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Abstract
We provide an evaluation of the applicability of video compression techniques for compressing
visualization image databases that are often used for in situ visualization. Considering relevant
practical implementation aspects, we identify relevant compression parameters, and evaluate video
compression for several test cases, involving several data sets and visualization methods; we use three
different video codecs. To quantify the benefits and drawbacks of video compression, we employ
metrics for image quality, compression rate, and performance. The experiments discussed provide
insight into good choices of parameter values, working well in the considered cases.
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1 Introduction

Today’s supercomputer architectures allow computational scientists to perform research with
increasingly complex models producing high-resolution, high-fidelity data in increasingly
shorter times. It is often no longer possible to store data set at full resolution, and it is also
extremely inefficient and expensive to transfer such large data sets from tertiary storage into
memory for analysis. Consequently, in situ visualization – i.e., the generation and storage of
visualizations/images done as part of an ongoing computer simulation – has been developed
and as a means to avoid most of the difficulties one would have to address when performing
large-scale data visualization via traditional approaches [21, 6]. Nevertheless, while an in
situ approach is advantageous in many ways it limits the possibilities of “complete data
exploration” to the a set of pre-generated visualizations. Ahrens et al. [1, 23] recognized
that generating a large set of images covering the underlying parameter value space well
still allows a scientist to meaningfully analyze and discover important model behaviors while
accelerating the exploratory process significantly as all visualizations already have been
generated.

For complex visualizations generated, for example, by sampling large and/or high-
dimensional visualization parameter spaces, the databases needed for storage can still be of
substantial size. To reduce data size and thereby make possible a more efficient management
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and processing of visualization databases, we adapt image and video compression techniques.
The goal is to leverage inter-image similarity typically encountered in video image frame
sequences and used to achieve substantial compression. By “linearizing” a visualization
image database it is possible to adapt video compression in support of much more efficient
data analysis. This approach was first investigated by Berres et al. [7], where it was shown
that approach is feasible and beneficial. However, their linearization approach and choice
of compression parameter values, e.g., video codec and image encoding, were ad hoc. Our
work is motivated by the goal of gaining more insight into the effects of these parameters
concerning overall usefulness of video-compressed image databases.

We present the results of a broader investigation of the different aspects of applying video
compression to visualization image databases. Specifically, we consider the following issues:

We quantitatively evaluate video compression for four different data sets with significantly
different image characteristics that are expected to affect compression. We specifically
consider streamline and isosurface visualizations. We employ three commodity, general-
purpose and easy-to-use video codecs (H.264 [26], H.265 [11], VP9 [15]). We consider
several quality metrics and compression/de-compression efficiency in relationship to
compression ratio, serving as a central parameter for all three codecs.
Extending the research of Berres et al. [7], who considered the compression of RGB images,
we take into account implementation issues of visualization image databases. Specifically,
we compress scalar value and depth images; perform composition of visualization images;
empirically demonstrate that video compression can be applied successfully to visualization
images.
We investigate the effects of linearization of a high-dimensional visualization image
space on compression efficiency and show that ordering matters and a “good order” can
significantly improve the final compression rate.

Based on our prior work [4], we suggest parameters suitable for general-purpose use.
After discussing related work in Section 2, we describe the used experimental setup, i.e.,

the compression pipeline (Section 3) and its major parameters, followed by a description of
the metrics used for evaluation 4. Quantitative results are provided and analyzed in Section 5,
and we discuss practical recommendations. Finally, we address limitations of our study and
provide conclusions in Section 6.

2 Related Work

There is a rich body of work focusing on data reduction for computational model output.
Among the typical approaches are multi-resolution techniques, adaptive refinement, com-
pression; a survey and overview of techniques typically utilized in situ is given by Li et
al. [18].

Common to all these techniques is that only reduced data is available for post hoc analysis
and visualization. Often, explicit error bounds are not available, or very difficult to estimate
except in specific circumstances (e.g. [16]). Thus, accuracy of analysis is in direct competition
with data reduction, where it is essential to hit the sweet spot between reduction rate and
data quality [3].

