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Latent logistic interaction modeling: A simulation and empirical illustration of Type D 
personality
Paul Lodder 1, Wilco H.M. Emons 1, Johan Denollet 1†, and Jelte M. Wicherts 1

1Tilburg University

ABSTRACT
This study focuses on three popular methods to model interactions between two constructs containing 
measurement error in predicting an observed binary outcome: logistic regression using (1) observed 
scores, (2) factor scores, and (3) Structural Equation Modeling (SEM). It is still unclear how they compare 
with respect to bias and precision in the estimated interaction when item scores underlying the interac
tion constructs are skewed and ordinal. In this article, we investigated this issue using both a Monte Carlo 
simulation and an empirical illustration of the effect of Type D personality on cardiac events. Our results 
indicated that the logistic regression using SEM performed best in terms of bias and confidence interval 
coverage, especially at sample sizes of 500 or larger. Although for most methods bias increased when item 
scores were skewed and ordinal, SEM produced relatively unbiased interaction effect estimates when 
items were modeled as ordered categorical.

KEYWORDS 
Logistic regression; Factor 
score regression; Structural 
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Interaction effect; Type 
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Introduction

In the medical and behavioral sciences, researchers often inves
tigate the effect of predictor variables on a binary outcome 
variable. Occasionally, researchers are not only interested in 
the main effects of single predictors, but also in how multiple 
predictors influence each other’s effects on the outcome vari
able. When one predictor moderates the effect of another 
predictor, one speaks of an interaction effect. Although there 
are several ways to assess the interaction between two variables 
on a binary outcome measure, researchers typically use 
a logistic regression analysis. In the logistic regression model, 
the interaction effect is assessed by multiplying the observed 
scores of two (or more) constructs involved in the interaction, 
and including the resulting product variable as a predictor (e.g., 
see Field, 2010; Tabachnick & Fidell, 2007).

In psychological research, the two interacting constructs are 
commonly unobserved (latent) and measured with question
naires containing items measured on an ordinal scale. The 
scores on these items are typically summed and the resulting 
sum score is assumed to represent the construct of interest. 
One disadvantage of using such observed scores in regression 
analyses is that the presence of measurement error in these 
scores can either attenuate the regression coefficients or result 
in spurious effects (Busemeyer & Jones, 1983; Embretson, 1996; 
Kang & Waller, 2005; MacCallum et al., 2002). We will argue 
that this is especially true for interaction effects.

A second approach to assess such interactions is struc
tural equation modeling (SEM). This approach takes into 

account the measurement error in the observed item 
scores by specifying a measurement model that shows 
the association between a latent construct and the items 
used to measure the construct. This measurement model 
allows for separating the variance in the item scores 
caused by variation in the latent construct from the var
iance caused by residual factors (i.e. measurement error). 
However, SEM often requires a large sample size, espe
cially as models become more complex (Lomax & 
Schumacker, 2004; Kline, 2010).

A third approach to assessing interaction effects is by using 
factor analysis to first estimate the factor scores of the con
structs, and to subsequently regress the binary outcome mea
sure on the product of these estimated factor scores in a logistic 
regression (Devlieger & Rosseel, 2017; Lu et al., 2011). The key 
difference between this factor score interaction approach and 
the regular SEM approach is that the latter estimates the para
meters of the measurement and structural model in a single 
step, whereas the former estimates those parameters in two 
separate steps.

Although all three approaches are commonly used by 
applied researchers, it is still unclear how they perform 
with respect to bias and precision when estimating the 
interaction effect on a binary outcome measure when sam
ple size is small and the observed item scores are ordinal 
and non-normally distributed. In this study, we aim to 
answer this question based on both a Monte Carlo simula
tion and an empirical illustration.
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Type D personality

The Type D (“distressed”) personality construct (Denollet, 
2005) serves as a good case study for modeling interaction 
effects on binary outcome measures. First, some researchers 
(e.g., Lodder, 2020a; Smith, 2011) argue that the effect of Type 
D personality is best modeled as an interaction between its two 
subcomponents negative affectivity (NA) and social inhibition 
(SI). People with a Type D (distressed) personality tend to both 
experience negative emotions (i.e. NA) and are inhibited in 
expressing their emotions and behavior in social situations (i.e. 
SI). The two subcomponents NA and SI are hypothesized to 
show a combined synergistic effect that is more than the sum of 
their parts (Smith, 2011), suggesting the Type D effect is more 
than the additive NA and SI effects. A second reason why Type 
D personality serves as a good case study is that the medical 
outcomes associated with Type D personality are often mea
sured on a binary scale. For instance, a systematic review 
showed that patients with cardiovascular disease who have 
a Type D personality show an increased risk on adverse cardiac 
events (Denollet, Schiffer et al., 2010). These findings were 
corroborated by a meta-analysis (O’Dell et al., 2011). Another 
meta-analysis indicated that having a Type D personality 
imposes an increased mortality risk in people with coronary 
artery disease (Grande et al., 2012).

Most of the studies included in these meta-analyses did not 
operationalize Type D personality as an interaction between its 
two subcomponents NA and SI, but classified people as having 
a Type D personality when they showed a sum score of 10 or 
higher on both the NA and SI construct. This approach has 
been criticized (e.g., Smith, 2011) as it involves the dichotomi
zation of continuous variables, a practice known to reduce the 
power and effect size in statistical analyses and that may even 
give rise to spurious main- or interaction effects (MacCallum 
et al., 2002).

To answer this criticism, Denollet et al. (2013) showed that 
Type D personality, operationalized as the interaction between 
its two continuous subcomponents NA and SI, significantly 
predicted the later occurrence of major cardiac events. This 
study serves as a perfect case study for the present article, as the 
authors used a logistic regression analysis to assess the inter
action between two continuous predictor variables on a binary 
manifest outcome. Therefore, in the first part of the current 
study we will reanalyze the data of Denollet et al. (2013) and 
not only use the original logistic regression analysis, but also 
a logistic regression on factor scores and a logistic regression 
using SEM. As it not yet clear how these models perform with 
respect to the bias and precision of the estimated interaction 
effect when the item scores are ordinal and non-normally 
distributed, the second part of this article present the results 
of a Monte Carlo simulation study, assessing for each of those 
three interaction models the bias and precision in estimating 
the interaction effect under various conditions.

Modeling logistic interaction effects

Several methods exist to model an interaction between two con
tinuous variables on a binary manifest outcome variable. These 
methods all operate within a logistic regression framework, to 

model the effect of continuous predictor variables on a binary 
outcome variable. They model the interaction effect between two 
variables on a binary outcome variable by including in the regres
sion both the main effects of the two variables in the model, as well 
as their interaction. Let �1 and �2 be the latent predictors, respec
tively, and �1�2 their product representing their interaction. 
Furthermore, let p xð Þ ¼ PðCardiac eventjx ¼ �1; �2ð ÞÞ be the 
probability of a cardiac event, given a set of predictors �. The 
logistic model then equals: 

In
ρ�

1 � pð�Þ

� �

¼ β0 þ β1�1 þ β2�2 þ β3�1�2 (1) 

In Equation (1), the natural logarithm of the odds of an 
event (i.e. the log odds or logit) depends on an intercept (β0Þ, 
an effect (β1) of the first predictor (�1Þ, an effect (β2) of 
the second predictor (�2) and, most importantly, the interac
tion between those two predictors (β3).

We will now discuss three general methods used to model 
interaction effects when the outcome is both manifest and 
binary: (1) logistic regression on observed scores; (2) logistic 
regression using SEM; and (3) logistic regression on factor 
scores. These methods differ with respect to the theoretical 
meaning of the predictors �1 and �2 and in how they handle 
the measurement error in the item scores.

Logistic regression on observed scores
The approach most often encountered in introductory statis
tics textbooks involves modeling the interaction using logistic 
regression where the predictors are observed scores. According 
to this method, the terms �1 and in �2 Equation (1) can typically 
be seen as an unweighted sum of all questionnaire item scores 
measuring a construct. The interaction term is typically con
structed by multiplying the mean-centered sum scores of the 
two constructs constituting the interaction (e.g., see Field, 
2010, p. 279; or Tabachnick & Fidell, 2007, p. 442). Using 
observed scores in a regression analysis tacitly assumes that 
these scores are a perfectly reliable measure of the construct 
that is supposed to be measured. By assuming this, researchers 
ignore the measurement error that is often present in ques
tionnaire scores. Ignoring this measurement error leads to 
reduced standardized associations in subsequent analyses, 
a phenomenon known as attenuation bias (Spearman, 1904). 
Such attenuation bias is especially problematic when modeling 
interactions between two observed scores containing random 
measurement error. When multiplying unreliable observed 
scores to construct the interaction term, the measurement 
error of the resulting product variable is larger than the sum 
of the two parts, because the measurement error present in 
each of the two scores also gets multiplied rather than summed.

Logistic regression using SEM
A second approach to model interaction effects fits a structural 
equation modeling framework, combining a latent variable 
measurement model to model errors with a structural model 
expressing the relations between these latent variables. 
According to this SEM approach, the terms �1 and �2 in 
Equation (1) can be seen as the unidimensional latent variables 
representing the construct of interest. Within a SEM 
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framework, for each latent variable (�) a separate measurement 
model relates the vector of observed item scores (x) to the 
latent construct based on a vector of factor loadings (Λx) and 
a vector denoting measurement error (δ): 

x ¼ Λx� þ δ (2) 

Equations (1) and (2) together define the structural equation 
model, where (1) describes the structural model and (2) the 
measurement model. All parameters in a SEM model are 
simultaneously estimated. Note that within a SEM context 
a binary observed outcome can also be modeled as a latent 
variable with a single binary indicator by fixing the item’s 
factor loading and residual variance to specific values 
(Hayduk & Littvay, 2012). However, in the present study we 
used the observed binary outcomes in our SEM, similar to how 
the observed binary outcomes are modeled using the sum score 
and factor score regression methods.

There are different approaches to model interactions within 
a SEM framework. In its basic form, interaction effects are 
modeled by means of the product of two latent variables. 
However, within a latent variable modeling framework, inter
action (and other non-linear) effects can also be modeled using 
various other techniques. First, the indicant product approach 
(Kenny & Judd, 1984) multiplies the item scores of items 
loading on the first construct involved in the interaction, with 
the item scores of all possible combinations of items of the 
other construct involved in the interaction. These multiplica
tions constitute new items that are modeled to load on a new 
latent interaction variable. For example, when two latent con
structs are each measured with three items, nine different 
multiplications are possible between the item scores of these 
two sets of three items. Hence, nine new observed variables are 
created that will load on the new latent interaction variable.

The structural model then includes both the effects of the 
two original latent variables as well the new interaction vari
able, thus replacing the �1�2 by �int in Equation (1). Two main 
disadvantages of this method are (1) that the number of items 
loading on the new latent interaction variable can quickly get 
very large, and (2) that the method additionally requires the 
specification of a set of complex parameter constraints. To 
solve these problems, Marsh et al. (2004) proposed an uncon
strained approach that no longer needed the complex para
meter constraints and that modeled the latent interaction 
variable based on the same number of items as each latent 
variable involved in the interaction. In a simulation study, the 
authors showed that their unconstrained approach performed 
better than the traditional constrained approach.

