

Tilburg University

Frequency-guided word substitutions for detecting textual adversarial examples

Mozes, Maximilian; Stenetorp, Pontus; Kleinberg, Bennett; Griffin, Lewis D.

Publication date:
2020

Document Version
Early version, also known as pre-print

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Mozes, M., Stenetorp, P., Kleinberg, B., & Griffin, L. D. (2020). Frequency-guided word substitutions for
detecting textual adversarial examples. arXiv.org. http://arxiv.org/abs/2004.05887

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/ea8cd1a1-bb9e-4153-a6d0-f98b5a4a02c2
http://arxiv.org/abs/2004.05887

Frequency-Guided Word Substitutions for Detecting Textual
Adversarial Examples

Maximilian Mozes Pontus Stenetorp Bennett Kleinberg Lewis D. Griffin
University College London

{m.mozes, p.stenetorp, l.griffin}@cs.ucl.ac.uk, bennett.kleinberg@ucl.ac.uk

Abstract

While recent efforts have shown that neural
text processing models are vulnerable to ad-
versarial examples, comparatively little atten-
tion has been paid to explicitly characterize
their effectiveness. To overcome this, we
present analytical insights into the word fre-
quency characteristics of word-level adversar-
ial examples for neural text classification mod-
els. We show that adversarial attacks against
CNN-, LSTM- and Transformer-based clas-
sification models perform token substitutions
that are identifiable through word frequency
differences between replaced words and their
substitutions. Based on these findings, we
propose frequency-guided word substitutions
(FGWS) as a simple algorithm for the auto-
matic detection of adversarially perturbed tex-
tual sequences. FGWS exploits the word fre-
quency properties of adversarial word substi-
tutions, and we assess its suitability for the au-
tomatic detection of adversarial examples gen-
erated from the SST-2 and IMDb sentiment
datasets. Our method provides promising re-
sults by accurately detecting adversarial exam-
ples, with F1 detection scores of up to 93.7%
on adversarial examples against BERT-based
classification models. We compare our ap-
proach against baseline detection approaches
as well as a recently proposed perturbation dis-
crimination framework, and show that we out-
perform existing approaches by up to 15.1%
F1 in our experiments.

1 Introduction

Recent advancements in machine learning research
uncovered the vulnerability of artificial neural net-
works to adversarial examples – carefully crafted
perturbations of input data that lead a super-
vised learning model into making false predictions.
While this phenomenon has initially been discov-
ered in the visual domain (Szegedy et al., 2014;
Goodfellow et al., 2015; Kurakin et al., 2017), it

has been shown that natural language processing
models are oversensitive to adversarial input pertur-
bations for a variety of tasks as well (Papernot et al.,
2016; Jia and Liang, 2017; Belinkov and Bisk,
2018; Glockner et al., 2018). Although various
works propose different classes of attacks against
neural text processing models demonstrating their
oversensitivity to adversarial inputs (e.g. Alzan-
tot et al. (2018); Ebrahimi et al. (2018); Ren et al.
(2019); Jin et al. (2019); Yang et al. (2020)), little
attention has thus far been paid to a more detailed
understanding of what causes textual adversarial
examples to be successful, and whether individual
perturbations provide potential cues that help us to
automatically identify them.

To better understand model oversensitivity in
the context of text classification tasks, this work
examines the word frequency properties of word-
level textual adversarial perturbations, and provides
empirical evidence that CNN-, LSTM, and BERT-
based text classification models are oversensitive to
low-frequency word substitutions triggered by ad-
versarial attacks. Experimenting with four recently
proposed attacks (Alzantot et al., 2018; Ren et al.,
2019), we demonstrate that such attacks tend to im-
plicitly replace individual words with less frequent
ones. We then show that their effectiveness can
be mitigated through simple frequency-guided ma-
nipulations of adversarial sequences. Specifically,
we introduce frequency-guided word substitutions
(FGWS), a detection method that identifies adver-
sarial sequences by directly manipulating individ-
ual words in a text based on their word frequency
properties. Our findings show that FGWS can ef-
fectively be used to detect adversarial perturbations,
achieving F1 scores of up to 93.7% on discriminat-
ing unperturbed and perturbed sequences against
BERT-based classification models (Devlin et al.,
2019) on the IMDb movie reviews dataset.

We compare the performance of FGWS to

1

ar
X

iv
:2

00
4.

05
88

7v
1

 [
cs

.C
L

]
 1

3
A

pr
 2

02
0

DISP (Zhou et al., 2019), a recently introduced per-
turbation discrimination model that exploits con-
textualized word representations, demonstrating
that incorporating contextual information is effec-
tive for this task. FGWS instead explicitly consid-
ers low-frequency words as potentially adversarial,
and aims to mitigate their effectiveness through
simple frequency-guided word substitutions. We
show improved adversarial sequence detection per-
formances of FGWS as compared to DISP, indi-
cating that our approach accurately discriminates
perturbations without relying on any contextual
information. Specifically, we demonstrate that, de-
spite representing a far simpler approach, FGWS
improves upon DISP by up to 15.1% F1 on dif-
ferentiating between unperturbed and perturbed
sequences.

2 Related work

There exists a wide variety of adversarial attacks
demonstrating the oversensitivity of text classi-
fication models, achieved through sequence ma-
nipulations on a character-, word- and sentence-
level (Gao et al., 2018; Eger et al., 2019; Tsai et al.,
2019; Behjati et al., 2019), or a combination of
those (Li et al., 2018; Liang et al., 2018; Lei et al.,
2019).

Ebrahimi et al. (2018) demonstrate the vulnera-
bility of neural text classification models by propos-
ing an adversarial attack that manipulates indi-
vidual characters based on information sourced
from the model’s gradients with respect to one-
hot character input representations. However, such
character-level manipulations potentially degrade
the text, thereby providing cues that can be detected
by word recognition models to mitigate the attacks’
effectiveness (Pruthi et al., 2019).

Word-level attacks manipulate textual sequences
by inserting, replacing or removing individual
words to generate adversarial examples. Papernot
et al. (2016) propose an attack against text classi-
fication models that replaces individual words in
an input sequence by utilizing the model’s gradi-
ents to identify the most effective adversarial word
substitutions in the model’s vocabulary. Although
highly effective, one of the attack’s disadvantages
is that the perturbed sequence might lose its se-
mantic and/or syntactic correctness. Recent works
overcome this by generating adversarial examples
that preserve the semantics and syntactic correct-
ness of the sequence, using synonym sets and pre-

trained language models to identify word substi-
tutions that do not alter the sequence’s semantics
and fit in a word’s context (Alzantot et al., 2018;
Zhang et al., 2019; Ren et al., 2019). While most
attacks are evaluated against CNN and LSTM clas-
sification models, Jin et al. (2019) have recently
demonstrated that adversarial attacks can be effec-
tive against models based on pre-trained, contextu-
alized word representations. Their approach gen-
erates adversarial examples against BERT-based
classification models, thereby aiming to preserve
both textual semantics and fluency.

