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Data uncertainty in real-life problems is a current challenge in many areas, including

Operations Research (OR) and Constraint Programming (CP). This is especially true
given the continual and accelerating increase in the amount of data associated with

real-life problems, to which Large Scale Combinatorial Optimization (LSCO) techniques

may be applied. Although data uncertainty has been studied extensively in the literature,
many approaches do not take into account the partial or complete lack of information

about uncertainty in real-life settings. To meet this challenge, in this paper we present
a strategy for extrapolating data from limited uncertain information to ensure a certain

level of robustness in the solutions obtained. Our approach is motivated and evaluated

with real-world applications of harvesting and supplying timber from forests to mills and
the well known knapsack problem with uncertainty.

Keywords: uncertainty; robustness; optimization.

1. Introduction

In this paper, we deal with real-life problems in which uncertainty is associated

with elements that have an ordered relationship. In these problems, measure-

ment/estimation errors are common, and they result in a partially incorrect repre-

sentation of the modeled problem. In real-life problems, repeated observation of an

uncertain and/or dynamic environment allows the calculation of statistics related

to the uncertain data in the problem (frequently, these statistics can be expressed

in the form of probabilities). Nevertheless, in most cases real-life problems do not

have detailed probabilistic data associated with them. This often happens in LSCO

problems because of the large sizes of the domains and the difficulty of gathering

continuous/discrete probability distributions.

In this paper we introduce an approach for handling these situations, by extrapo-

lating data about changes over the original formulation of the uncertain parameters,

∗This paper is an extended version of L. Climent et. al. in proceedings of ICTAI-2014.
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based on the order relationship associated with the domains of such parameters. Af-

ter such extrapolation, classic probabilistic models can be used to solve the problem.

As a real-life application example, we design a linear optimization model combined

with chance constraints (Ref. 2) for the forestry problem of timber supply. We also

apply the extrapolation approach to the knapsack problem with uncertain weights.

For designing the extrapolation approach, we have been inspired by some ideas in

Refs. 3 and 4: when incorrect measurements/estimations involve domains with a

significant order, the dynamism is often equivalent to relaxations/restrictive modi-

fications over the related domains and constraints. Such restrictions tie the solution

space (contrary to the relaxations) and therefore, a solution obtained for the prob-

lem with the erroneous data might not be a solution to the problem with the correct

data. When this occurs, a new solution can be computed. However, it requires com-

putation time. This means that in on-line problems, the solution might not be

computed in time. Furthermore, the loss of a solution typically causes several nega-

tive effects in the modeled situation (even if a new solution is found). For example,

in a task assignment of a production system with several machines, it could cause

the shutdown of the production system, the breakage of machines, the loss of the

material/object in production, etc. All these negative effects will probably entail an

economic loss as well.

To reduce the chances of losing a solution, it is important to obtain a robust

solution, which has a high likelihood of remaining valid given the uncertainties of

the problem. And this is indeed the motivation of the extrapolation technique pre-

sented in this paper. Our technique is able to extrapolate the likelihood associated

with parameters whose values are uncertain according to a cumulative distribution

function. There is a requirement for performing such actions: the possible elements

associated with the uncertain parameter must have a significant order relationship

over them. Thus, minimum levels of robustness are ensured for the uncertain pa-

rameters of the problems based on the probability information that we extrapolate.

In addition, this model can be combined with another other optimization criterion.

This paper is structured as follows: First, in Section 2 some definitions used in

the paper are explained. Section 3 gives a brief review of related work, which helps

to motivate our approach. In Section 4, we introduce an approach for extrapolating

from limited uncertain information associated with some parameters of the prob-

lems. In Section 5 and Section 6 we apply our approach to well-known problems

with uncertainties. Finally, we give some conclusions in Section 7.

2. Technical Background

In this section we provide some standard definitions for modeling combinatorial

optimization problems in the CP and OR field. See Ref. 5 for integrated methods

for optimization in such fields.

Definition 2.1. A Constraint Satisfaction Problem (CSP) is represented as a triple

P = 〈X ,D, C〉 where X = {x1, . . . , xn} is a finite set of variables , D = {D1, . . . , Dn}
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is a set of domains such that for each variable xi ∈ X there is a set of values Di

that the variable can take, and C = {C1, . . . , Cm} is a finite set of constraints which

restrict the values that the variables can simultaneously take.

Definition 2.2. A Constraint Satisfaction and Optimization Problem (CSOP) is

an augmented model of CSP that introduces some objective functions. The objective

is to maximize/minimize the set of functions f(s) for s ∈ S(CSP) (see Ref. 6).

Definition 2.3. A Linear Optimization (LO) problem can be expressed in the

canonical form:

maximize/minimize cTx+ d

subject to Ax ≤ b
x ≥ 0

where x ∈ Rn is a vector of decision variables and n is the number of variables of

the problem, the vector of coefficients c ∈ Rn and constant value d ∈ R form the

objective function, A is an m × n constraint matrix and b ∈ Rm is the vector of

constant terms of the m constraints.

Below, we show a definition extracted from Ref. 7. In such reference, there are

also detailed explanations about robustness and other characteristics of solutions of

problems that come from uncertain and/or dynamic environments.

Definition 2.4. The most robust solution within a set of solutions is the one with

the highest likelihood of remaining a solution after any type of change.