Another popular method to model latent interaction effects 
is the Latent Moderated Structural equations (LMS) approach 
(Klein & Moosbrugger, 2000). This approach does not require 
new items loading on a latent interaction variable, but makes 
use of mixture modeling to express the non-normality of an 
interaction effect. Due to their multiplicative nature, the pro
duct scores representing interaction effects often show non- 
normal distributions, even when the latent variables involved 
in the interaction are themselves normally distributed. LMS 
models interaction effects by representing the joint distribution 
of the indicator variables as a mixture of normal distributions. 

The method assumes that the indicators of the latent predictor 
variables show a multivariate normal distribution. Earlier 
simulation studies showed LMS to perform very well when 
item scores are normally distributed, yet a violation of this 
assumption caused LMS to show more bias than for instance, 
the unconstrained approach (Cham et al., 2012; Marsh et al., 
2004).

Some other recently developed latent variable methods 
make use of mixture modeling to handle non-normally dis
tributed latent variables. Examples include the Nonlinear 
Structural Equation Mixture Modeling approach (NSEMM; 
Kelava et al., 2014) and an approach making use of Bayesian 
finite mixture models (Kelava & Nagengast, 2012). Although 
both approaches appear to be useful when modeling latent 
interaction effects, in the current study we decided to use the 
LMS approach, as it is commonly used by applied researchers, 
and is the default method implemented in the Mplus software 
(L. K. Muthén & Muthén, 1998–2011). Moreover, in a previous 
simulation study (Lodder et al., 2019) we found that LMS 
outperformed two unconstrained approaches with respect to 
minimizing bias and maximizing power when estimating the 
interaction between two continuous latent variables on 
a continuous outcome variable, even when the latent traits 
were non-normally distributed.

Logistic regression on factor scores
Although latent variable modeling is often considered the pre
ferred choice when analyzing associations between variables 
containing measurement error, latent variable approaches do 
have some disadvantages. First, they often require a large sam
ple size, especially when the models become more complex. 
Furthermore, because latent variables typically estimate all the 
parameters in a single step, increasingly complex models can 
produce unstable parameter estimates (Devlieger et al., 2019). 
To overcome these problems, researchers may use a two-step 
approach, called factor score regression (Lu et al., 2011).

This approach is similar to the logistic regression on 
observed scores, but the observed scores of the predictor vari
ables are replaced with factor scores estimated in a separate 
latent variable model. Accordingly, the terms and �2 in 
Equation (1) can be seen as the estimated factor scores of the 
constructs of interest. Factor score logistic regression differs 
from latent variable modeling approach in that it first estimates 
for each person the factor scores based on the item 
scores (Step 1), and then uses those estimated factor scores in 
a logistic regression (Step 2). Factor score regression requires 
a smaller sample size than structural equation models. In 
a recent simulation study, Devlieger and Rosseel (2017) 
showed that factor score regression can be a suitable alternative 
to structural equation modeling when estimating the effect of 
continuous latent predictor variables on continuous latent out
come variables.

Within a factor score regression framework there exist 
several techniques to estimate the factor scores that can be 
used in a subsequent regression analysis. Devlieger et al. 
(2016) showed that some of these techniques are inherently 
biased depending on whether factor scores or observed scores 
are used for the predictor or outcome variables.
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The authors compared four approaches to estimate factor 
scores: the (1) Regression method (Thurstone, 1935), (2) 
Bartlett method (Bartlett, 1937), (3) Bias avoiding method 
(Skrondal & Rabe-Hesketh, 2004), and (4) Bias correcting 
method (Croon, 2002). Devlieger et al. (2016) analytically 
showed that the latter two approaches should be unbiased, 
independent of whether factor scores or observed scores are 
used for the predictor or outcome variables. Their analysis also 
indicated that the Bartlett method is expected to only show bias 
when factor scores are used for the predictor variable(s). The 
reverse is true for the Regression method, which is expected to 
only show bias when factor scores are used for the outcome 
variable(s). The authors confirmed these predictions in 
a Monte Carlo simulation study where factor scores were 
used for both the predictor and outcome variables.

In the current study, the outcome variables concern differ
ent types of cardiac events that are directly observed. The 
predictor variables NA and SI could be considered unobserved 
latent variables. This means that the Bartlett approach is 
expected to show bias, while the remaining three approaches 
to estimate factor scores should be unbiased. Of those three 
approaches we decided to use the Regression approach in our 
study, because this is both one of the best known approaches 
and one of the easiest to implement by applied researchers. 

A� ¼ var �ð ÞΛx�� 1
x (3) 

Equation (3) shows how this Regression approach estimates the 
factor scores of a latent variable (A�) based on the variance of 
the latent factor var �ð Þ, the vector with factor loadings Λxð Þ

and the inverse of the model implied covariance matrix of the 
indicator variables �� 1

x
� �

. The last step of the factor score 
regression method is to use these estimated factor scores (and 
their interaction effect) as predictors in a logistic regression 
analysis.

Modeling skewed ordinal item scores

In clinical research, questionnaire item scores often show posi
tively skewed distributions (Reise & Waller, 2009), with lower 
response categories being more often endorsed than higher 
response categories. Such skewed distributions can be proble
matic if the statistical method used to analyze the data assumes 
these data to be normally distributed. Although linear regres
sion assumes the prediction residuals to be normally distribu
ted, logistic regression does not impose such distributional 
assumptions. Nevertheless, the continuous predictors in 
a logistic regression are assumed to have a linear relation 
with the logit of the binary outcome variable (Field, 2010).

In latent variable modeling, an assumption of maximum 
likelihood (ML) estimation applied to factor analysis is that the 
observed item scores are continuous and normally distributed 
(Bollen, 1989, pp. 131–134). Analyzing skewed ordinal item 
scores as if they are continuous and normally distributed can 
lead to biased parameter estimates and underestimated stan
dard errors, increasing the chance of false positive conclusions 
about the significance of these estimates, especially if there are 
five or fewer response categories (Dolan, 1994; B. Muthén & 
Kaplan, 1985; Kline, 2010; Rhemtulla, Brosseau-Liard & 

Savalei, 2012). Researchers could avoid this bias by using 
modeling techniques that do not assume the item scores to be 
normally distributed, such as (1) item response models (Rasch, 
1960; Birnbaum, 1968; Samejima, 1997) or (2) factor models 
that estimate the parameters using weighted least squares 
(WLS) estimation and fit the model to the polychoric correla
tion matrix rather than the product moment correlation 
matrix.

Another popular method to handle skewed ordinal item 
scores is (3) using ML estimation with robust standard errors 
and a robust statistic, such as the Satorra-Bentler correction 
(also known as MLR estimation; Satorra & Bentler, 2010). In 
a previous Monte Carlo simulation study (Lodder et al., 2019), 
we found that when item scores are ordinal and non-normally 
distributed, using MLR estimation adequately controls the false 
positive rate when estimating the interaction between two 
latent variables on a continuous latent outcome variable, 
while WLS estimation resulted in an inflated false positive 
rate. Therefore, in the present study we chose to estimate the 
parameters of our latent variable models using MLR estima
tion. In earlier work (Lodder et al., 2019), we also showed that 
a linear regression on sum scores resulted in negatively biased 
interaction effects as well as inflated false positive rates. It is not 
yet clear, however, whether these results also apply to regres
sion models with a binary and manifest outcome, especially 
because logistic regression, as opposed to linear regression, 
does not assume the prediction residuals to be normally 
distributed.

According to an earlier simulation study, latent variable as 
well as factor score regression methods showed a negative bias 
in the standard errors of the structural regression coefficients 
when the item scores were non-normally distributed 
(Devlieger et al., 2016). However, this simulation study only 
investigated the main effect of continuous latent predictor on 
a continuous latent outcome, raising the issue of whether 
skewed item scores also result in biased standard errors when 
estimating the interaction effect of two continuous latent vari
ables on a binary and manifest outcome.

The main goal of the present study is to compare several 
popular methods to model interactions between two continu
ous latent variables on a binary and manifest outcome variable. 
It is not yet known how these methods perform in terms of 
bias, accuracy and precision, especially when the item scores 
underlying the two continuous constructs are non-normally 
distributed and measured on an ordinal scale. We aim to shed 
more light on this issue using both a Monte Carlo simulation as 
well as an empirical illustration.

Study overview

In Study 1, our empirical illustration, we investigate the effect 
of Type D personality on the two endpoints major cardiac 
event (MACE) and myocardial infarction (MI) separately, and 
after adjusting for theoretically important confounding factors 
(see Denollet et al., 2013). Figure 1 shows the structural equa
tion model of the relation between Type D Personality (mod
eled as the interaction between NA and SI) and Cardiac Events, 
while controlling for the covariates depression, age, gender, MI 
at baseline, percutaneous coronary intervention (PCI) at 
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baseline, coronary artery bypass grafting (CABG) at baseline, 
left ventricular ejection fracture (LVEF), and poor exercise 
tolerance (ET).

As the Type D personality effect is hypothesized to reflect an 
interaction between its components negative affect and social 
inhibition (Smith, 2011), we studied four methods to model 
this interaction effect: (1) logistic regression, modeling the 
interaction as a multiplication of sum scores, (2) logistic regres
sion, modeling the interaction as a multiplication of factor 
scores, (3) latent logistic regression, modeling the interaction 
using the LMS approach in a structural equation model treat
ing the ordinal item scores as continuous, and (4) latent logistic 
regression using LMS, but modeling the item scores at their 
appropriate measurement level (ordered categorical).

NA and SI, the two constructs involved in the interac
tion, are measured with multiple items measured on an 
ordinal and occasionally positively skewed scale. It is still 
unclear how these interaction models perform with respect 
to bias and precision when the observed outcome is binary 
and the item scores of the exogenous latent variables are 

ordinal and non-normally distributed. Therefore, in Study 2, 
we aimed to answer this question by conducting a Monte 
Carlo simulation investigating to what extent the models 
used in Study 1 provided accurate and stable parameter 
estimates, while varying across (1) sample size, (2) the 
reliability of the NA and SI scales (3) the size of the inter
action effect, (4) skewness in the latent NA and SI traits, and 
(5) skewness in the item scores (while the latent NA and SI 
traits are normally distributed). This simulation should pro
vide valuable information on the bias and accuracy of these 
popular methods to study interaction effects on dichoto
mous outcomes.

Study 1: Empirical illustration

Method

Participants
Secondary data were used of a study by Denollet et al. (2013), 
containing a sample of 541 patients with cardiovascular 
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disease. The mean age of these patients was 58.7 years 
(SD = 10.5) and 87% were men. The patients were included 
from Antwerp University Hospital Belgium between 
January 1998 and December 2005. The Medical Ethics 
Committee of the hospital approved of the study protocol (5/ 
48/193). Patients filled out the psychological questionnaires at 
baseline and after 5 years each patient (or family) was con
tacted to determine the end points (see below). All participants 
gave informed consent.