Taking an alternate approach, in situ visualization [21, 6] generates visualization imagery
on full-fidelity data while it resides in memory, both eschewing storage costs as well as
producing accurate images, but in turn limiting the flexibility of exploration. The Cinema
approach [1] generates a browsable, parameter-dependent database of visualization images
that facilitates post hoc exploration in a manner that is satisfactory for many applications
(e.g., [23]). Through clever implementation, such as storing scalar value images and depth
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Figure 1 Depth Images before and after compression with the H.264 codec. The visually
detectable differences are very small. Starting at crf= 10 the noise in the images is increasing with
each step. Still most of the topological structures remain intact.

images instead of RGB images, compositing and color mapping can be employed to keep the
image database size small. Lukasczyk et al. showed that under certain conditions it is possible
to reconstruct parameter sets not stored in the database, such as e.g. camera positions,
further enabling free exploration [20]. However, for very large parameter spaces that arise
when combining many different visualizations in the interest of exploration, the visualization
image database can become very large, again making its storage and use difficult. For specific
scenarios, optimized image formats can be defined, e.g. in the case of volume rendering [28]
or contour tree analysis [8]. However, this only marginally reduces the size of corresponding
image databases. Image database storage also typically utilizes image compression techniques
such as e.g. wavelet compression [30] or commodity image compression codecs (e.g. JPEG)
in both lossy and lossless modes. However, compressing each image individually cannot
leverage the high degree of similarity between images corresponding to closely neighboring
parameter settings.

Concerning the delivery of in situ-generated visualization images, Ellsworth et.al.[12],
Kageyema et.al.[17], and Biedert et al. [9] demonstrated the effectiveness of video compression
to stream high-fidelity images rendered on a supercomputer to a desktop client. Applying
this insight to visualization image databases, Berres et.al. [7] showed that visualization image
databases are suitable for compression with video codecs, observing compression rates between
14% and 25%. Earlier, Sohn et.al.[25] proposed the idea of a specifically designed video
compressor for volumetric images, using wavelet transformation and a temporal encoding to
make efficient use of empty spaces. While they are maintaining good retrieval performances,
the compression rates of 0.29% - 0.68% they achieve show their technique to be less effective.

Based on these prior works, and especially the proof-of-concept work of Berres et al. [7],
we assume that video compression is a suitable way for reducing the size of large visualization
image data bases. However, it is unclear which factors affect compression rate (i.e., data
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reduction), image quality, and retrieval performance, which are the key pertinent aspects
to consider when using compression for visualization image databases. In this paper, we
investigate these aspects in a more comprehensive quantitative experiment.

When considering lossy compression, image quality is balanced against size reduction. In
an excellent visual evaluation study, Turton et al. [4] showed that good compression rates
can be achieved while preserving image quality, and found that the structural similarity
metric [29] (SSIM) to be a good general indicator for image quality when comparing lossy
compression to ground truth. In addition to other difference metrics such as PSRN, we hence
base our evaluation heavily on the SSI metric.

3 Experimental Setup

In the following, we describe the pipeline we employ to carry out our study. A conceptual
overview is given in Figure 2. To generate the visualization image database, we use Para-
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Figure 2 Overview of the image database generation, compression, and decompression pipeline
underlying our study.

View [2] in combination with the TTK framework [27]. Prototype visualization pipelines
are created in ParaView and stored as state files, which we then parameterize. The filters
ttkCinemaImaging and ttkCinemaWriter are then used to render the images for a Cartesian
product of parameter samples; including simulation time, camera positions, and isovalue
(where appropriate). Camera positions are located on vertices of a spherical grid, and the
cameras are aimed towards the data sets’ centers.
Following the reasoning of Ahrens et al. [1], we focus on a modern implementation of visual-
ization image databases based mainly on storing depth images instead of color images, as
the former can be composited to combine different visualizations, avoiding a combinatorial
size of combined visualization image databases. This allows us further to investigate the
effects of compression on compositing as an additional benchmark. While we do not focus
on scalar value images (used to achieve color mapping post hoc), our results (in particular,
error metrics) apply directly to this class of images as well.