Paraphrasing entire input sequences has also
shown to serve as an effective tool for adversarial
example generation. Iyyer et al. (2018) demonstrate
this by proposing an encoder-decoder sequence
paraphrasing model to generate adversarial para-
phrases against models trained on sentiment and
textual entailment datasets. Moreover, Ribeiro et al.
(2018) present a method for auto-generating sets of
semantics-preserving paraphrasing rules to gener-
ate adversarial examples, and demonstrate its effec-
tiveness in sentiment analysis and visual question
answering settings.

Existing efforts to overcome the effectiveness of
textual adversarial examples and increase model
robustness include adversarial training and data
augmentation (Li et al., 2017; Jia and Liang, 2017;
Ebrahimi et al., 2018; Ribeiro et al., 2018; Wang
and Bansal, 2018; Ren et al., 2019; Jin et al., 2019;
Cheng et al., 2019) as well as methods to achieve
certified model robustness (Huang et al., 2019; Jia
et al., 2019). Recently, Zhou et al. (2019) proposed
an approach to detect adversarial sequences that
exploits contextualized representations by utilizing
BERT-based discrimination models to identify ad-
versarial sequence tokens and restore the words that
were replaced by an attack. In the present work, in
contrast, we turn away from employing any con-
textual information and instead solely utilize word
frequency characteristics to detect adversarially in-
serted words.

3 Generating textual adversarial
examples

3.1 Setup

We denote a classification model by a function
f(X) ∈ RC that projects an input sequence X
to a C-dimensional vector representing the unnor-
malized logits for each of the C possible classes.
We represent a sequence as X = x1x2 . . . xn−1xn,

2

where xi denotes the i-th word in the sequence.
We furthermore introduce the notation f∗(X) ∈
{1, . . . , C} representing the class label predicted
by f with input X . In our adversarial setting, the
adversary’s goal is to identify an input sequence
X ′ based on X such that f∗(X ′) 6= f∗(X).

3.2 Adversarial attacks

We focus our experimentation on four recently pro-
posed textual adversarial attacks, two of which are
considered baselines. The first is based on genetic
search (Alzantot et al., 2018) and the second uti-
lizes word saliencies (Ren et al., 2019) to generate
adversarial examples. Both methods have shown to
be highly effective at attacking text classification
models, and the former has been investigated in
related work focusing on achieving certified robust-
ness to word-level adversarial attacks (Jia et al.,
2019). We additionally experiment with two base-
line methods as introduced by Ren et al. (2019).

RANDOM. Our first baseline attack is a sim-
ple word substitution model that randomly selects
words in an input sequence and replaces them with
synonyms that are also randomly sampled from the
set of synonyms related to the specific word. We
adhere to Ren et al. (2019)’s realization by utilizing
WORDNET (Fellbaum, 1998) to identify potential
synonym substitutions for each selected word.

PRIORITIZED. Our second baseline samples
words from a given input sequence and selects
a substitution from each word’s synonym set by
finding the synonym that maximizes the change in
prediction confidence on the true label of our in-
put sequence. A word’s synonym set is computed
analogously to the RANDOM attack.

PWWS. We furthermore use the recently pro-
posed probability weighted word saliency (PWWS)
algorithm (Ren et al., 2019), a word-level adversar-
ial attack based on synonym substitutions. For each
word in the input sequence, the algorithm selects
a set of synonym replacements from WORDNET

and chooses the synonym yielding the highest dif-
ference in prediction confidence on the true class
label after replacement. The algorithm furthermore
computes the word saliency (Li et al., 2016a,b) for
each input word and defines an importance ranking
of word replacements based on these two indica-
tors. The input sequence is then manipulated by
perturbing words according to this order. PWWS
pays special attention to named entities by ensur-

ing that named entities selected for replacement in
the input sequence are replaced with other named
entities of the same type.

GENETIC. Lastly, we analyze an attack sug-
gested by Alzantot et al. (2018), consisting of a
population-based black-box mechanism that itera-
tively adds individual word-level perturbations to
an input sequence to lead a model into misclas-
sification. To achieve this, Alzantot et al. (2018)
leverage a population-based genetic search algo-
rithm that crafts a population of candidate pertur-
bations in different generations. Each generation
inherits the highest-performing perturbations from
the previous generation and further manipulates an
input sequence. The algorithm terminates when a
successful perturbation has been found or the max-
imum amount of generations has been reached.

3.3 Classification models
We apply the proposed attacks to three classifica-
tion models. The first is a word-based convolu-
tional neural network (CNN) for sequence classifi-
cation (Kim, 2014) that has been employed in exist-
ing works studying textual adversarial attacks (Lei
et al., 2019; Jia et al., 2019; Tsai et al., 2019). For
the second classification model, we follow Alzan-
tot et al. (2018) and Ren et al. (2019) and employ a
single layer Long Short-Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997). Both
the LSTM and CNN are initialized with pre-trained
GLOVE (Pennington et al., 2014) word embed-
dings. The third is a pre-trained BERTbase (Devlin
et al., 2019) model fine-tuned for binary classifica-
tion.

3.4 Datasets and performance details
We train all three classification models on two bi-
nary text classification datasets: the Internet Movie
Database (IMDb) reviews dataset (Maas et al.,
2011) and the Stanford Sentiment Treebank (SST-
2) as introduced by Socher et al. (2013). Both
datasets have been used in previous works related
to textual adversarial example generation (Paper-
not et al., 2016; Alzantot et al., 2018; Zhang et al.,
2019; Jia et al., 2019; Tsai et al., 2019; Ren et al.,
2019; Huang et al., 2019; Zhou et al., 2019).

IMDb. The IMDb movie reviews dataset con-
sists of 50,000 positive and negative movie reviews
sourced from the IMDb website with a pre-defined
split of 25,000 training and 25,000 test samples,
where each sample is labeled as either positive or

3

negative. We hold out 1,000 samples from the train-
ing set for validation.

SST-2. The SST-2 dataset contains movie re-
views annotated with binary sentiment labels. The
dataset comes with a pre-defined split of 67,349
samples for training, 872 for validation and 1,821
for testing.

Attack success rate

Dataset Classifier Acc. RANDOM PRIORITIZED GENETIC PWWS

IMDb
CNN 87.2 6.8 84.2 81.0 89.9
LSTM 87.4 6.5 91.4 84.1 95.4
BERTbase 91.3 5.4 71.5 70.0 61.4

SST-2
CNN 84.2 6.2 49.0 78.3 65.3
LSTM 83.8 5.9 45.5 74.2 61.5
BERTbase 92.2 4.3 34.0 63.0 42.7

Table 1: Overview of the attack success rates (%) of
all four attacks when applied to the CNN, LSTM and
BERTbase classification models with respect to both
datasets.