Measures
End Points. We investigated two different but related end
points marking the occurrence of a cardiac event: The major 
cardiac event (MACE) and cardiac death or myocardial infarc
tion (MI). The endpoints are related in such a way that every 
MI is a MACE, but not every MACE is an MI. Time-to-event 
data were not available for these endpoints, explaining our 
choice for logistic regression rather than cox regression.

Type D Personality. The traits underlying Type D personality 
(NA and SI) were measured using the DS14 questionnaire 
(Denollet, 2005). Each trait was measured with a scale consist
ing of seven questions with five ordinal response categories 
ranging from “false” (0) to “true” (4). The DS14 has been 
validated in several populations (Denollet, 2005) and several 
studies showed a two-factor structure to best fit the data (Nefs, 
Pouwer & Denollet, 2012; Romppel, Herrmann-Lingen, Vesper 
& Grande, 2012). In our sample both NA and SI showed 
a coefficient alpha of .87.

Depression. Depressive symptoms were measured using the 
ten-item version of the Beck Depression Inventory (BDI10; 
Denollet, Martens et al., 2010), with each item having three 
ordinal response categories ranging from 0 through 2. Because 
depressive symptoms may confound the relation between Type 
D personality and cardiac events, we included the BDI10 score 
as a covariate in our models. The BDI10 has been validated in 
both the general- and a post-MI population (Denollet, Martens 
et al., 2010). In our sample, the coefficient alpha of the BDI10 
was .83. In our latent variable analyses we also added 
a measurement model for the BDI10 to adjust the Type 
D personality effect for the latent depression score.

Model building
For the logistic regression on sum scores method, the interac
tion variable was constructed by multiplying the mean- 
centered NA and SI sum scores. To account for uncertainty 
in the factor scores when estimating the standard errors, the 
R-package boot (version 1.3–24; Canty & Ripley, 2019) was 
used to bootstrap the standard errors using 1000 bootstrap 
samples. To identify our latent variable models, we fixed the 
first factor loading of each latent trait to a value of one. For 
each of the two cardiac endpoints separately, we fitted four 
nested models where we regressed the endpoints on the cov
ariates and on Type D personality. In Model 0 we only included 
the covariates age, sex, depression, ET, LVEF, MI at baseline, 
CABG at baseline and PCI at baseline. Subsequently, in Model 
1 we added the main effects of NA and SI. To make sure the 
interaction effect between NA and SI would not merely reflect 

an unmodeled quadratic effect (Lodder, 2020b; MacCallum & 
Mar, 1995), we added the quadratic effects of NA and SI in 
Model 2. Finally, in Model 3 we included the interaction 
between NA and SI. We assessed the interaction between NA 
and SI according to four different methods: (1) Logistic regres
sion of sum scores using maximum likelihood (ML) estima
tion, (2) Logistic regression of cardiac events on factor scores 
using robust maximum likelihood (MLR) estimation to esti
mate the parameters in the NA and SI measurement models, 
(3) latent logistic regression using LMS with MLR estimation 
(treating ordinal items as continuous), and (4) latent logistic 
regression using LMS with MLR estimation, modeling the 
ordered categorical items using polychoric threshold para
meters. Although earlier research has advocated to use 
weighted least squares estimation (Flora & Curran, 2004) for 
ordered categorical SEM, the software used to estimate latent 
interaction effects according the LMS method only allowed for 
MLR estimation.

Model fit
For our latent variable models, model fit was assessed by 
inspecting the Akaike (1974) Information Criterion (AIC; 
Akaike, 1974), the Bayesian Information Criterion (BIC; 
Schwarz, 1978), the sample size adjusted BIC (SABIC). When 
numerical integration is required (e.g., when modeling latent 
interactions with the LMS method), means, variances, and 
covariances are not sufficient statistics for model estimation 
and chi-square and related fit statistics are not available. As 
a result, for the LMS method the Mplus software does not 
report the chi-square statistics and related indices (RMSEA, 
CFI, TLI). We therefore decided to report these fit indices only 
to assess the fit of the correlated measurement models. With 
respect to the fit of the interaction model, we compared the fit 
of the nested models by conducting a difference test based on 
the log likelihood values of the two compared models. For LMS 
these log likelihood values are adjusted based on scaling cor
rection factors obtained with MLR estimation. P-values smaller 
than .05 were considered statistically significant.

Software
We conducted the hierarchical logistic regression analysis in 
IBM SPSS Statistics 23. We used the Mplus software (Version 
8; L. K. Muthén & Muthén, 1998–2011) to analyze our latent 
interaction models. All other analyses were conducted using 
the freely available R programming software (Version 3.2.3; 
R Development Core Team, 2008), including the R-package 
Lavaan (Version 0.6.1; Rosseel, 2012) to model the factor score 
logistic regression and the R-package Amelia II (Version 1.7.5; 
Honaker et al., 2011) to handle any missing data. Based on 
guidelines by Lodder (2013), we used multiple imputation to 
impute any missing values in the DS-14 or BDI10 item scores 
and we imputed 10 datasets. Parameter estimates and fit 
indices were pooled across imputed datasets. SPSS reported 
pooled results for the sum score regression models. The pool
ing of the factor score regression models was done using the 
R-package semTools (Jorgensen et al., 2019). Lastly, Mplus 
provided the pooled results for the latent interaction models 
(Asparouhov & Muthén, 2010). As only a few observations 
were missing, the test statistics and fit indices were similar 
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across the imputed datasets. Our analysis scripts can be found 
on the open science framework: https://osf.io/yhvnp/.

Hypotheses
We first expected to reproduce the findings of Denollet et al. 
(2013), who originally analyzed this dataset using hierarchical 
logistic regression analysis on the NA and SI sum scores. 
However, Denollet et al. (2013) did not adjust for quadratic 
NA and SI effects and ignored the missing values when com
puting the NA, SI and BDI10 sum scores. We did not expect 
this to have a major impact on the results. Our second expecta
tion was that the four methods to model the interaction 
between NA and SI would produce approximately similar 
results. However, we expected the logistic regression method 
based on observed sum scores to show smaller effects com
pared to the latent variable and factor score logistic regressions 
because it does not take into account the measurement error 
present in the observed item scores.

Results

Of all 514 participants, 113 patients (20.89%) experienced 
a MACE. Of those 113 MACE patients, 47 (8.69%) experienced 
MI. On 6 items of the DS14, 8 patients showed a total of 9 
missing values. On 10 items of the BDI, 13 patients showed 
a total of 31 missing values. We used multiple imputation to 
impute these missing values before running our main analyses. 
Little’s (1988) MCAR test suggested that the missing values are 
likely missing completely at random, χ2(255) = 289.62, p = .067. 
For the MACE endpoint, Table 1 shows the results of the sum 
score and factor score methods to model interaction effects for 
the MACE and MI endpoints, while Table 2 shows those results 
for the two SEM LMS methods. The latent variables NA and SI 
both showed adequate factor indeterminacy values (NA = .948; 
SI = .940). To estimate the factor scores required for the factor 
score regression, a correlated three factor model (NA, SI, 
depression) was estimated and factor scores were computed 
for further analyses. The CFA showed a reasonable yet sub
optimal fit to the data (χ2(239) = 637.775, p < .001; 
RMSEA = .056, 95% CI = [.050, .061]; CFI = .907; TLI = .892).

Major cardiac events (MACE)
Logistic Regression on Sum Scores. According to the logistic 
regression using the NA and SI sum scores, the −2LL difference 
test indicated that after adjusting for covariates, the model 
including the interaction between NA and SI on MACE fitted 
the data better than the models without the interaction term, χ2 

(1) = 6.489, p = .011. The main- and quadratic effects of NA 
and SI failed to reach significance in all tested models. In Model 
3, the interaction between NA and SI on MACE was statisti
cally significant (OR = 1.411, 95% CI = [1.063, 1.873]). This 
effect is reasonably similar to the effect found in the original 
study (OR = 1.36, 95% CI = [1.11, 1.67]).

Logistic Regression on Factor Scores. First, the correlated 
three factor model (NA, SI, depression) showed a less than 
optimal fit to the data, (χ2(249) = 779.347, p < .001; 
RMSEA = .063, 95% CI = [.058, .067]; CFI = .867; 
TLI = .852). The factor scores were saved and subsequently 

used in the logistic regression to predict MACE. The residual 
deviance difference test indicated that after adjusting for cov
ariates, the model including the interaction between NA and SI 
on MACE yielded a better fit than the models without the 
interaction term (χ2(1) = 6.070, p = .014). The main- and 
quadratic effects of NA and SI failed to reach significance in 
all tested models. In Model 3, the interaction between NA and 
SI on MACE was statistically significant (OR = 1.484, 95% 
CI = [1.030, 2.140]).

Logistic Regression Using SEM LMS (Continuous). When 
using SEM to estimate the latent interaction using the LMS 
approach, treating ordinal items as continuous, the −2 log 
likelihood (−2LL) difference tests preferred the model with 
covariates only (Model 0) to all other models (including the 
main-, quadratic-, and interaction effects of NA and SI). 
Based on the AIC we would choose the model including the 
interaction term, yet the BIC preferred the model with cov
ariates only, while the SABIC preferred both models equally. 
Inspection of the regression coefficients of the latent interac
tion models showed non-significant main- and quadratic 
effects for NA and SI, yet their interaction was significant 
(OR = 1.582, 95% CI = [1.042, 2.402]). Although the model 
including the interaction did not show the best model fit, the 
estimated interaction effect points in a similar direction as the 
regular logistic regression effect reported above.

Logistic Regression Using SEM LMS (Categorical). When 
modeling the ordered categorical items not as continuous, but at 
their appropriate ordinal measurement level, both the −2LL dif
ference test as well as the AIC, BIC and SABIC indicated that the 
model including the latent interaction between NA and SI best 
fitted the data. The estimated regression coefficients revealed non- 
significant main- and quadratic effects for NA and SI, but 
a significant interaction (OR = 1.85, 95% CI = [1.11, 3.08]).

Myocardial infarction (MI)
Logistic Regression on Sum Scores. According to the logistic 
regression using the NA and SI sum scores, the −2 log like
lihood difference test indicated that after adjusting for covari
ates, the model including the interaction between NA and SI on 
MI fitted the data better than the models without the interac
tion term, χ2(1) = 11.12, p = .001. The main effects of NA and 
SI failed to reach significance in all tested models. However, in 
Model 3 there was a negative significant quadratic effect of SI 
(OR = 0.532, 95% CI = [0.314, 0.900]). This model also showed 
a significant interaction between NA and SI on MI 
(OR = 2.469, 95% CI = [1.269, 4.805]). This effect is substan
tially larger than the effect found in the original study 
(OR = 1.48, 95% CI = [1.11, 1.96]). Further re-analysis of the 
original data showed that this larger effect results from first 
including the quadratic effects in our model.

