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Abstract

We study optimal policy design in a monetary model with heterogeneous preferences. In

the model markets are incomplete and households are heterogeneous with respect to their

current consumption preferences and discount factors. The government controls the supply

of money (liquid) and nominal bonds (illiquid) based on which households make optimal

portfolio choices. We uncover that the two types of preference heterogeneity have distinct

implications for the optimal policy mix of the government. While the heterogeneity in

current consumption preferences pushes the economy towards a zero-lower-bound (ZLB)

associated with nominal interest rates, the heterogeneity in discount factors moves the econ-

omy away from the ZLB. We characterize the optimal policy design and quantify the welfare

losses associated a binding ZLB - and thus potential welfare benefits from allowing negative

interest rates on government bonds.
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1 Introduction

An extensive quantitative-macro literature studies the role of cross-sectional heterogeneity in

explaining consumption and wealth inequality.1 A branch of this literature highlights the poten-

tial relevance of heterogeneous consumption preferences (in the form of discount factor shocks)

in accounting for inequality data (Krusell and Smith, 1998; Venti and Wise, 2000; Cagetti,

2003; Gelman, 2020). Preference heterogeneity may exacerbate inequality and cause welfare

losses when financial markets are incomplete (Krusell and Smith, 1998; Hendricks, 2007) or

when fiscal policy is set sub-optimally (Golosov et al., 2013).

In this paper, we approach the interaction between preference heterogeneity and welfare

from a novel perspective: to what extent can monetary policy correct the allocation prob-

lem borne by heterogeneous preferences and improve welfare under incomplete markets? Our

framework takes a general stance on modeling life-cycle consumption preferences to address this

question. Specifically, in our model we separately incorporate intra-generational heterogeneity

with respect to current marginal utility to consume and discount factors shocks into a monetary

life-cycle model. Based on this framework, we argue that optimal monetary policy needs to in-

fluence both the price of liquid (money, i.e. inflation) and illiquid (bonds, i.e. nominal interest

rates) assets to achieve an optimal cross-sectional allocation of consumption and wealth over

the life-cycle. We also characterize the conditions for an endogenous zero lower bound (ZLB)

on nominal interest rates to bind. We find that the ZLB limits optimal policy and results in

welfare losses.

Our benchmark framework is a dynamic general equilibrium model of a monetary economy

in spirit of Azariadis (1981) with three-period lived households who are connected over time

through overlapping generations. At the beginning of the life-cycle, households produce and

determine asset portfolios by taking expected preference shocks into account. During the re-

mainder of their lifetime, the households consume and re-balance liquid and illiquid assets by

transacting in a financial market. We define the notion of an asset’s liquidity based on the

exchangeability of that asset in return for consumption goods in the current period. As stan-

dard in monetary models, we assume that a special nominal object, called money, is the sole

liquid asset available to the economy. Illiquid nominal assets, called bonds, serve as a saving

instrument between periods. Important for our analysis is that the supplies of money and bonds

are determined by the government.

At the core of our theoretical design are idiosyncratic preference shocks to which households

are exposed in the second (early) and third (late) period of their life. We take a general

approach in modeling this heterogeneity: there is a preference distribution to consume early as

well as late, and individual preferences get realized at the beginning of the second period of

1See De Nardi and Fella (2017) for an extensive survey of the literature.
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households’ lifetime. Early consumption preference (current marginal utility to consume) of a

household is not necessarily correlated with its preference to consume late (the discount factor).

Moreover, preference shocks are uninsurable due to financial imperfections. Given this market

incompleteness, the heterogeneity of preferences gives rise to an environment in which over- or

under-supply of (il)liquidity can prevail when inflation and nominal interest rates follow the

Friedman rule - equating the real return on all assets to the natural rate of interest. The key

theoretical analysis of our paper concentrates on exploring optimal policy design that takes the

distribution of consumption preferences as given.

As a primarily important result, we characterize a closed-form test statistic resulting from

the distribution of preferences. We show that when the conditions governed by this statistic

are met, an endogenous ZLB on nominal interest rates gets reached. This ZLB arises because

besides bonds, households can use money as a savings instrument. Our test statistic has a

simple economic interpretation, as it characterizes the average fraction of disposable resources

that middle-aged households consume. The properties that we obtain with regard to this test

statistic are straightforward. On the one hand, when households are relatively heterogeneous

in terms of their preference to consume early (current MU) - and not that heterogeneous with

respect to late consumption preferences (discount factors) - the test statistic is high and the

economy reaches the ZLB. On the other hand, as heterogeneity in discount factors increases -

while early consumption heterogeneity declines - the test statistic decreases and the economy

moves away from the ZLB. In this respect, our analysis reveals that increasing heterogeneity

of impatience (current MU) and patience (discount factors) have different consequences for

government’s ability to freely choose an optimal nominal interest rate in its policy mix.

We then study optimal policy design with respect to inflation and interest rates, and obtain

an important property of the ZLB. That is, with a binding ZLB constraint a deviation from

the Friedman rule becomes an optimal monetary policy choice. The intuition for this property

is the following. When early consumption preferences are disperse (relative to the dispersion

observed in discount factors) those agents with low MU to consume early like to increase savings

which pushes the aggregate savings to an inefficiently high level. In order to reduce this saving

inefficiency and stimulate early consumption of those with high MU, the government ideally

reduces nominal interest rates and inflation. However, reductions in nominal rates are infeasible

beyond the ZLB, at which point increasing the inflation becomes the optimal policy. The

reason for this important property relates to compounded costs of inflation, which impacts

late consumption more than the early consumption. On the flip-side of the same channel,

when discount factor shocks are relatively disperse (compared to the heterogeneity in early

consumption preferences), the aggregate savings rate tends to contract. In order to stimulate

late consumption and savings of the middle-aged, the optimal policy increases both the nominal

interest rate and the rate of inflation - moving the economy away from the ZLB.
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Based on our theoretical insights, we conduct a series of quantitative macro experiments

using a parameterized version of the model. A counterfactual analysis reveals that, on the

one hand, when the relative standard deviation of first-best early consumption equals one (as

a benchmark case), the optimal policy increases steady state welfare by 0.2% of the first-best

level of welfare. On the other hand, when the relative standard deviation of first-best late

consumption equals one (as another benchmark), the optimal policy increases steady state

welfare by 1.2% of the first-best level of welfare. This quantitatively substantial difference is

caused by the fact that the ZLB binds in the former case but not in the latter. Removing the

ZLB and allowing for negative interest rates raises aggregate welfare by the 1.4% of first-best

welfare when the relative standard deviation of first-best early consumption equals one.

As an important extension to the benchmark, we allow for private capital formation by

households via a decreasing returns to scale investment technology. In the extended frame-

work, we allow claims on capital to be traded as an illiquid asset to compete with government’s

nominal bonds. This extension reveals that endogeneous capital formation does not change

the theoretical property associated with the threshold to reach a ZLB. A high spread in early

consumption shocks causes the ZLB to bind, also with endogenous capital formation, at which

the government remains with only inflation as a policy instrument - leading to distorted allo-

cations. A high spread in discount factors moves the economy away from the ZLB. The main

difference compared to the benchmark model is that with private capital - even away from ZLB

- optimal policies are closer to the Friedman rule, as the latter achieves first-best levels of capital

formation.

Our results imply that understanding the mode of preference heterogeneity is important for

optimal policy design. The findings reveal that uninsurable early consumption heterogeneity

is likely to push an economy to the ZLB and constrain the capacity of monetary policy to

maximize welfare. We also suggest the optimality of using money and bond pricing policies

of the government in tandem and thus propose a new micro-foundation for the co-existence of

money and bonds. Furthermore, since bond pricing policy becomes ineffective at ZLB, we argue

the need to allow for negative interest rates.

