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R&D alliance is a multifaceted phenomenon, in which various socio-technological 
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and performance in different forms of R&D collaborations. These studies consider 
(1) how the partner fi rms differences with respect to different dimensions of their 
knowledge bases infl uence inter-fi rm learning in dyadic R&D alliances, (2) how the 
partner fi rm differences in their resources across locales infl uence the multi-partner 
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collaboration to navigate the dynamics of technology selection during technology 
change. The fi ndings of these studies tie together to the extent that they clarify the 
complex dynamics that exist between individual fi rms and their alliance partners in 
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CHAPTER 1 

GENERAL INTRODUCTION 

The “Information Age” has dramatically changed the competitive landscape. 

Technological knowledge has replaced capital goods as the main source of competitive 

advantage, and technological innovations have become the game changers that frequently 

punctuated the dominant practices of industries. Dealing with novel problems in this uncertain 

and fast changing environment has made firms more dependent to each other. Firms engage 

more frequently in different forms of interorganizational relationships (IOR) to share the cost 

and risk of their problem-solving activities. In particular, inter-firm R&D collaborations play 

an important role during technology change, when new technologies compete with each other 

as well as with the existing technology and the outcome of these technological battles is 

unknown ex ante.  

Interorganizational research has investigated the attributes of the firms’ resources as a 

crucial factor in the formation (Yayavaram et al., 2018), the choice of governance mode or 

organization (Oxley & Sampson, 2004), and the performance of different forms of R&D 

collaborations such as bilateral alliances (Nooteboom et al., 2007; Sampson, 2007) and 

multilateral alliances (Lavie, 2007; Olk & Young, 1997). It has underlined a fundamental 

contradiction between the diversity and utilizability of knowledge resources in R&D alliances: 

the difference between the firms’ knowledge increases the value creation opportunities but 

reduces their capabilities to utilize these opportunities (Inkpen, 2005; Inkpen & Tsang, 2007). 

Alliance is a multifaceted phenomenon. Firms are engaged in alliances with different types of 

resources and for different purposes. However, while prior research has greatly contributed to 

our understanding of this contradiction, it has mainly taken knowledge resources in a generic 
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form and overlooked the different dimensions or loci of knowledge. Therefore, our knowledge 

about firm’s different knowledge resources in R&D alliances and their performance 

consequences has remained relatively limited. Furthermore, the current research has mainly 

focused on one dimension of R&D alliance performance, namely innovative performance, 

overlooking the other performance implications of R&D alliances especially in orchestrating 

industrial actors in the selection of new technology during technological change.  

This dissertation attempts to improve the understanding of multidimensionality of 

firms’ resources and performance in R&D collaboration. It aims to provide insight into how 

the differences between partner firm’s resources along different dimensions of partner firms’ 

resources influence the inventive performance of R&D alliances, and how firms can leverage 

R&D alliances to influence the technology selection processes during the technology change.   

  This dissertation providea theoretical explanation and empirical evidence to address 

these under-researched yet theoretically and managerially important aspects of R&D 

collaboration. Specifically, the three essays that constitute the main body of the dissertation 

consider respectively: (1) How the partner firms differences with respect to different 

dimensions of their knowledge bases influence inter-firm learning in dyadic R&D alliances, 

(2) How the partner firm differences in their resources across locales influence the multi-

partner alliance performances at both alliance and firm levels, and (3) How firms leverage 

R&D collaboration to navigate the dynamics of technology selection during technology 

change.     

Cognitive Distance and Inter-firm Learning in R&D Alliances  

In the first essay (Chapter 2), I examine the performance consequence of difference 

between firms’ knowledge bases in R&D alliances. Past research has found the fundamental 

contradiction between potential access to new knowledge and absorptive capacity alongside 
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knowledge distance. While knowledge access increases with knowledge distance, firm’s 

absorptive capacity decreases with knowledge distance; the interplay between these two 

contradictory mechanisms yields an inverted U-shape relation between knowledge distance and 

alliance performance hypothesized in this literature. However, prior research has only focused 

on one attribute of firm’s knowledge base, that is, knowledge domain that addresses the 

different areas within which firms have accumulated knowledge over time. Another important 

attribute of firm’s knowledge base has been overlooked, the between-domain knowledge or the 

knowledge that firms use to employ their knowledge domains together, namely knowledge 

architecture.  

In this study, I revisit this approach. I employ the notion of cognitive distance to address 

the difference between firms’ knowledge bases. Cognitive distance represents the difference 

between the firm’s understanding of their environment as well as their problem solving 

approaches (Nooteboom, 2000). I argue that firm’s cognition is a function of not only its 

knowledge in different domains, but also the way that it utilizes these knowledge domains 

together, so I extend the notion of cognitive distance based on two dimensions: knowledge 

domain and knowledge architecture. I examine the impact of cognitive distance alongside each 

of these dimensions on inter-firm learning as one of the main proxies of R&D alliance 

performance.  

I concur with the prior literature findings that absorptive capacity decreases with 

knowledge domain distance, but I posit that knowledge access does not significantly changes 

with knowledge domain distance, as the R&D alliance does not provide enough space to access 

new knowledge domains. I argue that partner firms mainly learn from the distinct ways that 

they use their knowledge to understand and solve their common problem, rather than the 

difference of firms’ knowledge domains. Therefore, I theorize that the potential access to new 

knowledge increases with knowledge architecture distance, interacting with decreasing firm’s 
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absorptive capacity, and hypothesize an inverted U-shape relation between knowledge 

architecture distance and inter-firm learning. 

 Moreover, I explicitly model firm-level absorptive capacity as relevant moderators, 

whereas the current approach in the literature lumps together absorptive capacity and 

knowledge accessibility into a function of distance between firms, leaving out the firm’s in-

house knowledge resources that form a very large part of its absorptive capacity. I examine 

how a firm’s absorptive capacity alongside each knowledge dimension conditions the relation 

between cognitive distance and inter-firm learning. I hypothesize that the span of firm’s 

knowledge domains, namely firm’s knowledge breadth, alleviates the negative effect of 

knowledge domain distance on inter-firm learning. In addition, the malleability of firm’s 

knowledge architecture, namely firm’s knowledge decomposability, increases the firm’s 

capacity to benefit from higher levels of knowledge architecture distance in R&D alliances. 

Multi-Partner R&D Alliance Diversity and Performance 

In the second essay (Chapter 3), I examine the performance consequences of different 

dimensions of multipartner alliance diversity. Most researchers have mainly examined the 

performance consequence of within-firm resources and fallen short to address the ex-

boundaries resources that firms share in their alliances. However, MPAs as a multifaceted 

phenomenon cannot be simply explained only in this single dimension, as participating firms 

join MPAs with different attributes in terms of their internal resources and capabilities, their 

relational resources with their counterparts in MPA, and their status in the global alliance 

network. In addition, this stream of research has not distinguished and separately examined 

performance at the alliance level and the firm level, assuming that what is created at the alliance 

level can be proportionally appropriated at the firm level.  
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In this study, I reconceptualize multi-partner alliance (MPA) diversity based on the 

locus of the firm’s resources and empirically examine their performance consequences at both 

alliance and firm levels. I dimensionalize the MPA diversity construct with respect to the 

resources that firms share in their alliance and that are located within the firms, between the 

firms, and across the global network of firms, respectively. I identify three dimensions of MPA 

diversity: ‘partner variety’ to address the diversity of within-firm resources, ‘relational 

separation’ to address the diversity of between-firm resources (i.e., prior tie strength), and 

‘status disparity’ to address the diversity of network resources (i.e., status). I separately 

examine the performance consequence of each dimension at the alliance level as well as the 

firm level. 

I indicate the fundamental contradiction between the diversity and utilizability of 

resources in each dimension and argue that diversity in each of these dimensions has an 

inverted U-shaped relation with MPA performance, but these relations at the firm level are not 

aligned with the MPA level. Partner variety provides the MPA with more opportunities and 

resources to achieve its intended goal, but as the MPA’s diversity in this dimension exceeds a 

certain point, MPAs’ ability to exploit these opportunities sharply decreases. However, partner 

firms with narrower knowledge breadth do not proportionally benefit from partner variety in 

either case as much as their counterparts with broader knowledge do. Likewise, moderate 

relational separation among partner firms benefit MPAs the most, as partner firms may learn 

from novel information and knowledge from their less familiar partners, but excessive 

relational separation leads to dividedness in the MPA and hurts the alliance performance. 

Nevertheless, partner firms with a brokerage role in divided partnerships can extract a higher 

share of created value at the cost of their partners. Finally, while status disparity may ease 

coordination via higher status firms to a certain level, the inequality across an MPA with high 

disparity can disturb the required transparent multilateral interaction for efficient collaboration 
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among the alliance partners, exerting a negative effect on MPA performance. However, partner 

firms with a higher status in the global alliance network can extract a higher share of created 

value at the cost of their low-status partners. 

Leveraging R&D Collaborations to Navigate Technology Change  

In the third essay (Chapter 4), I take a qualitative approach to study the socio-

technological performance of collaborative R&D activities over the course of technological 

change. Researchers have mainly showed interest in general antecedents and consequences of 

R&D alliances in their studies, so they mainly wash out the other influential factors existing in 

social and environmental contexts of alliances. As the result, we know less, for example, about 

how R&D collaborations assist firms to manage the course of technological change. We 

specifically know less about how firms may leverage from the underlying socio-technological 

mechanisms of their alliances to influence the socio-technological mechanisms that drive the 

technology selection procedures during technology change.  

In this study, I take a real option theory perspective to investigate how successful firms 

take advantage of R&D collaborations to probe different technological options over the course 

of technological change. Moreover, how they timely make commitment to and abandon their 

technological options by the formation and termination of their R&D collaborations to attain 

enough legitimacy and endorsement to take the lead in the emerging technologies.  

As a whole, the dissertation advances our understanding of various socio-technological 

mechanisms that operate in R&D collaborations and explain multiple aspects of this complex 

phenomenon. I also hope that this dissertation will inspire new research on the other 

performance implications of technological-based interorganizational relations, so we can better 

understand this part of our connected world.   
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CHAPTER 2 

COGNITIVE DISTANCE DIMENSIONS AND INTER-FIRM LEARNING:                                                                              

KNOWLEDGE DOMAIN AND KNOWLEDGE ARCHITECTURE DISTANCE 

ABSTRACT 

Extant research has employed a rather narrow concept of cognitive distance in inter-

firm learning as consisting of knowledge-domain distance only. We widen this approach by 

conceptualizing cognitive distance based on two dimensions: knowledge domain distance and 

knowledge architecture distance. We theorize how inter-firm learning in R&D alliances varies 

along each dimension of cognitive distance. We test our theory on a sample of 278 dyadic R&D 

alliances in the semiconductor industry, identifying the technological scope of each alliance 

through content analysis. Our findings contradict the stylized inverted U-shape association 

between knowledge domain distance and firm learning conjectured in the literature, and show 

a negative association which is, however, attenuated by firm’s knowledge breadth. We also 

find that firm learning maximizes at an optimal level of knowledge architecture distance, and 

this optimal level is a function of firm’s knowledge decomposability.  

Keywords: R&D alliances; inter-firm learning; knowledge domain distance; 

knowledge architecture distance
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INTRODUCTION 

Facing novel problems in dynamic environments, firms may choose R&D alliance to 

improve the performance of their inventive search (Caner et al., 2017; Rosenkopf & Almeida, 

2003; Rosenkopf & Nerkar, 2001; Hagedoorn, 1993). In this joint effort, firms share and apply 

their distinct knowledge to execute their alliance tasks. That makes R&D alliances a platform 

on which firms can learn from each other, provided that they have the required absorptive 

capacity to recognize and assimilate new knowledge (Inkpen, 2005; Lane & Lubatkin, 1998; 

Cohen & Levinthal, 1990).  

Learning research poses a contradiction between the antecedents of inter-firm learning 

in R&D alliances. On one hand, the firms’ access to new knowledge is theoretically higher 

when their knowledge bases are more different. On the other hand, their absorptive capacity to 

make use of new knowledge is higher when their knowledge bases are more similar (Dyer & 

Singh, 1998; Lane & Lubatkin, 1998; Mowery et al., 1996; Inkpen, 2005; Grant & Baden-

Fuller, 2004). Addressing this contradiction, researchers have employed the notion of cognitive 

distance to conceptualize and operationalize between-firm knowledge difference (Nooteboom 

et al., 2007; Gilsing et al., 2008). Cognitive distance between two firms represents the 

difference between their understandings of the environment and their approaches in their 

inventive search based on their distinct prior knowledge and experience (Nooteboom, 2000). 

Therefore, access to new knowledge in R&D alliances increases with cognitive distance 

between firms, but at the same time firm’s absorptive capacity to acquire this knowledge 

decreases, suggesting the existence of an optimal level of between-firm cognitive difference.   

However, this stream of research conceptualizes and operationalizes cognitive distance 

on one basis, knowledge domain distance. Knowledge domains represent one attribute of a 

firm’s knowledge base: the categories of knowledge that a firm uses to comprehend its 
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environment and solve its problems. Nevertheless, it does not demonstrate how a firm maps its 

observation into these categories or makes use of them to solve its problem. In other words, it 

does not address the inter-domain links that form the architecture of a firm’s knowledge base 

(Yayavaram & Ahuja, 2008). Ironically, the organizational learning literature suggests that the 

firm’s cognitive map that serves a firm to understand its environment and solve its problems is 

mainly a function of knowledge architecture or the way that knowledge domains are connected 

and combined, rather than knowledge domains per se (Nooteboom, 2000; Yayavaram & Ahuja, 

2008; Fleming & Sorenson, 2001; Gavetti & Levinthal, 2000).        

In this study, we take a closer look into inter-firm learning mechanisms in alliances by 

reconceptualizing cognitive distance based on two distinct dimensions, knowledge domain and 

knowledge architecture. We elaborate on the influence of each dimension into underlying 

mechanisms of inter-firm learning and examine whether both dimensions give rise to the 

stylized inverted-U shape hypothesized in the literature, or that they exert differential 

influences. With respect to the knowledge domain dimension, we argue that R&D alliance is 

not a proper platform for inter-firm learning in this dimension. On one hand, firms cannot 

acquire knowledge in domains that they do not have developed the required absorptive 

capacity. On the other hand, the adequate access and time for the required developments is 

generally beyond the scope and capacity of alliance agreements. Thus, we hypothesize that 

knowledge domain distance and inter-firm learning have a negative relation. With respect to 

the knowledge architecture dimension, we posit that R&D alliance is a proper platform in 

which firms can learn from the distinct ways that they apply their knowledge domains to 

execute alliance task. However, while access to new knowledge increases with knowledge 

architecture distance, absorptive capacity decreases at the same time, yielding an inverted U-

shape relation between knowledge architecture distance and inter-firm learning. Thus, the 

hypothesized relation in the literature holds in this dimension.  
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Moreover, we submit that considering absorptive capacity as subsumed into cognitive 

distance at the alliance level neglects within-firm absorptive capacity. We look into within-

firm absorptive capacity alongside each knowledge dimension to have a separate and deeper 

understanding of the absorptive capacity mechanisms and to examine empirically how it 

interacts with cognitive distance to influence inter-firm learning. We argue that the span of 

firm’s knowledge domains, namely firm’s knowledge breadth, and the malleability of firm’s 

knowledge architecture, namely firm’s knowledge decomposability, represents two distinct 

dimensions of firm’s absorptive capacity. We hypothesize that firm’s knowledge breadth 

provides more chance for the firm to make use of knowledge domain distance in R&D alliances 

and alleviates the negative effect of knowledge domain distance on inter-firm learning. In 

addition, firm’s knowledge decomposability increases the firm’s capacity to benefit from 

higher levels of knowledge architecture distance in R&D alliances. 

We test our theory on a sample of 278 R&D alliances in the semiconductor industry 

from 1990 to 2002. We analyze the content of each alliance agreement to identify the 

technological scope of each alliance and map it onto relevant patent sub-classes. Prior research 

includes indiscriminately the whole knowledge bases of two firms when operationalizing 

cognitive distance in inter-firm learning. However, an R&D alliance is an agreement with 

limited technological scope within which firms share their knowledge (Inkpen & Tsang, 2007; 

Khanna, 1998; Khanna et al., 1998). For example, Hitachi, Ltd. and Texas Instruments (TI) 

Inc. formed an R&D alliance in 1991 to collaborate in the joint development of 256-megabit 

dynamic random-access memory (DRAM) chips. It is unlikely that these two large leading 

competitors share their knowledge and expertise in any domains except those relevant to the 

development and application of DRAM. Therefore, the real impact of the within-scope distance 

may be exaggerated, deflated, or otherwise distorted in the overall distance measure. We take 
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technological scope of R&D alliances into account to avoid this issue and substantially reduce 

noise in our cognitive distance measures. 

Our results show that knowledge domain distance between firms has a negative effect 

on firm learning, though firm’s knowledge breadth alleviates this negative effect. In addition, 

our results show that an optimal level of knowledge architecture distance maximizes firm 

learning, and this optimal level is higher for firms with a more decomposable knowledge base 

(i.e., the optimal level increases and shifts to the right with knowledge decomposability).  

Our study offers a fresh insight into the antecedents of firm learning in alliances and 

extend the prior findings. We extend and reconceptualize cognitive distance based on two 

dimensions: knowledge domain distance and knowledge architecture distance. This approach 

allows us to fully utilize this concept to examine the boundaries of inter-firm learning in R&D 

alliances. Our findings show that the two distinct dimensions of cognitive distance are not both 

associated with inter-firm learning in an inverted-U shape as suggested in the literature. In other 

words, our findings show that the stylized inverted-U shape hypothesized in literature is 

theoretically sound, but it holds on the other undertheorized dimension of cognitive distance, 

knowledge architecture distance, rather than knowledge domain distance. These findings 

suggest that firm learning maximizes in R&D alliances in which firms have an intermediate 

knowledge architecture distance and a small knowledge domain distance. Taken together, these 

findings redefine the boundaries of inter-firm learning in R&D alliances and suggest R&D 

alliances as a proper vehicle for renewing knowledge architecture rather than acquiring 

knowledge in less familiar domains. This study also offers a novel insight into the construct of 

absorptive capacity. We employ two dimensions of absorptive capacity alongside each 

dimension of cognitive distance. Knowledge breadth represents the breadth of a firm’s 

knowledge base or knowledge domains with which a firm comprehends its environment and 

acquire relevant knowledge. Knowledge decomposability represents the capacity of a firm to 
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change the architecture of its knowledge base by adding new links to or altering the existing 

ones between its knowledge domains. Finally, our approach in identifying the technological 

scope of an alliance agreement may encourage future research in alliances, M&A, and other 

forms of inter-firm relations to identify and consider the technological scope of such 

agreements.  

BACKGROUND: INTER-FIRM LEARNING IN R&D ALLIANCES 

Strategic management literature underscores R&D alliances as a generic external 

inventive search and knowledge sourcing strategy (Hagedoorn, 1993; Bierly & Chakrabarti, 

1996; Hagedoorn & Duysters, 2002). Through their joint search process, firms share their 

distinct knowledge to execute alliance tasks within the scope of the agreement, so they get 

access to new knowledge that would be otherwise inaccessible (Doz & Hamel, 1998; Inkpen, 

2000; Khanna et al., 1998; Kogut, 1988). Firms may use this opportunity to learn from their 

alliance partners not only to execute alliance tasks, but also to enhance their own knowledge 

to operate in areas unrelated to the alliance activities (Inkpen & Tsang, 2007; Sampson, 2007).   

There is a paradox (Inkpen, 2005), however, in inter-firm learning. On one hand, 

significant knowledge distance between firms provides firms with access to new knowledge 

beyond the firm's knowledge boundaries (Rosenkopf & Nerkar, 2001), implying that the 

greater the differences between firms, the greater the chance of learning. On the other hand, 

unrelated knowledge may have limited value, as the recipient firm cannot efficiently acquire 

and recombine new knowledge with existing one without the required absorptive capacity 

(Cohen & Levinthal, 1990; Grant & Baden-Fuller, 2004; Inkpen, 2000; Mowery et al., 1996).  

Dealing with this paradox, extant research considers competing arguments for the 

advantages and disadvantages of knowledge distance between firms. Accordingly, as cognitive 

distance between firms in R&D alliances increases, partner firms’ access to new knowledge as 
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an advantage for inventive search and inter-firm learning increases, but at the same time, 

mutual understanding and common knowledge background required to make use of it decrease. 

As a function of these two interacting latent linear mechanisms, an inverted U-shape relation 

between cognitive distance and firm learning is proposed. Advantages dominate disadvantages 

up to a certain level of cognitive distance, such that cognitive distance is positively associated 

with firm learning in alliance and its inventive performance; beyond this level, however, 

disadvantages dominate advantages, driving a negative relation between cognitive distance and 

firm learning. These studies conceptualize and operationalize cognitive distance as 

technological diversity (Sampson, 2007), technological distance (Gilsing et al., 2008), and 

cognitive distance per se (Nooteboom et al., 2007), and provide evidence of an optimal level 

of cognitive distance between firms. For example, Nooteboom et al. (2007) delineates that 

novelty value and absorptive capacity are two contradictory factors that determine the influence 

of cognitive distance. Their findings show that cognitive distance between firms has an inverted 

U-shape relation to firm inventive performance in alliances, as an indicator of firm learning.  

This stream of research contributes greatly to our understanding of inter-firm learning, 

but not without limitations. It conceptualizes cognitive distance by a single variable of 

knowledge domain distance, leaving out the important dimension of knowledge architecture 

distance. In addition, it uses absorptive capacity only as a dyadic level mechanism and a 

function of cognitive distance between two firms, so it does not fully address the absorptive 

capacity of firms that influences their learnings. Finally, it overlooks the alliance scope in the 

conceptualization and operationalization of cognitive distance and inter-firm learning in R&D 

alliances. 

In this study, we expand this stream of literature. We reconceptualize cognitive distance 

at the alliance level based on two attributes of knowledge base, namely knowledge domain 

distance and knowledge architecture distance. We also identify two firm-level moderators, 
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namely knowledge breadth and knowledge decomposability, that allow us to have a separate 

and potentially deeper peek into the absorptive capacity mechanism and to examine empirically 

how it interacts with cognitive distance to influence inter-firm learning. Finally, we take the 

scope of alliance into account in both of our theoretical and empirical analyses, which has been 

overlooked so far.   

COGNITIVE DISTANCE AND INTER-FIRM LEARNING IN ALLIANCES 

In a continuous learning loop, firms use their cognition, based on their accumulated 

knowledge in their past experience, to drive their inventive search, which in turn adds a new 

experience to prior knowledge and adjusts the cognition (Gavetti and Levinthal, 2000). New 

experiences and the way that firms relate them to prior experiences reshape the firm’s 

knowledge base. Therefore, two dimensions characterize the firm’s knowledge base: the 

knowledge domains in which different content of a firm’s knowledge can be categorized, and 

the links that connect these knowledge domains together.    

In an R&D alliance, firms share their accumulated knowledge within the scope of the 

agreement to drive their joint inventive search; this collaboration also provides them with a 

unique learning opportunity (Doz & Hamel, 1998; Inkpen, 2000; Khanna et al., 1998; Kogut, 

1988). For example, Hitachi, Ltd. and Texas Instruments (TI) Inc. formed an R&D alliance in 

1992 to collaborate in the joint development of 256-megabit dynamic random-access memory 

(DRAM) chips. According to their alliance agreement, the participants planned to work 

together on all phases except actual production, which each was to undertake separately. First, 

we expect that these two large companies get involved in this alliance with knowledge and 

expertise relevant to the development and application of DRAM; it is indeed unlikely that 

Hitachi shares its knowledge in non-electric control systems or vehicle brake systems, or TI 

shares its expertise in producing chips for smart control of tire air pressure. Accordingly, our 
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theoretical development and empirical analysis in this study will be focused on firms’ 

technological knowledge that is relevant and applicable to the technological scope of alliances. 

It includes knowledge that directly addresses the technological scope of alliances, such as 

Hitachi and TI’s knowledge in design and production of volatile memory (G11C1), and 

associated knowledge in closely connected areas, such as Hitachi’s experience to apply its 

knowledge in memory in telecommunication systems (H04L), or TI’s effort in utilizing 

magnetic measuring techniques in development of volatile memories (G01R). Once this scope 

is established, the relevant cognitive distance between firms can be defined over the knowledge 

that they share in alliances.  

Looking at Hitachi and TI’s knowledge domains in Fig.1, while Hitachi has used its 

knowledge of memory with knowledge in telecommunication systems (H04L) in specific 

cases, TI’s knowledge profile does not show this record, and while TI uses its memory 

knowledge with magnetic measurement technology in some cases, this expertise is absent in 

Hitachi’ profile. Considering the links that form their knowledge architecture, Hitachi and TI 

both naturally use their knowledge in volatile memory with strong links to CMOS technology 

(H01L), electric digital processing (G06F), and Pulse techniques (H03K). Nevertheless, the 

link between volatile memory knowledge and CMOS technology is stronger in TI, which 

implies TI has more experience in using CMOS technology in producing volatile memories 

like DRAM. On the other side, Hitachi’s knowledge profile shows a stronger link between 

volatile memory and pulse techniques, which implies Hitachi has superior expertise in DRAM 

clock design.  

