2′-OH group in the
ribose makes RNA relatively unstable, because it can po-
tentially mediate nucleophilic attack of the sugar-phosphate
backbone, generating a break. RNA is frequently embed-
ded or annealed to genomic DNA, where it interferes with
replication, inducing DNA damage and genomic instabil-
ity. Paradoxically, DNA replication is the main source of
genomic ribonucleotides, and ribonucleotide incorporation
is the largest fraction of all endogenous DNA ‘lesions’ (Fig-
ure 2).

Ribonucleotide bypass by replicative and TLS polymerases

A major issue with ribonucleotides in DNA is that replica-
tive Pols in yeast and human are inefficient at bypassing
them when they are present in the template strand. More-
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Figure 2. Genomic ribonucleotide repair and bypass during replication. (A) DNA polymerases incorporate ribonucleotides (blue ‘R’) during replication
which can be bypassed, removed by ribonucleotide excision repair (RER), or processed by topoisomerase I (TOP1). (B) Left unrepaired, a replication fork
would encounter a ribonucleotide in the template strand. The replicative DNA polymerases are inefficient in bypassing template ribonucleotides, leading
to replication stress. In this case, translesion synthesis (TLS) or template switching (TS) are activated to bypass the ribonucleotides to complete replication.
(C) During RER, RNase H2 incises 5′ to the embedded ribonucleotide, DNA polymerase 	 generates a flap which is nucleolytically processed by FEN1,
followed by ligation, leading to error-free repair. (D) In the absence of RER, TOP1 mediates the removal of genomic ribonucleotides. TOP1 incises 3′
to the embedded ribonucleotide. Then, nucleophilic attack by the 2′-OH group on the ribose generates a 2′,3′-cyclic phosphate and releases TOP1. The
2′,3′-cyclic phosphate can be reversed by TOP1 or removed by a second TOP1 cleavage, or by various nucleases. Alternatively, the trapped TOP1 can be
removed in a manner which may lead to a small deletion, or via TDP1 in an error-free manner.

over, the bypassing capability decreases as the number of
consecutive template ribonucleotides increases. For exam-
ple, the efficiency decreases from 70% to 35% for Pol	 and
from 66% to 3% for Polε as the number of ribonucleotides
increases from 1 to 3 (69–71). Similarly, physiological lev-
els of rNTPs inhibit mtDNA synthesis by Pol
 (72). There-
fore, genomic ribonucleotide accumulation induces replica-
tion stress, leading to DNA breaks and genomic instabil-
ity, which has been observed in yeast and human cells (73–
79). The replication stress could also be induced indirectly
by DNA breaks generated by spontaneous hydrolysis or by
TOP1-mediated ribonucleotide cleavage, which will be de-
scribed below.

TLS and TS are important means of bypassing tem-
plate ribonucleotides (Figure 2) and are activated in RNase
H1/2 depleted cells (74,76). The TLS polymerase Pol�
can bypass ribonucleotide-containing DNA and efficiently
copies DNA templates containing four consecutive ribonu-

cleotides (76). Moreover, oxidized ribonucleotides, like 8-
oxorG, in DNA could be more problematic for replication,
because they strongly block primer extension by Pol�. Inter-
estingly, TLS pol� can bypasses both undamaged and dam-
aged ribonucleotides (80). These results suggest that TLS
Pols may act as genomic ribonucleotide tolerance mecha-
nisms. On the other hand, TLS Pols can use rNTPs as a
substrate to bypass certain lesions. Pol� was reported to by-
pass abasic sites and 8-oxo-G lesions using rNTPs as sub-
strates (81). Moreover, under limited dNTP pools triggered
by hydroxyurea (HU), robust ribonucleotide incorporation
is mediated by human TLS Pol�during TLS of CPD, 8-oxo-
G, 8-met-G and a cisplatin intrastrand guanine crosslink.
These results suggest that Pol� can contribute to the accu-
mulation of genomic ribonucleotides (82,83). In the pres-
ence of RNase H, this may be an acceptable compromise.
However, in the absence of RNase H activity, Pol� activity
becomes increasingly cytotoxic. Consistently, the deletion
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of Pol�rescues the HU sensitivity of RNase H deficient cells
(84).