Our paper speaks to several strands of literature. First, we contribute to the literature that

models preference heterogeneity in quantitative macro models. Starting with the seminal work

by Krusell and Smith (1998), there has been an interest to understand the role of discount

factor shocks in explaining cross-sectional distributions of savings and wealth (Venti and Wise,

2000; Cagetti, 2003; Gelman, 2020) as well as asset prices (Garleanu and Panageas, 2015). Most

papers in this line of research document that - especially in the presence of incomplete markets

- a small dispersion in discount factor heterogeneity across households, can be key to explain

the data. Our contribution to this literature is three-fold. (i) We develop a tractable life-cycle

model that incorporates a general form of preference heterogeneity into a monetary framework.
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(ii) Our analysis reveals that the implications of early and late consumption shocks are quite

different from each other with respect to the welfare effects of optimally conducted monetary

policy. (iii) Finally, we uncover the effects of preference heterogeneity on the ZLB and discuss

optimality of negative interest rates.

Second, we also contribute to the recent monetary economics literature on general equilib-

rium models with preference heterogeneity. For instance, Curran and Dressler (2019) study the

welfare implications of inflation in a model with heterogeneous coefficients of relative risk aver-

sion. In two closely related papers, Boel and Camera (2006) and Boel and Waller (2015) embed

heterogeneous discount factors in New Monetarist style models and - similar to our conclusions

- argue for non-optimality of the Friedman rule. However, there are two essential differences

between our paper and these two studies: (i) we take a more generalized approach in modeling

preference heterogeneity (with respect to incorporating heterogeneity in both current consump-

tion preferences and discount factors), and (ii) our approach allows to uncover the differential

impact of the two different margins of preference shocks on co-existence of money and bonds,

the ZLB, and optimality of negative interest rates.

Third we also contribute to a literature that studies optimal coexistence of money and bonds.

Kocherlakota (2003) shows that in an infinite horizon economy, society can benefit from having

both money and bonds when agents face shocks to marginal utility of current consumption.

The mechanism identified in Kocherlakota is however transitory; welfare effects of introducing

bonds last for one period only. Andolfatto (2011) demonstrates that the transitory mechanism

of Kocherlakota (2003), persists in steady state when implementing the Friedman rule is infea-

sible. Van Buggenum (2020) considers an infinite horizon economy in which agents experience

shocks to their subjective discount factors and shows that even when the Friedman rule is im-

plementable, interest bearing bonds are essential to achieve an efficient distribution of savings.

In an OLG framework with shocks to both the marginal utility from current consumption and

subjective discount factors, the current paper demonstrates that bonds are essential when cur-

rent consumption shocks dominate in characterizing preference heterogeneity and analyzes the

welfare implications of a ZLB on bond prices.

Finally, several recent papers in the monetary macro literature have argued for the optimality

of negative interest rates, such as Dong and Wen (2017) and Williamson (2019) - following the

trends in interest rates in some European countries. Our paper is to first in this literature

that uncovers a mechanism related to heterogeneity in preferences in justifying the conduct of

optimal negative interest rate policies.
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2 Benchmark Model

We study an overlapping generations model with three-period lived households. We refer to

the households as young in the first period of their lifetime, and as middle-aged and old in

the second and third period, respectively. There are three types of objects in the economy:

a non-storable consumption good, and two nominal assets that we call as money and bonds.

The supply of money and bonds are determined by the government. The consumption good is

produced by the young, and consumed by the middle-aged and old.

During each time period, two markets open sequentially in two distinct sub-periods that

allow trade of assets and consumption goods: the financial market (FM) and the goods market

(GM). The consumption good is produced and sold in the GM by the young and it fully perishes

within a time period. Money is the only recognizable object in the GM, so bonds cannot be

traded in this sub-period. The unit-price of the consumption good in the GM is pt - denoted in

terms of money.

In the FM, money and bonds are supplied by the government and the two objects are traded

among households. Money is storable across time, while bonds issued in the FM of period t

mature in period t+ 1 and pay out money. The unit price of bonds is ϕt - denoted in terms of

fiat money. In the FM, the government also levies lump-sum taxes on middle-aged households

(or provides the middle-aged with lump-sum subsidies), which are paid with money. There is

no enforcement problem with respect to the payment of taxes. The real consumption good

equivalent of the lump-sum tax is denoted with τt.

Lifetime preferences of a household are given by

Uξ(h, qmξ , qoξ) = −h+ βεu(qmξ ) + β2δu(qoξ). (1)

In preference specification (1), h denotes production of goods when young, qmξ denotes consump-

tion of goods when middle-aged, i.e. early consumption, and qoξ denotes consumption when old,

i.e. late consumption. Parameter β is a component of the discount factor that is common to

all households. Important for our model, are idiosyncratic preference shocks that households

are subject to. Specifically, at the beginning of the second period of their lifetime, each middle-

aged household draws a tuple ξ = (ε, δ) from a distribution with CDF G(ε, δ) and support

Ξ ∈ R2
+. In this joint preference distribution, ε is an idiosyncratic preference shifter for early

consumption and δ is an idiosyncratic preference shifter for late consumption which get realized

simultaneously. We remain agnostic about G, which means ε could exhibit negative or positive

correlation with δ. Without loss of generality, we make the following assumption.

Assumption 1. E[ε] = E[δ] = 1.

The preference shocks serve to generate intra-generational heterogeneity across households,
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the equilibrium implications of which constitute the core analysis of this paper.

2.1 Equilibrium Analysis

We denote gross inflation in between periods t−1 and t with πt = pt/pt−1, which in steady state

equals the growth rate of money supply. Because money is a store of value, and the nominal

bonds pay out money, households do not hold bonds when the interest rate on bonds is negative

(ϕ > 1). Hence, the effective gross real interest rate at which middle-aged households can save,

is 1/[min{ϕt+1, 1}πt+2]. Lifetime utility maximization of a household born in period t therefore

implies

Ut = max
ht,{qmξ,t,q

o
ξ,t}ξ∈Ξ

{
−ht + βE[εu(qmξ,t)] + β2E[δu(qoξ,t)]

}
(2a)

s.t. πt+1[qmξ,t + min{ϕt+1, 1}πt+2q
o
ξ,t + τt+1] ≤ ht, ∀ ξ ∈ Ξ. (2b)

where (2a) is the expected life-time utility and (2b) is a state-contingent resource constraint.

We define the concept of the equilibrium as follows.

Definition 1. The equilibrium is defined by Mm and Mo units of money that initial middle-

aged and old are endowed with and {ht, {qmξ,t, qoξ,t}ξ∈Ξ}∞t=0 at which markets clear and households

maximize life-time preferences (2a) subject to the state-contingent budget constraint (2b) by

taking good prices, {pt}∞t=0, and the policy choice variables of the government, {πt, ϕt, τt}∞t=0, as

given.

To obtain closed-form solutions, we assume logarithmic utility, such that the period utility

function is given by u(q) = log(q) for both middle-age and old households. Based on this

functional form, we first observe that labor supply by the young satisfies

ht = β(1 + β) + πt+1τt+1,

where β(1 +β) hours of work are used to provide resources for early and late consumption, and

πt+1τt+1 hours are provided to pay lump-sum taxes when middle-aged.

Furthermore, early and late consumption are given by:

qmξ,t =
ε

ε+ βδ

β(1 + β)

πt+1
and qoξ,t =

βδ

ε+ βδ

β(1 + β)

min{ϕt+1, 1}πt+1πt+2
, for all ξ ∈ Ξ. (3)

The levels of early and late consumption at (3) are negatively related to the level of inflation.

Late consumption is negatively related to the price of bonds and is more sensitive to inflation

than early consumption, because of compounding.