 

 

1 CPC (Cooperative Patent Classification) is used to denote the technological knowledge domain of 

each company in this example and its corresponding figure. More explanation about this classification can be 

found in the Method section.  
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FIGURE 1: An excerpt of knowledge structure of Hitachi (left) and Texas Instrument (right) 

on 1991. The size of the node represents the level of knowledge that a firm possesses in the 

corresponding domains. The ties between the domains represents the inter-domain links. The 

thickness of the tie indicates the strength of links between the two domains. The size of the 

nodes and thickness of ties shown in the figure are for illustrative purposes. The figure just 

includes a selection of knowledge domains that are used in association with knowledge scope 

of alliance (G11C).   
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In the following, we examine the performance consequence of both dimensions of 

cognitive distance in R&D alliances, and in each dimension, we investigate the moderating 

effect of firm’s absorptive capacity. For example, we examine TI’s learning from Hitachi along 

their knowledge domain distance, such as the exposure to Hitachi’s knowledge in 

telecommunication, new to TI, or to its profound knowledge in electric digital processing, less 

rich in TI. Then, we investigate how TI’s knowledge breadth in the semiconductor industry 

conditions its learning from Hitachi. We also examine TI’s learning from Hitachi along their 
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knowledge architecture distance, such as Hitachi’s higher expertise in using pulse techniques 

in volatile memory design. Then, we investigate how the TI’ knowledge decomposability or its 

malleability in changing its knowledge architecture affects its benefit from this opportunity.  

Knowledge Domain Distance 

Extant research mainly uses knowledge domain distance to theorize and operationalize 

cognitive distance and predict an inverted-U shape relationship between it and firm learning in 

alliances. Accordingly, access to new knowledge domains increases with knowledge domain 

distance, but the required absorptive capacity to utilize this new knowledge decreases at the 

same time and outweighs its benefits after a certain point (Nooteboom et al., 2007; Sampson, 

2007). In contrast, we argue that the acquisition of knowledge in less familiar or new domains 

is usually beyond the scope and capacity of R&D alliances, because the benefits of access to 

new knowledge domain are dampened by escalating recombination uncertainty, circumscribed 

by an alliance’s limited scope and time, and discounted by alliance firms that need to specialize.  

First, accessing knowledge in new domains may potentially provide the chance of 

adding novel combinations to a firm’s knowledge (Kogut & Zander, 1992), but each new 

knowledge domain exponentially increases the number of possible combinations with multiple 

existing domains. Thus, the chance of finding a valuable combination actually decreases as 

recombination uncertainty increases (Fleming, 2001; Fleming & Sorenson, 2001). In addition, 

the chance of partner firms to pool their knowledge to share risk and enjoy economies of scale 

in their joint R&D efforts decreases when the knowledge distance increases (Yayavaram et al., 

2018). Second, alliance agreements have limited scope and time, and firms deploy systematic 

safeguarding mechanisms to limit unintended knowledge transfer. Hence, R&D alliances do 

not usually provide enough space for the acquisition and combination of new knowledge 

domains (Grant & Baden-Fuller, 2004; Inkpen, 2000; Inkpen & Tsang, 2007). Finally, firms 
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may still jointly use their complementary knowledge to address their common problem, without 

actually learning from each other, when their alliance tasks mainly involve pooled or sequential 

interdependence tasks, rather than reciprocal interdependence (Kavusan et al., 2016; Mowery 

et al., 1996; Gulati & Singh, 1998). In this case, firms focus their efforts to specialize in their 

own technological domains to develop complementary knowledge toward a joint outcome 

(Baldwin & Clark, 2000; Schilling, 2000), rather than learning from their counterpart’s 

complementary knowledge.  

With respect to firm’s absorptive capacity, firms require prior knowledge and 

appropriate communication channels across knowledge domains to decompose, assimilate, and 

associate new knowledge with existing ones (Cohen & Levinthal, 1990; Kogut & Zander, 

1992). A firm’s knowledge is embedded in organizational elements such as its members, 

technological components, and tasks as well as the various subnetworks or communication 

channels formed by combining or crossing these elements (J. E. McGrath & Argote, 2001; 

Argote & Ingram, 2000, p. 153). Therefore, learning from new domains requires knowledge 

acquisition from all these elements and subnetworks, and combination of acquired knowledge 

with the existing embedded knowledge in the firm (Argote & Ingram, 2000). Generally, these 

developments take more time than limited duration of alliances. Thus, as the knowledge 

domain distance increases, the difficulty of acquisition and combination of knowledge in new 

domains exponentially increases; particularly, when firms aim to apply this new knowledge in 

a new context. In sum, as the knowledge domain distance between firms in R&D alliances 

increases, the firm’s chance to develop the required in-house capabilities to absorb new 

knowledge significantly decreases. 

Recalling the above-mentioned example, we expect that not only TI cannot acquire and 

utilize telecommunication technology from Hitachi in their alliances, but also having this new 



21 

 

knowledge may impede TI’s learning from Hitachi’s expertise within the technological scope 

of the alliance, volatile memory.  

Hypothesis 1: Knowledge domain distance in R&D alliances has a negative effect on 

firm learning in R&D alliances. 

The Moderating Effect of Firm’s Knowledge Breadth 

Although knowledge domain distance has a negative effect on firm learning, firms with 

a broader knowledge breadth may be less negatively influenced. Broad knowledge across 

different technological domains increases the chance of finding novel association and links 

between new and existing knowledge domains, so that recognition and assimilation of new 

knowledge will be easier (Cohen & Levinthal, 1990). In addition, experience of engaging in 

dispersed inventive searches and experiment with unknown combinations strengthen these 

firms’ capabilities to deal with recombination of new knowledge (Carnabuci & Operti, 2013; 

Gavetti & Levinthal, 2000). 

Moreover, the practice of venturing with the creation and acquisition of new knowledge 

across different knowledge domains helps firms to develop inter-domain communication 

channels that facilitate the process of decomposition, transfer, and recombination of new 

knowledge (Caner et al., 2017; Zahra & George, 2002). This practice also strengthens the 

required organizational culture and structure to push firms beyond their knowledge boundaries 

(Argyres & Silverman, 2004; Carnabuci & Operti, 2013; Laursen & Salter, 2006).  

All these factors ease the acquisition and integration of new knowledge, so as to reduce 

the negative effect of knowledge domain distance on firm learning in alliances.  

Hypothesis 2: The negative effect of knowledge domain distance on firm learning in 

R&D alliances is weakened by firm's knowledge breadth.   
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Knowledge Architecture Distance 

Knowledge architecture reveals how a firm makes use of its different knowledge 

domains together: which domains of knowledge are most likely to work well together and 

conversely, which ones are unrelated to each other and cannot be considered jointly 

(Yayavaram & Ahuja, 2008). In other words, knowledge architecture shapes the cognitive map, 

or the way that firms approach and formulate their problems and orient their inventive search 

(Gavetti & Levinthal, 2000; Levinthal, 1997; Simon, 1983). Given the idiosyncratic path of 

search processes and knowledge development in firms, each firm has a distinct knowledge 

architecture that can be the source of invention in an alliance.  

Looking at the same problem from different perspectives in joint problem-solving 

activities allow firms to learn from the distinct patterns and new links with which they connect 

their knowledge domains and revisit their developed communication channels and filters within 

or across their organizational elements that form these patterns (Henderson & Clark, 1990; Kok 

et al., 2020). Learning from new patterns is not limited to knowing about the unexplored links 

between knowledge domains, but also entails awareness of the failed links that have been 

already tried in the development path of firms. Therefore, firms can use their distinct 

knowledge architecture to reduce iterations of trial and errors in their knowledge 

reconfigurations, and to adjust their cognitive maps in their inventive searches.  

However, as architectural distance increases, the capability of firms to acquire and 

utilize this knowledge decreases. Significant difference in firms’ cognitive maps harms the 

required mutual understanding to appreciate and combine different perspectives in 

collaborations (Nooteboom et al., 2007). Moreover, facing a disparate knowledge architecture 

with many new links may handicap firms in terms of recognizing and assimilating the new 

patterns that embedded in the subnetworks or communication channels across organizational 

elements (Henderson & Clark, 1990; Argote & Ingram, 2000). 
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Therefore, as knowledge architecture distance increases, the difficulty of its utilization 

increases in a way that after a certain point it outweighs its learning benefits.      

Hypothesis 3: Knowledge architecture distance in R&D alliances has a curvilinear 

(inverted U-shape) effect on firm learning in alliances such that moderate distance 

yields maximum learning. 

The Moderating Effect of Firm’s Knowledge Decomposability   

To benefit from knowledge architecture distance, firms should have the capability to 

make changes in their knowledge architectures. Extant research shows that the degree of 

decomposability of a firm’s knowledge base, or knowledge decomposability in short, addresses 

its capacity for change or “malleability” in knowledge architecture (Yayavaram & Ahuja, 2008; 

Baldwin & Clark, 2000; Schilling, 2000; Simon, 1962). Knowledge decomposability indicates 

the extent to which knowledge architecture of a firm can be divided into clusters of domains. 

When links are distributed evenly across knowledge domains, identifying and decomposing 

clusters are difficult. However, when the distribution varies, clusters of highly connected 

knowledge domains which are loosely connected with each other appear, making knowledge 

architecture decomposable (Yayavaram & Ahuja, 2008; Nickerson & Zenger, 2004; Simon, 

1962).       

Firm’s knowledge decomposability conditions the limit to which firms can take 

advantage of accessible knowledge architecture in R&D alliances. Firms with low knowledge 

decomposability, or in other words highly integrated knowledge, have limited malleability (i.e., 

capacity for change). Even a minor change requires significant reshuffling across the whole 

knowledge structure, as it is densely interconnected (Yayavaram & Ahuja, 2008). Moreover, 

the repetitive application of the same pattern over time limits the capability of firms to think of 

new patterns (Henderson & Clark, 1990; Levinthal & March, 1993). However, as knowledge 
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decomposability increases, the malleability increases. The loose connections between and tight 

connections within knowledge clusters give firms enough background to recognize and 

assimilate other unexplored links and distinct patterns, and at the same time they leave enough 

space in the knowledge architecture to receive new links or accept the changes.  

Therefore, as knowledge decomposability increases, the firm’s capability to absorb and 

benefit from greater knowledge architecture distance increases.  

Hypothesis 4: As firm's knowledge decomposability increases, the turning point of the 

inverted-U shape relation between knowledge architecture distance and firm learning 

in R&D alliances shifts to the right; that is, firms with a higher knowledge 

decomposability can benefit from greater knowledge architecture distance in alliances. 

FIGURE 2: The theoretical model 

 

 

 

 

 

 

 

METHODS 

Empirical Design and Data 
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this industry are regularly involved in the practice of patenting innovations, and its 

heterogeneous population provides considerable variations to test the hypotheses (Stuart, 

2000). Firms in this industry also actively engage in alliances to address their rapidly changing 

competitive environment (Hagedoorn, 2002; Schilling, 2015).  

Data. We collected alliance data from the JV & Alliance section of the SDC Platinum 

database. We found 414 R&D dyadic alliances that formed between 1990 and 2002 in the 

semiconductor industry, considering the SIC-Primary (i.e., SICP) flag of alliances. We chose 

this period to develop a balanced sample of observations over a complete circle of the alliance 

trend in this industry. The semiconductor industry has observed a boom in the formation of 

R&D alliances in the first half of this period, as they faced significant technological shocks and 

technological transitions, but a significant decrease in the second half after the emergence of 

Dot-com bubble crisis (Brown & Linden, 2011; Hagedoorn, 2002; Schilling, 2015; Zirulia, 

2009). We identified 346 dyadic R&D alliances after re-checking the alliance status (i.e., 

completion), and removing alliances with undisclosed partners. We also compared the SDC 

information with that in the FACTIVA dataset to check all information such as alliance 

announcement dates and enhance alliance descriptions. Finally, we tracked historical alliances 

(all types of alliances, including dyadic alliances) all the way back to the year 1985 in order to 

ensure sufficient coverage of active alliances for the required analysis in this study. 

We extracted the patents from the EPO Worldwide Patent Statistical Database 

(PATSTAT2). PATSTAT covers all registered patents in more than 100 patent offices that 

allows us to aggregate the registered patent at patent family level (DOCDB patent family) to 

cover all the relevant registered patents in different patent offices without over counting those 

 

 

2 PATSTAT Edition: 2017 Autumn; Classification Version: 2013. 
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registered in multiple offices. This database, as the NBER and the USPTO patent database, 

contains patent number, assignee name, filing year, and grant year, but not the CUSIP numbers 

(key identifier used in Compustat & the SDC databases) of the assignee firms, so matching of 

patents with identified firms in our sample is not straightforward. In addition, we used alliance 

data, rather than public semiconductor firms, as the starting point of our data collection, and 

we kept non-public firms in our sample to cover more R&D alliances and to improve the 

generalizability of our theory, but non-public firms do not have CUSIP which makes the 

matching procedure even more complicated.  

Therefore, we took significant care in matching our firm list and patent data. First, we 

used the company directory list, who-owns-whom information, in LexisNexis to identify all 

divisions, subsidiaries, and joint ventures of each firm at the level of parent firm in the sample. 

We then used different online sources to trace each firm’s history to account for name changes, 

division names, divestments, acquisitions, and joint ventures; and to obtain precise information 

also on the timing of these events. This process yielded a master list of entities that we used to 

identify all patents belonging to sample firms during the period of study. To match the 

corresponding patents to each firm, we first used the name-matching bridge between the 

NBER/USPTO patents and Compustat firms provided by Hall and colleagues (Hall et al., 

2001), in which patent assignee names are standardized and matched with firm names in 

Compustat. However, we could find patent information for only 226 partner firms out of 392 

partner firms3, and we could not determine whether the rest of the firms had no patents or had 

patents but did not appear in this database. In addition, our sample is not limited to the public 

firms, and includes 133 non-public firms which are not recorded in Compustat. Therefore, we 

 

 

3 These numbers are very close to what Srivastava & Gnyawali (2011) reported in their similar 

procedure. 
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wrote a name-matching program to get additional patents for both public and non-public firms 

in our database. The resulting collected patents were granted between 1987 and 2005 to our 

sample firms. Finally, we dropped 68 alliances of non-patenting firms, as it was not possible 

to develop both independent and dependent variable measures, so the final sample of our study 

consists of 278 R&D alliances.  

 As large firms may diversify in different industries and technologies, relying on all 

their patent data might be misleading in our analysis (Sampson, 2007). To this end, we did a 

content analysis of the technological description of each alliance agreement to determine its 

technological scope. We obtained the technological descriptions from the SDC and FACTIVA. 

Then, we followed the patent office procedure for examiners to match these descriptions to 

specific technology sub-classes under the Cooperative Patent Classification (CPC) scheme 

(Espacenet - Classification Search, 2019; Hunt et al., 2012; White, 2010; Devarakonda & 

Reuer, 2018)4. The CPC is a common classification system for patent documentation that 

integrates the USPTO (American system) and the EPO (European System) and classifies 

technologies in hierarchical nested levels, such as section, class, subclass, and so on (CPC, 

2019). In short, we made a brief, accurate summary of the technological description of each 

alliance, noted the key technical words, and searched for the synonyms. Then, we used the 

advanced search form in the EPO search engine, and search keywords and synonyms in the 

Title and Abstract fields to retrieve a list of the corresponding sub-classes. Finally, we retrieved 

the corresponding patent to each sub-class and reviewing their abstracts and top claims to check 

the relevancy of the patents to the technological scope of alliances (this procedure is explained 

in more details with an example in appendix 1). We checked this procedure with a patent 

 

 

4 https://worldwide.espacenet.com/classification?locale=en_EP 
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examiner at the EPO office in The Hague in the Netherlands. Then we compared the results on 

a random sample of 50 alliances in our data with the same examiner as well as a commercial 

patent search engine5. The results were consistent in 45 alliances at the sub-class level and in 

all 50 alliances at the class-level.   

Measures  

We used patents to construct the firm’s knowledge base, the basis for our key measures. 

We followed the following procedure to reduce the common noise of patents in this process. 

First, we considered a three-year window in our study. We included those patents that their 

applications are filed in three years after the alliance formation for the post-alliance variable, a 

conservative choice based on trade-offs between the required time for firm learning in an 

alliance and recording such learning in the citations of subsequent patent applications, and the 

high rate of internal technology development within the firm. To consider the fast-changing 

technological knowledge in this industry and also to keep the balance between pre and post 

alliance variables, the same restriction was considered for the pre-alliance variables. Moreover, 

as the main CPC sub-class of each patent has been often co-listed with other CPC sub-classes, 

we followed Fleming and Sorenson (2001) and used this information to construct the firm’s 

knowledge base. 

We used the firm’s knowledge base to develop our measures at two levels: alliance 

level independent variables that address the distance of firms in alliances as well as firm 

learning from its partner, and firm-level moderators and control variables. For the sake of 

accuracy, we took different approaches at each level. For alliance-level independent variables, 

we took the technological scope of alliances into account. We selected all the patents that at 

 

 

5 Octamine patent search: https://app.octimine.com/ 

https://app.octimine.com/
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least one of their assigned technology sub-classes (i.e., CPC sub-classes) matched to the 

identified scope of alliances. In this way, we take into account the firms’ knowledge that either 

directly addresses the technological scope of alliances, or closely associated with it. For the 

other firm-level variables, we followed Yayavaram and Ahuja (2008, p. 347) and Carnabucci 

and Operti (2013) by including all 56 sub-classes that are related to the semiconductor industry. 

Dependent Variable at the firm level. Firm learning was measured as the number of 

total citations that a firm made to its counterpart’s patents within the technological scope of the 

alliance within three years after the alliance formation, namely “firm’s post alliance cross-

citation”. This measure is extensively used to measure knowledge diffusion and learning (Jaffe 

et al., 1993; Mowery et al., 1996a; Roach & Cohen, 2013). The alliance agreement has limited 

scope, so attributing all cross-cited patents between firms to a single alliance is not 

representative, so we reduced the noise by counting those patents that cite the counterpart’s 

patents within the scope of the alliance. 

 Independent Variables at the alliance level. We used PATSTAT technology class data 

to identify the technological scope of each alliance and build our measures. Following Fleming 

(2001) and Fleming and Sorenson (2001), we considered the technology sub-classes assigned 

to patents as proxies for knowledge domains, and the co-listing of sub-classes as indicative of 

inter-domain links.  

For knowledge domain distance, we measured the angular distance between firms’ 

prior-alliance patents within the technological scope of alliances with respect to their 

technology sub-classes. The angular distance addresses the difference between the orientations 

of developed knowledge in different knowledge categories in firms. To this end, we first used 

Jaffe’s angular proximity measure (Jaffe, 1986), and then calculate the distance measure. We 
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indicated the technical position of a firm a in knowledge space as a vector of a firm’s 

knowledge in distinct knowledge categories: 

𝑓𝑎 = (𝑓𝑎1, … , 𝑓𝑎𝑘 , … , 𝑓𝑎𝐾)                                               (1) 

where 𝑓𝑎𝑘 is the fraction of firm a’s patent that are in patent sub-class k during the years t-3 to 

t-1. Angular proximity between two firms a and b, then, is the cosine of the angle between their 

technological position as follows: 

𝑆𝑎𝑏 =
∑ 𝑓𝑎𝑘𝑓𝑏𝑘

√∑ 𝑓𝑎𝑘
2 𝑓𝑏𝑘

2
                                                                 (2) 

and the angular distance is 𝐷𝑎𝑏 = 1 − 𝑆𝑎𝑏. 

To operationalize knowledge architecture distance, we followed Yayavaram et al. 

(2018). We first developed a link matrix that represents the inter-domain knowledge links that 

form the architecture of knowledge that each firm shares in accordance with the alliance scope. 

Second, we compared these link matrices. We use an example to illustrate this procedure. To 

calculate the knowledge architecture distance between Hitachi and TI in their R&D alliance to 

develop volatile memories, we first calculated the strength of the links between all the patent 

subclasses in Hitachi that are either in the scope of its alliance with the TI (i.e. G11C) or 

connected to G11C (i.e. G06F, H03K, H01L, H04L) (Fig.1). For example, we calculate the 

likelihood of having two patent subclasses like G11C and G06F co-listed in the Hitachi’s 

patents that indicates how much the corresponding knowledge to each of these sub-classes are 

used together compared to the other possible combinations. This yields a link matrix between 

all patent sub-classes, and represents the architecture of knowledge that Hitachi shares in its 

alliance with the TI. Thus, the strength of link between technology sub-classes j and k for the 

firm a, 𝐿𝑎,𝑗−𝑘, can be calculated as: 
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𝐿𝑎,𝑗−𝑘 =
𝑛𝑗𝑘

𝑛𝑗+𝑛𝑘+𝑛𝑗𝑘
                                                  (3) 

Where 𝑛𝑗  is the number of firm a’s patents that are assigned to sub-class j but not sub-

class k, 𝑛𝑘 is the number of patents that are assigned to sub-class k but not sub-class j, and 𝑛𝑘𝑗 

is the number of patents that are assigned to both sub-classes. The link matrix L consisting of 

𝐿𝑎,𝑗−𝑘 for all pairs of domains represents the structure of the firm’s knowledge base 

(Yayavaram et al., 2018; Yayavaram & Ahuja, 2008).  

Second, we compared the knowledge structure or link matrices of these firms to 

calculate their knowledge architecture distance. We measured knowledge architecture distance 

as the sum of the absolute difference between the corresponding links to all technology sub-

class pairs that are common to both firms6.  

However, we calculated the strength of links between each patent sub-classes as the 

likelihood of having them co-listed in a patent, so the size and diversity of firm’s knowledge 

base can influence this measure (Yayavaram & Ahuja, 2008). In other words, firms with larger 

and more diverse knowledge base have more possibility in recombination of its knowledge 

domains, so the likelihood of having two sub-classes co-listed in a patent is naturally lower 

than a firm with smaller and less diverse knowledge base. To remove the effect of size and 

diversity of firms’ knowledge bases, we compare the percentile score of the strength of each 

link rather than their absolute value. To do so, we followed Yayavaram et al. (2018, p. 2288) 

and first use the number of patents (size) and the number of patent sub-classes to compute the 

 

 

6 In our data, we did not observe any R&D alliance in which firms did not have any patents in the 

scope of alliance. 
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percentile values of each link (i.e., 1st percentile, 2nd percentile, and so on, until 100th 

percentile) with the following power-law relationship: 

Log (percentile value) = constant+α × log (size of the firm’s knowledge base) + β × 

(the number of patent sub-classes)        (4) 

We then compare each firm’s link strength with the predicted values. Based on these 

comparisons, we then computed the percentile score p(𝐿𝑎,𝑗−𝑘) for each firm’s links. We 

measured Knowledge architecture distance as the weighted sum of the absolute difference in 

percentile scores between the two firms for all technology sub-class pairs that are common to 

them. 

 Knowledge Architecture Distance 𝑎,𝑏 = 

∑ 𝑊𝑎,𝑏,𝑗,𝑘 × |𝑝(𝑗,𝑘 𝐿𝑎,𝑗−𝑘) − 𝑝(𝐿𝑏,𝑗−𝑘)|  (5) 

The weight 𝑊𝑎,𝑏,𝑗,𝑘 is equal to (𝑓𝑗
𝑎 + 𝑓𝑘

𝑎)/2+(𝑓𝑗
𝑏 + 𝑓𝑘

𝑏), where 𝑓𝑗
𝑎(resp. 

𝑓𝑘
𝑎), 𝑎𝑛𝑑 𝑓𝑗

𝑏(resp. 𝑓𝑘
𝑏) represent the fraction of patents that belong to a technology sub-class j 

(resp. k) for firm a and firm b, respectively. We set the value of knowledge architecture distance 

to 0 when two firms had no common domain pairs and normalized its values to be more 

comprehensible and comparable to knowledge domain distance. 

Moderator Variables at the firm level. To measure knowledge breadth, we focused on  

the distribution of patents across all semiconductor patent sub-classes (Carnabuci & Operti, 

2013; Yayavaram & Ahuja, 2008), not just within the scope of alliances, and calculated the 

inverse of the nonbiased Herfindahl Index (HHI) proposed by Hall (2002, p. 3). This approach 

adjusts the bias caused by the size of the firm’s patent portfolio (Hall, 2002). To this end, we 

calculated knowledge breadth as it follows: 
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Knowledge breadth𝑎 = 1 − [
𝑁𝑎∗𝐻𝐻𝐼𝑎−1

𝑁𝑎−1
]   (6) 

Where 𝐻𝐻𝐼𝑎 = ∑ [
𝑁𝑎𝑘

𝑁𝑎
]

2
𝐾
𝑘=1  where a= firm; k= patent sub-classes; 𝑁𝑎𝑘 = number of 

patents in sub-class k by the firm a; 𝑁𝑎= total number of patents in all sub-classes by the firm 

a. The index rises with the number of patent sub-classes a firm invents in and equality of its 

efforts across sub-classes, its value range from 0 to 1, with smaller value indicating that, 

adjusting for the size of the overall patent portfolio, a firm has narrower knowledge breadth. 

To measure knowledge decomposability of the whole firm’s knowledge base, we used 

the weighted clustering coefficient. The clustering coefficient addresses knowledge 

composability, as it measures the extent to which nodes in a network tend to cluster together. 

The non-weighted clustering coefficient for a patent sub-class with 𝑘𝑖 links to other sub-classes 

(co-listed sub-classes) is defined as 𝐶𝐶𝑖 = 𝑛𝑖/[𝑘𝑖 × (𝑘𝑖 − 1)/2], where 𝑛𝑖  is the number of 

links between the 𝑘𝑖 neighbors (co-listed patents) of patent sub-class i. The denominator is the 

maximum number of links that are possible between 𝑘𝑖 neighbors of patent-subclass i. Finally, 

the clustering coefficient for the whole knowledge base, CC, is 𝐶𝐶𝑖 averaged across all patent 

sub-classes (Yayavaram & Ahuja, 2008, pp. 350–351).  

We followed the above procedure to measure knowledge decomposability, but we also 

considered the weight of links between patent sub-classes of firms in the semiconductor 

industry. We used the NW_WCC module of STATA to calculate the weighted clustering 

coefficient of all nodes in the above calculated link matrix (formula (3)) (Joyez, 2017; Saramäki 

et al., 2007)7. Then, we measured the degree of decomposability for the entire knowledge base 

 

 

7 Yayavaram and Ahuja (2008) built this measure by designing an elaborated procedure to distinguish 

strong and weak ties; however, we calculated the clustering coefficient of all ties and took all them into account. 
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as (1- knowledge composability). Thus, when nodes in the network have ties that are mostly 

within their clusters, the network has high decomposability and when the nodes in the network 

have ties that are mostly outside their clusters, the network has low decomposability.   