Model performances. On the IMDb movie re-
views dataset, the CNN achieves an accuracy of
86.6%, the LSTM achieves 86.6% and BERTbase

achieves 90.8%, all when evaluated on the 25,000
test samples. These performances are comparable
to existing works (Gao et al., 2018; Zhang et al.,
2019; Ren et al., 2019; Jin et al., 2019). On the
SST-2 dataset, the CNN achieves 84.3%, the LSTM
83.9% and BERTbase 92.2% accuracy when evalu-
ated on the 1,821 elements of the test set, which are
also comparable to existing works (Socher et al.,
2013; Devlin et al., 2019; Huang et al., 2019). A
detailed description of model architectures, hyper-
parameters and training details can be found in
Appendix A.

3.5 Attack performances
We utilize all four attacks on a randomly sampled
subset of 2,000 sequences from the IMDb test set
as well as the entire test set of SST-2. For the GE-
NETIC attack, we follow Alzantot et al. (2018) by
limiting the allowed number of word replacements
to 20% of the length of the input sequence and em-
ploy the same threshold for the two baseline attacks
(RANDOM and PRIORITIZED) as well. A detailed
description of the implementation and parameter
details for all attacks can be found in Appendix B.

The attack success rates can be found in Table 1.
Acc. denotes the percentage of those sequences that
were correctly classified by the respective classifier
(since only those can be considered for the attack).
The attack success rates then represent the fraction

of successfully created adversarial examples (i.e.
the predicted class changed after perturbation) with
respect to all correctly classified sequences. The
results indicate that while the RANDOM baseline
fails to successfully generate adversarial sequences,
the three other attacks create successful perturba-
tions for a majority of the tested combinations of
dataset and classification model.

4 Statistical word frequency analysis of
textual adversarial examples

The attack performances as shown in Section 3.5
demonstrate that all three classification models are
vulnerable to textual adversarial examples. In an
attempt to identify common statistical characteris-
tics of the adversarial examples crafted with the
different attacks, we analyze the word frequencies
of individual replaced words and their respective
substitutions.

4.1 Comparing occurrence frequencies of
adversarial substitutions

We compute the loge occurrence frequencies of (i)
all words in the test set that are eligible for replace-
ment by the respective attacks (see Appendix B),
(ii) all words that have been replaced by the re-
spective attacks and (iii) all of their correspond-
ing substitutions. We denote the loge occurrence
frequency as φ(x) for a given word x, defined as
φ(x) = loge(1 + φabs(x)), where φabs(x) ∈ N0

denotes the absolute occurrence frequency of word
x in the training corpus.

Table 2 shows the resulting loge frequencies
for the specified words. In the two right-most
columns we differentiate between all adversarially
inserted words and only those that occur in the
model’s training corpus and are hence not out-of-
vocabulary (OOV) tokens, since the word substi-
tution frequencies might primarily be decreased
by OOV tokens. Across all datasets, classification
models and attacks, the replaced words are not
less or even slightly more frequent than the aver-
age amount of replaceable words, but the substi-
tutions are consistently less frequent. Specifically,
we observe that apart from the RANDOM attack,
all attacks tend to select words for replacement
whose frequency is slightly above the mean loge
frequency of replaceable words, but all four attacks
select substitutions whose frequencies are lower
than those of the replaced words. This observation
holds even when we only consider word substi-

4

Dataset Classifier Attack Replaceable words Replaced words Substitutions Substitutions (non-OOV)

IMDb

CNN

RANDOM 6.5 (2.0) 6.6 (2.0) 4.1 (2.7) 4.9 (2.2)
PRIORITIZED 6.5 (2.0) 6.7 (1.9) 4.0 (2.7) 4.7 (2.3)
GENETIC 6.1 (2.1) 6.4 (2.0) 3.6 (2.3) 3.8 (2.2)
PWWS 6.5 (2.0) 6.8 (2.2) 4.2 (2.8) 4.8 (2.4)

LSTM

RANDOM 6.5 (2.0) 6.6 (2.0) 4.2 (2.7) 4.9 (2.2)
PRIORITIZED 6.5 (2.0) 6.8 (1.9) 4.1 (2.5) 4.8 (2.1)
GENETIC 6.1 (2.1) 6.3 (1.9) 3.6 (2.2) 3.8 (2.1)
PWWS 6.5 (2.0) 6.7 (2.0) 4.4 (2.5) 4.9 (2.1)

BERTbase

RANDOM 6.5 (2.0) 6.6 (2.0) 4.1 (2.7) 4.9 (2.2)
PRIORITIZED 6.5 (2.0) 6.8 (1.9) 4.3 (2.6) 4.9 (2.2)
GENETIC 6.1 (2.1) 6.5 (2.0) 3.6 (2.3) 3.9 (2.1)
PWWS 6.5 (2.0) 6.9 (2.3) 4.6 (2.7) 5.2 (2.3)

SST-2

CNN

RANDOM 4.6 (1.9) 4.6 (2.0) 2.6 (2.3) 4.0 (1.6)
PRIORITIZED 4.6 (1.9) 4.8 (1.8) 2.8 (2.2) 3.9 (1.6)
GENETIC 4.2 (2.0) 4.3 (1.7) 2.1 (1.9) 3.2 (1.4)
PWWS 4.6 (1.9) 4.8 (2.1) 3.0 (2.4) 4.1 (1.8)

LSTM

RANDOM 4.6 (1.9) 4.6 (1.9) 2.6 (2.3) 4.0 (1.6)
PRIORITIZED 4.6 (1.9) 4.7 (1.8) 2.9 (2.1) 3.8 (1.6)
GENETIC 4.2 (2.0) 4.2 (1.7) 2.2 (1.9) 3.2 (1.4)
PWWS 4.6 (1.9) 4.8 (2.1) 3.2 (2.4) 4.2 (1.8)

BERTbase

RANDOM 4.6 (1.9) 4.6 (1.9) 2.6 (2.3) 4.0 (1.5)
PRIORITIZED 4.6 (1.9) 4.7 (1.9) 2.6 (2.3) 4.0 (1.6)
GENETIC 4.2 (2.0) 4.4 (1.9) 1.9 (2.2) 3.6 (1.6)
PWWS 4.6 (1.9) 4.8 (2.1) 3.1 (2.5) 4.3 (1.8)

Table 2: Average loge frequencies of replaced words and their corresponding substitutions by attack, classifier and
dataset. The shown values are the mean (and standard deviation) loge frequencies for each setting. Replaceable
words denotes the loge frequencies of all words occurring in the tested sequences that are allowed to be replaced
by the respective attack.

tutions that occur in the model’s training corpus,
although one can clearly see that the mean loge fre-
quency increases when only considering non-OOV
substitutions compared to all word substitutions.

Clean A clever blend of fact and fiction.

GENETIC A clever blend of
0.00
fait [

4.83
fact] and fiction.

PWWS A
3.56

ingenious [
5.55

clever]
0.00

blending [
3.81

blend]

of fact and
0.00

fabrication [
4.39

fiction].

