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Accounting for individual differences in speed in the
discretized signed residual time model

Jesper Tijmstra and Maria Bolsinova
Department of Methodology and Statistics, Faculty of Social Sciences, Tilburg
University, The Netherlands

With advances in computerized tests, it has become commonplace to register not just the

accuracy of the responses provided to the items, but also the response time. The idea that

for each response both response accuracy and response time are indicative of ability has

explicitly been incorporated in the signed residual time (SRT) model (Maris & van der

Maas, 2012, Psychometrika, 77, 615–633), which assumes that fast correct responses are

indicative of a higher level of ability than slow correct responses. While the SRT model

allows one to gain more information about ability than is possible based on considering

only response accuracy, measurement may be confounded if persons show differences in

their response speed that cannot be explained by ability, for example due to differences in

response caution. In this paper we propose an adapted version of the SRT model that

makes it possible to model person differences in overall speed, while maintaining the idea

of the SRTmodel that the speed at which individual responses are given may be indicative

of ability. We propose a two-dimensional SRT model that considers dichotomized

response time, which allows one to model differences between fast and slow responses.

The model includes both an ability and a speed parameter, and allows one to correct the

estimates of ability for possible differences in overall speed. The performance of the

model is evaluated through simulation, and the relevance of including the speed parameter

is studied in the context of an empirical example from formative educational assessment.

1. Introduction

With advances in computerized testing for ability measurement in recent years it has

become more and more common in testing settings for not only the accuracy of the

responses provided but also their response time to be available. While standard item
response theory (IRT; see, for example, Hambleton, Swaminathan, & Rogers, 1991; van

der Linden & Hambleton, 2013) models only make use of information available on

response accuracy (RA) for the estimation of ability and hence only consider whether (or

the extent to which) an answer is correct, a variety of statistical models have been

proposed that also take response times (RTs) into account.

One of the most commonly used statistical frameworks for making use of RTs for the

estimation of ability is the hierarchical modelling framework proposed by van der Linden

(2007). In this framework, RT and RA are both treated as random variables and are jointly
modelled. On the person side, the RAs are taken to be explained by a latent ability
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parameter,while theRTs are taken to be explained by a latent speedparameter. This latent

speed parameter represents response speed (rather than, for example, cognitive speed),

as it captures the speed atwhich a respondent provides responses on the test. Since under

the hierarchical model in the population of persons response speed and ability may be
correlated, themodel canmake use of collateral information about ability contained in the

RTs to improve theprecision ofmeasurement (van der Linden,Klein Entink,& Fox, 2010).

However, under the hierarchical model all relevant information about ability available in

the RTs is taken to be captured by the latent speed parameter, meaning that, conditional

on speed, RTs are taken not to contain any relevant collateral information about ability

(Bolsinova & Tijmstra, 2018). Consequently, the extent to which considering RTs

improves the precision of measurement when using the hierarchical model is limited by

the extent towhich speed and ability are correlated in the population (Ranger, 2013), and
in practice correlations close to zero are not uncommon (see, for example, Bolsinova, De

Boeck,&Tijmstra, 2017; Bolsinova, Tijmstra,&Molenaar, 2017; van der Linden, Scrams,&

Schnipke, 1999).

Rather than assuming only someone’s overall speed to be informative of ability, it may

be plausible that the RTs of each specific response can be relevant to the estimation of

ability. For example, it may be reasonable that on some tests giving correct answers while

taking little time may be indicative of a higher level of ability than only giving correct

answers after having taken a lot of time. The idea that for each response both RA and RT
are indicative of ability has explicitly been incorporated in the signed residual time (SRT)

model (Maris & van der Maas, 2012), which directly incorporates RT into the scoring rule

for the measurement of ability. The marginal model for RA is a two-parameter logistic

model (2PLM), and hence ability as measured using the SRT model (provided it is an

appropriatemodel for the data) will fully match ability as measured using only the RA data

(using a 2PLM). However, while the measured ability is the same in the 2PLM and the SRT

model, the latter increases the precision of measurement by making use of collateral

information in the RT of each response.
One important characteristic of the SRT model is that it is a normative model, in the

sense that its scoring rule needs to be communicated to all respondents such that they can

perform optimally on the test. That is, in applications where one wants to make use of an

SRT model, one needs to be explicit about the way in the time taken before responding

affects the score that is obtained on the item: correct responses receivemore credit when

they are made fast rather than slowly, while fast careless responding is discouraged by

penalizing fast incorrect responses more heavily than slow incorrect responses (Maris &

van der Maas, 2012). Since the scoring rule is communicated, respondents are assumed to
optimize their test-taking behaviour in terms of the response speed that they adopt when

answering the items.

It may be noted that there are important conceptual and statistical differences as well

as similarities between the SRT model and the hierarchical model. For both models, the

marginal model for RA is a simple IRT model, meaning that when either of these models

applies, ability as estimated by the jointmodel for RA andRT is identical to the ability that is

estimated when only the RA data are considered (using the correct measurement model).

Hence, in bothmodels the nature of the estimated ability is not altered by the inclusion of
RTs in the model. Both models make use of collateral information available in the RT data

to improve the precision with which this ability is estimated, but they differ in the way in

which RTs are incorporated. In the case of the hierarchical model, RTs are not directly

linked to ability, but rather are taken to be fully explained by a latent speed variable that in

turn provides collateral information for the estimation of ability. Thus, although speed and
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ability may be correlated, the model still assumes there to be variability in speed

conditional on the latent variable (provided the correlation is not 1 or −1) and

respondents of the same ability level may differ in their response speed. In contrast, the

SRT model does not include a latent speed parameter, and assumes that, conditional on
ability, all respondents will operate at exactly the same speed. That is, the expected

response time on a particular item is the same for all persons of a particular ability level,

fromwhich it follows that themodel assumes that respondents of the same ability level all

operate at the same speed.

Although the SRT model is a normative model, it can be considered unlikely that

respondents fully succeed in optimizing their response speed, meaning that individual

differences in RTs may remain that cannot be accounted for under the model. The many

applications of the hierarchical model tell us that there is often a positive manifold for the
RTs, suggesting that some respondents consistently respond at a higher speed than

others. Since in practice positive (e.g., van der Linden, 2007; Meng, Tao, & Chang, 2015),

negative (e.g., Klein Entink, Fox, & van der Linden, 2009; van der Linden & Guo, 2008),

and approximately zero (e.g., Bolsinova, Tijmstra, et al., 2017; van der Linden et al., 1999)

values have been reported for the estimated correlation between speed and ability, it is

clear that these individual differences in response speed generally cannot be fully

accounted for by considering ability. While settings in which one aims to use the SRT

model may differ from those where the hierarchical model has been considered (since in
those settings one would explicitly communicate how RT affects the item scores), it may

be plausible that such individual differences in response speed will at least partly remain,

even after respondents have become familiar with the scoring rule. Individual differences

in risk aversion and risk seeking have been extensively studied in the psychological

literature (e.g., see Eisenberg, Baron, & Seligman, 1998; Horvath & Zuckerman, 1993;

Lerner & Keltner, 2001; Zuckerman & Kuhlman, 2000), and it seems natural to assume

that such tendencieswill to some extent also play a role in settingswhere the SRTmodel is

applied, leading to suboptimal test-taking behaviour: risk-seeking respondents may be
tempted to respond too quickly, while risk-averse respondents may take longer to

respond than is optimal for their expected item score.