Control Variables. We included several additional control variables to exclude 

alternative explanations. First, we included several firm-level controls. We controlled for the 

Firm pre-alliance learning, as the prior learning history between firms can ease their learning 

in alliances (Yang et al., 2015). We also controlled for Firm's pre-alliance total in-scope 

patents. This variable can help control for the firm’s in-house R&D efforts within the alliance 

scope, as a more precise measure than the conventional aggregate R&D spending which entails 

all R&D activities of the firm (i.e., in- and ex-scopes) and is subject to accounting 

considerations (Sampson, 2007). Moreover, we control for Firm's pre-alliance total patents. 

This variable can also help control for firm (applicant) size, as it address the size of financial 

and non-financial resources that come with firm size (Sampson, 2007). We also control for 

Firm’s degree of centrality to control for possible information channels that foster firm 

learning. We also used dummy variables to control for firms came from the semiconductor 

industry, Firm's semiconductor industry dummy, and the U.S., US firm dummy. Finally, we 

used a dummy variable to distinguish public firms from private firms, Firm government-related 

dummy. 

Moreover, we control for all these variables for the partner firms, namely Partner's pre-

alliance total in-scope patents, Partner’s pre-alliance total patents, Partner's degree of 

centrality, Partner's semiconductor industry dummy, US Partner dummy, Partner government-

related dummy. In addition, we controlled for Partner's knowledge breadth, and Partner’s 

knowledge decomposability, as it can be argued that learning from firms with broader 

knowledge or more decomposable knowledge base might be easier.    



35 

 

At dyadic level, we controlled for Number of prior alliances btw firms in the 

semiconductor industry, excluding licensing agreements, to consider the possible effect of 

partner-specific experience in firm learning. We defined also dummy variables to control for 

Joint Ventures (JV), as well as Cross border alliance dummy, as prior suggested that JVs can 

provide a better platform for learning (Mowery et al, 1996), and international alliances 

demonstrate different attributes for firm learning in alliances (Lane, Salk, and Lyles, 2001).   

Statistical Analysis 

Since our dependent variable, the firm’s post alliance cross-citation, is a count variable 

that has high variance relative to its mean, over-dispersed, we used negative binomial 

regression analysis. The likelihood-ratio (LR) test of dispersion parameter (i.e., α) shows α is 

significantly greater than zero in all our models, so confirming over dispersion in data and 

supporting our choice of negative binomial over poisson. Since we include both alliance partner 

firms in our analysis, a multi-level fixed effect model seems as the ideal choice, but the results 

of ANOVA test, as well as MLM itself, show that the higher-level variance at the alliance level 

is trivial (9.35 E-15), obviating the need to fit our data with multi-level models. Nevertheless, 

we report standard errors clustered at the alliance level, by using vce (cluster alliance_id) 

option in our estimation model in STATA, to relax the requirements that the observation must 

be independent.  

RESULTS 

Table 1 presents the descriptive statistics and correlations. The mean of Firm’s post 

alliance learning (530) as well as Firm’s pre-alliance learning (361) show that firms more 

intensively cite each other post-alliance than pre-alliance (p<0.001 in t-test). The mean of 

normalized Knowledge architecture distance is lower than knowledge domain distance as we 

used in-scope knowledge that was common between firms to measure Knowledge architecture   
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TABLE 1: Descriptive Statistics and Correlations 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 Firm’s post alliance learning  1.00                       

2 Knowledge domain distance  -0.19 1.00                      

3 Knowledge architecture distance  0.44 -0.29 1.00                     

4 Firm’s knowledge breadth 0.28 -0.38 0.23 1.00                    

5 Firm's knowledge decomposability  0.22 -0.39 0.19 0.82 1.00                   

6 Firm’s pre-alliance learning  0.94 -0.19 0.45 0.28 0.21 1.00                  

7 Firm's pre-alliance total in-scope patents 0.74 -0.21 0.48 0.24 0.20 0.71 1.00                 

8 Firm's pre-alliance total patents 0.72 -0.25 0.44 0.44 0.29 0.79 0.60 1.00                

9 Firm's degree centrality 0.52 -0.26 0.34 0.43 0.32 0.52 0.45 0.64 1.00               

10 Firm's semiconductor industry dummy -0.13 0.03 -0.13 -0.14 -0.03 -0.16 -0.13 -0.27 -0.03 1.00              

11 US Firm dummy 0.00 0.15 -0.10 -0.13 -0.09 -0.04 0.03 -0.18 -0.07 0.08 1.00             

12 Firm government-related dummy -0.07 0.00 0.04 -0.03 0.03 -0.07 -0.04 -0.08 -0.01 0.05 -0.13 1.00            

13 Partner's pre-alliance in-scope patents 0.04 -0.21 0.48 0.01 0.04 0.05 0.13 0.02 0.10 -0.01 0.00 0.09 1.00           

14 Partner's pre-alliance total patents 0.01 -0.25 0.44 0.05 0.07 0.00 0.02 0.00 0.05 0.04 -0.18 0.13 0.60 1.00          

15 Partner's degree centrality 0.05 -0.26 0.34 0.04 0.02 0.04 0.10 0.05 0.03 -0.04 -0.06 0.00 0.45 0.64 1.00         

16 Partner's semiconductor industry dummy 0.01 0.03 -0.13 -0.10 -0.06 0.04 -0.01 0.04 -0.04 0.00 0.06 -0.04 -0.13 -0.27 -0.03 1.00        

17 US Partner dummy -0.04 0.15 -0.10 -0.12 -0.11 -0.07 0.00 -0.18 -0.06 0.06 0.45 -0.08 0.03 -0.18 -0.07 0.08 1.00       

18 Partner government-related dummy 0.11 0.00 0.04 0.03 -0.03 0.19 0.09 0.13 0.00 -0.04 -0.08 -0.02 -0.04 -0.08 -0.01 0.05 -0.13 1.00      

19 Partner's knowledge breadth 0.02 -0.38 0.23 0.13 0.10 0.00 0.01 0.05 0.04 -0.10 -0.12 0.03 0.24 0.44 0.43 -0.14 -0.13 -0.03 1.00     

20 Partner's knowledge decomposability  0.06 -0.39 0.19 0.10 0.09 0.06 0.04 0.07 0.02 -0.06 -0.11 -0.03 0.20 0.29 0.32 -0.03 -0.09 0.03 0.82 1.00    

21 Number of prior alliances btw firms 0.47 -0.27 0.48 0.28 0.23 0.45 0.38 0.48 0.56 -0.07 -0.07 -0.01 0.38 0.48 0.56 -0.07 -0.07 -0.01 0.28 0.23 1.00   

22 Cross border alliance dummy -0.01 -0.05 0.01 0.04 0.03 -0.01 -0.01 0.06 0.06 0.09 -0.21 -0.01 -0.01 0.06 0.06 0.09 -0.21 -0.01 0.04 0.03 -0.01 1.00  

23 JV dummy -0.01 -0.07 -0.02 0.09 0.07 -0.02 0.02 0.01 -0.05 -0.06 -0.08 -0.02 0.02 0.01 -0.05 -0.06 -0.08 -0.02 0.09 0.07 -0.06 -0.07 1.00 

 Mean 530.13 0.40 0.19 0.74 0.86 361.09 119.11 1205.13 0.01 0.33 0.59 0.02 119.11 1205.13 0.01 0.33 0.59 0.02 0.74 0.86 24.64 0.32 0.15 

 S.D. 1029.96 0.43 0.19 0.29 0.32 723.03 256.09 1734.87 0.01 0.47 0.49 0.13 256.09 1734.87 0.01 0.47 0.49 0.13 0.29 0.32 22.73 0.47 0.35 

 Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Max 8476.00 1.00 1.00 0.98 1.00 8974.00 2471.00 13100.00 0.03 1.00 1.00 1.00 2471.00 13100.00 0.03 1.00 1.00 1.00 0.98 1.00 145.00 1.00 1.00 
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distance, rather than whole in-scope knowledge in knowledge domain distance. The relatively 

large mean of Firm’s knowledge breadth and Firm’s knowledge decomposability indicates that 

firms joined R&D alliances with relatively well-developed knowledge in the scope of alliances, 

so their knowledge is well recombined with other knowledge domains. The correlation among 

predictor variables are not critically high. We performed a diagnostic test using the “collin” 

procedure in Stata to check for multicollinearity issue. The test showed no VIF higher than 3 

and the conditioning numbers of the models were all less 25, all less than the suggested 

threshold for VIF, 10, and conditioning number, 30 (Table 2) (Belsley & Kuh, 1993)8. 

Table 2 shows estimates of binomial regression models to test our hypotheses. Model 

1 includes only the control variables. The interpretation on control variables can be subject to 

inaccuracy due to other possible explanations (Cinelli & Hazlett, 2018), so we just mention the 

most noticeable results with caution. The positive and significant coefficients of Firm’s pre-

alliance total patents and Firm's semiconductor industry dummy indicate the expectable higher 

absorptive capacity of large firms as well as semiconductor active firms. The positive and 

significant coefficient of Firm's degree of centrality confirms the role of network connections 

as a conduit that provides firms with complementary information to take advantage of their 

partners’ knowledge. 

In Model 2, the variable Knowledge domain distance is introduced to test H1. The 

results suggest a negative association between Knowledge domain distance and Firm learning. 

We followed Haans et al. (2016) and tested the Knowledge domain distance squared to rule 

out the possibility of a U-shape relation and providing support for the hypothesized linear    

 

 

8 We acknowledge that the collinearity test suits linear regression models, and although our test is 

common in extant research, the relevancy of the results should be consider with cautious. However, our 

robustness tests did not show any indication of multicollinearity in our models. 
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TABLE 2: Negative Binomial Regress Estimate of Firm Learning in R&D Alliances 

Firm post-alliance learning (DV) 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Knowledge domain distance (H1) 
 

-1.161*** -2.054*** 
  

-1.370**   
(0.170) (0.650) 

  
(0.585) 

Firm’s knowledge breadth 
  

2.174*** 
  

0.212    
(0.677) 

  
(0.653) 

Firm's knowledge breadth*  

Knowledge domain distance (H2) 

  
1.435* 

     (0.740) 

  
0.934 

     (0.716)      

Knowledge architecture distance (H3) 
   

5.289*** -0.115 -2.580     
(1.041) (2.154) (1.972) 

Knowledge architecture distance square 

(H3) 

   
-8.165*** 

     (1.749) 

-7.139*** 

     (1.584) 

-5.735*** 

     (1.790)     

Firm's knowledge decomposability  
    

3.000*** 2.075***      
(0.286) (0.477) 

Firm's knowledge decomposability* 

Knowledge architecture distance (H4) 

    
4.991** 

     (2.102) 

6.429*** 

     (2.025)      

Focal firm controls: 
      

Firm pre-alliance learning (lagged Y) 0.00172*** 0.00155*** 0.00163*** 0.00168*** 0.00171*** 0.00171***  
(0.000500) (0.000509) (0.000458) (0.000504) (0.000455) (0.000311) 

Firm's pre-alliance total in-scope patents 0.000616 0.000327 0.000263 0.000394 4.08e-05 -6.25e-05  
(0.000454) (0.000430) (0.000406) (0.000619) (0.000546) (0.000501) 

Firm's pre-alliance total patents 0.000191*** 0.000220*** 6.25e-05 0.000192** 0.000137** 0.000121 

 (7.07e-05) (7.25e-05) (6.55e-05) (7.81e-05) (6.74e-05) (8.17e-05) 

Firm's degree of centrality 101.7*** 96.90*** 72.97*** 100.6*** 70.83*** 71.21*** 

 (26.56) (25.45) (24.58) (25.24) (22.89) (22.60) 

Firm's semiconductor industry dummy 0.580*** 0.476*** 0.673*** 0.646*** 0.670*** 0.632*** 

 (0.158) (0.155) (0.150) (0.159) (0.143) (0.161) 

US firm dummy -0.181 0.0236 0.0769 -0.130 -0.0901 0.00636  
(0.137) (0.142) (0.148) (0.139) (0.137) (0.163) 

Firm government-related dummy -2.388*** -2.576*** -2.543*** -2.054*** -2.248*** -2.336***  
(0.699) (0.551) (0.488) (0.710) (0.673) (0.538) 

Partner firm controls: 
      

Partner’s pre-alliance total in-scope patents 0.000364 8.51e-05 0.000180 0.000657 0.000839 0.000568 

 (0.000470) (0.000435) (0.000425) (0.000610) (0.000578) (0.000476) 

Partner's pre-alliance total patents -4.52e-06 -4.70e-05 -6.27e-05 -7.65e-06 -7.31e-05 -5.44e-05 

 (6.90e-05) (6.78e-05) (6.09e-05) (6.45e-05) (5.40e-05) (6.80e-05) 

Partner's degree of centrality 40.16* 19.99 37.10* 31.51 29.01 30.84  
(21.80) (21.32) (21.45) (20.21) (18.40) (21.18) 

Partner's semiconductor industry dummy -0.0786 -0.194 -0.101 -0.000343 -0.00123 -0.0890 

 (0.145) (0.153) (0.142) (0.148) (0.131) (0.158) 

US Partner dummy 0.138 0.264* 0.100 0.179 0.139 0.171 

 (0.148) (0.147) (0.156) (0.145) (0.143) (0.157) 

Partner government-related dummy -0.484 -0.319 -0.103 -0.431 0.454 0.232 

 (0.427) (0.362) (0.431) (0.423) (0.740) (0.587) 

Partner's knowledge breadth   -0.592**   -0.806* 

   (0.276)   (0.443) 

Partner’s knowledge decomposability     0.0852 0.399 

     (0.206) (0.387) 

Dyadic-level Controls: 
      

Number of prior alliances btw firms -0.0133 -0.00865 -0.00647 -0.0147* -0.0119 -0.0105  
(0.00940) (0.00911) (0.00913) (0.00875) (0.00791) (0.00865) 

JV dummy -0.494** -0.542*** -0.595*** -0.527** -0.605*** -0.612*** 

 (0.219) (0.205) (0.195) (0.213) (0.197) (0.201) 

Cross border alliance dummy -0.158 -0.0823 0.0263 -0.226 -0.219* -0.100  
(0.155) (0.146) (0.152) (0.142) (0.131) (0.156) 
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Year dummies  Yes Yes Yes Yes Yes Yes 

Constant 3.873*** 3.997*** 2.829*** 3.622*** 0.726 1.807*  
(0.718) (0.648) (0.728) (0.511) (0.542) (0.966) 

Observations 556 556 556 556 556 556 

Log Likelihood -3209 -3192 -3155 -3199 -3135 -3127 

Degree of Freedom 28 29 32 30 33 37 

Wald's chi square 505.24 663.59 907.87 635.77 1093.49 531.85 

α (dispersion parameter) 2.656*** 2.521*** 2.247*** 2.572*** 2.107*** 2.061*** 

Condition number |Mean VIF 14.35|2.98 14.64|2.90 19.51|2.80 14.99|2.96 16.68|2.79 25.38|3.06 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

negative association in Hypothesis 1. The coefficient was positive but insignificant, and the 

slope tests at the higher and lower ranges of Knowledge domain distance were insignificant, 

rejecting the possibility of a quadratic relationship. The coefficient (Model 2: β = -1.161, SE = 

.170, p = 0.000) suggest that a one standard deviation increase in Knowledge domain distance 

between firms decreases the cross citation between firms by a considerable factor of 68% (=

𝑒−1.161 − 1), while holding all other variables in the model constant.  

In Model 3, the interaction of Firm’s knowledge breadth and Knowledge domain 

distance on Firm learning (H2) is tested. The coefficient (Model 3: β = 1.435, SE = .740, p = 

0.053) is positive and marginally significant, supporting H2 that the negative association 

between knowledge domain distance and firm learning is weakened by firm's knowledge 

breadth. However, prior studies suggest that in nonlinear models such as negative binomial 

models, the significance of the interaction term should be interpreted with caution to conclude 

whether or not the interaction hypothesis is supported (Bowen, 2012; Wiersema & Bowen, 

2009). An interaction model in nonlinear models confound two distinct moderating effect: the 

model inherent moderation which is a function of the model nonlinearity, and the product term 

which is a function of interaction variables in the model (Bowen, 2012). To this end, we 

distinguished the model inherent moderation from the product term induced moderation and 

use the latter one for our interpretation. As illustrated in Fig. 3a, the (total) average marginal 

effect (AME) of knowledge domain distance decreases with Firm’s knowledge breadth, 
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demonstrating a negative interaction effect of Firm’s knowledge breadth and Knowledge 

domain distance against our prediction in H2. However, when we partition the interaction 

components, it appears that negative effect of inherent interaction outweighs the positive effect 

of product term interaction (Fig. 3b). Excluding the inherent moderation, the (real) average 

marginal effect (AME) of knowledge domain distance increases with Firm’s knowledge 

breadth (Fig. 3c). In other words, the effect of Knowledge domain distance on Firm learning 

becomes less negative as Firm’s knowledge breadth increases, supporting H2. 

The results in Model 4 support the hypothesized inverted-U shape relation between 

Knowledge Architecture Distance and Firm learning in H3. Knowledge architecture distance 

is positive (Model 4: β = 5.289, SE = 1.041, p = 0.000) and Knowledge architecture distance 

squared is negative (Model 4: β = -8.165, SE = 1.749, p = 0.000). The slope test at the lowest 

range is positive and significant (β = 5.289, SE = 1.041, p = 0.000) and at the highest range is 

negative and significant (β = -51.167, SE = 11.294, p = 0.000). In addition, the turning point at 

which Knowledge architecture distance begins to exhibit a negative effect on firm learning 

occurs at 0.324 (β = 0.324, SE = 0.044 , p = 0.000), within the data range (0, 1), and 78.8 

percent of observations have Knowledge architecture distance values below that level. All 

confirms a quadratic relation in which firm learning increases with knowledge architecture 

distance and hits its maximum at the 79th percentile of architectural distance range, but this 

positive association turns to be negative after this turning point.  

In Model 5, we tested the interaction of Firm’s knowledge decomposability and 

Knowledge architecture distance. The results confirm H4, as it shows a significant positive 

interaction between Firm’s knowledge decomposability and Knowledge architecture distance. 

It suggests that Firm’s knowledge decomposability shifts the turning point of quadratic relation 

between Knowledge architecture distance and Firm Learning to the right (Fig. 4). It is worthy    
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FIGURE 3: 

(a) Average marginal effect (AME) of Knowledge domain distance as Firm’s knowledge 

breadth changes without exclusion of model inherent effect (top). 

(b) Model inherent, product term induced, and total interaction of Knowledge domain 

distance and Firm’s knowledge breadth on Firm learning (Middle). 

(c) Average marginal effect (AME) of Knowledge domain distance on Firm learning as 

Firm’s knowledge breadth changes after the exclusion of model inherent effect (bottom). 
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to note that the flattening in this figure is an artifact of the nonlinear model as it explained 

above (Bowen, 2012). The model only includes the linear-by-linear interaction term between 

Firm’s knowledge decomposability and Knowledge architecture distance as we only address 

the turning point of the relationship between Knowledge architecture distance and Firm 

learning in our hypothesis (Haans et al., 2016; Oriani & Sobrero, 2008). Nevertheless, we also 

tested the model by including the linear-by-quadratic interaction term between Firm’s 

knowledge decomposability and Knowledge architecture distance squared, but it did not 

exhibit statistically significant coefficients, consistent with our expectations. 

FIGURE 4: Turning point shift of relationship between Knowledge architecture distance and 

Firm learning as the degree of Knowledge decomposability increases. 

 

In model 6, we included all main effect and interaction variables. The model supports 

our H1 and H4. Regarding H2, the coefficient of the interaction between Firm's knowledge 

breadth and Knowledge domain distance is positive as expected but not significant. Regarding 

H3, while the expected quadratic relationship between Knowledge architecture distance and 

Firm learning is still supported, the coefficient of Knowledge architecture distance turns to 

negative and is not significant. However, these coefficients only indicate the Knowledge 

architecture distance-Firm learning relationship when the moderator, Firm’s knowledge 

decomposability, is set to zero, which is a very special case, and as the quadratic form of H3 

remains, the provided support for H4 is still warranted. The non-linearity of model and the 

Turning point 
shifts to right 
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limited number of observation, as a limitation of this study, may explain these relatively weaker 

results in this model. 

Robustness Checks 

We took several steps to ensure that our findings are robust. We used alternative 

estimation models and analysis to make sure the indicated interaction effects is not a natural 

outcome of negative binomial regression models. We used Poisson regression and OLS 

regression on the log-transformed version of model to confirm the significance of the 

interaction effect. All these analyses produced similar and consistent results, thus leading 

credence to the findings. 

DISCUSSION 

This study revisits the knowledge antecedents of inter-firm learning in R&D alliances 

and complements this long stream of research (Inkpen & Tsang, 2007; Kavusan et al., 2016; 

Lane & Lubatkin, 1998; Mowery et al., 1996; Nooteboom et al., 2007; Sampson, 2007). Extant 

research has focused on knowledge domain distance to examine the influence of cognitive 

distance in inter-firm learning. We widened this approach by reconceptualizing cognitive 

distance based on two dimensions: knowledge domain distance and knowledge architecture 

distance. We particularly argued that the established inverted-U shape hypothesis between 

cognitive distance and firm learning is theoretically sound, but this relation is hold in 

undertheorized knowledge architecture dimension rather than knowledge domain dimension. 

Our findings confirm that knowledge domain distance has a negative effect on firm learning, 

though firm’s knowledge breadth alleviates this negative effect. We also found that knowledge 

architecture distance between firms has an inverted U-shape relation with firm learning in 

alliances. That is, the maximum firm learning occurs at an optimal level of knowledge 

architecture distance. However, firm’s knowledge decomposability, which represents the 
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firm’s capacity for change, sets this optimal level. More knowledge decomposability, more 

capacity to learn from partner firms with greater knowledge architecture distance.    

The arguments and findings in this paper have several significant theoretical 

implications. First, the distinction between knowledge domain and knowledge architecture 

distance contributes to our understanding of the cognitive distance concept and brings all 

alternative proposed concepts to address knowledge distance between firms under one 

umbrella. Second, our approach distinguishes between two inter-firm learning opportunities: 

learning from within-domain and between-domain knowledge. Our findings demonstrate this 

distinction, question prior findings, and show that firms can mainly learn from their 

counterparts’ between-domain knowledge rather than within-domain knowledge in R&D 

alliances. In other words, our findings highlight the role of an R&D alliance as a proper vehicle 

to change the cognitive map and problem-solving attitudes of alliance partners, rather than the 

extension of their knowledge domains.    

Third, our findings criticize the stylized findings in literature with respect to the benefit 

of knowledge domain distance. One possible reason for this disparity is in the way that extant 

research operationalizes the concepts of knowledge domain distance and firm learning. These 

studies generally take all the registered patents of firms into account that significantly distort 

to the measures. For example, knowledge domain distance between a large diversified firm and 

a small firm is typically greater than the domain distance that operates in their alliance with 

limited scope, because the knowledge base of the larger firm includes multiple ex-scope 

knowledge domains absent in the knowledge base of its smaller counterpart that exaggerates 

knowledge domain distance. Moreover, the number of post-alliance patents in large firms may 

increase because of their investment in ex-scope domains. To this end, we took special care of 

the technological scope of alliances to significantly improve the precision of our analysis. Our 

approach in the identification of the technological scope of alliances is novel. We analyzed the 
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technical content of each alliance agreement and took that part of a firm’s knowledge into 

account that has fallen in the knowledge category of alliance technological scope or has been 

used by its association. This approach minimizes the noise of attributing knowledge domains 

to the alliances that have never been used or created in alliances, particularly in large companies 

that have a very wide knowledge breadth and use different knowledge sourcing instrument 

(Sampson, 2007). This approach can be widely applied to research on firms’ activities within 

specific technological scope; machine learning techniques can particularly improve and 

standardize it.  

This study also has important managerial implications. Firms may choose different 

knowledge sourcing strategies to enrich their knowledge bases (Bierly & Chakrabarti, 1996; 

Hagedoorn, 2002; Hagedoorn & Duysters, 2002). We identify two distinct dimensions of firm’s 

knowledge base and redefine the boundaries of R&D alliances with respect to these 

dimensions. Our findings suggest that an R&D alliance is a proper choice for firms seeking to 

renew their knowledge architectures, rather than to extend their knowledge domains. Prior 

studies show that firms face difficulty in the renovation of their knowledge architecture, while 

it is an important source of  architectural innovations (Henderson & Clark, 1990; Yayavaram 

& Ahuja, 2008).     

Naturally, this research has several limitations. First, the alliances examined in this 

study are those pertaining to R&D alliances, and although our argumentation is general and 

can apply to learning in all types of alliances, we should be cautious in the generalizing our 

findings to the other types of alliances (e.g., marketing, manufacturing, and supply chain). 

Second, we used patents to develop our main measures; however, the accuracy of patents to 

represent firm’s knowledge and inter-firm learning is under question (Roach & Cohen, 2013). 

Nevertheless, our treatment in specifying the scope of alliance offers a solution to use patent 

data in a more precise way to measure innovative performance of firms. Third, learning is a 
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multifaceted construct and measuring the learning in technological aspect may not represent 

the realized learning in alliances. However, we tried to partially address this issue by narrowing 

our sample selection strategy to the R&D alliances that explicitly specified their research 

agenda.  

Future research may extend this study in both theoretical and empirical aspects. From 

the theoretical point of view, we distinguish between two inter-firm learning opportunities. 