Ribonucleotide excision repair (RER)

RER, which is considered to be error free, is the primary
pathway for the removal of genomic ribonucleotides, and is
mediated by RNase H (Figure 2). The eukaryotic RNase
H family consists of the monomeric RNase H1 and the
trimeric RNase H2 (A, B and C subunits) (85). RNase H1
requires at least a stretch of four consecutive rNMPs to
cleave an RNA-DNA hybrid. While it is not required during
canonical RER, its activity is essential for mtDNA replica-
tion and R-loop removal (86,87). On the other hand, RNase
H2 can act both on stretches or single incorporated rN-
MPs in the genome (87). RNase H2 incises the DNA on
the 5′ side of the ribonucleotide. Then, Pol	 (or, less effi-
ciently Polε) performs strand displacement synthesis, creat-
ing a flap that is subsequently removed by FEN1 or EXO1.
The nick is sealed by DNA ligase (87). Mammalian RNase
H2 is recruited to replication forks through the interac-
tion of RNASEH2B and PCNA as well as the catalytic
site of RNASEH2A (88,89). Both yeast and mammalian
cells lacking RNase H2 activate replication stress signal-
ing and have higher genomic instability (73–79). Moreover,
cells lacking RNase H2 accumulate high levels of micronu-
clei that lead to cGAS-STING-mediated inflammatory sig-
naling (90). Due to the role of ribonucleotides in induc-
ing replication stress, ATR inhibition is synthetically lethal
in RNase H2 deficient cells (91), highlighting one of the
many essential functions of ATR in response to replication
stress.

In the absence of RER, topoisomerase 1 (TOP1) medi-
ates ribonucleotide cleavage, creating mutagenic 2′,3′-cyclic
phosphate ends (Figure 2). TOP1 cleaves the DNA at the
3′-side of a ribonucleotide, generating a covalent TOP1-
DNA complex, which is often referred to as the topoiso-
merase cleavage complex (TOP1cc). Subsequently, the 2′-
OH of the ribose sugar attacks the phosphotyrosyl linkages
of TOP1cc. The resulting nick flanked by the 2′,3′-cyclic
phosphate and 5′-OH is not capable of ligation (92,93). Sev-
eral scenarios have been suggested for the processing of this
nick. First, the reversible re-ligation of the nick by TOP1
allows a second attempt of the excision repair (94,95). Sec-
ond, TOP1 can initiate a second cut on DNA two base pairs
upstream of the nick, releasing rNMP-dNMP dinucleotide.
In this case, the TOP1cc could be released by TDP1, leaving
behind a gap that can be repaired in an error-free manner
(95). Alternately, TOP1 may re-ligate the DNA backbone,
causing deletions (92,94,95). On the other hand, process-
ing of the 5′-OH via Srs2 helicase and Exo1 nuclease, and
the 2′,3′-cyclic phosphate by the abasic endonuclease Apn2
creates a gap that inhibits TOP1-mediated ligation, thereby
reducing the risk of mutations (96,97). Third, TOP1 can
cut the DNA strand opposing the rNMP, creating a DSB
(98). Thus, it is clear that TOP1-dependent ribonucleotide
excision is potentially highly mutagenic, leading to gene
deletions and chromosomal rearrangements (78,92,94,98).
Interestingly, in the absence of RNase H2, ribonucleotide
cleavage by TOP1 results in lesions that trap PARP1 by
PARP inhibitors, leading to cell killing. This highlights the

potential therapeutic value of PARP1 inhibitors in the treat-
ment of metastatic prostate cancer and chronic lymphocytic
leukemia where RNase H2 is frequently deleted (79).

Replication block by R-Loops and its repair mechanisms

During transcription, newly transcribed RNA can hy-
bridize with the transiently accessible template strand
downstream of the transcriptional machinery, forming a
structure called an R-loop. Although R-loops play essen-
tial physiological functions, they contribute to genome in-
stability, particularly when replication forks collide with
the transcription machinery. Thus, tight R-loop regulation
must be maintained. Factors that function in the transcrip-
tion process are essential in preventing excessive R-loops
formation. For example, SRSF1 and THO/TREX com-
plex, which mediate mRNA processing, prevent R-loop for-
mation (99,100). Topoisomerases relax negative supercoils
formed behind the transcriptional bubble to reduce the ac-
cess of mRNA to template DNA, reducing R-loop accumu-
lation (101). Once formed, different factors act to remove R-
loops, including RNase H1 and H2, which degrade the hy-
bridized RNA with DNA, and helicases like DHX9, Aquar-
ius, senataxin, and PIF1 which resolve R-loops by unwind-
ing the RNA component away from the template (102,103).
In addition, several components of canonical DNA repair
pathways, including HR (BRCA1, BRCA2), the Fanconi
anemia pathway, and transcription-coupled NER (XPG
and XPF) are also implicated in R-loop suppression (104–
107).