As an intermediate product, we obtain a depth image visualization database, which
associates a depth image with each parameter set and represents the ground truth for error
measurements. Image resolution is chosen as 512x512 throughout the entire study.
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3.1 Data Sets and Visualizations
In the interest of covering a wide range of practical scenarios, we consider typical visualizations
for four different data sets with very different characteristics.

3.1.1 Viscous Fingering
The data set is the result from a simulation of salt dissolving in water. The domain consists
of a cylindrical flow, at the top of the cylinder a solid body of salt is placed that is dissolved
by the water. The resulting fields are the velocity of the flow and concentration of salt in the
water. The data set is time varying and consists of multiple parameter settings.

3.1.2 Geodynamo
This data set is the result from a numerical simulation of the earth’s liquid outer core based
on the effect of the geodynamo. The resulting domain is covering the whole outer core and
is stored in a spherical unstructured grid. The resulting fields like pressure, temperature,
velocity and magnetic field are characterized by high turbulence and large structures. The
main challenge in this data set is its spherical domain and structures which are mostly hard
to deal with standard approaches for cubic domains. In addition the time steps are in the
order of thousands of years.

3.1.3 Jet Flow
The jet flow is an artificial unsteady flow simulation resembling the outlet of a jet engine. It is
a well studied example data set for flow visualization and analysis and has very characteristic
features. The resulting fields are the velocity and the temperature.

3.1.4 Metal Sheet Deformation

Y

X

Z

Buffers

Hinges

Locks

Gassprings

fixed adjustable forceboundaries:

Figure 3 Sheet metal car body part used in automotive industry. The used boundaries for the
simulation are high-lighted, with external forces used via gas springs. The coordinate system for
this part is shown.

For a more application-driven view, a real-world example from the automotive industry
was chosen. The geometry is an engine hood. This part has two hinges, two locks and
two buffers as mechanical boundaries attaching the hood to the chassis, see Figure 3. A
finite element (FE) simulation predicts deflections during the assembly process of the part.
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However, the final shape of a material part can vary due to production uncertainties. To
deal with uncertainties and tolerances during the production, the engine hood’s boundaries,
i.e., hinges, lock and buffers, are adjustable. Adjusting these boundaries properly to obtain
an acceptable gap and flushness is a challenging task [13]. A post-assembly measurement
induces necessary corrections. The goal of the proposed method is to find the best set of
changes from measured deviations, which forms the optimal set of adjustments. The method
uses as input an assemble of statistical distributed simulations that cover the solution space
spanned by the available adjustment possibility of each boundary. The used car hood is
an assembly containing seven individual sheet metal parts, connected by spot welds and
different types of adhesives. Based on the CAD files, a simulation model was created by
meshing the geometry with 3D-shell elements and connecting the assembly considering spot
weld, adhesive positions, and thicknesses of components. The material model is linear-elastic
with an e-modulus of 210Gpa and a Poisson rate of 0.3. Two fixed, external loads, modeling
the gas springs near the hinges with the magnitude of 580N each, complete the model.

3.2 Image Database Linearization

We linearize the depth image database by enumerating the Cartesian product parameter
space using an arbitrary ordering of axes. We hypothesize (and empirically confirm, cf.
Section 5) that ordering axes in a manner that the fastest axis (along which subsequent
images lie in the linearization) should be chosen such that the inter-image similarity is large
to benefit compression efficiency.

Most video codecs assume that the changes from one frame to the other happens to be
smoothly and in a predictable way over a longer period (see the preset parameters [10]).
Therefor we assume that the best compression performance results will occur for a smooth
ordering of the images. We are investigating the impact of camera path, data time step,
ensemble parameter and visualization parameter as different approaches for the dominating
ordering axis (see Fig.4).