3. Approaches for Dealing with Uncertainty

Uncertainty associated with the parameters of models representing real-life prob-

lems has been treated extensively in the literature. An interesting discussion of

OR approaches can be found in Ref. 8 and a summary of CP approaches can

be found in Ref. 9. There are also other fields that deal with uncertain environ-

ments, such as metaheuristic approaches (for instance evolutionary computation,

see Ref. 15). In this section, we consider some CP and OR approaches, focusing on

models that assume that some parameters of the problem can take any value within

some range. There are also other ways of representing uncertainty; for instance, as

previously mentioned, in Refs. 3 and 4, the constraints and domains may become

more restricted over time. However, we focus on modeling uncertainty in the mea-

surement/estimation of certain parameters. In Section 3.1 we discuss models that

do not consider probabilistic data. In addition, in Section 3.2 we discuss stochastic

models.
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3.1. Non-stochastic uncertainty sets

When we are not entirely sure about the precise value of some parameters, we

can often extract information about the problem that indicates, with a certain

confidence, intervals of values that these parameters can take. These intervals are

typically called uncertainty sets (U). A parameter associated with an uncertainty

set Ui ∈ U is called an uncontrollable variable (typically in CP approaches) or

random variable (typically in OR approaches). In order to avoid confusion over this

term, in the rest of the paper we refer to such variables as random variables and

each one is denoted as si ∈ S. Just as with deterministic domains, the uncertainty

sets can be discrete or continuous. In this framework, a conservative definition of a

robust solution was given in Ref. 10.

Definition 3.1. A solution is robust iff it satisfies all the constraints, whatever the

realization of the data from the uncertainty sets.

According to this definition, a solution is robust iff it satisfies all the constraints

for all the possible combinations of values from the uncertainty sets associated

with the uncertain parameter. A CSP model that considers Definition 3.1 with

discrete uncertain domains is the Mixed CSP model (MCSP), whose main object

is to find an assignment of decision variables (which are the usual variables of the

CSP model) that satisfy all the possible values that the uncontrollable variables

can take (Ref. 11). Another type of model, the Uncertain CSP model (UCSP),

is an extension of the MCSP because it considers continuous domains (Ref. 1).

However, Definition 3.1 is very conservative and demanding since there are often no

solutions that satisfy this requirement for every uncontrollable variable. In addition,

in optimization problems, if there is a solution that satisfies such demands, the cost

to “pay” in the criterion to optimize is often very high. This is one difficulty that

motivated the development of the less conservative approach that is described next.

In Ref. 13, a Γi parameter is defined, which fixes the number of random variables

that are allowed to change for the ith uncertain constraint. If a random variable

is allowed to change, this means that the solution will remain a solution if the

variable takes any value in its uncertainty set. Γi ∈ [0, |Ji|], where Ji ⊆ S is the

set of random variables of the ith uncertain constraint. Note that when Γi = 0, the

obtained solution is non-robust (only the value estimated/measured for the random

variables is considered). However, when Γi = |Ji| the obtained solution is one of the

most robust for the ith uncertain constraint (because all possible uncertain values

of the random variables are considered).

There are disadvantages when we try to apply the latter approach to real-life

problems in which most or all of the random variables are likely to change from the

original value estimated. This is especially true for LSCO problems because they

have a very high number of random variables. In such cases, it may be important

that some variables are able to satisfy all the values in the uncertainty set, but it is

more useful to ensure that all variables are able to satisfy some of the values in their
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uncertainty sets. Thus, in the latter case robustness is spread more evenly among all

of the random variables. In addition, the above described technique does not take

into consideration situations with limited existent probabilistic data associated with

the values estimated.

3.2. Stochastic programming

Another area that deals with optimization subject to uncertainty is stochastic pro-

gramming (Ref. 14). Recently, a version of stochastic programming has been devel-

oped in which constraints are treated within the framework of stochastic program-

ming; consequently; it is known as stochastic constraint programming (Ref. 16). In

either approach, an uncertain decision variable is considered to be a random vari-

able with an associated probability mass function, which indicates the probability

that the variable will take any particular value in its uncertain domain Ui. In using

such models, it is assumed that probabilistic data can be derived from empirical

observations or historical evidence.

In both stochastic programming and stochastic constraint programming, deci-

sion variables are organized into scenarios in which a given decision leads to one of

a set of possible events, each of which is the occasion for another decision, and so

forth. The different combinations of random variables produce different scenarios.

The likelihood of occurrence of a scenario, when the random variables represent

independents events is
∏i=|S|

i=1 p(si = ui), where ui ∈ Ui and p is a probability mass

function associated with si. There are also scenario-based approaches (e.g. Ref. 12)

that generate a large number of possible scenarios in order to compute probabilis-

tic information about the uncertainties. However, computing such a large number

of possible combinations carries a high cost. This disadvantage is exacerbated for

LSCO problems, since solving these problems already requires a large amount of

computation. Therefore, adding scenario-generation may well involve a greater com-

putation time than the time available for solving a real-life LSCO problem.

Another approach is to use chance constraints (Ref. 2). These constraints are

composed of at least one random variable that makes it possible to state a mini-

mum probability of satisfying the constraint. Thus, if we consider a LO model (see

Definition 2.3) that includes some random variables, a chance constraint would be

defined as: p(Ax ≤ b) ≥ β, where “p” denotes the probability of satisfaction and β

is the set of prescribed confidence levels.