Transcription and replication necessarily share the same
DNA template. When replication forks encounter the tran-
scription machinery, the resulting transcription-replication
collisions (TRCs) can cause potentially lethal DNA dam-
age and genomic instability. Transcription of human genes
that are larger than 800 kb spans more than one complete
cell cycle, so TRCs are inevitable (108). TRCs can occur in
head-on or co-directional orientation, with the former sce-
nario having more deleterious effect than the latter (109).
Head-on TRCs promote the formation of R-loops that
block replication fork progression (109,110). Importantly,
R-loops, but not normal transcription complexes, induce
DSBs during TRCs (109). How a replication fork blocked
by an R-loop can restart remains elusive. Recent studies
have shown that R-loop induced replication fork stalling is
an active process involving cycle of fork reversal, cleavage
and re-ligation. Mechanistically, after RECQ1 mediates re-
verse branch migration, RECQ5 disrupts RAD51 filaments
to prevent a new round of fork reversal and to facilitate fork
cleavage by MUS81. RAD52 and LIG4/XRCC4 help to
catalyze fork re-ligation. Interestingly, this cycle allows the
movement of the replication machinery through oppositely
transcribed DNA regions without disrupting transcription
(111). In support of this model, a recent study has shown
that ATR-Chk1 is activated by R-loops through the action
of MUS81 on reversed forks. Activated ATR prevents TRCs
as well as excessive cleavage by MUS81, and enforces cell cy-
cle arrest (112). Taken together, it is likely that R-loops may
function as a signal for potential TRCs to activate the fork
cleavage and re-ligation cycle to resume the transcription of
associated genes.
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DNA–PROTEIN CROSSLINKS

Proteins can be covalently and irreversibly linked with
DNA, forming DNA–protein crosslinks (DPCs). DPCs are
highly detrimental to cells because they constitute large
adducts that potently block DNA replication (Figure 3).
Various chemotherapeutics are used in the clinic which
induce DPCs. As mentioned earlier, topoisomerases form
covalently-bound TOPccs as part of their catalytic cycle.
Topoisomerase poisons such as irinotecan and etoposide
selectively trap TOP1 and TOP2, respectively, on DNA by
stabilizing the TOPcc (113,114). Moreover, pyridostatin, a
compound that stabilizes G-quadruplex (G4) sequences has
been recently shown to induce TOP2cc formation (115).
Similarly, 5-aza-dC is a cytosine analogue that is incor-
porated in DNA and acts as a pseudosubstrate for DNA
methyltransferase 1 (DNMT1), resulting in its covalent
trapping (116). Platinum derivatives, such as cisplatin, in-
duce nonspecific crosslinking of chromatin-interacting pro-
teins to DNA (117), and PARP inhibitors, such as Olaparib,
induce PARP trapping on DNA. Although not crosslinked
covalently, PARP is tightly bound to DNA, resulting in a
DPC-like lesion (118). Exogenous sources, like ionizing ra-
diation (IR) and UV, can also cause DPCs (119). Finally,
abasic sites, which can occur spontaneously or during base
excision repair, have intrinsic protein-crosslinking proper-
ties, leading to covalent trapping of histones and the newly
discovered HMCES protein (120).

Due to the large size of DPCs, it was initially thought that
they block both replicative Pols and CMG helicase. Sur-
prisingly, recent reports revealed that DPCs do not block
CMG, and moreover DPC repair does not require CMG
unloading (discussed below). A lagging strand DPC can
be immediately bypassed by CMG, perhaps with the help
of the accessory protein MCM10, to ensure lagging strand
DPCs do not interfere with CMG movement (121). Un-
expectedly, Walter and colleagues have shown that CMG
can also bypass an intact leading strand DPC before prote-
olysis. The DNA helicase RTEL1 facilitates the bypass by
generating ssDNA beyond the DPC. This allows the CMG
to bypass the DPC, which then triggers DPC proteolysis
(9,122). CMG slows after bypass, likely due to uncoupling
from DNA synthesis as previously mentioned (1,9). This
further reinforces the remarkable capacity of CMG to over-
come obstacles, and the flexibility of the replisome.

