
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Acquiring local preferences of Weighted Partial MaxSAT

Author(s) Huang, Hong; Climent, Laura; O'Sullivan, Barry

Publication date 2017-11

Original citation Huang, H., Climent, L. and O'Sullivan, B. (2017) 'Acquiring Local
Preferences of Weighted Partial MaxSAT'. 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI), Boston MA,
6-8 Nov, pp. 1065-1072. doi: 10.1109/ICTAI.2017.00163

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/8372066
http://dx.doi.org/10.1109/ICTAI.2017.00163
Access to the full text of the published version may require a
subscription.

Rights © 2017, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works

Item downloaded
from

http://hdl.handle.net/10468/11233

Downloaded on 2021-11-27T16:27:37Z

https://libguides.ucc.ie/openaccess/impact?suffix=11233&title=Acquiring local preferences of Weighted Partial MaxSAT
https://ieeexplore.ieee.org/document/8372066
http://dx.doi.org/10.1109/ICTAI.2017.00163
http://hdl.handle.net/10468/11233

Acquiring Local Preferences of Weighted Partial MaxSAT

Hong Huang, Laura Climent and Barry O’Sullivan
Insight Centre for Data Analytics

Department of Computer Science, University College Cork, Ireland
{hong.huang|laura.climent|barry.osullivan}@insight-centre.org

Abstract—Many real-life problems can be formulated as
boolean satisfiability (SAT). In addition, in many of these
problems, there are some hard clauses that must be satisfied
but also some other soft clauses that can remain unsatisfied
at some cost. These problems are referred to as Weighted
Partial Maximum Satisfiability (WPMS). For solving them, the
challenge is to find a solution that minimizes the total sum of
costs of the unsatisfied clauses. Configuration problems are
real-life examples of these, which involve customizing products
according to a user’s specific requirements. In the literature
there exist many efficient techniques for finding solutions
having minimum total cost. However, less attention has been
paid to the fact that in many real-life problems the associated
weights for soft clauses can be unknown. An example of such
situations is when users cannot provide local preferences but
instead express global preferences over complete assignments.
In these cases, the acquisition of preferences can be the key for
finding the best solution. In this paper, we propose a method
to formalize the acquisition of local preferences. The process
involves solving the associated system of linear equations for
a set of complete assignments and their costs. Furthermore,
we formalize the characteristics and size of the complete
assignments required to acquire all local weights. We present
an heuristic algorithm that searches for such assignments which
performs promisingly on many benchmarks from the literature.

I. INTRODUCTION

The challenge of solving many real-life problems is
often beyond simply finding a satisfiable assignment due
to the preferences specified within the problem. Frequently,
users specify preferences for certain combinations and the
objective becomes finding the optimal solution. This solution
maximizes the satisfiability of the specified preferences.
Some typical examples of real-life applications that present
such characteristics are configuration problems, scheduling
problems, etc. In these problems, the industries intend to
configure their products based on user’s preferences. The
term of configuration was used to introduce a specific form
of a design task in [1]. In configuration problems a con-
figurator can be regarded as a interactive system by which
users configure a product according to their preferences [2].
By configuring a product, user preferences and compatibility
constraints are satisfied [3].

Some examples of very well known configurable prod-
ucts are vehicles, computers, etc. (see [4] for a survey of
product configuration frameworks). Configuration problems
can involve thousands of variables that determine many

different configurations [5]. In [6], the authors mentioned
that while the task of traditional configuration problem
is finding solutions that meet user requirements strictly,
it is more natural to express the problem also in terms
of preferences. In this case, requirements that need to be
satisfied strictly can be considered as hard constraints, and
the preferences are called soft constraints.

Soft constraints allow users to express their local pref-
erences over constraints, variables and/or tuples. However,
in more recent works (e.g. [6]) novel ways of eliciting
preferences is considered whereby users express preferences
over complete assignments. The challenge then becomes
how to model such general preferences locally. Recall that
the objective of solving problems with preferences is to find
an optimal solution. For this reason, it is very important to
acquire local preferences with the motivation to help find an
optimal solution of the problem. In this context, this paper
focuses in the local preferences acquisition task.

The Weighted Partial MaxSAT problem (WPMS) allows
us to express local preferences since it incorporates weights
associated with soft clauses. Then, by means of the weights
associated to the soft constraints, the users can fix the
preferences locally, over each soft constraint. Each weight is
the penalty associated with a solution that does not satisfy
the clause. The higher the weight of a clause, the higher
is the preference of the satisfaction of that clause. The
objective function is to find a solution to the hard clauses
that minimizes the sum of the weights of the unsatisfied soft
clauses.

In this paper we consider the situation in which a set of
complete assignments/solutions to a WPMS and their corre-
sponding objective function values are known; as previously
mentioned, this information could be provided by the users.
However, in general we assume that the specific weights
associated with the soft clauses are unknown. Our approach
focuses on the scenario in which some weights are known.
The main motivation for acquiring such weights is to be able
to obtain the optimal solution.