As an important property of logarithmic utility, we obtain that only preference shifters

and the common discount factor determine middle-aged households’ desire to save. Specifically,
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after taxation middle-aged households have β(1+β)/πt+1 units of real money balances available

in the FM. They consume a fraction θ = ε/(ε + βδ) of this sum in the GM, and save the

remaining fraction 1 − θ for consumption in the next period, earning a real rate of return

1/[min{ϕt+1, 1}πt+1]. We therefore define as a test statistic:

Θ ≡
∫∫

ε

ε+ βδ
dG(ε, δ). (4)

The test-statistic defined at (4) is at the core of our policy analysis and measures the aggregate

fraction of middle-aged households’ disposable wealth devoted to early consumption. Analo-

gously, 1−Θ captures the aggregate savings rate of middle-aged households.

Aggregate demand for money Mt and bonds Bt in FM of period t is given by:

Mt

pt
=


β(1 + β)

(
Θ
πt

+ 1−Θ
min{ϕt−1,1}πt−1πt

)
if ϕt < 1

∈
[
β(1 + β)

(
Θ
πt

+ 1−Θ
min{ϕt−1,1}πt−1πt

)
, β(1 + β)

(
1
πt

+ 1−Θ
min{ϕt−1,1}πt−1πt

)]
if ϕt = 1

β(1 + β)
(

1
πt

+ 1−Θ
min{ϕt−1,1}πt−1πt

)
if ϕt < 1

, (5)

ϕtBt
pt

=

β(1 + β)
(

1
πt

+ 1−Θ
min{ϕt−1,1}πt−1πt

)
− Mt

pt
if ϕt ≤ 1

0 if ϕt > 1
. (6)

With a strictly positive supply of bonds, market clearing requires that ϕt ≤ 1. An endogenous

zero-lower-bound (ZLB) on nominal interest rates therefore arises. In what follows, without

loss we assume ϕt ≤ 1.

We close the equilibrium analysis, by solving for the lump-sum taxes and characterize the

labor supply of the young as a function of inflation, bond prices, and preference parameters.

For this purpose, we equate labor supply by young to total consumption by the middle-aged

and old in a particular time period: ht = E{qmξ,t−1 + qoξ,t−2}. The solution leads us to determine:

ht = β(1 + β)

[
Θ

πt
+

1−Θ

ϕt−1πt−1πt

]
. (7)

2.2 Optimal Policy

As is standard in OLG models, we let welfare across generations be aggregated according to the

subjective discount factor β. A social planner with perfect commitment therefore maximizes

Wt =

∞∑
s=t

βs−t
[
E
{
εu(qmξ,s−1)

}
+ E

{
δu(qoξ,s−2)

}
− hs

]
(8)

by choosing a sequence {ϕs, πs+1}∞s=t+1 subject to ϕs ≤ 1 and taking as given {ϕs, πs+1}s=ts=0.2

Note the planner cannot choose πt, πt+1, and ϕt. These are variables that the young in periods

2The associated supply of money and bonds is given by Equations (5) and (6).
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t − 1 and t − 2 need for their decisions, so what the planner communicated in those periods

about πt, πt+1, and ϕt is what the planner has to commit to in period t, t+ 1, ...,∞. Given the

logarithmic utility specification, the welfare function at (8) can be expressed as:

Wt =
∞∑
s=t

βs−t
{

∆− log(πs)−
Θβ(1 + β)

πs
− log(ϕs−1πs−1πs)−

(1−Θ)β(1 + β)

ϕs−1πs−1πs

}
, (9)

where

∆ =

∫∫ [
ε log

(
εβ(1 + β)

ε+ βδ

)
+ δ log

(
δβ2(1 + β)

ε+ βδ

)]
dG(ε, δ). (10)

Let βs+1−tχs denote the Lagrange multiplier on the ZLB constraint for ϕs, which allows to

obtain the following first-order conditions that maximizes (9):

πs+2 : 0 = −2 + β

πs+2
+

Θβ(1 + β)

π2
s+2

+
β(1 + β)(1−Θ)

ϕs+1πs+1π2
s+2

+
β2(1 + β)(1−Θ)

ϕs+2π2
s+2πs+3

, (11)

ϕs+1 : 0 = −χs+1 −
1

ϕs+1
+
β(1 + β)(1−Θ)

ϕ2
s+1πs+1πs+2

. (12)

Focusing on steady state policies, equations (11) and (12) reduce to:

π = Θβ(1 + β) + χπ(1 + β) and ϕπ2 = β(1 + β)(1−Θ)− χϕπ2. (13)

The closed-form test statistic Θ has a crucial implication for the ZLB constraint, which we

summarize in the next lemma.

Lemma 1. The ZLB constraint binds if and only if Θ(1 + β) < 1.

Recall that θ = ε/(ε + βδ) and Θ = E[θ], and then note that θ is concave in ε and convex

in δ. On the one hand, as shocks to early consumption become more disperse, Θ increases.

On the other hand, the dispersion in late consumption preferences decreases the value of Θ.

These comparative statics with respect to Θ imply that enlarging heterogeneity in early and

late consumption preferences have clear-cut and opposing effects with respect to the distance

of an economy to the ZLB and the ability of the government to choose an unconstrained policy

mix in equilibrium.

As benchmark for policy, we consider the Friedman rule.

Definition 2. The Friedman rule sets π = β and ϕ = 1 so that the real return on all assets

equals the natural rate of interest, 1/β.

When early consumption preferences are disperse (relative to the dispersion observed in

discount factors) those agents with low MU to consume early have a tendency to postpone con-

sumption, which increases aggregate savings. Ceterus paribus, at the Friedman rule this results

in an inefficiently low early consumption in the aggregate and an inefficiently high aggregate
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late consumption. In order to stimulate the early consumption and suppress late consumption,

relative to the allocations implied by the Friedman rule, inflation and nominal rates should be

reduced in tandem. However, because of the ZLB, interest rates cannot be reduced to take

values in the negative domain. Therefore, at ZLB, increasing the inflation becomes part of

the (constrained) optimal policy mix of the government. The intuition for this surprising result

relates to the compounded effects of inflation, which we observe in (3): inflation reduces late con-

sumption more than early consumption. As we will quantitatively evaluate in the next section,

constrained optimal policy results in output and welfare losses - relative to an unconstrained

optimum with negative interest rates on nominal bonds.

When discount factor shocks are relatively disperse (compared to the heterogeneity of early

consumption preferences) those agents with low MU to consume late have a tendency to increase

early consumption, which results in inefficiently low aggregate savings at the Friedman rule. In

order to correct for the inefficiently high early consumption implied by the Friedman rule,

inflation and nominal interest rates should both increase in tandem in the optimal policy mix

of the government. Hence, the economy moves away from the ZLB.

The qualitative properties that we obtained with respect to the effects of preference disper-

sion on tightness of the ZLB, yield the following steady-state characterization of optimal policy

in equilibrium.

Proposition 1. The optimal policy mix in a steady-state equilibrium satisfies:

ϕ =

1 if Θ(1 + β) < 1

1−Θ
Θ2β(1+β)

if Θ(1 + β) ≥ 1
(14)

π =

(1 + β)
Θβ+

√
β
√
βΘ2+4(2+β)(1−Θ)

2(2+β) if Θ(1 + β) < 1

Θβ(1 + β) if Θ(1 + β) ≥ 1
(15)

where the inflation rate when the ZLB binds, is the positive root of the following polynominal:

(2 + β)π2 −Θβ(1 + β)π − β(1 + β)2(1−Θ) = 0. (16)

These key results imply that while increasing the heterogeneity in current consumption

preferences constrains the policy choice set of the government, raising the discount factor het-

erogeneity improves the freedom of the government in choosing a welfare maximizing optimal

policy. We follow up on this proposition with a corollary to summarize the implications of pref-

erence heterogeneity on optimal inflation, which also follows from the basic intuition related to

the effects of preference heterogeneity on tightness of the ZLB.

