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ABSTRACT
Game flow represents a state where the player is neither frustrated
nor bored. In turn-based battle video games it can be achieved by
Dynamic Difficulty Adjustment (DDA), whose research has begun
rising over the last decade. This paper introduces an idea for incor-
porating DDA through the use of Reinforcement Learning (RL) to
agents of turn-based battle video games. We design and implement
an RL agent that shows, in a simple environment, the idea of how
a game could achieve balance through adequate choices in actions
depending on the player’s level of skill.

For achieving this purpose, we incorporated the design and imple-
mentation of state-action-reward-state-action (SARSA) algorithm
to the agent of our implemented game. In addition, we added track-
ing of the on-going games and depending on the frequency of the
player’s repeated wins or losses, the rewards of the RL agent are
modified. This modification of the rewards has an impact on the
RL agent’s actions, which involves an increase/decrease of the diffi-
culty of the battle game. The evaluation performed shows that the
idea of the paper is demonstrated, since players face personalized
challenges that we believe are in range of game flow.

KEYWORDS
Game Flow, Dynamic Difficulty Adjustment, DDA, Reinforcement
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1 INTRODUCTION
Although research in Dynamic Difficulty Adjustment (DDA) has
been rising [? ], its application in today’s video games is still lacking
in some smaller areas. The importance of introducing DDA in video
games is evident, for example, in the research of Xue et al. [? ]. They
show that by improving the way in which a game responds to the
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player, the player’s experience improves and a higher number of
players will continue to play for a longer period of time. Most of the
current research on DDA is done through different (RL and non-RL)
approaches, different game genres, however, there are still some
aspects that could be explored more. Many games and papers focus
on the modulation of game difficulty, yet, they do so by giving or
taking something away from either the player or their opponents. In
terms of turn-based battle games, not all apply RL to create smarter
opponents.

Battle video games, like Pokémon, implement a turn-based battle
system: players are fighting enemies throughout the game, trying
to reach a final goal. The difficulty of these games is constantly
increased by introducing stronger enemies, i.e., ones with higher
statistics (e.g., attack and defense points), rather than enemies that
choose moves by taking into account the player’s skill level. Other
than becoming stronger, these opponents do not change in a way
that would entice players who, perhaps, find it too difficult or easy.
These types of games would benefit from modifying the enemy
to maintain game flow, using RL to direct the opponent to choose
moves that are less likely, or more likely, to cause it to win. Instead,
RL is usually used to create a smarter player agent to play through
theses types of games [? ]. The development of a smarter oppo-
nent combined with DDA could lead to a more diverse, compelling
gameplay that would attract players of all skill levels. Thus, the
motivation here reaches towards introducing the idea of a new
approach using RL to achieve DDA and game flow for turn-based
battle games.

The aim is to modify the opponent during a battle by implement-
ing a Reinforcement Learning (RL) agent that can choose its own
actions (e.g., to hit, to heal, etc.), rather than changing its statis-
tics (e.g., attack and defense scores). We test different rewards and
exploration-to-exploitation ratios of the agent to see what works
best for this setting. The rewards (positive and negative) are also
swapped throughout the battle. This helps introducing DDA into
the RL setting, as it encourages, or discourages, the agent from
winning depending on the progress of the player.

In this paper, we also focus on game flow, that Csikszentmihalyi
defines as the“the holistic sensation present when we act with total
involvement” [? ]. Flow can be modeled as a gameplay state in
which there is a good balance of challenge and skill level for the
player: these two dimensions must vary together to ensure flow,
i.e., the more the player feels “challenged”, the more they will need
to be and feel “skillful”, and vice-versa. We hypothesize that, DDA
through RL will contribute to maintain a good balance between
these two dimensions, by implementing a turn-based battle video
game. Then, we evaluate the game to test 2 research questions: (1)
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does a RL approach have an effect on the type of actions chosen
by the opponent during battle? (2) does a RL approach improve the
game experience in terms of player’s flow?

