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ORIGINAL RESEARCH REPORT

Too Good to be False: Nonsignificant Results Revisited
C. H. J. Hartgerink, J. M. Wicherts and M. A. L. M. van Assen

Due to its probabilistic nature, Null Hypothesis Significance Testing (NHST) is subject to decision errors. 
The concern for false positives has overshadowed the concern for false negatives in the recent debates 
in psychology. This might be unwarranted, since reported statistically nonsignificant findings may just be 
‘too good to be false’. We examined evidence for false negatives in nonsignificant results in three differ-
ent ways. We adapted the Fisher test to detect the presence of at least one false negative in a set of 
statistically nonsignificant results. Simulations show that the adapted Fisher method generally is a power-
ful method to detect false negatives. We examined evidence for false negatives in the psychology litera-
ture in three applications of the adapted Fisher method. These applications indicate that (i) the observed 
effect size distribution of nonsignificant effects exceeds the expected distribution assuming a null-effect, 
and approximately two out of three (66.7%) psychology articles reporting nonsignificant results contain 
evidence for at least one false negative, (ii) nonsignificant results on gender effects contain evidence of 
true nonzero effects, and (iii) the statistically nonsignificant replications from the Reproducibility Project 
Psychology (RPP) do not warrant strong conclusions about the absence or presence of true zero effects 
underlying these nonsignificant results. We conclude that false negatives deserve more attention in the 
current debate on statistical practices in psychology. Potentially neglecting effects due to a lack of sta-
tistical power can lead to a waste of research resources and stifle the scientific discovery process.

Keywords: NHST; reproducibility project; nonsignificant; power; underpowered; effect size; Fisher test; 
gender

Popper’s (Popper, 1959) falsifiability serves as one of 
the main demarcating criteria in the social sciences, 
which stipulates that a hypothesis is required to have 
the possibility of being proven false to be considered 
scientific. Within the theoretical framework of scientific 
hypothesis testing, accepting or rejecting a hypothesis 
is unequivocal, because the hypothesis is either true or 
false. Statistical hypothesis testing, on the other hand, 
is a probabilistic operationalization of scientific hypoth-
esis testing (Meehl, 1978) and, in lieu of its probabilistic 
nature, is subject to decision errors. Such decision errors 
are the topic of this paper.

Null Hypothesis Significance Testing (NHST) is the most 
prevalent paradigm for statistical hypothesis testing in 
the social sciences (American Psychological Association, 
2010). In NHST the hypothesis H0 is tested, where H0 most 
often regards the absence of an effect. If deemed false, an 
alternative, mutually exclusive hypothesis H1 is accepted. 
These decisions are based on the p-value; the probability 
of the sample data, or more extreme data, given H0 is true. 
If the p-value is smaller than the decision criterion (i.e., α; 

typically .05; [Nuijten, Hartgerink, van Assen, Epskamp, & 
Wicherts, 2015]), H0 is rejected and H1 is accepted.

Table 1 summarizes the four possible situations that 
can occur in NHST. The columns indicate which hypoth-
esis is true in the population and the rows indicate what is 
decided based on the sample data. When there is discord-
ance between the true- and decided hypothesis, a deci-
sion error is made. More specifically, when H0 is true in 
the population, but H1 is accepted (‘H1’), a Type I error is 
made (α); a false positive (lower left cell). When H1 is true 
in the population and H0 is accepted (‘H0’), a Type II error 
is made (β); a false negative (upper right cell). However, 
when the null hypothesis is true in the population and 
H0 is accepted (‘H0’), this is a true negative (upper left cell;  
1 − α). The true negative rate is also called specificity of 
the test. Conversely, when the alternative hypothesis is 
true in the population and H1 is accepted (‘H1’), this is a 
true positive (lower right cell). The probability of finding a 
statistically significant result if H1 is true is the power (1 − 
β), which is also called the sensitivity of the test. Power is 
a positive function of the (true) population effect size, the 
sample size, and the alpha of the study, such that higher 
power can always be achieved by altering either the sam-
ple size or the alpha level (Aberson, 2010).

Unfortunately, NHST has led to many misconceptions 
and misinterpretations (e.g., Goodman, 2008; Bakan, 
1966). The most serious mistake relevant to our paper 
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is that many researchers accept the null-hypothesis and 
claim no effect in case of a statistically nonsignificant 
effect (about 60%, see Hoekstra, Finch, Kiers, & Johnson, 
2016). Hence, most researchers overlook that the outcome 
of hypothesis testing is probabilistic (if the null-hypothe-
sis is true, or the alternative hypothesis is true and power 
is less than 1) and interpret outcomes of hypothesis test-
ing as reflecting the absolute truth. At least partly because 
of mistakes like this, many researchers ignore the possibil-
ity of false negatives and false positives and they remain 
pervasive in the literature.

Recent debate about false positives has received much 
attention in science and psychological science in particu-
lar. The Reproducibility Project Psychology (RPP), which 
replicated 100 effects reported in prominent psychology 
journals in 2008, found that only 36% of these effects 
were statistically significant in the replication (Open 
Science Collaboration, 2015). Besides in psychology, repro-
ducibility problems have also been indicated in econom-
ics (Camerer, et al., 2016) and medicine (Begley, & Ellis, 
2012). Although these studies suggest substantial evi-
dence of false positives in these fields, replications show 
considerable variability in resulting effect size estimates 
(Klein, et al., 2014; Stanley, & Spence, 2014). Therefore 
caution is warranted when wishing to draw conclusions 
on the presence of an effect in individual studies (original 
or replication; Open Science Collaboration, 2015; Gilbert, 
King, Pettigrew, & Wilson, 2016; Anderson, et al. 2016).

The debate about false positives is driven by the current 
overemphasis on statistical significance of research results 
(Giner-Sorolla, 2012). This overemphasis is substantiated 
by the finding that more than 90% of results in the psycho-
logical literature are statistically significant (Open Science 
Collaboration, 2015; Sterling, Rosenbaum, & Weinkam, 
1995; Sterling, 1959) despite low statistical power 
due to small sample sizes (Cohen, 1962; Sedlmeier, & 
Gigerenzer, 1989; Marszalek, Barber, Kohlhart, & Holmes, 
2011; Bakker, van Dijk, & Wicherts, 2012). Consequently, 
publications have become biased by overrepresenting 
statistically significant results (Greenwald, 1975), which 
generally results in effect size overestimation in both indi-
vidual studies (Nuijten, Hartgerink, van Assen, Epskamp, & 
Wicherts, 2015) and meta-analyses (van Assen, van 
Aert, & Wicherts, 2015; Lane, & Dunlap, 1978; Rothstein, 
Sutton, & Borenstein, 2005; Borenstein, Hedges, Higgins, & 
Rothstein, 2009). The overemphasis on statistically sig-
nificant effects has been accompanied by questionable 

research practices (QRPs; John, Loewenstein, & Prelec, 
2012) such as erroneously rounding p-values towards 
significance, which for example occurred for 13.8% of all 
p-values reported as “p = .05” in articles from eight major 
psychology journals in the period 1985–2013 (Hartgerink, 
van Aert, Nuijten, Wicherts, & van Assen, 2016).