Figure 1: Illustration of the word frequency differences
between the words selected for replacement (bold,
italic and red) and their corresponding substitutions
(bold and black) based on sequences crafted with the
GENETIC and PWWS attacks against BERTbase on
SST-2. The values above the highlighted words rep-
resent their loge frequencies.

Figure 1 shows two adversarial sequences gener-
ated with the GENETIC and PWWS attacks against
BERTbase on SST-2, and highlights the differences
in word frequency between the replaced words and
their corresponding substitutions.

4.2 Are classifiers vulnerable to
low-frequency attacks?

We observe in Section 4.1 that all of the investi-
gated adversarial attacks tend to replace words with
less frequent substitutions. Nevertheless, it is worth
noting that these findings do not directly show that
the classification models are generally vulnerable
to low-frequency words, since the attacks only im-
plicitly utilize low-frequency word substitutions
instead of explicitly searching for them. We hence
investigate whether the three neural architectures
are generally vulnerable to low-frequency word
substitutions. To do this, we attack all three trained
models with an additional adversarial attack that
explicitly replaces selected input words with less
frequent substitutions. Our proposed algorithm
randomly selects a word xi of an input sequence
X and computes a set of substitution candidates
S(xi) that is defined by the union of the word’s
nearest neighbors in a pre-trained embedding space
and its WORDNET synonyms (see Appendix C for
details).

We then select a substitution x′i for xi by identi-
fying the candidate substitution in S(xi) exhibiting

5

the lowest loge occurrence frequency with respect
to the model’s training corpus. We implement
two variations of our attack. The first, denoted
FREQUENCYr, randomly selects words from an
input sequence and replaces them as mentioned
above. The second, denoted FREQUENCYp, only
accepts an individual word replacement if the pre-
diction confidence placed on the sequence’s true
label decreases after the candidate word has been
replaced.

Dataset Classifier FREQUENCYr FREQUENCYp

IMDb
CNN 21.96 81.02
LSTM 26.67 84.77
BERTbase 17.15 54.63

SST-2
CNN 15.29 35.60
LSTM 14.30 31.79
BERTbase 11.50 21.31

Table 3: Attack success rates (%) of the low-frequency
attack.

We adhere to previous experiments by allow-
ing 20% of word changes made by the attack.
The attack success rates of both attack variations
can be found in Table 3. We observe that while
FREQUENCYr exhibits poor attack performances,
FREQUENCYp achieves to misclassify the majority
of sequences for the IMDb dataset as well as an
increased amount of sequences on SST-2. These
findings indicate that while all three models seem
to be robust against random low-frequency substitu-
tions, adding a simple selection heuristic for more
impactful word replacements yields strong attack
performance increases. This clearly shows that, al-
though the word frequency differences exist across
a variety of attacks, relying on this heuristic alone
does not suffice to confidently lead the investigated
classification models into making false predictions.

5 Detecting textual adversarial examples

The observation of consistent word frequency dif-
ferences between replaced words and their respec-
tive substitutions provides us with a simple way of
detecting adversarial input manipulations. Specifi-
cally, we argue that the effects of adversarial word
substitutions can be mitigated by conducting sim-
ple frequency-based transformations. Such trans-
formations identify adversarial input tokens based
on their low-frequency values and replace them
with more frequent, semantically related tokens, to
prevent the classification models from making false

predictions caused by adversarial inputs.

5.1 Frequency-guided word substitutions
To do this, we propose frequency-guided word sub-
stitutions (FGWS), a detection method that ex-
ploits this idea to estimate whether a given textual
sequence is an adversarial example. FGWS trans-
forms a given sequence X into a sequence X ′ by
replacing infrequent words with more frequent, se-
mantically similar substitutions. Formally, for a
given sequence X1, we initially define the subset
XE ⊆ X of words that are eligible for substitution
as XE := {x ∈ X |φ(x) < δ}, where δ ∈ R>0

is a frequency threshold. FGWS then generates
a sequence X ′ from X by replacing all eligible
words with words that are semantically similar, but
have higher occurrence frequencies in the model’s
training corpus. To do this, for each eligible word
x ∈ XE we consider the set of replacement candi-
dates S(x) and find a replacement x′ by selecting
x′ = argmaxw∈S(x) φ(w). Once we have identi-
fied all possible replacements for the words in XE ,
we generate the sequence X ′ by replacing each el-
igible word x with x′ if φ(x′) > φ(x). Given the
sequences X and X ′, we assess to what extent the
predictions made by the classification models are
affected by the described procedure. A sequence is
then considered an adversarial example if the pre-
diction confidence of the given classifier decreases
significantly after transformation. We propose both
a continuous and a discrete discrimination method
to measure this significance.

Discrete detection. In the discrete case, we sim-
ply assess whether the classifier changed its class
prediction after transforming a given sequence.
A sequence X is hence considered adversarial if
f∗(X) 6= f∗(X ′).

Continuous detection. The continuous case, in
contrast, compares the absolute difference in pre-
diction confidences between X and X ′. We
therefore first compute the prediction label y =
f∗(X) for X and define a threshold γ ∈ [0, 1].
The sequence X is then considered adversarial if
|softmax(f(X))y−softmax(f(X ′))y| > γ, i.e. if
the absolute difference of probability mass placed
on class y with respect to both the original and
transformed sequences exceeds the threshold γ.
The introduction of such a threshold allows to care-
fully control for the amount of false positives (i.e.

1For notational purposes, we here represent the sequence
X = x1x2 . . . xn as a set X = {x1, x2, . . . , xn}.

6

Continuous Discrete

Dataset Classifier Attack AUC TPR FPR F1 TPR FPR F1

IMDb

CNN

RANDOM 90.2 57.1 (30.3) 5.9 (4.2) 70.1 (45.0) 65.5 5.0 76.8
PRIORITIZED 94.1 73.0 (49.0) 6.1 (2.0) 81.5 (64.9) 79.4 3.5 86.8
GENETIC 93.8 71.7 (45.3) 6.3 (2.1) 80.5 (61.4) 76.5 3.6 84.9
PWWS 94.0 72.6 (51.0) 6.1 (2.1) 81.3 (66.6) 77.8 3.6 85.8

LSTM

RANDOM 80.9 61.1 (49.6) 9.7 (6.2) 71.5 (63.6) 46.9 0.0 63.9
PRIORITIZED 88.1 72.6 (61.2) 10.2 (4.9) 79.5 (73.7) 59.5 0.6 74.3
GENETIC 82.1 62.6 (50.9) 9.9 (4.9) 72.6 (65.3) 44.7 0.5 61.6
PWWS 81.4 65.9 (57.6) 10.2 (4.9) 74.8 (70.9) 53.3 0.6 69.2

BERTbase

RANDOM 97.0 89.9 (75.8) 8.1 (5.1) 90.8 (83.8) 56.6 1.0 71.8
PRIORITIZED 97.2 92.8 (86.1) 7.0 (3.8) 92.9 (90.7) 75.1 1.4 85.1
GENETIC 97.5 94.1 (86.4) 6.9 (3.8) 93.7 (90.8) 75.8 1.5 85.6
PWWS 95.3 88.1 (77.3) 7.1 (4.0) 90.3 (85.3) 63.8 1.3 77.3