The advantages of the stochastic approaches mentioned above are that they

are less conservative than Definition 3.1 and they are able to spread the robust-

ness across all of the random variables. The major limitation of such approaches in

the situations we envisage is the precise and extensive knowledge of probabilities

that such models require, with the exception of scenario-based approaches, which

as previously mentioned require a high extra cost. In fact, each value in a domain

interval must be associated with a specific probability. However, in many applica-

tions information regarding uncertainty is likely to be incomplete, erroneous or even
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non-existent, and in these situations stochastic models cannot be applied.

4. Extrapolating from Limited Uncertain Data

The present approach was motivated by the limitations of the models and strategies

described in the previous section. The new method involves extrapolating from an

estimated value in a way that can be combined subsequently with a particular

stochastic approach, that of chance constraints. By means of the β parameter of the

chance constraints, we are able to fix robustness bounds for each random variable.

As a result, we have the benefits that the stochastic approaches provide even when

there is a lack of data about the probabilities of the uncertainty sets. In Sections

5 and 6 we show how this extrapolation method can be combined with chance

constraints to solve real-life optimization problems.

The main requirement of this approach is that for each uncertainty set, whether

continuous or discrete, there is a monotonic relation over the elements of each do-

main of the problem for which the model has been generated. This order relationship

is required for the representation of uncertainty. In lieu of detailed information re-

garding probabilities, we can use any cumulative probability distribution over an

ordered domain that has a corresponding monotonic relation. This section covers

the explanation of the uncertain ordered intervals, the probabilities associated with

them and the cumulative distributions.

4.1. Uncertain ordered intervals

The present approach to uncertain ordered domains is based on the concept of

nominal values.

Definition 4.1. The nominal value of an uncertain parameter represents the most

likely value that such parameter will take given the study conditions.

Typically, after measuring the variables associated with a problem, a nominal

value (denoted as ûi) will be associated with each random variable si; this rep-

resents an estimate that is subject to some partially known/unknown amount of

uncertainty. In addition, following collection and analysis of error measurements

carried out in similar real-life settings, an estimate can be made of the maximum

amount by which the random variable might deviate from ûi (denoted as êi). This

interval of deviation Ui of si can be denoted as: [(ûi− êi), (ûi + êi)]. Here we assume

for simplicity that ûi is at the midpoint of the interval, although our methods do

not depend on this assumption. In the problems to be described in Sections 5 and 6,

the error estimate is a fixed percentage of the nominal value. This follows standard

practice in our main domain of application. In this case, the interval of the random

variable can be denoted as: [(ûi(1− êi)), (ûi(1 + êi))], where êi ∈ [0, 1].

The present work follows some ideas presented in Refs. 3 and 4 on Dynamic

CSPs. In that work, values that were greater/lower than a certain value could be
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more or less robust than this value depending on the magnitude of “restrictive”

changes over the solution space that they could handle. To support this assumption,

there had to be an ordered relationship over the domains. For example, a time-buffer

following a scheduled task (achieved by selecting greater values as starting times for

the following closest tasks) makes the schedule more robust because it can handle

changes that are potentially restrictive (e.g. delays in previous tasks) with respect

to possible start times. Moreover, a longer buffer subsumes a shorter one, so that

the probability that the longer buffer absorbs a restrictive change affecting such

task, is necessarily greater than the one associated a shorter buffer.

As will be demonstrated shortly, in the situations considered in this paper, it is

often the case that values on one side of an estimate represent cases that allow larger

or smaller restrictive deviations in the same sense. This means that we can use the

same kind of reasoning in these situations that was used in the non-probabilistic

work cited above on dynamic changes that affect variables with ordered domains.

Here, however, instead of alterations of varying likelihood there are true values with

varying likelihoods given an uncertain estimated value.

To illustrate, let si ∈ S be a random variable with an ordered domain [u1, u2, u3]

that is strictly increasing/decreasing. If the value u2 allows larger restrictive devi-

ations than u1 and u3 allows larger restrictive deviations than u2 (according to the

given order relationship), then a solution that is feasible for si ≤ u3 is more likely to

be valid than one that is only feasible for si ≤ u1. As an example, if the real value

of this uncertain variable is u2, the first solution remains a solution but the second

does not. Here we call solutions more “robust” if they are feasible for si ≤ u3 be-

cause they will remain solutions for any value that the variable si takes (it allows all

the possible restrictive deviations). However, when the ‘restrictive relation’ among

values is in the opposite direction (u1 is the value that allows the greatest devia-

tion), then the robustness ordering is opposite as well. That is, solutions feasible

for si ≥ u1 are the most robust, i.e. they are the ones most likely to be valid.

4.2. Probabilities associated with the intervals

Regarding the probabilities associated with the ordered domain values of the random

variables, and this is a variation from the classical stochastic model (see Section 3.2),

the probability distribution defined over the uncertain ordered interval expresses the

likelihood that the random variable si takes a value greater or equal (p(si ≥ ui)),

or lower or equal (p(si ≤ ui)) than ui ∈ Ui, the uncertainty set associated with si.

In this case, the calculated ‘probability’ is directly related to solution robustness

because, given a solution, the higher this probability value, the higher the likelihood

that the real value of the random variable is feasible for this solution. Therefore,

in the example just described, the relation p(si ≥ u1) > p(si ≥ u2) > p(si ≥ u3)

implies that a solution with value u1 as an estimate for the value of si is more likely

to remain a solution than if we chose a value u2, etc.