The concern for false positives has overshadowed the 
concern for false negatives in the recent debate, which  
seems unwarranted. Cohen (1962) was the first to indicate 
that psychological science was (severely) underpowered, 
which is defined as the chance of finding a statisti-
cally significant effect in the sample being lower than  
50% when there is truly an effect in the population. This 
has not changed throughout the subsequent fifty years 
(Bakker, van Dijk, & Wicherts, 2012; Fraley, & Vazire, 2014). 
Given that the complement of true positives (i.e., power) 
are false negatives, no evidence either exists that the prob-
lem of false negatives has been resolved in psychology. 
Moreover, Fiedler, Kutzner, and Krueger (2012) expressed 
the concern that an increased focus on false positives is too 
shortsighted because false negatives are more difficult to 
detect than false positives. They also argued that, because 
of the focus on statistically significant results, negative 
results are less likely to be the subject of replications than 
positive results, decreasing the probability of detecting a 
false negative. Additionally, the Positive Predictive Value 
(PPV; the number of statistically significant effects that are 
true; Ioannidis, 2005) has been a major point of discus-
sion in recent years, whereas the Negative Predictive Value 
(NPV) has rarely been mentioned.

The research objective of the current paper is to exam-
ine evidence for false negative results in the psychology 
literature. To this end, we inspected a large number of 
nonsignificant results from eight flagship psychology jour-
nals. First, we compared the observed effect distributions 
of nonsignificant results for eight journals (combined 
and separately) to the expected null distribution based 
on simulations, where a discrepancy between observed 
and expected distribution was anticipated (i.e., presence 
of false negatives). Second, we propose to use the Fisher 
test to test the hypothesis that H0 is true for all nonsig-
nificant results reported in a paper, which we show to 
have high power to detect false negatives in a simulation 
study. Third, we applied the Fisher test to the nonsignifi-
cant results in 14,765 psychology papers from these eight 
flagship psychology journals to inspect how many papers 
show evidence of at least one false negative result. Fourth, 

Population

Decision ‘H0’

H0

1 − α
True negative

H1

β
False negative [Type II error]

‘H1’ α
False positive [Type I error]

1 − β
True positive

Table 1: Summary table of possible NHST results. Columns indicate the true situation in the population, rows indicate 
the decision based on a statistical test. The true positive probability is also called power and sensitivity, whereas the 
true negative rate is also called specificity.
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we examined evidence of false negatives in reported gen-
der effects. Gender effects are particularly interesting, 
because gender is typically a control variable and not the 
primary focus of studies. Hence we expect little p-hacking 
and substantial evidence of false negatives in reported 
gender effects in psychology. Finally, as another applica-
tion, we applied the Fisher test to the 64 nonsignificant 
replication results of the RPP (Open Science Collaboration, 
2015) to examine whether at least one of these nonsignifi-
cant results may actually be a false negative.

Theoretical framework
We begin by reviewing the probability density function of 
both an individual p-value and a set of independent p-values 
as a function of population effect size. Subsequently, we 
apply the Kolmogorov-Smirnov test to inspect whether 
a collection of nonsignificant results across papers devi-
ates from what would be expected under the H0. We also 
propose an adapted Fisher method to test whether non-
significant results deviate from H0 within a paper. These 
methods will be used to test whether there is evidence for 
false negatives in the psychology literature.

Distributions of p-values
The distribution of one p-value is a function of the popu-
lation effect, the observed effect and the precision of the 
estimate. When the population effect is zero, the prob-
ability distribution of one p-value is uniform. When there 
is a non-zero effect, the probability distribution is right-
skewed. More specifically, as sample size or true effect 
size increases, the probability distribution of one p-value 
becomes increasingly right-skewed. These regularities also 
generalize to a set of independent p-values, which are uni-
formly distributed when there is no population effect and 
right-skew distributed when there is a population effect, 
with more right-skew as the population effect and/or pre-
cision increases (Fisher, 1925).

Considering that the present paper focuses on false 
negatives, we primarily examine nonsignificant p-values 
and their distribution. Since the test we apply is based on 
nonsignificant p-values, it requires random variables dis-
tributed between 0 and 1. We apply the following trans-
formation to each nonsignificant p-value that is selected

   (1)

where pi is the reported nonsignificant p-value, α is the 
selected significance cut-off (i.e., α = .05), and pi* the 
transformed p-value. Note that this transformation retains 
the distributional properties of the original p-values for 
the selected nonsignificant results. Both one-tailed and 
two-tailed tests can be included in this way.

Testing for false negatives: the Fisher test
We applied the Fisher test to inspect whether the dis-
tribution of observed nonsignificant p-values deviates 
from those expected under H0. The Fisher test was initially 

introduced as a meta-analytic technique to synthesize 
results across studies (Fisher, 1925; Hedges, & Olkin, 1985). 
When applied to transformed nonsignificant p-values (see 
Equation 1) the Fisher test tests for evidence against H0 in 
a set of nonsignificant p-values. In other words, the null 
hypothesis we test with the Fisher test is that all included 
nonsignificant results are true negatives. The Fisher test 
statistic is calculated as

   (2)

where k is the number of nonsignificant p-values and χ2 
has 2k degrees of freedom. A larger χ2 value indicates 
more evidence for at least one false negative in the set of 
p-values. We conclude that there is sufficient evidence of 
at least one false negative result, if the Fisher test is sta-
tistically significant at α = .10, similar to tests of publica-
tion bias that also use α = .10 (Sterne, Gavaghan, & Egger, 
2000; Ioannidis, & Trikalinos, 2007; Francis, 2012).

We estimated the power of detecting false negatives 
with the Fisher test as a function of sample size N, true 
correlation effect size η, and k nonsignificant test results 
(the full procedure is described in Appendix  A). The 
three levels of sample size used in our simulation study 
(33, 62, 119) correspond to the 25th, 50th (median) and 
75th percentiles of the degrees of freedom of reported 
t, F, and r statistics in eight flagship psychology jour-
nals (see Application 1 below). Degrees of freedom of 
these statistics are directly related to sample size, for 
instance, for a two-group comparison including 100 
people, df = 98.

Table 2 summarizes the results for the simulations of 
the Fisher test when the nonsignificant p-values are gen-
erated by either small- or medium population effect sizes. 
Results for all 5,400 conditions can be found on the OSF 
(osf.io/qpfnw). The results indicate that the Fisher test 
is a powerful method to test for a false negative among 
nonsignificant results. For example, for small true effect 
sizes (η = .1), 25 nonsignificant results from medium sam-
ples result in 85% power (7 nonsignificant results from 
large samples yield 83% power). For medium true effects 
(η = .25), three nonsignificant results from small samples 
(N = 33) already provide 89% power for detecting a false 
negative with the Fisher test. For large effects (η = .4), two 
nonsignificant results from small samples already almost 
always detects the existence of false negatives (not shown 
in Table 2).