SST-2

CNN

RANDOM 86.3 41.5 (12.8) 6.4 (4.3) 56.1 (21.8) 59.6 7.4 71.3
PRIORITIZED 88.2 50.3 (19.8) 5.1 (2.3) 64.7 (32.4) 63.4 7.5 74.2
GENETIC 83.7 46.8 (27.4) 6.7 (3.5) 60.9 (41.9) 55.2 8.8 67.3
PWWS 85.1 49.9 (21.7) 6.4 (3.0) 63.9 (34.8) 61.5 8.7 72.3

LSTM

RANDOM 80.3 34.8 (15.7) 10.8 (4.5) 48.1 (26.2) 50.6 11.2 62.5
PRIORITIZED 85.1 38.9 (16.2) 9.2 (4.4) 52.5 (26.8) 64.8 12.4 73.1
GENETIC 84.2 46.8 (26.8) 8.4 (4.0) 60.3 (40.9) 60.9 11.3 70.7
PWWS 83.3 38.6 (16.4) 8.3 (4.0) 52.5 (27.2) 61.0 11.1 70.9

BERTbase

RANDOM 86.1 52.8 (25.0) 8.3 (4.2) 65.5 (38.7) 55.6 9.7 67.2
PRIORITIZED 89.0 63.2 (21.2) 8.1 (4.2) 73.8 (33.9) 68.3 7.8 77.6
GENETIC 85.2 53.0 (21.5) 8.5 (5.1) 65.6 (34.0) 55.8 8.1 68.1
PWWS 86.2 58.1 (23.6) 8.6 (4.9) 69.7 (36.7) 62.8 8.0 73.5

Table 4: Performance results of FGWS. For the continuous detection, the reported rates are shown when γ is tuned
to allow for 10% and 5% of false positives on the validation set (results for 5% in parentheses). TPR and FPR
denote true and false positive rates, respectively.

unperturbed sequences that are identified as adver-
sarial) detected by our method.

5.2 Comparisons and baselines

As textual adversarial example detection is a rel-
atively new task, to the best of our knowledge
the only existing approach to this task is the re-
cently introduced DISP (learning to discriminate
perturbations) framework (Zhou et al., 2019).
Throughout the experiments, we compare FGWS
to DISP and an additional baseline.

DISP. DISP is a perturbation discrimination ap-
proach that uses two independent components, a
perturbation discriminator and an embedding esti-
mator for token recovery, to identify individually
perturbed tokens of a sequence and to reconstruct
the replaced tokens. Both components are based
on pre-trained BERT models to identify perturbed
and reconstruct original tokens, respectively. DISP
is trained on both character- and word-level pertur-

bations. We adapt this framework to our task and
train two DISP models for the IMDb and SST-2
datasets, respectively. For each dataset, we train
both the discriminator and generator independently
for 25 epochs on the training sets, and validate
the trained checkpoints on the validation sets to
identify a performance-maximizing combination
of both components2. To do this, we use adversar-
ial examples crafted with the RANDOM attack on
the validation set, since it most closely follows the
attacks utilized by Zhou et al. (2019). Once trained
and evaluated, we employ the DISP modules to re-
construct the clean sequences from the adversarial
ones perturbed with the four analyzed attacks. We
then use the discrete detection technique as intro-
duced for FGWS to detect adversarial sequences.

NWS. We furthermore introduce the naive word
substitutions (NWS) baseline for better compar-

2We used the code made available at https://github.
com/joey1993/bert-defender/.

7

https://github.com/joey1993/bert-defender/
https://github.com/joey1993/bert-defender/

isons between the different methods. For a given
input sequence, NWS selects all out-of-vocabulary
tokens in that sequence and, if possible, replaces
each of the selected words with a randomly chosen
word from a set of semantically related words. We
restrict NWS to only allow word substitutions for
which the replacement word occurs in the model’s
training vocabulary. In accordance to DISP, we
use NWS with the discrete detection method in our
experiments.

5.3 Experiments

We conduct a series of experiments by apply-
ing the detection methods to the adversarial se-
quences crafted by the introduced attacks on the
subsets of both the IMDb and SST-2 datasets as
explained in Section 3.5. We restrict the eligi-
ble words for replacement to non-stopwords, and
tune the frequency threshold δ for each classifier-
dataset combination on the validation set. To do
this, we utilize the RANDOM attack to craft ad-
versarial examples from all sequences of the val-
idation set and compare our method’s detection
performance with different values for δ. Specif-
ically, we set δ equal to the loge frequency rep-
resenting the qth percentile of all loge frequen-
cies observed by the words eligible for replace-
ment in the training set and experiment with q ∈
{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Moreover, we determine the threshold γ to take
a value that approximates a limited number of false
positive predictions made by the detection algo-
rithm on the respective dataset’s validation set. We
select the threshold γ such that only up to 10%
and 5% of the unperturbed sequences in the valida-
tion set are labeled as adversarial. For each word
x ∈ XE , we define the set of replacement can-
didates as the union S(x) = SE(x) ∪ SW (x) of
the word’s K nearest neighbors in a pre-trained
GLOVE word embedding space, denoted SE(x),
and its synonyms in WORDNET, denoted SW (x).
Here, we tune K on the validation set by setting
it equal to the average number of WORDNET syn-
onyms available for each word occurring in the vali-
dation set (yieldingK = 11 for IMDb andK = 16
for SST-2), to approximate a balance between syn-
onyms and embedding-based nearest neighbors in
S(x). For NWS, we compute the set of seman-
tically related words for each selected candidate
analogously.

(a) IMDb

(b) SST-2

Figure 2: AUC performance scores of FGWS against
the RANDOM attack on the validation sets with differ-
ent values for δ. The x-axis shows the selected qth per-
centiles of the loge frequencies in the training corpus.
The y-axis denotes the AUC score when δ is set to the
loge frequency value representing the specific qth per-
centile.