This approach invites future research to revisit knowledge sourcing strategies of firms 

accordingly. This study mainly suggests that R&D alliances are mainly proper vehicles for 

learning knowledge architecture rather than knowledge domain. Future studies may examine 

the other forms of knowledge sourcing such as M&A with this respect: which knowledge-

sourcing mode provides which learning opportunity.  

Prior literature suggests repetitive alliances, at least to a certain level, may improve the 

chance of learning. We controlled for the number of prior-alliances in this study. However, 

future research may examine whether learning opportunities from knowledge domain distance 

appear in the repetitive alliances between the same firms or within the same technological 

scope. Future studies may also consider a combination of inter- or intra- organizational 

activities in knowledge sourcing regarding both dimensions, separately or together. Moreover, 

further research may also study alliance portfolios to examine how a combination of different 

alliances jointly influence firm’s knowledge base.  

This study exclusively focuses on firm learning in R&D alliance. There are 

opportunities to use our approach to extend research on the alliance scope and the trade-off 

between firm’s performance and alliance performance (Khanna, 1998; Khanna et al., 1998). 

For example, future studies may examine firm learning, as a firm-level benefit, against alliance 

performance, as an alliance-level benefit, in the same setting to delineate the trade-off between 
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these two essential outcomes. Finally, future research may use our approach in the 

identification of alliance technological scope to examine the trade-off between the breadth of 

alliance technological scope and firm learning with respect to each dimension.
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APPENDIX 1 

We followed the below procedure to match the technological scope of alliance 

agreement with patent sub-classes in cooperative patent classification (CPC) scheme. 

1) Reviewing the alliance agreement synopsis in SDC database and selecting the technological 

key words. 

2)  Double-checking the agreement in FACTIVA database to seek for further information. 

3)  Choosing the keyword and finding the relevant synonyms.  

4) In this step, we search for the patent sub-class in various patent databases simultaneously: 

i. Direct search for patent sub-class in “classification search” option in Espacenet 

website, a worldwide dataset for patent search, to find the top suggestions. 

ii.  Search for patent in “smart search” and “advanced search” options in Espacenet to find 

the most relevant patents, and to identify the patent sub-class of the found patent after 

checking the title and abstract of patent.  

iii. Doing the same procedure in Google Patent database 

iv. Using Octamine application, a private patent search engine, to find the top patents and 

top patent-subclasses to double-check the finding in the above procedure. 

We use the example that we used in this paper (i.e., R&D alliance agreement between 

Hitachi and Texas Instrument (TI) to develop Dynamic random memory (DRAM)) to illustrate 

the process in below flowchart.
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SDC Synopsis:  

Hitachi, Ltd. and Texas Instruments, Inc.(TI) formed an alliance to 

cooperate in the joint development of 256-megabit dynamic 

random-access memory(DRAM) chips.  The participants planned 

to work together on all phases except actual production, which 

each were to undertake separately. Through the alliance, the 

participants aimed to share the huge financial investment required 

to develop and commercialize the 256 DRAM chips, which the 

participants estimated at over Y100 billion($806 million).

Search Key words:

256-megabit dynamic random-

access memory(DRAM)

 chips; 

synonym: volatile memory

FACTIVA Synopsis:

Hitachi, TI Team Up for 64M DRAM Chips. (the prior agreement)

20 November 1991

Jiji Press English News Service (JIJI)

English (c) 1991

Tokyo, Nov. 20 (Jiji Press)--Hitachi Ltd. said Wednesday it has signed a contract with Texas 

Instruments Inc. (TI) of the United States to jointly develop 64-megabit dynamic random access 

memory (DRAM) chips, known as the next-generation semiconductor chip. The latest 10-year 

contract provides for wide-ranging joint development work on 64M DRAMs, including 

standardization of product specifications and manufacturing technology, Hitachi officials said. The 

two companies have similar joint development arrangements for some technologies for 14M 

DRAMs. A joint design team will be set up in Japan to develop 64M DRAMs, which are likely to 

be mass-produced separately in three to four years, Hitachi officials said. A 64M DRAM chip, 

boasting a storage capacity equivalent to 256 newspaper pages, requires technology of processing 

0.35-micron-wide circuit wires. By teaming up with TI, Hitachi, which developed a prototype 64M 

DRAM chip for the first time in the world last year, aims to lower development costs, among 

others, to take the lead in the emerging 64M DRAM market, the officials said.

Espacenet: 

Classification Search
Espacenet smart 

search

Google Patent Octimine application

Double Check

 in FACTIVA

Top classifications:

G11C 

G06F

H01L

Top patent number:

CN203134376U

Classification:

G11C...

Top patent number:

US8743643B2

Classification:

G11C...

Top CPC codes:

G11C

G11C

1 2

3

4.a 4.b 4.c 4.d

5
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CHAPTER 3 

MULTI-PARTNER R&D ALLIANCE DIVERSITY AND INNOVATION 

PERFORMANCE:                                                                                                                    

THE DILEMMA OF VALUE CREATION AND VALUE APPROPRIATION  

ABSTRACT 

We systematically examine partner diversity in multi-partner alliances and its 

performance consequences both at the alliance level as well as at the firm level in the context 

of technological knowledge sourcing. We identify three dimensions of multi-partner diversity, 

namely partner variety, relational separation, and status disparity, based on within-firm, 

between-firm, and across the entire network resources, respectively. We argue that each of 

these dimensions has distinct performance consequences at alliance and firm levels. We tested 

our theory on a sample of research and development collaborations in technology-driven 

industries from 1990 to 2008. Our findings reveal diverging mechanisms of value creation at 

the alliance level and value appropriation at the firm level regarding each dimension of multi-

partner alliance diversity. Our results suggest that managers should be cautious with 

configuring multi-partner alliances and consider the critical trade-offs between value creation 

and value appropriation when they are deciding to join, stay, or leave multi-lateral partnerships.   

Keywords: multi-partner R&D alliance; multi-partner diversity; value creation; value 

appropriation 
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INTRODUCTION 

Multi-partner alliances (MPAs) have gained popularity in technology-driven industries 

due to the speed of technological advancements, the competitive pressure to set the next 

technological standards, and the complexity of problems to solve. Firms voluntarily engage in 

MPAs in multilateral value chain activities to take advantage of their complementary resources 

and capabilities, to access valuable information, to share the costs and risks of undertaking 

exploratory and uncertain activities, to shorten the product lifecycle, and to improve their 

collective competitive advantage (Lazzarini, 2007; Das & Teng, 2002; Lavie et al., 2007; 

Gomes-Casseres, 2003). MPAs appear in different forms such as R&D consortia, multiparty 

production bundling, supplier networks, joint bidding, and industry constellations (Das & 

Teng, 2002; Li et al., 2012; Ekeh, 1974; Lavie et al., 2007). MPA setting is a unique 

phenomenon in interorganizational relations (IORs). The received wisdom from sociology 

suggests that the dynamics of interactions in a group substantially change when a dyadic 

relation turns to triadic or multilateral relations (Simmel, 1950). Likewise, the dynamics of 

multi-lateral interaction within a group of firms in MPAs is different from the dynamics of the 

bilateral interaction between two firms in a dyadic alliance (Das & Teng, 2002). Moreover, the 

dynamics of such a within-group multi-lateral interaction in the MPA is different from an ego 

network (alliance portfolio), in which a focal partner firm manages each of its direct relation 

with its counterparts independently.  

IOR researchers have paid more attention to MPA in the last two decades. This stream 

of research has addressed several organizational attributes of MPAs, such as the governance 

modes, contractual forms (García-Canal, 1996; Gong et al., 2007; Li et al., 2012), and the 

cooperative relationships between the MPA partners (Das & Teng, 2002; Heidl et al., 2014; 

Madhavan et al., 2004); strategic decisions throughout its lifecycle, such as decisions about 

joining, staying in, or leaving an MPA (Olk & Young, 1997; Lavie et al., 2007, 2015), and the 
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benefits of membership in an MPA (Gomes-Casseres, 2003; Lazzarini, 2007). However, these 

studies have paid relatively less attention to MPA as an organizational association or a strategic 

entity (Das, 2015; Gomes-Casseres, 2003; Lavie et al., 2007). Consequently, our knowledge 

about the antecedents of group based advantages of MPAs in value creation, the aggregated 

performance of an MPA partners as the MPA performance, and the internal dynamics that 

shape what a partner firm can appropriate from these advantages, the partner firm performance, 

is relatively limited.    

Strategic management literature suggests that one of the main factors that can explain 

the performance of such an organizational association or a strategic entity with multiple sub-

entities is the diversity or the distribution of differences among its members with respect to a 

common attribute (for a recent review see Ahuja & Novelli (2017)). IOR researchers have 

studied the diversity of partner firm’s resources in dyadic alliances (Sampson, 2007) and of 

partner firms in alliance portfolios (Jiang et al., 2010). However, the diversity of MPAs has 

mainly remained unexplored. Exploring MPA diversity can improve our understanding about 

the antecedents of overall performance of an MPA and of its partner firms, and in consequence, 

the rationale behind the choice of firms in forming or joining, staying, and leaving an MPA. 

The diversity of an MPA can be defined based on different attributes of its partner firms, so it 

necessitates a systematic approach to study the different possible dimensions of diversity and 

their performance consequences. Moreover, the performance consequences of MPA diversity 

at alliance and firm levels are not necessarily aligned, as the mechanisms and dynamics of 

value creation at the MPA-level are not necessarily compatible with the mechanisms of value 

appropriation at the firm level. However, IOR research has mainly overlooked this critical 

point. For instance, Lee, Kirkpatrick-Husk, and Madhavan (2014) show in their meta-analysis 

that the performance consequences of alliance portfolio diversity are neither theoretically clear 
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nor empirically consistent, as existing studies tend to overlook the fundamental difference of 

diversity and performance at different levels of analysis.  

In this study, we systematically examine the relation between MPA diversity and 

performance. We submit that an MPA is a multifaceted phenomenon that cannot be simply 

explained in a single dimension, as participating firms join MPAs with different attributes in 

terms of their internal resources and capabilities, their relational resources with their 

counterparts in MPA, and their status in the global alliance network. To this end, we 

dimensionalize the MPA diversity construct with respect to partner firms’ attributes and 

resources within-firm, ‘partner variety’, between-firm, ‘relational separation’, and across the 

entire network, ‘status disparity’. We separately examine the performance consequence of each 

dimension at the MPA level as well as the firm level.   

We argue that diversity in each of these dimensions has an inverted U-shaped relation 

to MPA performance. Partner variety provides the MPA with more opportunities and resources 

to achieve its intended goal, but as the MPA’s diversity in this dimension exceeds a certain 

point, MPAs’ ability to exploit these opportunities sharply decreases. Likewise, moderate 

relational separation among partner firms may benefit MPA, as partner firms may learn from 

novel procedures and ideas from the partner firms that they had less interaction before, but 

excessive relational separation may lead to dividedness in the MPA and may hurt the alliance 

performance. Finally, while status disparity may ease coordination via higher status firms to a 

certain level and benefit MPAs to a certain level, the inequality across MPAs with high 

disparity can disturb the required transparent multilateral interaction for efficient collaboration 

among the alliance partners, exerting a negative effect on MPA performance.  

At the firm level, however, we argue that the performance consequence of each 

diversity dimension is not consistent with that at the MPA level. Partner firms with lower 
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internal knowledge variety, or in the other words, with narrower knowledge breadth, do not 

benefit from partner variety as much as their counterparts with broader knowledge do. With 

respect to relational separation and status disparity, likewise, partner firms with a brokerage 

role in divided partnerships, as well as those with high status in the global alliance network can 

extract a higher share of value created by the MPA. 

We examine our theory in the context of technological collaboration, focusing on R&D 

consortia in high-tech sectors including electronic and computer components producers, 

telecommunication equipment and system providers, medical equipment producers, and firms 

from the pharmaceutical industry. The rationale behind this choice is that these industries 

regularly practice multi-lateral partnership for their technology-based activities. We compiled 

a sample of multi-partner R&D collaborations from the SDC platinum data set, enhanced by 

FACTIVA, and combined with the patent data extracted from PATSTAT by matching assignee 

names of granted patents to firm names of the MPA sample. Then, to have more precision for 

the patent-based dependent variables, we established the technological scope of each alliance 

by carrying out an elaborate content analysis on the alliance’s technological description to code 

their technological domain based on the patent classification index. We test our hypotheses at 

two distinct levels of MPA and partner firms. Overall, our findings are consistent with our main 

arguments that the performance consequences of multi-partner alliances vary between the 

distinct dimensions of MPA diversity. Specifically, our results underline the distinction 

between underlying mechanisms of value creation at the MPA level and value appropriation at 

the firm level.          

To our knowledge, this study is the first to distinguish systematically the different 

dimensions of MPAs and to examine the performance consequences of each dimension at both 

the alliance and firm levels. It offers a novel insight into the conceptual meaning of MPA 

diversity and its performance consequences. We believe that this approach may contribute to 
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our understanding of performance consequences of diversity in the general strategy literature, 

as diversity is such an important construct in a wide range of contexts. The findings contribute 

to our understanding of the complex configuration of MPAs. They particularly underline the 

distinct dynamics of alliance and partner firm performance in MPAs. There are critical trade-

offs to be considered by partner firms in their decision to join, stay, or leave multi-partner 

alliances.  

MULTILPLE-PARTNER ALLIANCE DIVERSITY: THE DIMENSIONS 

  “A multi-partner alliance is a collective, voluntary organizational association that 

interactively engages its multiple members in multilateral value chain activities, such as 

collaborative research, development, sourcing, production, or marketing of technologies, 

products, or services” (Lavie et al., 2007, p. 578). Multilateral interaction within a group of 

firms as an organizational association are the distinctive characteristics of an MPA. They 

distinguish an MPA from the bilateral interaction between two firms in a dyadic alliance, from 

a portfolio of independent bilateral interactions between partner firms and a focal firm in an 

alliance portfolio, and from a network of bilateral interactions among different firms in an 

alliance network. These unique characteristics necessitate a different framework that explains 

the source of group based advantages of an MPA and that explains how the within-group multi-

lateral interaction in an MPA shapes what a partner firm can appropriate from its group work 

(Gomes-Casseres, 2003, p. 333). The received wisdom from the diversity research in strategic 

literature suggests that one of the main factors that can explain the performance of such an 

organizational association as a strategic entity is its diversity or the distribution of differences 

among its members with respect to a common attribute.  

In an MPA, the differences among the MPA partners with respect to their resources can 

be a source of group-based advantages of MPAs to fulfill their intended goals. In addition, 
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these differences can also determine the advantage of some partner firms in appropriating more 

value than their counterparts from the total created value. The partner firms join an alliance 

with their internal resources within their organizational boundaries, with their relational 

resources based on prior relations with their counterparts in the MPA, and with their social 

capital based on the status that they have acquired in the global alliance network. We argue 

that MPA diversity can be dimensionalized with respect to these within-firm, between-firm, 

and across the entire network resources, as each reflects a distinct attribute of partner firms and 

can be a source of value creation in MPA as well as value appropriation by partner firms.   

Firms share their distinct knowledge, information, and resources in alliances to fulfill 

their common goals. The development path of these resources is idiosyncratic (Nelson & 

Winter, 2009) that implies uniqueness or distinctiveness of these resources. Group diversity 

research uses the term of variety to refer to differences in kind, source, or category of 

background and associated experience among group members (Harrison & Klein, 2007; Van 

Knippenberg & Schippers, 2007). Likewise, we label diversity in this dimension as partner 

variety that refers to the qualitative difference of partner firms on a categorical attribute such 

as their functional backgrounds, knowledge, information, and resources. Partner firms with 

unique and distinct attributes provide their partnerships with the maximum partner variety; in 

contrast, the minimum partner variety occurs when all partner firms share similar attributes.  

Partner firms also bring their between-firm relational resources to MPAs. Each couple 

of firms in an MPA might have developed varying levels of bilateral trust and mutual 

understanding on their prior relations. These relational resources can represent the proximity 

of organizational attitude and approaches toward various aspects of partnerships. The 

difference in the strength of between-firm relational resources can potentially divide an MPA 

into cohesive subgroups of partner firms, because of mistrust, and conflict in their attitudes and 

approaches to their collaboration (Heidl et al., 2014). Group diversity research labels this type 
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of diversity that represents the differences in lateral position or opinion among group members 

(e.g., different values, beliefs, or attitudes of partners) as separation, implying disagreement or 

opposition among them (Harrison & Klein, 2007; Van Knippenberg & Schippers, 2007). 

Likewise, we name diversity in this dimension as relational separation. Relational separation 

refers to the members’ differences in terms of a single continuous attribute such as 

commitment, trust, or belief in the goal of collaboration that affects the cohesion between them 

and leads to a set of systematic consequence. The highest degree of separation occurs when 

partner firms are divided into two subgroups, each taking a stance as far from the other as 

possible; in contrast, the minimum relational separation occurs when all partner firms practice 

similar approach in their partnership and form a single cohesive group.  

Network resources, or the social capital of partner firms, can also be a source of 

diversity. While relational resources refer to prior ties between partner firms within an MPA, 

network resources brought in by a partner firm are accumulated from the entirety of its past 

relations, not just those relations with partner firms of the focal MPA. Social capital can provide 

firms with credit, privileged access to information, opportunities, and reputation or status 

(Nahapiet & Ghoshal, 1998; Granovetter, 1985). According to social network theory the 

centrality position of an entity, as a particular node in the global network, can reflect its social 

status (Bonacich, 1987). Likewise, the centrality position of a partner firm in its global 

networks can provide access to information through direct and indirect ties, and being in the 

different possible paths of information provides firms with this chance to influence the 

information flow between the other firms in the network. It is assumed in this dimension that 

members can be different in the degree to which they possess specific attributes that also 

implies their prestige, quality and income (Gnyawali & Madhavan, 2001). Group diversity 

research names this type of diversity as disparity (Harrison & Klein, 2007; Van Knippenberg 

& Schippers, 2007), and we label it as status disparity in this context. Multi-partner alliances 
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in which the status of one firm outranks the others has the maximum disparity, because the 

high-status firm can dominate the MPA; in contrast, minimum diversity occurs when all firms 

are in the same status, either low or high. It should be considered that the disparity dimension 

is asymmetric by nature. For example, if all partner firms have high status except one, the 

disparity would be low, because in this case just one firm is disadvantaged relative to the 

majority, but when just one firm has high status, the disparity would be high, because the 

majority of partner firms disadvantaged relative to the privileged one.    

 It is worthy to note that the overall size of an MPA (i.e., the number of partner firms) 

does not address "within-unit" types of diversity. In addition, prior research has shown that the 

advantage of a multi-partner alliance is in fact not so much determined by its size, but by certain 

characteristics and quality of the partner firms and their interrelations (e.g., Stuart, 2000). 

THE ALLIANCE & PARTNER FIRM PERFORMANCE                                          

IN MULTIPARTNER ALLIANCES 

 Strategic alliance research suggests that partner firms not only collaborate to create 

value at the alliance level but also compete to appropriate more value than their counterparts 

in their partnerships (Dyer et al., 2008; Adegbesan & Higgins, 2011; Hughes-Morgan & Yao, 

2016; Lavie, 2007; Lee et al., 2014; Hamel, 1991). Therefore, not all partners may be able to 

proportionally benefit from the produced collaborative rent from shared resources. Moreover, 

value appropriation entails not only the partner’s share from the common benefits, or benefits 

to all parties based upon the alliance’s specific objectives, but also the partner’s private benefits 

or gains that are realized only by individual firms in the alliance (Khanna et al., 1998). We 

distinguish between the value creation mechanism, leading to the alliance performance, and 

the value appropriation mechanism, leading to the partner firm performance to have a better 

understanding of the group-based advantages and the within-group interactions of MPA. In the 
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following, we separately examine the performance at the MPA level and at the firm level with 

respect to each dimension of diversity.  

Value Creation at MPA level 

Partner variety 

The most explored dimension of diversity in alliances is partner variety. Extant studies 

show that variety in terms of partners’ differences in their resources, knowledge, information, 

or experience are a prevalent rationale for creating multiple alliances (Baum et al., 2000; Das 

& Teng, 2002; Ozcan & Overby, 2008; Sakakibara, 1997b).  

A diversified MPA in partner variety dimension can benefit from the critical and 

complementary resources and capabilities to achieve fuller utilization of partner firms’ 

resources, create more synergy and added value, and to hedge the risks of undertaking uncertain 

activities (Lazzarini, 2007; Ozcan & Overby, 2008; Sakakibara, 1997a, 2001; Xu et al., 2014). 

The variety of knowledge and problem-solving capabilities, as well as the spread of non-

redundant knowledge across partner firms enable the partnership to explore novel opportunities 

and find more creative solutions for their common problems (Olk & Young, 1997).  

However, such an opportunity comes at a cost. When the difference between partner 

firms’ shared resources increases, the mutual understanding and relational absorptive capacity 

to assimilate and recombine their shared resources decreases (Sampson, 2007; Lane & 

Lubatkin, 1998; Mowery et al., 1996). In the context of MPAs, this undesired effect can be 

even stronger as the mutual understanding and relational absorptive capacity among multiple 

partners decrease faster with partner variety. 

  Therefore, as partner variety increases the difficulty of its utilization increases in a 

way that after a certain point outweighs its benefits, so we expect that partner variety bears a 

nonlinear relationship with innovative performance of MPAs.     
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Hypothesis 1: Multi-partner R&D alliances with moderate partner variety has higher 

innovation performance (create more value) than alliances with very low or very high 

levels of partner variety. 

Relational Separation       

As discussed earlier the separation type of diversity refers to the difference in opinions, 

beliefs, and cognitive processes among the members. Extant studies suggest that partner firms 

who are strongly tied to each other are more likely to develop a shared understanding and closer 

opinions and beliefs to reinforce their existing relationships and facilitate the exploitation of 

shared knowledge bases (Beckman et al., 2004; Verspagen & Duysters, 2004). That is, 

engaging in recurrent alliances with a select group of partner firms can influence their 

cooperative behavior (Gulati, 1998), diminish exchange hazards and promote trust (Gulati & 

Nickerson, 2008), and improve the chance of effective coordination across partner firms to 

facilitate the flow of knowledge and information and complete their joint and individual tasks 

(Gulati et al., 2012).  

Hence,  as the variation of tie strength between a group of partner firms based on their 

prior interactions increases, fragmented subgroups, which are cohesive within but cannot 

effectively interact between, emerges (Heidl et al., 2014; Gibson & Vermeulen, 2003). Such 

polarization leads to more conflicts, reduces the cooperative motivation of partner firms, and 

damages the embedded relation between these subgroups, so the expected synergy, 

coordination, cooperative culture, and the performance of working with a group of partners 

diminishes (Das & Teng, 2002).  

Nevertheless, having new partners with no prior ties, implying the difference in 

opinions and cognitive processes in this context, can lead to productive conflict specifically in 

research collaborations. In addition, new partners can provide MPAs with new information 
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channels, different perspectives, and new knowledge that are not available through existing 

immediate network (Lavie & Rosenkopf, 2006), increasing the chance of finding novel ideas 

and more creative solutions.  

In sum, as relational separation increases the access to new information channels and 

knowledge resources increases, but the cooperative culture of MPAs decreases in a way that 

after a certain point outweighs its benefits. Thus, we expect that relational separation bears a 

nonlinear relationship with innovative performance of MPAs.  

Hypothesis 2: Multi-partner R&D alliances with moderate relational separation has 

higher innovation performance (create more value) than alliances with very low or very 

high levels of relational separation.  

Status disparity 

Network research shows that the firm’s structural position, centrality, comes with status 

and social power (Bonacich, 1987; Gulati et al., 2000; Nahapiet & Ghoshal, 1998; Stuart & 

Sorenson, 2007). As firms develop more central network positions, they accrue resource and 

information benefits that enhance their ability, social power, and so their performance (Powell 

et al., 1996; Shipilov & Li, 2008). In addition, firms with central positions in the global network 

are particularly able to achieve the benefits of ties to prominent partners, because centrality 

provides superior information, legitimacy, and prestige, thus improving their negotiation power 

(Bae & Garguilo, 2004). 

Status disparity addresses the difference of partner firms’ status in the global alliance 

network. Status disparity implies that at least one partner firm has higher status than its 

counterparts do. Such disparity may benefit MPAs in two ways. First, it provides valuable 

information, legitimacy, and prestige to the MPA that can benefit all. In addition, powerful, 
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high status partner firms can facilitate coordination across partner firms to align and adjust 

partners’ actions to achieve jointly determined goals (Gulati et al., 2012, p. 537). 

However, high level of status disparity comes with the inequality of the status and 

asymmetry of social power among partner firms that leads to conflict of interest and disturbs 

the required transparency for efficient cooperation. This disparity induces high-status firms to 

their unilateral outcome at the cost of their partners, so the chance of their opportunistic 

behavior increases (Lavie, 2006, 2007). Low-status firms, in anticipation of such opportunistic 

behavior by high-status counterparts, will exert less effort towards the MPA. Therefore, even 

if partner firms have strong intention for collaboration, status disparity induces them to be less 

transparent and institute protective mechanisms to limit their outbound spillovers, which will 

dampen the MPA performance.  

Therefore, status disparity provides partner firms with accessing superior information, 

prestige, and legitimacy as well as easing the coordination within MPA, but it harms the 

cooperation in MPAs in a way that after a certain point outweighs its benefits, so we expect 

that status disparity bears a nonlinear relationship with innovative performance of MPAs. 

Hypothesis 3: Multi-partner R&D alliances with moderate status disparity have higher 

innovation performance (create more value) than alliances with very low or very high 

levels of structural disparity.  

Value Appropriation at the Firm Level 

Diversity in different types of resources has performance consequences at both MPA 

and firm levels, but their effects on the partner firms’ performance are conditioned by partner 

firm’s resources. We argue that the mechanism of value creation at MPA-level is not 

necessarily applicable to value appropriation mechanisms at the partner-firm level, so we do 

not focus on the main effect of diversity dimensions at MPA-level on the firm-level 
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performance. We focus on the interaction of MPA diversity in each dimension with its 

corresponding partner firm resources on the proportional value that partner firms appropriate 

in compare to all MPA.   