Corollary 1. The optimal inflation rate satisfies β ≤ π, with equality if and only if Θ(1+β) = 1.
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With no idiosyncratic shocks to preferences, or when there are preference shocks but such that

Θ(1+β) = 1, the optimal inflation rate is at the Friedman rule. In the absence of the endogenous

zero lower bound constraint, π < β would be an optimal inflation policy when Θ(1 + β) < 1.

2.3 Qualitative Illustration of Optimal Policy

In order to conclude the qualitative discussions resulting from the benchmark model, we turn

towards illustrating optimal policy design for some special cases with respect to the heterogeneity

in preferences. First we discuss the case of no preference shocks or policy neutral shocks. Suppose

there is no intra-generational heterogeneity of preferences, meaning there are no idiosyncratic

preference shocks and Θ(1 + β) = 1. In this case, like in standard micro-founded models

of money, the Friedman rule is optimal. The same optimal policy prevails also when there

is preference heterogeneity but with policy neutral implications. This happens with a non-

degenerate distribution of shocks for which Θ(1 + β) = 1. For instance, when ε + βδ = 1 + β

for all (ε, δ) ∈ Ξ.

Next, we consider a case with only shocks to preferences for late consumption. In this case

Θ = E {1/(1 + βδ)} and because 1/(1 + βδ) is convex in δ, Jensen’s inequality implies that the

ZLB does not bind. We find that optimal policy satisfies

π = β(1 + β)E
{

1

1 + βδ

}
and ϕπ =

β(1 + β)

π
E
{

βδ

1 + βδ

}
,

and because βδ/(1 + βδ) is concave in δ, it follows from Jensen’s inequality that π > β and

ϕπ < β. This means that optimal policy deviates from the Friedman rule in two dimensions.

First, inflation is such that the real return on money falls short of the real natural interest rate.

Second, the nominal interest rate is such that the real return on bonds exceeds the real natural

interest rate.

Finally, we describe a case with only shocks to preferences for early consumption. Then

Θ = E {ε/(ε+ β)} and because ε/(ε + β) is concave in ε, Jensen’s inequality implies that the

ZLB constraint binds. Interestingly, the inflation rate satisfies π > β. The real return on

money thus falls short of the real natural interest rate. Moreover, if the dispersion of shocks

to preferences for early consumption is sufficiently large or the subjective discount factor is

sufficiently high, we get a strictly positive rate of inflation as an optimal policy.

3 Quantitative Analysis

We are now ready to quantify the welfare, output, and consumption consequences of optimal

policy and the endogenous ZLB across parameterized versions of the model. For this purpose,

we start with a first-best economy. The first-best is characterized by a complete financial

market structure, ensuring the most efficient distribution of resources. A complete financial
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market structure implies that preference shocks are observable and insurable, so newborn agents

maximize:

Ut = max
ht,{qmξ,t,q

o
ξ,t}ξ∈Ξ

{
−ht + βE[εu(qmξ,t)] + β2E[δu(qoξ,t)]

}
, (17)

s.t. πt+1[E[qmξ,t] + min{ϕt+1, 1}πt+2E[qoξ,t] + τt+1] ≤ ht. (18)

This means, the state-contingent budget constraint only needs to hold in expectation. It is

straightforward to show that the optimization problem at (17) and (18) implies:

ht = β(1 + β) + τt+1, qmξ,t = εβ/πt+1, and q0
ξ,t = δβ2/[min{ϕt+1, 1}πt+1πt+2]. (19)

In turn, the first-best allocations at (19) yields the Friedman rule (π = β and ϕ = 1) as the

optimal monetary policy, and h = 2 as the optimal aggregate output.

The questions that we would like to address in our quantitative analysis are threefold: (i)

How does an economy with preference heterogeneity and incomplete markets compare to a first-

best economy? (ii) How large are quantitative welfare losses when policy would simply adhere

to the Friedman rule? (iii) What are the welfare losses from being unable to let interest rates

take values in the negative domain?

3.1 Parametrization

To parameterize the model, we set the length of a period to 20 years. In order to represent a

real natural interest rate of 2% per annum, we choose β = 1/(1.02)20 ≈ 0.8195. We assume

that ε and δ are drawn from independent log-normal distributions with standard deviations σε

and σδ, respectively. The first-best levels of early and late consumption are then log-normally

distributed with mean one, and (relative) standard deviations of σε and σδ. Hence, σε and σδ

have intuitive economic interpretations. Moreover, choosing log-normal distributions for our

preference shocks has straightforward implications too for the heterogeneity in agents’ desire to

save: the functional form implies that our key definition from Section 2, θ = ε/(ε+βδ), follows a

logit-normal distribution. Specifically, logit(θ) is normally distributed with mean µε−µδ−log(β)

and standard deviation
√
ς2
ε + ς2

δ . The variables µx = − log(1 + σ2
x)/2 and ς2

x = log(1 + σ2
x) are

the mean and variance of log(x), respectively, with x ∈ {ε, δ}.

The quantitative results from our parameterized model are presented in Figures 1-6. In

these figures, we primarily study the consequences of varying the heterogeneity of preferences,

σε and σδ, on optimal policy design and macroeconomic outcomes. For this purpose, we let the

standard deviations of preference shocks vary between zero and one.3

3The upper bound of one is motivated by the fact that numerically we approximate a continuous log-normal
distribution with a discrete distribution. With high standard deviations, this approximation yields significant
differences between the theoretical moments of a log-normal distribution and the actual moments of the distri-
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3.2 Optimal Policy

Figure 1 illustrates the behaviour of the sufficient statistic Θ, which is the average consump-

tion quote of the middle-aged. The plot in Figure 1 re-emphasizes the point that when the

spread in late consumption shocks is small enough, even a very low standard deviation in early-

consumption shocks induces ZLB to bind. This prevails when Θ(1 + β) is greater than 1 or

equivalently, Θ is greater than 1/(1 + β) ≈ 0.5596.

Figures 2a and 2b present the implications of preference heterogeneity on the optimal policy

design with respect inflation and nominal interest rates. Figure 2a shows that the heterogene-

ity in both early and late consumption shocks cause deviations of optimal inflation from the

Friedman rule, π = β and ϕ = 1, which requires a deflation of approximately 1.96% per annum.

However, the quantitative policy effects of preference heterogeneity resulting from the spreads

in ε and δ are substantially different from each other. For example, while keeping σε = 0 and

setting σδ = 1 implies a +1.6%-point change from the Friedman rule as the optimal inflation

policy, setting σε = 1 and σδ = 0 results in an optimal deviation of the inflation rate from the

Friedman-rule by only +0.2%-points. Intuitively, this is because at the ZLB, high inflation dis-

courages both early and late consumption. Ideally, a policymaker promotes early consumption

and discourages late consumption when the spread in ε dominates the spread in δ. When ZLB

is binding, it is impossible to stimulate early consumption and discourage late consumption si-

multaneously. Because of compounding, inflation affects late consumption more than the early

consumption, and thus it becomes optimal to set the inflation rate higher than the Friedman

rule. But, only a slight deviation results from the constrained optimum in order to also take

into account the negative effects of inflation on early consumption.

Figure 2b reveals that when σδ is small, the ZLB binds for a wide range of σε values. This

range shrinks as σδ goes up. In Figure 2b we observe that when σε is small, since the economy

moves away from ZLB, an optimal annual nominal interest rate as high as 2% can be attained.