In this paper, we have formalized the acquisition of
local preferences through the formalism of Weighted Partial
MaxSAT (Section II). We have approached this task by
modeling the problem as a system of linear equations and
subsequently using linear algebra techniques to solve the
resultant system, which we describe in Section III. Further-

more, we are interested in the characteristics and size of
the complete assignments, and their total costs, required to
acquire all local weights, which we consider in Section IV.
Due to the high complexity of solving such a problem, we
propose an heuristic algorithm in Section V. In order to show
its effectiveness, we evaluate it with a wide range of WPMS
benchmarks in Section VI.

II. PRELIMINARIES

The SAT and MaxSAT problems are well known to be
NP-Hard [7], [8]. In SAT, for a given boolean formula, the
objective is to find an assignment that satisfies all clauses
in the formula. In MaxSAT the objective is to find an
assignment that maximizes the number of satisfied clauses.

A CNF is a set of clauses (C1, C2, ..., Cm) in conjunctive
normal form where Ci is a disjunction of literals. A literal is
a boolean variable x or its negation x [9]. The SAT problem
is to find an assignment var(f) → ∀Ci ∈ f, Ci → True.
Let φ be a function such that φ(C) → 1 iff C → True,
otherwise φ(C) → 0. The MaxSAT problem is to find an
assignment that satisfies the maximum number of clauses:
var(f)→ max(

∑m
1 φ(Ci)).

The following notation was described in [10]. The
weighted partial MaxSAT (WPMS) problem is composed
of a set of hard clauses and a set of soft clauses, each
with a weight. The weight associated with each soft clause
Ci is denoted as wi. A weighted clause is a pair (Ci, wi),
where wi is natural number. The formula defining a WPMS
problem is as follows:

ϕ = {(C1, w1), .., (Cm, wm), .., (Cm+1,∞), .., (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ are hard.
The weight of hard clauses should be ∞ compared to soft
ones. var(ϕ) and var(C) denote the set of variables in
ϕ and C, respectively. I is a function that gives the truth
assignment for literals. Then, I : var(ϕ)→ {0, 1} is noted
as the assignment for ϕ. cost(ϕ) =

∑m
i=1 wi(1− I(Ci)).

Each wi is added to the total cost iff clause Ci is unsatisfied.
The objective function of the WPMS is to minimize cost(ϕ),
i.e., to minimize the total cost associated with the set of
unsatisfied clauses.

III. THE APPROACH

Our objective is to acquire the unknown weights of
the soft clauses of a WPMS problem. Without loss of
generality and with the purpose of simplifying notation, we
consider that all the weights of the m soft clauses of the
WPMS are unknown. We use the fact that, by definition,
the relation between w and cost(ϕ) is linear. We define
a set B = {b1, . . . , bm} of m 0/1 variables. We define
each 0/1 variable as bi ↔ (1 − I(var(Ci)). Therefore, bi
is equal to 1 if the clause Ci is unsatisfied. Otherwise bi
is equal to 0. Then, for each complete assignment provided
by the user, we obtain its associated B. By also using the

global cost provided by such an assignment, we obtain a
linear equation of the form cost(ϕ) =

∑m
i=1 wibi, where the

variables representing the weights (w) are unknown. Note
that this is equivalent to the definition of cost(ϕ) provided
earlier. Therefore, by using several complete assignments,
we obtain different linear equations.

In linear algebra it is well known that a system of linear
equations is determined when the number of linear equations
is equal to the number of unknown variables, and all the
linear equations are independent of each other. The deter-
mined case means that there is only a single unique solution,
and therefore all the unknown variables can be determined.
On the other hand, the system of linear equations is un-
determined if the number of linear independent equations
is fewer than the number of variables. For this reason, we
aim to achieve a system of m linearly independent (LI)
equations. We would like to mention that the linear equations
of some complete assignments provided by the user could
be dependent and, therefore, this is an aspect that must
be taken into consideration. We define the set of complete
assignments provided by user as S = {s1, . . . , sm}. Then,
the coefficient matrix of our system of linear equations can
be defined as in Figure 1. Where, bij is a 0/1 variable
expressing if the soft clause Cj is satisfied by the complete
assignment si. If bij is equal to 1, it means that it is not
satisfied. Otherwise, it is satisfied. For example, if b52 = 1
then the complete assignment s5 does not satisfy the soft
constraint C2.

b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

. . .
...

bm1 bm2 · · · bmm

w1

w2

...
wm

 =

cost(ϕ)1
cost(ϕ)2

...
cost(ϕ)m

m

b11 b12 · · · b1m cost(ϕ)1
b21 b22 · · · b2m cost(ϕ)2

...
...

. . .
...

...
bm1 bm2 · · · bmm cost(ϕ)m

w1

w2

...
wm

⇓

b′11 b′12 · · · b′1m cost(ϕ)′1
0 b′22 · · · b2m cost(ϕ)′2
...

...
. . .

...
...