2 BACKGROUND: FLOW & DDA
To achieve a flow state, a “balance between perceived challenges
and perceived skills” is required, creating a “merging of action and
awareness, a sense of control, and an altered sense of time” [? ].
Figure 1 depicts the concept of “flow channel” applied to video game
playing: making a game too challenging for the current player’s
skill level (e.g., by increasing the opponents’ strength or adding
puzzles that are too difficult to be solved) will make player feel frus-
trated (moving from the flow channel to the red area); conversely,
proposing challenges that can be easily faced by the player will
make them feel bored (moving from the flow channel to the blue
area).

Figure 1: Csikszentmihalyi’s flow model [? ]. The player’s
gameplay experience is optimal if it is maintained in the
flow channel, i.e., it never becomes too much or not enough
challenging, respect to the player’s skill level.

In order to keep the player in the flow channel as much as pos-
sible, a balance between the player’s skill and the game difficulty
has to be maintained, and this is the goal of Dynamic Difficulty
Adjustment (DDA) [? ]. DDA is a technique consisting in altering a
game’s properties during gameplay in order to make a game easier
or more difficult. The adjustment is based on the player’s progress
throughout the game: if the player fails more than often, this will
lead to feelings of frustration and the player ending the game; if the
player wins too easily, boredom will quickly arise. DDA can result
in the modification of the game parameters, features, behaviors and
scenarios. It can target things such as the statistics of an enemy, i.e.,
how strong they are, how much health they have or what abilities
they can use. It can alter the amount of spawned enemies or in-
crease the amount of powerups the player will collect throughout
the game. For games based on levels without enemies, it can result
in changing the complexity of the levels. When applying DDA, the
first objective is to Figure out which one(s) of these characteristics
to adjust in order to help or hinder the player.

Another important factor of DDA is the tracking of the player’s
skill or progress. For example, Xue et al. [? ] divide the player’s

progress in two parts: the current game level and the amount of
tries it takes the player to successfully win the level. By computing
a formula weighted by these factors, they can measure how well
the player is responding to the game. Then, the difficulty of the
following levels is adjusted accordingly.

3 STATE OF THE ART
Many papers tackle DDA in video games: some explore the use of RL
(see Section 3.1), others adopt other machine learning approaches
in which models are previously trained over a high number of plays
to implement a more balanced play experience (Section 3.2). While
the former approach does not need a long training phase, it does
not necessarily tackle the creation of smarter opponents, as we aim
to do: usually, RL is exploited to change the game’s statistics or
environment (e.g., the structure of the levels), or to create a smart
player agent. The latter, instead, produces a better adaptation of
the game difficulty but the technique cannot be easily transferred
between players, as it will constantly require re-training.

Compared to existing works, the system we present in the paper
learns from one player during gameplay rather than needing to
be trained on a larger dataset. Also, according to the outcome of
the learning process, it varies the actions of the player’s opponent,
instead of modifying the structure of the game. As a result, since
the player’s opponent learns during each battle rather than being
trained beforehand, the game provides a challenge that is aimed
towards the skills of the person playing the game, to achieve a flow
experience.

We also explore the idea of increasing game difficulty, rather
than just decreasing it, by surveying the output of the RL algorithm
(Section 5) with many combinations of rates and rewards. Finally,
whilst our system is tailored specifically to the case of turn-based
battle games, the presented concepts can still be applied to games
of different genres.

3.1 Reinforcement Learning and DDA
Many research works on games and RL aim at developing intelli-
gent agents that would successfully play the game as the player
themselves, such as in [? ]. Softmax exploration with Q-learning is
exploited to find an optimal battle strategy for the game Pokémon.
The approach itself could be used to make better enemies in games,
however, it would not comply with the DDA factor, as it does not
adjust to the skills of the opponent agent; instead, it aims at creating
the strongest possible player. The algorithm is set up to get the
maximum result, i.e., to win every battle, and so it does not try to
match its opponent’s skill level. Other papers also tackle optimal
strategies in turn-based strategy games [? ? ? ]: they all focus on
creating a strong opponent, or player, but they do not adapt their
skill level to the opponent’s one.