When person differences in response speed are present that are not accounted for

under the SRT model, two statistical issues arise: first, model misfit will be present; and

second, person estimates will be biased. A consequence of model misfit may be that

estimated item parameters are affected, for example (if included in the model) item

discrimination parameters might be underestimated due to the model being less able to

explain person differences in observed performance. Bias in the person estimates can be
expected both for respondents who display suboptimal responding behaviour in terms of

their response speed (resulting in their ability being underestimated) and for respondents

who behave optimally (whose ability may be overestimated since the assessment of their

ability relative to that of their peers benefits from the fact that suboptimally behaving

peers are underperforming). These two issues make it important to exclude the possible

presence of unmodelled person differences in response speedwhenusing the SRTmodel,

or, if such differences are present, to incorporate such differences in the statistical model.

In this paper we propose an IRT model that – similar to the SRT model – measures
ability based on both RA and RT, but unlike the SRT model also takes into account that

persons may differ in their response speed. To facilitate statistical modelling, responses

are categorized as being either fast or slow, resulting in four possible combinations of RA

and RT. The proposed two-dimensional discretized SRT model maintains the core idea of

the SRT model, as it assigns more credit to fast correct responses than to slow correct

Individual speed differences in the SRT model 3



responses and assigns less credit to fast incorrect responses than to slow incorrect

responses. Like the SRT model, in the proposed model performance is explained on the

person side by an ability parameter. However, the model includes an additional person

parameter, which explains the relative frequency with which fast responses are given
(and hence captures a person’s tendency to give fast rather than slow responses). As such,

it can account for person differences in performance that are not due to differences in

ability but rather due to differences in a response tendency (e.g., response caution), and

can correct the ability estimates for thesepersondifferences thatmay otherwise confound

measurement. In this way, the model is designed to combine the advantages of the SRT

model (i.e., incorporating RT information directly into the scoring rule) and of the

hierarchical model (i.e., taking between-person differences in response speed into

account), while avoiding their limitations as discussed. Furthermore, the latent variable
included may also provide test takers and test administrators with additional relevant

information, since it provides insight into the extent to which a test taker deviated from

the model-implied optimal response speed. This could be useful feedback for improving

future test-taking performance, and it could also be of substantive interest in its own right,

if such a latent variable relates to psychological constructs such as risk seeking or risk

avoidance.

The structure of the paper is the following. In Section 2 we describe the SRT model.

Section 3 presents a motivating example from formative educational assessment, where
empirical evidence is found that there may be relevant person differences in response

speed that are not accounted for by the SRTmodel. Section 4 presents a two-dimensional

discretized version of the SRT model that accounts for person differences in response

speed. In Section 5 we present a simulation study that illustrates the importance of

correcting for person differences in speed,wherewe consider the bias and variance in the

estimates of the ability parameters if person differences in speed are or are not taken into

account. Section 6 revisits the empirical example, illustrates the applicability of the two-

dimensional discretized SRT model and compares its results to those obtained using a
variety of alternative statistical models. The paper concludes with a discussion.

2. Signed residual time model

The SRT model was proposed by Maris and van der Maas (2012), and uses the following

scoring rule:

Si ¼ð2Xi�1Þðd�TiÞ, (1)

where Si is the item score (with realizations spi for each person p),Xi is the binary RA (1

for correct, 0 for incorrect), Ti is continuous RT, d is the imposed item time limit, and

index i refers to a particular item. Themodel assumes there to be an item time limit, which

in this version of the model is taken to be the same for all items. The scoring rule thus

entails that the time that is left before the deadline (i.e., residual time) is either added to the
total score if the response is correct, or subtracted from it if the response is incorrect. The

idea of the scoring rule is to givemore credit to fast correct responses than to slow correct

responses, and also to discourage fast careless responding by punishing fast incorrect

responsesmore heavily than slow incorrect responses. The SRTmodel is derived from the

sufficiency of the person total score spþ ¼∑ispi for the ability of person p, the sufficiency
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of the item total score siþ ¼∑pspi for the difficulty of item i, and conditional

independence of the item scores given the latent variable.

In the SRT model the distribution of item RA and RT given ability (denoted by θ) is
written as

f ðXi,TijθÞ¼ ðθ�δiÞexpðð2Xpi�1Þðd�T iÞðθ� δiÞÞ
expðθ�δiÞ�expð�ðθ�δiÞÞ , (2)

where δi is the difficulty of item i. The SRTmodel has been generalized by van Rijn and Ali

(2018), who introduced an item discrimination parameter, denoted by αi> 0

f ðXi,T ijθÞ¼ αiðθ�δiÞexpðð2Xpi�1Þðd�TiÞαiðθ�δiÞÞ
expðθ�δiÞ�expð�ðθ�δiÞÞ (3)

By including a discrimination parameter in the model, it becomes possible to account
for differences between the items in terms of the strength of the relationship between the

item score and ability.

3. Motivating example

To illustrate the relevance of including a secondary dimension in the SRTmodel capturing
person differences in response speed, we present an example from educational

measurement. We use data from Math Garden (Klinkenberg, Straatemeier, & van der

Maas, 2011; Straatemeier, 2014), which is an online adaptive practice system for

arithmetic in which children can do exercises covering several domains of mathematics,

such as addition, subtraction andmultiplication. In this studywewill consider data for the

single-digit multiplication items (e.g., ‘3 × 6=?’ and ‘8 × 1=?’). The items were all open

ended, and for each item the time limit was 20 seconds, with RT being recorded in

milliseconds. The SRT scoring rule is built into the system of Math Garden, and it is
explicitly communicated to the students by showing them a number of coins which

decreases linearlywith time, representing the reward that is gained for providing a correct

response or lost if an incorrect response is produced. The system does not allow for RTs

above the time limit.

For this application, data obtained between 1 September and 1 October 2015 were

used. Only data from persons who produced at least 15 responses on a single day were

used, andonly data obtained on the day onwhich theyhadproduced the largest number of

responses were considered. This was done to ensure that both speed and ability are likely
to be stable across the responses of that person. Items with at least 1,000 responses were

included. The data set selected included 31 items and 3,099 respondents. Not all items

were administered to all persons, with the total proportion of missing responses equal to

.57. On average 13 responses were observed per person, and 1,329 responses were

observed per item.

