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Abstract:

Cerebral blood flow (CBF) is essential for neuronal metabolic functions. CBF is 

partly regulated by cholinergic projections from the nucleus basalis of Meynert (NBM)  

during cortical processing of sensory information. During pain-related processing, 

however, this mechanism may be altered by large fluctuations in systemic mean arterial 

pressure (MAP). The objective of this study was to investigate the contribution of NBM 

to CBF responses evoked by nociceptive electrical stimuli and how it may be affected by 

systemic MAP. CBF was recorded in isoflurane-anesthetized rats (n=8) using laser 

speckle contrast imaging, in two conditions (intact vs left NBM lesion). Electrical 

stimulation was applied to the sciatic nerve. Sciatic stimulation produced intensity 

dependent increases in MAP (p<0.001) that were almost identical between conditions 

(intact vs left NBM lesion; p=0.96). In both conditions, sciatic stimulation produced 

intensity dependent CBF increases (p<0.001). After NBM lesion, CBF responses were 

decreased in the left somatosensory cortex ipsilateral to NBM lesion (p=0.02) but not in 

the right somatosensory cortex (p=0.46). These results indicate that NBM contributes to 

CBF responses to nociceptive stimulation in the ipsilateral, but not contralateral 

somatosensory cortex and that CBF response attenuation by NBM lesion is not 

compensated passively by systemic MAP changes. This highlights the importance of 

NBM's integrity for pain-related hemodynamic responses in the somatosensory cortex.
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1. Introduction:

The intimate relationship between cerebrovascular functions and neuronal activity 

is fundamental to functional brain imaging methods (Raichle and Mintun, 2006).

Techniques such as fMRI assess hemodynamic responses to estimate neuronal activity 

evoked by different tasks, based on the neurovascular coupling (Logothetis and Pfeuffer, 

2004). This coupling is driven by multiple mediators released locally by neurons and 

astrocytes (Hillman, 2014; Lecrux and Hamel, 2016). Moreover, cerebral blood flow 

(CBF) is regulated by acetylcholine (ACh) released by projections from the basal 

forebrain, including the nucleus basalis of Meynert (NBM) (Adachi et al., 1992; Sato and 

Sato, 1995; Lacombe et al., 1997; Vaucher et al., 1997; Liu et al., 2015; Lecrux and 

Hamel, 2016; Lecrux et al., 2017).  Notwithstanding, regional CBF responses can be 

altered by changes in systemic blood pressure as demonstrated in previous neurovascular 

coupling studies (Jeffrey-Gauthier et al., 2013; Uchida et al., 2017) (see (Paquette et al., 

2018) for review). For instance, nociceptive stimuli evoke sudden increases in systemic 

blood pressure that are not compensated by vascular autoregulation, therefore adding to 

the regional CBF response evoked by neuronal activity. This leads to CBF responses that 

are a mixture of CBF evoked by local neuronal activity and CBF changes due to systemic 

blood pressure increases. In contrast, cortical neuronal activity evoked by nociceptive 

stimuli is either unaffected by MAP or even attenuated (Jeffrey-Gauthier et al., 2013).

In a previous laser speckle contrast imaging study,  CBF responses evoked by 

light brushing stimulation were decreased by pharmacological inactivation of the NBM 

(Piché et al., 2010). This effect was only observable in the hemisphere ipsilateral to the 

affected NBM. Consistent with these findings, the increase of ACh release by NBM   
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potentiates CBF responses to whisker stimulation in the barrel cortex, while a chronic 

ACh deprivation reduces CBF responses (Lecrux et al., 2017). However, it is unclear 

how NBM regulates CBF responses during nociceptive processing. NBM receives 

somatosensory inputs, which may inhibit or activate NBM neurons in the rat (Akaishi et 

al., 1990). In this study, light somatosensory stimulation (brushing) was generally 

ineffective to affect NBM neurons' activity, while nociceptive stimulation (hind paw 

pinching) generally excited NBM neurons. In addition, MAP increases without 

nociceptive stimulation (phenylephrine i.v. injection) produced mixed effects on NBM 

neurons: on 12 recorded neurons, 4 (25 %) were inhibited, 1 was excited and 7 were 

unresponsive. Although most NBM neurons are unaffected by MAP changes, a 

significant proportion was inhibited. This may serve NBM to regulate CBF responses in 

the somatosensory cortex when systemic blood pressure is increased by nociceptive 

processing. However, this remains to be clarified. 