Works that do target DDA do so by adjusting the “physical”
elements of the game, rather than the skills of the opponent [? ].
Wender & Watson [? ] and Amato & Shani [? ] target the game
Civilization IV to study RL approaches [? ] in strategy games. The
first work exploits Q-learning to add a RL-based agent to the game
AI and let it perform actions according to the player’s score (which is
considered as the reward of the algorithm). The second one exploits
Q-learning, model-based learning and learning with a factored
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model to let the opponent choose one out of 3 action strategies,
based on different world leader personalities. The system learns
some state features, e.g., the the military strength of the player
and the opponent, the amount of unoccupied land remaining, the
population size, etc.

Other works, such as [? ] use RL to determine the combat be-
havior of player’s opponents to let them choose between fight and
retreat, depending on some variables, such as the weapons state,
distance from the enemy, number of enemies in the area, health
points. The opponents become smarter in maximizing their ability
to beat the player, but this is different from our approach. We aim at
achieving DDA by letting the opponents modify their fight strategy
in terms of the single attack or defense actions chosen during the
fight. So, we aim at improving the player’s experience by lowering
and raising the opponents’ fight skills, making the player feel that
the fight has always a good balance of difficulty and fun.

Just a few works recently tried to achieve DDA using RL, e.g.,
Noblega et al. [? ], aiming to achieve DDA (referred to as “game-
balancing”) in real-time games. Similarly to this work, we apply RL
to a different game type, that is, turn-based battle games.

As highlighted in the works reviewed above, there is a general
lack of research on the application of fight strategy planning sys-
tems to achieve DDA in turn-based games, to create well-balanced
opponents.

3.2 Non-RL Approaches to DDA
Fernandes and Levieux [? ] talk about directly adapting the diffi-
culty towards the player’s failure probability. Their system is based
on a model of the challenge difficulty and, through a repetitive
update of a logistic regression function, difficulty adjustment, and
gameplay data recording, the model is kept up-to-date to monitor
the game difficulty. The most important aspect is that the system
does not require large amounts of gameplay data, meaning that
newly released games can use it without having to scavenge for
large amounts of data in order to train the model. Much like our
research, it aims for an approach that would not require the model
to be trained beforehand with large amounts of data whilst still
achieving DDA.

The Hamlet system is a collection of functions integrated into
the Half Life game engine [? ]. The system constantly monitors the
gameplay, and if it notices that the player is struggling to face en-
emy or challenges, it provides them with items that they can use in
order to make the game easier. The main system heuristic function
for determining game difficulty is the damage the player takes over
time. By observing this information, the Hamlet system chooses
to introduce more or less items to help the player. Although this
approach does not apply RL nor does it create more adaptive ene-
mies, it achieves some sort of flow by keeping the player contained
in set states that match their skill.

Lora et al. [? ] apply DDA through gameplay data clustering, in
order to detect different playing styles in Tetris. The total score of a
game and the play style indicates the level of the player, defining
three levels: newbie, average, expert. Rather than challenging the
player and constantly increasing game difficulty, the system aims at
providing more help to players of lower level. Authors demonstrate
that the player’s average scores and the satisfaction increases when

DDA is applied. Although the system was created mainly to be
applied to Tetris, with some small adjustments it could be applied
to similar puzzle games (e.g., Candy Crush). Whilst it does not have
an enemy or RL, this approach is very interesting in that it tracks
the player’s progress closely and, much like the Hamlet system, it
tries to keep the player in some sort of flow state in which their
current skill level matches the presented difficulty, thus keeping
them engaged in the gameplay.

4 TURN-BASED BATTLE VIDEO GAME
As previously mentioned, in this paper we illustrate the idea of
making turn-based battle systems more interesting with the intro-
duction of RL to achieve game flow. More specifically, we imple-
mented a simple turn-based video game with a human player and
an agent. The only objective for the player is to win as many battles
as possible (within a game) against the agent.

Figure 2: screenshot of the game’s battle scene. The player’s
character is depicted on the left, while the opponent’s char-
acter is on the right. Move selection for the player is shown
in the bottom box.

4.1 Game Mechanics and Gameplay
The implemented game is a simple turn-based battle game, meaning
that the player and opponent take turns to make a move. To keep
it simple, the game is centered only around battling enemies. The
player can of course quit at any time throughout the game.