Logistic Regression on Factor Scores. The residual deviance 
difference test indicated that after adjusting for covariates, the 
model including the interaction between NA and SI on MI 
fitted the data better than the models without the interaction 
term, χ2(1) = 9.421, p = .002. The main- effects of NA and SI 
failed to reach significance in all tested models. In Model 3, 
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both the interaction between NA and SI on MI (OR = 2.647, 
95% CI = [1.110, 6.280]) and the negative quadratic effect of SI 
(OR = 0.476, 95% CI = [0.239, 0.940]) were statistically 
significant.

Logistic Regression Using SEM LMS (Continuous). According 
to the logistic regression conducted within a SEM frame
work and using the LMS approach to model the interac
tion between the latent variables NA and SI, the −2LL 
difference test indicated that after adjusting for covariates, 
the model including the interaction between NA and SI on 
MI fitted the data better than the models without the 
interaction term, χ2(1) = 6.929, p = .008. However, 
although based on the AIC and SABIC we would choose 
the model including the interaction term, the BIC pre
ferred the model with covariates only. Inspection of the 
regression coefficients of the latent interaction models 
showed non-significant main effects for NA and SI, yet 
their interaction was significant (OR = 3.706, 95% 
CI = [1.246, 11.021]). There also turned out to be a sig
nificant negative quadratic effect for SI (OR = .359, 95% 
CI = [0.151, 0.853]), suggesting that higher SI scores are 
associated with a lower chance on MI and that this effect 
gets stronger at higher levels of SI. Although the model 
including the interaction did not show the best model fit 
according to the BIC and SABIC, the estimated interaction 
effect points in a similar direction as the regular logistic 
regression effect reported above.

Logistic Regression Using SEM LMS (Categorical). When 
modeling the ordered categorical items not as continuous, 
but at their appropriate ordinal measurement level, both the 
−2LL difference test as well as the BIC and SABIC indicated 
that the model with covariates only (without any of the Type 
D effects) best fitted the data. The AIC preferred model 3, 
including the interaction effect between NA and SI. This 
model showed a significant latent interaction effect between 
NA and SI (OR = 4.36, 95% CI = [1.20, 15.83]), yet the con
fidence interval was very broad, likely due to the small number 
of observed MI events.

Synthesis
These results support the hypothesis that Type 
D personality, operationalized as the interaction between 
NA and SI, predicts the occurrence of a major cardiac 
events, and even more strongly predicts the occurrence of 
a cardiac death or myocardial infarction. Figure 2 shows the 
factor score distributions of NA, SI & NA x SI, separately for 
people who did (red curve) or did not (green curve) have 
a cardiac event. The top row shows the results for the MACE 
endpoint and the bottom row for the MI endpoint. The top 
of each plot shows the result of the two sample Kolmogorov- 
Smirnoff test for the equality of the two distributions. As the 
main effects of NA and SI were not associated with both 
MACE and MI, we expect the factor score distributions of 
people with- and without a cardiac event to be samples from 
the same population distribution. Conversely, because the 

Table 2. Association between Type D personality and Major Cardiac Events (MACE) and Myocardial Infarction (MI), modeling the interaction with SEM and the LMS 
approach, assuming the ordinal items to be continuous or categorical.

Method SEM LMS (continuous) SEM LMS (categorical)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

MACE
−2 log likelihood −13749.54 −13747.61 −13744.86 −12493.70 −12491.78 −12487.36
Difference test ‡ χ2 (2) = 1.04 χ2 (2) = 1.94 χ2 (1) = 2.74 χ2 (2) = 0.98 χ2 (2) = 1.92 χ2 (1) = 4.42*
AIC 27671.08 27671.21 27667.73 25215.40 25215.56 25208.72
BIC 28040.32 28049.03 28049.84 25704.85 25713.60 25711.04
SABIC 27767.32 27769.69 27767.32 25342.97 25345.37 25339.65

Type D Personality
NA 0.76 (0.47, 1.23) 0.69 (0.42, 1.11) 0.66 (0.39, 1.1) 0.8 (0.51, 1.24) 0.81 (0.53, 1.24) 0.76 (0.47, 1.24)
SI 1.19 (0.92, 1.54) 1.14 (0.86, 1.51) 1.19 (0.85, 1.66) 1.15 (0.88, 1.51) 1.15 (0.89, 1.48) 1.17 (0.84, 1.63)
NA2 - 1.16 (0.94, 1.43) 0.95 (0.71, 1.28) - 1.12 (0.94, 1.34) 0.85 (0.62, 1.17)
SI2 - 1.12 (0.91, 1.37) 0.9 (0.66, 1.21) - 1.13 (0.94, 1.34) 0.85 (0.62, 1.17)
NA x SI - - 1.58 (1.04, 2.4)* - - 1.85 (1.11, 3.08)*

MI
−2 log likelihood −13629.62 −13630.12 −13623.19 −12372.21 −12370.93 −12367.70
Difference test ‡ χ2 (2) = 0.21 χ2 (2) = 0.50 χ2 (1) = 6.93* χ2 (2) = 0.12 χ2 (2) = 1.28 χ2 (1) = 3.23
AIC 27431.23 27436.24 27424.38 24972.42 24973.86 24969.40
BIC 27800.47 27814.06 27806.50 25461.87 25471.85 25471.33
SABIC 27527.47 27534.72 27523.98 25100.00 25103.67 25100.33

Type D Personality
NA 0.81 (0.41, 1.61) 0.7 (0.34, 1.42) 0.75 (0.34, 1.68) 0.89 (0.47, 1.68) 0.9 (0.5, 1.62) 0.92 (0.44, 1.93)
SI 1.03 (0.75, 1.42) 1.1 (0.73, 1.66) 1.03 (0.51, 2.08) 0.99 (0.71, 1.38) 0.99 (0.67, 1.45) 0.9 (0.44, 1.83)
NA2 - 1.32 (1.01, 1.72)* 0.82 (0.5, 1.34) - 1.24 (1.01, 1.52)* 0.72 (0.44, 1.18)
SI2 - 0.85 (0.6, 1.19) 0.36 (0.15, 0.85) - 0.87 (0.65, 1.17) 0.36 (0.13, 1.02)
NA x SI - - 3.71 (1.25, 11.02)* - - 4.36 (1.2, 15.83)*

All effects were adjusted for the covariates Age, Sex, MI at baseline, Percutaneous Coronary Intervention at baseline, Coronary Artery Bypass Grafting at baseline, Left 
Ventricular Ejection Fracture, Poor Exercise Tolerance and Depression. 

Model 0: Covariates only (not shown in table); Model 1: Covariates + NA & SI main effects; Model 2: Covariates + NA & SI main + quadratic effects; Model 3: Covariates + 
NA & SI main + quadratic + interaction effects 

* p <.05. All effects are reported as exponentiated regression coefficients, interpretable as odds ratios. A regression coefficient is statistically significant if the confidence 
interval does not include an odds ratio of 1. 

‡ This row shows the likelihood ratio test between a model and the nested previous model. The difference in −2LL is chi-square distributed.
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interaction between NA and SI significantly predicted the 
occurrence of both MACE and MI, we expect the factor 
score distributions of people with- and without a cardiac 
event to differ. The results of the two sample Kolmogorov- 
Smirnoff tests confirmed these expectations. The null 
hypothesis of equal factor score distributions for people 
with- and without an event could not be rejected for the 
NA and SI factor scores, but was rejected for the NA x SI 
interaction factor scores for both MACE (D = .224, p < .001) 
and MI (D = .266, p = .005).

In general, the four methods to model the interaction 
effect agreed on the direction and the statistical signifi
cance of the interaction effect, but differed in their 
estimated size of the interaction. As expected, the 
effects of the sum score logistic regression analyses 
were smaller than those of the other two methods, likely 
because this approach did not take into account the 
measurement error in the item scores. However, the 
interaction effects estimated by the two latent logistic 
regression approaches using LMS were substantially lar
ger than the effects estimated by the factor score logistic 
regression.

An earlier study comparing four factor score regression 
methods (Devlieger et al., 2016) analytically and numerically 
showed that the Regression method should not be biased when 
factor scores are only used for the predictors and the outcome 
is observed. However, their simulation study involved contin
uous outcome variables and did not include interaction effects, 
making it difficult to generalize these findings to the models 

applied in the current study. In our second study we aimed to 
shed more light on this issue by conducting a Monte Carlo 
simulation study, comparing the bias, power and false positives 
of four methods used to model interaction effects on binary 
observed outcomes.

Study 2: Monte Carlo simulation

Method

Procedure
In our simulation study, we varied five different design para
meters: scale (continuous, ordinal), scale reliability (0.60, 0.87), 
skewness (no skewness, moderate latent skewness, high latent 
skewness, moderate item skewness, large item skewness), the size 
of the interaction (0, 0.154, 0.308, 0.616) and sample size (250, 
500, 1000). This resulted in a fully-crossed factorial design with 
2x2x5x4x3 = 240 conditions. We simulated 500 datasets in each 
of those 240 conditions and we analyzed each of those datasets 
with four different methods to model interaction effects.

Design Parameter 1: Scale Measurement Level. The first 
design parameter was the scale level of the simulated 
DS14 items. We either simulated continuous item scores 
or ordinal item scores with five response categories (0–4 
Likert scale).

Design Parameter 2: Scale Reliability. The second design 
parameter was the reliability of the NA and SI scales. We 

Figure 2. Factor score distributions of NA, SI, & NA x SI, separately for people who did (red/straight curve) or did not (green/broken curve) have cardiac events. The top 
row shows the results for the MACE endpoint and the bottom row for the MI endpoint. The top of each plot shows the result of the two sample Kolmogorov-Smirnoff 
test for the equality of the two distributions.
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simulated both scales to either have a reliability observed in 
Study 1 (0.87), or a substantially lower reliability of 0.60. This 
lower reliability was achieved by multiplying all estimated 
Study 1 factor loadings of the NA and SI measurement models 
with 0.7.

Design Parameter 3: Latent Skewness. The third design para
meter was the amount of skewness in the distribution of the 
latent traits NA and SI. We used the method of Vale and 
Maurelli (1983) as implemented in the R-package fungible 
(version 1.5; Waller, 2016), to simulate a multivariate distribu
tion of NA and SI. We varied across three latent skewness 
values (0, 2 and 3; with corresponding kurtosis values 0, 7 
and 21), while retaining the product moment correlation 
between NA and SI (Study 1 estimate of .428). Besides gener
ating skewness on the latent level, in some ordinal item scenar
ios skewness was also generated on the item level while keeping 
the underlying latent traits normally distributed (see Data 
simulation paragraph).

Design Parameter 4: Size of Interaction. The fourth design 
parameter indicated the strength of the interaction between 
NA and SI on depression. We based the true size of the inter
action on the standardized regression coefficient of the esti
mated interaction effect in Study 1 according to the LMS 
approach (β = .308). In our simulation, we allowed the inter
action to be either absent (0), half the size of the Study 1 
interaction (0.154), the exact size of the Study 1 interaction 
(0.308), or twice the size of the Study 1 interaction (0.616).