As a comparison, Figures 2c and 2d present the implications of preference heterogeneity on

optimal policy absent a ZLB on nominal rates, i.e. policy rules that allow for nominal interest

rates in the negative domain. It demonstrates that when the spread in early consumption pref-

erence shocks is large relative to discount factor shocks, a policy maker wants to shift resources

towards early consumption. The policy maker achieves this by reducing inflation relative to the

Friedman rule to promote early consumption. In order to undo the strong compounding effect

of low inflation that would shift resources towards late consumption, nominal rates are moved

into the negative territory and to take values as low as -1.8%.

bution we feed to the model. This makes it difficult to connect our numerical results with the properties of a
log-normal distribution.
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3.3 Welfare Effects

We then move on and explore the effects of preference heterogeneity on aggregate welfare. First,

Figure 3a quantifies the welfare effects of not being able to implement first-best allocations in

an environment where policy is set optimally and constrained by the ZLB. Since utility is linear

in labor effort and in equilibrium labor effort is equal to output produced, we express welfare

effects as a percentage of the first-best output. We observe that the welfare losses resulting from

incomplete markets are substantial when preference heterogeneity arises in our framework. With

heterogeneity in both early and late consumption preferences, losses close to 22.5% of first-best

output prevail when the (relative) standard deviation of first-best early and late consumption

both equal one.

Figure 3b quantifies steady-state welfare losses that arise when instead of being set optimally,

policy adheres to the Friedman rule. In the absence of heterogeneity, i.e. when σε = σδ = 0,

the Friedman rule is optimal, which we take as a special-case corner. In comparison to this

special-case, implementing the Friedman rule at higher levels of preference heterogeneity results

in welfare losses when heterogeneity either in early or late consumption preferences is present.

These losses are especially high when heterogeneity in late consumption preferences dominate,

in which case the ZLB constraint is slack. The welfare loss from sub-optimal Friedman rule

implementation could be as high as 1.1% of first-best output when σδ = 1.

Because it matters for optimal policy how an economy starts out, simply comparing steady-

state welfare levels might be misleading. Therefore, in Figure 3c we consider what happens to

an economy that starts with optimal policy but reverts back to the Friedman rule in period 1.

That means, πt>1 = β and ϕt≥1 = 1. With allocations in period 0 and 1 being unaffected by

such a policy change, we discount welfare losses back to period 2 and then express them as a

percentage of the present value of current and future first-best output. Compared to Figure 3b,

we see that equivalent effects arise for such a policy experiment.

In Figure 3d we evaluate the steady-state welfare losses borne by the ZLB. Specifically, we

conduct a counterfactual analysis, in which we allow for negative interest rates and compare the

resulting welfare against the welfare in our baseline model. This analysis shows that allowing

for negative interest rates on nominal bonds imply welfare gains that are as high as 1.4% of

the first-best output. Again, besides simply comparing steady-state welfare levels, Figure 3e

considers what happens when we revert to standard optimal policy in an economy that starts

with optimal negative interest rates. Compared to Figure 3d, we see that equivalent effects

arise for such a policy experiment.

Finally, we also report welfare changes induced by implementing optimal policy rules. When

the relative standard deviation of first-best early consumption equals one (as a benchmark case),

the optimal policy increases steady state welfare by 0.2% of first-best level of welfare. However,
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when the relative standard deviation of first-best late consumption equals one, the optimal policy

increases steady state welfare by 1.2% of first-best level of welfare - a larger quantitative effect

caused by a non-binding ZLB. Allowing for negative interest rates stimulates the aggregate

welfare by 1.4% of first-best welfare when the relative standard deviation of first-best early

consumption levels equals one.

3.4 Output Effects

Figure 4a shows the effect on output of not being able to implement first-best allocations. We

see that only when the ZLB binds, output in an optimal policy regime changes relative to that

in a first-best economy. Output losses of not-being able to implement negative interest rates are

as large as 4% when σε = 1 and σδ = 0. Intuitively, these output losses are due to the fact that

at the ZLB, suppressing late consumption comes at the cost of suppressing early consumption.

Figure 4a shows the effects on output when instead of being set optimally, policy adheres

to the Friedman rule. When the ZLB does not bind, implementing the Friedman rule improves

output but, as established earlier, at the expense of steady-state welfare.

3.5 Consumption Effects

We conclude the quantitative analysis by decomposing the output effects as consequences on

early and late consumption. Figures 5a and 5c show that when the ZLB does not bind, ag-

gregate early and late consumption are equal to their first-best levels. Since stimulating early

consumption and suppressing late consumption simultaneously is difficult with an endogeous

ZLB, we see that when early consumption shocks dominate and thus the ZLB binds, early con-

sumption reduces and late consumption increases relative to first-best levels. With σε = 1 and

σδ = 0, these effects are large; early consumption reduces by almost 20% while late consumption

increases by more than 10% relative to first-best.

Figures 5b and 5d show that when implementing the Friedman rule instead of optimal policy,

early consumption always reduces. When reverting to the Friedman rule, late consumption

however increases if the ZLB is slack but reduces if the ZLB binds.

Finally, in Figure 6 we study the distributional effects of policy on consumption. We do

so for two different cases; {σε, σδ} = {0.5, 1} and {σε, σδ} = {1, 0.5}. For the first case, the

ZLB does not bind, optimal inflation is -0.603%, and the optimal nominal rate is 1.310%. For

the second case, the ZLB binds and optimal inflation is -0.847%. In the counterfactual of the

ZLB absence, in the latter case optimal inflation would be -1.599% and the optimal nominal

rate -1.879%. Figures 6a and 6b show how θ, i.e. middle aged agents’ consumption quote, is

distributed.

For the first case, Figures 6c and 6e show how optimal policy shifts the distribution of early
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consumption to the left and the distribution of late consumption to the right, when compared

to consumption distributions under the Friedman rule.

For the second case, Figures 6d and 6f show how optimal policy shifts the distribution

of both early consumption and late consumption to the left when compared to consumption

distributions under the Friedman rule. Absent a ZLB in the second case, optimal policy shifts

the distribution of late consumption further to the left but the distribution of early consumption

back to the right.

3.6 Summary

The quantitative analysis reveals that in the presence of heterogeneous preferences, optimal

policy partially substitutes for the lack financial development. However, it is important to

understand the nature of preference heterogeneity and in particular whether heterogeneity is

resulting from differences in early consumption shocks or discount factors. Moreover, we also

show that the presence of an endogenous ZLB is a quantitatively important constraining factor

in maximizing the welfare gains from optimal policy implementation.

4 A Model with Real Investment and Private Assets

In our benchmark model households do not have the option to accumulate wealth through

private means. In order to check the sensitivity of our qualitative findings to this benchmark

specification, in this section, we introduce a private asset into the model and allow that asset to

compete with nominal bonds. We continue to assume the same structure as before and also that

in the GM money is the only medium of exchange. However, different from what we introduced

in Section 2, households have access to a long-run investment technology which serves as an

alternative form of saving instrument in addition to nominal bonds and yields a real return.

We are interested in understanding whether the optimal policy mix that we derived in Section

2, remains qualitatively valid when households face an alternative (real) investment option.

Formally, we assume that in any time period t, all young households have access to a

decreasing returns to scale investment technology during the GM. Specifically, for each kt units

of goods invested in GM t, the technology returns

yt+2 =
Ak1−α

t

1− α
, α ∈ (0, 1) (20)

units of goods in the GM of period t+2. Furthermore, in the FM of period t+1, a household can

issue claims against the future output of its investment technology. Other households and also

the government, can purchase these claims. When the government engages in asset purchases, it

leads to the emergence of asset-backed money. That means, in FM of period t+1 the government
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can buy privately issued financial claims by printing money. By selling off these claims in period

t+ 2, the injected money can be withdrawn and the government may earn seignorage revenues.

Importantly, the ability of the government to issue asset-backed money implies full control over

inflation and nominal interest rates.