Camera Location

The camera parameters are usually the first parameters that are used while creating an image
data base. A collection of images ordered by camera angles is similar to tracking shots in
video sequences, which are the target of video compression techniques. Based on the number
of viewpoints that are needed to capture a visualized data set, however, it is not necessarily
the axis with the smoothest transition between successive images. Especially if storing a
minimum amount of images needed to visually adequately reconstruct geometry [20], camera
location index as the fastest axis is not necessarily a good choice.

Data Time

For unsteady data sets, time provides a natural parametrization. In practice, memory or I/O
constraints determine the step size between successive discrete time points. Furthermore,
considering ensemble data, step sizes may vary per ensemble member. The chosen visualization
techniques also plays a crucial role here, while some techniques will result on bigger visual
changes with small changes in the time, others may behave in the opposite direction. For
our setup, we therefore do not rely on smooth transitions between images when choosing the
time as the dominant axis.
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Figure 4 Showing different ordering strategies for one data set. Depending on which axis is
chosen to be the dominant one, the similarity between successive images could vary dramatically.
From top to bottom: Iso-value, Ensemble Parameter, Camera rotation, Simulation time step.

Ensemble parameter space

In ensemble data sets we are particularly interested in the differences that relate to changes
in the input parameter space, which leads to similar effects as for setting the time step size
mentioned above. For our investigation, we therefore expect that it behaves similar to the
time ordering for unsteady data sets if they have a matching resolution of the step sizes.

Isovalue

Concerning algorithmic parameters that change the visualization result, we consider isovalue
in the cases described above as a proxy for more general settings. Most notably, it is one
of the most often changed parameters when exploring a data set. In general, variation
between images should be small under a fine-grained sampling, as the surface varies slowly
and smoothly with change in isovalue. Thus, we hypothesize that this parameter is a good
choice for the fastest axis in the linearization if the sampling is not too coarse.

3.3 Depth Image Encoding
Before applying video compression to depth images, these must be transferred into a format
that is suitable for ingestion by video codecs. While depth images encode a single scalar
in the range [0, 1] per pixel, the lack of a robust support for single-channel image formats
in video encoders (e.g. the gray-scale format 12greyle) makes it difficult to pass the depth
values directly. Furthermore, a lack of format with high-bit depth – at most 12 bits – would
induce inacceptable quantization to the depth images and make them essentially unusable
for compositing.

Hence, we encode the scalar field (depth image) into an image format with 3 channels
and 8 bits per channel using Morton coding [22], mapping a 24-bit depth value into 3x8 bits.
Here, Morton coding is much preferable to simple mapping of the high, middle, and low bytes
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Figure 5 Comparing the results for the compression performance with the image quality. Top
row: SSIM. Bottom row:VIF[24]. F.l.t.r. clustered by image ordering (s: camera sphere, c:cycle
time step, i:iso-value), image ordering streamlines, used video codec, constant rate factor (crf) and
data set. The sweet spot is located in the top left corner, where image quality and compression rate
delivers the best performance.

to three channels, since the Z-order curve underlying this coding guarantees that close-by
depth values will be mapped to close-by tuples. The effect of this mapping, interpreting
the three channels as red, green, and blue colors, is illustrated in Figure 6. We pass the
result of this mapping to the video codec in the yuv444p format, as YUV is the natural color
space in which all considered codecs operate and errors induced through in-codec color space
conversion can be avoided. Note that video codecs typically accept various formats that
represent color information at reduced resolution when compared to luminance information,
such as e.g. the often used yuv420p format. However, we do not see an indication at this
time how such sub-sampling would benefit the compression of depth images and thus only
consider yuv444p. In general this process is applicable to any scalar field (not only depth)
input on the images.

