

Tilburg University

DevOps and Quality Management in Serverless Computing: The RADON Approach

Dalla Palma, Stefano; Garriga, Martin; Di Nucci, Dario; Tamburri, Damian A.; van den Heuvel,
Willem-Jan

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Dalla Palma, S., Garriga, M., Di Nucci, D., Tamburri, D. A., & van den Heuvel, W-J. (2020). DevOps and Quality
Management in Serverless Computing: The RADON Approach. Proceedings of the 8th European Conference
On Service-Oriented And Cloud Computing (ESOCC), .

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420851812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/8d552849-dab3-45ce-b971-e5bde5426626

DevOps and Quality Management in Serverless
Computing: The RADON Approach

Stefano Dalla Palma1, Martin Garriga1, Dario Di Nucci1,
Damian Andrew Tamburri2, and Willem-Jan Van Den Heuvel1

1 Jheronimus Academy of Data Science, Tilburg University, Netherlands
{s.dallapalma, m.garriga, d.dinucci, W.J.A.M.vdnHeuvel}@uvt.nl

2 Jheronimus Academy of Data Science, Technical University of Eindhoven,
Netherlands

d.a.tamburri@tue.nl

Abstract. The onset of microservices and serverless computer solutions
has forced an ever-increasing demand for tools and techniques to es-
tablish and maintain the quality of infrastructure code, the blueprint
that drives the operationalization of large-scale software systems. In the
EU H2020 project RADON, we propose a machine-learning approach
to elaborate and evolve Infrastructure-as-Code as part of a full-fledged
industrial-strength DevOps pipeline. This paper illustrates RADON and
shows our research roadmap.

Keywords: Infrastructure Code · Serverless Computing · Microservices
Computing · Software Quality · DevOps · Machine-Learning for Software
Quality · DataOps

1 Introduction

Not so long ago, companies and individuals used to provision and manage their
software on their in-house server and computing infrastructure. This behavior
implied several costs, such as the costs involved in buying and maintain machines
or hiring IT personnel. Therefore, those companies started outsourcing some re-
sponsibilities (for example, the management and maintenance of the infrastruc-
ture). The cloud has come, which, combined with virtualization and container-
ization, laid the ground for Infrastructure-as-a-Service, Platform-as-a-Service,
and Software-as-a-Service. These technologies allow for more outsourcing and,
as a result, a more focus on the business logic while delegating the management
of the infrastructure to those having great expertise in the field. Therefore, the
lead time has shortened, and the creation of software and its deployment has
become relatively easier, cheaper, and quicker. Serverless Function-as-a-Service
(FaaS) is a step forward in this evolution.

Function-as-a-service is a serverless way to execute modular pieces of code
on the edge. FaaS lets developers write and update a piece of code on the fly,
which can then be executed in response to an event, such as a user clicking on an
element in a web application. It allows for code scalability and is a cost-efficient

2 S. Dalla Palma et al.

way to implement microservices. Serverless FaaS came with several advantages,
among them:

– the business logic is deployed to the host in the cloud as code units in forms
of functions, which are fully managed by the provider (e.g., Amazon AWS,
Azure Lambda, Google Cloud Functions);

– the lead time, that is, the latency between the initiation and completion of
the development process, has shortened;

– less server-side work is needed: the provider is responsible for managing the
host machine. Thus, developers can focus on building the business logic.

In general, there are reduced costs and risks. However, serverless FaaS is not
a silver bullet, and new challenges arise.

From a survey conducted with serverless adopters, recurrent problems in
adopting serverless have emerged [2]. First, serverless is still relatively in its
infancy, and hence only a bunch of best practices for its adoption and operations
are available. Second, there are few design principles and patterns for composing
and triggering serverless functions. Third, few definitions of bad practices exist
in the digital-native technical domain, which should be amended.

Furthermore, the rising of serverless solutions, combined with microservices,
has forced an ever-increase demand for tools and techniques to establish and
maintain them across the entire DevOps lifecycle [1]. With those challenges in
mind, the RADON approach for serverless computing comes to play.