The objective of the present study was to investigate the role of NBM in the 

regulation of cortical blood flow responses in the somatosensory cortex during 

nociceptive stimulation. CBF responses were measured using laser speckle contrast 

imaging to visualize responses in the somatosensory cortex bilaterally. Based on the 

previous studies mentioned above, we hypothesized that unilateral NBM lesion would

decrease CBF responses to nociceptive stimuli in the somatosensory cortex ipsilateral, 

but not contralateral to an electrolytic lesion of NBM. Moreover, we hypothesized that  

the association between MAP and CBF changes would be altered by NBM lesion, based 

on the effect of MAP on NBM neurons' activity. 
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2. Materials and methods

2.1 Ethical approval

Experiments were performed on eight male Wistar rats (body weight 350–475 g; 

age 18–22 weeks; Charles River Laboratories, Saint-Constant, Québec, Canada). Animals 

were housed in the animal facilities of Université du Québec à Trois-Rivières. A light–

dark cycle of 14–10 h was maintained. Experimental procedures were conducted in 

accordance with the animal care committee of Université du Québec à Trois-Rivières and 

in accordance with the guidelines of the Canadian Council on Animal Care.

2.2 General experimental conditions

All animals were in good health on the day of the experiment. Before surgical 

procedures were initiated, the animal was deeply anesthetized with isoflurane (5% for 

induction, 2% for maintenance). The depth of anesthesia was routinely assessed with paw 

pinching to confirm the absence of paw withdrawal. Body temperature was monitored 

and was maintained at 37.5 ± 0.5 °C with a custom-made temperature control system 

preventing electrophysiological artefacts. A tracheotomy was performed to ventilate the 

animal mechanically. The respiratory rate and tidal volume was adjusted to maintain the 

end-tidal CO2 around 3% (CAPSTAR-100 Carbon dioxide analyzer, CWE inc., 

Ardmore, PA, USA). A cannula was inserted into the right jugular vein for solution 

administration. The left femoral artery was also catheterized to monitor mean arterial 

pressure and heart rate continuously (Harvard Apparatus, Holliston, MA, USA) (MAP). 

Fifteen minutes before recording, isoflurane was adjusted to 1.2%. Five minutes before 
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both conditions (before and after NBM lesion) rats were paralyzed with gallamine 

triethiodide (20 mg/kg i.v.) to avoid motion artefacts induced by electrical stimulation. 

When the experiment was terminated, a lethal dose of urethane was administered i.v. and 

the animal was perfused through the heart to extract the brain. 

2.3 Experimental design

This study is based on a repeated-measure design to compare CBF and MAP 

responses to electrical stimulation of the sciatic nerve at graded intensities, before and 

after an electrolytic lesion of the NBM. 

2.4 Laser speckle contrast imaging

The animal was placed in a prone position with the head fixed in a stereotaxic 

frame (Model 900, Kopf Instruments, Tujunga, CA, USA). The skull was made 

transparent with a micro-drill to allow visualization of CBF. CBF changes evoked by 

sciatic nerve stimulation were then measured with a laser speckle contrast imaging 

(LSCI) camera positioned over the brain (PeriCam PSI System, Perimed AB, Järfälla, 

Sweden). The LSCI device consists in an infrared laser diode (785 nm wavelength) and a 

high-resolution camera. The field of view covered about 570mm2 (20 mm × 27 mm) with 

a matrix of 1388×1038 pixels, giving a resolution of 20 µm per pixel. Images were 

sampled at 1 Hz and signal was filtered temporally using a 2 s moving window. 
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2.5 Stimulation protocol 

The right sciatic nerve was exposed, submerged in warm mineral oil and mounted 

on a custom-made bipolar stimulation electrode connected to a constant-current 

stimulator (Model DS7A, Digitimer Ltd, Welwyn Garden city, UK). The stimulation 

consisted in a 10 s train with 1 ms pulse at 5 Hz. The inter-train interval of 90 s allowed 

response recovery before the subsequent stimulus. Ten intensities (0.05, 0.075, 0.1, 0.15, 

0.3, 0.6, 1.2, 2.4, 4.8, 9.6mA) were delivered in ascending or descending sequence and 

sequences were counterbalanced between animals to limit intensity order effects. It 

should be noted that electrical stimulation does not allow a selective activation of specific 

fibre groups. However, MAP increases associated with sciatic stimulation depend on 

fibres from groups III and IV in the rat, and most reports on MAP changes induced by 

somatic afferent stimulation have demonstrated that group I and II afferent fibres are 

ineffective to produce MAP increases (Sato et al. 1997). Therefore, based on MAP 

changes observed in the present protocol, stimulus intensities of 0.15 mA and below are 

considered as non-nociceptive and stimulus intensities above 0.15 mA are considered as 

nociceptive, for the present experimental conditions.