DPC repair mechanisms

The diversity of the potential components of a DPC likely
served as the basis for the evolution of multiple mecha-
nisms to deal with these lesions. For example, Topccs may
be flanked by a SSB or a DSB in the case of TOP1cc and
TOP2cc, respectively. Regardless, the collision of replica-
tion machinery with TOP-DPCs could lead to DSB for-
mation. In addition to the general repair strategies (Fig-
ure 1), TOP-DPCs have dedicated enzymes for their re-
moval, called tyrosyl-DNA phosphodiesterases, or TDPs.
TDP1 and TDP2 hydrolyze the phosphodiester bond be-
tween DNA and the tyrosine residue of TOP1 and TOP2,
respectively (Figure 3B). TDP1 activity produces 3′ phos-
phate ends, which require further processing by PNKP, fol-

lowed by the canonical SSB repair to seal the nick. On
the other hand, TDP2 produces a clean DSB which is di-
rectly processed by non-homologous end joining (NHEJ)
(123). TDP1 and TDP2 are incapable of removing the in-
tact TOP1cc and TOP2cc and require their pre-proteolysis
(see below) (124,125). A recent report has discovered that
TEX264–p97 complex facilitates the proteolysis of TOP1cc
via SPRTN upstream of TDP1 during DNA replication
(126). Interestingly, the SUMO ligase ZATT (ZNF451) may
mediate direct resolution of the TOP2cc by TDP2 without
the need for TOP2cc pre-proteolysis (127). Thus, the cell has
evolved multiple possible mechanisms to deal with just one
particular group of DPCs.

Beyond these specific mechanisms, the MRN com-
plex (Mre11–Rad50–NBS1) is a highly conserved nuclease
which may function to remove DPCs (Figure 3B). MRN is
unaffected by the identity of the protein adduct and both
the enzymatic and non-enzymatic DPCs are potential tar-
gets for MRN (128–131). Moreover, MRN can remove pro-
tein adducts at the 5′ end or the 3′ end of DSBs. Such en-
donucleolytic activity produces a clean DSB, which can be
repaired by canonical DSB repair mechanisms (130). The
CtIP nuclease (Sae2 in S. cerevisiae), stimulates the endonu-
cleolytic cleavage of DPCs by MRN (130,132). Additional
nucleolytic activities are likely involved in excising TOP1ccs.

The proteasome participates in DPC removal (Figure 3),
and proteasome inhibitors impair DPCs removal and sen-
sitize cells to DPC inducing agents (125). The proteasome
degradation requires DPC polyubiquitylation, which is par-
tially dependent on the E3 ligase TRAIP (122). In recent
years, a more specific proteolytic pathway has been identi-
fied with the finding of Wss1 in yeast cells and its orthologs
SPRTN in mammalian cells (133). Wss1/SPRTN can cleave
almost every type of DPC, including TOPcc, high mobility
group protein 1, histones, and itself in a DNA-dependent
manner (133–138). SPRTN can also degrade nonubiquity-
lated DPCs (122). Spartan is recruited by binding ubiquiti-
nated PCNA via its UBZ domain and a PIP box (139,140).
As expected, the protease activity of SPRTN is tightly regu-
lated via its DNA binding, ubiquitination and autocleavage
(133–138).