For these data we examined whether RTs on different items are generally positively

correlated with each other, that is, whether a positive manifold is observed for the RTs.

The correlations between the RTs on different itemswere computed, and the eigenvalues
of the correlation matrix were evaluated. The first eigenvalue was equal to 10.26,

indicating that the 31 items share a relatively large amount of common variance, which

can be interpreted as there being individual differences between persons inwhether they
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tend to give fast or slow responses to most items. Next, we examined whether such a

positive manifold of the RTs can be explained by the SRT model, or whether such

individual differences between persons in response speed cannot be accounted for under

the model.
The SRT model with item-specific discrimination parameters was fitted to the data

using a Gibbs sampler.1 Using samples from the posterior distribution of the model

parameters, 500 replicated data sets were generated. In each of these data sets the first

eigenvalue of the correlation matrix of the RTs was computed, which resulted in 500

samples from the posterior predictive distribution of this statistic. The 2.5th and the

97.5th percentiles of this distributionwere equal to 2.42 and 2.76, respectively. That is, in

the posterior predictive distribution under the SRT model RTs are not nearly as strongly

related to each other as they are in the observed data. Hence, the SRT model cannot
sufficiently account for these observed associations. Thus, even though the scoring rule

was explicitly communicated to the respondents, they do not all follow it in the sameway:

some respondents tend to give faster responses thanwould be expected based on the SRT

model tomost items, regardless of the accuracy,while others tend to respondmore slowly

than expected. As discussed in Section 1, these unmodelled differences can be expected

to result in model misfit and a confounding of measurement of ability, highlighting the

need to include an additional person parameter in the model in order to account for

person differences in response speed.

4. A two-dimensional discretized signed residual time model

While developing a direct extension of the SRT model that includes a latent response

speed parameter is not straightforward, one can make use of a variety of IRT-based

modelling options if one discretizes continuous RT, which is the direction that will be
pursued in this paper. An adapted version of the SRT model has been considered by

Coomans, Hofman, Brinkhuis, van der Maas, and Maris (2016), who assign discrete item

scores based on whether the response was correct or incorrect, and based on whether it

was fast or slow. Let Si be the discrete item score of item i, which can be assigned in the

following way:

Si ¼

0, if Xi ¼ 0,T∗
i ¼ 1,

1, if Xi ¼ 0,T∗
i ¼ 0,

2, if Xi ¼ 1,T∗
i ¼ 0,

3, if Xi ¼ 1,T∗
i ¼ 1,

0
BBB@

1
CCCA (4)

where T∗
i is a dichotomous variable that takes the value 1 if the response is fast and 0

otherwise. In line with the SRT model, this means that the least credit is assigned to a fast

and incorrect response, followed by a slow incorrect response, a slow correct response,

and a fast correct response. Since the model makes use of discretized RT and considers

1 Independent improper priors were used for the item parameters. The person abilities were assumed to have a
standard normal distribution. Data augmentation was implemented, such that at each iteration individual ability
parameters were sampled for each person using single-variable exchange algorithm (Marsman, 2014).
Discrimination and difficulty parameters were sampled using a Metropolis algorithm with a (log)normal
distribution centred around the (log of the) current value.
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discrete rather than continuous item scores, this adapted version of the SRTmodel is here

labelled the ‘discretized SRT model’.

While in principle any dichotomization of Ti can be considered, for the discretized SRT

model the most natural approach is to set the boundary between fast and slow responses
at exactly half the item deadline. Under this specification (and assuming RTs to be

uniformly distributed), the scoring rule of the discretized SRTmodel follows directly from

the scoring rule of the continuous SRT model. This is illustrated graphically in Figure 1,

where it is shown that setting the boundary at half the item deadline entails that if the

continuous SRTmodel holds, the average score distance between each of the four ordered

response outcomes is the same. That is, in that case the SRT model implies that the score

difference between a fast incorrect and a slow incorrect response, between a slow

incorrect and a slow correct response, and between a slow correct and a fast correct
response is the same (i.e., has a value of ½ d). For any other dichotomization, the

differences between the ordered response options that are implied by the continuous SRT

model will not be of equal magnitude, and assigning a 0, 1, 2, 3 coding would result in a

scoring rule that is not aligned with that of the continuous SRT model. For this reason the

default dichotomization thatwill be considered in this paper is based on a boundary at half

the item deadline.

Using the discretized SRTmodel allows one to study relevant differences between fast

and slow responses. The objective of Coomans et al. (2016)was to obtain simple sufficient
statistics for both the items and the persons, and hence they considered a model where

items and persons are each characterized by a single parameter:

PrðSi ¼ sjθÞ¼ expðsðθ�δiÞÞ
∑3

r¼0expðrðθ�δiÞÞ
, (5)

Fast correct Slow correct

Fast incorrect Slow incorrect

Response time

Ite
m

 s
co

re

d/4 d/2 3d/4 d0
● ● ● ● ●

●

●

●

●

●

●d

−d

−3d/4

−d/4

d/4

3d/4

Figure 1. Illustration of the scoring rule that is implied by the continuous signed residual time

model for the discretized signed residual time model when its discretization is at half deadline,

where d denotes the deadline and where the vertical line indicates the split into fast and slow

responses. The two unbroken converging lines represent the score under the continuous signed

residual time model, while the broken lines represent the implied scores for each of the four

response outcomes under the discretized signed residual time model.
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where s is a possible realization of the random variable Si. Under this model, for any

person j, is∑isji a sufficient statistic for θ, and for any item i,∑isji is a sufficient statistic for

δi, where sji is the observed score of person j on item i.

By discretizing the item scores, the items become polytomously scored, and it may
make sense to make use of standard polytomous IRT for modelling these item scores.

When contrasted with common polytomous IRT models, the model in equation (5) is

rather restrictive, since for each item it contains only a single item parameter. Instead it

may make sense to consider more flexible models to better capture the structure in the

data. If on the person side one wants to preserve sufficiency of∑isji, one can consider a

partial credit model (Masters, 1982) for the item scores:

PrðSi ¼ sjθÞ¼ expðsθþβisÞ
∑3

r¼0expðrθþβirÞ
: (6)

where βi0≡0, and βi1,βi2,βi3 are item category intercept parameters. This model is more

general than the one proposed by Coomans et al. (2016),as it does not force there to be a
point on the range of θwhere all four response outcomes are equally likely (i.e., at δi), but
rather allows for a more flexible distribution of scores. It may be noted that the

parameterization that was presented above differs from the original parameterization of

Masters (1982), which would correspond to.