These statements are illustrated in Table 1. In this example, we consider three
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integer values [1, 2, 3] that represent either demands or capacities in the modeled

problem. The arrows over the domains represent the restrictiveness order. On the

one hand, when they represent demands, it is more likely that the real demand is

lower or equal to a large value than to a small one. On the other hand, if we consider

capacities, it is more likely than the real capacity is greater or equal to a small value

than to a large one. In this case, if a capacity value meets a certain demand, the

solution is more likely to be feasible for lower demands than the expected one.

Table 1. Examples of Ordered Domains and the Prob-
abilities (p) associated with their Random Variables.

DOMAIN PROBABILITIES (p)

Demand:
−−−−→
[1, 2, 3] p(si ≤ 1) < p(si ≤ 2) < p(si ≤ 3)

Capacity:
←−−−−
[1, 2, 3] p(si ≥ 1) > p(si ≥ 2) > p(si ≥ 3)

4.3. Cumulative probability distributions

In the present approach we are assuming that there is no specific probabilistic in-

formation associated with the interval of uncertainty; therefore, we need a way of

extrapolating it. For this purpose we use the ordering of values over the uncer-

tain interval. As mentioned earlier, the maximum deviation over the value esti-

mated/measured is êi. Therefore, the probability that a random variable takes a

value in the uncertain interval [(ûi ∗ (1− êi)), (ûi ∗ (1+ êi)] is one. Hence, the proba-

bility associated with the value capable of handling the largest deviation is one and

the value least able to accommodate deviations has an associated probability close

to zero. (It is not exactly zero since it is possible that the random variable takes this

value). For the remaining values in the continuous or discretized uncertain interval

we extrapolate their likelihood according to a cumulative distribution function in

the interval (0, 1].

In this paper, we describe the extrapolation using cumulative probability dis-

tributions that come from either the uniform or the normal distributions (see

Figure 4). However, any cumulative distribution (with strictly monotonic increas-

ing/decreasing probability) could be used instead. This is because we are not using

the distribution to model probabilities but only to order the likelihoods associated

with domain values on either side of the estimate. (A specific distribution may, how-

ever, reflect our intuitions about the rate at which likelihoods change.) With the

uniform distribution there is a constant increase/decrease in the cumulative proba-

bility over the interval on each side of the estimate (ûi). For the normal distribution,

the increase/decrease is more abrupt for values closer to ûi.

The selection of the cumulative distribution depends on what the random vari-

able associated with the uncertain interval represents. In some cases, such as capac-

ities and demands, the uniform cumulative distribution may be sufficient, especially
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Fig. 1. Cumulative Distributions.

if the differences in value are more or less evenly distributed. However, for other

domains such as life expectancy or breakdowns, the differences over the values are

not evenly distributed because some extreme values are highly unusual given a par-

ticular estimated value. Here, the normal cumulative distribution would be more

appropriate. Without loss of generality, we use continuous probabilities distributions

for the description of our approach. However, discrete probabilities distributions can

also be used (such as binomial or truncated distributions) for discrete domains.

We can also accommodate situations in which the cumulative probability asso-

ciated with the estimated value for a random variable (nominal value) is known.

We use this variation in situations in which we know from past experiences that

our estimates tend to be higher/lower precise. Such situations include cases where

there are external environmental factors such as storms, floods, etc. that decrement

the level of certainty of the estimated values. In these cases, the likelihood has to

be fixed for the nominal value when we extrapolate the remaining information for

the uncertain interval. For these situations, either the cumulative distributions are

the same but the position of the nominal value is shifted (see Figure 1(c)) or the

distribution is skewed and there are two specific gradients for values greater and

lower than the nominal value (see Figure 1(b)).

The extrapolation of the uniform skewed cumulative probability distribution is

defined in Equation 1 for the increasing and decreasing case:
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p(si ≤ ui) = p(si ≤ ûi) + p′ ∗ (ui − ûi)

p′ =





1−p(si≤ûi)
êi∗ûi if ui ≥ ûi

p(si≤ûi)−(∼0)
êi∗ûi if ui < ûi

p(si ≥ ui) = p(si ≥ ûi) + p′ ∗ (ûi − ui)

p′ =





p(si≥ûi)−(∼0)
êi∗ûi if ui > ûi

1−p(si≥ûi)
êi∗ûi if ui ≤ ûi

(1)

The equation for the increasing cumulative normal distribution is:

p(si ≤ ui) = p(si ≤ ûi) +
1

σ
√

2π

∫ ui

ûi

e−
(ui−ûi)

2σ2 du (2)

A similar equation holds for the decreasing case (see Figure 1(d)) except that the

integral limits are reversed. Since we are using this distribution as a stand-in for the

actual unknown distribution, it seems reasonable to use the normal distribution in

its standardized form. This gives:

p(si ≤ ui) = p(si ≤ ûi) +
1√
2π

∫ z

0

e−
z2

2 dz (3)

Unfortunately, the resulting integral is still not easy to resolve. Perhaps the most

straightforward strategy is to use a table of values for the cumulative normal dis-

tribution, choosing a value for the expression associated with the value of ui and

interpolating when necessary.

For cases in which the likelihood of the nominal value is unknown, the value is

assumed to be at the midpoint of the uncertain interval with cumulative probability

p(si ≥ ûi) or p(si ≤ ûi) = 0.5. Note that in this case, p′ is the same for the two

conditional cases of Equation 1. Thus, the cumulative distributions have only one

constant gradient over the entire uncertain interval. After extrapolating the prob-

abilities associated with the random variables, stochastic constraint programming

techniques can be used. In line with the motivation given in Section 3, we introduce

two models incorporating chance constraints in Sections 5 and 6.