2 Objectives

RADON stands for “rational decomposition and orchestration for serverless
computing”, and is a project funded by the Horizon-2020 European program.
It aims to unlock the benefits of serverless computing and Function-as-a-Service
(FaaS), and broaden their adoption within the European software industry by
developing a model-driven DevOps framework and methodology to create and
manage applications based on fine-grained and independently deployable mi-
croservices exploiting the serverless paradigm through FaaS and container tech-
nologies.

In particular, this work introduces the key tools on the RADON methodol-
ogy, the user workflow, and their integration and cooperation in the context of
DevOps. The methodology strives to tackle complexity, harmonize the abstrac-
tion, enforce action-trigger rules, avoid Faas lock-in, and optimize decomposition
and reuse through model-based FaaS-enabled development and orchestration.

3 Early Results

We have currently defined the RADON Architecture, including (i) several work-
flows to organize and display the possible interactions between the tools of the
RADON framework and the identified actors and (ii) a tool-chain to define

The RADON Framework for Quality Infrastructure Code 3

microservices-based serverless applications with focusing on design-, development-
, and run-time.

In particular, RADON envisions a model-based approach to manage and
orchestrate modern, distributed, cloud-native application systems that will typ-
ically apply a microservice architecture and exploit the FaaS model. The overall
RADON framework features rotate around the RADON modeling environment.
The other tools are responsible for the correctness and quality of the generated
artifacts, such as the Verification, Continuous Testing, and Defect Prediction
tools. The framework uses the Topology and Orchestration Specification for
Cloud Applications (i.e., OASIS TOSCA) [3] as a baseline to define the RADON
models. TOSCA describes the topology generated via the Graphical Modeling
tool and the orchestration of cloud applications in a declarative manner. The
orchestration process takes place through the Orchestration tool, making it pos-
sible to integrate changes and deploy and monitor the application. An overview
of the architecture is depicted in Figure 1.

RADON
IDE

Graphical Modelling Tool

Decomposition Tool

Defect Prediction Tool

Verification Tool

Continuous Testing Tool

TOSCA
blueprint Orchestrator

CI/CD

Function-Hub

Monitoring

Data pipeline

Fig. 1. A broad overview of the RADON framework architecture

3.1 Graphical Modeling Tool

Rather than modeling the environment by manually define TOSCA blueprints,
the graphical modeling tool (GMT) enables the creation, development, and mod-
eling of TOSCA applications through a web-based software solution. Its main
goal is combing TOSCA service templates that represent the applications de-
ployed using the RADON Orchestrator. RADON users can then package their
applications as a CSAR (i.e., Cloud Service Archive) before it is deployed into
production by using the RADON Orchestrator.

4 S. Dalla Palma et al.

In the first year of the project, the main achievements provided the foun-
dation to graphically maintain RADON applications using the TOSCA Simple
Profile standard in version 1.3. Relying on Eclipse Winery as a baseline and by
extending it with the respective YAML-based modeling features, allowed a com-
prehensive modeling tool to graphically (i) create and adapt reusable modeling
entities, such as TOSCA Node Types and Policy Types; (ii) compose RADON
application structures in the form of TOSCA Service Templates; (iii) enrich ex-
isting RADON applications with test-related and performance-specific attributes
using TOSCA Policies; and(iv) export a portable archive containing all informa-
tion to execute the deployment by using the RADON Orchestrator.

3.2 Decomposition Tool

The topology generated by the GMT, or anyone imported into the tool, can
be passed as input to the decomposition tool to find the optimal decomposition
solution for an application based on the microservices architectural style and the
serverless FaaS paradigm, taking into account those constraints.

The tool provides suggestions to map abstract components to concrete tech-
nologies and adjust the topology itself. For example, to split a monolithic appli-
cation into microservices or microservices into serverless functions. The feedback
from the tool is sent back to the GMT, containing decomposition suggestions
and/or the revised TOSCA model.

In the first year of the project, we introduced several modularized approaches
to model the performance of applications based on microservices or server-
less functions. This tool enables to extend standard languages for IaC, such as
TOSCA, with a modeling formalism that describes the behavior of a RADON
application and predicts its performance. Such an aspect is essential to obtain
optimal deployment schemes.

3.3 Defect Prediction Tool

The same topology can be used by the Defect Prediction tool to analyze the
correctness of the delivered infrastructure code.