Design Parameter 5: Sample Size. The fifth design parameter 
indicated the sample size of the simulated dataset. We varied 
across small (n = 250), medium (n = 500) and large (n = 1000) 
sample size conditions. The number of items loading on 
a construct was not manipulated in this simulation. As this 
may also affect the power to detect interaction effects, readers 
are advised to interpret our findings using the number of cases 
per variable (n/p ratio) rather than the raw sample size. For the 
sample sizes included in our simulation (250, 500, 1000) the n/ 
p ratios are approximately 18, 36 and 72.

Data simulation
For each of the 240 conditions, we simulated 500 datasets 
containing scores on items measuring the constructs NA (7 
items) and SI (7 items). We generated data using the parameter 
estimates (i.e., factor loadings, latent (co)variances, regression 
coefficients, thresholds and error variances) of the latent inter
action model in Study 1.1 First, we randomly sampled vectors 
of NA and SI latent trait scores according to the multivariate 
skew distribution, given the NA and SI (co)variance(s) from 
Study 1 and given the skewness design parameter. Second, 
continuous item scores for each individual (i) and for each 
item (j) measuring the traits (t) NA or SI were obtained as 
follows: 

Yij ¼ λjt�ti þ εij (4) 

As input we used a matrix with individual NA and SI trait 
scores (Ξ), the factor loading matrix retrieved from Study 1 
(Λ), and residual error matrix (Θ) based on a multivariate 
normal distribution with a mean vector of zeroes and 
a diagonal covariance matrix with variances retrieved from 
the output in Study 1. In line with earlier research (Flora & 
Curran, 2004), for ordinal scenarios with latent skewness we 
transformed these continuous item scores into ordinal scores 
using the symmetric Case 1 thresholds (−1.645, −0.643, 0.643, 
1.645) proposed by B. Muthén and Kaplan (1985) .2 In scenar
ios where skewness was generated on the item level while 
keeping the latent NA and SI traits normally distributed, we 
used the Case 2 (−1.645, −0.643, 0.643, 1.645) and Case 3 
(−1.645, −0.643, 0.643, 1.645) thresholds to transform the 
normally distributed continuous item scores into skewed ordi
nal item scores.

To simulate the cardiac event scores, we had to take into 
account that these scores depended on the scores of both the 
latent NA and SI traits as well as the interaction between NA 
and SI. Therefore, we used Equation (5) to compute the event 
probabilities based on a logistic regression model: 

ρCi ¼
1

1þ e� β0þβSI�SIiþβNA�NAiþβNA�SI�NAi�SIið Þ
(5) 

In Equation (5), ρCi denotes the probability of a cardiac event 
score of individual i. β0represents the intercept and the three 
other β0s denote the standardized regression coefficients of the 
structural logistic regression of MACE on NA (�NAi), SI (�SIi) 
and the interaction between NA and SI (�NAi � �SIi). Lastly, 
e denotes the base of natural logarithms.

Statistical methods
After simulating 500 datasets in each of the 240 conditions, we 
analyzed each dataset according to the same methods used in 
Study 1: (1) Logistic regression of sum scores using maximum 
likelihood (ML) estimation, (2) Logistic regression of factor 
scores based on the Regression method and using MLR to 
estimate the parameters in the NA and SI measurement mod
els, and (3) Latent variable interaction using LMS with MLR 
estimation while treating the ordinal items as continuous. In 
scenarios involving ordinal item scores we also estimated the 
latent interaction effect using (4) LMS with MLR estimation 
while modeling the items as ordered categories using polycho
ric threshold parameters. We implemented all latent interac
tion models in Mplus and conducted the simulation using the 
R-package MplusAutomation (Hallquist & Wiley, 2011). The 
R-script of this simulation study is available at this project’s 
open science framework page: https://osf.io/yhvnp/.

Outcome measures
Our main outcomes were bias, precision and accuracy of the 
estimated interaction effects. The bias was computed as the 

1We used the parameter estimates resulting from the LMS method, because this is the default method in Mplus to model interaction effects. We focused on the MACE 
endpoint, because the MI endpoint shows a relatively low proportion of participants with an event compared to the MACE endpoint. For reasons of simplicity, we did 
not study the effects of covariates in this Monte Carlo simulation. We therefore fitted the Study 1 LMS model without covariates and used those parameter estimates 
as input for our simulation study.

2The average estimated skewness of the simulated skewed ordinal item scores was .16 and .20 when the generated latent skewness was equal to 2 and 3, respectively.
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difference between the mean of the parameter estimate across 
500 replications and the true value; that is, the β values used to 
generate the data. We used the standard deviation and corre
sponding 95% variability interval of the parameters estimates 
across the 500 replications as a measure of precision. We also 
assessed the mean squared error (MSE) as a measure of accu
racy, where MSE is defined as the squared distance between the 
estimated value of the interaction effect and the true value of 
the interaction effect, averaged across 500 replications. 
Additionally, we computed for each condition, a 95% confi
dence interval coverage rate, as the percentage of replications 
where the 95% confidence interval of a single estimated inter
action effect contained the true value of the interaction effect. 
Lastly, we determined in each condition the percentage of 
replication with a significant estimated interaction effects, in 
order to shed light on the power to detect non-zero interaction 
effects and the percentage of false positives when the true 
interaction effect was equal to zero.

Expectations
We expected the sum score method to underestimate the true 
size of the interaction because this approach does not take into 
account the measurement error inherent in the item scores and 
this may attenuate the true association between the latent 
construct and the manifest binary outcome. Though factor 
score methods account for measurement error when estimat
ing parameters in the measurement model, the coefficients in 
the factor score regression may still be contaminated because 
the sample moments of the factor score deviate from the true 
moments. For linear factor score regression the biased 
moments can cancel out, but it is unclear whether this also 
generalizes to a logistic regression analysis. We therefore 

investigated this empirically in our simulation. Lastly, we did 
not expect LMS to suffer from attenuated regression coeffi
cients, because it takes into account the measurement error of 
the item scores when estimating the interaction between the 
latent variables. In line with earlier simulation studies (Kelava 
& Nagengast, 2012; Kelava et al., 2014) we expected LMS to 
perform well with large sample sizes (500 or higher) and no 
skewness in the latent traits. We also expected the factor score 
approach to perform equally to the LMS method, because ear
lier research showed this to be the case for linear models 
involving main effects rather than interactions (Devlieger & 
Rosseel, 2017).

Results

For both the sum score and factor score methods, the conver
gence rate was 100% in all simulation conditions. Although for 
the LMS approach most conditions also showed 100% conver
gence rates, conditions with large skewness sometimes resulted 
in non-convergence (convergence rates were 98.4% or higher). 
No non-positive definite covariance matrices were encoun
tered. We removed the non-converged solutions from further 
analyses.

Tables 3–5 show for all 240 simulation conditions the rela
tive bias in the estimated interaction effect averaged across all 
500 replications. Tables 6–8 report for all simulation condi
tions the percentage of replications in which the 95% confi
dence interval of a single estimated interaction effect contained 
the true value of the interaction effect. The online supplement 
contains six supplemental Tables. Tables S1, S2 and S3 present 
the bias in the estimated interaction effect in terms of the mean 
squared error (the squared difference between the true 

Table 3. Relative bias in the estimated interaction effects for all simulation scenarios involving continuous item scores and skewness generated at the latent variable 
level. Bold faced cells indicate acceptable bias (<10%).

Sum score regression Factor score regression SEM LMS continuous

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0.15 −5.91 −16.19 −5.47 −15.87 7.41 7.41
0.31 −2.57 −13.24 −2.97 −13.77 11.21 11.21
0.62 −10.86 −23.08 −10.29 −22.21 5.55 5.55

2 0.15 −2.4 −11.9 −0.32 −8.63 13.55 16.49
0.31 −9.23 −21.01 −7.98 −19.87 5.74 5.27
0.62 −16.34 −29.82 −14.85 −28.52 0.36 −3.25

3 0.15 6.91 −3.87 7.29 −3.59 22.41 27.88
0.31 −5.56 −18.56 −3.74 −17.03 11.18 9.75
0.62 −18.58 −32.86 −17.08 −31.67 −2.23 −5.27

500 18 0 0.15 −5.56 −14.63 −7.14 −16.58 5.03 5.03
0.31 −5.55 −15.66 −6.52 −16.66 6.85 6.85
0.62 −12.54 −24.05 −11.69 −22.79 3.69 3.69

2 0.15 −5.51 −13.25 −4.68 −12.4 8.19 11.22
0.31 −11.23 −22 −9.47 −20.14 3.65 3.11
0.62 −15.98 −29.54 −13.87 −27.54 1.08 −2.66

3 0.15 1.84 −6.47 1.62 −6.96 15.53 18.78
0.31 −9.44 −20.94 −8.57 −20.18 4.85 2.92
0.62 −18.68 −33.48 −16.85 −31.73 −2.28 −7.55

1000 18 0 0.15 −6.71 −15.44 −7.94 −16.95 3.96 3.96
0.31 −10.94 −20.91 −11.54 −21.55 0.87 0.87
0.62 −13.9 −25.51 −13.08 −24.23 1.81 1.81

2 0.15 −5 −12.92 −5.2 −13.24 7.34 7.09
0.31 −12.95 −23.01 −11.98 −22.16 0.63 −0.44
0.62 −17.15 −29.99 −15.2 −28.12 −0.63 −4.33

3 0.15 −3.76 −12.28 −4.13 −13 8.76 7.05
0.31 −12.37 −23.36 −11.48 −22.58 1.76 0.22
0.62 −23.41 −37.23 −21.35 −35.14 −7.95 −12.23
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interaction effect and the estimated interaction, averaged 
across 500 replications). Tables S4, S5, and S6 show the 
power of detecting the interaction effect (the percentage of 
significant interactions in case of a non-zero true interaction) 
and false positive rates (the percentage of significant interac
tion effects when a true interaction effect was absent).

For each method, the average bias in the estimated 
interaction effect is visualized in Figure 3 (continuous 
item scores), Figure 4 (ordinal item scores with latent 
skewness), and Figure 5 (ordinal item scores with skewness 
generated on the item level). The online supplement con
tains similar figures for both the two main effects. Each 
figure contains 9 plots, where the rows represent the dif
ferent sample size conditions and the columns the different 
skewness conditions. In each of the 9 plots the x-axis shows 
the size of the true interaction effect and the y-axis the bias 
in the estimated standardized regression coefficient. The 
different methods used to model the interaction effect are 
visualized with varying colors and shapes of the data points. 
Filled shapes indicate high reliability conditions, while open 
shapes represent conditions with poor reliability. Each data 
point corresponds to the bias of a particular method in the 
estimated interaction effect, averaged across 500 replica
tions. The error bars represent the 95% confidence interval 
of the mean estimated bias.

Absolute and relative bias
Inspection of Figures 3, 4 and 5 (absolute bias) and Tables 5–7 
(relative bias) reveals some interesting patterns. As expected, the 
sum score method underestimated the interaction effect in every 

simulation condition and this effect became more pronounced 
as the reliability decreased, as the skewness increased, as the size 
of the true interaction increased, or when item scores were 
ordinal. Interestingly, a similar pattern was observed for the 
factor score method, suggesting that this method did not appro
priately adjust for measurement error when estimating interac
tion effects in a generalized linear modeling context.