4.1 Optimizing Behavior and Equilibrium

We let ψt denote the FM t price of a claim against one unit of good to be delivered in the GM

of period t + 1 - measured in terms of the GM goods in period t. A no arbitrage condition

implies ψt = ϕtπt+1. The lifetime utility maximization problem of a household then becomes:

Ut = max
ht,kt,{qmξ,t,q

o
ξ,t}ξ∈Ξ

{
−ht − kt + βE[εu(qmξ,t)] + β2E[δu(qoξ,t)]

}
, (21)

s.t. πt+1[qmξ,t + ϕt+1πt+2q
o
ξ,t + τt+1] ≤ ht +

ϕt+1πt+1πt+2Ak
1−α
t

1− α
, ∀ ξ ∈ Ξ. (22)

ht ≥ 0, and kt ≥ 0. (23)

Based on the extended optimization problem at (21)-(23) we first establish the following lemma,

which characterizes the equilibrium.

Lemma 2. (i) Aggregate supply and demand in any time period t are characterized by:

Qst = β(1 + β) + πt+1τt+1 +A1/α
(

[ϕt−1πt−1πt]
1−α
α − [ϕt+1πt+1πt+2]

1
α

)
/(1− α), (24)

Qdt = Θβ(1 + β)/πt + β(1 + β)(1−Θ)/(ϕt−1πt−1ϕt). (25)

(ii) The amount of labor devoted to acquiring cash and investment goods are given by:

ht = β(1 + β) + πt+1τt+1 − [Aϕt+1πt+1πt+2]1/α/(1− α) and kt = [Aϕt+1πt+1πt+2]1/α. (26)

(iii) Finally, in a steady-state equilibrium the following condition ensures that the labor-supply

satisfies h > 0:

A
1
α (ϕπ2)

1−α
α

1− α
<
β(1 + β)(ϕπΘ + 1−Θ)

ϕπ2
. (27)

We would like to first note that, in order to keep the analysis comparable to that of Section

2, we restrict our attention to cases in which h > 0 holds, because otherwise there is no inter-

generational monetary exchange. Lemma 2 shows that h > 0 is the case if the productivity of

the long-run investment technology is sufficiently low. The intuition for this property is straight-

forward: when the long-run technology is too productive, agents can finance consumption needs

in both periods using only the long-run technology. In addition to this property, Lemma 2 also

characterizes the equilibrium quantities produced (and demanded), which different than the
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benchmark specification contain terms related to labor- and capital-based output.

4.2 Optimal Policy

A government with perfect commitment maximizes

Wt =

∞∑
s=t

βs−t
[
E
{
εu(qmi,s−1)

}
+ E

{
δu(q0

i,s−2)
}
− hs − ks

]
(28)

by choosing a sequence {ϕs, πs+1}∞s=t+1 s.t. ϕs ≤ 1, and taking as given {ϕs, πs+1}s=ts=0 and

{ks}s=ts=0. Using our logarithmic utility specification, the welfare function at (28) that the gov-

ernment maximizes can be written as:

Wt =
∞∑
s=t

βs−t


∆− log(πs)−

Θβ(1 + β)

πs
− log(ϕs−1πs−1πs)−

(1−Θ)β(1 + β)

ϕs−1πs−1πs

+A
1
α

[ϕs−1πs−1πs]
1−α
α − (1− α)[ϕs+1πs+1πs+2]

1
α

1− α

 , (29)

with ∆ given by (10). We characterize the government’s optimal policy mix in the following

proposition.

Proposition 2. The optimal policy mix in a steady-state equilibrium satisfies:

ϕ =

1 if Θ(1 + β) < 1

1−Θ
Θ2β(1+β)

+ oϕ if Θ(1 + β) ≥ 1
(30)

π =

(1 + β)
Θβ+

√
β
√
βΘ2+4(2+β)(1−Θ)

2(2+β) − oπ if Θ(1 + β) ≤ 1

Θβ(1 + β) if Θ(1 + β) > 1
(31)

When the ZLB constraint does not bind, the difference between the optimal price of bonds with

and without an investment technology is given by oϕ. This object is a positive solution of the

following equation

oϕ[Θβ(1 + β)]2 =

{
Aβ(1 + β)[1−Θ + oϕΘ2β(1 + β)]

} 1
α

α

[
1− (1 + β)

1−Θ + oϕΘ2β(1 + β)

β

]
.

(32)

When the ZLB constraint binds, the difference between optimal inflation with and without an

investment technology is given by oπ. This object is the unique positive solution of the following

equation

0 = oπ [oπ(2 + β)− 2Υ(2 + β) + Θβ(1 + β)]−
[
A(Υ− oπ)2

] 1
α
[
1− (Υ− oπ)2/β2

]
(1 + β)/α,

(33)

where Υ = (1 + β)[Θβ +
√
β
√
βΘ2 + 4(2 + β)(1−Θ)]/[4 + 2β].
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With A sufficiently large, oϕ may not be determined uniquely and additional second-order

conditions need to be considered. In what follows, we consider A sufficiently small so that

oϕ is pinned down uniquely by the associated equation in Proposition 2. With respect to

the qualitative properties we discuss next, this simplification has been made without loss of

generality.

Proposition 2 highlights an important robustness of our optimal policy characterization.

Specifically, the threshold that determines the cut-off point for a ZLB constraint remains the

same as in Section 2. To review from there, ceteris paribus, an increase in the heterogeneity

of late-consumption preferences lowers the likelihood of a binding ZLB, while increasing the

heterogeneity of early-consumption preferences raises the likelihood of a binding ZLB. Qualita-

tively, optimal policy also looks similar to what we characterized in Section 2, except either the

optimal interest rate on nominal bonds (when the ZLB is slack) or the optimal inflation rate

(when the ZLB binds) exhibits a distortionary wedge due to the presence of real asset formation

by households. It also remains true as in Section 2 that π ≥ β, with equality if and only if

Θ(1 + β) = 1, and ϕ ≤ 1 with equality if and only if Θ(1 + β) ≤ 1.

With respect to the distortionary wedges on inflation and bond pricing policies, we obtain

important comparative statics with an intuitive interpretation. Specifically, limA→0 oϕ = 0 and

limA→0 oπ = 0. Also, ∂oϕ/∂A > 0 and ∂oπ/∂A > 0. This means, the higher the productivity of

private investment, the larger become the distortionary wedges associated with optimal policy.

The reason is that real investment is affected by the real return earned by government bonds

through a no arbitrage condition. Since first-best investment prevails when this real rate of

return equals the natural real interest rate, the presence of a real investment technology pulls

optimal policy towards the Friedman rule.

4.3 Qualitative Illustration of Optimal Policy

When there are no preference shocks or policy neutral shocks, such that Θ(1 + β) = 1, we

conclude as in Section 2 with the optimality of the Friedman rule (π = β and ϕ = 1). Observing

how investment enters the first-order conditions, we see that the first-best level of investment

requires ϕπ2 = β2. With no or policy-neutral idiosyncratic preference shocks, optimal levels of

consumption are attained when π = β and ϕ = 1. Thus, the introduction of a real investment

opportunity and private asset formation has no effect on the optimality of the Friedman rule in

this particular case.

In a specification with shocks to only late consumption, which implies Θ(1 + β) > 1, the

ZLB is slack. Early consumption is determined by π and late consumption by ϕπ2. Because

investment is determined by ϕπ2, the investment technology only affects optimal nominal in-

terest rates and not the optimal inflation rate. With Θ(1 + β) > 1, optimal late consumption

requires ϕπ2 = β(1 + β)(1 − Θ) < β2 while optimal investment requires ϕπ2 = β2. Compared
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to the Friedman rule, optimal policy balances these two conditions and therefore implies too

little investment and too much late consumption - as in the benchmark specification.