Partner variety at the MPA level and internal knowledge variation at the firm 

level  

At the firm level, received research shows that getting access to a variety of knowledge 

and exposure to partners’ diverse technologies provides more recombination and 

reconfiguration opportunities between new knowledge and existing knowledge to come up 

with more creative solutions (Sampson, 2007; Caner et al., 2017; Srivastava & Gnyawali, 

2011). However, the firms’ ability to learn and utilize novel knowledge from different types of 

knowledge sources is a function of their absorptive capacity with respect to each of these new 

sources of knowledge (Cohen & Levinthal, 1990; Lane & Lubatkin, 1998). The prior related 

knowledge allows firms to absorb and recombine the created knowledge and resources in their 

partnerships with their own existing ones (Grant & Baden-Fuller, 1995; Lavie, 2006; Dyer et 

al., 2008; Kogut & Zander, 1992) and offers them the opportunity to access complementary 

knowledge and skills to exploit their existing capabilities or to explore novel opportunities 

(Lavie et al., 2007; Lavie & Rosenkopf, 2006).  

In MPAs with a higher variety of knowledge and resources due to the partner variety, 

partner firms with broader internal knowledge have more chance to appreciate and utilize new 

knowledge, so they can proportionally appropriate more value than what their counterparts can 

with limited internal knowledge variety. Therefore, regardless of the relation between partner 

variety and value creation at the level of the MPA, which is indeed a function of partner variety 

at MPA level, partner firms’ value appropriation from their collective effort diverges to the 

extent of their differential internal knowledge variety. 
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Hypothesis 4:  MPA partner variety positively moderates the positive relation between 

the partner firm’s internal knowledge variety and partner firm’s value appropriation.  

Relational separation at MPA-level and brokerage role of firms  

At the firm level in a multilateral partnership setting, partner firms who have stronger 

relations with their counterparts, especially with those who are weakly connected with each 

other, can enjoy a brokerage role (Ahuja, 2000; Zaheer & Bell, 2005). A brokerage role can 

provide firms with more diverse and timely information to take advantage of weak ties between 

counterparts, as well as power and control to play off one counterpart against another (Burt, 

2009; Zaheer et al., 2010).  

With this respect, a partner firm that has close relations with its counterparts in an MPA 

with high relational separation has the chance to take advantage of both different novel ideas 

and perspectives as well as the weak ties between them. Having relations with separated 

subgroups improve the bargaining power of the focal firm in terms of the possibility of working 

with both subgroups and of the unique information from both subgroups, giving it the upper 

hand to appropriate a larger share of created value (Dyer et al., 2008; Lavie, 2006). In this 

respect, partner firms with more brokerage opportunities take even more advantage of their 

unique positions in MPAs with deep divisive fault lines (Heidl et al., 2014).   

Therefore, it follows that regardless of the relation between relational separation and 

value creation at MPA, as relational separation increases, particular partner firm(s) can take 

more advantage of their brokerage role to appropriate more value than what other partners can. 

Hypothesis 5: MPA relational separation positively moderates the positive relation 

between the partner firm’s brokerage role and partner firm’s value appropriation.  

Status disparity at MPA-level and status of firms  
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At the firm level, a partner firm that has higher status enjoys its superior situation to 

access critical information, to get the upper hand in the ex-ante negotiations, and to take actions 

in cooperation that cannot be easily responded by their counterparts (Gnyawali & Madhavan, 

2001). In addition, high status partner firm(s) usually take the lead to coordinate the 

collaboration, so they can influence it in a way to be more consistent with their routines and 

appropriate more value than their counterparts can.  

Therefore, regardless of the relation between status disparity and value creation at 

MPA, as status disparity increases, particular partner firm(s) can take more advantage of their 

higher status to appropriate more value than what other partners can. 

Hypothesis 6: MPA status disparity positively moderates the positive relation between 

the partner firm’s status and partner firm’s value appropriation. 

METHODS 

Empirical Design and Data 

 Empirical Design. We tested our theory in the context of research collaboration in a 

group of high-tech industries. We selected a group of high-tech industries that regularly involve 

in practice of patenting innovations, and their heterogeneous population provides ample 

variation to test the hypotheses (Stuart, 2000). In addition, these industries regularly engage in 

multiple and simultaneous alliances to address different technological requirements and the 

risks of developing and launching new products. With this respect, we focus on high-tech 

industries such as pharmaceutical, medical equipment, laboratory, computer, and electronics 

and communication industries with the following three-digit SIC codes: Drugs (SIC: 283), 

Computer and office equipment (SIC: 357), communication equipment (SIC: 366), Electronic 

Components and Accessories (SIC: 367), Laboratory, Optic, Measure, Control Instruments 

(SIC: 382), Surgical, Medical, Dental Instruments (SIC: 384), Telephone Communications 
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(SIC: 481), Communication Services (SIC: 489), Computer Programming, Data Processing, 

etc. (SIC: 737), and Research, Development, Testing Services (SIC: 873).     

Data. We collected the alliance data from the JV & Alliance section of SDC Platinum 

database. We selected the multi-partner R&D alliances that formed between 1990 and 2008 in 

the aforementioned high-tech industries, considering the SIC-Primary (i.e., SICP) flag of 

alliances. We identified 155 multilateral R&D alliances after verifying the alliance status (i.e., 

completion), removing MPAs with undisclosed partners, and comparing the SDC information 

with the ones in FACTIVA dataset. Finally, we tracked historical alliances (all types of 

alliances, including dyadic alliances) all the way back to the year 1985 in order to ensure 

sufficient coverage of active alliances for the required analysis in this study. 

We extracted the patents from the EPO Worldwide Patent Statistical Database 

(PATSTAT9). PATSTAT covers all registered patents in more than 100 patent offices that 

allows us to aggregate the registered patent at patent family level (DOCDB patent family) to 

cover all the relevant registered patents in different patent offices without over counting those 

registered in multiple offices. This database, as the NBER and the USPTO patent database, 

contains patent number, assignee name, filing year, and grant year, but not CUSIP numbers 

(key identifier used in Compustat & the SDC databases) of the assignee firms, so matching of 

patents with identified firms in our sample is not straightforward.  

Therefore, we took significant care in matching our firm list and patent data. First, we 

used the company directory list, who-owns-whom information, in LexisNexis to identify all 

divisions, subsidiaries, and joint ventures of each firm at the level of parent firm in the sample. 

We then used different online sources to trace each firm’s history to account for name changes, 

 

 

9 PATSTAT Edition: 2017 Autumn; Classification Version: 2013. 
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division names, divestments, acquisitions, and joint ventures; and to obtain precise information 

on the timing of these events. This process yielded a master list of entities that we used to 

identify all patents belonging to sample firms during the period of study. To match the 

corresponding patents to each firm, we first used the name-matching bridge between 

NBER/USPTO patents and Compustat firms provided by Hall and colleagues (Hall et al., 

2001), in which patent assignee names are standardized and matched with firm names in 

Compustat. However, we could find patent information for all partner firms in our sample, and 

we could not determine whether the rest of the firms had no patents or had patents but did not 

appear in this database. In addition, our sample is not limited to the public firms and includes 

non-public firms which are not recorded in Compustat. Therefore, we wrote a name-matching 

program to get additional patent for both public and non-public firms in our database. The 

resulting collected patents were granted between 1985 and 2013 to our sample firms. Finally, 

we dropped 18 alliances of non-patenting firms, as it was not possible to develop both 

independent and dependent variable measures, so the final sample of our study consists of 137 

multipartner R&D alliances.  

 As large firms may diversify in different industries and technologies, relying on all 

their patent data might be misleading in our analysis (Sampson, 2007). To this end, we 

performed a content analysis of the technological description of each alliance agreement to 

determine its technological scope. We obtained the technological descriptions from the SDC 

and FACTIVA. Then, we followed the patent office procedure for examiners to match these 

descriptions to specific technology sub-classes under the Cooperative Patent Classification 

(CPC) scheme (Espacenet - Classification Search, n.d.; Hunt et al., 2012; White, 2010)10. The 

 

 

10 https://worldwide.espacenet.com/classification?locale=en_EP 
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CPC is a common classification system for patent documentation that integrates the USPTO 

(American system) and the EPO (European System) and classifies technologies in hierarchical 

nested levels, such as section, class, subclass, and so on (Cooperative Patent Classification - 

About CPC, n.d.). In short, we made a brief, accurate summary of the technological description 

of each alliance, noted the key technical words, and searched for the synonyms. Then, we used 

the advanced search form in the EPO search engine, and search keywords and synonyms in the 

Title and Abstract fields to retrieve a list of the corresponding sub-classes. Finally, we retrieved 

the corresponding patents to each sub-class and reviewing their abstracts and top claims to 

check the relevancy of the patents to the technological scope of alliances, this procedure is in 

accordance with what is explained in more details with an example in appendix 1 of Chapter 

2. We checked this procedure with a patent examiner at the EPO office in The Hague in the 

Netherlands.  

Measures at MPA-level 

Dependent Variable. The measurement of MPA innovative performance in this study 

context is the aggregated number of granted patents to partner firms within the technological 

scope of alliances in a 5-year window after the alliance formation, namely MPA partners’ post 

alliance in-scope patents. The rationale behind this choice is that in successful R&D 

partnership, firms tend to legally protect their collective created knowledge in their partnership. 

We ideally preferred to use patents registered by all partners as joint-assignees; however, the 

prior studies showed that this practice is not common in high-tech industries due to the legal 

issues (Hagedoorn, 2003), so we counted the post-alliance registered patents by partner firms 

as a proxy of their collective created knowledge.  

 Independent Variables at MPA level. MPA diversity is a multidimensional construct 

that includes the variety, the separation, and the disparity dimensions. To this extent, we 
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followed Harrison and Klein (2007) guidelines and measured each dimension with respect to 

their distinct attributes.   

For the partner variety, we measured the variation of partner firms’ prior-alliance 

knowledge with respect to different knowledge categories. We used the Blau Index (Blau, 

1977) to measure partner variety: 𝐷 =  1 − ∑ 𝑝𝑖
2 , where ‘D’ represents degree of diversity, p 

represents the proportion belonging to a given category ‘i’ which was coded based on. The 

variables range from 0 (a perfectly homogeneous group) to 1 (a perfectly heterogeneous group, 

with members spread evenly among all categories).  

For the relational separation, we followed Heidl et al. (2014) suggestion to compute tie 

strength dispersion. Therefore, to assess tie strength dispersion within each multi-partner 

alliance k in year t-1, we counted the number of prior ties formed by each dyad in the multi-

partner alliance in a five-year moving window (i.e., t-5 to t-1). The strength of each prior tie 

was weighted based on the scope of activities that occurred in the prior alliance: 2 if technology 

co-development is involved and 1 for other activities. We then computed tie strength variance 

across multiple dyads within each sample multi-partner alliance for each year. Variance is 

essentially a measure of polarization that suits measuring of this variable (Harrison & Klein, 

2007). A value of 0 indicates that tie strength is equal across all partner pairs. Higher values of 

variance indicate that tie strength within a multi-partner alliance is concentrated among a subset 

of partner pairs.  

For the status disparity, we used Bonacich centrality, to measure a firm’s positional 

embeddedness. That is, we measured the Bonacich centrality for all sample firms based on their 

collaborative activities in the global alliance network. Then, we followed Harrison and Klein 

(2007) to calculate the coefficient of variation (i.e., Standard Deviation (SD)/mean) of 

positional embeddedness among the multi-partner alliance members. Aligned with our 
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definition for this dimension, the coefficient of variation captures the relative dominance in the 

MPA of partner firms with high levels of global network centrality. 

Control Variables. We included several additional control variables to exclude 

alternative explanations. First, the innovative performance of partner firms before the alliance 

formation may partially address the innovative performance of partner firms after the alliance 

formation. We used the number of registered patents within the alliance scope by partner firms 

before the alliance formation, MPA partners' pre-alliance in-scope patents, as MPA partners’ 

pre-alliance innovative performance. Moreover, we control for MPA partners' pre-alliance 

patents. This variable can also help control for the aggregated size of partner firms, as it 

addresses the size of financial and non-financial resources that come with firm size (Sampson, 

2007).  

Second, there are some other features of the partner firms that might be related to the 

independent variables described above and that may affect the observed innovative 

performance of MPA. To this end, we control for several variables with respect to all 

dimensions of diversity. We control for the partner variety regarding the SIC code (Ozcan & 

Overby, 2008). We measured it by calculating the Blau index of 4-digit SIC codes as Partner 

SIC variety. We also defined Partner government mode variety dummy to address whether all 

the partner firms are either public or private (=0), or a mixed of these two types (=1). In 

addition, we considered the average of the weighted prior alliance numbers, Within MPA mean 

of prior alliances, to distinct between the relational separation in an MPA with high number of 

prior alliances and an MPA with lower number of prior alliances. In the same vein, we 

controlled for Within MPA mean of centrality to distinct between the status disparities between 

MPAs with high status firms and those with low status firms.    
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Finally, we defined dummy variables to control for Joint Ventures (JV) and Cross 

border alliance dummy, as prior suggested that JVs can provide a better platform for learning 

(Mowery et al, 1996) and international alliances may demonstrate different dynamics of R&D 

collaborations (Lane, Salk, and Lyles, 2001). We also control for the Number of partner firms 

and a year indicator for the study time interval (we divided the time-interval of our sample to 

three 6-year period). 

Measures at firm-level 

Dependent Variable. To measure value appropriation, we measure the firm’s 

proportional innovative performance. That is the number of post-alliance patents, granted 

within the technological scope of alliance, by the firm divided by all post-alliance patents, 

granted within the technological scope of alliance, by all partner firms, namely Firm’s 

proportional post alliance in-scope patents. The rationale behind this choice is that we assumed 

that this measure reflects their appropriated value, or more precisely the acquired knowledge, 

from their partnership in compared to their counterparts at the same alliance. 

Moderating variables at the firm level. For measuring the firm’s Internal knowledge 

variety, we measured the variation of partner firms’ prior-alliance knowledge with respect to 

different knowledge categories. We used the Blau Index (Blau, 1977) to measure partner 

variety: 𝐷 =  1 − ∑ 𝑝𝑖
2 where ‘D’ represents degree of diversity, p represents the proportion 

belonging to a given category ‘i’ which was coded based on. The variables range from 0 (a 

perfectly homogeneous group) to 1 (a perfectly heterogeneous group, with members spread 

evenly among all categories).   

For measuring the broker status of partner firms within MPA, we used the ratio of the 

mean to the standard deviation of the number of prior alliances of each partner firm. With this 
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approach, partner firms with high and equal numbers of prior alliances with their counterparts 

get the higher values, consistent with the situation of brokerage role in MPAs. 

 Finally, for measuring the status of partner firms we used the Bonacich centrality of 

each partner firm, as the common measure for the status of the firms (e.g., Shipilov & Li, 2008). 

Control Variables. We included several additional control variables both at firm-level 

and MPA-level to exclude alternative explanations. At the firm level, we controlled for the 

Firm’s proportional pre-alliance in-scope patents, Firm’s pre-alliance total patents, Firm’s 

pre-alliance in-scope patents, and SIC codes.  

At MPA level, we controlled for Partner SIC variety, Partner government mode variety 

dummy, Within MPA mean of prior alliances, Within MPA mean of centrality, Joint venture 

dummy, and Number of partner firms, as it explained above.  

Statistical Methods  

In this study, we deal with two levels of analysis, MPA and firm levels. At MPA level, 

the dependent variable of our model is a count variable that has high variance relative to its 

mean, over-dispersed, so we used negative binomial regression analysis. The likelihood-ratio 

(LR) test of dispersion parameter (i.e., α) shows α is significantly greater than zero in all our 

models, so confirming over dispersion in data and supporting our choice of negative binomial 

over poisson. 

At the firm level, each partner firm is nested in a multi-partner alliance, and both MPA 

and firm level variables are taken into account in the analysis, suggesting the choice of a 

multilevel model to test the hypotheses. Moreover, the dependent variable is fraction, varies 

between 0 and 1. Thus, we initially run a generalized linear mixed model (GLMM). However, 

the higher level of variance appeared trivial, and the log likelihood test to compare GLMM and 

GLM model (i.e., single level model) was not significant. Therefore, we picked a fractional 
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response regression with logit model (fractional logit model) (Papke & Wooldridge, 1996) that 

fit the dependent variable. We chose fractional logit model over the beta regression as the 

dependent variable includes multiple zeros not allowed in beta regression.   

RESULTS 

Results at MPA level 

Table 1 presents the descriptive statistics and correlations at MPA level. The mean of 

MPA innovative performance (2047) as well as MPA partners' pre-alliance innovative 

performance (1265) show that the aggregation of firms’ registered patent is significantly 

increased after the alliance formation (p<0.001 in t-test). The correlation among predictor 

variables are not critically high. We performed a diagnostic test using the “collin” procedure 

in STATA to check for multicollinearity issue. The test showed no VIF higher than 3.2 and the 

conditioning numbers of the models were all less 20, all less than the suggested threshold for 

VIF, 10, and conditioning number, 30 (Table 2); this indicates that multicollinearity does not 

affect our results (Belsley & Kuh, 1993)11. 

Table 2 shows the results of hypothesis tests at MPA level. Model 1 includes only the 

control variables. The control variables reports can be subject to inaccuracy due to other 

possible explanations (Cinelli & Hazlett, 2018), so we just mention the most noticeable results 

with caution. The results show that MPA partners' pre-alliance innovative performance is 

positively associated with innovative performance of MPA. The results show a negative but 

insignificant association between MPA innovative performance and the variety of partners’   

 

 

11 We acknowledge that the collinearity test suits linear regression models, and although our test is 

common in extant research, the relevancy of the results should be consider with cautious. However, our 

robustness tests did not show any indication of multicollinearity in our models. 
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TABLE 1: Descriptive Statistics (MPA LEVEL) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 MPA innovative performance 1.00             

2 Partner Knowledge variety -0.03 1.00            

3 Relational separation 0.42 0.12 1.00           

4 Structural disparity 0.09 0.11 0.36 1.00          

5 MPA partners' pre alliance innovative performance 0.88 -0.01 0.48 0.03 1.00         

6 MPA partner firm pre alliance patents 0.47 0.10 0.47 0.02 0.68 1.00        

7 Partner SIC variety -0.08 -0.09 -0.09 -0.15 -0.05 -0.08 1.00       

8 Partner government mode variety dummy -0.16 -0.10 -0.23 -0.02 -0.18 -0.29 0.05 1.00      

9 Within MPA mean of prior alliances 0.35 0.05 0.67 0.02 0.38 0.55 -0.03 -0.43 1.00     

10 Within MPA mean of centrality   0.19 0.06 0.07 -0.01 0.12 0.20 -0.14 -0.09 0.20 1.00    

11 Joint venture dummy -0.01 0.21 0.17 0.09 0.05 0.17 -0.07 0.15 0.05 0.00 1.00   

12 Cross border alliance dummy 0.01 -0.04 -0.12 -0.10 0.01 0.09 -0.06 -0.07 0.07 0.08 0.04 1.00  

13 Number of partner firms 0.37 0.00 0.16 0.12 0.26 0.18 -0.09 0.24 -0.07 0.06 0.24 -0.09 1.00 

 Mean 2047.22 0.60 0.19 0.41 1265.34 7714.28 0.02 0.50 0.22 0.02 0.18 0.14 3.76 

 S.D. 2759.07 0.22 0.19 0.23 2041.59 7427.14 0.15 0.50 0.24 0.01 0.38 0.35 1.33 

 Min 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 

 Max 15600.00 0.86 1.00 1.00 17100.00 51000.00 1.00 1.00 1.00 0.07 1.00 1.00 9.00 
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modes as well as partners’ industries. These results are unreliable but consistent with the 

findings of alliance portfolio studies (Jiang et al., 2010) and suggests that MPAs with different 

types of partners’ government mode and industry are less innovative than uniform MPAs with 

those respects, due to lower levels of mutual understanding and incentive across partner firms.  

In Model 2, the variable Partner variety is introduced to test H1. The results support the 

hypothesize inverted-U shape relation between Partner variety and MPA innovative 

performance. Partner variety is positive and significant (Model 2: β = 16.250, SE = 1.791, p = 

0.000), and Partner variety squared is negative and significant (Model 2: β = -13.930, SE = 

1.746, p = 0.000). We followed Haans et al. (2016) recommendation for testing the curvilinear 

relations. The slope tests at the lower range is positive and significant (β = 16.254, SE = 1.791, 

p = 0.000), and at the highest range is negative and significant (β = -7.772, SE = 1.387, p = 

0.000). In addition, the turning point at which Partner variety begins to exhibit a negative effect 

on firm learning occurs at 0.583 (β = 0.583, SE = 0.213 , p = 0.000), within the data range (0, 

0.86), and 39.4 percent of observations have Partner variety values below that level. All 

confirms a quadratic relation in which MPA innovative performance increases with partner 

variety and hits its maximum at the 39th percentile of partner variety range, but after that, the 

positive association turns to be negative.    

In Model 3, we included the variable Relational separation to test H2. The results 

support the hypothesize inverted-U shape relation between Relational separation and MPA 

innovative performance. Relational separation is positive and significant (Model 3: β = 9.110, 

SE = 1.810, p = 0.000), and Relational separation squared is negative and significant (Model 

3: β = -15.130, SE = 2.595, p = 0.000). The slope tests at the lower range is positive and 

significant (β = 9.110, SE = 1.810, p = 0.000), and at the highest range is negative and 

significant (β = -10076.89, SE = 1728.368, p = 0.000). In addition, the turning point at which 

Relational separation begins to exhibit a negative effect on firm learning occurs at 0.301 (β =   
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  TABLE 2: Negative Binomial Estimates for MPA Diversity and Value Creation 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 

Partner variety (H1)  16.25***   14.43*** 

  (1.791)   (1.750) 

Partner variety squared (H1)  -13.93***   -12.67*** 

  (1.746)   (1.716) 

Relational separation (H2)   9.110***  7.691*** 

   (1.810)  (1.954) 

Relational separation squared (H2)   -15.13***  -13.27*** 

   (2.595)  (2.531) 

Structural disparity (H3)    0.459 -0.563 

    (1.656) (1.437) 

Structural disparity squared (H3)    0.563 0.583 

    (1.820) (1.523) 

MPA partners' pre-alliance innovative performance 0.000651*** 0.000694*** 0.000657*** 0.000629*** 0.000656*** 

 (0.000109) (9.51e-05) (8.70e-05) (0.000107) (7.89e-05) 

MPA partner firm pre-alliance patents 3.14e-06 -1.11e-05 2.02e-05 1.82e-05 -1.16e-05 

 (2.51e-05) (2.14e-05) (2.52e-05) (2.35e-05) (2.17e-05) 

Partner SIC variety -1.167 -0.687 -1.516** -0.873 -1.008 

 (0.752) (0.678) (0.725) (0.761) (0.667) 

Partner government mode variety dummy -0.328 -0.390** -0.242 -0.444** -0.310 

 (0.233) (0.196) (0.224) (0.222) (0.195) 

Within MPA mean of prior alliances 0.617  0.384  0.184 

 (0.645)  (0.701)  (0.655) 

Within MPA mean of centrality 14.84   17.30* 16.53** 

 (9.815)   (9.930) (8.065) 

Joint venture dummy 0.161 0.0885 0.311 0.152 0.387 

 (0.297) (0.275) (0.277) (0.292) (0.256) 

Cross border alliance dummy -0.0864 0.0211 0.109 0.0338 0.0689 

 (0.323) (0.286) (0.316) (0.332) (0.275) 

Number of partner firms 0.0896 0.0402 0.0234 0.0721 0.0331 

 (0.0902) (0.0771) (0.0865) (0.0922) (0.0771) 

SIC dummies included included included included included 

Year dummies included included included included included 

Constant 4.767*** 1.403** 3.968*** 4.330*** 1.087* 

 (0.661) (0.576) (0.630) (0.766) (0.653) 

Observations 137 137 137 137 137 

Log Likelihood -1082 -1060 -1071 -1080 -1047 

Degree of Freedom 18 18 19 19 24 

Wald's chi square 1.20E+05 1.20E+05 7.70E+03 1.20E+05 6.70E+04 

α (dispersion parameter) 1.314 1.016 1.155 1.291 0.856 

Condition number |Mean VIF 13.94|2.92 14.20|2.68 14.08|3.14 13.39|2.69 19.21|2.95 

Note: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1  

0.301, SE = 0.273 , p = 0.000), within the data range (0, 1), and 74.5 percent of observations 

have Relational separation values below that level. All confirms a quadratic relation in which 

MPA innovative performance increases with relational separation and hits its maximum at the 
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75th percentile of relational separation range, but after that, the positive association turns to be 

negative.  

In model 4, we included the variable Structural disparity to test H3. The results do not 

support the hypothesize inverted-U shape relation between Structural disparity and MPA 

innovative performance. Structural disparity is positive but insignificant (Model 4: β = 0.459, 

SE = 1.656, p = 0.782), and Structural disparity squared is also positive and insignificant 

(Model 4: β = 0.563, SE = 1.820, p = 0.757). Then we tested the linear relation. The results 

show a positive but marginal significant between Structural disparity and MPA innovative 

performance. The coefficient (β = 0.948, SE = 0.487, p = 0.052) suggests that a one standard 

deviation increase in Structural disparity increase the MPA innovative performance by a 

considerable factor of 158% (= e0.95 − 1), while holding all other variables in the model 

constant. 

We next incorporated all the independent variables corresponding to the hypotheses 

H1, H2, and H3 into Model 5. The results were unchanged. In sum, while the results provide 

support for H1 and H2, H3 is not supported in our sample.  