PrðSi ¼ s,s>0jθÞ¼ exp∑s

r¼1ðθ�β∗irÞ
1þ∑3

q¼1exp∑
q

r¼1ðθ�β∗irÞ
; (7)

PrðSi ¼ 0jθÞ¼ 1

1þ∑3
q¼1exp∑

q

r¼1ðθ�β∗irÞ
, (8)

where βis ¼�∑s

r¼1β
∗
ir

It can be observed that the model in equation (6) assumes all items to have the same

discriminatory power. In the sameway as the partial creditmodel and the SRTmodelwere

generalized (Muraki, 1992; van Rijn & Ali, 2018), the model in equation (6) can also be

generalized to have an item-specific discrimination parameter, denoted by αi, which

allows one to differentiate the items in terms of the strength of the relationship between

ability and the item score:

PrðSi ¼ sjθÞ¼ expðsαiθþβisÞ
∑3

r¼0expðrαiθþβirÞ
: (9)

The larger αi is, the more information the item contains for the estimation of ability.

It should be noted that none of the models presented in equations (5), (6) and (9)

generally predict a positive association between the RTs in each of the items (i.e., a

positivemanifold). Under thesemodels T∗
i and T

∗
k are expected to be positively correlated

when Xi = Xk, but negatively correlated when Xi≠Xk. The fact that they are negatively

correlated when the responses differ in accuracy can be seen by contrasting the

probability of the response being fast given that the response is correct and given that it is
incorrect:

8 Jesper Tijmstra and Maria Bolsinova



PrðT∗
i ¼ 1jθ,Xi ¼ 1Þ¼ PrðSi ¼ 3jθ,Si∈ 2,3f gÞ

¼ PrðSi ¼ 3jθÞ
PrðSi ¼ 3jθÞþPrðSi ¼ 2jθÞ

¼ expð3αiθþβi3Þ
expð3αiθþβi3Þþexpð2αiθþβi2Þ

¼ expðαiθ�βi2þβisÞ
1þexpðαiθ�βi2þβisÞ

;

(10)

PrðT∗
i ¼ 1jθ,Xi ¼ 0Þ¼ PrðSi ¼ 0jθ,Si∈ 0,1f gÞ

¼ PrðSi ¼ 0jθÞ
PrðSi ¼ 0jθÞþPrðSi ¼ 1jθÞ
¼ 1

1þexpðαiθþβi1Þ
¼ expð�αiθ�βi1Þ
1þexpð�αiθ�βi1Þ

,

(11)

where the former probability is positively related to θ while the latter is negatively

related to θ (when αi> 0).Whether the unconditional correlation between a pair of RTs is

positive, negative, or absent thus depends on contingent characteristics such as the item

difficulties and the ability distribution, and onewould not expect to consistently observe a

positive manifold if an SRT model generated the data. Thus, the positive manifold that is

commonly observed in RT data and that was also found in the empirical example suggests

that there may be structural differences between persons in their RTs that cannot be

explained by the ability parameter in the versions of the SRT model discussed so far.
Therefore, we propose to further extend the model in equation (9) by including an

additional latent variable that captures this possible between-person difference in

response speed.

To allow for such individual differences we extend the model in the following way:

PrðSi ¼ sjθÞ¼ expðsαi1θ1þIðs∈f0,3gÞαi2θ2þβisÞ
∑3

r¼0expðrαi1θ1þIðr∈f0,3gÞαi2θ2þβirÞ
, (12)

where θ1 is the ability of interest and θ2 is a second latent variable that accounts for

individual differences in the tendency to give fast responses, αi1> 0 and αi2> 0 are the

slope parameters of the item in the two dimensions,2 and Iðs∈ f0,3gÞ is an indicator
function that takes the value 1 if the response is fast (i.e., T ∗

i ¼ 1) and 0 if it is slow. The

probability of observing values of 0 or 3 (i.e., fast responses) increases when θ2 increases,
and hence θ2 can be seen as a latent speed variable. A bivariate normal distribution is

assumed for the joint distribution of the two latent variables, with the means constrained

to 0 and the variances constrained to 1 for identification, and a free correlation parameter

ρ.

2 Both item slope parameters should bepositive, tomake sure that Si is positively related to θi and that being fast is
positively related to θ2, respectively.
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The likelihood functions for the discretized SRT models without (equation (9)) and

with (equation (12)) the additional latent variable are respectively.

L1ðα,β;sÞ¼
YN
j¼1

Z YK
i¼1

PrðSi ¼ sjijθ;αi,βiÞN θ;0,1ð Þdθ, (13)

L2ðα,β,ρ;sÞ¼
YN
j¼1

Z YK
i¼1

PrðSi ¼ sjijθ;αi,βiÞN2 θ;0,
1 ρ

ρ 1

� �
1

� �
dθ, (14)

where s is theN × Kmatrix of the observed item scores ofN respondents onK items;α is a

K-vector of the item slope parameters in the unidimensional model and a K × 2 matrix of

the item slopes in the two-dimensional model; and β is a K × 3 matrix of the category

intercept parameters of the items.

It may be noted that the proposed two-dimensional discretized SRT model falls under
the class of multidimensional nominal response models ((NRMs; Takane & De Leeuw,

1987) in the reparameterization that was proposed by Thissen and Cai (2016):

PrðSi ¼ sjθÞ¼ exp ∑M

m¼1cmðsþ1Þαmiθmþβis
� �

∑3
r¼0exp ∑M

m¼1cmðrþ1Þαmiθmþβir
� � , (15)

where M is the number of dimensions (M = 2 in our case), and cm is a vector (in our

case of length 4) containing the set of scores assigned for each possible value of Si in the

mth dimension. For the proposed two-dimensional discretized SRT model one would
consider the item scoring functions c1 = [0,1,2,3] and c2 = [1,0,0,1] for the ability and

speed dimension, respectively. While these types of multidimensional NRMs have been

applied for the purpose of capturing response styles in the context of Likert scales (e.g.,

Falk&Cai, 2016), to our knowledge these types ofmodels have not been considered in the

context of RT modelling. A consequence of the proposed model falling into this class of

multidimensional NRMs is that the model can be estimated by any software package that

can deal with these types of models, such as the R package mirt (Chalmers, 2012).