When there are shocks to early consumption only, which implies Θ(1 + β) < 1, the ZLB

constraint binds. Optimal aggregate consumption requires π > β while optimal investment

requires π = β. Optimal policy trades off these two. The investment technology therefore affects

the inflation, and compared to the Friedman rule, the optimal inflation implies π > β with too

much investment and too little aggregate consumption - as in the benchmark specification.

5 Conclusion

We studied preference heterogeneity and optimal monetary policy in a dynamic general equi-

librium model of money with incomplete financial markets. Our benchmark theoretical model

incorporates two dimensional consumption preference heterogeneity: idiosyncratic shocks to

current consumption and discount factors. Although we model preference shocks in a general

way, the model is tractable to yield clean theoretical insights and quantifiable effects. We show

that the shocks to current (early) consumption could cause an endogenous ZLB to bind - an

effect that could get mitigated by discount factor heterogeneity. We characterize optimal policy

and study the behavior of optimal inflation and nominal interest rates. The optimal policy, in

general, deviates from the Friedman rule, but the motives for deviation are different depend-

ing on the type of preference heterogeneity. Our qualitative results are robust to allowing for

alternative savings instruments.

The quantitative analysis based on the theoretical framework reveals that - when imple-

mented optimally - policy can partially substitute for the lack of complete financial markets.

However, the ZLB is a constraining factor. We conduct a counterfactual analysis to evaluate the

macroeconomic effects of optimal negative interest rates. This counterfactual analysis shows

that allowing for negative interest rates on nominal bonds can result in welfare gains that are

as high as 1.4% of first-best output.
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Appendix

Derivations of real quantities in the benchmark model

We let βλξ,t denote the Lagrange multiplier associated with the (idiosyncratic) state-contingent

budget constraint (2b). With log-utility, first-order conditions become:

ht : 0 = −1 + βE[λξ,t] (A.1)

qmξ,t : 0 = −πt+1λξ,t + ε/qmξ,t (A.2)

qoξ,t : 0 = −min{ϕt+1}πt+1πt+2λξ,t + βδ/qoξ,t (A.3)

Combining (A.2) and (A.3) results in

qoξ,t = qmξ,t
βδ

ε

1

min{ϕt+1, 1}πt+2
. (A.4)

Using that the budget constraint (2b) must hold with equality, we find

ht = πt+1

[
qmξ,t

ε+ βδ

ε
+ τt+1

]
(A.5)

Rewriting (A.5) in terms of qmξ,t and substituting into (A.2), we obtain

λξ,t =
ε+ βδ

ht − πt+1τt+1
(A.6)

Using this in (A.1) together with Assumption 1 (E[ε] = E[δ] = 1) we find

ht = β(1 + β) + πt+1τt+1. (A.7)

Using (A.7) in (A.5) yields an expression for qmξ,t, which we can then use in (A.4) to obtain an

expression for q0
ξ,t:

qmξ,t =
ε

ε+ βδ

β(1 + β)

πt+1
and qoξ,t =

βδ

ε+ βδ

β(1 + β)

min{ϕt+1, 1}πt+1πt+2
. (A.8)

Proof of Lemma 1

When the ZLB does not bind, first-order conditions resulting from optimizing the welfare func-

tion at steady-state with respect to π (inflation rate) and ϕ (bond prices) yields

π∗ = Θβ(1 + β), (A.9)
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ϕ∗(π∗)2 = β(1 + β)(1−Θ). (A.10)

Clearly, the ZLB binds if and only if ϕ∗ > 1. Using (A.9) and (A.10), this is the case when

Θ2(1 + β)2β2 + Θβ(1 + β)− β(1 + β) < 0. (A.11)

Condition (A.11) is satisfied for −1/β < Θ < 1/(1 + β). Because Θ ∈ (0, 1), it follows that the

ZLB binds if and only if Θ(1 + β) < 1.

Proof of Proposition 1

There are two cases to consider: (i) binding ZLB (with ϕ = 1) and (ii) non-binding ZLB (with

ϕ < 1). When ϕ = 1, optimal π is determined from:

π =
β(1 + β)Θ

1− χ(1 + β)
, (A.12)

1 + χ =
β(1 + β)

π2
(1−Θ), (A.13)

using which optimal inflation rate π can be solved as the unique positive root of the polynomial:

π2(2 + β)− πβ(1 + β)Θ− β(1− β)2(1−Θ) = 0, (A.14)

as stated in Proposition 1.

In the case of non-binding ZLB with ϕ < 1 (and thus χ = 0), the optimal inflation rate is

determined as:

π = Θβ(1 + β), (A.15)

which also yields:

ϕ =
1−Θ

Θ2β(1 + β)
. (A.16)

Proof of Corollary 2

That the optimal inflation rate satisfies π ≥ β for the case of Θ(1 + β) ≥ 1 (with π = β

when Θ(1 + β) = 1) follows immediately from the equation that pins down optimal policy

mix Proposition 1. To observe that the optimal inflation is still greater than the Friedman

rule, π > β, when Θ(1 + β) < 1, we first note that at this particular case the equation that

determines the optimal inflation satisfies

(2 + β)π2 −Θβ(1 + β)π − β(1 + β)2(1−Θ) = 0, (A.17)
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which has a unique positive root for π. Note that π = β solves (A.17) if Θ(1 + β) = 1. Then,

starting at π = β and Θ(1 +β) = 1, if Θ declines (such that Θ(1 +β) < 1) the left-hand-side of

(A.17) which solves for the optimal inflation with Θ(1 + β) < 1 goes down, since β < 1. Also

because at π = β an increase in π raises the left-hand-side of the polynomial, it yields the result

that the optimal inflation rate satisfies π > β for Θ(1 + β) < 1.

Proof of Lemma 2

Let βλξ,t, νh,t, and νk,t denote the Lagrange multipliers of the associated constraints. Because

the non-negativity constraint for capital never binds due to the DRS technology specification,

we obtain the following first-order conditions:

ht : 0 = −1 + νh,t + βE[λξ,t], (A.18)

kt : 0 = −1 + ϕt+1πt+1πt+2Ak
−α
t βE[λξ,t], (A.19)

qmξ,t : 0 = ε/qmξ,t − πt+2λξ,t, (A.20)

qoξ,t : 0 = δβ/q0
ξ,t − ϕt+1πt+1πt+2λξ,t. (A.21)

The solution clearly depends on whether the non-negativity constraint associated with

young’s labor supply, h, binds and thus whether there are intergenerational transfers in spirit

of what we studied in Section 2. In what follows, we focus on equilibria that involve h > 0. The

amount of labor devoted to acquiring cash and investment goods is then given by

ht = β(1+β)+πt+1τt+1− [Aϕt+1πt+1πt+2]1/α/(1−α) and kt = [Aϕt+1πt+1πt+2]1/α, (A.22)

respectively. When middle-aged, households’ real financial wealth after taxation therefore equals

β(1 + β)/πt+1. As in the benchmark model, early and late consumption are then given by (3)

and aggregate supply of and demand for goods in any time period t becomes:

Qst = β(1 + β) + πt+1τt+1 +A1/α
(

[ϕt−1πt−1πt]
1−α
α − [ϕt+1πt+1πt+2]

1
α

)
/(1− α), (A.23)

Qdt = Θβ(1 + β)/πt + β(1 + β)(1−Θ)/(ϕt−1πt−1ϕt). (A.24)

The level of lump-sum taxes that closes the model and equilibriates demand and supply is given

by:

πtτt = β(1 + β) {Θ[1/πt−1 − 1] + (1−Θ)[1/(ϕt−2πt−2πt−1)− 1]}

−
A1/α

(
[ϕt−2πt−2πt−1]

1−α
α − [ϕtπtπt+1]

1
α

)
1− α

. (A.25)
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It follows that total labor supply by young households satisfies:

ht + kt =
Θβ(1 + β)

πt
+
β(1 + β)(1−Θ)

ϕt−1πt−1ϕt
−A1/α

(
[ϕt−1πt−1πt]

1−α
α

1− α
− [ϕt+1πt+1πt+2]

1
α

)
.