To put the power of the Fisher test into perspective, we 
can compare its power to reject the null based on one sta-
tistically nonsignificant result (k = 1) with the power of 
a regular t-test to reject the null. If η = .1, the power of 
a regular t-test equals 0.17, 0.255, 0.467 for sample sizes 
of 33, 62, 119, respectively; if η = .25, power values equal 
0.813, 0.998, 1 for these sample sizes. The power values of 
the regular t-test are higher than that of the Fisher test, 
because the Fisher test does not make use of the more 
informative statistically significant findings.

https://osf.io/qpfnw
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Application 1: Evidence of false negatives in 
articles across eight major psychology journals
To show that statistically nonsignificant results do not 
warrant the interpretation that there is truly no effect, 
we analyzed statistically nonsignificant results from eight 
major psychology journals. First, we investigate if and 
how much the distribution of reported nonsignificant 
effect sizes deviates from what the expected effect size 
distribution is if there is truly no effect (i.e., H0). Second, 
we investigate how many research articles report nonsig-
nificant results and how many of those show evidence for 
at least one false negative using the Fisher test (Fisher, 
1925). Note that this application only investigates the 
evidence of false negatives in articles, not how authors 
might interpret these findings (i.e., we do not assume all 
these nonsignificant results are interpreted as evidence 
for the null).

Method
APA style t, r, and F test statistics were extracted from 
eight psychology journals with the R package statcheck 
(Nuijten, Hartgerink, van Assen, Epskamp, & Wicherts, 
2015; Epskamp, & Nuijten, 2015). APA style is defined 
as the format where the type of test statistic is reported, 
followed by the degrees of freedom (if applicable), the 
observed test value, and the p-value (e.g., t(85) = 2.86, 
p = .005; American Psychological Association, 2010). The 
statcheck package also recalculates p-values. We reuse the 

data from Nuijten et al. (osf.io/gdr4q; Nuijten, Hartgerink, 
van Assen, Epskamp, & Wicherts, 2015). Table 3 depicts 
the journals, the timeframe, and summaries of the results 
extracted. The database also includes χ2 results, which we 
did not use in our analyses because effect sizes based on 
these results are not readily mapped on the correlation 
scale. Two erroneously reported test statistics were elimi-
nated, such that these did not confound results.

The analyses reported in this paper use the recalculated 
p-values to eliminate potential errors in the reported 
p-values (Nuijten, Hartgerink, van Assen, Epskamp, & 
Wicherts, 2015; Bakker, & Wicherts, 2011). However, our 
recalculated p-values assumed that all other test statistics 
(degrees of freedom, test values of t, F, or r) are correctly 
reported. These errors may have affected the results of 
our analyses. Since most p-values and corresponding test 
statistics were consistent in our dataset (90.7%), we do 
not believe these typing errors substantially affected our 
results and conclusions based on them.

First, we compared the observed nonsignificant effect 
size distribution (computed with observed test results) 
to the expected nonsignificant effect size distribution 
under H0. The expected effect size distribution under H0 
was approximated using simulation. We first randomly 
drew an observed test result (with replacement) and sub-
sequently drew a random nonsignificant p-value between 
0.05 and 1 (i.e., under the distribution of the H0). Based 
on the drawn p-value and the degrees of freedom of the 

η = .1 η = .25

N = 33 N = 62 N = 119 N = 33 N = 62 N = 119

k = 1 0.151 0.211 0.341 0.575 0.852 0.983

k = 2 0.175 0.267 0.459 0.779 0.978 1

k = 3 0.201 0.317 0.572 0.894 1 1

k = 4 0.208 0.352 0.659 0.948 1 1

k = 5 0.229 0.390 0.719 0.975 1 1

k = 6 0.251 0.434 0.784 0.990 1 1

k = 7 0.259 0.471 0.834 0.995 1 1

k = 8 0.280 0.514 0.871 0.998 1 1

k = 9 0.298 0.530 0.895 1 1 1

k = 10 0.304 0.570 0.918 1 1 1

k = 15 0.362 0.691 0.980 1 1 1

k = 20 0.429 0.780 0.996 1 1 1

k = 25 0.490 0.852 1 1 1 1

k = 30 0.531 0.894 1 1 1 1

k = 35 0.578 0.930 1 1 1 1

k = 40 0.621 0.953 1 1 1 1

k = 45 0.654 0.966 1 1 1 1

k = 50 0.686 0.976 1 1 1 1

Table 2: Power of Fisher test to detect false negatives for small- and medium effect sizes (i.e., η = .1 and η = .25),  
for different sample sizes (i.e., N) and number of test results (i.e., k). Results of each condition are based on 10,000 
iterations. Power was rounded to 1 whenever it was larger than .9995.

https://osf.io/gdr4q
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Journal (Acronym) Time frame Results Mean results 
per article

Significant 
(%)

Nonsignificant 
(%)

Developmental Psychology (DP) 1985–2013 30,920 13.5 24,584 
(79.5%)

6,336 
(20.5%)

Frontiers in Psychology (FP) 2010–2013 9,172 14.9 6,595 
(71.9%) 

2,577 
(28.1%)

Journal of Applied Psychology (JAP) 1985–2013 11,240 9.1 8,455
(75.2%)

2,785
(24.8%)

Journal of Consulting and Clinical 
Psychology (JCCP)

1985–2013 20,083 9.8 15,672
(78.0%)

4,411
(22.0%)

Journal of Experimental Psychology: 
General (JEPG)

1985–2013 17,283 22.4 12,706 
(73.5%)

4,577
(26.5%)

Journal of Personality and Social 
Psychology (JPSP)

1985–2013 91,791 22.5 69,836
(76.1%)

21,955
(23.9%)

Public Library of Science (PLOS) 2003–2013 28,561 13.2 19,696
(69.0%)

8,865
(31.0%)

Psychological Science (PS) 2003–2013 14,032 9 10,943
(78.0%)

3,089
(22.0%)

Totals 1985–2013 223,082 14.3 168,487
(75.5%)

54,595
(24.5%)

Table 3: Summary table of articles downloaded per journal, their mean number of results, and proportion of (non)
significant results. Statistical significance was determined using α = .05, two-tailed test

drawn test result, we computed the accompanying test 
statistic and the corresponding effect size (for details on 
effect size computation see Appendix B). This procedure 
was repeated 163,785 times, which is three times the 
number of observed nonsignificant test results (54,595). 
The collection of simulated results approximates the 
expected effect size distribution under H0, assuming inde-
pendence of test results in the same paper. We inspected 
this possible dependency with the intra-class correlation  
(ICC), where ICC = 1 indicates full dependency and  
ICC = 0 indicates full independence. For the set of  
observed results, the ICC for nonsignificant p-values was 
0.001, indicating independence of p-values within a paper 
(the ICC of the log odds transformed p-values was similar,  
with ICC = 0.00175 after excluding p-values equal to 1  
for computational reasons). The resulting, expected effect 
size distribution was compared to the observed effect size 
distribution (i) across all journals and (ii) per journal. To 
test for differences between the expected and observed 
nonsignificant effect size distributions we applied the 
Kolmogorov-Smirnov test. This is a non-parametric 
goodness-of-fit test for equality of distributions, which is 
based on the maximum absolute deviation between the 
independent distributions being compared (denoted D; 
Massey, 1951).