5. Simulation study

5.1. Method

To investigate the consequences of not including the extra latent variable in the model

when there are individual differences between the persons in how often they give fast or
slow responseswe conducted a simulation study. The focus of the study is the recovery of

the ability latent variable. Two scenarioswere considered: (1) a null condition,where data

were generated under the unidimensional discretized SRT model (equation (9), i.e., no

individual differences in RTs that cannot be explained by ability were included); (2) a

condition where data were generated under the two-dimensional model with there being

individual differences in the tendency to give fast responses (equation (12)). The null

condition was used as a benchmark to make sure that including the additional latent

variable in the model when it is not needed does not distort the estimates of ability, and
also to get benchmark values for the absolute bias, variance, andmean squared error (MSE)

of the ability estimates with which the parameter recovery results when the additional
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dimension is present can be compared. For both scenarios, two test length conditions

were considered: K = 20 and K = 40. Additionally, for scenario 2 another design factor

was included, as three different values were considered for the correlation between the

two latent variables, ρ = 0, .5, −.5. The values for the correlation parameter were chosen
based on results from empirical studies, in which correlations close to zero (e.g.,

Bolsinova, Tijmstra, et al., 2017; van der Linden et al., 1999), positive correlations (e.g.,

van der Linden, 2007; Meng et al., 2015), and negative correlations (e.g., Klein Entink

et al., 2009; van der Linden&Guo, 2008) have been foundbetween ability and speed. In all

conditions a sample size of 1,000 persons was used. For each condition, 1,000 replicated

data sets were generated.

For the item threshold parameters five sets of parameters were considered:

βi = [0,0,0], [1.5,1.5,0], [−1.5, −1.5,0], [0,1.5,1.5], [0, −1.5, −1.5].
For K = 20 this set was used four times, and for K = 40 it was used eight times. The

values were chosen such that the items show reasonable differences both in their overall

difficulty and in the expected proportion of slow and fast responses. For a person with

zero values (i.e., average in the population) for the latent variables the five sets of

threshold parameters translate into the following probabilities of the item scores:

[.5,.5,.5,.5] (probability correct is equal to probability incorrect, probability fast is equal to

probability slow), [.1,.4,.4,.1] (probability correct is equal to probability incorrect,

probability fast is smaller than probability slow), [.4,.1,.1,.4] (probability correct is equal
to probability incorrect, probability fast is greater than probability slow), [.1,.1,.4,.4]

(probability correct is larger than probability incorrect, probability fast is equal to

probability slow), and [.4,.4,.1,.1] (probability correct is smaller than probability

incorrect, probability fast is equal to probability slow), respectively.

For the null condition, αi = [0.5,0] for all items, and for all other conditions

αi = [0.5,1]. This difference between αi1 and αi2 was used because the first dimension

considers scores that have a wider range (ranging from 0 to 3) than the scores considered

in the second dimension (ranging from 0 to 1). On the person side, values for the two

latent variables were sampled from a bivariate normal, using θ∼N2 θ;0,
1 ρ

ρ 1

� �� �
.

Both the unidimensional discretized SRT model (equation (9)) and the two-

dimensional discretized SRT model (equation (12)) were fitted to each replicated data

set. Additionally, we fitted a hierarchical model to the replicated data sets, where 2PLMs

(Birnbaum, 1968) were used to model the RAs and the discretized RTs. The hierarchical
model was considered for comparison purposes, since (like the two-dimensional

discretized SRT model) it includes a speed parameter but (unlike the two-dimensional

discretized SRT model) it does not capture the relationship between RT and θ that was

used to generate the data. Finally, we considered an extension of the hierarchical model

which, unlike the original hierarchical model, allows for conditional dependence

between RA and RT. Since RTs were discrete, we used the IRTree model for fast and slow

responses (Partchev & De Boeck, 2012),, in which the item parameters in the RA model

depend onwhether the response is fast or slow (i.e., each item has two difficulty and two
discrimination parameters in the 2PLM), while the model for RT is the same as in the

hierarchicalmodel. All modelswere estimated using the R packagemirt (Chalmers, 2012)

(see theAppendxi S1 and S2 for the R code used to fit the relevantmodels). The expected a

posteriori (EAP) estimates of the person parameters were obtained given the maximum

likelihood estimates of the item parameters and, in the case of the two-dimensional
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models, of the correlation between the latent variables. Additionally, the EAP reliability

was computed for each model.

5.2. Results

The results of the simulation study are displayed in Tables 1 and 2. The first two rows of

the tables show the results for the null condition (αi2 = 0), where it can be observed that

for bothK = 20 andK = 40 the absolute bias, variance, andMSE of the ability parameters

are comparable for the two SRTmodels. Their EAP reliability is also identical. Thus, when

persons do not differ in their speed, using the two-dimensional discretized SRT model

does not worsen the quality of the estimates, and overfitting does not seem to be a

problem. Both SRT models outperform the hierarchical model in terms of absolute bias,
variance, MSE, and EAP reliability. This can be explained by the fact that the hierarchical

model does not model the patterns in the RT data correctly. The bias in the ability

estimates under the IRTree model is similar to the SRT models, but its variance is worse,

resulting in a higher MSE and worse EAP reliability for the IRTree model than for the two

SRTmodels. It may be noted that for all models the average absolute bias is notably greater

than 0, which is due to the estimation procedure’s shrinkage of the estimates towards the

population mean. Such shrinkage can be considered desirable as it reduces prediction

Table 1. Average absolute bias (Bias), variance (Var), and mean squared error (MSE) of the

estimates of θ1 under the discretized SRT model with and without an additional speed dimension,

under the hierarchical model, and under the IRTree model, based on 1,000 replications

αi2 K ρ

1D SRT model 2D SRT model

Bias Var MSE Bias Var MSE

0 20 – 0.127 0.145 0.177 0.127 0.145 0.178

40 – 0.067 0.088 0.099 0.067 0.089 0.099

1 20 .0 0.193 0.140 0.230 0.140 0.148 0.199

.2 0.201 0.140 0.228 0.151 0.140 0.193

.5 0.207 0.140 0.233 0.151 0.140 0.192

40 .0 0.181 0.086 0.159 0.077 0.095 0.115

.2 0.200 0.083 0.163 0.088 0.091 0.112

.5 0.199 0.082 0.168 0.087 0.092 0.115

αi2 K ρ
Hierarchical model IRTree model

Bias Var MSE Bias Var MSE

0 20 – 0.148 0.165 0.212 0.129 0.155 0.198

40 – 0.077 0.105 0.122 0.066 0.098 0.117

1 20 .0 0.167 0.166 0.232 0.143 0.160 0.209

.2 0.181 0.154 0.224 0.155 0.148 0.204

.5 0.182 0.154 0.225 0.155 0.148 0.202

40 .0 0.125 0.106 0.143 0.077 0.103 0.121

.2 0.138 0.098 0.140 0.091 0.096 0.117

.5 0.136 0.098 0.143 0.089 0.098 0.121

αi2 is the item slope in the second dimension (speed) of the two-dimensional SRT model, K is the

number of items in the test, and ρ is the correlation between the latent variables.
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error (see, for example, Fox, 2010). For each person, the average ability estimate under

each of the four models considered is plotted against its true value in Figure 2, which

illustrates this shrinkage towards the population mean.