When item scores were normally distributed, both LMS 
methods tended to slightly overestimate the interaction effects, 
especially when the sample size was small (n/p ratio = 18). In 
general, LMS outperformed the factor score and sum score 
methods both in terms of average absolute and relative bias 
in the estimated interaction. As expected, LMS performed 
especially good at a sample size of 1000 (n/p ratio = 72) and 
when item scores were normally distributed. As expected, 
when latent skewness was introduced, both LMS methods 
underestimated the larger interaction effects, though this effect 
was still much more apparent for both the sum score and factor 
score methods. When item scores were ordinal, continuous 
LMS performed slightly better than categorical LMS when 
skewness was generated at the latent level. Interestingly, when 
the latent variables were normally distributed and skewness 
was introduced at the item level, only the categorical LMS 
method remained relatively unbiased. It showed similar bias 
regardless of whether the ordinal item scores were skewed. This 
pattern was not observed for the LMS method that treated the 
ordinal item scores as continuous. That method still resulted in 
underestimated interaction effects when the ordinal item 
scores were skewed, yet this effect became less pronounced 
with lower scale reliability.

Table 4. Relative bias in the estimated interaction effects for all simulation scenarios involving ordinal item scores and skewness generated at the latent variable level. 
Bold faced cells indicate acceptable bias (<10%).

Sum score regression Factor score regression SEM LMS continuous SEM LMS categorical

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0.15 −6.66 −16.93 −8.06 −20.18 6.95 6.95 5.58 6.68
0.31 −12.46 −21.4 −13.15 −22.94 2.21 2.21 2.12 5.32
0.62 −13.29 −25.7 −12.77 −25.39 6.22 6.22 7.41 8.68

2 0.15 −4.23 −11.85 −3.88 −10.96 15.02 15.54 16.66 25.01
0.31 −13.83 −22.51 −13.5 −22.9 4.21 1.17 2.2 4.29
0.62 −23.75 −33.75 −22.84 −32.74 −4.19 −12.11 −10.98 −10

3 0.15 −3.28 −7.19 −3.42 −9.39 18.02 20.31 21.57 34.73
0.31 −16.98 −24.61 −17.24 −25.54 2.17 −2.73 −1.53 5.11
0.62 −29.25 −37.9 −28.96 −37.62 −10.13 −18.7 −17.33 −14.01

500 18 0 0.15 −7.68 −17.93 −8.23 −19.62 6.5 6.5 5.08 6.35
0.31 −13.19 −23.6 −13.6 −25.1 1.31 1.31 0.67 1.15
0.62 −14.53 −26.55 −13.88 −25.85 4.53 4.53 5.43 6.37

2 0.15 −7.75 −15.54 −6.83 −15.1 10.57 10.15 10.21 15.42
0.31 −18.23 −27.16 −17.75 −27.34 −1.37 −4.73 −4.22 −3.07
0.62 −27.59 −37.1 −26.73 −36.52 −10.07 −17.06 −15.89 −17.03

3 0.15 −5.65 −11.18 −5.24 −10.89 14.77 12.2 12.27 21.37
0.31 −20.8 −27.53 −20.4 −27.1 −2.62 −10.16 −9.67 −5.09
0.62 −35.27 −43.57 −34.41 −42.93 −17.89 −27.56 −26.74 −25.3

1000 18 0 0.15 −12.96 −23.04 −13.13 −23.88 0.48 0.48 −1.55 −0.78
0.31 −11.82 −22.93 −12.05 −24.01 2.91 2.91 2.1 1.75
0.62 −16.65 −28.33 −16.18 −27.95 1.24 1.24 2.12 2.14

2 0.15 −6.19 −14.15 −5.4 −14.05 11.96 12.32 11.89 16.14
0.31 −19 −28.07 −18.28 −27.62 −2.36 −5.87 −5.69 −4.59
0.62 −28.81 −38.31 −27.69 −37.38 −11.26 −17.99 −16.91 −18.09

3 0.15 −13.57 −19.24 −13.64 −19.64 4.2 3.51 3.22 9.76
0.31 −23.28 −31.1 −22.7 −30.61 −5.73 −13.29 −13.3 −9.28
0.62 −35.48 −43.95 −34.99 −43.57 −18.91 −28.79 −28.1 −27.26
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Table 5. Relative bias in the estimated interaction effects for all simulation scenarios involving ordinal item scores and skewness generated at the item score level. Bold 
faced cells indicate acceptable bias (<10%).

Sum score regression Factor score regression SEM LMS continuous SEM LMS categorical

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0.15 −6.66 −16.93 −8.06 −20.18 6.95 10.5 5.58 6.68
0.31 −12.46 −21.4 −13.15 −22.94 2.21 9.96 2.12 5.32
0.62 −13.29 −25.7 −12.77 −25.39 6.22 8.17 7.41 8.68

2 0.15 −15.9 −24.19 −14.94 −23.55 0.17 −0.05 7.83 9.34
0.31 −17.1 −24.6 −16.22 −24.11 −0.68 6.10 5.77 8.04
0.62 −21.22 −29.21 −20.24 −28.11 −2.43 8.00 5.15 8.28

3 0.15 −23.9 −28.72 −24.89 −30.16 −10.6 −7.12 7.7 10.2
0.31 −20.97 −28.04 −20.8 −28.49 −4.22 2.72 9.74 10.1
0.62 −23.48 −31.73 −22.42 −30.62 −2.5 7.20 7.63 10.43

500 18 0 0.15 −7.68 −17.93 −8.23 −19.62 6.5 3.37 5.08 6.35
0.31 −13.19 −23.6 −13.6 −25.1 1.31 2.95 0.67 1.15
0.62 −14.53 −26.55 −13.88 −25.85 4.53 5.98 5.43 6.37

2 0.15 −18.43 −25.3 −17.58 −24.73 −3.74 2.46 1.79 2.2
0.31 −20.61 −28.66 −19.29 −27.03 −4.81 −3.11 1.17 2.35
0.62 −23.19 −32.1 −21.65 −30.17 −4.95 1.08 2.28 2.02

3 0.15 −22.43 −28.52 −22.36 −28.81 −8.04 −9.01 8.33 9.08
0.31 −25.67 −32.07 −25.09 −31.26 −10.24 −3.96 3.71 4.25
0.62 −25.05 −33.61 −23.52 −31.7 −4.64 −1.45 5.12 5.15

1000 18 0 0.15 −12.96 −23.04 −13.13 −23.88 0.48 2.50 −1.55 −0.78
0.31 −11.82 −22.93 −12.05 −24.01 2.91 1.74 2.1 1.75
0.62 −16.65 −28.33 −16.18 −27.95 1.24 2.04 2.12 2.14

2 0.15 −18.86 −25.06 −18.42 −24.95 −4.97 −4.67 0.93 2.66
0.31 −21.23 −29.23 −20.31 −28.38 −6.22 −1.52 −0.66 −1.04
0.62 −24.17 −32.94 −22.43 −30.77 −6.05 −0.33 0.93 1.16

3 0.15 −28.04 −34.01 −28.36 −34.83 −15.57 −10.7 0.44 0.29
0.31 −26.48 −33.29 −25.8 −32.68 −11.33 −8.80 2.7 1.84
0.62 −28 −35.91 −26.32 −33.7 −8.92 −3.12 2.15 2.64

Table 6. 95% confidence interval coverage rates of the estimated interaction effects for all simulation scenarios involving continuous item scores and skewness 
generated at the latent variable level. Bold faced cells indicate acceptable coverage.

Sum scores Factor scores LMS (continuous)

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0 94.6 95 95 95 94.6 94.6
0.15 94.8 94 95.2 96 95.4 95.4
0.31 95.6 94.8 96.8 95.2 96.6 96.6
0.62 91.6 80 91.4 82.8 96.4 96.4

2 0 95.4 96 96.8 97.8 96.6 96.6
0.15 96.8 95.8 97.8 98 96.4 95.8
0.31 95 93.2 96.8 95.2 96 96.4
0.62 85.8 74.2 90.8 75.6 94.8 93.4

3 0 95.4 95.2 97 97.2 96 96.8
0.15 94.4 95 97 96.6 95.4 94.2
0.31 94 90.4 97.2 94.4 96.2 93.2
0.62 84.6 70.2 89.4 74 92.8 91.2

500 18 0 0 95.4 95.4 96 96.8 96.2 96.2
0.15 95.2 93 96.2 95.2 95.8 95.8
0.31 94 90.4 93 90.8 95.2 95.2
0.62 86.6 68.4 88.2 70.8 94.4 94.4

2 0 94 94 94.8 95 94.6 93.8
0.15 94.6 93.6 95.8 94.8 95.6 94.8
0.31 92.8 87.8 93.8 88.6 95.2 94.8
0.62 84 60.2 86.8 66.4 95.8 93.4

3 0 96 95.8 97.4 96.8 96.4 95.58
0.15 94.8 94.6 96 94.6 94.6 93.4
0.31 93.4 88.6 93.2 90.4 94.79 95.99
0.62 83 57.2 86.6 61.4 93.2 90.78

1000 18 0 0 94 94.2 94.6 95.2 94.8 94.8
0.15 93.8 91.8 93.2 92 93.8 93.8
0.31 91.8 82.6 91.4 81.2 96.2 96.2
0.62 76.8 46 79.6 47.8 95.6 95.6

2 0 93.8 94.2 93.8 94.2 93.4 94
0.15 95 94.4 95.8 94.4 95.6 94.6
0.31 91.6 82.4 92.8 81.4 95.19 95.6
0.62 75 34.6 81.2 42.2 96.4 96

3 0 94.8 96.2 95.6 96.6 94.35 95.92
0.15 94.6 93.6 95.2 93.6 95.56 94.25
0.31 89.8 79.2 90.8 82 94.72 94.46
0.62 62.4 22.4 67.2 29 91.94 85.77
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Confidence interval coverage
All methods showed acceptable coverage probabilities for the 
smallest interaction effects. The largest interactions resulted in 
lower coverage for both the sum score and factor score regres
sion methods, especially at larger sample sizes. A possible 
explanation is that these methods produce biased estimates 
for the larger interaction effects, and these biased estimates 
get increasingly narrow confidence intervals due to the larger 
sample size, resulting in lower coverage rates. Both LMS meth
ods performed best in terms of confidence interval coverage, 
with acceptable coverage probabilities in almost all simulation 
conditions, except when skewness was introduced at the latent 
level, and either the sample size or the true interaction effect 
was large. When skewness was introduced at the item level 
rather than at the latent level, the coverage rates of the 

continuous LMS methods remained suboptimal, while those 
of categorical LMS were adequate.