5.4 Results

We report the experimental performance results of
FGWS in both the discrete and continuous varia-
tions in Table 4. Here, the area under the receiver
operating characteristic curve (AUC) is computed
by interpreting the absolute difference in predic-
tion confidence before and after transformation as
the probability that a given sequence is an adver-
sarial example. For both the discrete and continu-
ous detection methods, the true positive rate (TPR)
represents the percentage of perturbed sequences
that FGWS correctly identifies as such and the
false positive rate (FPR) denotes the percentage
of unperturbed sequences that were identified as
adversarial examples. The results show that the
proposed method exhibits high AUC scores across

8

Restored acc. True positive rate False positive rate F1

Dataset Attack Adv. acc. NWS DISP FGWS NWS DISP FGWS NWS DISP FGWS NWS DISP FGWS

IMDb

RANDOM 86.3 87.4 88.1 89.6 30.3 40.4 56.6 0.0 2.0 1.0 46.5 56.7 71.8
PRIORITIZED 26.0 54.7 64.8 76.0 44.4 59.7 75.1 0.2 1.5 1.4 61.4 74.0 85.1
GENETIC 27.4 42.3 68.6 77.0 23.3 64.2 75.8 0.2 1.5 1.5 37.7 77.5 85.6
PWWS 35.3 51.5 61.5 71.6 29.6 47.4 63.8 0.2 1.5 1.3 45.7 63.7 77.3

SST-2

RANDOM 88.2 88.8 86.0 85.9 34.7 43.1 55.6 2.8 9.7 9.7 50.5 56.4 67.2
PRIORITIZED 60.8 74.3 73.4 79.6 45.5 51.7 68.3 1.8 6.4 7.8 61.8 65.4 77.6
GENETIC 34.0 49.8 60.4 66.8 27.9 49.4 55.8 1.2 5.8 8.1 43.2 63.7 68.1
PWWS 52.8 66.1 66.8 75.1 35.5 46.3 62.8 1.4 6.6 8.0 51.9 60.5 73.5

Table 5: Adversarial example detection performances for NWS (baseline), DISP and FGWS (discrete detection)
when evaluated on attacks against BERTbase. Adv. acc shows the model’s classification accuracy on the perturbed
sequences. Restored acc. denotes the accuracies on the perturbed sequences after transformation. Underlined
values in bold represent best scores per metric, dataset, attack and detection method.

Clean Barney has created a tour de force that is weird wacky and wonderful. positive (99.98%)

GENETIC Barney has created a tour de force that is weird
0.00

loony [
2.48

wacky] and
0.00

resplendent [
5.16

wonderful]. negative (93.28%)

NWS Barney has created a tour de force that is weird
2.20

weirdo [
0.00

loony] and
3.97

splendid [
0.00

resplendent]. positive (99.98%)

DISP Barney has created a tour de force that is weird
0.00
l,l [

0.00
loony] and

7.20
too [

0.00
resplendent]. positive (62.11%)

FGWS
4.13

Murphy [
3.14

Barney] has created a
6.17

world [
3.14
tour] de force that is weird

3.99
crazy [

0.00
loony] and

3.97
splendid [

0.00
resplendent]. positive (99.98%)

Clean Thurman and lewis are hilarious throughout. positive (99.98%)

GENETIC Thurman and lewis are
3.22

droll [
5.26

hilarious] throughout. negative (99.97%)

NWS
0.00

Thurman and lewis are droll throughout. negative (99.97%)

DISP Thurman and lewis are
3.89

fantastic [
3.22

droll] throughout. positive (99.98%)

FGWS
4.26

Robert [
1.95

Thurman] and
4.20

allen [
2.94

lewis] are
5.50

amusing [
3.22

droll] throughout. positive (99.98%)

Figure 3: The three detection methods applied to adversarial examples created with the GENETIC attack for the
BERTbase classifier on SST-2. Clean represents an unperturbed sequence, GENETIC is the perturbed sequence
generated by the attack. NWS, DISP and FGWS describe the sequences resulting from the respective substitution
algorithms. The words highlighted in bold, italic and red represent the words selected for replacement by the attack
and the detection mechanisms, the ones in bold and black denote the corresponding word substitutions. The values
above the highlighted words denote their loge frequencies.

all experiments, demonstrating the method’s abil-
ity to accurately discriminate between unperturbed
and adversarial sequences. Moreover, FGWS de-
tects adversarial sequences accurately in multiple
cases with both the discrete and continuous de-
tection methods, exhibiting true positive rates of
up to 94.1% on attacks against BERTbase while at
the same time predicting less than 7% false posi-
tives. However, one can clearly see the trade-off
between the detection of true and false positives:
when allowing for 10% of false positives on the
validation set, FGWS performs consistently better
in detecting true positives than when allowing for
5% of false positives. Nevertheless, even in the
latter case our method detects a notable amount of
adversarial sequences in the majority of our exper-
iments. This indicates that the exploitation of the
word frequency differences between unperturbed
and perturbed sequences has the potential to detect
a useful fraction of textual adversarial examples
without creating an excessive burden of false posi-

tives.
Figure 2 illustrates the AUC scores of FGWS

against the RANDOM attack on the validation sets
with different values of δ (which were used to tune
δ for testing). We observe that selecting higher
values for δ, and therefore allowing FGWS to ma-
nipulate tokens with higher occurrence frequencies,
is beneficial for the detection performance. Never-
theless, we also observe notable decreases for the
100th percentile, indicating that allowing FGWS
to substitute the most frequent words can have a
crucial impact on detection performance.

Comparison to NWS and DISP. The compar-
ison of FGWS to both NWS and DISP can be
found in Table 5. The reference model used for the
comparison is BERTbase, in accordance to the eval-
uations as presented by Zhou et al. (2019). We uti-
lize the discrete detection method on the sequences
manipulated by each algorithm. The column Adv.
acc. denotes the adversarial classification accuracy

9

of BERTbase on the perturbed sequences, and Re-
stored acc. represents the model’s accuracy on the
adversarial sequences after transformation with the
three detection methods. We observe that FGWS
best restores the model’s original classification ac-
curacy for the majority of the comparisons, thereby
showing to be effective in mitigating the effects
caused by the individual attacks (the accuracies
on the clean test data can be found in Table 1).
While DISP outperforms NWS in terms of true
positive rates and F1 across all experiments, we
can see that FGWS consistently outperforms both
methods for the same comparisons. These results
suggest that i) simply mapping OOV tokens to se-
mantically similar vocabulary tokens (NWS) rep-
resents an effective detection baseline, ii) utilizing
contextualized representations (DISP) improves
upon this baseline approach, showing that adver-
sarial word substitutions are identifiable through
contextual information, and iii) relying solely on
frequency-guided substitutions without incorporat-
ing contextual information (FGWS) shows to be
most effective.

Moreover, the direct comparison between NWS
and FGWS again underlines the importance of uti-
lizing word frequencies as guidance for the word
substitutions: while NWS is not guided by word
frequency characteristics to perform the word re-
placements, we observe that FGWS outperforms
NWS by a large margin in terms of F1, demonstrat-
ing the effectiveness of mapping infrequent words
to semantically similar, more frequent words in
order to detect textual adversarial examples.

Figure 3 provides two examples of adversarial
sequences generated with the GENETIC attack and
the three corresponding transformed sequences us-
ing NWS, DISP and FGWS. The GENETIC at-
tack achieves to generate adversarial examples by
replacing multiple words in each sequence. The
detection methods, however, identify parts of the
adversarial substitutions and replace them with
different, semantically similar words. The result-
ing transformed sequences are then again correctly
classified (except NWS in the second example).