0 0 · · · b′mm cost(ϕ)′m

Figure 1. The coefficient matrix of our system of linear equations.

For solving this system of linear equations we use Gaus-
sian elimination [11], [12], which performs elementary row
reductions by performing operations over the coefficient
matrix. With the first part of the process of Gaussian
elimination the original matrix of coefficients is converted

into its row echelon form. The second part of the algorithm
continues the row reduction until its convergence to a row
reduced echelon form, in order to find the values of the un-
determined variables, i.e. to find the solution of the system of
linear equations. The formula to solve the unknown variable
wi, i ∈ {1, ...,m} is wi = 1

b′ii

(
cost(ϕ)′i −

∑m
j=i+1 b

′
ijwj

)
.

After solving the mth row of the matrix we are able to
acquire wm. Then we substitute its value into the equation
of (m− 1)th row to acquire wm−1, etc.

Note that it is guaranteed that there is a unique solution
for a system of linear equations if the column vectors of
the coefficient matrix are all independent. That is to say if
several variables bi take the same values for all the complete
assignments they are linearly dependent (LD) and therefore
we cannot acquire the weights associated with them. The
same scenario occurs when a bi has an associated column
vector with all its elements set to 0. In this case, this column
vector is LD with respect to the other column vectors and
we cannot learn its weight. Even so, in real applications this
scenario does not make sense because it would mean that
the soft clause Ci is always satisfied by all the complete
assignments provided by the user. Therefore, there is a
contradiction since this clause is not soft because it always
must be satisfied. And consequently, it does not have an
associated weight. A similar case occurs when a variable bi
has an associated column vector with all its elements equal
to 1. In practice this means that the soft clause Ci is not
satisfied by any complete assignments provided by the user.

An Example. Given a WPMS that has three soft unary
clauses with unknown weights ϕ = {(C1, w1), (C2, w2),
(C3, w3), (C4, w3)}, where the clauses are: C1 : x1,
C2 : (x1 ∨ x2), C3 : (x1 ∨ x3 ∨ x4) and C4 : (x2 ∨ x3).
Let’s consider that the set of solutions in Table I and their
global costs are known, then we can obtain the associated
{b1, b2, b3, b4} (Table I).

Table I
SOLUTIONS AND THEIR COSTS.

Solution Is Ci UNSAT? cost(ϕ)
x1 x2 x3 x4 b1 b2 b3 b4
1 1 0 1 0 0 0 1 1
0 1 1 1 1 0 0 0 2
0 1 0 0 1 0 1 1 6
0 0 0 0 1 1 1 0 7

Hence, the coefficient matrix of the associated linear
equations can be defined as per Figure 2. By Gaussian
elimination we can acquire the values of the unknown
variables which, in our case, represent the unknown weights
associated with the soft clauses. For this toy example we
obtain w1 = 2, w2 = 2, w3 = 3 and w4 = 1 (see the
last matrix). Then the objective function of the WPMS is to
minimize cost(ϕ) = 2x1 + 2x2 + 3x3 + x4. After acquiring
the clause weights we can use a WPMS solver and find a

0 0 0 1
1 0 0 0
1 0 1 1
1 1 1 0

w1

w2

w3

w4

 =

1
2
6
7

m

0 0 0 1 1
1 0 0 0 2
1 0 1 1 6
1 1 1 0 7

w1

w2

w3

w4

⇓

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

w1

w2

w3

w4

 =

2
2
3
1

Figure 2. Linear equations for Example 1.

solution that has a better cost than the given solutions (e.g.
(x1 = 1, x2 = 0, x3 = 0, x4 = 1) has a cost of 0).

IV. ACQUIRING THE UNKNOWN WEIGHTS

In Section III we mentioned that in order to acquire all
the m unknown weights that compose the associated system
of linear equations, the number of linear equations should
be equal to the number of unknown variables and that all
linear equations should be independent of each other. In
toy problems, such as the one introduced earlier, this does
not represent a challenge because of the low number of
unknown weights. However, for large instances, such as the
ones derived from real applications, there could be thousands
of unknown weights. In such cases, finding thousands of
complete assignments whose equations are linearly indepen-
dent (LI) among them becomes a challenging task. Let’s
consider a collection of LI vectors S involving the same m
variables. As previously mentioned, each vector is denoted
as bk and bkj refers to the coefficient of the variable in
position j. The same notation is applied to b′j , where b′ is
a new vector that we are considering. Then, by definition b′

is linearly dependent (LD) with respect to the set of vectors
S if:

∃~c ∈ R|S|∀j ∈ {1, . . . ,m} : b′j =

|S|∑
k

ckbkj . (1)

From the negation of Equation 1, it can be deduced that
b′ is linearly independent with respect to the set of vectors
S if:

∀~c ∈ R|S|∃j ∈ {1, . . . ,m} : b′j 6=
|S|∑
k

ckbkj . (2)