3.4 Video Compression

Following linearization and encoding, we pass the yuv444p image sequence directly to the
video codec. As a general interface to different codecs, we employ the ffmpeg [14] tool, and
encode using three major and broadly available video codecs:

H.264 [26] The H.264 is using motion estimation to minimize temporal and spatial
redundancies. It is classified as a block-oriented motion compensating compression
technique.
H.265 [11] The H.265 is based on the same principle than the H.264. Its main difference is
the increased coding tree unit from 16×16 to 64×64, though leading in general to higher
compression rates.
VP9 [15] The VP9 codec is also a block-based format. Its main application area is for web
streaming and therefor it is designed to ensure a certain bit-rate rather than a constant
quality like H.264 and H.265.
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Codec Parameters

In general there is a very large number of parameters that affect each encoders and allow
tweaking it to different types of input. To keep our study reasonable and achieve comparable
results, we opt to focus on the constant rate factor (CRF) as the central parameter that
effects the amount compression for each codec, and we consider the values 0 (lossless), 10, 20,
and 30 to represent different levels of compression. Typical CRF choices for natural images
are in the range from 18 to 24.

All codecs furthermore support variable-rate encoding which adapts bandwidth used based
on heuristics, in the interest of overall better image quality. However, as the assumptions
underlying these heuristics are geared towards natural images and are not well documented,
we choose not to examine this mode due to the large amount of unpredictability it induces
on results. Note that the VP9 codec is primarily intended for streaming applications, and
thus constant rate encoding is not its optimal mode of operation; however, we still consider
it in this study to to its ubiquitous use an generally good compression / quality performance.

The H.264 and H.265 codecs are further able to trade off compression speed against
image quality through a preset choice. We here use the veryfast preset to achieve the best
speed. While image quality would improve with slower presets, at the expense of much longer
compression times, we obtain a lower bound on image quality, which we consider to reflect
real-world considerations best. A summary of the parameters steered by these presets can be
found in [10]

As the output of the compression process, we obtain a single video file that represents
the entire visualization depth image database.

3.5 Image Retrieval
To retrieve images, we again employ the ffmpeg tool to retrieve a single image from the
video file in yuv444p format, and decode the Morton ordering.

Retrieved images are compared against the (uncompressed) ground truth images, using
the metrics described in the following section.

(a) Ground Truth. (b) Modulo. (c) Morton. (d) Z-order curve.

Figure 6 Encoding of a 24-bit depth image (a) to 3x8 bit channels using reinterpretation as three
bytes (b) or Morton coding (c). The three resulting channels are interpreted as RGB for illustration
purposes. (d) shows the Z-order curve underlying the Morton coding.

4 Evaluation Metrics

For our evaluation we distinguish three major factors: Quality of the reconstructed visu-
alizations images, compression efficiency in the sense of file size and time to retrieve an
image in the original domain, and, especially for surfaces, how much the errors introduced
by compression affect the compositing of two or more visualizations post hoc.
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4.1 Image Quality Metrics
For our quality benchmark we choose a set of numerical and image quality measures. Typically
the raw numerical metrics such as e.g. mean squared error are hard to interpret. We therefore
consider quality measures for images as well. Table 1 provides an overview of all employed
quality metrics.

Table 1 Used Image metrics for the quality benchmarks.

Metric Description Value Range
(identical value)

MSE mean squared error ≥ 0(0)
PSNR peak signal to noise ratio ≥ 0(∞)
MAE mean absolute error ≥ 0(0)
SSIM structural similarity index [0, 1](1)
VIF visual information fidelity measurement [24] [0, 1](1)

4.2 Performance Metrics
For the performance measure we use the compression and retrieval rate. For the compression
rate we use the highest z-lib compressed depth images as our base value. All values are then
relative increases or decreases in percent. For the retrieval rate we randomly draw 300 frames
from each video and apply the morton inversion to them to end up with depth images. We
measure the time from the start of the retrieval (video already loaded) to the end of the
conversion. For comparison we measure the time for 500 database calls using Paraview and
the ttkCinema filter. The measures are then normalized to time to retrieve one image. We
do not take speed ups from parallel computing into account, as such practical values can
differ.

4.3 Compositing Benchmark
In the compositing benchmark we test how robust the video compression is for small changes
in the depth value, that can lead to cluttering effects when compositing multiple surfaces in
a post-processing step. This test is only done for a set of previous selected surface pairs from
the Jet flow data set, representing a worst-case scenario from practice. Error is measured in
the number of wrongly assigned pixel of the different surfaces to fore- and background. We
do the compositing once for the ground truth depth images and once with the compressed
images and then compare the two results.