5. A Case Study from Forestry

To illustrate these ideas in practice, we present an application of our approach

to a well known real-life LSCO problem of forestry. This type of problem is of

great importance for many countries that export timber. The process of harvesting

stands from forests starts with the cutting of trees that belong to the selected area

for harvest. Subsequently, the trees are bucked into different types of log-products.

To estimate the likely harvest, 3D measurements are made of a sample of tree stems

by means of laser scans. There are various simulation programs that can use this

information to determine the patterns in which the stem should be cut, which allows

the product assortment to be pre-estimated. However, there are many factors that
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contribute to the uncertainty in the estimation of such timber offer, for instance:

(i) environmental factors, such as bad weather conditions, pests, etc. that change

the expected growth of the trees, and (ii) error measurements due to the quality of

the laser scans (some trees may be partially occluded by others in the images, or

factors such as fog can affect the quality of the images).

The logistics process includes transportation of different types of timber to the

mills (customers that set the demand). There are different costs associated with the

transportation process, which should be minimized in order to obtain the maximum

profit from the sales of logs. To this end, we develop a linear model for such problems

in Section 5.1. In Section 5.2 for illustrative purposes we apply this model to a toy

instance and then to a large instance.

5.1. Model of forestry problem that handles uncertainty

In this section we describe a Mixed Integer Programming (MIP) model, which is a

type of LO model (see Definition 2.3) in which some variables are constrained to be

integers. The model presented includes our extrapolation technique (see Section 4)

and it also minimizes the transportation costs. We control the level of robustness

of the random variables by incorporating a chance constraint in the model (see

Section 3.2) for each random variable si where 0 < i ≤ |S|. According to the order

relationship of each uncertain interval Ui, the probability of the chance constraint is

p(si ≥ ui) or p(si ≤ ui). Since the random variables that we are analyzing represent

capacities, the type of error that could invalidate a solution is that the real value

is lower than the nominal value, therefore, the appropriate cumulative distribution

for such random variables is the decreasing one: p(si ≥ ûi) (see Equation 1). The

uncertain intervals Ui are computed given the input parameters ûi and êi (see

Section 4). The components of this MIP model are as follows:

(1) Sets:

Sets of forests F (i ∈ F).

Sets of mills M (j ∈M).

Sets of stands S (k ∈ S) for all the forests.

Sets of types of logs L (t ∈ L).

(2) Parameters:

gik : Cost of harvesting the stand k from forest i.

cijt : Cost of supplying one unit of the log-product t from the forest i to

the mill j.

ûikt : Capacity estimated for the forest i for each of its stands k for each

type of log-product t.

êikt : Percentage of variability for the forest i for each stand k for each

type of log-product t.

djt : Demand of the mill j of the type of log-product t.

βikt : Vector of minimum probabilities.
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N : Large constant.

(3) Variables:

bik ∈ {0, 1} (1 if stand k from forest i is harvested, otherwise 0).

aijt = Amount supplied of log-product t from forest i to mill j.

uikt ∈ [(ûikt(1 − êikt)), (ûikt(1 + êikt))] = Minimum capacity selected for

the forest i for the stand k for the type of log-product t.

xikt = Vector of auxiliary variables (equal to uikt if bik is equal to 1,

otherwise equal to 0).

sikt = Vector of random variables associated with the uncertain capacities.

(4) Mathematical Model:

min
∑

i

∑
k bikgik +

∑
i

∑
j

∑
t aijtcijk

s.t.
∑

i aijt = djt ∀j, t∑
k xikt ≥

∑
j aijt ∀i, t

xikt ≤ Nbik ∀i, k, t
xikt ≤ uikt +N(1− bik) ∀i, k, t
uikt ≤ xikt +N(1− bik) ∀i, k, t
p(sikt ≥ uikt) +N(1− bik) ≥ βikt ∀i, k, t

Briefly, the objective function of the model is composed of the sum of the supply

costs and the costs associated with the harvested stands. In addition, there are

six constraints. The first ensures that the demands of all mills are satisfied. The

constraints 2−5 are the linearization of the constraint
∑

k uiktbik−
∑

j aijt ≥ 0,∀i, t,
which ensures that the supply does not exceed the capacity of the stands selected

for harvesting. For this purpose, constraints 3 − 5 fix the value of an auxiliary

vector of variables called x. Finally, the sixth constraint ensures a minimum level

of robustness for each random variable only if its associated stand is harvested.

5.2. Evaluation of forestry problem using the uncertainty model

In this section we first show results for a toy problem (due to its easy representation).

Subsequently, we evaluate a large scale instance in order to check the scalability of

our approach with LSCOs problems. We show the results of applying the extrapo-

lation method introduced in Section 4 and the MIP model introduced above. Note

that we cannot directly apply (without extrapolating probabilities first) a stochastic

approach (see Section 3.2) because a probability is not associated with every value

in the uncertainty set. For extrapolating the probabilities, we used the decreasing

uniform cumulative distribution (see Equation 1). This distribution is skewed (see

Figure 1(b)) for stands in which the probability associated with the estimated nom-

inal value is not 0.5. For such cases, non-stochastic approaches (such as Ref. 13, see

Section 3.1) do not take into consideration the limited probabilistic data. There-

fore, non-robust values may be assigned to random variables with a low likelihood
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of being greater/lower (according to the order relationship given by the problem)

or equal to the value estimated. However, with our approach we can assign the

greater values to random variables with the highest associated likelihoods. For the

implementation of the model we used the Numberjack modeling package and the

CPLEX solver. The experiments were run on a 2.3 GHz Intel Core i7 processor.