Results at the firm level 

Table 3 presents the descriptive statistics and correlations at the firm level. The 

correlation among predictor variables are not critically high. We performed a diagnostic test 

using the “collin” procedure in Stata to check for multicollinearity issue. The test showed no 

VIF higher than 2.9 and the conditioning numbers of the models were all less 21, all less than 

the suggested threshold for VIF, 10, and conditioning number, 30 (Table 4); this indicates that 

multicollinearity does not affect our results (Belsley & Kuh, 1993). 

Table 4 shows the estimations results of fractional response regression. Model 1 

includes the control variables. The proportion of partner firms’ prior alliance in-scope patent 
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number to MPA (total patents) has a significant positive effect on the proportion of partner 

firms’ post alliance in-scope patent number to MPA, as value appropriation (hereafter), and the 

number of partners has a negative effect; both expectable. 

In Model 2, the interaction of internal knowledge variety and partner variety on value 

appropriation (H4) is tested. The coefficient is positive and significant (Model 2: β = 6.798, SE 

= 1.630, p = 0.000). The marginal plot of interaction terms in Figure 1a shows that when Partner 

firms’ internal knowledge variation increases the marginal effect of partner knowledge variety 

on partner firm’s value appropriation increases, supporting H4.  

Model 3 includes the interaction of brokerage-role of the partner firms with relational 

separation to address the H5. The coefficient is positive and significant (Model 3: β = 0.192, 

SE = 0.0076, p = 0.010). The marginal plot of interaction terms in Figure 1b show that as the 

broker status increases the positive effect of relational separation on partner firm’s value 

appropriation increases, supporting H5.  

Model 4 addresses H6, in which we asserted that partner firms with a higher status take 

more advantage from the disparity in their partnerships. The coefficient of interaction term is 

positive and marginally significant (Model 4: β = 23.354, SE = 0.383, p = 0.053). The marginal 

plot of interaction terms in Figure 1c illustrates how with increasing the status disparity of 

partner firms, firms with stronger network position benefit from status disparity, marginally 

supporting H6.   

Finally, we incorporated all the independent variables corresponding to the Hypotheses H4, 

H5, and H6 into Models 5, 6, 7 respectively. The results for interaction variables were 

unchanged in each model. In sum, the results provide support for H1 and H4, and marginally 

for H6. 
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TABLE 3: Descriptive Statistics (Firm Level) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Firm’s proportional post alliance in-scope patents 1.00                

2 Internal knowledge variety 0.15 1.00               

3 Broker status 0.19 0.13 1.00              

4 Bonacich Centrality 0.22 0.27 0.22 1.00             

5 Partner variety -0.42 0.16 0.00 0.03 1.00            

6 Relational separation -0.14 0.04 0.00 0.02 0.11 1.00           

7 Structural disparity -0.11 -0.07 0.01 -0.04 0.06 0.39 1.00          

8 Firm’s proportional pre-alliance in-scope patents 0.88 0.16 0.16 0.23 -0.41 -0.14 -0.10 1.00         

9 Firm's prior alliance total patents 0.27 0.42 0.22 0.34 0.06 0.26 -0.02 0.28 1.00        

10 Firm's prior alliance in-scope patents 0.21 0.24 0.07 0.24 -0.05 0.34 0.02 0.23 0.57 1.00       

11 Partner SIC variety 0.02 -0.05 -0.01 -0.09 -0.08 -0.09 -0.14 0.01 -0.03 -0.03 1.00      

12 Partner government mode variety dummy 0.07 -0.23 -0.09 -0.04 -0.07 -0.17 0.03 0.07 -0.25 -0.18 0.03 1.00     

13 Within MPA mean of prior alliances -0.09 0.18 0.15 0.10 0.06 0.69 0.05 -0.09 0.39 0.32 -0.03 -0.40 1.00    

14 Within MPA mean of centrality -0.04 0.09 0.04 0.65 0.05 0.03 -0.05 0.00 0.12 0.06 -0.13 -0.07 0.16 1.00   

15 Joint venture dummy -0.09 0.04 0.00 0.01 0.24 0.21 0.07 -0.09 0.05 -0.03 -0.07 0.13 0.07 0.01 1.00  

16 Number of alliance partners -0.16 -0.06 -0.12 0.05 -0.02 0.22 0.19 -0.14 -0.09 0.02 -0.10 0.24 -0.07 0.07 0.26 1.00 

 Mean 0.22 0.73 5.77 0.02 0.60 0.20 0.42 0.20 2071.77 204.11 0.02 0.55 0.21 0.02 0.21 4.22 

 S.D. 0.28 0.34 17.33 0.02 0.22 0.20 0.24 0.26 3098.48 435.88 0.13 0.50 0.23 0.01 0.41 1.70 

 Min 0.00 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 

 Max 1.00 0.99 266.58 0.14 0.86 1.00 1.00 1.00 21100.00 3202.00 1.00 1.00 1.00 0.07 1.00 9.00 
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TABLE 4: Fractional Logit Model: Value Appropriation (proportional) at the Firm Level 

Proportional value appropriation (Firm’s proportional post alliance in-scope patents) (DV) 

VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Internal knowledge variety  -1.735*   -1.591* 0.808** 0.840** 

  (0.939)   (0.877) (0.357) (0.356) 

Partner variety  -6.733***   -6.213*** -1.350*** -1.332*** 

  (1.418)   (1.270) (0.493) (0.493) 

Internal knowledge variety*Partner variety 6.798***   6.210***   

  (1.630)   (1.485)   

Broker status   -0.00524  7.73e-05 -0.00458 -0.000884 

   (0.00362)  (0.00154) (0.00308) (0.00147) 

Relational separation   -0.833**  -0.0226 -0.119 -0.0132 

   (0.409)  (0.397) (0.435) (0.384) 

Broker status*Relational separation   0.0192**   0.0132*  

   (0.00751)   (0.00718)  

Bonacich centrality    1.577 13.47*** 14.99*** 0.594 

    (7.270) (3.285) (3.691) (7.592) 

Structural disparity    -1.220*** -0.549** -0.797*** -1.200*** 

    (0.371) (0.270) (0.291) (0.402) 

Bonacich centrality*Structural disparity    23.54*   24.76** 

    (12.15)   (12.36) 
Firm’s proportional pre-alliance in-scope 

patents 5.401*** 4.731*** 5.373*** 5.199*** 4.529*** 4.911*** 4.871*** 

 (0.394) (0.403) (0.395) (0.383) (0.427) (0.418) (0.420) 

Firm’s pre-alliance total patents 4.89e-05*** 1.71e-05 4.93e-05*** 3.79e-05** 1.66e-05 3.61e-05** 3.70e-05** 

 (1.81e-05) (1.77e-05) (1.79e-05) (1.63e-05) (1.70e-05) (1.75e-05) (1.77e-05) 

Firm’s pre-alliance in-scope patents 3.86e-05 0.000105 7.05e-05 1.90e-05 9.24e-05 -3.20e-05 -2.18e-05 

 (9.57e-05) (0.000103) (9.96e-05) (9.42e-05) (0.000105) (0.000102) (0.000102) 

Partner SIC variety 0.0364 -0.246   -0.410 -0.127 -0.163 

 (0.315) (0.511)   (0.548) (0.410) (0.417) 

Partner government mode variety dummy 0.0912 0.168   0.132 0.116 0.148 

 (0.136) (0.124)   (0.124) (0.132) (0.128) 

Within MPA mean of prior alliances -0.0247  0.110  0.00547 -0.0708 -0.102 

 (0.287)  (0.334)  (0.368) (0.367) (0.357) 

Within MPA mean of centrality -8.120*   -20.14*** -25.12*** -24.33*** -18.28*** 

 (4.932)   (6.856) (5.914) (6.571) (6.772) 

Joint venture dummy -0.119 -0.0934 -0.0785 -0.121 -0.111 -0.00244 -0.0170 

 (0.132) (0.129) (0.123) (0.120) (0.127) (0.122) (0.121) 

Number of partner firms -0.121** -0.141*** -0.0936* -0.110** -0.136*** -0.125** -0.131** 

 (0.0536) (0.0460) (0.0479) (0.0444) (0.0473) (0.0513) (0.0512) 

Firm SIC dummies included included included included included included included 

Year dummies included included included included included included included 

Constant -2.097*** -0.00968 -2.097*** -1.439** 0.328 -1.331* -1.221 

 (0.523) (0.853) (0.536) (0.581) (0.817) (0.788) (0.796) 

Observations 509 509 509 509 509 509 509 

Log Likelihood -183.3 -178.1 -183.2 -181.6 -176.9 -179.8 -179.7 

Pseudo R squared 0.31 0.329 0.311 0.316 0.334 0.323 0.324 

Condition number |Mean VIF 10.25|1.93 15.00|1.97 10.04|2.27 10.69|2.16 20.73|2.9 20.73|2.10 20.73|2.11 

Note: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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FIGURE 1a, b, & c:  

The marginal effect plot of interaction terms for Firm’s internal knowledge variety and 

Partner variety in MPAs (a: the upper one), for Firm’s broker status and Relational separation 

in MPAs (b: the middle one), and for the Firm’s Bonacich centrality and structural disparity 

in MPAs (c: the lowest one). 
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DISCUSSION 

In this study, we investigated the performance consequence of multi-partner alliance 

diversity at both multi-partner alliance (MPA) and firm levels in the context of research 

collaboration. We made a distinction among the different types of resources, to underline the 

distinct dynamics of different dimensions of diversity in multi-partner alliances. Then, we 

examined the performance variation of both MPA and partner firms with respect to the MPA 

diversity along each of these dimensions. Our results show while diversity in within-firm 

resources, namely partner variety, and between-firm resources, namely relational separation,  

have an inverted U-shaped effect on MPA performance, diversity in network resources, namely 

status disparity, has a linear positive effect on performance. Our findings also reveal the 

diverging mechanisms between value creation at the multi-partner alliance level and value 

appropriation at the firm level regarding each dimension of MPA diversity. We demonstrate 

that some partners can benefit more than others do, even if the total partnership is worse off, 

and vice versa. This divergence depends on the advantage or disadvantage of a partner firm to 

its counterpart in each dimension.  

Our systematic approach to examine the performance consequence of MPA diversity 

contribute to the growing research on multi-partner alliances. Prior research on MPA has 

shown that how the variation of different types of resources affect the stability and performance 

of MPAs (Heidl et al., 2014; Xu et al., 2014; X. Yin et al., 2012). We contribute to this stream 

of research by examining the effect of variation of different types of resources on the collective 

advantage of partner firms at MPA level as well as the advantage of partner firms in their multi-

lateral partnership. 

  At the MPA level, our results show the performance consequences of variation in 

different types of resources across partner firms. These findings addressed the quest for 

research on MPA as a strategic entity (Gomes-Casseres, 2003; Lavie et al., 2007). With this 
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respect, this study bridges between research on MPAs and the longstanding stream of strategy 

research on the performance consequence of diversification strategy (Rumelt, 1982; 

Montgomery, 1985; Markides & Williamson, 1996; Richter et al., 2017; Ahuja & Novelli, 

2017). In the context of multi-partner alliances, as collective, voluntary organizational 

associations, diversification is a consequence of the initial decision of partner firms at the time 

of alliance formation, as well as the decision of partner firms to stay, leave, or invite and accept 

the new partners to join their alliance. Our findings show that diversity in different types of 

resources leads to distinct rent variation at both MPA and firm levels. This approach addresses 

the call in the literature for more fine-grained theoretical and empirical analysis of the 

mechanisms through which diversity adds or subtracts value (Ahuja & Novelli, 2017). 

At the firm level, our findings show how a partner firm’s resource attributes condition 

the value that it appropriates from their partnerships. Only a few studies in IOR research have 

elaborated on the moderating role of firm’s resource attributes in the appropriation of total 

created value in its partnerships. For example, in alliance portfolio research, Srivastava and 

Gnyawali (2011) showed that how the technological diversity and strength of a focal firm 

condition the positive impact of diversity and quality of resources in the alliance portfolio on 

the rate of breakthrough innovation. We contribute to this approach and examine how MPA 

diversity in each dimension moderates the relation between firm’s resource attributes and its 

value appropriation.   

Our findings also contribute to the understanding of value creation and appropriation 

mechanisms of MPAs by taking into account both the value creation at the MPA and the value 

appropriation mechanisms at the firm levels in the same study. On one hand, the value creation 

mechanism at the MPA is a function of partner firms’ contributed resources to MPA as well as 

the dynamics of cooperation and coordination of partner firms in their mutual effort (Gulati et 

al., 2012; Gulati, 1998). On the other hand, the value appropriation mechanism at the firm level 
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depends on the value of firms’ contributions, as well as their internal resources, their brokerage 

position, and their status and power (Adegbesan & Higgins, 2011; Dyer et al., 2008; Lavie, 

2006; Lavie et al., 2007). Our findings show the divergence of these two mechanisms at MPA 

and firm levels in such a way that the value creation mechanisms in MPAs may not be 

compatible with the value appropriation mechanism in partner firms. In simple words, we show 

that what is beneficial for the alliance is not necessarily beneficial for all partner firms, and 

vice versa. 

Moreover, this study offers some managerial implications. The diverging mechanisms 

of value creation and appropriation in MPAs suggests that managers should pay attention to 

the trade-off between MPA performance and the proportional performance of partner firms in 

their decision to join, stay, or leave an MPA. The proportional performance of partner firm is 

critical at it usually shapes the perceived value of firms and influence their contribution to MPA 

(Fonti et al., 2017). For example, an SME may not proportionally benefit from staying in a 

partnership with an optimum diversity due to its resource disadvantages, and consequently 

decide to leave or reduce their collaboration level, while its absolute performance is higher than 

joining a partnership with less diversity. As another example, while an MPA has been already 

divided into subgroups due to its excessive relational separation, a firm with good relations 

with the MPA subgroup members may still decide to join at the cost of the other members’ 

performance.        

Naturally, this research has important limitations. First, the alliances examined in this 

study are those pertaining to research collaborations, and although our argumentation is general 

and can apply to all types of alliances, caution is needed regarding the generalizability of our 

findings to the other types of alliances (e.g., marketing, manufacturing, and supply chain).  
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Second, our selected measures for the MPA and partner firm’s performance are not the 

most precise measure of the performance, given the accuracy of patents in measuring the firm’s 

(innovative) performance. However, our treatment in specifying the scope of the alliance offers 

a solution to use patent data in a more precise way to measure innovative performance of the 

firms. Third, performance is a multifaceted construct and measuring the performance in one 

aspect may not represent the full realized performance of alliances and partner firms. However, 

we tried to partially address this issue by narrowing our sample selection strategy to the 

research collaborations that explicitly specified their research agenda. In addition, the same 

argument might be applicable to the other aspects of performance such as status accumulation, 

market share, or financial outcome.   

 Further studies are needed to understand better the complexity of configurations and 

dynamics of value creation and appropriation in MPAs. MPAs appear in different forms and 

we only focus on one form (i.e., R&D collaboration) in this research. Investigating the 

configuration and dynamics of the other forms of MPAs may improve our general 

understanding of this phenomenon. Future research might also take into account the other types 

of performance to further improve our theoretical and empirical understanding of dynamic of 

value creation and creation in MPAs. This research tried to address the performance of MPAs 

in a specific context with elaboration on the alliance scope. However, we believe that it is 

necessary to have a systematic examination of alliance performance measures at the alliance 

level, rather than the common focal firm level. Finally, our approach to systematically examine 

the diversity in the context of multi-partner alliances can apply to other relevant phenomena 

such as alliance portfolios and corporate firms.    
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CHAPTER 4 

INCUMBENT SUCCESS IN THE ERA OF FERMENT:                                

NAVIGATION OF INTERGENERATIONAL TRANSITION OF LITHOGRAPHY 

TECHNOLOGY WITHIN ASML 

ABSTRACT 

How can some incumbent firms proactively navigate technological change while others 

fail to do so? We explore this question by studying the dynamics of incumbents’ engagement 

in an era of ferment, in which new technological options challenge the dominance of the current 

technology generation. We take a real option theory perspective and focus on a successful 

incumbent firm, ASML, in a period when varieties of new technological options were 

threatening the dominance of the optical-lithography regime. Our findings show that ASML 

managed this turbulent period in such a way that it gained the core position in both the existing 

and in the new technological regime. First, ASML proactively engaged in the experimental 

development of technological options. Second, ASML persistently relied on the scientific rules 

of physics and economics, rather than on their current performance, in the assessment of the 

long-term feasibility and extendibility of technological options. Third, timely commitment to 

and abandonment of technological options in its portfolio enabled ASML to play an active role 

in the dynamics of transition to the next generation of lithography technology. 

Keywords: the era of ferment; decision-making under uncertainty; real option 
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INTRODUCTION 

Technological change starts with a turbulent period, the so-called era of ferment, in 

which new, emerging technologies challenge the dominance of existing technologies 

(Anderson & Tushman, 1990). In this era, there is an intense competition between technologies, 

as well as between new and existing technologies, to dominate the market (Anderson & 

Tushman, 1990; Dosi, 1982). During this period incumbents need to take timely actions to 

survive, but their established core and complementary capabilities, which give them the edge 

in the reign of existing technology, may be a liability at this time (Tushman & Anderson, 1986). 

Research has extensively studied the competition between old and new technologies 

(e.g., Anderson & Tushman, 1990; Dosi, 1982), the success factors of winner technologies 

(e.g., Schilling, 1998, 2002), and the strategic actions of incumbent and new firms in the era of 

ferment (e.g., Tripsas, 1997). However, it has mainly focused on the reaction of incumbent 

firms to the rise of new technologies, rather than their possible proactive engagement in the 

development and selection of these technologies. Therefore, the proactive engagement of 

incumbents in the era of ferment has remained largely unstudied, with only a few exceptions 

(Eggers, 2016; Eggers & Kaul, 2017; Moeen & Agarwal, 2016). A potential reason for this 

oversight is that this research stream mainly considers the emergence of a new technology as 

an exogenous shock, which punctuates the existing technology trajectory, and examines the 

heterogeneity of incumbents’ responses (for a recent review see Eggers and Park (2018)). In 

addition, these studies mainly apply theoretical lenses such as resource-based view, dynamic 

capabilities, or ambidexterity to examine the heterogeneity of incumbent firms’ reaction to 

technological changes. However, while these theoretical lenses describe how companies 

explore and adopt to these new technologies in general, they do not offer the required 

framework to understand the incumbents’ behaviors in the era of ferment (Chi et al., 2019; 

Raisch & Tushman, 2016). How do they choose between different emerging technologies, and 
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how do they decide to scale up, or to end their inquiries? Moreover, how may their behavior 

affect the selection process of a new dominant technology?   

In this study, we explore the proactive engagement of incumbents in the development 

of different technological options and their potential influence in the selection of the next 

dominant technology. We qualify the punctuated-equilibrium based explanation of the era of 

ferment, by incorporating a gradual model of technology growth. This approach enables us to 

trace the proactive engagement of incumbent firms in the era of ferment.  

We conducted an explorative case study to understand the dynamics of the era of 

ferment and the rationale of a successful incumbent’s behavior. We chose an exemplary 

incumbent firm, ASML, which successfully passed through a turbulent period in the 

lithography equipment industry, in which a variation of existing optical-lithography 

technologies and emerging particle-based and X-ray technologies competed to become the next 

dominant technology. To understand ASML’s actions in this uncertain period, we apply a real 

option perspective. The real option view equips us with a dynamic, forward-looking 

perspective to study how ASML identified, invested in, abandoned, or continued technological 

options. 

Our findings offer several contributions to research in technological change as well as 

to real option theory. Our detailed observations shed light on the evolutionary side of 

technological discontinuity. We revisit the punctuated-equilibrium based explanation of the era 

of ferment and delineate the technology selection process in this era. Our findings reveal how 

ASML managed the era of ferment in such a way that it gained the core position in both the 

existing and the new technological regime. First, ASML proactively engaged in the 

experimental development of technological options. Second, ASML persistently relied on the 

scientific rules of physics and economics in the assessment of the long-term feasibility and 
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extendibility of technological options, rather than on the current state of their performance. 

Finally, the timely commitment to and abandonment of technological options, alongside the 

formation and termination of corresponding collaborations that ASML engaged in, enabled 

ASML to play an active role in the transition of the industry to the next generation of 

lithography technology. Our study not only answers to the recent call for detailed examination 

of real option portfolios consisting of interdependent options (Trigeorgis & Reuer, 2017), it 

also offers a unique insight into the dynamics of endogenous and exogenous uncertainties over 

the course of technological change, within a portfolio of technological options. 

BACKGROUND: ENGAGEMENT IN THE ERA OF FERMENT  

The Battle of Technologies in the Era of Ferment & the Proactive Engagement of 

Incumbent Firms  

The process of technological change as well as the heterogeneity of incumbents in 

adapting to new technology has been a center of attention in the strategy literature. At the 

technology level, earlier research has focused on the modeling of this transition by either 

continuous models, such as the S-form model (Adner & Kapoor, 2016; Foster, 1988; Sood et 

al., 2012), or by discontinuous models such as the cyclical punctuated equilibrium model, to 

highlight the discontinuity between the existing dominant technology and new technologies 

(Anderson & Tushman, 1990). Both perspectives highlight the dynamics and the uncertainty 

of this transition in the so-called era of ferment, in which a variety of new and existing 

technologies compete to become the next dominant technology (Anderson & Tushman, 1990). 

At the firm level, studies have mainly developed discontinuous models of technological change 

and focused on the antecedents of incumbents’ heterogeneous responses to technology change 

(see Eggers and Park (2018) for a recent review). 

These studies offer significant insights into the patterns of technology change, and the 
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heterogeneity of incumbents’ adaptation to this change. However, there are some interrelated 

shortcomings in both groups of studies. First, at the technology level, studies fall short to offer 

an integrative view that covers both continuous and discontinuous change (for an exception see 

Adner & Kapoor, 2016). Therefore, we know less about the issue of timing in the era of 

ferment; when emergent technologies start challenging the existing one, and when the winner 

technology comes out of the selection process and starts its domination. At the firm level, 

studies take new technologies as exogenous shocks that provoke reactions from incumbents to 

survive. Therefore, their possible proactive engagement in the era of ferment is largely ignored 

(for an exception see Eggers (2016)). 

We believe that this deficiency is mainly rooted in the fact that firm-level studies 

conceptualize technological change mainly based on the discontinuous model, and overlook 

the gradual and continuous development of disruptive technologies over time. Therefore, they 

focus on the period when a new superior technology has already been developed to the level 

that it can seriously challenge and discontinue the existing technology. In this approach, there 

is no room for considering the early engagement of incumbent firms in the development and 

selection of new technologies, as well as the competitive dynamics between varieties of new 

and existing technologies.  

However, there are several examples of new technologies that failed to replace the 

existing technology, such as bubble memory that failed to challenge random access memory 

(Cockburn, 2003). Also, some incumbent firms not only passed through several technological 

changes in their history, but also took the lead in many of these changes. For example, Intel 

Company has been an industry leader for decades and has continuously discontinued 

technologies in its successive microprocessor generations. The current study explores how 

incumbent firms can be successful across technology generations, by focusing on their 

proactive engagement in technology development and decision making in the era of ferment.  
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Real Option Perspective to the Management of Technological Choice in the Era 

of ferment 

We started our inductive exploration of the challenges of proactive engagement of 

incumbents during the era of ferment on the basis of an interest in this phenomenon, rather than 

to develop or apply a specific theoretical perspective. However, we soon realized that the real 

option perspective could guide our inquiry and help us frame our research questions and 

findings. The real option perspective is a proper choice to examine irreversible decision-

making processes under uncertainty, when the option value is not known ex ante, and the future 

opportunities are a function of prior investment commitments (Bowman & Hurry, 1993; 

McGrath, 1997; Trigeorgis & Reuer, 2017; Chi et al., 2019). The real option view is 

particularly applicable when investments are divisible and sequential, and when having the 

possibility of deferring the decision to expand or abandon the investment can increase the 

chance of the upside outcome while reducing downside risk of decision making under 

uncertainty (Adner & Levinthal, 2004; Klingebiel & Adner, 2015; McGrath et al., 2004). 

 Received research into technological change has mainly relied on arguments based on 

resource-based theory (Tushman & Anderson, 1986), the dynamic capabilities perspective 

(Danneels, 2011), or the ambidexterity view (Taylor & Helfat, 2009) in examining survival 

antecedents of incumbents in the face of technological change. These perspectives mainly 

assume that incumbents react to technological discontinuities, and offer limited insight into 

incumbents’ proactive engagement in the era of ferment (Chi et al., 2019; Raisch & Tushman, 

2016). In contrast, a real option perspective offers a dynamic and forward-looking framework 

to examine the firm’s proactive decision-making and actions in this turbulent period, in which 

the outcome of competition among technological option is not clear ex ante, but the 

incumbents’ success is a function of their timely commitment to the winning option (Eggers, 

2016; McGrath et al., 2004). 
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We believe that not only real option theory is a proper perspective to examine 

incumbents’ behavior in the era of ferment; the era of ferment also is a unique context to expand 

the application of real option theory in strategy research. First, the dynamics of the era of 

ferment fit the real option life cycle. On one hand, the era of ferment starts with the emergence 

of new technologies that challenge the continuity of existing technology dominance, then 

competition follows over performance and compatibility with the supporting ecosystem 

between developing new technologies and extended existing technology, and finally this 

turbulent period ends with the domination of the winner technology. On the other hand, the life 

cycle of real options starts with the identification of hidden options, creation or acquisition of 

an option at a premium, preservation and management of the firm’s real option portfolio, and 

finally valuing and exercising the selected one(s) and abandoning the others (Trigeorgis & 

Reuer, 2017, p. 47; Bowman & Hurry, 1993). Therefore, examination of incumbent firms with 

respect to technological options over the different stages of the era of ferment fits our firm-

level analysis of the dynamics of technological competition at the technology level. We 

specifically examine how the timing and management of the technological options in the era 

of ferment can determine the success of incumbents.  