(A.26)

Focusing on a steady state, to ensure h is strictly positive we need the following condition to

hold in equilibrium:

A
1
α (ϕπ2)

1−α
α

1− α
<
β(1 + β)(ϕπΘ + 1−Θ)

ϕπ2
. (A.27)

Proof of Proposition 2

Let βs+1−tχs denote the Lagrange multiplier on the ZLB constraint to obtain the following first

order conditions

πs+2 : 0 = β2

(
−2 + β

πs+2
+

Θβ(1 + β)

π2
s+2

+
β(1 + β)(1−Θ)

ϕs+1πs+1π2
s+2

+
β2(1 + β)(1−Θ)

ϕs+2π2
s+2πs+3

)
(A.28)

+
[Aϕs+1πs+1πs+2]

1
α

απs+2

[
β2

ϕs+1πs+1πs+2
− 1

]
+ β

[Aϕs+2πs+2πs+3]
1
α

απs+2

[
β2

ϕs+2πs+2πs+3
− 1

]
,

ϕs+1 : 0 = β2

(
−χs+1 −

1

ϕs+1
+
β(1 + β)(1−Θ)

ϕ2
s+1πs+1πs+2

)
+

[Aϕs+1πs+1πs+2]
1
α

αϕs+1

[
β2

ϕs+1πs+1πs+2
− 1

]
.

(A.29)

Focusing on steady state, the first-order conditions reduce to:

π = Θβ(1 + β) + χπ(1 + β) and ϕπ2 = β(1 + β)(1−Θ)− χϕπ2 + [Aϕπ2]
1
α
[
1− ϕπ2/β2

]
/α.

(A.30)

We note that in steady state, the investment technology enters only in the first-order condition

for ϕ. However, through the Lagrange multiplier for the ZLB, inflation can be affected by the

investment technology.

Then, we show that the ZLB binds if and only if Θ(1 + β) < 1. Consider first Θ(1 + β) ≥ 1

and conjecture that the ZLB is slack this case. Then equation (A.30) implies

π ≥ β and ϕπ2 ≤ β2 + [Aϕπ2]
1
α
[
1− ϕπ2/β2

]
/α⇒ ϕπ2 ≤ β2. (A.31)

It follows that ϕ ≤ 1, which verifies our conjecture. Consider second that Θ(1 + β) < 1 and

suppose that the ZLB is also slack in this case. Then equation (A.30) implies

π < β and ϕπ2 > β2 + [Aϕπ2]
1
α
[
1− ϕπ2/β2

]
/α⇒ ϕπ2 > β2. (A.32)
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It follows that ϕ > 1, which yields a contradiction. Hence the ZLB must bind when Θ(1+β) < 1.

Next, we characterize optimal policy with a slack ZLB constraint. Clearly

π = Θβ(1 + β) and ϕπ2 = β(1 + β)(1−Θ) + [Aϕπ2]
1
α
[
1− ϕπ2/β2

]
/α. (A.33)

Letting ϕπ2 = β(1 + β)(1−Θ) + o′ϕ we have that

o′ϕ =
A[β(1 + β)(1−Θ) + o′ϕ]1/α

α

[
1−

β(1 + β)(1−Θ) + o′ϕ
β2

]
. (A.34)

With Θ(1 + β) ≥ 1, this implies that o′ϕ ≥ 0 with strict inequality if A > 0, as well as

limA→0 o
′
ϕ = 0. When A is sufficiently small, Equation (A.34) also pins down o′ϕ uniquely.

Then, ∂o′ϕ/∂A > 0. Finally,

ϕ =
1−Θ

Θβ(1 + β)
+ oϕ, oϕ =

o′ϕ
[Θβ(1 + β)]2

(A.35)

where oϕ has the same qualitative properties as o′ϕ.

Finally, we characterize optimal policy with a tight ZLB constraint. Using ϕ = 1, Equation

(A.30) implies that

0 = (2 + β)π2 −Θβ(1 + β)π − β(1 + β)2(1−Θ)− [Aπ2]1/α[1− π2/β](1 + β)/α. (A.36)

With Θ(1+β) < 1, the RHS of Equation (A.36) is negative for all π ≤ β. The partial derivative

of the RHS of Equation (A.36) w.r.t. π satisfies

2π(2 + β)−Θβ(1 + β)− 2π[Aπ2]1/α
[

1

α

(
1

π2
− 1

β

)
− 1

β

]
1 + β

α
, (A.37)

which is strictly positive for π > β. Therefore, there exists a unique π > β which solves Equation

(A.36) and constitutes the optimal rate of inflation. Clearly, this solution is decreasing in A

and can be written as

π = Υ− oπ and Υ = (1 + β)
θβ +

√
β
√
βΘ2 + 4(2 + β)(1−Θ)

2(2 + β)
, (A.38)

with oπ = 0 if A = 0, oπ > 0 if A > 0, ∂oπ/∂A > 0, and limA→0 oπ = 0. Here oπ is the unique

positive solution to:

0 = oπ [oπ(2 + β)− 2Υ(2 + β) + Θβ(1 + β)]−
[
A(Υ− oπ)2

] 1
α
[
1− (Υ− oπ)2/β2

]
(1 + β)/α.

(A.39)
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Figure 1: Sufficient statistic Θ for log-normally distributed preference shocks.
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(b) Optimal nominal interest rate.
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(d) Optimal nominal interest rate without a ZLB.

Figure 2: Sufficient statistic Θ and optimal policy with log-normal preference shocks. Inflation and
nominal interest rates are expressed as annualized percentages. The colormap for Θ is normalized around
1/(1 + β). The colormap for inflation and nominal interest rates are normalized around the Friedman
rule.
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(c) Dynamic welfare loss of Friedman rule.
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(e) Dynamic welfare loss of ZLB.

Figure 3: Welfare analysis for log-normally distributed preferences shocks. All effects are expressed as a
percentage of steady-state output for first-best allocations.
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(a) Output with optimal policy relative to first-best.
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(b) Output at Friedman rule relative to optimal policy.

Figure 4: Output effects for log-normally distributed preferences shocks. All effects are expressed as a
percentage of steady-state output for first-best allocations.
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(a) Early cons. with opt. policy relative to first-best.
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(b) Early cons. at Friedman rule relative to opt. policy.
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(c) Late cons. with opt. policy relative to first-best.
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(d) Late cons. at Friedman rule relative to opt. policy.

Figure 5: Aggregate consumption effects for log-normally distributed preferences shocks. All effects are
expressed a as a percentage.
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(a) Pdf for θ with σε = 0.5 and σδ = 1.
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(b) Pdf for θ with σε = 1 and σδ = 0.5.
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(c) Pdf for early cons. with σε = 0.5 and σδ = 1.
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(d) Pdf for early cons. with σε = 1 and σδ = 0.5.
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(e) Pdf for late cons. with σε = 0.5 and σδ = 1.
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(f) Pdf for late cons. with σε = 1 and σδ = 0.5.

Figure 6: Distributional of effects for log-normally distributed preferences shocks. With σε = 0.5 and
σδ = 1 in the left-column, optimal inflation is -0.603% and the optimal nominal rate is 1.310%. With
σε = 0.5 and σδ = 1 in the right column, optimal inflation is -0.847% and the optimal nominal rate is 0%
as the ZLB binds. Absent a ZLB, in the latter case optimal inflation would be -1.599% and the optimal
rate -1.879%.
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