Figure 2 shows the battle scene of the video game, which provides
both the player and the opponent with four different action options.
Both characters can attack their targets or heal themselves. At the
start of each battle, both characters are restored to their initial state.
This means that both are back to full health points (HP). The battle
system performs the calculations and updates of the units HP after
each play turn.

A unit is a frame for a character that describes its basic values:
health points (HP), max health points, attack, and defense. HP repre-
sents the unit’s current state of HP, while max HP is the highest
amount of HP a unit can have (75 units). The attack value indi-
cates how well the character can deal damage. Defense shows how
well a character can protect themselves against an attack. These
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base values are important for determining the damage done, by
use of a formula. If one attacks, it’s attack points and the move’s
attack points, as well as the target’s defense points will be put into
a damage formula which then calculate the amount of damage that
should be taken off the target’s HP.

Both the player and opponent characters are given the same set
of moves to be used in battle: a weak hit attack, a slightly more
powerful charge attack, a combo attack, and a heal action. Addition-
ally, the player is also given a flee action, which can be used to quit
the game. By healing, the unit’s HP increases by 10 points. The hit
attack is thrown in as a control, it is weak (between 2 and 5 damage
points) and very inefficient but the goal is to see how much either
party uses it. The charge and combo attacks are the most beneficial
as they can deal a lot of damage (charge up to 15, and combo up to
25 points at the very most). Combo is a combination of two to five
hits (each between 2 and 5 points), meaning that the disadvantage
of using it is that you may, by chance, get the smallest number of
hits and thus deal a lot less damage than by using charge. Of course,
on the other hand, if you get five hits of 5 points it will deal more
damage than charge, however, that would be a rare achievement.
Charge is a lot more reliable as it has a smaller range from which
the damage can be calculated (between 10 and 15). So, whilst one
is very consistent but not incredibly powerful, the other one is a
lot more unpredictable with the amount of damage dealt.

5 REINFORCEMENT LEARNING AGENT
Q-learning is a very well-known and largely used RL algorithm
which is highly popular in the area of DDA, as discussed in Section
3.1. In this section, however, we motivate our choice of using the
SARSA (State-Action-Reward-State-Action) [? ] algorithm over Q-
learning. Even if they differ very slightly (i.e., just one difference in
updating Q-values), SARSA is typically preferable when the agent’s
performance during the learning process is more important than
the final performance. An extensive comparison between SARSA
agents and Q-learning agents is presented in [? ].

SARSA algorithm is an on-policy learner that updates the state
after each action based on the reward obtained from the environ-
ment after performing such action (see Figure 3). The difficulty of
the agent should increase slowly and according to the player’s per-
formance, rather than taking the optimal movements and becoming
invincible. In addition, the agent should learn and adapt from early
steps in the game and. This fits into our objective for the RL agent
of avoiding “bad actions” since the early stages of the interaction.

5.1 States
We define the states of the RL agent based on its Health Points
(HP) and the HP of the player. After an empirical evaluation of the
number of states, the best performance was obtained with 17 states,
which are shown in Table 1. There are five states where both parties
have the exact same HP. In addition, there are 10 states where one
party’s HP is greater than the other’s. In five of them the agent has
more HP than the player, while in the remaining ones the opposite
is true. Furthermore, there are two states in which one of the parties
loses the game (one for the agent and one for the player), i.e., their
HP are zero or below.

Figure 3: diagram of the SARSA algorithm.

State Player HP Agent HP
0 75 ==
1 [51-74] ==
2 [31-50] ==
3 [16-30] ==
4 [1-15] ==
5 <Agent HP [66-74]
6 <Agent HP [46-65]
7 <Agent HP [31-45]
8 <Agent HP [16-30]
9 <Agent HP [1-15]
10 [66-74] <Player HP
11 [46-65] <Player HP
12 [31-45] <Player HP
13 [16-30] <Player HP
14 [1-15] <Player HP
15 0 -
16 - 0

Table 1: the states for our SARSA RL agent.