Second, the era of ferment is marked by multi-lateral competition between a variety of 

emerging technologies and the existing technology, so incumbent firms may identify and create 

a bundle of competitive technological options among all the possible choices to minimize their 

downside risk and maximize their benefit (Vassolo et al., 2004). The technological portfolio in 

the era of ferment is a particular case. There are just a few competitive options available in this 

period to be chosen by few actors, so adding one option influences the underlying socio-

technological mechanisms that determine the value and uncertainty of other options. Therefore, 

examination of incumbents’ actions in the era of ferment contributes to our understanding of 

the dynamics of timing, valuation, and uncertainty of a portfolio of competitive options with 
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limited number, and to a longstanding conversation in the literature on the boundary conditions 

of real option perspective.  

To this end, we articulate our research question based on the real option framework as 

follows: How do incumbent firms proactively identify, create, and manage a portfolio of 

competing technological options, and play an active role in the valuation and selection of 

upcoming technologies during the era of ferment? 

The remainder of this study is as follows. After introducing our methods and the context 

of our study in the next sections, we identify the stages of the era of ferment, and take the 

perspective of the life cycle of real options to explain ASML’s actions in each step (Figure 1). 

 FIGURE 1: The different stages of technology development in the era of ferment and 

the lifecycle of real options 
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Finally, we discuss our findings and formulate our contributions. 

METHODS 

Research Methods and Context 

Given the limited theory and empirical evidence on our research question, we 

conducted an inductive study of a single case. The inductive approach suits process-based 

research questions extant studies have not yet thoroughly addressed (Glaser & Strauss, 1971), 

and a single case study provides the rich and detailed data for our multifaceted research 

question (R. K. Yin, 2017). We started our study based on the principles of grounded theory 

(Glaser & Strauss, 1971) to explore our original question on the proactive engagement of 

successful incumbent firms in technology development and decision making in the era of 

ferment. Then, we followed an iterative process of moving back and forth between literature 

and data to take a proper theoretical lens to frame our findings.   

We chose an incumbent firm in the semiconductor lithography equipment industry, 

ASML, that successfully passed the era of ferment. Lithography is a key process used by 

semiconductor manufacturers to create integrated circuits (ICs) chips. This context attracted 

many studies as it has experienced several generations of technologies in its explosive growth 

path over the past half-century (Adner & Kapoor, 2010, 2016; Henderson & Clark, 1990; 

Iansiti, 2000). We focus on an under-explored period in which different technological regimes 

such as particle based (i.e., Ion-beam, and E-Beam), and X-ray (i.e., soft X-ray (EUV), and 

hard X-ray) were competing to be selected as the next generation of lithography technology, 

called “NGL” in this industry. During this period, which approximately covers the period 

between the mid-1990s to the mid-2000, emerging technological regimes challenged the 

domination of existing optical-lithography technology. The domination of each of these 

technological regimes could come with significant changes in the core technology and 
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ecosystem of the industry. Therefore, the situation corresponds to the conditions of the era of 

ferment.    

We choose ASML as an exemplary successful case. ASML actively engaged in this 

critical period of the industry in the development of emerging technological regimes, while 

they also made a significant contribution to the extension of the optical-lithography regime. 

The result was that ASML came out of this turbulent period as the market leader for both the 

old and new technological regimes.  

Empirical Data and Analytical Method 

Data. Our case study proceeded in three stages: first, to understand the technological 

roadmap of the lithography industry and identify the era of ferment, we conducted a historical 

analysis of the industry, mainly based on industry reports, industry history, and technical 

monographs (e.g., Bakshi, 2009; Brown & Linden, 2011), electrical engineering and 

semiconductor journals (e.g., Harriott, 2001; Ito & Okazaki, 2000), and management studies 

that used this industry as their research context (e.g., Adner & Kapoor, 2010, 2016; Henderson 

& Clark, 1990). We also used public data such as financial and patent data, and checked our 

insights in expert interviews.  

In the second step, we conducted in-depth interviews which formed our main source of 

information for the study. We followed a snowballing sampling strategy. We started 

interviewing some of the core decision makers of the period at ASML, to investigate 

perceptions of the situation, decisions, and rationales behind decisions. Then we asked them to 

provide us with the list of people who were engaged in decision making within ASML and 

across the industry. One of our key respondents in ASML provided us with lists of industry 

experts who participated in and contributed to SEMATECH conferences, a consortium in 

charge of navigation of semiconductor technology roadmaps. We used this comprehensive list 
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of top experts and decision makers in each interview and asked the respondent whether they 

could introduce us to one of these experts or add a new name to this list. As the result, we 

interviewed some of the most influential players in the ecosystem to triangulate our findings 

from the ASML interviews. In total, we have conducted twenty semi-structured interviews with 

twelve senior people from major players in this industry at that period, such as ASML, Intel, 

AMD, IMS, IMEC, Zeiss, and SEMATECH. Respondents also shared useful documents with 

us, such as product roadmaps, technology papers to which they contributed, and SEMATECH 

documentation. Some of the respondents provided us also with the videos or transcriptions of 

interviews they had given in the past. All interviews were in-depth interviews of about 60 to 

120 minutes with specific sets of questions concerning the interviewee’s area of expertise and 

affiliation during our target period. We checked these findings with archival documents and 

conducted follow-up interviews in order to clarify additional questions raised after comparing 

participants’ answers. 

All the interviews were recorded, transcribed verbatim, and sent back to the respondent 

for confirmation. Then, we used ATLAS software to store and classify the data sources and to 

perform the code systematically.  

Analytical Method. Given the limited number of interviews, and the fact that these were 

specifically targeting the research questions, we decided that it was not necessary to employ a 

coding method (see Gläser & Laudel, 2013). Our analysis was focused on the stages in the 

process of technological change, forms of commitment to technological options, ASML’s 

decision processes, technology selection mechanisms at industry level, and timing of exercise 

or abandonment of technological options.                   
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Moreover, we built a comprehensive timeline of the major events and ASML’s actions 

during the era of ferment. Our analysis revealed three different stages in the development of 

the era of ferment. These three stages are represented in Figure 2.  

 FIGURE 2: Three stages in the era of ferment 

THE ERA OF FERMENT IN SEMICONDUCTOR LITHOGRAPHIC 

EQUIPMENT INDUSTRY 

The Fundamental Drivers of Continuous Advancement in Lithography 

Technology 

Lithography equipment is at the heart of the chip manufacturing process. In the long 

and complex process of chip production, imprinting the designed chip on silicon wafers via 

lithography equipment is the most challenging and expensive step. The most added value and 

competitive advantage lies at this stage; hence, investing in this step of the process is crucial. 

From the early stage of the semiconductor industry, two industry-wide accepted laws have 

navigated the technological advancement of lithography equipment: Moore’s law on the 

demand side and Rock’s law on the supply side. 
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Gordon Moore, the former CEO of Intel, proposed Moore’s law in 1965. He predicted 

that the number of transistors on a microchip should be roughly doubled every other year. Soon, 

this prediction became a roadmap for industry leaders in order to address the exploding demand 

of the market in information era and to keep their competitive advantage. In addition, this law 

has since 1975 been expanded to include the costs per element on a wafer, as production of 

smaller microchips comes with improvement of the throughput and reduction in cost of raw 

materials. To serve this demand, Lithography technology as a major bottleneck has been 

introducing to the market a new technology node – a complete set of working lithography tools 

and auxiliary components - roughly every 3 years from the ‘70’s to the mid-90. As a result, the 

industry not only successfully followed Moore’s law regarding the feature size of microchips, 

but also the total cost of production was reduced by 21% per year.  

However, this exponential growth comes at a price, as the R&D, the manufacturing, 

and the testing costs increase steadily with each new generation of technology. This underlying 

trend on to the supply side is called Rock’s law (Ross, 2003), which states that the capital cost 

of a semiconductor plant doubles every four years. Hence, the investments and risk of 

developing capital goods and manufacturing line equipment considerably increases as the 

technology progresses. 

While Moore’s law pushes the industry forward, Rock’s law constrains the choice of 

industry for new technologies, so the right choice of a new technological solution becomes 

increasingly difficult and crucial for the industry at each step forward. Industry experts mention 

that the main enemy of progress is the development cost of a new technological generation, so 

the extendibility of technology to insure a long-term profitability of incremental progress is 

more crucial than initial technical challenges of the technological progress. 

Fading of Existing Technology Dominance 
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 Since its early days in the 1960’s, the optical-lithography technological regime had 

dominated the Lithography industry. An optical-lithography machine is a delicate interplay 

between lens, energy source, mask, and resist technology. To stay aligned with Moore’s law, 

industry leaders were engaged in advancing technology in both evolutionary and revolutionary 

manners. As a result, five generations of optical-lithography technology had been introduced 

to the market by mid-90 (for an overview of technological generations in this industry, see 

Adner and Kapoor, 2016). Each generation came with architectural change, as well as a 

significant improvement of the energy source (Henderson & Clark, 1990). To give an 

impression, while the then dominant generation, the I-line 365 nm stepper, was running the 

market around mid-90s, the next generation, DUV-248 nm scanner, already entered into the 

market, and feasibility studies on the subsequent generations of DUV machine, the 193 nm 

ArF were in progress.  

However, while optical lithography was still very active and continuously advancing, 

there was a growing conviction among industry actors that optical-lithography technology was 

approaching its physical limit (Ito & Okazaki, 2000). Indeed, the industry was lagging behind 

Moore’s Law in the mid-1990s. Therefore, something significantly different from the current 

technological regime seemed necessary. By the mid-90s, some of the industry’s main actors 

had already invested in substitute technological regimes. In general, two alternative 

technological regimes had started their research phase since mid-80, namely X-ray and particle-

based technological regimes (Figure 3).  

The Emergence of Rival Technological Options 

X-ray technological regime, including hard and soft X-ray. X-ray is a form of high-

energy electromagnetic radiation, with a very short wavelength. X-ray technologies use x-

radiation to project the image through the mask to the wafer without using any lens in their 
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FIGURE 3: The situation of technology edge in industry compared to Moore’s law 

expectation. 

 

architecture. X-rays with higher energy level and shorter wavelengths are called hard X-ray, 

while those with lower energy level and longer wavelengths are called soft X-ray. However, as 

soft X-ray is also close to ultraviolet wavelengths, it is also called Extreme Ultraviolet (EUV).        

 IBM hugely invested in hard X-ray printers since the mid-70s. Japanese institutions 

and firms such as NTT, Nikon, and Hitachi studied and invested in soft X-ray (EUV) 

technology since the 80s.  

Particle based technological regime, including E-beam and Ion beam. Particle 

based- technologies use electron or ion beams to print directly a pre-programmed pattern 

without using any mask on the wafer.  

E-beam lithography is the practice of scanning a focused beam of electrons to draw 

custom shapes on a resist that covers the wafer. E-beam was seen as a very promising 

technology, but electron scattering and slow printing hurt both its resolution and throughput. 

The second option in particle-based regime is Ion-beam or IPL technology that uses ions to 

make projections on wafers. Ions cause less scattering issues compared to electrons in E-beam 

and light in optical lithography. In addition, ions are heavier than electrons, so it is easier to get 
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ions closer to each other than electrons to enable the required alignment for printing.  

IBM’s investment in E-beam writers started in 1980s, and ASML and Siemens started 

supporting a research project on particle-based Ion-beam printer technology in the mid-1990s. 

However, none of these had shown enough progress to be considered as the ultimate substitute 

technology by that time, so there was significant uncertainty about the most promising choice 

of replacement for optical-lithography technology. 

The choice of the new technological regime was very critical, because on one hand, the 

industry’s success in following Moore’s law depended on the choice of the right technological 

regime, while on the other hand, the industry could not afford to concurrently develop two 

technological trajectories, because of Rock’s law. Therefore, there was a collective conviction 

that there could be only one winning technology. Figure 4 shows our own qualitative 

interpretation of the different technological options in the era of ferment.  

FIGURE 4: Development of technological options for lithography 

 

INCUMBENT’S ENGAGEMENT IN THE ERA OF FERMENT 

By the mid-1990s, various economic downturns and continuous demand for 

technological progress had caused industry shakeouts, and two of the major lithography 
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suppliers had been able to keep a dominant market share. Nikon and Canon were market leaders 

with over 45% and 25% of market share, respectively, and ASML, a fast-growing spinout, had 

just joined the leaders with a market share of 25%. 

ASML: A Growing Incumbent Firm  

ASML, a spinout of Philips, had been struggling to survive in its first ten years (1984 -

1994). In addition to the natural challenges that a new venture has in its early life, the 

lithography technology ASML inherited, stepper optic-lithography technology, had already 

suffered a long and bumpy road in the NATLAB laboratories of Philips between the mid-’70’s 

and 1984 (Linden et al., 2000). As the CTO of ASML described the condition: “[Until then, it 

was] seeing the rear lights of the competition, and you try to be as fast as possible and stay out 

of trouble”.  

Nevertheless, ASML showed significant growth after introducing the I-line machine 

(PAS 2500) based on its own production architecture in 1992 and overcame the major industry 

downturn of the early 1990s. Following its fast growth pace, ASML steadily separated from its 

parent, Philips, which had been still in charge of R&D and intellectual property protection. 

ASML set up its own R&D and an in-house IP department, and went through IPO in 1995. 

ASML steadily increased its R&D investment in the subsequent years (from almost €57 million 

in 1996 to €144.5 million in 1998). ASML hired a new research manager to lead a team of 

scientific researchers to set up a fundamental research program to look beyond the horizon. 

The assigned scientific research team had a close interaction with the development division 

and system-engineering department, but also had the required freedom and authority to act 

autonomously without engaging in day-to-day development stress.  

“I think the question was so business critical that they (ASML) wanted to take full 

control themselves. Do not outsource this question. You can outsource the 
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activities, but not how do I address the question and how do I make, give an answer 

to the question. What will happen after optical lithography?” – Senior Vice 

President Research ASML 

By the mid-1990s, ASML found itself as an established incumbent with the required 

confidence and resources to choose and plan its future path. While ASML was still busy 

establishing its status among the market and technology leaders in the industry, the increasing 

difficulties and complexity in the progress of optical-lithography technology signaled the 

imminent end of the domination of the current technology. ASML started to consider the 

emerging technological options in order to remain the industry’s provider of leading 

technology solutions.  

Stage 0: Identification of Emerging Technologies as Real Options 

Application of Simple Scientific Rules in the Initial Assessment of Options  

Moore’s and Rock’s laws impose strict long-term expectations on the resolution and 

throughput of any technological option. ASML researchers were well aware of these 

fundamental laws. They relied on the basic science of physics and on economics to develop a 

set of simple rules to evaluate the prospect of technological option fitting these fundamental 

laws. These simple rules provided ASML with a clear theory about the success factors of each 

technology in its  technology search process, and prevented it from falling into the trap of trial 

and error in pushing the performance of each technological option (Gavetti & Levinthal, 2000).   

The ASML research team relied on these simple rules in its exploration to identify the 

technological options in which the firm should invest. Two technological regimes, particle 

based, including E-beam and Ion-beam, and X-ray, including hard and soft X-ray, were 

considered to be the viable options to replace optic-lithography technology. At the first step, 

ASML was convinced that hard X-ray could not be a promising option to invest in. By the mid-
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1990’s, IBM had invested heavily in hard X-ray for many years, and some of the industry 

leaders expected hard X-ray to be the nearest option to market introduction when the search 

for NGL started; however, ASML abandoned this option in the first place. The rationale behind 

this decision was that the extendibility of X-ray technology was questionable. First, as the hard 

X-ray architecture is not equipped with a lens, the resolution of the machine remained a direct 

function of the wavelength of the energy source, a significant limitation that the industry 

already experienced in its very first generations of lithography technology. Second, one of the 

fundamental complementary elements of X-rays machine, the mask, had considerable 

technological issues that could limit the improvement of the energy source (i.e., reduction of 

wavelength to reduce the node of production). Therefore, ASML was convinced that the 

technology was ‘end-of-life’ even before it reached the market.  

Outside of the two challenging technological regimes in the era of ferment, imprint was 

another technological option that was considered later on, but it did not receive any real 

significant research dedication from ASML. Although imprint was mentioned in the 90s, it was 

not one of the initial NGL options and it became more in fashion in the early 2000s receiving 

extensive attention for over ten years. The basic idea behind imprint is to write a mask and to 

press it into the resist on the wafer. Although ASML engineers were challenging their 

technology leaders to consider this technology, it never became a serious consideration for the 

organization. The technology was reckoned too sensitive to defects, so it could not be a real 

option for mass production, and ASML was not interested in niche markets in which imprint 

technology might be suitable.  

Stage 1: Acquisition of Technological Options via Joint Ventures 

After dropping hard X-ray and Imprint as feasible options, ASML focused on the three 

remaining technological options. In terms of compatibility to the existing lens-based optical-
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lithography ecosystem, mirror based Soft X-ray, or EUV, was the closest technology. However, 

ASML still also became actively involved in research projects for E-beam and Ion-beam 

applications. They tried to keep an open mindset towards other solutions by investing in all 

options that might offer a solution to the challenge at hand. As the Senior Vice President of 

research at ASML recalls: 

“We tried to be not biased which is always difficult. Because EUV was the best fit 

to our existing partners (e.g., Carl Zeiss etc), but we told ourselves we should be 

objective in the choice”. 

By doing so, they aimed to overcome their own preference bias and to be open to other 

possibly viable options, because they could not afford to bet on the wrong option. In the 

following, we explain the rationale behind of ASML’s investment in each of these 

technological options.  

E-beam. In the Philips Natlab laboratories, there were two research groups, one for 

optic-based lithography, which was the stepper group that was finally spun-out to become the 

ASML venture. The other one was the E-beam group, which was believed to be the one with 

the most potential. In addition, ASML had already engaged in a research project on E-beam 

with a renowned research group at Delft University in the Netherlands. Therefore, 

technological knowledge about E-beam was more accessible to ASML than that for the other 

options.  

ASML made a visit to Bell Labs in the late 1990’s, and considered a collaboration with 

Applied Materials and Bell labs. In order to do so they started a joint venture named eLith. Bell 

Labs was to provide the scientific fundamentals and ASML and Applied Materials were on 

board for engineering and commercialization of the technology. The goal of eLith was to push 

the technology further in order to make a volume-production proof of concept and to test the 
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technology’s potential for commercialization. eLith not only was a good setting to appraise the 

E-beam technology’s potential, but also provided ASML with the chance to access the 

knowledge and capabilities of a top research institute such as Bell-labs and complementary 

resources of a microelectronic device producer in the US such as Applied Materials.   

Ion-beam. In the early 1990’s, DARPA (Defense Advanced Research Projects Agency) 

in the US showed interest in IPL (Ion Protection Lithography) technology. However, IMS, a 

Vienna-based startup, had the most advanced knowledge of this technology, and DARPA as a 

strategic US entity could not directly fund a non-USA effort. Therefore, they formed a joint 

venture (JV), called Advanced Lithography Group (AGL), which terminated in 1996 due to 

DARPA’s shift towards hard X-ray technology.  

Collaborative R&D efforts were continued in Europe, were ASML joined, together with 

TNO, a consortium of IMS and Siemens, and later on Infineon, as a client sponsor. This project 

was part of a 4-year research program starting in 1997 which was financially supported by the 

MEDEA grant program of the European Union. ASML became interested in this technology 

and since the research effort was supported with EU grants, there was a low entry barrier to 

enter into this option. In this consortium, ASML shared its technological knowledge on 

alignment systems that was its main competitive advantage. 

  Soft X-ray or EUV. EUV research efforts were organized in two main settings. On the 

one hand, there was a research initiative of ASML with its close European research partners: 

Philips, Zeiss, IMEC, Oxford Instruments and TNO. Between 1998 and 2000, ASML worked 

together primarily with Zeiss and Oxford Instruments in the EU-backed EUCLIDES grant 

program to find solutions for the main potential show-stoppers of EUV. After the EUCLIDES 

program finished the EU continued backing the development of EUV in its MEDEA+ program 

between 2001 and 2004, followed up by the More-Moore program after that. 
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On the other hand, an industry-wide research initiative, called EUV LLC, was founded 

in 1997. The goal of the EUV LLC was to overcome the most fundamental issues in the 

development of the first Proof of Concept (POC) of EUV machines. Intel initiated this research 

consortium, and Motorola and AMD joined it, and later on also IBM, Infineon, and Micron. 

ASML joined the EUV LLC consortium from the beginning to get access to the technological 

knowledge that they lacked in EUV at the time. However, in order to join EUV LLC, they first 

had to negotiate with a US governmental inter-agency committee, CFIUS12, to get permission. 

In the summer of 1999, ASML finally received the permission and joined the two other, US-

based, lithography equipment manufacturers in this consortium: USAL (a newly founded 

spinoff of Ultratech) and the Sillicon Valley Group (SVG) (which was finally acquired by 

ASML in 2000).  

Table 1 provides an overview of the different research settings in which ASML was 

engaged during the choice for the NGL. The level of ASML’s engagement in each 

technological option was a function of the perceived prospects, networking opportunities, and 

availability of funding for that option. In EUV technology, ASML engaged in research 

collaboration with its long-term partners as well as in a research consortium with industry 

leaders. For two other options, ASML was involved in a somewhat looser form of 

collaboration.  

 

 

12
CFIUS is a governmental inter-agency committee reviewing the implications of foreign investments on national 

security. Especially the influence of investments on crucial technology positions of the U.S. are being reviewed in this 

office. ASML was permitted access to the EUV LLC after reaching an agreement with the DoE (Department of Energy), in 

which was negotiated that ASML had to produce any EUV tools that it would sell to the U.S. in the U.S., in comparable 

production facilities that it had in the Netherlands. 
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TABLE 1: Different research settings of ASML 

Technologies in 

consideration 

EUV SCALPEL Ion-beam 

Industry 

champion 

Intel Bell Labs Siemens/Infineon 

Organization of 

R&D efforts 

Joined European 

research with close 

partners 

Consortium EUV LLC 

Joint venture 

ELith 

Joined research 

Main parties 

involved 

Zeiss, Oxford 

instruments, Philips, 

IMEC, Zeiss, ASML 

Intel, Motorola, AMD, 

IBM, Infineon, Micron, 

USAL, SVG, ASML 

Bell Labs, 

Applied 

Materials, ASML 

IMS, Infineon, 

ASML 

 

Engaging in the development of NGL options not only provided ASML with the 

required technological knowledge to become leading in the possible NGL in the future, it also 

improved its status and legitimacy as a technology leader in both the European and the US 

market. This privilege helped ASML to exercise its influence in the facilitation of the selection 

process and to establish itself as the market leader of the future.       

Stage 2: Managing the Development and the Eliminative Selection of Technology 

Options 

Industry Mechanisms to Navigate the Selection Process 

Pouring hundreds of million dollars into studying and developing various technological 

options just in the research phase, together with the collective consensus that the winner 

technology would take it all, justified a collective mechanism to facilitate and institutionalize 
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the choice of the NGL. SEMATECH 13 took on this critical role. SEMATECH held meetings 

annually between ‘97 and ‘03 involving around 100 expert participants from top industry 

actors, ranging from chipmakers to suppliers and renowned research institutes. Participants 

engaged in workshops led by front-runners of the different technologies. At the end of each 

meeting, all parties voted on the feasibility of each technology to be introduced to market within 

the next decade. These voting sessions were consultative, but were influential in the decision 

of clients and investors, so the results put a significant institutional pressure on the technology 

developers to either continue or abandon their technological options. Therefore, during these 

meetings, participants had a sense that they were involved in the ‘decision of the century’ that 

would set the course for the years ahead. 

Eliminative Process within ASML: Shakeout in the Technological Option 

Portfolio 

ASML had a clear preference for EUV when the experiments started. However, they 

were willing to be wrong and change their course of action when other technologies were more 

likely to suit the needs of the industry. Therefore, all experiments ran for at least two years 

before ASML made any decision. The setup of the different options was to strive to build a 

working demonstrator tool and to track its progress by progressive reduction of the list of 

critical bottlenecks for each technology. 

 

 

13
 SEMATECH was a joint consortium formed by the USA government and major American IC manufacturers 

in mid 1980s. It originally supported new technologies and develop roadmaps for the future of semiconductor industry 

to keep US-based semiconductor companies competitive, but it took a more global approach later in late 90.  
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Between 1997 and 2000, it became clear that EUV was building momentum in the 

industry. It was making relatively more progress and was facing fewer fundamental issues than 

particle-based technologies. However, EUV was still facing massive practical and engineering 

challenges, and there was still not any proof of concept warranting the functionality of EUV. 

Therefore, it was hard to make a proactive choice for EUV technology, so ASML kept the 

options in the particle-based regime alive and let them run until it became clear that none of 

them would be able to meet the demands of the fundamental laws. According to the SVP of 

Research at ASML: “we delayed the decision as long as we could afford, to pull the plug (on 

the other technologies)”. 

E-beam. From the beginning of the E-beam project before and during the eLith joint 

venture, ASML was concerned about the progress of this particle-based technology; however, 

they needed more experiments to prove all their assumptions. As the work unfolded, both 

technological and collaborative issues slowed down the progress. On the technology side, the 

particle-based nature of technology came with fundamental challenges that restricted the 

throughput and productivity of the technology. Indeed, electrons repel each other so the 

extendibility of the technology by reducing the distance between electron beams, and 

improving the throughput by increasing beam current, comes with blurring problems. In 

addition, any metal objects in the operation plant also create blurring issues, due to the E-beam 

machine’s sensitive magnetic field. On the collaboration side, there were significant 

organizational and cultural challenges that made the collaboration between Bell Labs, a proud 

scientific institution, and Applied Materials and ASML, two practice-oriented companies, 

difficult.  

Therefore, the work progress fell behind very soon. ASML tried to push the technology 

harder and brought external experts to assess the potential and progress of the technology. 