Table 2. Model-based expected a posteriori reliability of θ1 under the discretized SRT model with

and without an additional speed dimension, under the hierarchical model, and the IRTree model

averaged across 1,000 replications

αi2 K ρ 1D SRT 2D SRT HM IRTree

0 20 – .825 .825 .791 .811

40 – .903 .903 .882 .892

1 20 .0 .835 .804 .789 .796

.2 .836 .810 .798 .806

.5 .836 .810 .798 .806

40 .0 .908 .886 .880 .883

.2 .913 .890 .886 .887

.5 .914 .889 .886 .886

αi2 is the item slope in the second dimension (speed) of the two-dimensional SRT model, K is the

number of items in the test, and ρ is the correlation between the latent variables.

Figure 2. True ability parameters plotted against their average estimated value under (a) the

unidimensional discretized SRT model, (b) the two-dimensional discretized SRT model, (c) the

hierarchical model, and (d) the IRTree model, obtained for 1,000 respondents based on 1,000

replications under the condition with 40 items and no person differences in speed.
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Whenpersons do differ in their speed (see Table 1, αi2 = 1), the two SRTmodels show

differences in performance. In all these conditions, the SRT model without the extra

dimension showsnotablymore absolute bias in the estimated ability parameter, indicating

that ignoring this secondary dimension may confound measurement. The relative
difference between the two SRT models in absolute bias is bigger for the longer test

(K = 40) than for the shorter test (K = 20). In contrast, the SRT model without the

secondary dimension shows slightly lower variance in the estimates than the model that

does include this dimension. Compared to the decrease in bias, this increase in variance is

relatively small, suggesting that the small loss in precision may be outweighed by the

decrease in bias. This is also apparent when the MSEs are considered, which shows the

two-dimensional SRT model to perform notably better than the one-dimensional SRT

model in all conditionswhere persons differ in speed. The decrease inMSEobtainedwhen
including the second dimension in the model is most notable for longer tests (K = 40),

where a reduction of 27%–33%was observed. It should be noted that themodel-based EAP

reliability is higher for the 1D SRT model than for the 2D SRT model, which can be

explained by considering that, due to being misspecified, the 1D SRT model assumes the

RTs to contain more information about ability than they actually do. That is, the 1D SRT

model incorrectly assumes that all patterns in the RTs have to relate to ability, inflating the

estimated precision and hence resulting in a higher model-based EAP reliability than the

2D SRT model, which does not make that assumption.
Compared to the two-dimensional SRT model, the hierarchical model shows worse

performance in all conditions, in terms of both the average absolute bias and the variance

in the estimates. Consequently, the hierarchical model shows a worse MSE than the two-

dimensional SRT model in all conditions, with the former having an MSE that was

24%–26% larger than that of the latter for K = 40. It also has a worse model-based EAP

reliability in all conditions. The hierarchical model does outperform the 1D SRT model in

terms of absolute bias, which can be explained by the fact that the misspecification

present in the 1D SRT model notably affects the bias of the ability estimates, whereas the
misspecification present in the hierarchical model has relatively little impact on the

estimates of ability since the misspecification concerns the RT side of the model, which

only influences ability estimates through the correlation between speed and ability. Thus,

even though both models are misspecified, the ability estimates under the hierarchical

model are less severely affected.

When considering the IRTree model, the results are only slightly worse than those

obtained for the two-dimensional SRT model. For the IRTree model the absolute bias is

comparable or slightly higher in each condition, and the variance is also slightly higher.
Consequently, the IRTree model has somewhat worse MSE in each condition. It also

shows slightly lower EAP reliability. However, the difference between the IRTree results

and those of the two-dimensional SRT model are not nearly as large as they were when

considering the hierarchical model, suggesting that the IRTree model does a reasonable

job of recovering the ability parameters. This can likely be explained by the fact that,

unlike the hierarchical model, it allows for separate item parameters for fast and slow

responses, making the model rather flexible.

All fourmodels show a slight increase in bias when the correlation between speed and
ability increases. The three models that include a speed parameter show a slight decrease

in variance when this correlation increases, which can be explained by the fact that the

speed parameter provides collateral information for the estimation of ability.

Figure 3 plots the true values of ability against their estimated values under the four

different models, for the condition where K = 40 and ρ = 0 While under the
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unidimensional SRTmodel therewas hardly any bias for θ1s close to 0, notable bias occurs
for both persons with high values of θ1 and persons with low values of θ1. In contrast to

what was observed under the null condition (see Figure 2), both positive and negative

bias is observed for low values of θ1 and for high values of θ1, and the bias is also much
more severe. When incorporating the speed parameter in the model (Figure 3b), the bias

is greatly reduced compared towhatwas observedwhen using the unidimensional model

(Figure 3a).Moreover, the pattern of the bias observed in Figure 3b resembles the pattern

observed in Figure 2b, as both show a similar amount of shrinkage towards the mean.

These results suggest that the two-dimensional SRT model appears to be able to

adequately correct for the presence of the speed factor. The results for the hierarchical

model (Figure 3c) show the performance of the model in terms of bias to fall somewhere

between that of the unidimensional and that of the two-dimensional SRT model: the bias
observed under the hierarchical model is less severe than what is observed under the

unidimensional SRT model, but more severe than the bias observed under the two-

dimensional SRTmodel. For the IRTree model, the bias observed in Figure 3d is similar to

that in Figure 2a,which is in linewith the reported result that under the IRTreemodel bias

is not notably worsened when person differences in response speed are introduced.

While the results for the IRTree model seem similar to those obtained for the two-

Figure 3. True ability parameters plotted against their average estimated value under (a) the

unidimensional discretized SRT model, (b) the two-dimensional discretized SRT model, (c) the

hierarchical model, and (d) the IRTree model, obtained for 1,000 respondents based on 1,000

replications under the condition with 40 items, person differences in speed, and a correlation of 0

between the speed and ability parameter.
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dimensional SRT model, as reported in Table 1 the IRTree model shows slightly worse

bias, which is most notable for extreme values of ability.

6. Empirical example revisited

6.1. Method

The same data set as presented in Section 3 was used to illustrate the use of the proposed

model. Responses with RTs below 10 seconds (i.e., half of the time limit) were coded as

fast, otherwise they were coded as slow. Scores were assigned to the responses using the

scoring rule in equation (4).3 The average proportion of fast responses per item was .74,
with a standard deviation of 0.04 across items, suggesting that for most respondents the

item time limitwas not overly restrictive. In addition to the discretization of RTs into being

either fast or slow, we considered a three-category discretization, splitting the available

time into three equal intervals (below 20/3 s, between 20/3 and 40/3 s, and above 40/

3 s), to check whether the model inferences change substantially if a different

discretization is used. In that case, a 0, 1, 2, 3, 4, 5 coding was used for the item scores,

following the same logic based on the scoring rule of the continuous SRT model.