Even after DPCs proteolysis by Wss1/SPRTN or the pro-
teasome, they are not fully removed from DNA. Small pep-
tides are left covalently bound to DNA, which in turn can
block replicative Pols. The peptide-DNA can be processed
by TDPs in case of TOPcc (126). In case of non-enzymatic
DPCs, the small peptides that remain can be removed by
NER (Figure 3C), which is only capable of excising DPCs
up to a certain size (8–10 kDa) (141,142). However, it seems
that the action of NER is limited to G1 phase prior to repli-
cation (133). In addition, bypass of peptide-DNA may rely
on the TLS pathway (143). Finally, if a DPC is left unpro-
cessed, the permanently stalled replication fork might be
cleaved by endonucleases, resulting in a single-ended DSB.
This situation may therefore trigger break-induced replica-
tion (133). More recently, genetic screening using tdp1/wss1
double-mutant yeast has identified the aspartate protease
Ddi1 to act as alternative to Wss1 and 26S proteasome to
resolve DPCs (144). Thus, the cell has evolved multiple com-
plex mechanisms by which DPCs can be processed, high-
lighting the importance of dealing with this type of lesion.
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Figure 3. DNA–protein crosslink (DPC) repair and bypass during replication. (A) A DPC blocks replication fork progression. The repair of the DPC
begins with proteolysis of the DPC by various proteases. (B) The repair of topoisomerase induced DPCs is a special case, because TOP-DPCs are flanked
by a single strand break (SSB) or double strand break (DSB), in case of topoisomerase I and II, respectively. The collision of the replication fork with
trapped topoisomerases will eventually lead to a DSB by ‘replication run-off’. For simplicity, only the collision of replication fork with topoisomerase
I-induced DPC is depicted here. After proteolysis, the peptide-DNA crosslink can be removed by TDP1 or nucleases. The resulting DSB is repaired by
homologous recombination (HR) to induce fork restart and progression. Although not depicted here, the replication fork can avoid the collision with
trapped topoisomerases and the generation of DSB by inducing fork reversal ahead of the DPC. (C) For all forms of DPCs, the remaining peptide–DNA
crosslink can be bypassed by translesion synthesis (TLS), and subsequently removed by nucleotide excision repair.

While it is widely accepted that DPCs challenge the in-
tegrity of the genome during replication, Cortez et al. re-
cently suggested a role for DPCs during faithful replica-
tion. An evolutionarily ancient protein called HMCES was
found to be a sensor of abasic sites in ssDNA during replica-
tion (120). Strikingly, it generates a DPC with the ring open
form of the abasic site deoxyribose to shield these lesions
from error-prone processing by AP endonucleases and TLS
Pols. How the HMCES-DNA is eventually resolved is un-
known. In contrast to the above model, a recent study has
shown that AP endonucleases may act in concert with HM-
CES for the resolution of AP sites. This study suggested that
the HMCES-DPC may help to recruit AP endonuclease to
channel these lesions to the proper repair pathway (145). In

support of this, AP sites are known to react with several pro-
teins such as histones, KU heterodimer, human ribosomal
protein S3, nucleoside diphosphate kinase, PARP1, and sev-
eral others (146–152). It is possible that HMCES may func-
tion in these two distinct manners in a cell-cycle dependent
fashion; that is, it may promote AP endonuclease function
outside of S-phase yet protect from the deleterious effects
of AP endonuclease during replication, which could poten-
tially induce a DSB. Certainly, further studies are needed to
clarify the role of the HMCES-DPC and its regulation.

Several critical questions regarding the repair of DPCs
during replication remain. Specifically, why the cell has in-
vested in several distinct proteases that perform the same
or similar function in DPC removal is unknown. The fact
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that removal of each of these factors has some independent
phenotype suggests that their functions are not completely
overlapping. Moreover, the discovery of HMCES suggests
that cells may have adapted to utilizing physiological DPCs
potentially for modulating repair pathway choice.

INTERSTRAND CROSSLINKS

Unlike the lesions described above, ICLs are toxic le-
sions that block DNA replication by physically prevent-
ing DNA strand separation (Figure 4). Chemotherapeu-
tic agents such as mitomycin C and platinum compounds
(e.g. cisplatin and carboplatin) induce ICLs. Metabolic pro-
cesses such as histone demethylation, lipid peroxidation,
and alcohol metabolism produce aldehydes which can also
induce ICLs (153–157). These physiological sources of ICLs
likely explain the various mechanisms that have evolved to
repair these lesions.

Replication block by interstrand crosslinks and their repair
mechanisms

ICLs that occur outside of S-phase are believed to be re-
paired by the NER pathway (158). However, in S-phase,
ICL repair starts with the formation of an X shaped DNA
structure that occurs upon convergence of two replication
forks at the ICL site (159,160) (Figure 4A). Unhooking the
crosslink is essential for the completion of DNA synthesis.
This is achieved through incision-dependent or incision in-
dependent pathways. TRAIP (E3 ubiquitin ligase) acts as
a switch between these different repair pathways by con-
trolling CMG ubiquitination. Short ubiquitin chains recruit
NEIL3 glycosylase, while excessive ubiquitination activates
the Fanconi anemia (FA) pathway (161). In turn, this ubiq-
uitination regulates the downstream mode of ICL repair.