Mean squared error
For all methods, as the sample size became larger, the mean 
squared error became smaller, likely because of less variable 
estimates. At a sample size of 250 (n/p ratio = 18), LMS showed 
larger mean squared error than the factor score and sum score 
methods, likely due to the larger variability in the estimated 
interaction effects. Lowering the reliability of the question
naires from .87 to .60 only slightly affected the relative bias 
and mean squared error for both LMS methods, but it largely 
affected both the sum score and factor score methods, with 
lower reliability resulting in more bias, especially for larger 
interaction effects. When item scores were ordinal and 

Figure 3. Comparison of three methods to estimate interaction effects between NA and SI on a binary outcome in scenarios with continuous items, varying over the 
true interaction size (x axis), reliability of the NA and SI scales, amount of latent skewness (columns) and sample size (rows). Each data point shows the mean bias 
(including 95% confidence interval) in the standardized regression coefficient of the estimated interaction effect.
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skewness was generated at the item level, categorical LMS 
outperformed continuous LMS, though it performed slightly 
worse when skewness was generated at the latent level.

Power and false positives
As expected, for all methods larger sample sizes resulted in 
more statistical power to detect true interaction effects. With 
a sample size of 250 (n/p ratio = 18), all methods were only able 
to detect the largest interaction effects (0.616) with a power of 
at least 0.80. At a sample size of 500 (n/p ratio = 36), all 
methods also became able to detect medium interactions 
(.308) with sufficient power. Having ordinal item scores 
resulted in slightly less power for all methods compared to 
using continuous item scores. As the reliability of the ques
tionnaires decreased, the sum score and factor score methods 
showed less statistical power to detect the interaction effect, 

while this only affected both LMS methods to a minor extent. 
For each method the power decreased as the skewness of the 
item scores increased, regardless of whether the skewness was 
generated on the item level or on the latent variable level. An 
exception was the categorical LMS approach, showing only 
minor power reductions when skewness was introduced at 
the item level. All methods showed acceptable false positive 
rates close to the nominal level of 5% in each of the simulation 
conditions (ranging between 2.6% and 6.2%).

Synthesis
Inspection of the simulation condition that most resembled the 
circumstances of our empirical study (500 participants, mod
erately skewed ordinal item scores (skewness = 2), estimated 
reliability of 0.87 and an interaction effect of β = .308), sug
gested that SEM according to both LMS methods performed 

Figure 4. Comparison of four methods to estimate interaction effects between NA and SI on a binary outcome in scenarios with ordinal items, varying over the true 
interaction size (x axis), reliability of the NA and SI scales, amount of latent skewness (columns) and sample size (rows). Each data point shows the mean bias (including 
95% confidence interval) in the standardized regression coefficient of the estimated interaction effect.
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best in terms of power, coverage probability, relative bias and 
mean squared error in the estimated interaction. Both the sum 
score method as well as the factor score method showed 
slightly lower power, lower coverage probabilities and under
estimated the true size of the interaction effect. Whether con
tinuous or categorical LMS performed best depends on 
whether the skewness originated at the latent or item level. If 
the latent NA and SI traits are skewed, then categorical LMS 
performed slightly worse than continuous LMS in terms of 
absolute bias and power, while the reverse was true when the 
latent traits were normally distributed and the skewness origi
nated at item score level. Given that the latent NA and SI 
distributions in Figure 2 are not very skewed, we assume the 
skewed item scores to have originated at the item level. In light 
of this we consider the categorical LMS approach to perform 
best in the circumstances of our empirical study and we will 
therefore base our discussion on these Study 1 results.

Discussion

The goal of this paper was twofold. Our starting point was the 
empirical question of whether Type D Personality, operationa
lized as the interaction between its two subcomponents NA and 
SI, predicts the occurrence of cardiac events in a population of 
patients suffering from coronary artery disease. We used four 
different methods to model the interaction effect. Our second 
goal was to compare the bias, precision and accuracy of these 
four methods in a Monte Carlo simulation study, in order to 
shed more light on the inconsistent estimates resulting from the 
four interaction models used in our empirical study.

As expected, our empirical study showed that Type 
D personality was associated with the occurrence of major 
cardiac events, and even more strongly associated with the 
occurrence of a cardiac death or myocardial infarction. In 
general, the four methods used to model the interaction agreed 

Figure 5. Comparison of four methods to estimate interaction effects between NA and SI on a binary outcome in scenarios with ordinal items, varying over the true 
interaction size (x axis), reliability of the NA and SI scales, amount item skewness (columns) and sample size (rows). Each data point shows the mean bias (including 
95% confidence interval) in the standardized regression coefficient of the estimated interaction effect.
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on the direction and the statistical significance of the interac
tion effect, but differed in their estimated size of the interac
tion. As expected, the effects of the sum score logistic 
regression analyses were smaller than the effects estimated by 
the factor score logistic regression and latent logistic regression 
methods, likely because the sum score approach did not take 
into account the measurement error in the item scores. 
Although as expected the estimates resulting from the latent 
logistic regression were larger than those of the sum score 
regression, they were unexpectedly also larger than the esti
mates produced by the factor score logistic regression. This 
finding motivated our Monte Carlo simulation study.

In our simulation, SEM using LMS to model the interaction 
effect outperformed all other methods in terms of relative bias 
when the sample size was large and there was no skewness. 
This result aligns with our expectations, because LMS assumes 
that the indicators are multivariate normally distributed (Klein 
& Moosbrugger, 2000). Indeed, earlier research showed LMS to 
be biased when the scores of the items loading on the latent 
exogenous variables are skewed (Cham et al., 2012; Kelava & 
Nagengast, 2012; Kelava et al., 2014). We replicated this find
ings by showing that LMS underestimated the larger interac
tion effects when item scores were skewed due to skewness at 
the latent variable level. However, when skewness was intro
duced at the item level rather than at the latent variable level, 
categorical LMS produced acceptable estimates of the 

interaction effects at a sample size of 1000. This findings 
suggests that when sample size is large enough, categorical 
LMS becomes robust to violations of the assumption of multi
variate normally distributed indicators, as long as the under
lying latent traits are normally distributed. This robustness 
does not apply to the continuous LMS method that treats the 
ordinal item scores as continuous.

As expected, the sum score interaction method in general 
produced more biased estimates than those of the latent inter
action methods. This corroborates earlier research showing 
that using sum scores may attenuate the estimates of the 
regression coefficients because using sum scores includes ran
dom measurement errors (Busemeyer & Jones, 1983; 
Embretson, 1996; Kang & Waller, 2005; MacCallum et al., 
2002). Because of this finding we recommend researchers not 
to use the sum score method when analyzing the interaction 
between two continuous variables on a manifest binary 
outcome.

Interestingly, the estimates of the factor score interaction 
more closely resembled those of the sum score method than 
those of the latent interaction method. Both the factor score 
method and the SEM LMS account for measurement error 
when estimating the parameters in the measurement model. 
However, the factor score regression’s two step method may 
result in contaminated structural regression coefficients if the 
factor score sample moments are different from the true 

Table 7. 95% confidence interval coverage rates of the estimated interaction effects for all simulation scenarios involving ordinal item scores and skewness generated at 
the latent variable level. Bold faced cells indicate acceptable coverage.

Sum scores Factor scores LMS (continuous) LMS (categorical)

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0 94.6 94.2 95.8 96.6 95.4 95.4 95.6 95.8
0.15 95.6 95.8 97.2 97 96.8 96.8 97.2 98.2
0.31 94.4 90.6 95.2 92.2 96 96 95.8 95.6
0.62 90 79.2 89.8 78.6 96 96 95.6 96.8

2 0 94.4 94.8 94.8 95.6 94.2 94.6 94.4 97
0.15 95 94.6 96 95.6 96.4 97 97.6 97.6
0.31 93.6 90.6 95.2 92.4 97 96.2 96.2 96
0.62 81.6 68.6 84 72 93.4 91 91.6 90.2

3 0 95.4 96 96.8 97.2 96.6 97.4 96.6 97.2
0.15 97.2 96.4 97.4 97.4 97.6 97.8 98.2 98.8
0.31 93 90.8 95.4 94 96.2 94.2 94 95.4
0.62 76 62.2 78.8 66.6 90 83.6 84.8 86.6

500 18 0 0 93.6 93.4 94 92.6 93.4 93.4 93 94
0.15 94.6 93.6 95.4 92.8 95.4 95.4 95.8 94.8
0.31 93.2 87.2 93 86 95.4 95.4 94.8 95.2
0.62 84.2 65.2 85.4 64.4 96.2 96.2 96.2 96.8

2 0 95.2 95.6 96 96.2 96.2 96.4 96.4 96
0.15 94.8 94.2 95 94.4 95.6 96.2 96.6 97
0.31 90 83.8 91.6 84.2 94.8 94.2 94.4 94.8
0.62 60.8 41 65 43.8 90.4 82.4 84.4 85.2

3 0 94 95.8 94.6 96.2 94.8 95.8 95.4 96
0.15 95.4 93.2 96.4 95.2 95.4 95.8 95.2 96.6
0.31 88.6 82.4 88.8 85 95.4 92.8 92 94
0.62 45.4 27.8 49.6 30.6 81.8 64.4 66.6 71.8

1000 18 0 0 95.6 95 95.4 96 95.8 95.8 95.6 95.8
0.15 93.6 92 94.4 91 95.4 95.4 95.4 96.2
0.31 91 79.6 92.4 77.4 97.2 97.2 97.4 95.8
0.62 72.2 34.8 75 37.2 96 96 96 95.6

2 0 95.4 95.4 95 95.8 94.6 93.8 93.8 95.6
0.15 94.2 94.2 95.2 93.4 95.4 95 95.2 96
0.31 85.2 75.8 86.6 73.6 95.8 94.8 95 95.4
0.62 33 14 38.8 14.4 86.6 74 77.6 79.4

3 0 96 95.8 96.2 96.2 96 94.4 95.6 95.6
0.15 92.6 91.4 93.8 92.2 94.6 95.4 95.4 95.2
0.31 80 69.4 82 69.2 92.8 88.2 87.2 91.6
0.62 18.6 5.4 19.4 6.2 74.8 47.4 49.6 55.2
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moments. Though in the context of linear factor score regres
sion this bias cancels out (see for instance, Devlieger & Rosseel, 
2017), our simulation shows this is not the case in a generalized 
linear modeling context (e.g., with a observed binary outcome). 
Showing this analytically would be an interesting avenue for 
future research.

Recommendations

We have a number of recommendations to researchers plan
ning to model the interaction between two continuous vari
ables on an observed binary outcome. First, whenever possible 
use items measured on a continuous scale, as these typically 
result in less bias than items measured on an ordinal scale. 
Second, in case of a large sample size (e.g., N ≥ 500 or n/p ratio 
≥ 36) consider SEM using LMS to estimate a latent interaction 
model, as these models are the least biased when sample size is 
large, especially in the absence of skewness. In that situation 
researchers could either use categorical or continuous LMS, 
because in line with earlier research (Dolan, 1994; Rhemtulla, 
Brosseau-Liard & Savalei, 2012) our simulation suggests that 
normally distributed ordinal item scores with five categories 
can be considered continuous. Third, when the estimated 
reliability of the constructs involved in the interaction is not 
sufficient, SEM results in less biased estimates than the sum 
score or factor score regression methods. Fourth, latent 

skewness introduces negative bias in the estimated interactions 
for most methods. When the skewed item scores are contin
uous, LMS is the least biased method, but researchers should 
take into account that this method may underestimate the 
larger interaction effects. When the skewed item scores are 
ordinal, consider using categorical LMS when the underlying 
latent variables are still normally distributed. Although none of 
the investigate methods produce unbiased interaction effects 
when the underlying latent variables are skewed, researchers 
should consider using continuous LMS in these circumstances, 
as this method slightly outperforms categorical LMS and the 
other methods in terms of minimizing bias. However, 
researchers may also consider modeling the interaction 
between non-normally distributed latent variables using 
a Bayesian approach. Although the present study did not 
focus on this approach, it produced unbiased interaction effects 
in another simulation study (Kelava & Nagengast, 2012).