A system of linear equations has only one solution,
and therefore all its variables can be determined, if it is

composed of m LI vectors, where m is the number of
variables involved in the system. Then, following the above
reasoning, each vector of the system has to satisfy the
linearly independence condition of Equation 2 with respect
to the other m − 1 vectors. From this reasoning we can
state that the set of m LI vectors involving m variables is
computed as:

∀i ∈ {1, . . . ,m}∀~c ∈ Rm−1,

∃j ∈ {1, . . . ,m} : bij 6=
m−1∑
k 6=i

ckbkj .
(3)

V. AN HEURISTIC ALGORITHM

The objective function of the WPMS with n-ary clauses is
to minimize f(x) =

∑
wibi, where each bi is a 0/1 variable

that is equal to 1 if the associated soft clause is unsatisfied
and 0 otherwise. In order to acquire m unknown weights we
present an heuristic algorithm that uses a state-of-the-art SAT
solver for finding m solutions whose associated equations
are linearly independent. Algorithm 1 aims to find up to m
LI solutions, which are stored in X . Then, if the size of X
is equal to m, it stops since it means that by using Gaussian
elimination we are able to find all the m unknown weights.

Algorithm 1: m-LINEARLYINDEPENDENTSOLS

Data: A (the propositional formula), B ← {b1, . . . , bm}
Result: X (a set of up to m LI solutions).

1 X ← ∅ // stores the LI solutions found;
2 F ← ∅ // stores the new clauses to be added;
3 i← 1;
4 while s← (getNextSolution(A ∧ bi ∧ F)) do
5 if checkLI(X ∪ {s}) then
6 X ← X ∪ {s};
7 if |X | = m then
8 return X ;

9 R← reduced row echelon matrix of X ;
10 for bi ∈ B do
11 if bi is determined in R then
12 B ← B \ {bi} // update undetermined

variables;

13 F ← (¬(x1 ↓B) ∧ · · · ∧ ¬(x|X| ↓B)), where
xi ∈ X ;

14 do
15 i← (i%|B|+ 1) // i iterates over |B| ;
16 while bi 6∈ B;

17 return X ;

For this purpose, we use getNextSolution which re-
turns the next solution of a propositional formula: here, any
complete SAT solver can be used. Then, when there are no
more solutions returned by such function, Algorithm 1 stops.
The input of getNextSolution is the propositional
formula of the hard clauses of the WPMS instance analyzed
(denoted as A), the next targeted undetermined variable

(bi ∈ B), and F . B ← {b1, . . . , bm} are the variables
associated with the soft clauses with unknown weights. F is
a set of new clauses that are automatically updated in order
that getNextSolution avoids finding new solutions that
are a combination of the previous solutions found.

However, even if F is able to prevent some LD solutions,
unfortunately, they are not all the possible LD solutions.
For this reason, after obtaining a new solution, Algorithm
1 checks whether the solution is linearly independent with
respect to the rest of solutions in X (function checkLI in
line 5). If the checking is positive, then the new solution is
added to X . This check for linearly independence can be
done by comparing the singular value (sv) of s ↓B ,∀s ∈ X
with tolerance (T) where s ↓B is the corresponding assign-
ments for b′s, or checking whether there exists a row with
all entries equal to 0 in the result matrix after computing
the reduced row echelon form using Gaussian elimination.
In order to get sv, singular value decomposition must be
done for input X . If |{sv ∈ SV D|sv > T}| = |X | then X
is LI.

We would like to mention that in order to make it efficient,
the search process should prevent previously found solutions
from being found again. In our algorithm if a new solution
is LI then that solution is blocked. Since we updated F by
forbidding the assignment of B which is the projection of a
found LI solution to B, since we were interested in whether
the soft clauses are satisfied or not. By doing that, we are
not just preventing the rediscovery of that LI solution, but
also preventing the discovery of other solutions that will
have the same projection onto B. For example, if we have
s1 : (1, 0, 0, 1) → B : (1, 0, 0) and s2 : (1, 1, 1, 0) → B :
(1, 0, 0). After we find s1 and it is LI with respect to the
set of solutions (X), then we update F by forbidding the
projection of s1 to B which is B : (1, 0, 0). Then the search
process will not return s2 since the projection of s2 to B is
already forbidden.

If a solution returned from the search process
is LD, we handle this situation using the function
getNextSolution. In our algorithm, the function
getNextSolution always returns a new solution that
it has not been discovered yet. Therefore, it automatically
avoids solutions that have been previously returned. In order
to find the set of LI solutions, the search process is mostly
equal to searching for the solutions of the original problem.
In each iteration the process searches for a solution to
the new problem which is adapted from the original SAT
problem by adding extra constraints (bi ∧ F). In the worst
case, the search process for the full set of LI solutions (m LI
solutions) requires us to find all the solutions for the original
SAT problem.

In addition, B is updated if any bi ∈ B is determined after
performing Gaussian elimination for obtaining the reduced
row echelon operation matrix of X . In case that there is
a row where bi = 1 and the other entries are zeros, bi is

determined. Then, the determined b′s are deleted from the
B set. F is also updated so that F contains the negations of
the solutions in X but only for the variables in B. This is
due to the fact that the same combinations of the variables
in B of a solution in X would be LD.