Second, we applied the Fisher test to test how many 
research papers show evidence of at least one false nega-
tive statistical result. To recapitulate, the Fisher test tests 
whether the distribution of observed nonsignificant 
p-values deviates from the uniform distribution expected 
under H0. In order to compute the result of the Fisher test, 
we applied equations 1 and 2 to the recalculated nonsig-
nificant p-values in each paper (α = .05).

Results
Observed effect size distribution
Figure 1 shows the distribution of observed effect 
sizes (in |η|) across all articles and indicates that, of the 
223,082 observed effects, 7% were zero to small (i.e., 0 ≤ 
|η| < .1), 23% were small to medium (i.e., .1 ≤ |η| < .25), 
27% medium to large (i.e., .25 ≤ |η| < .4), and 42% large 
or larger (i.e., |η| ≥ .4; Cohen, 1988). This suggests that 
the majority of effects reported in psychology is medium 
or smaller (i.e., 30%), which is somewhat in line with a 
previous study on effect distributions (Gignac, & Szodo-
rai, 2016). Of the full set of 223,082 test results, 54,595 
(24.5%) were nonsiginificant, which is the dataset for our 
main analyses.

Our dataset indicated that more nonsignificant results 
are reported throughout the years, strengthening the case 
for inspecting potential false negatives. The proportion of 
reported nonsignificant results showed an upward trend, 
as depicted in Figure 2, from approximately 20% in the 
eighties to approximately 30% of all reported APA results 
in 2015.

Expected effect size distribution
For the entire set of nonsignificant results across journals, 
Figure 3 indicates that there is substantial evidence of 
false negatives. Under H0, 46% of all observed effects is 
expected to be within the range 0 ≤ |η| < .1, as can be seen 
in the left panel of Figure 3 highlighted by the lowest 
grey line (dashed). However, of the observed effects, only 
26% fall within this range, as highlighted by the lowest 
black line. Similarly, we would expect 85% of all effect 
sizes to be within the range 0 ≤ |η| < .25 (middle grey line), 
but we observed 14 percentage points less in this range  
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Figure 1: Density of observed effect sizes of results reported in eight psychology journals, with 7% of effects in the 
category none-small, 23% small-medium, 27% medium-large, and 42% beyond large.
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Figure 2: Observed proportion of nonsignificant test results per year.
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(i.e., 71%; middle black line); 96% is expected for the range  
0 ≤ |η| < .4 (top grey line), but we observed 4 percent-
age points less (i.e., 92%; top black line). These differences 
indicate that larger nonsignificant effects are reported in 
papers than expected under a null effect. This indicates 
the presence of false negatives, which is confirmed by the  
Kolmogorov-Smirnov test, D = 0.3, p < .000000000000001. 
Results were similar when the nonsignificant effects were 
considered separately for the eight journals, although 
deviations were smaller for the Journal of Applied  
Psychology (see Figure S1 for results per journal).

Because effect sizes and their distribution typically 
overestimate population effect size η2, particularly when 
sample size is small (Voelkle, Ackerman, & Wittmann, 
2007; Hedges, 1981), we also compared the observed and  
expected adjusted nonsignificant effect sizes that cor-
rect for such overestimation of effect sizes (right panel of 
Figure 3; see Appendix B). Such overestimation affects all  
effects in a model, both focal and non-focal. The distribu-
tion of adjusted effect sizes of nonsignificant results tells 
the same story as the unadjusted effect sizes; observed 
effect sizes are larger than expected effect sizes. For 
instance, the distribution of adjusted reported effect size 
suggests 49% of effect sizes are at least small, whereas 
under the H0 only 22% is expected.

Evidence of false negatives in articles
The Fisher test was applied to the nonsignificant test 
results of each of the 14,765 papers separately, to inspect 
for evidence of false negatives. More technically, we 

inspected whether p-values within a paper deviate from 
what can be expected under the H0 (i.e., uniformity). If H0 
is in fact true, our results would be that there is evidence 
for false negatives in 10% of the papers (a meta-false posi-
tive). Table 4 shows the number of papers with evidence 
for false negatives, specified per journal and per k number 
of nonsignificant test results. The first row indicates the 
number of papers that report no nonsignificant results. 
When k = 1, the Fisher test is simply another way of testing 
whether the result deviates from a null effect, conditional 
on the result being statistically nonsignificant. Overall 
results (last row) indicate that 47.1% of all articles show 
evidence of false negatives (i.e. 6,951 articles). Of articles 
reporting at least one nonsignificant result, 66.7% show 
evidence of false negatives, which is much more than the 
10% predicted by chance alone. Results did not substan-
tially differ if nonsignificance is determined based on 
α = .10 (the analyses can be rerun with any set of p-values 
larger than a certain value based on the code provided on 
OSF; https://osf.io/qpfnw).

Table 4 also shows evidence of false negatives for each 
of the eight journals. The lowest proportion of articles 
with evidence of at least one false negative was for the 
Journal of Applied Psychology (49.4%; penultimate row). 
The remaining journals show higher proportions, with 
a maximum of 81.3% (Journal of Personality and Social 
Psychology). Researchers should thus be wary to interpret 
negative results in journal articles as a sign that there is 
no effect; at least half of the papers provide evidence for 
at least one false negative finding.
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Figure 3: Observed and expected (adjusted and unadjusted) effect size distribution for statistically nonsignificant APA 
results reported in eight psychology journals. Grey lines depict expected values; black lines depict observed values. 
The three vertical dotted lines correspond to a small, medium, large effect, respectively. Header includes Kolmogorov-
Smirnov test results.
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Overall DP FP JAP JCCP JEPG JPSP PLOS PS

Nr. of papers 14,765 2,283 614 1,239 2,039 772 4,087 2,166 1,565

k = 0 Count 4,340 758 133 488 907 122 840 565 527

% 29.4% 33.2% 21.7% 39.4% 44.5% 15.8% 20.6% 26.1% 33.7%

k = 1 Evidence FN 57.7% 66.1% 41.2% 48.7% 58.7% 51.4% 66.0% 47.2% 56.4%

Count 2,510 433 102 238 380 109 556 339 353

k = 2 Evidence FN 60.6% 66.9% 50.0% 36.3% 57.7% 66.7% 75.2% 51.6% 57.1%

Count 1,768 293 64 157 227 81 424 289 233

k = 3 Evidence FN 65.3% 69.8% 57.6% 53.1% 54.4% 77.1% 80.6% 47.8% 60.2%

Count 1,257 199 66 98 125 83 341 184 161

k = 4 Evidence FN 68.7% 75.0% 63.8% 53.1% 69.7% 67.9% 81.4% 52.7% 62.5%

Count 892 128 47 64 89 56 264 148 96

5 ≤ k < 10 Evidence FN 72.3% 71.2% 67.7% 56.7% 66.3% 71.2% 87.1% 52.4% 63.0%

Count 2,394 326 124 134 208 163 898 368 173

10 ≤ k < 20 Evidence FN 77.7% 76.9% 67.7% 60.0% 72.4% 81.2% 88.1% 57.3% 81.0%

Count 1,280 121 65 55 87 117 596 218 21

k ≥ 20 Evidence FN 84.0% 76.0% 53.8% 60.0% 87.5% 80.5% 94.0% 69.1% 0.0%

Count 324 25 13 5 16 41 168 55 1

All Evidence FN 47.1% 46.5% 45.1% 29.9% 34.3% 59.1% 64.6% 38.4% 39.3%

Evidence FN 
k ≥ 1

66.7% 69.6% 57.6% 49.4% 61.7% 70.2% 81.3% 51.9% 59.2%

Count 6,951 1,061 277 371 699 456 2,641 831 615

Table 4: Summary table of Fisher test results applied to the nonsignificant results (k) of each article separately, overall 
and specified per journal. A significant Fisher test result is indicative of a false negative (FN). DP = Developmental  
Psychology; FP = Frontiers in Psychology; JAP = Journal of Applied Psychology; JCCP = Journal of Consulting and 
Clinical Psychology; JEPG = Journal of Experimental Psychology: General; JPSP = Journal of Personality and Social 
Psychology; PLOS = Public Library of Science; PS = Psychological Science.