2.6 Electrolytic lesion of NBM and histological confirmation

A tungsten needle was inserted caudally over the frontal cortex at a 30-degree 

angle relative to the coronal plane as described previously (Piché et al., 2010). A small 

hole was made in the skull to allow penetration of the needle into the left NBM 

(contralateral to the stimulated sciatic nerve), located 1.4mm posterior, -2.5mm lateral 

and 7.6mm ventral to bregma (Paxinos and Watson, 2007), while the reference electrode 
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was inserted in the left temporal muscle. This approach was chosen to avoid potential 

lesions of the thalamocortical afferents localized more posteriorly. A current of 2 mA

over 15 seconds was used to perform the NBM electrolytic lesion (Kesner et al., 1986; 

Vale-Martínez et al., 2002).  At the end of the experiment, the brain was then extracted 

and coronal slices of 100 µm thickness were made using a freezing microtome. 

Electrolytic lesion of the NBM was confirmed under a microscope (see figure 1).

2.7 Data Analysis

Images were analyzed using Pimsoft software (PimSoft 1.5, Perimed AB, Järfalla, 

Sweden). The selection of ROIs was based on relative position to bregma to assure 

reproducibility between subjects. CBF data from regions of interest (ROI) was then 

exported to spike2 software for quantification. MAP data was analyzed with spike2 

software (Cambridge Electronic Design, Cambridge, UK,version 6.15). CBF and MAP 

changes were measured for each stimulus intensity within a 30s window post-stimulus.

Responses amplitude was quantified as the peak value relative to the mean signal value of 

the 30 s artifact-free baseline prior to stimulus onset.

2.8 Statistical analyses

All results are expressed as means ± SEM. Statistical analyses were performed with

Statistica (TIBCO Software Inc. 2017. Statistica version 13) with a significance threshold 

-Geisser corrected repeated-

measures ANOVA, with intensity (10 levels: 0.05, 0.075, 0.1, 0.15, 0.3, 0.6, 1.2, 2.4, 4.8, 

9.6mA), NMB (intact vs NBM lesion) and hemisphere (left vs right) as within-subject 



10

factors. MAP responses were compared using a Greenhouse-Geisser corrected repeated-

mesures ANOVA, with intensity (10 levels: 0.05, 0.075, 0.1, 0.15, 0.3, 0.6, 1.2, 2.4, 4.8, 

9.6mA) and NMB (intact, NBM lesion) as within-subject factors. Significant effects were 

decomposed with the Fisher post-hoc test. Effect sizes are reported based on partial eta-

squared ( 2
p).

To examine if the association between MAP and CBF changes would be affected 

by NBM lesion, correlation coefficients were compared between the intact and NBM 

lesion conditions across animals. In this analysis, correlation coefficients were calculated 

within subject for the association between MAP and CBF changes across intensities, 

leading to 2 correlation coefficients per hemisphere for each animal. These coefficients 

were treated as continuous variables and compared with paired t-tests to test whether the 

association between MAP and CBF would increase following NBM lesion in the 

ipsilateral hemisphere, based on a previous study reporting that MAP could inhibit some 

NBM neurons (Akaishi et al. 1990).