Indeed, like any other source code artifacts, infrastructure files (such as
TOSCA topology definitions or Ansible configuration files) may contain defects
that can preclude their correct functioning. The quality of these files should
evolve and be maintained through the entire system’s life-cycle. The defect pre-
diction tool supports the correctness of the infrastructure code developed using
the RADON framework and allows DevOps engineers to focus on critical files
that may be failure-prone while skipping the others. Thus, allocating resources
more efficiently, for example, for testing or code audit.

In the first year of the project, we designed and implemented its architec-
ture to automatically gather meaningful data to improve model performance.
More specifically, we developed a set of tools and framework to (i) automatically
crawl and mine projects from Github and Gitlab; (ii) extract code and process
metrics from Ansible playbooks and TOSCA blueprints; (iii) support DevOps

The RADON Framework for Quality Infrastructure Code 5

engineers in training defect-prediction models and identifying snapshots of files
containing defects. The tool exposes RESTful APIs that can be used locally or
deployed online to interact with the defect prediction tool. The APIs and the
MongoDB database will be publicly accessible to retrieve the models trained
during our in-vitro experimentations and those added by the community in the
future. However, organizations that do not want to expose their data/models
can deploy the APIs starting from an empty DB on-premises and grant access
to specific users. A command-line client was also developed to use the defect
prediction tool in a CI/CD pipeline. It provides functionalities to (i) train a
model from scratch using different configurations in terms of data balancing,
normalization, feature selection, and classifiers; (ii) download a model from the
online APIs; (iii) predict unseen instances based on the model trained with (i)
or collected with (ii).

3.4 Verification Tool

The verification tool enables a user to verify that a RADON model conforms to
a set of constraints (e.g., privacy, security, design pattern violations) before de-
ployment. While modeling the application via the GMT, the Software Designer
can set desired properties and constraints (e.g., security/privacy requirements)
using a Constraint Definition Language (CDL). The Software Designer can pro-
vide examples of the desired behavior through the RADON IDE or manually.
Upon the generated models, the software designer or the DevOps engineer can
use this tool to perform static checking upon their validity. When a violation
is encountered (e.g., circular calls, or privacy violations), the engineer can open
the corresponding artifact(s) in the RADON IDE for debugging.

During the first year of the project, the CDL and the command-line version
of the verification tool have been developed. It currently supports the verification
and the correction of a RADON model and can detect inconsistencies with the
constraints expressed in the CDL.

3.5 Continuous Testing Tool

The testing tool comprises several modules for microservices/FaaS testing and
a data pipeline that will support the continuous testing workflow of RADON.
It will provide a set of functionalities to support three main usage scenarios: (i)
test case definition, (ii) test execution, and (iii) test maintenance. Such scenarios
will help RADON users correctly test their application by creating, executing,
inspecting, and removing test cases. In the first year of the project, we specified
the requirements of the tool, designed its architecture, envisioned its integration
with the other tools of the framework, implemented a prototype, and showcased
a proof-of-concept based on two sample applications.

6 S. Dalla Palma et al.

4 Conclusions and Research Roadmap

The RADON project aims to define a decision-making toolkit to optimize micro-
services in terms of size, dependencies, and costs by leveraging a reference set
of architectural patterns and service templates [1]. To support this goal, the
RADON methodology will integrate a workflow that enables decision making
on architecture optimization through the decomposition tool. To avoid defective
infrastructures, it will detect defects through the defect prediction tool. To test
the application, the framework will check the application invariants against the
changes through the testing tool. Furthermore, the methodology will define the
operations and workflows to use the tools and how they should be integrated
and should cooperate. Finally, RADON aims at organizing and accelerating the
micro-services evolution in a team-based fashion. Security and privacy policies
will be automatically enforced in the run-time environment of the framework to
ensure protection for sensitive data and services.

References

1. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and
challenges of infrastructure-as-code: Insights from industry. In: 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). pp. 580–589.
IEEE (2019)

2. Lenarduzzi, V., Daly, J., Martini, A., Panichella, S., Tamburri, D.: Towards a tech-
nical debt conceptualization for serverless computing. IEEE Software (10 2020)

3. Matt Rutkowski, Chris Lauwers, C.N., Curescu, C.: Tosca simple pro-
file in yaml version 1.3 (2019), http://docs.oasis-open.org/tosca/
TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