As would be expected, we found a higher proportion 
of articles with evidence of at least one false negative for 
higher numbers of statistically nonsignificant results  
(k; see Table 4). For instance, 84% of all papers that 
report more than 20 nonsignificant results show 
 evidence for false negatives, whereas 57.7% of all papers 
with only 1 nonsignificant result show evidence for false 
negatives. Consequently, we observe that journals with 
articles containing a higher number of nonsignificant  
results, such as JPSP, have a higher proportion of  
articles with evidence of false negatives. This is the 
result of higher power of the Fisher method when there 
are more nonsignificant results and does not necessarily  
reflect that a nonsignificant p-value in e.g. JPSP has a 
higher probability of being a false negative than one in 
another journal.

We also checked whether evidence of at least one false 
negative at the article level changed over time. Figure 4 
depicts evidence across all articles per year, as a function 
of year (1985–2013); point size in the figure corresponds 
to the mean number of nonsignificant results per arti-
cle (mean k) in that year. Interestingly, the proportion of 
articles with evidence for false negatives decreased from 
77% in 1985 to 55% in 2013, despite the increase in 

mean k (from 2.11 in 1985 to 4.52 in 2013). This decreas-
ing proportion of papers with evidence over time cannot 
be explained by a decrease in sample size over time, as 
sample size in psychology articles has stayed stable across 
time (see Figure 5; degrees of freedom is a direct proxy 
of sample size resulting from the sample size minus the 
number of parameters in the model). One (at least partial) 
explanation of this surprising result is that in the early 
days researchers primarily reported fewer APA results and 
used to report relatively more APA results with ‘marginally 
significant’ p-values (i.e., p-values slightly larger than .05), 
compared to nowadays. This explanation is supported by 
both a smaller number of reported APA results in the past 
and the smaller mean reported nonsignificant p-value 
(0.222 in 1985, 0.386 in 2013). We do not know whether 
these marginally significant p-values were interpreted as 
evidence in favor of a finding (or not) and how these inter-
pretations changed over time. Another potential explana-
tion is that the effect sizes being studied have become 
smaller over time (mean correlation effect r = 0.257 
in 1985, 0.187 in 2013), which results in both higher 
p-values over time and lower power of the Fisher test. 
Using the data at hand, we cannot distinguish between 
the two explanations.
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Figure 4: Proportion of papers reporting nonsignificant results in a given year, showing evidence for false negative 
results. Larger point size indicates a higher mean number of nonsignificant results reported in that year.
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Figure 5: Sample size development in psychology throughout 1985–2013, based on degrees of freedom across 258,050 
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Discussion
The result that 2 out of 3 papers containing nonsignificant 
results show evidence of at least one false negative empiri-
cally verifies previously voiced concerns about insufficient 
attention for false negatives (Fiedler, Kutzner, & Krueger, 
2012). The Fisher test proved a powerful test to inspect for 
false negatives in our simulation study, where three non-
significant results already results in high power to detect 
evidence of a false negative if sample size is at least 33 
per result and the population effect is medium. Journals 
differed in the proportion of papers that showed evidence 
of false negatives, but this was largely due to differences 
in the number of nonsignificant results reported in these 
papers. More generally, we observed that more nonsignifi-
cant results were reported in 2013 than in 1985.

The repeated concern about power and false negatives 
throughout the last decades seems not to have trickled 
down into substantial change in psychology research 
practice. Cohen (1962) and Sedlmeier and Gigerenzer 
(1989) already voiced concern decades ago and showed 
that power in psychology was low. Fiedler et al. (2012) 
contended that false negatives are harder to detect in 
the current scientific system and therefore warrant more 
concern. Despite recommendations of increasing power 
by increasing sample size, we found no evidence for 
increased sample size (see Figure 5). To the contrary, the 
data indicate that average sample sizes have been remark-
ably stable since 1985, despite the improved ease of col-
lecting participants with data collection tools such as 
online services.

However, what has changed is the amount of nonsig-
nificant results reported in the literature. Our data show 
that more nonsignificant results are reported throughout 
the years (see Figure 2), which seems contrary to find-
ings that indicate that relatively more significant results 
are being reported (Sterling, Rosenbaum, & Weinkam, 
1995; Sterling, 1959; Fanelli, 2011; de Winter, & Dodou, 
2015). It would seem the field is not shying away from 
publishing negative results per se, as proposed before 
(Greenwald, 1975; Fanelli, 2011; Nosek, Spies, & Motyl, 
2012; Rosenthal, 1979; Schimmack, 2012), but whether 
this is also the case for results relating to hypotheses of 
explicit interest in a study and not all results reported in 
a paper, requires further research. Other research strongly 
suggests that most reported results relating to hypoth-
eses of explicit interest are statistically significant (Open 
Science Collaboration, 2015).

Application 2: Evidence of false negative 
gender effects in eight major psychology 
journals
In order to illustrate the practical value of the Fisher test 
to test for evidential value of (non)significant p-values, we 
investigated gender related effects in a random subsam-
ple of our database. Gender effects are particularly inter-
esting because gender is typically a control variable and 
not the primary focus of studies. Hence, we expect little 
p-hacking and substantial evidence of false negatives in 
reported gender effects in psychology. We apply the Fisher 
test to significant and nonsignificant gender results to test 

for evidential value (van Assen, van Aert, & Wicherts, 2015; 
Simonsohn, Nelson, & Simmons, 2014). More precisely, we 
investigate whether evidential value depends on whether 
or not the result is statistically significant, and whether or 
not the results were in line with expectations expressed 
in the paper.

Method
We planned to test for evidential value in six categories 
(expectation [3 levels] × significance [2 levels]). Expecta-
tions were specified as ‘H1 expected’, ‘H0 expected’, or 
‘no expectation’. Prior to data collection, we assessed the 
required sample size for the Fisher test based on research 
on the gender similarities hypothesis (Hyde, 2005). We 
calculated that the required number of statistical results 
for the Fisher test, given r = .11 (Hyde, 2005) and 80% 
power, is 15 p-values per condition, requiring 90 results 
in total. However, the six categories are unlikely to occur 
equally throughout the literature, hence we sampled 
90 significant and 90 nonsignificant results pertaining 
to gender, with an expected cell size of 30 if results are 
equally distributed across the six cells of our design. Sig-
nificance was coded based on the reported p-value, where 
≤ .05 was used as the decision criterion to determine sig-
nificance (Nuijten, Hartgerink, van Assen, Epskamp, & 
Wicherts, 2015).