3. Results

3.1 Cerebral blood flow responses

As shown by the individual example in Figure 2, right sciatic nerve stimulation 

produced cerebral blood flow responses in the somatosensory cortex that increased with 

intensity, that were of greater amplitude in the left hemisphere and that extended to most 

of the cortical surface in both hemispheres at high intensity. In this individual example, 

NBM lesion decreased both the amplitude and the extent of CBF responses. Group 
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analyses of CBF in the hind paw representation of the somatosensory cortex (ROIs) 

revealed that right sciatic nerve stimulation evoked significant intensity dependent CBF 

increases bilaterally (main effect F9,63 = 12.0, p<0.001; 2
p = 0.63; see Figure 3). As 

expected, CBF responses were greater in the left hemisphere, contralateral to the 

stimulation (main effect: F1,7 = 17.1, p<0.01; 2
p = 0.71; see Figure 3). In addition, the 

left NBM lesion affected CBF responses differently between hemispheres (interaction: 

F1,7 = 7.0, p=0.03; 2
p = 0.51; see Figure 3). Indeed, the Fisher posthoc test revealed that 

CBF responses were decreased in the left hemisphere, contralateral to stimulation and 

ispilateral to NBM lesion (p=0.02), while no significant effect was produced in the right 

hemisphere (p=0.45). 

In order to examine whether these changes may be due, at least in part, to changes 

in basal CBF, the mean CBF values in the hind paw representation of the somatosensory 

cortex (ROIs) preceding each stimulation were compared between hemispheres and 

conditions. Group analyses indicate that basal CBF was affected differently by NBM 

lesion in the right and left hemispheres (interaction  F1,7 = 18.3, p<0.01; 2
p = 0.72, see 

Figure 4). Fisher posthoc test revealed that basal CBF decreased significantly after NBM 

lesion in the left hemisphere, ispilateral to NBM lesion (p<0.001), while no significant 

change occurred in the right hemisphere (p=0.2). 

Subsequently, a covariance analysis was performed on CBF responses with basal 

CBF changes as covariable. This covariance analysis revealed that the decrease in CBF 

response amplitude in the left hemisphere after NBM lesion did not reach significance 

after controlling for basal CBF changes (interaction: F1,5 = 4.7, p=0.08; 2
p = 0.48). This 
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indicates that basal CBF changes partly contributed to the effects of NBM lesion on CBF 

responses evoked by sciatic nerve stimulation.  

3.2 Mean arterial pressure changes

Right sciatic nerve stimulation produced the expected MAP response that 

increased with intensity, as shown in the individual example of Figure 2. Group analyses 

revealed that right sciatic nerve stimulation evoked significant intensity dependent MAP 

increases (main effect: F9,63 = 78.8, p<0.001; 2
p = 0.92; see Figure 5). These responses 

were not significantly different between conditions (main effect: F1,7 < 0.1, p=0.96; 2
p <

0.01; see Figure 5) and the intensity dependent changes were not significantly different 

after NBM lesion (interaction:  F9,63 = 0.4, p=0.94; 2
p = 0.05; see Figure 5). These 

results confirm that MAP responses were comparable between conditions, ruling out a 

potential confound for the reported effects of NBM lesion on CBF.

To examine if the association between MAP and CBF changes would be changed 

by NBM lesion, their correlation coefficients were compared between the intact and 

NBM lesion conditions across animals. The strength of the association between MAP and 

CBF changes was significantly increased after left NBM lesion for the left somatosensory 

cortex (r = 0.33 ± 0.18 vs 0.73 ± 0.04; T(7) = 2.4, p = 0.049,  2
p = 0.45), but not for the 

right somatosensory cortex (r = 0.63 ± 0.17 vs 0.84 ± 0.04; T(7) = 1.5, p = 0.17, 2
p =

0.25). These results suggest an ipsilateral effect of NBM on the regulation of CBF due to 

MAP increases.   
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4. Discussion

The novel findings of the present study are that CBF responses to nociceptive 

stimulation of the sciatic nerve evoked in the left somatosensory cortex  are attenuated by 

a lesion of the left NBM. Moreover, results indicate that changes in basal CBF following 

NBM lesion contribute to these effects. In addition, while MAP was comparable before 

and after NBM lesion, the association between MAP and CBF changes in the left but not 

right somatosensory cortex was increased following left NBM lesion. These results 

indicate that the NBM contributes to the regulation of CBF in the ipsilateral 

somatosensory cortex during nociceptive stimulation.