For bounding the error of measurement, we adopt a typical estimate used in this

industry: 10% (êik = 0.1, ∀i∀k).

5.2.1. Toy instance

A pictorial representation of an instance of the forestry problem is shown in Figure

2. There are two forests, three stands and two customers, each of whom demands

100 units of a log-product. For simplicity there is only one type of log-product and

the cost of harvesting any stand is zero. The figure shows the customer demands in

units of log product dj (j ∈M) and the number of units of log product estimated for

each stand ûik (i ∈ F , k ∈ S). It also shows the transportation costs for supplying

each unit of log product from each forest to each costumer cij (i ∈ F , j ∈M). The

first forest is composed of two stands. The capacity estimated for the first stand is

û11 = 55 units; for the second it is û12 = 50 units. The second forest has only one

stand with an estimate of û21 = 100 units.

stand 1

stand 2

forest 1

       =100 

     =100 

        =
 1

        = 50 

forest 2customer 1

customer 2

d2

d1

c11

        = 5
c12

        = 1
c21

    
    

= 0.5

c22

stand 1

U12         = 0.1         = [44, 55]

p(s12 � bu12)        = 95% 

be12

bu12

        = 55 
        = 0.1         = [49.5, 60.5]

        = 80% bu11 p(s11 � bu11)

be11

        = 100 
        = 0.1         = [90, 110]

        = 50% 

be11

U11

bu21

U21

p(s21 � bu21)

Fig. 2. Forestry Industry Example with |F| = 2 (no. forests), |S| = 3 (no. stands), |M| = 2 (no.

mills) and |L| = 1 (no. of types of log-products).

Table 2 shows several solutions obtained for the problem described above for

different robustness bounds β (cf. constraint No. 6). We also computed a solution for

the deterministic case, in which the expected values are completely certain (there

are neither chance constraints nor uncertainty sets). The computation time was

approximately 0.093s in each case (the increase of computation time for robust
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solutions was insignificant). The lowest probability of this instance is p(s21 ≥ û21) =

0.5 (the other probabilities are: p(s11 ≥ û11) = 0.8 and p(s12 ≥ û12) = 0.95),

therefore, only for higher values of β can we see the effect of the chance constraints.

Thus, for the deterministic approach and the non-deterministic approach with β ∈
(0, 0.5] the solution obtained is optimal because it has the lowest possible cost: 150.

In this case forest 1 provides 100 units of product to the customer 1 and forest

2 provides 100 units to the customer 2. However, this solution is not very robust

because there is 50% of probability that forest 2 has less capacity than expected

and, in this case, the obtained solution will become invalid.

Table 2. Solutions obtained for different certainty bounds (β).

β SUPPLY AMOUNT PROBABILITY (p) COST

deterministic a11 = 100 s11 ≥ 55 p(s11 ≥ 55) = 0.8 cost of a11 = 100

approach & a12 = 0 s12 ≥ 50 p(s12 ≥ 50) = 0.95 cost of a12 = 0
∀βi ∈ (0, 0.5] a22 = 100 s21 ≥ 100 p(s21 ≥ 100) = 0.5 cost of a22 = 50

Total cost = 150

∀βi = 0.65 a11 = 100 s11 ≥ 55 p(s11 ≥ 55) = 0.8 cost of a11 = 100
a12 = 3 s12 ≥ 50 p(s12 ≥ 50) = 0.95 cost of a12 = 15

a22 = 97 s21 ≥ 97 p(s21 ≥ 97) = 0.65 cost of a22 = 48.5

Total cost= 163.5
∀βi = 0.76 a11 = 100 s11 ≥ 55 p(s11 ≥ 55) = 0.8 cost of a11 = 100

a12 = 5.2 s12 ≥ 51 p(s12 ≥ 51) = 0.76 cost of a12 = 26

a22 = 94.8 s21 ≥ 94.8 p(s21 ≥ 94.8) = 0.76 cost of a22 = 47.4
Total cost= 173.4

∀βi > 0.76 no solution

More robust solutions can be obtained by sacrificing optimality, and conse-

quently increasing the cost associated with the deterministic case. For ensuring

a higher robustness in the random variable s21, lower values of capacity than the

nominal one have to be selected. Thus, in Table 2, s21 ≥ 97 for β = 0.65 and

s21 ≥ 94 for β = 0.76. As a consequence, for fulfilling the demand of costumer 2,

forest 1 has to provide him the rest of product. Note that in contrast to customer

1, the cost of supplying customer 2 varies significantly depending on the forest. In

particular, the supply cost of forest 2 is only one tenth of the supply cost of forest

1. Forest 2 has 5 extra units of product according to its nominal values; therefore,

it can supply up to 5 units of product without sacrificing the robustness associated

with the nominal values (this is the case for β = 0.65). Nevertheless, for β = 0.76,

customer 2 requires 6 extra units from the forest 1, and for this reason the amount

selected for one of the stands is one unit greater than its nominal value, with the

decrease of robustness that this fact entails (p(s12 ≥ 51) = 0.76). Note that there is

a probability of at least 76% that each stand of each forest has a capacity greater

or equal than selected for such a solution and consequently, remaining a solution.