We sampled the 180 gender results from our data-
base of over 250,000 test results in four steps. First, 
we automatically searched for “gender”, “sex”, “female” 
AND “male”, “ man” AND “ woman” [sic], or “ men” AND 
“ women” [sic] in the 100 characters before the statisti-
cal result and 100 after the statistical result (i.e., range 
of 200 characters surrounding the result), which yielded 
27,523 results. Second, the first author inspected 500 
characters before and after the first result of a randomly 
ordered list of all 27,523 results and coded whether 
it indeed pertained to gender. This was done until 180 
results pertaining to gender were retrieved from 180 dif-
ferent articles. Third, these results were independently 
coded by all authors with respect to the expectations 
of the original researcher(s) (coding scheme available 
at osf.io/9ev63). The coding included checks for qualifi-
ers pertaining to the expectation of the statistical result 
(confirmed/theorized/hypothesized/expected/etc.). If 
researchers reported such a qualifier, we assumed they 
correctly represented these expectations with respect 
to the statistical significance of the result. For example, 
if the text stated “as expected no evidence for an effect 
was found, t(12) = 1, p = .337” we assumed the authors 
expected a nonsignificant result. Fourth, discrepant cod-
ings were resolved by discussion (25 cases [13.9%]; two 
cases remained unresolved and were dropped). 178 valid 
results remained for analysis.

Prior to analyzing these 178 p-values for evidential 
value with the Fisher test, we transformed them to vari-
ables ranging from 0 to 1. Statistically nonsignificant 
results were transformed with Equation 1; statistically 
significant p-values were divided by alpha (.05; van 
Assen, van Aert, & Wicherts, 2015; Simonsohn, Nelson, & 
Simmons, 2014).

http://osf.io/9ev63
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H0 expected H1 expected No expectation

Significant 0 11 75

Nonsignificant 2 1 87

Figure 6: Probability density distributions of the p-values for gender effects, split for nonsignificant and significant 
results. A uniform density distribution indicates the absence of a true effect.

Table 5: Number of gender results coded per condition in a 2 (significance: significant or nonsignificant) by 3 (expectation: 
H0 expected, H1 expected, or no expectation) design. Cells printed in bold had sufficient results to inspect for evidential 
value.
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Results
The coding of the 178 results indicated that results rarely 
specify whether these are in line with the hypothesized 
effect (see Table 5). For the 178 results, only 15 clearly 
stated whether their results were as expected, whereas 
the remaining 163 did not. Illustrative of the lack of clar-
ity in expectations is the following quote: “As predicted, 
there was little gender difference [...] p < .06”. There were 
two results that were presented as significant but con-
tained p-values larger than .05; these two were dropped 
(i.e., 176 results were analyzed). As a result, the conditions 
significant-H0 expected, nonsignificant-H0 expected, and 
nonsignificant-H1 expected contained too few results for 
meaningful investigation of evidential value (i.e., with suf-
ficient statistical power).

Figure 6 presents the distributions of both transformed 
significant and nonsignificant p-values. For significant 
results, applying the Fisher test to the p-values showed 

evidential value for a gender effect both when an effect 
was expected (χ2(22) = 358.904, p < .001) and when 
no expectation was presented at all (χ2(15) = 1094.911,  
p < .001). Similarly, applying the Fisher test to nonsig-
nificant gender results without stated expectation yielded 
evidence of at least one false negative (χ2(174) = 324.374, 
p < .001). Unfortunately, we could not examine whether 
evidential value of gender effects is dependent on the  
hypothesis/expectation of the researcher, because these 
effects are most frequently reported without stated 
expectations.

Discussion
We observed evidential value of gender effects both in the 
statistically significant (no expectation or H1 expected) and 
nonsignificant results (no expectation). The data from the 
178 results we investigated indicated that in only 15 cases 
the expectation of the test result was clearly  explicated. 
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This indicates that based on test results alone, it is very dif-
ficult to differentiate between results that relate to a priori 
hypotheses and results that are of an exploratory nature. 
The importance of being able to differentiate between 
confirmatory and exploratory results has been previously 
demonstrated (Wagenmakers, Wetzels, Borsboom, van der 
Maas, & Kievit, 2012) and has been incorporated into the 
Transparency and Openness Promotion guidelines (TOP; 
Nosek, et al., 2015) with explicit attention paid to pre-
registration.

Application 3: Reproducibility Project 
Psychology
Out of the 100 replicated studies in the RPP, 64 did not 
yield a statistically significant effect size, despite the fact 
that high replication power was one of the aims of the 
project (Open Science Collaboration, 2015). Regardless, 
the authors suggested “. . . that at least one replication 
could be a false negative” (p. aac4716-4). Here we estimate 
how many of these nonsignificant replications might be 
false negative, by applying the Fisher test to these nonsig-
nificant effects.

Method
Of the 64 nonsignificant studies in the RPP data  
(osf.io/fgjvw), we selected the 63 nonsignificant studies 
with a test statistic. We eliminated one result because it 
was a regression coefficient that could not be used in the 
following procedure. We first applied the Fisher test to the 
nonsignificant results, after transforming them to varia-
bles ranging from 0 to 1 using equations 1 and 2. Denote 
the value of this Fisher test by Y; note that under the H0 
of no evidential value Y is χ2 -distributed with 126 degrees 
of freedom.

Subsequently, we hypothesized that X out of these 63 
nonsignificant results had a weak, medium, or strong pop-
ulation effect size (i.e., ρ = .1, .3, .5, respectively; Cohen, 
1988) and the remaining 63 − X had a zero population 
effect size. For each of these hypotheses, we generated 
10,000 data sets (see next paragraph for details) and used 
them to approximate the distribution of the Fisher test 
statistic (i.e., Y). Using this distribution, we computed the 
probability that a χ2 -value exceeds Y, further denoted by 
pY. We then used the inversion method (Casella, & Berger, 
2002) to compute confidence intervals of X, the number 
of nonzero effects. Specifically, the confidence interval  
for X is (XLB ; XUB), where XLB is the value of X for which  
pY is closest to .025 and XUB is the value of X for which  
pY is closest to .975. We computed three confidence intervals  
of X: one for the number of weak, medium, and large 
effects.

We computed pY for a combination of a value of X and a 
true effect size using 10,000 randomly generated datasets, 
in three steps. For each dataset we:

1. Randomly selected X out of 63 effects which are 
supposed to be generated by true nonzero effects, 
with the remaining 63 − X supposed to be gener-
ated by true zero effects;

2. Given the degrees of freedom of the effects, we 
randomly generated p-values under the H0 using 

the central distributions and non-central distribu-
tions (for the 63 − X and X effects selected in step 1, 
respectively);

3. The Fisher statistic Y was computed by applying 
Equation 2 to the transformed p-values (see Equa-
tion 1) of step 2.

Probability pY equals the proportion of 10,000 datasets 
with Y exceeding the value of the Fisher statistic applied 
to the RPP data. See osf.io/egnh9 for the analysis script to 
compute the confidence intervals of X.