5.2 Rewards
We have defined two rewards for the RL agent: a positive reward
for winning a battle (i.e., state 15) and a negative reward for losing
a battle (i.e., state 16). Specifically we apply a reward 100/50 for
winning and a penalty of -100/-50 for losing. The rewards can be
configured before the start of any game. Section 6 evaluates the
differences of the agent’s behaviour based on the different rewards.

The agent keeps track of the number of times the player wins
or loses in a row. If the player loses too many times in a row, the
rewards are swapped, in order to lead the agent to lose instead of
winning. The same occurs if the player wins too many times in
a row: the rewards are switched back, so that the agent aims to
win. Empirically, we determined that five wins/losses in a row is
an adequate number to switching the rewards.

5.3 Exploration vs Exploitation
Exploration and exploitation are key concepts in RL algorithms. In
the exploration, the agent gathers more information (by selecting
random actions rather than taking the best action). In the exploita-
tion, the agent takes the best action based on its current information.
We have configured different rates for the exploration and exploita-
tion, which can be set at the start of the game. We have fixed three
configurations: (50,50), (30,70) and (70,30), where the first number
represents the exploration and the second the exploitation. Section
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6 evaluates the differences of the agent’s behaviour based on these
different configurations.

We have used the Epsilon-Greedy strategy. With this strategy,
if the exploration vs exploitation rate is (30,70), it implies that the
exploration policy is 0.3 and therefore the Epsilon-Greedy policy
takes random actions 30% of the times. Furthermore, we have used
Tabu Search Exploration in order to set certain actions as tabu for
a certain number of times, and to allow the RL agent to explore the
other actions more frequently.

The different combinations of rewards and exploration vs ex-
ploitation configurations are represented in the diagram in Figure
4.

Figure 4: tree diagram with all possible parameters choices.

6 EVALUATION
We have conducted 2 evaluation studies in which participants play
the turn-based battle video game against the RL agent presented in
the previous section. As mentioned in Section 1, we aim to answer
the following research questions: (1) does a RL approach have an
effect on the type of actions chosen by the opponent during battle?
(see study 1 in Section 6.1 and Section 6.2); (2) does a RL approach
improve the game experience in terms of player’s flow? (see study
2 in Section 6.3 and Section 6.4).

6.1 Study 1: RL agent performance and actions
In this study, 10 games were evaluated, each one consisting of 30
battles, giving a total of 300 battles played by four human players
(twomales and two females with age ranging from 20 to 40). Players’
skills were comprised of two players being experienced, one being
an intermediate level player and one player being a beginner. We
refer to these 10 games with letters from A to J .

Games A, H , and I have rewards/penalties of (100,-100) and
exploration vs. exploitation rates of (50, 50). Games B/J and C/G
have as exploration vs. exploitation rates of (30,70) and (70,30),
respectively (while keeping the same rewards). Instead, games D,
E and F have rewards/penalties (50,-50), and their exploration vs.
exploitation rates are, respectively: (50,50), (30,70) and (70,30).

We will now focus on the two games of study 1 denoted as games
A and B. Both of these games were set up using similar rewards.
Game A has a reward of 100, a penalty of -100 and exploration vs.
exploitation rates of (50, 50): so, the agent was rewarded more for
winning but also penalized more for losing; it also means that it had
an equal opportunity to explore and learn throughout the game.

Game B has the same reward and penalty as game A, however, its
exploration and exploitation rates are (30, 70), meaning that the
agent focused more on learning rather than exploring.

6.2 Study 1: Results & Discussion
Figure 5 shows the results of study 1. We can observe that, in most
of the games, players usually quickly discover the best way to utilize
the available moves. Specifically, it can be observed that the moves
the players use the most are Charge and Combo. The explanation
behind the popularity of these moves is that they are the attacks
that produce the highest damage. On the other hand, actions Heal
and Hit are used fewer times. As previously stated in Section 4, Hit
is mostly used as a control move.

Figure 5: player’s average moves over 10 games (A-J).

A more interesting outcome of study 1 is represented in Figure
6, in which it can be observed how the RL agent learned to select
its actions. As we expected, while the players (all of them: beginner,
intermediate and expert skilled) adapt quickly, the RL agent requires
more time to learn. The action that is most often used by the RL
agent is Heal. This action has no usage restriction, which means
that can be used as many times as desired in a game.