Higher levels of TRAIP-mediated ubiquitination pro-
motes CMG unloading at the ICL by the AAA+ AT-
Pase p97, which functions as an essential step to initi-
ate the Fanconi anemia (FA) pathway (161) (Figure 4B).
The FA pathway involves an intricate process that is ab-
rogated in a genetic disease characterized by congenital
abnormalities, bone marrow failure, and cancer predispo-
sition. To date, 22 FA genes have been identified, which
are grouped into FA core complex (encoding an E3 lig-
ase complex), the FANCI/FANCD2 (ID) complex, and
the downstream effector proteins. When DNA replication
is blocked by ICL, the FA core complex (FANCA, B, C,
E, F, G, L and M) monoubiquitinates the ID complex
(157). Monoubiquitinated ID complex constitutes an es-
sential gateway for ICL repair by recruiting downstream
factors to initiate excision, TLS and HR. The mecha-
nism by which the ID complex is targeted to ICL is
not clear, but it has been suggested that the recruitment
to a stalled fork precedes the monoubiquitination event
(162). In support of this, a recent cryo-EM study has re-
vealed that monoubiquitination of the ID complex causes
a loss of preference for the ICL lesion and remodels the
complex to become a sliding DNA clamp that functions
to coordinate the downstream repair reaction (163). Re-
moval of the ICL starts with nucleolytic incisions of the

ICL. SLX4/FANCP and its associated 3′-flap structure-
specific endonuclease XPF(FANCQ)/ERCC1, generate nu-
cleolytic incisions and unhook the ICL (164,165). Other
nucleases, MUS81/EME1 and FAN1, have been also im-
plicated in ICL incision (157,166). Following unhooking,
the ICL remnant is bypassed by TLS polymerases REV1
and Pol� , a heterodimeric complex of REV3 and REV7
(167). The other DNA duplex with a DSB will be re-
paired by canonical HR, using the restored nascent strand
as a template for strand invasion. FA pathway deficiency
not only causes reduction in HR efficiency, but also in-
creases deleterious repair through NHEJ, which induces ge-
nomic instability. Accordingly, ICL sensitivity can be res-
cued by inhibition of specific NHEJ factors (168–170).
Lastly, FANCD2 is deubiquitinated by USP1–UAF1 com-
plex to terminate the FA pathway (171,172). Interestingly,
D’Andrea and colleagues have recently identified TRIP13
ATPase as a negative regulator of REV7, which links REV1
and REV3 Pol� complex. This work suggests that TRIP13
has a role in disassembling the REV7–REV3 TLS com-
plex, serving to regulate another component of the FA
pathway (173). Since TLS has other functions outside of
the Fanconi pathway, it’s likely that these negative reg-
ulators evolved separately, yet function in a cooperative
manner to shut off the pathway in the context of ICL
repair.

Unlike FA activation, shorter TRAIP-mediated ubiquiti-
nation events on CMG recruits NEIL3 (Figure 4C), a DNA
glycosylase that has functions outside of BER (161). NEIL3
specifically unhooks psoralen-ICL and AP-ICL (formed by
abasic site and an adenosine) during DNA replication in
Xenopus egg extracts. Other forms of ICLs are generally not
substrates for NEIL3. Unhooking ICLs by NEIL3 does not
nick the DNA backbone, and accordingly does not gen-
erate DSBs (174). The same result has been confirmed in
human cells, where NEIL3 is also the major pathway for
psoralen-ICLs repair. Interestingly, NEIL3 recruitment to
a psoralen-ICL is strictly PARP-dependent (175). NEIL3
generates an abasic site which in turn is bypassed by TLS
Pols (174). Thus, the NEIL3 pathway is potentially muta-
genic but does not require complex processing of a DSB,
which may serve to protect the genome.