In lines 14-16, at the end of an iteration, we re-compute
the value of index i. The index i is the index for b in the
original problem. Again, we mentioned above that in each
iteration of the search process we focused on searching for a
solution that includes a specific soft clause in its projection
to B. We use the soft clause index i to specify such a soft
clause, e.g., A∧bi∧F as the input of getNextSolution
in line 4. The idea is no matter the search process which is
targeting a specific soft clause (b for specific i that is bi),
we return a LI solution or a LD solution, we will attempt to
search for a solution for next soft clause in the index (bi+1).
If there is a row where bi = 1 and the other entries are
zeros – again that means bi is determined – we jump over
that index value and keep plus 1 until bi is not determined.
Then it will jump back to line 4 and search for a LI solution
which including the specific bi in its projection to B.

VI. EVALUATION

The objective of our experiments was to evaluate the
effectiveness of Algorithm 1 in finding the full set of m LI
solutions and subsequently using them for acquiring the m
unknown weights in a WPMS instance. In our experiments,
we used SCIP1 as a SAT solver for finding the solutions
that satisfy the hard clauses. As previously mentioned, after
each iteration, we added or updated the clauses in the SAT
instance in order to find a new LI solution. We set up
a stop-condition to terminate the search: an iteration-limit
#NoNewSolIters > #SoftClaus − #LISols.

We performed our experiments on a set of bench-
marks taken from the MaxSAT evaluation competitions.2

These datasets are either from random, crafted
or industrial subsets of the Weighted Partial
MaxSAT catalog of MaxSAT Evaluations competitions
2006. Table II shows the benchmarks analyzed in ascending
order by the number of total clauses in the dataset. Column
#Total Claus represents the number of total clauses in
the dataset. The hard clauses and soft clauses in the column
#Hard Clause and #Soft Clause respectively. We
assume that all the soft clauses have unknown weights.
The number of variables is represented as #Vars. In the
Result part of the Table II, we list the number of LI
solutions found, the number of acquired unknown weights,
runtime and the number of iterations in experiment.

Regarding the variety of the instances evaluated, there are
some that are small, with no more than 100 soft clauses, e.g.
8.wcsp.dir has only 8 soft clauses. In addition, there

1http://scip.zib.de/
2http://www.maxsat.udl.cat/

are some big instances with several thousand clauses, e.g.
cap72.wcsp has 3978 total clauses, 1664 hard variables
and 814 soft clauses. We have evaluated instances with unary
soft clauses, e.g. 29.wcsp.dir, and n-ary soft clauses,
e.g. cat_paths_60_70_0001.txt.wcnf.

The results of the experiments performed show that for
many benchmarks we were able to find the same number
of LI solutions as the number of soft clauses. Therefore,
in such cases, we were able to acquire all the unknown
weights of all the soft clauses by using Gaussian elimination.
These cases are highlighted in Table II in the columns #LI
Sols and #ACQ Claus. The total number of iterations
of Algorithm 1 that are necessary to find all the unknown
weights is reasonable. There are “perfect” scenarios in which
the number of iterations are the minimum possible, i.e.
they are equal to the number of unknown weights to be
acquired. These cases are highlighted in Table II in the
column #Iters. In addition, in many other cases, the
number of iterations is not much higher than this “perfect”
case.

Table II shows that for small benchmarks, it is more
likely to find the full set of LI solutions. However, there are
other instances for which many LI solutions share the same
values for certain b variables. For example, variables always
assigned to 0 or 1, or those variables that are LD to each
other. In both cases, they have the same value in all the solu-
tions. Therefore, the unknown weights associated with those
b variables cannot be acquired. An example of a benchmark
that has this situation is cat_paths_60_70_0002.txt.
For this reason, there does not exist a full set of LI solutions
for such instance.

In Table II, the benchmarks whose #LI Sols column
value is underlined means that it is not possible to find
a full set of LI solutions because there does not exist
such a set. The other benchmarks whose results show
that we cannot find such a set of solutions in the ex-
periment are due to the limit on the number of itera-
tions. In the cases for which we cannot find a full set of
LI solutions, for the small benchmarks it is more likely
to find a close number of LI solutions to the unknown
weights. For example, we found 65 LI solutions of 70 soft
variables in the cat_paths_60_70_0002.txt bench-
mark. For the very small benchmarks the search is fast
(<1 second for the benchmark 8.wcsp.log.wcnf and
8.wcsp.dir.wcnf). For small benchmarks, the runtime
is reasonable. However, the runtime is high for big bench-
mark (e.g 29540 seconds for 505.wcsp.dir). This is
due to the algorithm iterating at least as many times as the
number of unknown variables in order to find the full set
of LI solutions and for each iteration, the SAT solver runs
until a solution is found. In addition, the runtime of the SAT
solving process might increase after iterations since we add
new clauses to the original instance. If a solution given back
by the solver is LI with respect to the set found so far, we

Table II
BENCHMARKS AND RESULTS.