The unidimensional and two-dimensional SRT models were fitted to the data.
Additionally, the hierarchicalmodel and the IRTreemodel thatwere also considered in the

simulation study were fitted to the data for comparison purposes. For completeness, we

also fitted a unidimensional NRM to the data, with the purpose of checking whether the

need to include a secondary dimension could be avoided by using a flexible unidimen-

sional model (i.e., to ensure that any indicated need to move away from a unidimensional

model is not simply due to the considered unidimensional model being too restrictive).

The models were estimated using the R package mirt (Chalmers, 2012) using the EM

algorithm.

6.2. Results

The results for each of the five models and for both discretization options are displayed in

Table 3, as well as the results for the continuous SRT model that was fitted in Section 3.

While the model fit of the continuous SRT model cannot be compared directly to that of

the 1D SRT model (since the latter uses discretized versions of RT rather than continuous

RT), the results for the 1D SRT model in terms of the model-based EAP reliability suggest
that measurement precision is not reduced when using discretized versions of RT rather

than continuous RT. However, it should be noted that a direct comparison ofmodel-based

EAP reliability may be misleading if either model is misspecified, which is exactly what is

suggested by the results presented in Section 3.

The results in Table 3 allowus to assesswhether themodel is better able to capture the

patterns observed in the data by including a second latent variable in the model. It can be

observed that for both considered discretizations of RT the 2D SRTmodel shows better fit

to the data than the 1D SRT model, since both the Akaike (AIC) and Bayesian (BIC)
information criteria are notably better for the formermodel. This is in linewith the results

discussed in Section 3,where therewere already strong indications that including a latent

3Note that if responses are possible after the time limit expires and if this occurswith a non-negligible frequency
(whichwasnot thecase in this example), the scoring rule canbe adapted as follows: 0, fast incorrect responses; 1,
slow incorrect responseswithin the time limit; 2, responses after the time limit; 3, slow correct responseswithin
the time limit; 4, fast correct responses.
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variable that explains person differences in the RTs is needed. The 2D SRT model also

shows better fit than the unidimensional NRM, suggesting that it is not just the added

flexibility of the 2D SRTmodel that allows it to have better fit than the 1D SRTmodel, but

rather that there really is a need to include a latent variable in the model that explains

person differences in the RTs. It may be noted that both the 1D SRT model and the NRM

result in higher model-based EAP reliability than the 2D SRT model, which can be
considered problematic for the former models if we accept that they misrepresent the

structure in the data. That is, due to the assumed unidimensionality and the item coding

(combining RT and RA information in an ordered item score), both models assume RTs to

bemore informative of ability than the 2D SRTmodel suggests that they are, whichwould

lead EAP reliability to be overestimated under the 1D SRT model and NRM.

Compared to the 2D SRTmodel, the hierarchical model showsworse fit, with AIC and

BIC values being lower for both discretizations. Thus, the data suggest that the 2D SRT

model should be preferred over the hierarchical model, and that the hierarchical model
may not provide the best description of the structure in the data. While the model-based

EAP reliability is higher for the hierarchicalmodel than for the 2D SRTmodel, this does not

suggest that the hierarchical model should be preferred since the hierarchical model does

not appear to describe the data well and hence it may not be safe to rely on the model-

based EAP reliability as an indicator of the quality of measurement under the hierarchical

model.

When comparing the 2D SRT model to the IRTree model, the differences are less

pronounced. For both discretizations and according to both the AIC and the BIC, the 2D
SRTmodel should be preferred. However, the differences appear to be smaller thanwhen

contrasting the 2D SRT model with the other models. This is also in line with the

simulation results reported in the previous section, where the 2D SRT model only

outperformed the IRTreemodel by a smallmargin. Themodel-based EAP reliability of both

Table 3. Information criteria (Akaike (AIC) and Bayesian (BIC)) and model-based expected a

posteriori (EAP) reliability for the fitted models: continuous signed residual time model (SRT),

nominal response model (NRM), unidimensional and two-dimensional discretized signed residual

timemodels (1D SRT and 2D SRT), hierarchicalmodel (HM), and item response tree (IRTree)model.

AIC and BIC are not given for the continuous SRT because it was fitted using a Bayesian procedure

Model AIC BIC EAP reliability

No discretization

SRT .768

Half-deadline split

NRM 81,065.83 82,189.05 .804

1D SRT 82,314.57 83,063.38 .773

2D SRT 78,785.01 79,727.06 .711

HM 79,677.11 80,431.96 .757

IRTree 78,788.53 79,917.80 .713

Three-way split

NRM 111,930.02 113,802.06 .848

1D SRT 114,784.22 115,907.44 .805

2D SRT 108,821.21 110,137.67 .708

HM 110,810.22 111,752.28 .759

IRTree 108,835.24 110,526.11 .706
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models is also rather similar. However, conceptually there are relevant differences

between the two models that could motivate a choice between the two models, in the

sense that the latent variable that relates only to the RTs has a differentmeaning in the two

models. In the IRTreemodel, its interpretationmatches that of the latent speed variable in
the standard hierarchical model, and hence the latent variable simply captures between-

person differences in response speed. In the context of the 2D SRTmodel, the RTs are also

included in the measurement model for ability, and the added latent variable essentially

explains between-person differences in the extent to which respondents deviate from

their model-implied response speed; that is, the latent variable may be more relevantly

interpreted as the extent to which a respondent shows risk-seeking or risk-averse

behaviour, in terms of responding faster or more slowly than is optimal under the SRT

scoring rule. Since this application focuses on a setting where respondents are informed
that RTs are taken into account in their score, using the 2D SRT model rather than the

IRTree model might be considered more appropriate. Choosing the 2D SRT model can

also be said to provide more practically relevant information for the test taker and test

administrator, in the sense that this added latent variable can provide personalized insight

into whether future test performance can be improved by responding more quickly or

more slowly, and might also be of substantive interest in its own right (e.g., for studying

whether this latent variable is indeed connected to psychological constructs such as risk

seeking or risk avoidance). For these reasons we will continue investigating the results
obtained for the 2D SRT model, where we will focus mainly on the half-deadline split

discretization.

On the item side, the estimates obtained for the 2D SRTmodel support the conclusion

that there are relevant between-person differences in response speed that can be

modelled. The average value of the estimates of α2 was 1.33, and the estimated values for

the items ranged from0.92 to 1.68. Thus, the items discriminate persons ratherwell on the

secondary dimension. Figure 4 plots the estimated values of α2 against the estimated

values of α1 for each item,where it can be observed that there does not appear to be a clear
relationship between the two parameters. Thus, it is not the case that items for which a

high estimate of α2 was obtained are generally items that discriminate relatively well or

relatively poorly on the dimension of interest (θ1), and hence the degree to which an item

is sensitive to a person’s speed does not appear to have a notable impact on its quality as an

indicator of ability.
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Figure 4. Estimates of α1s (on the x-axis) and α2s (on the y-axis).
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On the person side, the correlation between the two latent variables was considered.