5 Results

We have investigated a total of 264 encoded videos from 5 different data sets and three
visualization types. In general, the video compression always achieves higher compression
rates than zlib(see Fig.7), which we use as a general purpose compression technique and
practically relevant comparison baseline. In comparison to zlib however, retrieval times
were increased.

The H.264 codec turns out to be the most predictable, exhibiting the fastest encoding
speed and generally low error. While VP9 resulted in a less overall error the encoding time
is about 3 times higher for lower rate factors(see Fig.7 bottom). Regarding the constant rate
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factor, as the dominant parameter for all codecs, we found out that a value around crf = 20
is the best trade off between compression rate and error (see Fig.5, column 4). The sweet
spot is best defined as the upper left corner in Fig.5. For this parameter combinations we
observe the best quality with the highest amount of compression.

Considering resulting images (Fig.1), we can observe different visual qualities for different
application scenarios. With increasing CRF value the video compressor starts deleting pixels
in areas with similar values. For the streamlines these areas are much smaller, which explains
why the compressed file size for these is much higher.

For the surface compositing test, no significant errors can be reported. We counted
the number of wrongly assigned pixels in the compositing steps. For crf = 0, no wrongly
assignments were counted. For crf = [10,20,30] the maximum were 18 wrongly assigned
pixels. In relation to the image size of 512 x 512 this results in a relative maximum error of
6.9 × 10−6.

5.1 Image Quality
We can observe a predictable increase in the error rates with increasing constant rate factor.
Over all settings the mean SSIM is above 0.98. Referring to Baker et.al. [5] this is still in
the range were most people wont see a difference. It can be seen in Fig.1 that the outliers
are nonetheless visible, but a simple smoothing may overcome this issues, as the outliers are
mostly single isolated pixels. There is no significant influence of the image ordering on the
resulting error rates for both iso-surface and streamline visualizations(Fig.10, row 2,3). But
for the assembly use-case we can observe an effect of the ordering in the PSNR and SSIM
measures. Here the quality for ordering first along the simulation index and than the camera
view port (CS) achieves better results. In the assembly use-case we observe a stronger decline
in image quality with increasing constant rate factor than in the other examples (see 6a).
The H.265 codec is the only one which mean error is not zero for the lossless setup, resulting
in the fact that it is not able to achieve a complete lossless compression (Fig.10, row 1). For
higher crf values the difference between the codecs gets smaller. Regarding the image metrics
the H.264 codec is overall the best performing followed by the H.265 for crf 10 and 20. For
crf 30 all codecs are nearly equal. But overall the VP9 codec results in less noisy images, as
it always outperforms the other codecs in the peak signal to noise ratio (psnr). In Fig.10
row 4, we can see that the original data set has a strong influence on the achievable image
quality. Additionally the image quality for streamline visualization is more sensible to an
increased rate factor than the (iso-)surface visualization (see Fig.1, row 4, blue and purple).
Applying the visual information fidelity measure (vif) results in different ratings especially
for the codecs and data sets (Fig.10,column 4, row 2 and 4). The mean absolute error is
nearly equal among all settings and therefor no suitable measure.