Benchmark Details Result
#Total #Hard #Soft #LI #ACQ

Benchmark Clause Clause #Vars Clause Sols Clause Time(s) #Iters
8.wcsp.log 25 17 12 8 7 7 <1 15
8.wcsp.dir 29 21 20 8 8 8 <1 8
cat paths 60 70 0001.txt 397 324 73 73 73 73 271 74
cat paths 60 70 0004.txt 442 372 70 70 70 70 150 73
54.wcsp.log 479 412 96 67 67 67 171 67
54.wcsp.dir 508 441 154 67 41 13 193 109
1502.wcsp.log 534 325 311 209 205 201 6541 415
cat paths 60 70 0003.txt 540 470 70 70 70 70 144 70
cat paths 60 70 0007.txt 551 477 74 74 74 74 249 74
cat paths 60 80 0002.txt 553 472 81 81 81 81 390 81
cat paths 60 70 0006.txt 566 495 71 71 71 71 142 71
cat paths 60 70 0000.txt 598 528 70 70 70 70 137 74
cat paths 60 70 0005.txt 605 533 72 72 72 72 111 72
cat paths 60 70 0002.txt 610 540 70 70 65 19 111 136
cat paths 60 80 0001.txt 612 531 81 81 81 81 292 81
cat paths 60 80 0003.txt 615 535 80 80 80 80 272 80
cat paths 60 80 0006.txt 633 551 82 82 82 82 283 82
1502.wcsp.dir 636 427 515 209 81 15 1655 291
29.wcsp.log 692 610 101 82 82 82 300 82
29.wcsp.dir 711 629 139 82 60 14 476 143
503.wcsp.log 934 791 201 143 143 143 5496 171
404.wcsp.log 1037 937 129 100 100 100 619 100
404.wcsp.dir 1066 966 187 100 99 97 737 199
normalized-mps-v2-20- 1494 1461 548 33 18 6 27 52
10-p0033.opb.msat.wcnf
cat paths 60 140 0002.txt 1833 1692 141 141 141 141 3436 143
cat paths 60 130 0000.txt 1936 1806 130 130 129 66 2056 391
cat paths 60 140 0003.txt 1954 1810 144 144 144 144 5395 179
42.wcsp.log 2016 1826 247 190 190 190 10132 328
cat paths 60 140 0001.txt 2024 1881 143 143 143 143 4697 162
cat paths 60 150 0003.txt 2029 1878 151 151 151 151 5254 151
42.wcsp.dir 2073 1883 361 190 177 152 7836 368
cat paths 60 170 0005.txt 2089 1917 172 172 172 172 9807 286
cat paths 60 150 0002.txt 2092 1942 150 150 150 150 6072 202
cat paths 60 150 0000.txt 2097 1947 150 150 150 150 4618 193
cat paths 60 160 0002.txt 2276 2114 162 162 162 162 8720 165
cat paths 60 160 0000.txt 2299 2139 160 160 160 160 7146 220
cat paths 60 160 0001.txt 2377 2216 161 161 161 161 8247 242
cat paths 60 160 0003.txt 2417 2256 161 161 161 161 6296 178
cat paths 60 150 0001.txt 2460 2310 150 150 150 150 5580 168
cat paths 60 170 0004.txt 2543 2372 171 171 171 171 6792 291
cat paths 60 170 0000.txt 2803 2633 170 170 170 170 6328 177
cat paths 60 170 0003.txt 3016 2845 171 171 171 171 7950 171
408.wcsp.log 3149 2949 264 200 200 200 18228 220
505.wcsp.dir 3536 3296 552 240 240 240 29540 341
cap61.wcsp 3978 3164 1664 814 47 10 17985 861
cap62.wcsp 3978 3164 1664 814 48 11 17883 862
cap71.wcsp 3978 3164 1664 814 52 10 18232 866
cat sched 60 160 0000.txt 5314 5154 160 160 143 52 1303 304
cap81.wcsp 6273 5000 2600 1273 31 11 26866 1304
cap82.wcsp 6273 5000 2600 1273 30 13 27113 1304
cap91.wcsp 6273 5000 2600 1273 37 15 27955 1310
cap101.wcsp 6273 5000 2600 1273 37 17 27154 1310
cap102.wcsp 6273 5000 2600 1273 40 22 27277 1313
1504.wcsp.log 6593 5988 929 605 232 2 176013 488

say it is a good solution. The accuracy for the whole search
is the percentage of the solutions given back by the solver
that are the good solutions. It can be observed in Table II that
regardless of the size of benchmark, high accuracy implies
less time to finish the search. By comparing the result of
benchmark 503.wcsp.log and 404.wcsp.dir, there is
a huge difference in runtime between them. Table II shows
that for small benchmarks the accuracy of search is quite
high which means that it has not wasted much time finding
the LD solutions.