The correlationwas estimated at .16,with the 95% confidence interval ranging from .11 to

.22, suggesting a weak positive association between speed and ability. Thus, for the

application considered, persons who respond more speedily are on average more able
than those who respond relatively slowly.

The practical impact of using the 2D SRT model instead of the other models for

discretized RTs can be gauged by contrasting the ability estimates obtained under the 2D

SRTmodel with those obtained under the other models (see Figure 5). It can be observed

that the estimates obtained under the two SRTmodels show notable differences for many

of the respondents. Moreover, there appear to be slight patterns in these differences:

persons of average ability (estimated θ around 0) on average get slightly higher estimates

under the two-dimensional model than under the unidimensional model, while the
opposite holds for persons of high ability. Without knowledge of the generating model, it

is difficult to assess which set of estimates should be preferred, and which could be

investigated using further empirical research. As the current results indicate that persons

do differ notably in their overall speed (as evidenced by the non-zero item discrimination

parameters obtained for the second dimension), it seems that considering amodel for this

application that does not include a speed latent variable may result in notable

confounding of the measurement of ability.

Figure 5 also contrasts the ability estimates under the threemodels that include a latent
speed variable. Here it can be seen that there are notable differences between the ability

estimates obtained under the 2D SRT model and the hierarchical model, with differences

up to 0.5 points not being uncommon. Thus, using the 2D SRT model instead of the

hierarchical model might lead to substantively different conclusions about ability. The

differences between the estimates obtained under the 2D SRT model and the IRTree

model are notably smaller, but still present. As discussed, these models differ less in their

ability to capture the patterns observed in the data, and the inferences based on these

models also appear to bemore similar. Compared to both the 1D SRT and the hierarchical
model, these two models allow for a relatively complex relationship between RT and

accuracy, which may explain why they result in relatively similar estimates of ability.

However, as noted, the conceptual differences between the twomodelsmight lead one to

prefer one over the other.

To study the degree to which model inferences depend on the choice of discretizing

RT,we compared the results obtained using the half-deadline split discretization (i.e., two-

category RTs)with those obtained using the three-way split (i.e., three-category RTs). The
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Figure 5. Estimates of θ under the different models for discretized response times.
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correlation between the ability estimates in the two-dimensional SRT models estimated

for two-category RTs and for three-category RTs was .987. The estimated correlation

between the speed and ability latent variables was .17 in the model for the three-category

RTs. Thus, the results obtained for the twodiscretizations hardly seem todiffer, suggesting
that the particular choice of discretization of RT need not have a notable impact on the

model inferences.

7. Discussion

In this paper a two-dimensional discretized SRTmodel is considered, whichmaintains the
idea of the traditional SRT model that RT may contain relevant information about ability,

while acknowledging that persons also differ in the speed at which they take the test. By

incorporating a speed latent variable, the proposed model aims both to remove the

confounding effect of speed for the estimation of ability that may occur under the

traditional SRT model, and to gain a more complete picture of the respondents and the

way in which they take the test. That is, the model provides information not only about

ability, but also about the speed at which a person takes the test. This latter latent variable

captures associations between RTs that are not explained by ability. As such, one can
expect it to be related to psychological attributes such as response caution and risk

seeking. However, the exact interpretation of this latent variable will likely depend on the

particular application that is considered, and empirical research would be needed to

validate any claim about this latent variable capturing a particular response tendency such

as response caution.

The proposedmodel makes use of dichotomized RT rather than continuous RT, and as

such does not have the standard SRT model as a special case. The dichotomization was

considered to enable the modelling of the speed latent variable using the toolbox of
multidimensional polytomous IRT. For this paper, a dichotomization at the middle of the

theoretical range of RT was used, and an item scoring motivated based on the SRT model

for continuous RT was implemented, in line with the scoring rule of Coomans et al.

(2016). However, depending on the application considered, it may make sense to use a

different dichotomization of RT. Care should be taken that using data-dependent

thresholds (such as those based on any form of median split) may be at odds with the idea

that a scoring rule should be determined a priori and communicated to the respondents.

While different dichotomizations of RT can be considered, itmay be emphasized that if
one wants to maintain a scoring rule that is based on the SRT model with continuous RT,

the choice of dichotomization should be reflected in the scoring rule. An alternative could

be to depart from the scoring rule suggested by the standard SRTmodel, for example if one

feels that the difference between a fast and a slow correct response should be seen as less

(ormore) indicative of an ability difference than thedifferencebetween a slowcorrect and

a slow incorrect response. Ultimately, the choice of the scoring rule should be subjected

to validation research if the purpose is to obtain unconfounded measurement of a

particular ability.
In addition to employing different dichotomizations of RT, one can consider using

different ways of discretizing RT, for example by binning it in three or more categories

(e.g., slow, medium, fast), as was also considered in the context of the empirical example.

For such a polytomous categorization of RT one would need to carefully consider the

scores that are assigned to each combination of RA and RT for both the speed and the

ability dimension, but such an approach might allow for finer-grained analysis of the
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response processes. Conversely, further study of the response processes might result in a

more informed decision on how to discretize RT and how to score the response outcomes

in themostmeaningful or relevantway.However, care should also be taken to avoid issues

with sparsity, which may arise if RTs are binned in more than a few categories.
It may be argued that in high-stakes testing settings, whatever scoring rule is adopted

and communicated to the respondents should bemaintained, and hence that it is up to the

respondents to optimize their test-taking behaviour in accordance with this scoring rule.

In this sense the respondentwho shows notable response caution on a testwhere the SRT

scoring rule is adopted is simply using a suboptimal testing strategy for which perhaps no

correction should be implemented. As such, itmaynot necessarily be appealing to employ

the two-dimensional discretized SRT model when dealing with a high-stakes test.

However, for low-stakes testing settings the main purpose is commonly to obtain as
accurate as possible a picture of the true ability of each respondent, and correcting for

distorting factors such as differences in response caution can be considered desirable.

Thus, the proposed model is likely to be of most use in low-stakes testing settings, such as

the application considered in the empirical example. Additionally, using the two-

dimensional model in low-stakes practice settings could be very useful for providing test

takers with feedback on the extent to which their response speed deviates from the

model-implied optimal response speed, with persons who have an extreme value on this

second latent variable likely benefiting from altering their test-taking behaviour. This kind
of feedback could be helpful if the same test takerwill later be facedwith a high-stakes test

where performance is evaluated based on the SRT scoring rule.
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