Limitations

In our simulation we focused both on items with continuous 
scales and items with five category ordinal scales. The differ
ences between those scale types was primarily a matter of 
degree rather than kind. Overall, using ordinal items resulted 
in less precise and slightly more biased estimates, especially 
when skewness was high. This is in line with earlier simulation 

Table 8. 95% confidence interval coverage rates of the estimated interaction effects for all simulation scenarios involving ordinal item scores and skewness generated at 
the item score level. Bold faced cells indicate acceptable coverage.

Sum scores Factor scores LMS (continuous) LMS (categorical)

N N/p ratio Skewness Interaction α =.87 α =.60 α =.87 α =.60 α =.87 α =.60 α =.87 α =.60

250 18 0 0 94.6 94.2 95.8 96.6 95.4 96.2 95.6 95.8
0.15 95.6 95.8 97.2 97 96.8 97.8 97.2 98.2
0.31 94.4 90.6 95.2 92.2 96 96 95.8 95.6
0.62 90 79.2 89.8 78.6 96 95.8 95.6 96.8

2 0 93.4 92.6 94.4 95.2 94.8 96.8 96.4 97.4
0.15 94.2 92.6 95.8 93.4 95.4 96 96.4 97
0.31 92.6 89.4 94.4 89.6 95.6 95.6 96.6 96.4
0.62 84 73.6 83.8 75.6 93.2 95.2 95 96

3 0 94 94.2 95.8 95.4 95.2 95.8 96 97.4
0.15 95.4 93.4 95.6 94.8 97.4 97 96.4 97.4
0.31 91.4 89.4 93 89.6 96 95.2 96.2 96.4
0.62 76.2 66.2 80.2 69.8 93.4 96 95 96.6

500 18 0 0 93.6 93.4 94 92.6 93.4 95.6 93 94
0.15 94.6 93.6 95.4 92.8 95.4 95.8 95.8 94.8
0.31 93.2 87.2 93 86 95.4 96 94.8 95.2
0.62 84.2 65.2 85.4 64.4 96.2 94 96.2 96.8

2 0 96 96.6 96 97.4 96.2 96 97.2 96.8
0.15 93 93 94.6 93 97 96.8 95.6 97
0.31 87.6 81.2 89.6 83.4 94.6 95.6 95.2 95.4
0.62 65.2 47.2 70 52.2 95 93.8 95.4 94.6

3 0 95.8 96 95.6 96.6 95.2 96.6 93.8 96.4
0.15 93.4 93 94.4 92.8 95.4 96.2 96.2 97
0.31 84.2 79 84.6 80 91.8 93.8 95.8 95.6
0.62 65.2 50.6 69.8 55.2 91.8 93.6 96 96.2

1000 18 0 0 95.6 95 95.4 96 95.8 97 95.6 95.8
0.15 93.6 92 94.4 91 95.4 95.4 95.4 96.2
0.31 91 79.6 92.4 77.4 97.2 96.8 97.4 95.8
0.62 72.2 34.8 75 37.2 96 97.4 96 95.6

2 0 95.2 94.8 96.2 95.2 95.8 96.6 97 96.4
0.15 91.2 89.6 91.8 90.2 94.6 96,4 95.6 95.6
0.31 83 71.4 85.2 70.6 93.8 96.2 96.2 97
0.62 47.8 22.2 52.6 27.4 92.6 94.6 95.2 95

3 0 95.2 95.6 95.4 95.6 95.4 95.2 95.4 96
0.15 87.6 83.2 87.6 85 92.4 94 94.8 95.8
0.31 72.4 61.6 75.6 64.2 90.8 93.8 94.6 95.4
0.62 39.4 19.4 46.2 25.2 88 93.6 95.4 95.6
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studies showing that when skewness is absent, ordinal items 
with at least five categories can be treated as continuous items 
in subsequent analyses (Dolan, 1994; Rhemtulla, Brosseau- 
Liard & Savalei, 2012). As these studies did not focus on 
interaction modeling, future research could investigate 
whether interaction models perform well when the interaction 
constructs are based on items with a smaller number of ordinal 
response categories (e.g., 2, 3 and 4).

Another limitation of our simulation is that we did not 
include covariates in the model for reasons of simplicity. 
Given that covariates are often part of a statistical model in 
the medical and behavioral sciences, future simulation studies 
could assess whether the inclusion of covariates affects the 
performance of methods used to model interactions.

A further limitation of our study is that we only focused on 
the LMS method to model the latent interaction effect, while 
there exist many other methods to model latent interactions, 
such as the product indicator approach (Jöreskog & Yang, 
1996; Kenny & Judd, 1984; Marsh et al., 2004), the two stage 
least squares approach (Bollen & Paxton, 1998), or mixture 
modeling (Kelava & Nagengast, 2012; Kelava et al., 2014). In 
earlier work (Lodder et al., 2019) we compared LMS with two 
different product indicator approaches in a Monte Carlo simu
lation study and found that LMS was the least biased method 
when modeling the interaction between two latent variables on 
a continuous latent outcome variable. Future research could 
aim at extending the results of the present study to other latent 
interaction models applied within a logistic regression context.

In our study Type D personality was operationalized as the 
interaction effect between its continuous subcomponents NA 
and SI. According to Denollet et al. (2013), the effect of Type 
D personality on cardiac outcomes in theory implies that it is 
the combination of having both high NA and high SI that is 
most detrimental to cardiac health. Smith (2011) interpreted 
this as saying that the Type D effect is more than the sum of its 
parts NA and SI, a classic example of synergy. This synergistic 
effect would imply that it is not the separate NA and SI effects 
that are essential to Type D personality, but the combined NA 
and SI effect that is still present above and beyond the sum of 
their additive effects. Smith (2011) argued that this synergy is 
modeled statistically by testing an interaction effect while also 
including the main effects of the variables constituting the 
interaction. Although in our study we followed Smith (2011) 
by using a variable-centered approach and modeling Type 
D personality as an interaction between NA and SI, another 
commonly used method to operationalize Type D personality 
is a person-centered approach that classifies people in sub
groups based on whether they have crossed a particular cutoff 
score for both NA and SI (e.g., Denollet et al., 2013, 2018; 
Hillen, 2017). Person-centered approaches are often useful 
when the data shows substantial amounts of heterogeneity 
and the effect of interest is present for some people and not 
for others. However, classifying people in groups based on 
cutoff values has been criticized because such dichotomization 
produces less sensitive statistical tests and may result in spur
ious findings that are not robust against using other cutoff 
values and do therefore likely not reflect real differences 
between the groups (MacCallum et al., 2002; Royston et al., 

2006). However, it is not necessary to classify people based on 
arbitrary cutoff values, because within a latent variable frame
work it is possible to use the individual item scores to classify 
people in a set of distinct latent classes and subsequently use 
class membership to predict the scores on an outcome variable. 
Therefore, future research could investigate whether such 
a person-centered approach is more beneficial when studying 
Type D personality, than the variable-centered interaction 
model we used in our study.

Conclusions

When seeing the estimates in our empirical study in the light of 
the results of our simulation study, we can draw several con
clusions. First, given the characteristics and outcomes of our 
empirical study (500 participants, moderately skewed ordinal 
item scores and an interaction effect of β = .308), the latent 
interaction model using categorical LMS performed best with 
respect to minimizing the average bias. It performed slightly 
better than the continuous LMS method and much better than 
both the sum score and factor score methods. Those latter two 
methods produced similar estimates that were both lower than 
those of the two LMS methods. It is interesting to note that this 
exact pattern was also found in our empirical study. If we 
follow the results of the latent interaction model, then we can 
conclude that Type D personality is a significant predictor of 
both major cardiac events and an even stronger predictor of 
cardiac death or myocardial infarction.

In this article we showed that Type D personality is an 
important risk factor in the occurrence of cardiac events, in 
line with earlier research on this issue (Denollet et al., 2013; Du 
et al., 2016; Kupper & Denollet, 2016). We used several statistical 
interaction models to assess this association, resulting in varying 
estimates, yet similar conclusions. To the best of our knowledge 
this study includes the first Monte Carlo simulation comparing 
the performance of these methods when estimating interaction 
effects between two continuous variables on an observed binary 
outcome variable. To our knowledge this is also the first simula
tion study to show that the mechanism causing the skewed item 
scores determines what method should be used to model the 
interaction effects. Although our simulation study was motivated 
by an issue we encountered in our empirical study, the results are 
not limited to research on Type D personality. Because our 
simulation varied over a wide range of design factors, we con
sider these results to be generalizable to many other research 
areas involving interactions between continuous latent variables 
on binary manifest outcomes.
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Appendix A: DS14 scale information for Study 1

DS14 Negative Affectivity Social Inhibition

Correlation DS2 DS4 DS5 DS7 DS9 DS12 DS13 DS1 DS3 DS6 DS8 DS10 DS11 DS14

DS2 1
DS4 0.35 1

DS5 0.49 0.39 1
DS7 0.4 0.64 0.45 1

DS9 0.41 0.49 0.54 0.53 1
DS12 0.52 0.53 0.46 0.57 0.39 1

DS13 0.42 0.71 0.44 0.7 0.52 0.59 1
DS1 0.04 0.19 0.08 0.19 0.1 0.15 0.18 1
DS3 −0.06 0.09 −0.05 0.1 0.03 0.04 0.08 0.61 1

DS6 0.25 0.41 0.34 0.44 0.36 0.33 0.38 0.5 0.25 1
DS8 0.16 0.29 0.15 0.33 0.26 0.23 0.29 0.55 0.43 0.58 1

DS10 0.14 0.23 0.16 0.29 0.22 0.21 0.21 0.56 0.44 0.52 0.59 1
DS11 0.12 0.2 0.18 0.23 0.16 0.19 0.2 0.5 0.38 0.45 0.48 0.51 1

DS14 0.09 0.31 0.14 0.33 0.25 0.23 0.28 0.49 0.38 0.51 0.66 0.5 0.41 1
Skewness 0.02 1.08 0.13 0.93 0.94 0.05 1.1 0.54 0.14 0.58 0.55 0.36 0.16 0.66
Kurtosis −1.13 0.25 −1.1 −0.34 0.11 −1.22 0.14 −0.63 −0.99 −0.69 −0.8 −1.12 −0.79 −0.45
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