After the search process generated the full set of LI solu-
tions, we can use those solutions to compute the associated
weights for soft clauses. Again even with some of the LI
solutions it is still possible for us to acquire some associated
weights for soft clauses, but in that case we are not able to
acquire all the associated weights for B. This case was also
shown in Table II.

In some experiments the number of LI solutions returned
by the search process and the number of acquired of as-
sociated weights for B are less than the number of soft
clauses in the problem. For example, in the experiment for
1502.wcsp.log, the number of soft clauses is 209. But in
the search process we only can find 205 LI solutions which
is not a full set of LI solutions (205 < 209). Without the full
set of LI solutions, we still can partially solve the problem
by acquiring associated weights for 201 soft clauses. In this
case, after solving the system of linear equations that is
composed of 205 projection vectors from solutions to B,
we determined 201 associated weights for soft clauses. The
associated weights for the remaining eight soft clauses are
either dependent on each other or unknown after solving the
system of linear equations. It means that, if we cannot solve
the problem perfectly (finding m LI solutions in the search
process), we still can acquire some associated weights for
soft clauses.

As we mentioned before, we computed the associated
weights for soft clauses by solving the system of linear
equations. Again, the system of linear equations is composed
of the projection of full set of LI solutions to B. Many
studies have shown that solving a system of linear equations
is efficient [13]–[16]. In our case, the runtime for solving
the system of linear equations in the experiments was within
2 seconds.

While the above experiments shows that we can acquire
the m unknown associated weights for soft clauses if we
have the full set of m LI solutions and the associated
weights for solutions given by user, we are also interested
in cases where a user can only roughly estimate the weights
of solutions or give the order of solutions. We performed
another set of experiments in which we applied some errors
to the associated weights for solutions to see if the computed
optimal solutions change drastically. In the case that the user
can only give the order of solutions, we could consider the
given order as some rough weights, e.g. obtaining S1 >

S2 > S3 > ... from S1 = 100, S2 = 200, S3 = 300, In
this set of experiments, we used the acquired weights for
soft clauses to compute the optimal solution and its weight
(denoted as O). After errors were applied into the weights
of solutions, we acquired the new associated weights for
soft clauses and computed the new optimal solution and its
weight (denoted as O’). Then we computed the ∆ between
O’ and O.

In this experiment, there are three error intervals of
10%, 20% and 30% for each benchmark. Also, for each
benchmark we considered two different options with respect
to the order of solutions after applying errors. First relates
to the order of solutions after applying error as before, the
other does not intentionally maintain the order.

In Table III for each interval we present ∆ O’-O and the
percentage of ∆ to the weight of optimal solution before
applying errors (denoted as ∆/O). The results shown in
Table III are the average result of 10 experiments. 0 in the
cell means in that case the optimal solutions before and after
applying errors are the same. Otherwise, the ∆/O percentage
shows how far the new optimal solution deviated from the
optimal solution before applying errors. The table also shows
that for some benchmarks, for certain error intervals, the
optimal solutions before and after are the same. In other
cases, the difference between O and O’ is small and it
is increased if the error interval increases. Comparing the
results in the same error interval and benchmark but different
order options, it shows that if the order of solutions after
applying errors is maintained as before, the results are better.

The results show that if the user can only roughly estimate
the weights of solutions, or just specify the order of solu-
tions, which are similar to applying errors into the weights
of solutions, we still can find a close solution to the optimal.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method for acquiring the
weights of soft clauses in Weighted Partial MaxSAT prob-
lems. Configuration problems, for which the users specify
global preferences instead of local preferences, represent a
motivation for this work. In addition, we exemplified the
principles behind our method and formalized the problem
of acquiring weights by modeling and solving a system of
linear equations. Furthermore, we formalized the problem of
finding m linearly independent solutions, which is necessary
for acquiring all the m unknown weights. Due to the high
complexity of solving such a problem, we also presented
a heuristic approach to this. We evaluated our heuristic ap-
proach with many well-known benchmarks and we obtained
promising results especially when the number of unknown
weights was not excessive. We showed that our method
acquired the unknown weights in a reasonable number of
iterations. However in some cases the runtime was high.

In the future we are planning to work on a more restrictive
variant of the problem described in this paper in which we

Table III
APPLIED ERRORS AND THE RESULTING DELTA OF OPTIMAL SOLUTIONS.

not intentionally in maintaining the order of solutions remain the order of solutions after applying errors as before
10% 20% 30% 10% 20% 30%