Figure 6: RL agent’s average moves over 10 games (A-J).

We now analyze in more detail a specific game. Figure 7 shows
the behavior followed by the RL agent in every battle of the game
A. Recall that exploration vs. exploitation rates of game A are (50,
50). In this figure, it can be observed the overuse of Heal movement.
Its maximum usage was in battle 17, where it was used 25 times.
This produced a dragging out of the battle that was also reflected
in the agent’s HP in Figure 8, where you can see the changes in
HPs throughout battles 16− 20 (of gameA). The beginning of every
battle can be distinguished by the 75 HP for both lines (blue and
red). In this figure, it can be observed that the use of Heal by the
RL agent during the first half of the graph stretches out the battle.
Whilst in some cases this move can be used to gain an advantage,
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here it was overused. In this scenario, the agent usually lost the
battle, because it was too focused on healing instead of attacking.

As the game continues, it can be observed in the figure that in the
second half of the graph the RL agent does not use Heal movement
as often (opting, instead, to attack more often).

In conclusion, game A represents well a typical performance of
our RL agent and, consequently, the evolution of a battle in our
video game. In addition, it shows how the frequent use of Heal
is followed by a diminished use. Although this move displayed a
negative outcome, the game play provides a challenge and with
its application a lot of the battles were neck and neck for whether
the player or the agent will win. The players acknowledged that
in some cases “the agent plays like an actual player”. In addition,
one of the players commented, “it is challenging, the enemy plays
like an actual player; sometimes the enemy spams the heal move
as if they know they are backed into a corner and all they can do is
heal until they gain an advantage”. Of course, whilst the player may
have won more often in some cases, the idea of flow can, in our
opinion, still be seen in this study. Many games had battles where
either could have won, we now see that through this (and also from
the players comments) the idea of flow is not strictly confined to
just the winning and losing of games. Consecutive wins by the
player does not mean that the challenge provided is not suitable for
that player. It would be noteworthy to keep track of and analyze
the player’s and enemy’s usage of moves and HP throughout each
battle in more detail in order to realise the effectiveness of difficulty
balancing and when it should be, more suitable, applied.

The last part of study 1 analyzes the frequency of wins and losses
of the players. Specifically, Figure 9 focuses in game A and game B.
Game B is interesting in particular as it is the only game in which
Heal is used less often (see Figure 7). In addition, in game B there
was a high similarity between the player’s moves and the RL agent’s
moves (see also Figure 5). Compared to other games, game B’s RL
agent focused mostly on attacking and only healed when it deemed
necessary. This behaviour can be explained by the exploration vs.
exploitation rates: (30, 70), respectively. In our opinion, a higher
rate of exploitation allowed the agent to learn faster from mistakes,
such as healing consecutively. Therefore, it produced a result in
which the game outcomes came out to a scenario of equal wins and
losses, with maximum frequency of four wins/losses in a row. In
contrast, game A’s player (with a RL agent with (50,50) rates) won
20 of the 30 games, with 6 wins in a row.

Figure 9 also provides more insights about the RL performance.
Note that the player tends to win more often towards the start. The
player loses few times at the beginning of the game, however, after
a third of the game, they begin to lose more often, as the RL agent is
learning the best actions at early stages of the game. As the games
progress, the agent learns to challenge the player more successfully,
such as in game B, which has an equal amount of wins and losses.

Overall, the games ranged from the player winning 80% to 50%
of the battles. Most noteworthy were games A and B. In game B
there was a result of 50-50 of win-lose ratio. The RL agent applied
better actions, specially towards the end, playing in equal skills to
the player. Game A showed how the agent learns from its losses
and bad patterns, such as overusing Heal, and instead attacks with
more powerful moves. Although it would get stuck in these loops
of using Heal, it would only happen for a handful of battles in each

game, and ultimately it would learn to use it less often. So, we can
conclude that the best configuration of exploration vs. exploitation
rates is: (30, 70) (configuration used in game b).