4.1 Nucleus basalis of Meynert and cortical blood flow

In the present study, an electrolytic lesion of the left NBM decreased basal CBF in 

the left but not right somatosensory cortex. These results differ from those of a previous 

laser speckle contrast imaging study in which basal CBF remained comparable after 

pharmacological inactivation of NBM by muscimol, a gabaergic receptor agonist (Piché 

et al., 2010). The difference between studies may be due to methodological issues. In the

case of an electrolytic lesion, neurons are destroyed. In the case of muscimol injection, 

some neurons may still be active or only partially inhibited. The present results also differ 

from those reported in a laser Doppler flowmetry study in which a bilateral electrolytic 

lesion of NBM was performed in spinal rats (Uchida et al., 2000). In this case, methods 

are similar to produce the NBM lesion, but spinalization produces a major drop in MAP, 

which may affect basal CBF and further changes following NBM lesion.  
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Nonetheless, considering that basal CBF was affected by the NBM lesion similarly to 

changes in CBF responses evoked by sciatic stimulation, this raises the possibility that 

the former may contribute to the later. This was examined by comparing CBF responses 

before and after the NBM lesion while controlling for basal CBF changes. This 

covariance analysis indicates that basal CBF changes partly contributed to the observed 

CBF response attenuation. However, based on the effect sizes with and without basal 

CBF as covariable ( 2
p = 0.48 vs 0.51), the effects of NBM lesion on CBF responses to 

sciatic nerve stimulation are mostly due to mechanisms other than changes in basal CBF. 

This is consistent with the previous studies mentioned above in which CBF responses to 

somatosensory stimulation were attenuated after pharmacological inactivation or 

electrolytic lesion of NBM without significant changes in basal CBF (Piché et al., 2010;

Uchida et al., 2000).

The present findings indicating that NBM lesion decreases basal CBF and CBF 

responses to sciatic stimulation are consistent with several studies showing that NBM 

stimulation increases CBF or CBF responses to somatosensory stimuli (Adachi et al., 

1990; Dauphin et al., 1991; Adachi et al., 1992; Kocharyan et al., 2008; Lecrux and 

Hamel, 2016). Although ACh release was not measured in the present study, the present 

results are also coherent with the body of literature showing that the release of ACh by 

NBM projections to the cortex is essential for CBF regulation (Sato et al., 2001). In 

addition, a recent study examined the effect of ACh tone on whisker-evoked CBF 

changes in the barrel cortex by pharmacological interventions (increasing or decreasing 

ACh tone) or by subthreshold basal forebrain stimulation (including the NBM), which 

increases ACh tone (Lecrux et al., 2017). In accordance with our results, they 
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demonstrated the essential role of ACh tone for somatosensory-evoked responses and for 

neurovascular coupling. Indeed, a chronic decrease of ACh tone (by an 

intracerebroventricular injection of Saporin) reduced whisker-evoked CBF responses. In 

contrast to the present findings, however, basal CBF was unaffected in these conditions. 

This may be due to some form of adaptation of the cerebrovascular system in basal 

conditions. Consistent with this idea and with the present findings, a subacute basal 

forebrain lesion (2 days) produced a decrease in basal CBF in the hemisphere ipsilateral 

to the lesion (Iadecola et al., 1983). Therefore, a possible explanation for the discrepancy 

between results is the difference between an acute and a chronic decrease of ACh tone. In 

conditions of chronic decreased ACh tone, mechanisms other than those related to NBM 

may overcome the ACh decrease to maintain basal CBF within a physiological range. 

This is consistent with a previous study showing that four days after an electrolytic lesion 

of the NBM in non-human primates, the resting state cerebral glucose utilization 

(indicative of cerebral metabolism) was decreased ipsilateral to the lesion, while 39 days 

after the lesion, basal glucose metabolism recovered (Kiyosawa et al., 1987).

4.2 Blood pressure and hemodynamic responses

Sciatic nerve stimulation produced robust intensity dependent MAP responses and 

these changes were comparable before and after the left NBM lesion. Therefore, changes 

in basal CBF and CBF responses following NBM lesion cannot be explained by MAP 

changes. Importantly, systemic MAP fluctuations during nociceptive stimulation could 

prevent the observation of CBF decrease in the somatosensory cortex ipsilateral to NBM 

lesion, by overriding cerebral vascular autoregulation. Indeed, cerebral vascular 
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autoregulation is not sufficient to maintain cerebral perfusion in the normal physiological 

range when MAP increases over 150 mm Hg (Paulson et al., 1990). The present results 

suggest that systemic MAP increases don't override cerebral vascular autoregulation 

completely even when the NBM is lesioned.  This is consistent with a study by Iadecola 

et al. (1983) indicating that unilateral NBM lesion in the rat did not alter autoregulation in 

either hemisphere for systemic arterial pressure between 90-150 mm Hg (Iadecola et al., 

1983).