Benchmark ∆O’-O ∆/O ∆O’-O ∆/O ∆O’-O ∆/O ∆O’-O ∆/O ∆O’-O ∆/O ∆O’-O ∆/O
29.wcsp.log 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
404.wcsp.log 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
54.wcsp.log 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
8.wcsp.log 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
..60 140 0002.. 139 0.150% 293 0.316% 472 0.509% 0 0% 0 0% 0 0%
..60 140 0003.. 68 0.073% 192 0.207% 282 0.304% 0 0% 0 0% 0 0%
..60 150 0001.. 73 0.079% 224 0.243% 400 0.433% 23 0.025% 21 0.023% 21 0.023%
..60 160 0001.. 128 0.129% 86 0.087% 388 0.391% 5 0.005% 17 0.017% 17 0.017%
..60 170 0000.. 58 0.047% 317 0.259% 434 0.355% 13 0.011% 13 0.011% 26 0.021%
..60 170 0003.. 65 0.053% 183 0.149% 484 0.394% 0 0% 0 0% 8 0.007%
..60 70 0006.. 63 0.143% 88 0.200% 175 0.397% 3 0.007% 4 0.009% 14 0.032%
..60 80 0002.. 15 0.033% 23 0.051% 127 0.281% 0 0% 15 0.033% 16 0.035%

can only compute k solutions whose associated equations
are linearly independent, where k < m. Therefore, we want
to find the k solutions that maximize the number of weights
acquired.

ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
under grant SFI/12/RC/2289.

REFERENCES

[1] J. P. McDermott, “R1: A rule-based configurer of computer
systems,” Artif. Intell., vol. 19, no. 1, pp. 39–88, 1982.
[Online]. Available: http://dx.doi.org/10.1016/0004-3702(82)
90021-2

[2] B. O’Sullivan, Ed., Recent Advances in Constraints, Joint
ERCIM/CologNet International Workshop on Constraint Solv-
ing and Constraint Logic Programming, Cork, Ireland, June
19-21, 2002. Selected Papers, ser. Lecture Notes in Computer
Science, vol. 2627. Springer, 2003.

[3] U. Junker, “Configuration,” in Handbook of Constraint
Programming, ser. Foundations of Artificial Intelligence,
F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier,
2006, vol. 2, pp. 837–873. [Online]. Available: http:
//dx.doi.org/10.1016/S1574-6526(06)80028-3

[4] D. Sabin and R. Weigel, “Product configuration frameworks-
a survey,” IEEE intelligent systems, vol. 13, no. 4, pp. 42–49,
1998.

[5] C. Sinz, A. Kaiser, and W. Küchlin, “Formal methods for
the validation of automotive product configuration data,”
AI EDAM: Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, vol. 17, no. 01, pp. 75–97, 2003.

[6] F. Rossi and A. Sperduti, “Acquiring both constraint and
solution preferences in interactive constraint systems,” Con-
straints, vol. 9, no. 4, pp. 311–332, 2004.

[7] I. Bliznets and A. Golovnev, “A new algorithm for
parameterized MAX-SAT,” in Parameterized and Exact
Computation - 7th International Symposium, IPEC 2012,
Ljubljana, Slovenia, September 12-14, 2012. Proceedings,
2012, pp. 37–48. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-33293-7 6

[8] M. Patrascu and R. Williams, “On the possibility of faster
SAT algorithms,” in Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp.
1065–1075. [Online]. Available: http://dx.doi.org/10.1137/1.
9781611973075.86

[9] N. Eén and A. Biere, “Effective preprocessing in SAT
through variable and clause elimination,” in Theory and
Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23,
2005, Proceedings, 2005, pp. 61–75. [Online]. Available:
http://dx.doi.org/10.1007/11499107 5

[10] C. Ansótegui and J. Gabàs, “Solving (weighted) partial
maxsat with ILP,” in Proceedings of CPAIOR, 2013, pp.
403–409. [Online]. Available: http://www.cis.cornell.edu/ics/
cpaior2013/pdfs/ansotegui.pdf

[11] E. H. Bareiss, “Sylvester’s identity and multistep integer-
preserving Gaussian elimination,” Mathematics of Computa-
tion, vol. 22, no. 103, pp. 565–578, Jul. 1968.

[12] J. E. Gentle, “Gaussian elimination.” in Numerical Linear
Algebra for Applications in Statistics. pub-SV:adr: Springer-
Verlag, 1998, ch. 3.1, pp. 87–91.

[13] A. Bojańczyk, “Complexity of solving linear systems
in different models of computation,” SIAM Journal on
Numerical Analysis, vol. 21, no. 3, pp. 591–603, 1984.
[Online]. Available: http://www.jstor.org/stable/2157070

[14] V. I. Solodovnikov, “Upper bounds on the complexity of
solving systems of linear equations,” Journal of Soviet
Mathematics, vol. 29, no. 4, pp. 1482–1501, 1985. [Online].
Available: http://dx.doi.org/10.1007/BF02104747

[15] O. H. Ibarra, S. Moran, and R. Hui, “A generalization of the
fast lup matrix decomposition algorithm and applications,”
Journal of Algorithms, vol. 3, no. 1, pp. 45 – 56, 1982.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/0196677482900074

[16] C. Jeannerod, C. Pernet, and A. Storjohann, “Rank-
profile revealing gaussian elimination and the CUP matrix
decomposition,” CoRR, vol. abs/1112.5717, 2011. [Online].
Available: http://arxiv.org/abs/1112.5717