Results
Upon reanalysis of the 63 statistically nonsignificant rep-
lications within RPP we determined that many of these 
“failed” replications say hardly anything about whether 
there are truly no effects when using the adapted Fisher 
method. The Fisher test of these 63 nonsignificant results 
indicated some evidence for the presence of at least one 
false negative finding (χ2(126) = 155.2382, p = 0.039). 
Assuming X small nonzero true effects among the non-
significant results yields a confidence interval of 0–63 
(0–100%). More specifically, if all results are in fact true 
negatives then pY = .039, whereas if all true effects are 
ρ = .1 then pY = .872. Hence, the 63 statistically nonsignifi-
cant results of the RPP are in line with any number of true 
small effects — from none to all. Consequently, we cannot 
draw firm conclusions about the state of the field psychol-
ogy concerning the frequency of false negatives using the 
RPP results and the Fisher test, when all true effects are 
small. Assuming X medium or strong true effects underly-
ing the nonsignificant results from RPP yields confidence 
intervals 0–21 (0–33.3%) and 0–13 (0–20.6%), respec-
tively. In other words, the 63 statistically nonsignificant 
RPP results are also in line with some true effects actually 
being medium or even large.

Discussion
The reanalysis of the nonsignificant RPP results using the 
Fisher method demonstrates that any conclusions on the 
validity of individual effects based on “failed” replications, 
as determined by statistical significance, is unwarranted. 
This was also noted by both the original RPP team (Open 
Science Collaboration, 2015; Anderson, 2016) and in a 
critique of the RPP (Gilbert, King, Pettigrew, & Wilson, 
2016). Replication efforts such as the RPP or the Many 
Labs project remove publication bias and result in a less 
biased assessment of the true effect size. Nonetheless,  
single replications should not be seen as the definitive 
result, considering that these results indicate there remains 
much uncertainty about whether a nonsignificant result 
is a true negative or a false negative. The explanation of 
this finding is that most of the RPP replications, although 
often statistically more powerful than the original stud-
ies, still did not have enough statistical power to distin-
guish a true small effect from a true zero effect (Maxwell, 
Lau, & Howard, 2015). Interpreting results of replications 
should therefore also take the precision of the estimate of 
both the original and replication into account (Cumming, 
2014) and publication bias of the original studies (Etz, & 
Vandekerckhove, 2016).

http://osf.io/fgjvw
https://osf.io/egnh9
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Very recently four statistical papers have re-analyzed 
the RPP results to either estimate the frequency of studies 
testing true zero hypotheses or to estimate the individual 
effects examined in the original and replication study. 
All four papers account for the possibility of publication 
bias in the original study. Johnson, Payne, Wang, Asher, 
and Mandal (2016) estimated a Bayesian statistical model 
including a distribution of effect sizes among studies for 
which the null-hypothesis is false. On the basis of their 
analyses they conclude that at least 90% of psychology 
experiments tested negligible true effects. Johnson et al.’s 
model as well as our Fisher’s test are not useful for estima-
tion and testing of individual effects examined in original 
and replication study. Interpreting results of individual 
effects should take the precision of the estimate of both the 
original and replication into account (Cumming, 2014). Etz 
and Vandekerckhove (2016) reanalyzed the RPP at the level 
of individual effects, using Bayesian models incorporating 
publication bias. They concluded that 64% of individual 
studies did not provide strong evidence for either the null 
or the alternative hypothesis in either the original of the 
replication study. This agrees with our own and Maxwell’s 
(Maxwell, Lau, & Howard, 2015) interpretation of the RPP 
findings. As opposed to Etz and Vandekerckhove (2016), 
Van Aert and Van Assen (2017; 2017) use a statistically  
significant original and a replication study to evaluate 
the common true underlying effect size, adjusting for 
publication bias. From their Bayesian analysis (van Aert, 
& van Assen, 2017) assuming equally likely zero, small, 
medium, large true effects, they conclude that only 
13.4% of individual effects contain substantial evidence 
(Bayes factor > 3) of a true zero effect. For a staggering 
62.7% of individual effects no substantial evidence in 
favor zero, small, medium, or large true effect size was 
obtained. All in all, conclusions of our analyses using the 
Fisher are in line with other statistical papers re-analyzing  
the RPP data (with the exception of Johnson et al.) 
suggesting that studies in psychology are typically not 
powerful enough to distinguish zero from nonzero true 
findings.

General discussion
Much attention has been paid to false positive results in 
recent years. Our study demonstrates the importance of 
paying attention to false negatives alongside false posi-
tives. We examined evidence for false negatives in non-
significant results in three different ways. Specifically, 
we adapted the Fisher method to detect the presence of 
at least one false negative in a set of statistically nonsig-
nificant results. Simulations indicated the adapted Fisher 
test to be a powerful method for that purpose. The three 
applications indicated that (i) approximately two out of 
three psychology articles reporting nonsignificant results 
contain evidence for at least one false negative, (ii) non-
significant results on gender effects contain evidence of 
true nonzero effects, and (iii) the statistically nonsignifi-
cant replications from the Reproducibility Project Psy-
chology (RPP) do not warrant strong conclusions about 
the absence or presence of true zero effects underlying 
these nonsignificant results (RPP does yield less biased 

estimates of the effect; the original studies severely over-
estimated the effects of interest).

The methods used in the three different applications 
provide crucial context to interpret the results. In appli-
cations 1 and 2, we did not differentiate between main 
and peripheral results. Hence, the interpretation of a sig-
nificant Fisher test result pertains to the evidence of at 
least one false negative in all reported results, not the evi-
dence for at least one false negative in the main results. 
Nonetheless, even when we focused only on the main 
results in application 3, the Fisher test does not indicate 
specifically which result is false negative, rather it only 
provides evidence for a false negative in a set of results. 
As such, the Fisher test is primarily useful to test a set of 
potentially underpowered results in a more powerful man-
ner, albeit that the result then applies to the complete set. 
Additionally, in applications 1 and 2 we focused on results 
reported in eight psychology journals; extrapolating the 
results to other journals might not be warranted given 
that there might be substantial differences in the type of 
results reported in other journals or fields.

More generally, our results in these three applications 
confirm that the problem of false negatives in psychology 
remains pervasive. Previous concern about power (Cohen, 
1962; Sedlmeier, & Gigerenzer, 1989; Marszalek, Barber, 
Kohlhart, & Holmes, 2011; Bakker, van Dijk, & Wicherts, 
2012), which was even addressed by an APA Statistical 
Task Force in 1999 that recommended increased statisti-
cal power (Wilkinson, 1999), seems not to have resulted in 
actual change (Marszalek, Barber, Kohlhart, & Holmes, 2011). 
Potential explanations for this lack of change is that research-
ers overestimate statistical power when designing a study for 
small effects (Bakker, Hartgerink, Wicherts, & van der Maas, 
2016), use p-hacking to artificially increase statistical power, 
and can act strategically by running multiple underpowered 
studies rather than one large powerful study (Bakker, van 
Dijk, & Wicherts, 2012). The effects of p-hacking are likely 
to be the most pervasive, with many people admitting to 
using such behaviors at some point (John, Loewenstein, & 
Prelec, 2012) and publication bias pushing researchers to 
find statistically significant results. As such, the problems of 
false positives, publication bias, and false negatives are inter-
twined and mutually reinforcing.