5.5 Limitations

It is worth mentioning that compared to FGWS,
DISP represents a more general perturbation dis-
crimination approach since it is trained to detect
both character- and word-level adversarial pertur-
bations, whereas FGWS solely focuses on word-

level attacks. Furthermore, and in contrast to our
work, DISP is evaluated on simple word substi-
tution (comparable to our RANDOM and PRIOR-
ITIZED attack baselines) and character manipula-
tion attacks. Since the present work focuses more
generally on the word frequency properties of tex-
tual adversarial examples, we decided to include
more sophisticated adversarial attacks (PWWS and
GENETIC) to i) demonstrate that the observed fre-
quency characteristics hold across different classes
of attacks and ii) since we believe that such attacks
have a stronger relation to the practical implications
of being able to detect textual adversarial examples.

Dataset Classifier Clean FGWStest DISPtest

IMDb
CNN 86.63 86.16 84.87
LSTM 86.61 86.67 85.80
BERTbase 90.84 90.87 90.12

SST-2
CNN 84.29 80.78 83.03
LSTM 83.86 79.63 83.58
BERTbase 92.20 87.53 89.62

Table 6: Classification accuracies before and after ap-
plying FGWS and DISP to the clean test sets.

5.6 FGWS and classification performance
While FGWS shows to aid in detecting adversarial
sequences, such transformations might still result
in semantic shifts of the manipulated sequences
and hence a decrease in model classification perfor-
mance on unperturbed sequences after transforma-
tion. We explicitly investigate this by transforming
the sequences in the test sets using FGWS (with δ
set to the same values as for the detection task), and
evaluate the models’ classification accuracies on
the test sets after transformation. Table 6 shows the
classification accuracies for all three models when
tested on the sequences transformed with FGWS
(denoted FGWStest). For comparison, we also
report the accuracies after transforming the test
sets using DISP (denoted DISPtest). Here, one
can observe that FGWS has only little influence on
classification performance on the IMDb dataset and
even leads to slight improvements, whereas slight
decreases are observed on DISPtest. On SST-2, no-
table performance decreases can be observed with
respect to both DISP and FGWS, although the de-
creases are more dominant on the data transformed
using FGWS. This indicates that an increased abil-
ity to detect adversarial examples might lead to
performance decreases on unperturbed data (see
Appendix D for a trade-off comparison).

10

6 Conclusion

We have shown that the word occurrence frequency
characteristics of adversarial word substitutions can
be leveraged effectively to discriminate between
unperturbed and perturbed sequences in the context
of adversarial attacks against neural text classifica-
tion models. Our proposed approach outperforms
existing adversarial example detection methods de-
spite representing a much simpler approach to this
task. In future work, we aim to further utilize the
demonstrated frequency characteristics to increase
the robustness of text processing models against
adversarial attacks, and to exploit whether word
frequency characteristics can be leveraged as ef-
fectively across other natural language processing
tasks in adversarial settings.

Acknowledgements

This research was supported by the Dawes Cen-
tre for Future Crime at University College London
(UCL). We would like to thank Max Bartolo as well
as the Natural Language Processing and Computa-
tional Security Science research groups at UCL’s
Department of Computer Science for their helpful
discussions and feedback.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli,
Mahdieh Soleymani Baghshah, and Pascal Frossard.
2019. Universal adversarial attacks on text clas-
sifiers. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 7345–7349. IEEE.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR).

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual

Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-
Ung Lee, Claudia Schulz, Mohsen Mesgar, Kr-
ishnkant Swarnkar, Edwin Simpson, and Iryna
Gurevych. 2019. Text processing like humans do:
Visually attacking and shielding NLP systems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
1634–1647, Minneapolis, Minnesota. Association
for Computational Linguistics.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press.

J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. 2018.
Black-box generation of adversarial text sequences
to evade deep learning classifiers. In 2018 IEEE Se-
curity and Privacy Workshops (SPW), pages 50–56.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-
ings of the 2019 Conference on Empirical Methods

11

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.1109/ICASSP.2019.8682430
https://doi.org/10.1109/ICASSP.2019.8682430
https://arxiv.org/abs/1711.02173
https://arxiv.org/abs/1711.02173
https://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://mitpress.mit.edu/books/wordnet
https://mitpress.mit.edu/books/wordnet
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.1109/SPW.2018.00016
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4081–4091, Hong
Kong, China. Association for Computational Lin-
guistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adver-
sarial word substitutions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4120–4133, Hong Kong,
China. Association for Computational Linguistics.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. arXiv preprint arXiv:1907.11932.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations (ICLR).

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2017. Adversarial examples in the physical world.
ICLR Workshop.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G Di-
makis, Inderjit S Dhillon, and Michael Witbrock.
2019. Discrete adversarial attacks and submodular
optimization with applications to text classification.
In SysML 2019.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681–691, San Diego, California.
Association for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. CoRR, abs/1612.08220.

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2017.
Robust training under linguistic adversity. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 21–27, Va-
lencia, Spain. Association for Computational Lin-
guistics.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text clas-
sification can be fooled. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, IJCAI’18, pages 4208–4215. AAAI Press.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina M. Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–148, San Diego,
California. Association for Computational Linguis-
tics.

Nicolas Papernot, Patrick Drew McDaniel, Ananthram
Swami, and Richard Harang. 2016. Crafting adver-
sarial input sequences for recurrent neural networks.
In MILCOM 2016 - 2016 IEEE Military Commu-
nications Conference, Proceedings - IEEE Military
Communications Conference MILCOM, pages 49–
54, United States. Institute of Electrical and Elec-
tronics Engineers Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. In Proceedings of the 57th

12

https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.18653/v1/D19-1423
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/1907.11932
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1812.00151
https://arxiv.org/abs/1812.00151
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
http://dblp.uni-trier.de/db/journals/corr/corr1612.html#LiMJ16a
http://dblp.uni-trier.de/db/journals/corr/corr1612.html#LiMJ16a
http://dblp.uni-trier.de/db/journals/corr/corr1612.html#LiMJ16a
https://www.aclweb.org/anthology/E17-2004
http://dl.acm.org/citation.cfm?id=3304222.3304355
http://dl.acm.org/citation.cfm?id=3304222.3304355
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.1109/MILCOM.2016.7795300
https://doi.org/10.1109/MILCOM.2016.7795300
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/P19-1561

Annual Meeting of the Association for Computa-
tional Linguistics, pages 5582–5591, Florence, Italy.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097, Florence, Italy. Association for Compu-
tational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Yi-Ting Tsai, Min-Chu Yang, and Han-Yu Chen. 2019.
Adversarial attack on sentiment classification. In
Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 233–240, Florence, Italy. As-
sociation for Computational Linguistics.

Yicheng Wang and Mohit Bansal. 2018. Robust ma-
chine comprehension models via adversarial train-
ing. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 575–581, New
Orleans, Louisiana. Association for Computational
Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. Transactions

of the Association for Computational Linguistics,
3:345–358.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling
Wang, and Michael I. Jordan. 2020. Greedy attack
and gumbel attack: Generating adversarial examples
for discrete data. Journal of Machine Learning Re-
search, 21(43):1–36.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4903–
4912, Hong Kong, China. Association for Computa-
tional Linguistics.