For β > 0.76 there is no solution; therefore, this β bound provides the most robust

solution for this instance.
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5.2.2. Large scale instances

In order to check the scalability of our approach for LSCOs problems, we imple-

mented a random instance generator (using the random uniform distribution) based

on the information of real-life applications of our industrial partner. We set the num-

ber of forests to 30, each of them composed by 8 stands, which means that the total

number of stands are 240. Since we fixed the number of types of log-products to

10, there are 2400 random variables. We would like to mention that these input

parameters represent bigger instances than the typical real-life instances that our

industrial partner deals with. The number of customers that buy log-products in

a certain interval of time (e.g. a week) is not usually very high. For this reason,

we considered 10 customers, each demanding a random amount in [0, 150] of each

log-product. The transportation costs from the forests to the costumers for all the

types of log-products were also randomly selected in [0.1, 10]. The cost of harvesting

a stand (any of them) was set to 50 units. We computed random nominal values in

[0, 50]m3 for each type of log-product t for each stand k of each forest i and their

associated probabilities (p(sikt ≥ ûikt)) were randomly computed in [0.5, 0.9].
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Fig. 3. Costs and No. of harvested blocks (above the points) of the solutions obtained.

Figure 3 shows the associated costs of the solutions obtained for different levels

of robustness (β) and also the number of stands that were necessary to harvest

for satisfying the demands (numbers located next to the points). The scalability

of our approach was very good, since a robust solution was obtained in less than

six seconds. In contrast to the previous instance analyzed, it is possible to obtain

a solution that satisfies all the constraints of the problem for all the values of all

the uncertain sets (for β = 1 we obtain the most robust solution). Of course, this

robustness involves an increment in the harvesting and supplying cost (see in Figure

3 how 14 stands more are harvested from β = 0.6 to β = 1). The trade-off between

robustness and optimality can be interpreted as follows for problems with uncertain

stocks (like the one analyzed here). Robustness is achieved by assuming a lower
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estimate of capacity, which in some cases can produce an overstock of product, which

is known as “the price of robustness” (Ref. 13). Because this solution is based on

selecting a lower capacity than the nominal value estimated, if the latter is correct,

the difference between these two values is equivalent to the amount of overstock.

Considering overstock in solutions ensures their robustness since they have a high

likelihood of remaining valid faced with a lower amount of the original stock available

than assumed. However, these buffers in the stocks have the disadvantage that they

also entail scrap costs (see the column of costs in Table 2 for the two greatest β values

and vertical axis in Figure 3). Even so, and as mentioned in Section 1, it is important

to take into account that non-robust solutions for this type of optimization problems

can lead to serious economic losses when resources are less than expected, and

therefore customers cannot be adequately supplied. This not only entails the loss

of a sale, but also customer dissatisfaction, with a resulting loss in demand for the

product or use of the service.

6. Knapsack Problem with Uncertainty

To show the generality of the approach presented in this paper, we also evaluate it

with a well known problem from the literature on combinatorial optimization: the

knapsack problem (Ref. 17). In this problem there is a set of items, and each type

of item has an associated weight and value. Items are to be collected, given a bound

on the total allowable weight. The objective is to select the combination of items

that is the most valuable without exceeding this bound.

An issue that we may face in solving a knapsack problem in an uncertain and/or

dynamic environment is that the measured weights of the items are uncertain. Then,

depending on the level of certainty of such measurements and also their range

of possible variability, some solutions will be more robust than others. Typically,

the approaches from the literature assume that the uncertainty about the weight

measurements is evenly distributed (see for instance Ref. 13). However, in real

applications some measurements are usually less accurate than others (for instance,

in items that are very big/small for the scale used, items composed by a liquid/gas

with certain tiny evaporation rate, etc.). In other cases it may be desirable to specify

a different robustness for different items (neither situation is considered in Ref. 13).

For instance, it may be useful to set the certainty bound of a valuable object at a

higher level than the certainty bound of a cheaper item, since the more valuable an

item it is, the greater the loss in value for a solution if the item weighs more than

expected (and therefore cannot be collected). In this section we explain the model for

such knapsack problems with uncertainty and then we present some experimental

results for a real-life problem.

6.1. Model for the knapsack problem with uncertainty

In this section we present a CSOP model (see Definition 2.2) for the problem with

uncertainty described above that incorporates the extrapolation technique proposed
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in this paper. For modeling uncertainty in the weights of the items, these must be

represented as random variables, which generates non-linear constraints. This mo-

tivates modeling the problem as a CSOP and solving it with CP techniques. To

convert rational values to integer values (necessary for applying CP techniques),

we increase the order of magnitude of the values and then round them. The ap-

propriate cumulative distribution for such random variables is an increasing one:

p(si ≤ ûi) (see Equation 1). This is because the random variables represent weights

and therefore the type of error that could invalidate a solution is one in which the

actual value is greater than the nominal value. The parameters of the problem are

as follows:

- Sets of types of items Z (i ∈ Z).

- mi: Maximum allowed quantity of elements of type of item i.

- vi: Value of the item i.

- ŵi: Estimated weight of the item i.

- êi : Percentage of variability in the weight of item i.

- βi : Vector of minimum certainty bounds.

- W : Maximum total weight bound.

The CSOP model is as follows:

X = {x1, x2, ..., x|Z|, w1, w2, ..., w|Z|, s1, s2, ..., s|Z|}

D =

{
[0,mi] xi

[(ŵi(1− êi)), (ŵi(1 + êi))] wi/si

max
∑

i vixi
s.t.