6.3 Study 2: Gameplay Experience
In the second evaluation study, we aim to test whether the player’s
gameplay experience, and hence game flow, is influenced by the
gameplay type. To measure gameplay experience, we select 4 com-
ponents of the Game Experience Questionnaire (GEQ) [? ]: suc-
cessful and skillful, measuring the level of competence the player
experienced during gameplay; challenge and effort, corresponding
to the level of challenge experienced by the player. Referring back
to the model of flow described in Section 2, these 4 components
can be matched to the 2 plane dimensions: successful and skillful to
axis X Skill Level; challenge and effort to axis Y Challenge.

We define 5 gameplay types: easy (without RL), hard (without
RL), 50-50 (using a RL-based agent with exploration vs. exploitation
rates of (50,50)), 30-70 (using a RL-based agent with rates (30,70))
and 70-30 (using a RL-based agent with rates (70,30)).

Ten players of varying age and skill levels are asked to play 3
battles for each gameplay type. After each group of 3 battles, they
have to fill out a questionnaire in which they have to rate the 4
gameplay experience components described above on a Likert scale
going from 0 (“not at all”) to 4 (“extremely”).

We hypothesize that gameplays using the RL-based agent will
result in a “better” gameplay experience, in terms of skill level and
challenge. So, our hypothesis will be confirmed if the gameplay
experience ratings of the RL-based agents are “closer” to a value
of 2 (i.e., the middle value of the 0 − 4 Likert scale) than the other
types of agent. Also, we expect that the agent with the best config-
uration determined in study 1, the one with a (30,70) exporation vs
exploitation rate, should provide a better flow experience.

6.4 Study 2: Results & Discussion
Table 2 reports the mean and standard deviation of the ratings of
the 4 gameplay experience components for each gameplay type,
across participants. We also computed paired t-tests with Bonfer-
roni correction on all the combinations of gameplay types to find
those exhibiting significantly different means. Results are reported
in Table 3.

The ratings of most of the components (except for the skillful one,
whose meaning was probably misunderstood by the participants)
exhibit significant differences when the player’s opponent is not
driven by the RL agent vs when it is driven by the RL agent (Table
3). Also, the 3 RL-driven opponents did not show any statistically
significant difference in terms of player’s ratings, as reported in the
last 3 rows of the table. That could mean that the face of using RL
vs not using it at all makes a difference, but slight changes in the
way the RL works do not have an impact on flow.

The mean values in Table 2 also show that the most and least
challenging gameplays are those not using the RL-based agent,
which is a reasonable result, providing an initial confirmation of
our the hypothesis that a better flow can be achieved when the
player’s opponents is driven by a RL-based agent.

By hypothesizing that an experience of flow will result in middle
scores (e.g., between 1.5 and 2.5) of the component ratings, we can
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Figure 7: RL agent’s moves sum in the 30 battles of game A.

Figure 8: Player’s and agent’s HPs from battles [16 − 20] of
game A.

Figure 9: player’s outcome for the battles in games A and B.

observe that, for example, the RL-based agent with an exploration
vs exploitation rate of (50,50) has always been rated between 2.3
and 2.5 for the 4 gameplay experience components (even though
statistical difference with the other gameplay types is not always
achieved). Again, this result seems to reinforce the indication we
received from the results discussed above, that a RL-based agent
could help to improve flow in video games.

Regarding the second part our hypothesis, that is, the one about
the 30-70 agent, we had some interesting results. First of all, the
30-70 agent was the one, among the ones driven by the RL algo-
rithm, that obtained the highest scores in terms of success, skillful,
challenge and effort (Table 2). So, despite it was the most challeng-
ing and the one requiring most effort to be defeated, it was also the
one making feel the player more skillful and successful. It must be

also noted that these scores were not significantly different from
the ones of the other agents (Table 3), as we said above.