Reducing the emphasis on binary decisions in indi-
vidual studies and increasing the emphasis on the preci-
sion of a study might help reduce the problem of decision 
errors (Cumming, 2014). For example, a large but statisti-
cally nonsignificant study might yield a confidence inter-
val (CI) of the effect size of [−0.01; 0.05], whereas a small 
but significant study might yield a CI of [0.01; 1.30]. In 
a purely binary decision mode, the small but significant 
study would result in the conclusion that there is an effect 
because it provided a statistically significant result, despite 
it containing much more uncertainty than the larger 
study about the underlying true effect size. In a precision 
mode, the large study provides a more certain estimate 
and therefore is deemed more informative and provides 
the best estimate. Using meta-analyses to combine esti-
mates obtained in studies on the same effect may further 
increase the overall estimate’s precision. Although the 
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emphasis on precision and the meta-analytic approach is 
fruitful in theory, we should realize that publication bias 
will result in precise but biased (overestimated) effect 
size estimation of meta-analyses (Nuijten, van Assen, 
Veldkamp, & Wicherts, 2015).

Limitations and further research
For all three applications, the Fisher tests’ conclusions are 
limited to detecting at least one false negative in a set of 
results. The method cannot be used to draw inferences on 
individuals results in the set. To draw inferences on the 
true effect size underlying one specific observed effect 
size, generally more information (i.e., studies) is needed to 
increase the precision of the effect size estimate.

Another potential caveat relates to the data collected 
with the R package statcheck and used in applications 1 
and 2. statcheck extracts inline, APA style reported test sta-
tistics, but does not include results included from tables 
or results that are not reported as the APA prescribes. 
Consequently, our results and conclusions may not be 
generalizable to all results reported in articles.

Given that the results indicate that false negatives are 
still a problem in psychology, albeit slowly on the decline 
in published research, further research is warranted. 
Further research could focus on comparing evidence for 
false negatives in main and peripheral results. Our results 
in combination with results of previous studies suggest 
that publication bias mainly operates on results of tests 
of main hypotheses, and less so on peripheral results. 
Another venue for future research is using the Fisher test 
to re-examine evidence in the literature on certain other 
effects or often-used covariates, such as age and race, or 
to see if it helps researchers prevent dichotomous think-
ing with individual p-values (Hoekstra, Finch, Kiers, & 
Johnson, 2016).

Finally, the Fisher test may and is also used to meta- 
analyze effect sizes of different studies. Whereas Fisher 

used his method to test the null-hypothesis of an under-
lying true zero effect using several studies’ p-values, the 
method has recently been extended to yield unbiased 
effect estimates using only statistically significant p-values.  
The principle of uniformly distributed p-values given  
the true effect size on which the Fisher method is based, 
also underlies newly developed methods of meta-analysis  
that adjust for publication bias, such as p-uniform 
(van Assen, van Aert, & Wicherts, 2015) and p-curve 
(Simonsohn, Nelson, & Simmons, 2014). Extensions 
of these methods to include nonsignificant as well as 
 significant p-values and to estimate heterogeneity are 
still under construction.

To conclude, our three applications indicate that false 
negatives remain a problem in the psychology literature, 
despite the decreased attention and that we should be 
wary to interpret statistically nonsignificant results as 
there being no effect in reality. One way to combat this 
interpretation of statistically nonsignificant results is to 
incorporate testing for potential false negatives, which 
the Fisher method facilitates in a highly approachable 
manner (a spreadsheet for carrying out such a test is avail-
able at https://osf.io/tk57v/).

Appendix A
Examining statistical properties of the Fisher test
The Fisher test to detect false negatives is only useful if it 
is powerful enough to detect evidence of at least one false 
negative result in papers with few nonsignificant results. 
Therefore we examined the specificity and sensitivity of 
the Fisher test to test for false negatives, with a simulation 
study of the one sample t-test. Throughout this paper, we 
apply the Fisher test with αFisher = 0.10, because tests that 
inspect whether results are “too good to be true” typically 
also use alpha levels of 10% (Francis, 2012; Ioannidis, &  
Trikalinos, 2007; Sterne, Gavaghan, & Egge, 2000). The 
simulation procedure was carried out for conditions in 

Figure 7: Visual aid for simulating one nonsignificant test result. The critical value from H0 (left distribution) was used 
to determine β under H1 (right distribution). A value between 0 and β was drawn, t-value computed, and p-value 
under H0 determined.

https://osf.io/tk57v/
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a three-factor design, where power of the Fisher test was 
simulated as a function of sample size N, effect size η,  
and k test results. The three factor design was a 3 (sample 
size N : 33, 62, 119) by 100 (effect size η: .00, .01, .02, . . ., .99)  
by 18 (k test results: 1, 2, 3, . . ., 10, 15, 20, . . ., 50) design, 
resulting in 5,400 conditions. The levels for sample size 
were determined based on the 25th, 50th, and 75th  
percentile for the degrees of freedom (df2) in the observed 
dataset for Application 1. Each condition contained 
10,000 simulations. The power of the Fisher test for one 
condition was calculated as the proportion of significant 
Fisher test results given αFisher = 0.10. If the power for a 
specific effect size η was ≥ 99.5%, power for larger effect 
sizes were set to 1.

We simulated false negative p-values according to the 
following six steps (see Figure 7). First, we determined 
the critical value under the null distribution. Second, 
we determined the distribution under the alternative  
hypothesis by computing the non-centrality parameter  
(δ = (η2 /1 − η2 )N; (Smithson, 2001; Steiger, & Fouladi, 
1997)).  Third, we calculated the probability that a result 
under the alternative hypothesis was, in fact, nonsignificant  
(i.e., β). Fourth, we randomly sampled, uniformly, a value 
between 0 − β. Fifth, with this value we determined the 
accompanying t-value. Finally, we computed the p-value 
for this t-value under the null distribution.

We repeated the procedure to simulate a false negative 
p-value k times and used the resulting p-values to compute 
the Fisher test. Before computing the Fisher test statistic, the 
nonsignificant p-values were transformed (see Equation 1).  
Subsequently, we computed the Fisher test statistic and 
the accompanying p-value according to Equation 2.

Appendix B
Effect computation
The t, F, and r-values were all transformed into the effect 
size η2 , which is the explained variance for that test result 
and ranges between 0 and 1, for comparing observed to 
expected effect size distributions. For r-values, this only 
requires taking the square (i.e., r2). F and t-values were 
converted to effect sizes by

 

(3)

Where F = t
2
and df

1 = 1 for t-values. Adjusted effect sizes, 
which correct for positive bias due to sample size, were 
computed as

 (4)

Which shows that when F = 1 the adjusted effect size 
is zero. For r-values the adjusted effect sizes were com-
puted as (Ivarsson, Andersen, Johnson, & Lindwall, 2013)

 (5)

Where v is the number of predictors. It was assumed 
that reported correlations concern simple bivariate 
 correlations and concern only one predictor (i.e., v = 1). 
This reduces the previous formula to

 (6)

Where df = N − 2.
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