Recent work on the repair mechanism of acetaldehyde
(AA) ICLs have suggested that an alternative pathway
may exist for these lesions. Consistent with previous ani-
mal models and genetic studies, work in Xenopus egg ex-
tracts have discovered that AA-ICL repair requires an ac-
tive FA pathway (153–156). Unexpectedly, however, about
half of the acetaldehyde-induced ICLs are repaired by a
second, faster mechanism (Figure 4D). This second mech-
anism is independent of the FA pathway, or any glycosy-
lases, including NEIL3. Moreover, in this rapid route, aba-
sic sites are not generated, nor are any cuts made to the
DNA strands. Instead, the ICL is cut within the crosslink,
leaving the adduct on one of the DNA strands that is by-
passed by TLS polymerases REV1 and Pol� (155). The un-
hooking of the AA-ICL by the new mechanism was sug-
gested to be mediated non-enzymatically by the mechanical
force of fork conversion or enzymatically by an unknown
protein.
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Figure 4. Interstrand crosslink (ICL) repair during replication. (A) The mechanism of ICLs repair depends on the type of ICL. While the Fanconi anemia
(FA) pathway is the general mechanism to repair most forms of ICLs during replication, other repair mechanisms have evolved to repair specific types
of ICLs. All ICL repair mechanisms require the conversion of replication forks. The E3 ligase, TRAIP, functions to regulate different repair pathways by
controlling CMG ubiquitination. (B) Extensive ubiquitination of CMG by TRAIP lead to the CMG unloading, which is an essential step to activate the FA
pathway. FA pathway regulates the incision of ICLs by nucleases, then activates translesion synthesis (TLS) to bypass the adduct, which is subsequently
removed by nucleotide excision repair. The double strand break (DSB) at one strand is repaired by homologous recombination (HR), using the other
strand as the template. (C) In the case of abasic (AP)-ICL and psoralen-ICL, TRAIP adds short ubiquitin chains on CMG that channels the damage to
NEIL3, which incises the ICL without inducing a DSB. TLS bypasses the adduct and the AP site. (D) In case of acetaldehyde-ICL (AA-ICL), another
mechanism has been recently identified that acts to bypass this lesion. The role of TRAIP or specific enzymes that incise this type of ICL is unknown. This
repair pathway does not induce DSB or an AP site intermediate. All ICL repair converges through TLS bypass of the adduct to complete the repair in an
error-prone manner.

Taken together, these relatively recent results suggest that
while the FA pathway can remove virtually all forms of
ICLs, the induced DSB by this mechanism is a potential
source of genomic instability. This may explain the devel-
opment of other repair pathways for specific types of ICLs,
such as NEIL3, which limit the use of the FA pathway. The
choice between FA activation and NEIL3 mediated bypass
through the degree of CMG ubiquitination by TRAIP per-
mits a stalled replisome to use the latter pathway first; yet
upon its failure, the FA pathway can be activated in its place,
making the DSB as a mechanism of last resort for ICL re-
pair.

CONCLUSIONS AND OUTLOOK

The various tolerance and repair pathways help to guaran-
tee the completion of the replication process. While many of
the molecular mechanisms of these individual pathways are
well understood, their coordinate regulation remains ob-
scure and represents a major gap in our knowledge. For ex-
ample, how an individual replisome preferentially selects a
specific pathway upon encountering a specific type of dam-
age, whether general or lesion-specific, is not clear. Remi-
niscent of DSB pathway choice, which involves a commit-
ment to HR or NHEJ, many of these replication-associated
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pathways of repair are antagonistic. Similar to DSB path-
way regulation, it is likely that post-translational modifi-
cations are in play which function to favor one pathway
over another. Yet, beyond PCNA monoubiquitination ver-
sus polyubiquitination, or TRAIP-mediated ubiquitination
of CMG, how the cell selects one particular pathway over
another is far from clear. Second, it is not clear why the cell
developed multiple pathways to fix the same or very simi-
lar types of damage during replication. The extreme case is
the presence of largely redundant DPC proteases. It is pos-
sible that different types of DPCs require their presence, or
different chromatin contexts may require specific pathways.
Third, how the cell avoids the excision of ssDNA in the
vicinity of the replication fork by excision repair pathways
(e.g. RER or BER) during replication is an unanswered
question. One strategy is the bypassing of the damage by
TLS or TS to allocate the lesion in the context of a double-
stranded template, which would allow the faithful action of
the incision step. Another strategy involves fork reversal,
which also helps maintain the lesion in a double-stranded
context. In virtually all of these examples, the precise regu-
latory steps are also almost completely unexplored. Future
work will undoubtedly shed light on these key aspects of
repair during DNA replication.
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