Comp. Game
type µ std Comp. Game

type µ std
success easy 3 1.33 challenge easy 0 0
success hard 1.5 0.85 challenge hard 3.6 0.7
success 50-50 2.5 1.18 challenge 50-50 2.2 0.79
success 30-70 3.1 1.29 challenge 30-70 3 0.47
success 70-30 2.2 1.32 challenge 70-30 2.5 0.97
skillful easy 2.8 1.23 effort easy 0.1 0.32
skillful hard 2.3 1.42 effort hard 3.3 1.06
skillful 50-50 2.5 1.27 effort 50-50 2.3 1.06
skillful 30-70 2.8 1.4 effort 30-70 2.8 0.92
skillful 70-30 2.5 1.27 effort 70-30 2.5 1.08

Table 2: results of the gameplay experience evaluation study.
For each component (successful, skillful, challenge, effort)
and game type (easy, hard, 50-50, 30-70, 70-30) we report the
corresponding mean and standard deviation. Medium val-
ues (between 1.5 and 2.5), i.e., those corresponding to a “bal-
anced” gameplay experience, are highlighted in bold.

Gameplay type
pairs success skillful challenge effort
easy vs hard 0.03 1 0.001 0.001
easy vs 50-50 1 1 0.001 0.005
easy vs 70-30 0.107 1 0.001 0.001
easy vs 30-70 1 1 0.001 0.001
hard vs 50-50 0.085 1 0.067 0.848
hard vs 70-30 1 1 0.011 0.107
hard vs 30-70 0.002 0.522 0.239 0.957
50-50 vs 70-30 1 1 1 1
50-50 vs 30-70 0.239 0.811 0.368 1
70-30 vs 30-70 0.1 0.811 1 1

Table 3: results of paired t-tests computed between all the
combinations of gameplay types. Significant p-values (p <
.05) after Bonferroni correction are highlighted in bold.
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7 CONCLUSION AND FUTUREWORK
The main objective of this paper is to show a new approach to
achieving game flow through the introduction of DDA and RL
in turn-based battle games. With such purpose, we implement
a turn-based battle video game by incorporating DDA through
the definition of RL-driven agents that determine the opponent’s
moves. By modifying the agent’s choices of actions rather than
the environment or the agent’s statistics, this paper aims to show
how a smarter enemy might better adapt to the difficulty of the
game and to every player. Therefore, providing challenge to more
experienced players whilst encouraging beginners.

The designed and implemented RL agent learns through each
turn and battle, learning by trial and error what kind of actions
are the most adequate in the battle. We presented a system of
states, rewards/penalties and exploration vs. exploitation rates for
a SARSA algorithm that constitutes the RL agent.

After evaluating the RL agent, we observed that, in our opinion,
the players are fairly challenged throughout most of the games.
Although in some of the games the battles were won mostly by the
players, it was realised that game flow does not solely depend on
just the constant winning or losing but also on the way the battles
play out. Overall, we see the RL agent learns to recognize the
most important moves and patterns, obtaining the best results with
the exploration vs. exploitation rates of (30, 70), due to a quicker
learning rate. We observed how the RL agent learns smart patterns,
such as healing himself once its HP life is compromised, using the
strongest attacks, etc. Furthermore, the players ratings of the video
game experience show that perhaps a better flow may be achieved
when the player’s opponents is driven by our RL-based agent. Of
course, it must be taken into consideration that this study was done
in a simple game environment and the introduction of the RL agent
to more complex games may not yield the same results. However,
the study does show the idea that this sort of approach can be used
to achieve game flow and “better” enemies in (turn-based battle)
games by having them learn to be “smarter”.

This research work could still yield more results in the future.
For instance, introducing the agent into a more complex battle
system (such as Dragon Quest XI or Pokémon), in which we expect
that the agent would take longer to learn the best actions due to
the increase of options. In addition, the battle system presented in
this paper become more complex: for example, by adding effects to
certain moves, by providing an option for using an item that could
make the player/agent stronger, or by allowing them to take less
damage.

Furthermore, in the our evaluation study we observed that the RL
agent sometimes has a preference for spamming heal throughout
the battle, so a restriction could be introduced to discourage this
behavior. For instance, a limit to the amount of times a move could
be used in a row, or by giving the agent a penalty for spamming a
move. Moreover, it would also be interesting to evaluate how the
RL agent performs when playing with different types of players.
A larger range of players with different skill levels and experience
could be used, in addition to training the RL agent over the course
of many more battles.
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