A Model architectures, hyperparameters
and training details

A.1 CNN

The CNN architecture consists of L = 3 convo-
lutional layers with kernel sizes 2, 3 and 4 and
F = 100 feature maps for each convolutional layer.
The CNN’s penultimate layer applies max-pooling
over time to produce an L · F dimensional out-
put representation which is then projected to a C-
dimensional class logit representation.

A.2 LSTM

We utilize a single-layer unidirectional LSTM with
a hidden state size of 128. The LSTM’s initial hid-
den and cell states are each initialized with the 128-
dimensional zero vector. The final layer consists
of an affine transformation projecting the mean
of the output states from each time step to a C-
dimensional logit representation.

A.3 BERTbase

Our BERT-based classification model utilizes a pre-
trained BERTbase model provided by the Hugging
Face Transformers library (Wolf et al., 2019).

13

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P18-1079
https://doi.org/10.18653/v1/P18-1079
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.18653/v1/W19-4824
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.18653/v1/N18-2091
https://doi.org/10.1162/tacl_a_00143
https://doi.org/10.1162/tacl_a_00143
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
http://jmlr.org/papers/v21/19-569.html
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/D19-1496
https://doi.org/10.18653/v1/D19-1496

A.4 Training details

Both the LSTM and the CNN use Dropout (Sri-
vastava et al., 2014) during training with a rate of
0.1 before applying the output layer. We trained
all three models for 20 epochs using the Adam
optimizer (Kingma and Ba, 2014).

The CNN and LSTM models were trained
with batch size 100 and a learning rate of 1 · 10−3,
BERTbase was trained with batch size 32 and a
learning rate of 2·10−5. We used early stopping for
all three models by validating model performance
on the validation set after each epoch.

We furthermore did not filter the training
vocabularies for both datasets by imposing a maxi-
mum vocabulary size. Hence, the IMDb training
set generates a vocabulary comprising 64,824
words, and processing all training sequences from
SST-2 yields a vocabulary size of 13,845 words.

B Attack implementation details

B.1 Random, Prioritized and PWWS

All three attack implementations are based on the
code as provided by Ren et al. (2019) on GitHub3.
We follow the authors’ implementation of the
PWWS attack by only selecting conjunctions, ad-
jectives, nouns, adverbs and verbs for replacement.
We also follow their restriction that synonym re-
placements must be at least three characters long
and must have the same part-of-speech tag as the
selected word. We keep these constraints for the im-
plementations of the RANDOM and PRIORITIZED

baselines as well.

B.2 PWWS

In their proposed attack algorithm, Ren et al. (2019)
compute the most frequently occurring named enti-
ties for each class across all sequences occurring in
each dataset. It is worth noting that when comput-
ing such named entities for the IMDb dataset (the
only dataset that is used in both Ren et al. (2019)’s
and our experiments), we obtain different results
as compared to the ones as provided by the authors.
However, this has no notable effect on the attack
performances, since our reimplementation of the
attack is highly effective with attack performances
comparable to those reported for the original im-
plementation (see Table 1).

3https://github.com/JHL-HUST/PWWS

B.3 Genetic

Note that we utilize a different language model
for the Perturb subroutine as compared to the
original implementation by Alzantot et al. (2018).
While Alzantot et al. (2018) employ the Google
1 billion words language model (Chelba et al.,
2013), we instead utilize the recently proposed
GPT-2 language model (Radford et al., 2019) and
compute the sequences’ perplexity scores using
the exponentialized language modelling loss (we
employ the pre-trained GPT2LMHeadModel
language model from Wolf et al. (2019)). We
compute the perplexity scores for each perturbed
sequence only around the respective replacement
words by only considering a subsequence ranging
from the 5 words before to the 5 words after an
inserted replacement. The motivation for using
a different language model as compared to the
original implementation is due to computational
complexity reasons, since we observed a notable
decrease in attack runtime with our modification.
All other parameters of the attack (e.g. the number
of generations and population size) are directly
adapted from Alzantot et al. (2018).

We furthermore restrict the words eligible
for replacement by the GENETIC attack to those
that are at least three characters long and are
neither stopwords nor the end-of-sentence token.
Since the attack computes nearest neighbors for a
selected word from a pre-trained embedding space,
we furthermore can only select words for which
there exists an embedding representation in this
pre-trained space.

C Details of the low-frequency attack

For both variations of the FREQUENCY attack, we
identify the set of substitution candidates for each
replaced word as follows: for the word embed-
dings, we adhere to Alzantot et al. (2018) by uti-
lizing a set of 300-dimensional PARAGRAM vec-
tors (Wieting et al., 2015) trained using the counter-
fitting method as introduced by Mrkšić et al. (2016)
to identify a word’s K nearest neighbors. This
method is used to ensure that the queried nearest
neighbors are synonyms of the replacement can-
didate. We use Euclidean distance to compute an
embedding’s nearest neighbors.

To ensure a balanced combination of lexical and
embedding-based replacement candidates, we set
the number of nearest neighbors in embedding

14

https://github.com/JHL-HUST/PWWS

(a) IMDb

(b) SST-2

Figure 4: Classification accuracies on the validation
sets with different values for δ. The x-axis shows the
selected qth percentiles of the loge frequencies in the
training corpus. The y-axis denotes the accuracy when
δ is set to the loge frequency value representing the spe-
cific qth percentile.

space considered for each word equal to the aver-
age amount of WORDNET synonyms of all words
in the test set (yielding K = 15 for SST-2 and
K = 11 for IMDb). We choose both embeddings-
and lexicon-based synonyms to include substitu-
tion candidates that were used in both the GE-
NETIC (Alzantot et al., 2018) and PWWS (Ren
et al., 2019) attacks.

D Varying δ thresholds and classification
performance

We investigate the impact of varying δ thresholds
by analyzing the change in classification perfor-
mance on the validation sets after applying FGWS.
Figure 4 shows the model accuracies on the vali-
dation sets of both datasets with different values

for δ. Here, δ is set to represent the loge fre-
quency at the qth percentile of all loge frequencies
in the training corpus, where we experiment with
q ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We
observe a tendency towards decreasing classifica-
tion performance with increasing values of δ for
the SST-2 dataset. For the IMDb dataset, the clas-
sification performance remains unaffected up to
the 40th percentile for all three classifiers, and then
fluctuates slightly before it decreases drastically at
the 100th percentile.

When optimizing δ for maximum classification
accuracy on the validation set of each dataset, δ is
optimized at the 0th percentile for both the CNN on
IMDb and the LSTM on SST-2. For both the CNN
and BERTbase on SST-2, δ is optimized at the
10th percentile. For LSTM on IMDb, δ represents
the 70th percentile, and for BERTbase on IMDb it
represents the 80th percentile.

Analyzing these findings in light of the re-
sults as shown in Figure 2, we can clearly observe
a trade-off between classification accuracy and
adversarial sequence detection performance when
choosing different values for δ.

15