∑
i wixi ≤W

p(si ≤ wi) ≥ βi ∀i

As in the usual knapsack problem, the objective is to maximize the total value

of all the elements collected. As before, the uncertain intervals Ui of the random

variables si ∈ S are computed given the input parameters ŵi and êi (see Section 4).

The first constraint ensures that the total maximum weight bound is not exceeded

by the collected items. The level of robustness of the random variables (and therefore

the maximum weights of the items accepted by the solution) is controlled by the

remaining constraints in the model, which are chance constraints (see Section 3.2).

6.2. Evaluation with the knapsack problem with uncertainty

To evaluate our approach we used a real-life problem presented in Ref. 18. In this

problem, there is a set of advertisements of certain durations and values, which can

be selected for broadcasting up to a specific number of times. Table 3 (from Ref. 18)

shows the characteristics of the commercials. The authors of the original article do
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not consider uncertainties in the durations of the advertisements. For this reason,

their obtained solution will not remain a solution if any advertisement undergoes a

delay of a few seconds.

Table 3. List of commercials and their characteristics.

Advert A0XX (xi) 01 02 03 04 05 06 07 08 10 11 12 13 14 15

Max. no. (mi) 2 1 3 5 3 2 1 4 4 3 3 3 2 2
Duration (s) (ŵi) 30 60 25 30 29 45 59 30 30 46 41 30 30 30

Value (vi) 9 9 9 9 9 14 17 9 9 14 14 9 9 9

Again, we will bound the uncertainty by assuming that there might be a delay

of 10% (êi = 0.1) over the estimated durations of the advertisements. In contrast to

the problem evaluated in Section 5.2, we consider that all estimates have the same

certainty (p(si ≤ ŵi) = 0.5,∀i). However, the demanded certainties vary according

to the value associated with the commercial, since, as previously mentioned, it

makes sense to make the certainty bounds greater for items with greater value.

For this instance we use: βi = 0.6 for vi = 9, βi = 0.8 for vi = 14 and βi = 0.9

for vi = 17. We implemented the model with the Numberjack modeling package

and solved it with Mistral2 solver. The experiments were run on a 2.3 GHz Intel

Core i7 processor. For extrapolating probabilities, we used the increasing uniform

cumulative distribution (see Figure 1(a) and Equation 1).

Figure 4(a) shows the maximum durations that the advertisements can undergo.

For the deterministic case, the commercials cannot undergo any delay, since only

the estimated duration is took into account. However, the approach presented in

this paper allows a certain delay for each commercial, which is typically called

“buffer” time (with scheduling problems). And as noted, it is desirable that the

more valuable items have a greater buffer time. Note that, for this instance, the

more valuable items have longer expected durations, and consequently, the solutions

found by our approach allow greater delays for these commercials (see items ‘A002’,

‘A006’, ‘A007’, ‘A011’ and ‘A012’ in the figure).

The solutions obtained by the deterministic approach and the approach pre-

sented in this paper, for a maximum broadcasting time of six minutes (W = 360),

are shown in Figure 4(b) (adverts in increasing duration order). The deterministic

solution was found in 49.10s and the robust solution in 2m 55s. We would like to

highlight that the deterministic approach tends to select items with greater dura-

tion, while our approach discards some of them because it considers their buffers,

which are greater (see item ‘A011’ in the figure). As expected, there is trade-off

between robustness and optimality. For this instance, obtaining this robust solution

entails a decrease of 6 units in the value of the deterministic solution. However, if

any commercial of the deterministic solution were to undergo a delay, there would

be a depreciation of 9, 14 or even 17 units because at least one of the commercials

selected could not be broadcast. Considering that in real-life problems of this sort,

the value of the items could be much greater (for instance hundreds or thousands
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of $), this could entail a dramatic loss of income.
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Fig. 4. Evaluation of the knapsack problem with uncertainty.

7. Conclusions and Future Work

In this paper we present a strategy for dealing with real-life combinatorial opti-

mization problems (specially useful for LSCO problems) in which some of the data

is uncertain. Since information about uncertainty is limited, our approach extrapo-

lates data about changes over the original formulation of the uncertain parameters,

based on the order of the elements of the uncertain domains. Although we could

have used other stochastic methods, in this work our approach was combined with

chance constraints to obtain solutions that have a high likelihood of remaining valid

in spite of differences in the actual values of the uncertain parameters. The main

advantage of the presented approach over pure stochastic models is that it can deal

with a lack of probabilistic information. In addition, it has an advantage over non-

stochastic models in that in combination with chance constraints, it is able to spread

robustness more uniformly across all uncertain parameters, because for each one, a

minimum specific robustness bound can be fixed. In addition, it does not requires

the extra high cost of computing a large number of scenarios. Another advantage is

that our approach is able to consider situations with limited existent probabilistic

data associated with the values estimated.

We have applied our approach to a type of real-life LSCO problem from the

forestry industry. For this purpose, we designed a MIP model that selects the best

stands of forests to harvest for satisfying customers’ demand while minimizing costs.

In addition it ensures minimum robustness bounds according to the uncertain ca-

pacities of the forest stands. We also applied our approach to a knapsack real-life

problem proposed in the literature. By means of the CSOP model designed for

knapsack problems with uncertainty, we obtained a solution that can handle greater

weights/durations in the items collected and also maximizes their total value. In

addition, our approach allows us to fix different minimum certainty bounds to the

items. We can therefore handle the well-known trade-off between robustness and

optimality by means of minimum robustness bounds.
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