A novel finding of this study is the role of NBM in the association between MAP 

and CBF. MAP increases without nociceptive stimulation inhibits around 25 % of NBM 

neurons (Akaishi et al., 1990). Although this has never been investigated, these neurons 

may play a role in limiting the effect of systemic blood pressure increases on cortical 

blood flow. The present findings are consistent with this idea, showing that the 

association between MAP increases and CBF changes during nociceptive processing is 

improved after NBM lesion, suggesting that although NBM promotes vasodilation and 

increases cortical blood flow, some of its neurons limit this increase through regulation 

by systemic MAP. Results also indicate that this regulation is specific to the hemisphere 

ipsilateral to NBM, consistent with the results described above. Future studies are needed 

to examine more directly the role of these MAP-inhibited NBM neurons in CBF 

regulation. A useful approach to test the role of NBM neurons in the regulation of 

somatosensory-evoked CBF changes during MAP increases would be to use 

chemogenetic or optogenetic methods to activate or inhibit NBM neurons.
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4.3 Significance and limitations

The present findings have implications for brain imaging studies in populations in 

which NBM integrity is compromised, including patients  with Alzheimer’s disease 

(Whitehouse et al., 1981; Rinne et al., 1987; Vogels et al., 1990; Liu et al., 2015). In 

these patients, vascular responses used to infer neuronal activity should take into account 

the attenuation CBF responses due to NBM degeneration, since the standard analysis 

models are not suited to these conditions. It is worth mentioning, however, that CBF 

measures in the present study are limited to superficial layers of the cortex and may not 

reflect vascular responses in the entire cortex (Dunn, 2012). It remains to be determined 

to what extent NBM lesion or degeneration affects cortical CBF responses.   

4.4 Conclusion

In summary, the present results show that CBF responses to nociceptive 

stimulation of the sciatic nerve are attenuated by NBM lesion in the hemisphere 

ispilateral to NBM lesion, specifically. Moreover, results indicate that changes in basal 

CBF following NBM lesion contribute to these effects. This highlights the importance of 

NBM integrity for pain-related hemodynamic responses in the somatosensory cortex. 

These findings have implications for brain imaging studies of pain in healthy young 

participants, in which NBM activity may vary and influence cortical hemodynamic 

responses used to infer neuronal activity. They also have implications for clinical 

populations such as patients with Alzheimer in which cholinergic functions related to 

NBM are compromised.  
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Figure captions 

Figure 1: NMB lesion confirmation

Left: coronal section of a representative rat brain showing the location of the NBM 

electrolytic lesion. Right: schematic representation of the brain section replicated from 

Paxinos and Watson (2007).

Figure 2: Individual example of laser speckle contrast imaging data

(A) Representative recordings of CBF responses in the region of interest (ROI) 

corresponding to the somatosensory cortex and MAP responses to electrical stimulation. 

(B) Upper row: Raw signal of laser speckle contrast imaging, representing the peak 

response to seven different stimulus intensities in an intact rat. Bottom row: Subtraction 

analysis showing the signal represented above after subtracting baseline CBF. (C) Upper 

row: Raw signal of laser speckle contrast imaging, representing the peak response to 

seven stimulus intensities in an NBM lesioned rat. Bottom row: Subtraction analysis 

showing the signal represented above after subtracting baseline CBF.

Figure 3: CBF responses

Electrical stimulation produced intensity dependent increases in CBF. NBM lesion 

significantly reduced CBF responses in the left, but not in the right hemisphere. *p<0.05 

for the main effect of NBM lesion.
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Figure 4: Basal CBF

Basal CBF was altered differently between hemispheres after the NBM lesion. The NBM 

lesion did not significantly affect basal CBF in the right somatosensory cortex 

(contralateral to NBM lesion) (p=0.2). In contrast, it was significantly reduced in the left 

somatosensory cortex (ipsilateral to NBM lesion) (p<0.001) and this effect was 

significantly greater compared with the non-significant change in the right hemisphere 

(p=0.004). Basal CBF was normalized to the intact condition for each hemisphere and is 

expressed as percentage.  

Figure 5: MAP responses

Graded stimulus intensities produced intensity dependent MAP increases (p<0.001) in 

both conditions. MAP changes were comparable before and after NBM lesion. 