5.2 Compression Rate
The compression rate of the lossless video encoding is in the order of 5 times smaller than
the original uncompressed data and about 3 times smaller than zlib compression with the
highest settings (Fig.7, row 1 and 2, columns 1). For lossy compression we achieve up to
40 times smaller sizes than the original data (Fig.7, row 1 and 2, column 4). The H.264
and H.265 codec achieved the highest compression results with increasing difference to VP9
with increasing rate factor (up to 3 times for crf = 30,see Fig.7, row 1 and 2). For the
lossless compression the H.265 codec is the best performing. But we have seen in the quality
benchmarks, that this codec is not able to achieve real lossless compression which leads to
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an unfair advantage in this comparison. For crf 10 the H.264 codec is about 30% better
than H.265 and VP which are fairly on the same level. For crf 20 the difference between
H.264 and H.265 is getting smaller while VP9 does only small progress. Overall the H.264
and H.265 have a quadratic negative slope for the compression rate based on the crf value,
while VP9 has a near linear slope. The first axis of image ordering has a small impact on the
compression rates in the order of 2 − 4% in absolute scale(rel. to each other 18 − 24%). The
effect of the second axis is negligible. A big difference in compression rates between isosurface
and streamline visualization can be observed.For the lossless setting the compression rates
are near to the zlib compression. Compared to the iso-surface visualizations, the compression
rate have a less steeper slope. For crf = 30 the compression rates are still up to 5 times
higher than for iso-surfaces. The difference in the codecs also persists in this setup.

Figure 7 Results for the compression performance. Top rows: Compression rate in % of the
original uncompressed image data base. grouped by image ordering for iso-surfaces(s: camera sphere,
c:cycle time step, i:iso-value), image ordering for streamlines (S: camera sphere, C:cycle time step)
and constant rate factors, colored by the used codec. Bottom row: Encoding time per image.

5.3 Encoding and Decoding
The encoding was performed on one node of a cluster with a Intel® Xeon® Processor E5-2640
v3. The encoding time per image was in the range of 20 ms for loss-less compression to
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nearly 400 ms for the highest chosen compression rate. The rendering of the images for the
database was performed on multiple machines to achieve a suitable large amount of images
for the presented study. For in-situ we assume, that the data is already loaded in memory.
As such only the time to extract the iso-surface and render the depth image is of relevance.
In a small benchmark for images with a size of 512 × 512 we end up with a mean rendering
time per image in the order of 72 to 230ms and a pipeline execution time for the iso-surface
extraction in the order of 310 to 620ms, depending on the visualized structures complexity.
The remaining driver thus is the I/O. Todays storage bandwidth is in the order of 6 -12
GB/s. The image sizes in our resulting data base are in the range of 260 KB to 295 KB.
This results in 0.022 to 0.049ms per image and thus is neglectable. In a rough comparison
the encoding time for the video compression adds a factor of 0.05 to 0.47 to the computation
time in relation to the already performed rendering pipeline. The encoding time per image

Figure 8 Results for the Encoding time per image, grouped by codec. With increasing constant
rate factor (CRF) the differences between encoding times is equalizing.

Figure 9 Comparison of compression rate and retrieval time clustered by codec, image ordering
for iso-surfaces(s: camera sphere, c:cycle time step, i:iso-value), image ordering for streamlines (S:
camera sphere, C:cycle time step), constant rate factor and data set.

has a nearly quadratic slope based on the crf value (Fig.7, row 3). For the codecs we can see
that VP9 takes about 3 to 4 times longer, for low crf values, than H.264 and H.265. With
increasing crf values the differences in encoding time between the codecs is decreasing. For
lower crf values, the H.264 and H.265 codec outperform the VP9 codec. As there exist a
huge numbers of hardly controllable side effects when measuring the execution time, we can
make only general observations. Based on the streamline image orderings SLC and SLS

compared to the orderings for the iso-surface images (cis,csi,ics,isc,sci,sic), we can see that
the resulting compressed file size and the time to encode are negatively correlating (cor=
−0.342, Pearson).

iPMVM 2020
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The decoding and retrieval was performed on a local desktop machine, to avoid bandwidth
and network effects in the measurement. For the mean decoding or retrieval times based on
random access we end up in the interval of 2.6 to 3.8 seconds. No effects for the ordering
and crf value on the retrieval time can be observed (see Fig.9). There exist a slight negative
correlation (cor= −0.39789, Pearson) between the size of the compressed video and the
retrieval time, which means that higher compressed videos have higher retrieval times. Note
that this correlation does not directly cope with the chosen crf value. For the codecs we
can find some clusters which are leading to a weak order based on the retrieval times
(H.264<H.265<VP9). Further Fig.9 row 5 suggests that the underlying data sets form
distinguishable clusters. For the quality benchmarks, we have encountered the same effects.
We found out that our measured retrieval times are about 4 to 5 times higher than using the
implementations from OpenCV for frame retrieval. This implies that a faster implementation
for image retrieval is possible in principle. Nonetheless the implementation from OpenCV
is targeted towards the retrieval based on time stamps and not exact frame IDs. A such
the retrieval is not exact, but rather chooses the next frame in a predefined range near the
target.

5.4 Overall Observations
Based on five data sets with very different properties we identified that the H.264 codec
delivers the overall best performance regarding image quality, compression rate and retrieval
time. For encoding time it is on the same level as the slightly faster H.265 codec. Another
advantage is that the H.264 codec is able to achieve true lossless compression. Regarding
the investigated parameters we found that only the fastest axis chosen for linearization is
significant, and the ordering of the remaining axes does not impact the results. The recent
study from Baker et.al. [5] provides a guideline for choosing a good threshold on typical
image metrics. To this point the most predictable one is the structural similarity metric
(SSIM). For the climate model they investigated a value of 0.99995 is needed for identical
visual quality, which can be achieved by choosing the constant rate factor to be 0. We
determined that a value around CRF=20 delivers the best trade off between compression rate
and visual quality, regarding a threshold on SSIM of 0.98 determined on medical literature by
[3]. In other words, for a successful application of video compression for visualization image
data bases, the only parameters a user has to determine is the fastest linearization axis along
which images share the most similarity, and which quality the resulting images should satisfy.
Applying video compression is not restricted to only surface-based visualization but also
works for line-based visualizations, which is shown with the jet flow streamline example, but
comes with decreased compression performance. In general, unsurprisingly, we observe that
the compression works best for less cluttered visualizations with smooth areas and few edges.

6 Conclusions

We have provided a study concerning the applicability of lossy video compression to visu-
alization image databases. Our findings confirm observations made by Berres et al. [7],
thereby strengthening further the argument that video compression is a viable and benefi-
cial approach leading to very good compression rates when compared to a general-purpose
lossless compressor. Further, the lossy compression approach introduces only a minor image
quality deterioration, and, in some case, does not lead to loss at all. We have shown that
the complexity of an implementation is manageable. Furthermore, the reduced file sizes
generated via video compression make generally possible the exploration of larger parameter
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spaces, greatly benefiting a computational scientist when analyzing a visualization image
database. Equipped with suitable meta-data, we believe that video file formats could serve
as effective containers for visualization image databases generally, thus simplifying database
management tasks.

Figure 10 Results for the quality benchmark. Box-plots from top to bottom grouped by codec,
image ordering for iso-surfaces(s: camera sphere, c:cycle time step, i:iso-value), image ordering for
streamlines (S: camera sphere, C:cycle time step) and data set.

In general, the ordering only effects the compression with primary order parameter. Thus
it is sufficient in most cases to determine the ordering axis with the highest expected similarity
between subsequent images. For the image quality, we only observed an effect for the assembly
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use case and there only for the SSIM and PSNR. In this setting we achieved in general higher
compression rates due to the very high similarity between the images. Thus we assume that
the effect of ordering on the image quality increases with higher compression rates. The use of
lossy general-purpose compression techniques – i.e., techniques not primarily aimed at video
compresssion – such as the ZFP [19] compressor, should be investigated. Additionally, an
important aspect for many real-world applications is the ability to perform video compression
and encoding in parallel for in situ visualization purposes. We believe that independent
encoding of subsequences is feasible. Moreover, utilizing hardware-enabled acceleration made
possible, for example, by encoding via GPUs could further improve compression performance
substantially. It would also be of interest to determine a near-perfect order used to generate
all in situ visualization mages of a scientific data set. If one were able to optimally define the
trajectory of the “virtual camera” used to produce in situ visualization images, then standard
image compression codecs would be highly effective, due to the high degree of frame-to-frame
coherence for such a camera trajectory. It is planned to consider these aspects in future
research.
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