Nevertheless, the issues of the technology were caused by the rules of fundamental physics, so 
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ASML was convinced that even if all daily technological and collaborative issues could be 

solved, E-beam technology would still not be going to be its long-term technological option of 

choice. Despite the fact that the other partners wanted to keep the JV alive and some IP issues 

that would have to be resolved, ASML finally withdrew and terminated the eLith JV early 

2001, only 14 months after its foundation. After the eLith termination, Bell Labs continued 

SCALPEL developments for two more years before all efforts stopped. 

Ion-beam. The IPL program was the only program to deliver a working prototype by 

2001. The imaging of the IPS tool, despite having its issues, was also a lot better than what was 

accomplished by the other technologies. However, when the 4-year IPL research program 

ended in 2001, most efforts in this technology as an NGL stopped soon, for both technological 

and institutional reasons. IPL technology suffered from the typical problem of particle-based 

technologies with respect to the image, the throughput capacity, and some architectural 

elements that limited its extendibility. In addition, the market was moving towards EUV, for 

technological reasons as well as the interest of heavyweight Intel. The organizational setup of 

the collaboration enabled ASML to withdraw easily from the program once its term was 

finished, and so they did as the IPL program finished. 

ASML’s Influence on the Selection Process 

The chip manufacturers were the champions of NGL development to keep up with 

Moore’s law, but lithography equipment suppliers were the ones that finally had to deliver the 

solution. ASML took advantage of its geopolitical situation and its networking to take a 

strategic position in this process. First, the US government did not accept non-US based 

suppliers to be part of the EUV LLC consortium, but US suppliers dramatically lost their 

market power in the early 1990s. ASML, as the only non-Japanese leading supplier of the 

industry, took advantage of this situation and successfully negotiated with the US government 
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to join EUV LLC. In addition, ASML later acquired US-based SVG Company to strengthen 

its growing ties with major American clients and establish its strategic status. Second, ASML 

was engaged in different technological options and became the natural choice for the 

development of proof of concepts for each option. Therefore, ASML’s decisions to keep or 

abandon a certain technology option were highly influential on the industry’s course of action.   

The level of ASML’s commitment to the different NGL options was already an important 

signal to the rest of the industry, but ASML’s decisions to abandon particle-base E-beam and 

IPL technologies had a decisive influence. Once ASML abandoned IPL, IMS was not able to 

compete alone to remain in the main market of lithography. Additionally, the SCALPEL 

technology was also not able to push to the market after ASML left. Both technologies had 

difficulties to find additional funding when ASML left and after a while were dropped from 

the industry’s roadmap, which was formulated based on industrial experts input and published 

by SEMATECH in 2003. 

Stage 3: Exercising the Option of Choice in the Twilight of the Era of Ferment 

After 2001, ASML exclusively focused on EUV development. Both initial consortia, 

EUV LLC and EUCLIDES, ran until 2003. The EUV LLC consortium had delivered a basic 

Proof of Concept (POC) machine, yet the timing of rolling out the EUV machine (or in other 

word, exercising this technological option) was crucial yet uncertain. At that time, the 

technology was still highly fragile, and although there were no fundamental barriers in theory 

threatening the progress of EUV, there were still massive practical challenges standing between 

the prototypes and a working production technology. Therefore, ASML decided to keep 

investing in EUV as a research program. Nevertheless, ASML also built two basic alpha 

prototypes and in 2006 shipped them to two global semiconductor-testing facilities, IMEC in 

Belgium and one facility in Albany (U.S.), to see how potential customers responded to the 

new technology, and to establish the status of EUV as the NGL within the industry. In the 
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meantime and as another reason for the postponement of the introduction of EUV, new 

technological solutions in optical-lithography pushed the bar higher for the entrance 

performance of EUV.   

The Hidden Options: Architectural Innovations in the Current Technological 

Regime 

At the beginning of the era of ferment, the industry actors believed that the NGL 

technology regime would directly dominate the market after the last generation of optical 

lithography (i.e., DUV 157). As described above, it became clear soon that this would not easily 

happen.  

Despite its engagement in multiple NGL technological option, ASML continued to 

heavily invest in the extension of existing optical technologies. ASML believed that it should 

be successful in their main business to be able to afford pushing their NGL venture. As the 

ASML CTO stated:  

“You have to make sure you don’t get lost in the future, because the future is not 

going to make you money, you have to focus on the short-term as well.” 

 As long as NGL technologies were not mature enough, the organization still had the 

obligation towards its customers to enable them to produce affordable chips in the current 

technological regime. 

The first step on this way was the introduction of the dual-stage TWINSCAN 

technology in 2000. The TWINSCAN was mainly a process optimization architecture that 

enabled optimal use of the optical system, the most expensive element of the machine, by using 

two wafer stages rather than one. ASML’s main competitors Nikon and Canon never 

introduced comparable systems to the market, and ASML became the market leader with 

TWINSCAN in 2004. 
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 The second boost for the extension of optical lithography was immersion technology, 

an unexpected finding that was introduced around 2004. The industry initially believed that 

157 nm would be the natural successor of the 193 nm in DUV family. However, the 

development of DUV157 faced significant issues with the mask and resist. In the meantime, 

the concept of immersion technology was being discussed actively by the industry around 

2001. The basic idea is that immersing the lens in liquid, instead of air, increases its resolution. 

In fact, this is a very well-known principle used in microscope technology for years and it had 

already been proposed for lithography applications in the late 1980s. However, it took the 

industry a while to realize that H2O would be the best liquid. After that surprisingly difficult 

stage, ASML took advantage of the compatibility of its architecture with this solution and 

introduced immersion machines in 2004. Indeed, it turned out that immersion was an enabling 

technology for at least a few generations of products in the optical-lithography regime, which 

also meant the end of the DUV157 program. 

However, ASML was initially not leading in the third and the last extension of optical-

based lithography: double patterning. Double patterning means that rather than projecting an 

image in one exposure on the wafer, multiple exposures are used to enable smaller pictures at 

higher resolutions. This solution was a breakthrough as it provides significantly smaller nodes 

with the same generation of machines. The first impression of ASML when double patterning 

technique as another extension to existing optical technological regime was introduced, was 

that this new technique would cost them their EUV business. As the CTO of ASML explains: 

“So we keep on innovating immersion ... but then the customers were running out 

of steam on immersion and their solution was double patterning…. When I first 

heard about it I was afraid because I thought this might cost us business. It took 

me a while and I still remember the CTO from Micron, and it must have been 

somewhere around 2005 he called me out of a meeting …, and he said I have to 
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tell you something and he showed me the double patterning process and said this 

might have an impact on you. And I was going out of his office and was saying s**, 

and I was thinking about it and I quickly came to the conclusion this will save us.” 

Indeed, the new extension offered additional time for the development of EUV, and 

surprisingly actually supported the business case of EUV, as follows. Double patterning 

technique comes with a cost. It imposes more lithography work on the same number of wafers, 

so as the design becomes more complex, the required number of exposures, and the demand 

for higher performance in overlay, the precision of the second round of printing, paradoxically 

increases. Therefore, projecting the image in one exposure with EUV is more efficient than to 

continue the complex process of adding layers in patterning techniques with DUV machines. 

Enduring all these years, ASML had continued to invest in EUV developments, and 

they finally shipped their first pre-production tool in 2011. The R&D investment in EUV had 

continuously increased, so in order to keep up the investments in 2012 ASML issued shares 

that allowed its largest customers, TSMC, Intel and Samsung to take a share in the company. 

Collectively, these customers invested billions of dollars to sustain the progress of the 

development. ASML shipped the first complete machine in 2013; and the first machine for 

volume production in 2017. In 2018, EUV has finally become mature enough to be sold as a 

feasible technology for volume production and has claimed its position as the de facto NGL.   

DISCUSSION 

In this study, we explored how ASML successfully navigated the challenging dynamics 

of an era of ferment during a major technological transition in lithography equipment industry. 

To be able to understand the rationale of ASML’s actions, we also got a deep peek at underlying 

socio-technological dynamics of natural selection processes in the era of ferment. In 

consequence, our findings not only shed light on the course of an incumbent’s actions in the 
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era of ferment for both theory and practice, but also offer a novel insight into the dynamics of 

this era. To this end, we separately discuss these findings in the light of the technology change 

literature and the real option perspective to decision making under uncertainty.  

From Onset to Twilight of the Era of Ferment: An Alternative Explanation  

Our detailed examination of socio-technological processes offers novel insight into the 

rise and dynamics of selection processes in the era of ferment. The discontinuous model of 

technological evolution perspective posits that an emerging superior technological regime 

discontinues the existing dominant one and commences a tough competition between the new 

and old technological regimes, as well as between the design alternatives within the new 

technological regimes (Anderson & Tushman, 1990). However, this model remains silent about 

how a new technology, which naturally evolves gradually, can suddenly emerge and out-

compete the prior technology. Levinthal (1998) argued that speciation, “the application of 

existing technology to a new domain of application”, addresses this dilemma (p. 217). 

Accordingly, technologies evolve gradually but can discontinue the prior technologies of other 

domains if they can meet their demand criteria (Adner, 2002; Levinthal, 1998). Our findings 

shed light on an alternative explanation. Sood and Tellis (2011) classified technology 

disruptions into upper attack and lower attack. Upper attack happens when the performance of 

new technology is higher than the existing one from the beginning, contrary to lower attack. 

Upper attack is mainly the case for high-tech industries such as semiconductor industry in 

which there is a continuous demand for high-end technology. Our study illustrates the 

dynamics of the era of ferment in the upper attack. In this case, the era of ferment starts when 

the expected long-term performance of emerging technologies within the same domain 

challenges the future of existing ones. A competition takes place between variations of old and 

new technological concepts and designs, and industry-wide social-technological mechanisms 

determine the winner. This explanation, aligned with continuous models of technological 
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change (Foster, 1986) and similar to Levinthal’s (1998) account, considers the gradual progress 

of technology, but offers new insight into underlying social-technological mechanisms in the 

era of ferment when an upper attack is raised within the domain.  

Our observations show that the selection mechanism in the era of ferment is 

‘eliminative’. That is, rather than the triumph of one technological option over the others in 

such a technological contest, alternative options are fading away one by one by losing the 

required support and legitimacy for further development from the experts and investors. EUV 

technology has never been chosen as the winner in NGL contest; indeed, the other technologies 

lost their chances by losing the institutional support of experts and the financial support of 

industry champions. For example, the CEO of IMS, the leading company in Ion-Beam 

technology, stated: 

“So, the industry came to the conclusion that it doesn’t make sense to continue 

[with Ion-Beam technology as,] this will lead us to excellent research, but it would 

not lead us to production. And so… finally you have to come to the production 

environment.” 

 The selection process in the era of ferment looks like the inductive elimination 

procedure in natural science in which alternative hypotheses are eliminated one by one after 

each experiment (Norton, 1995). Here, the scientific-based, but socially constructed 

hypothetical evaluations of experts regarding the prospects of each technology have been tested 

over time in an eliminative process. This observation is also in line with the evolutionary theory 

in which the survival of the fittest implies the extinction of failures.  

On another note, our findings also provide insights into the dynamics of technological 

change. Consistent with Adner and Kapoor (2016), we show how technological changes can 

take a long time if the existing technology continues to extend, and complementary elements 
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in the technology ecosystem limit the progress of the new technology. Interestingly, the 

functionality of technology in this transition can change over the course of this process. EUV 

was supposed to take over the optical-lithography by offering smaller nodes, i.e., as a product 

innovation; however, EUV entered into the market as a process innovation as it offered the 

same nodes, but with a reduction of production cost in semiconductor manufacturing as well 

as a promising extendibility capacity.  

Incumbent Actions in the Era of Ferment: A Real Option Perspective  

As the most important contribution of this study, our findings highlight the success 

factors of incumbent firms in decision making under uncertainty. First, we found a convincing 

match between the stages of the era of ferment and the life cycle of real option, that helped us 

to investigate the rationale of ASML’s action in more detailed. As it is illustrated in Figures 1 

and 2, era of ferment starts with the emergence of new technologies that challenge the 

continuity of existing technology dominance. Given the fact that technologies grow gradually, 

a successful course of incumbent actions starts even before this stage, when incumbents 

actively search for the identification of emerging technological options that may threaten the 

existing technology in future, as well as of hidden opportunities for the extension of existing 

technology to outcompete the emerging technologies or postpone their triumph. The next stage 

is marked with the raise of decisive competitions over performance and compatibility with the 

supporting ecosystem between emerging and existing technologies. The next dominant 

technology is the one that survives the eliminative selection procedure of this crucial stage. In 

this stage, successful incumbents properly manage their technological options in term of 

preservation of selected technology and abandonment of eliminative ones. However, what may 

make the decisive difference between successful incumbents and others in the management of 

this process is timing. As the Senior Vice President research of ASML stated: 
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"But you like to have of course the head start. And that’s your way, because in this 

industry timing is everything if you are two years earlier than your competition, 

you have a very big advantage. Now that’s the price to gain.”  

Our case study showed while some of technology leaders had made considerable 

commitments in the development of emerging technologies earlier than ASML in the first 

stage, they lost their edge in the second stage because they were not able to make a timely 

decision to abandon their failing option due to their prior commitments. For example, IBM had 

hugely invested in hard X-ray and E-beam technologies, but they continued with their 

investments even when the industry actors convinced that these technologies are not viable 

options. Therefore, timely creation or acquisition of technological options during the first two 

stages has a significant influence on the success of an incumbent in the next stages. Likewise, 

if ASML would have invested in each of its technological options earlier or later, their benefits 

from these options could have been dramatically different. There is a sweet spot in the timing 

of the acquisition and exercise of options. ASML’s investment in each option was not too early, 

so they did not bear heavy research investment, but it also was not too late to let the competitors 

replace them. On the technological side, while the late investment in the technological options 

may prevent incumbents catching up the steep rate of technology development and competition 

in the second stage, the early investment in the first stage also may make an unnecessary 

escalation of commitment that prevent incumbent making timely decisions in the second stage. 

Finally, this turbulent period ends with the domination of the winner technology. The timely 

abandonment of eliminated technologies and making a commitment to exercise the selected 

technology in this stage can complete the successful course of action during this period. While 

Nikon had invested in the development of EUV technology early on, they did not keep their 

commitment to this expensive and ambitious technology, possibly due to the existence of other 
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options in their diversified business portfolio. Twenty years later- now- Nikon lost the majority 

of its market share to ASML, thanks to EUV technology. 

Our findings also highlight the importance of simple rules in making complex decisions 

under uncertainty in all these stages (Bingham & Eisenhardt, 2011). ASML relied on basic 

science and the two industry laws, Moore’s and Rock’s, and developed simple rules that 

governed its decision-making over complex technologies under uncertainty. ASML applied 

these simple rules in the examination of the hypothetical ultimate frontiers of each technology 

with respect to the resolution and the throughput. For instance, ASML convinced to drop the 

most advanced technology at that time, hard X-ray, as they did not see enough room for the 

extendibility of this technology. In hindsight, industry experts believe that if one of the EUV’s 

rival technologies had been selected, that technology could not have been extended enough to 

replace the continuously progressing optical lithography. One implication for the valuation of 

technological options in the era of ferment is that incumbents should consider the fundamental 

scientific attributes of technology to assess their long-term feasibility and extendibility, rather 

than their current performance. 

In addition, our findings offer novel insight into the boundary conditions of the real 

option perspective regarding the type of uncertainty in real option portfolios (Adner & 

Levinthal, 2004). Received research proposes that exogenous uncertainty is out of firm’s 

control and justifies a passive form of learning in which decision makers can wait to receive 

more information without the need to take a costly action (Chi et al., 2019, p. 541; Kulatilaka, 

1995). Therefore, a deferral option allows the decision makers to obtain new information 

without taking any specific actions that entail investments in time, effort, or money (Chi et al., 

2019). However, endogenous uncertainty can be resolved by the firm’s action over time and 

justifies an active form of learning, because the degree of uncertainty is a function of firm’s 

action to obtain more information (Chi et al., 2019; Cuypers & Martin, 2010). Therefore, a 
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sequencing option allows the decision makers to participate in active learning with a minimum 

required investment (Chi et al., 2019; Kogut, 1991) that to some extent violates the boundary 

condition of real option perspective (Adner & Levinthal, 2004). In sum, the level and type of 

uncertainty are crucial factors that determine the value of different types of real options. With 

this respect, we can elaborate on our observations regarding ASML’s decisions and actions 

toward technological options at both individual and portfolio levels. At the technology level, 

as the required resources for the viable options were not interchangeable, ASML evaluated the 

level of their uncertainties independently to set the level of its engagement in each technology. 

When the prospect of all technologies seemed relatively uncertain to ASML at the onset of the 

era of ferment, ASML engaged in all viable technological options. Later, when the promise of 

EUV increased, ASML increased its commitment toward EUV technology and entered into a 

new partnership with their long-term partners such as Zeiss, IMEC, and Philips, in addition to 

their membership in the EUV LLC consortium (Table 1). Moreover, they started considering 

the exit option in their agreements for less prospective particle-based options, E-beam and Ion-

beam technologies. This observation is aligned with a real option perspective and its 

applications in strategic management. Under exogenous uncertainty, ASML made the 

minimum possible commitment to all visible options; however, when more information 

revealed from the industry, they sequentially increased their investment in the most promising 

option to collect more information and establish their position; in addition, they considered 

abandoning the other options.   

While these technological options are individually independent, they are competing at 

the portfolio level. Received research suggests that when a firm forms a portfolio of competing 

options, the portfolio is sub-additive, as option investments overlap with one another (Vassolo 

et al., 2004). However, our findings suggest that the type of uncertainty and sub- or super-

additivity of a portfolio can be a function of relative size of portfolio to all available options. 
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First, while uncertainty about each individual option in the era of ferment can be considered 

exogenous, engaging in other options provides firm with timely information about the other 

competing options and reduces the uncertainty of the whole portfolio. Therefore, when the total 

number of options is limited, having multiple options, regardless to their competitiveness, 

might be super-additive, as it reduces the risk of improper actions and increases the total value 

of the portfolio. However, when the total number of options increases the cost of accessing to 

timely information outweighs its benefits, meeting the strict boundary condition of real option 

perspective regarding exogeneity of uncertainty. In other words, the sub-additivity or super-

additivity of a real option portfolio can be a function of the relative size of the portfolio with 

respect to the size of all the existing options. For example, ASML’s bet on E-beam technology 

was under exogenous uncertainty, as nobody could predict the next generation of technology 

on that time and as the ASML’s investment could neither reduce this uncertainty nor increase 

the success chance of particle-based technologies. However, ASML’s investment in the other 

viable options, such as EUV and Ion-beam, provided ASML with timely information about 

almost all technological options and turned exogenous uncertainty to endogenous one at least 

to a certain level.    

Moreover, when the portfolio size with respect to all options increases, the firm might 

be able to influence the overall uncertainty of its option portfolio. Hence, although it seems 

that competing option subsidizes the marginal value of each other at option level, the total value 

of an option portfolio might disproportionately increase. For example, ASML’s engagement in 

particle-based technologies not only initially helped ASML to hedge the risk of making the 

wrong technological choice, but also helped it to preempt other competitors to make use of 

these technological options and challenge ASML. In addition, being engaged in several options 

boost the ASML’s status as a technology leader in the industry and provided them with the 
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legitimacy that they needed to have a say in the selection process and to receive enough support 

in the development of the technology of choice. 

CONCLUSION 

This study shows how incumbent firms can prepare themselves to be actively engaged 

in the era of ferment and facilitate the domination of a new technology. Being prepared 

increases their chance to make the right decision at the right time, and ultimately maintain 

dominance in both the existing and the future technological regime. Choosing different R&D 

approaches with different levels of commitment for different technologies offers enough 

flexibility for incumbents to hedge decisions and minimize risks. Finally, the ASML story 

shows that deploying resources to focus on both existing and upcoming technologies can help 

maintain and even strengthen an incumbent’s position in the old technology, while 

simultaneously developing the new technological regime.  

ASML was not the only dominant Lithography OEM company in the industry, nor was 

it the only one active in multiple options and alliances. Both Canon and Nikon were investing 

in different alternative technological options, Canon was involved in X-ray, imprint and EUV, 

while Nikon invested heavily in both Prevail (a SCALPEL-like technology) and EUV. Indeed, 

there were several large Japanese consortia solely focus on the development of EUV 

technology and complementary infrastructure and capabilities around 2003. However, in the 

end, neither of these companies continued to invest in the long, expensive, and strenuous path 

that was needed to make EUV a reality. Now in 2020, EUV is finally getting a foothold in the 

market. VLSI, a prominent consultancy firm in the semiconductor industry, in October 2018 

called EUV a “30-year overnight success story”. It was a long and bumpy road taking much 

more effort, time, and investments than anybody could have anticipated, but it left ASML in 

the unique position of being the only player in the market that can provide clients with the 

technology they need in the years to come. 
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CHAPTER 5 

GENERAL CONCLUSION 

R&D alliance is a multifaceted phenomenon, in which various socio-technological 

mechanisms operate in the interaction of partner firms. This dissertation is composed of three 

studies to shed light on different dimensions of firms’ resources and performance in different 

forms of R&D collaborations. The findings of this dissertation have theoretical and practical 

implications with respect to the boundaries of R&D alliances. The findings of the first study 

suggest that dyadic R&D alliances are the proper vehicles to learn from the different problem-

solving attitudes or cognitive map of alliance partners rather than acquiring their knowledge in 

new domains. The findings of the second study demonstrate that the performance consequences 

of diversity at alliance and firm levels are not necessarily aligned in multi-partner alliances, so 

some partners can benefit more than others, even when the alliance partnership on the whole 

is deemed unsuccessful. Finally, the findings of the last study shed light on the legitimacy 

acquisition and timing privilege to navigate the dynamics of technology change as the critical 

dimensions of alliance performance. These three studies tie together to the extent that they 

clarify the complex dynamics that exist between individual firms and their alliance partners in 

order to realize individual and joint value. In general, this dissertation contributes to the 

strategy and technology management literature by elucidating the less-explored dimensions of 

the firm’s resources and performance in R&D collaborations. In the following, I summarize 

the main findings of each individual study in this dissertation.     

The second chapter - Cognitive distance dimensions and inter-firm learning: 

Knowledge domain and knowledge architecture distance- revisits the central argument of 

interorganizational (IOR) literature for inter-firm learning mechanisms in R&D alliances. This 

study, in contradictory to extant research findings, shows that firms mainly learn from new 
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combinations of already known knowledge domains, rather than knowledge in new domains. 

This study offers a deep insight into the inter-firm learning mechanisms in R&D alliances and 

underlines the boundary of R&D alliances with respect to knowledge transfer and inter-firm 

learning. The reconceptualization of cognitive distance based on two distinct dimensions, 

knowledge domain and knowledge architecture, extends this concept. This extended and 

theoretically rich concept can cover all the different proposed concepts to address the difference 

between firm’s knowledge, such as knowledge overlap (Mowery et al., 1996), knowledge 

distance (Gilsing et al., 2008), and knowledge diversity (Sampson, 2007) under one umbrella.  

The third chapter - Multi-partner R&D alliance diversity and innovation performance: 

The dilemma of value creation and value appropriation - studies the innovative consequences 

of three dimensions of R&D consortia diversity with respect to the locus of resources: within-

firm, between-firm, and across the global network. Findings show that diversity within each of 

these dimensions in multilateral entities such as a multi-partner R&D alliance has an inverted 

U-shape relation with the total created value, but that resource-rich firms capture most of this 

value.  

This study advances alliance research by shedding light on the complexity of 

multipartner collaboration as well as the disparity between value creation and appropriation. 

This study contributes to the longstanding stream of strategy research on the performance 

consequence of diversification strategy (Rumelt, 1982; Montgomery, 1985; Markides & 

Williamson, 1996; Jiang et al., 2010; Richter et al., 2017; Ahuja & Novelli, 2017). In the 

context of multi-partner alliances, as collective and voluntary organizational associations, the 

diversification is a consequence of the initial decision of firms at the time of alliance formation, 

as well as the decision of firms to stay, leave, and invite or accept the new partners during the 

alliance. The findings show that diversity in different types of resources leads to distinct rent 

variation at both MPA and firm levels. My findings also contribute to the understanding of 
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value creation and appropriation mechanisms of MPAs by taking into account the underlying 

mechanisms of both the value creation at MPA level and the value appropriation at the firm 

level in the same study. On one hand, the value creation is a function of firms’ contributed 

resources to MPA as well as the dynamics of cooperation and coordination of firms in their 

mutual effort (Gulati et al., 2012; Gulati, 1998). On the other hand,  the value appropriation 

depends to the value of a firm’s contribution, the relevancy of its resources, its status and 

power, and its brokerage position (Adegbesan & Higgins, 2011; Dyer et al., 2008; Lavie, 2006; 

Lavie et al., 2007). These findings show the divergence of these two mechanisms at MPA and 

firm levels in such a way that value creation in MPAs alongside with diversification in each 

dimension is not compatible with the value appropriation in partner firms. In simple words, 

what is beneficial for alliance is not necessarily beneficial for all partner firms.       

On another note, my empirical approach in the identification of the technological scope 

of alliances in both studies is novel. I analyzed the technical content of each alliance agreement 

and took that part of a firm’s knowledge into account that has fallen in the knowledge category 

of alliance technological scope. This approach minimizes the noise of attributing knowledge 

domains to the alliances that have never been used or created in alliances, particularly in large 

companies that have a very wide knowledge breadth and use different knowledge sourcing 

instrument (Sampson, 2007). This approach can be widely applied to research on firms’ 

activities within specific technological scope, particularly if it is incorporated with machine 

learning techniques to improve its accuracy and replicability.  

The fourth chapter -Incumbent success in the era of ferment: Navigation of 

intergenerational transition of lithography technology within ASML- addresses how incumbent 

firms can leverage R&D collaborations to influence the process of technological change. This 

study shows how incumbent firms can actively engage in and facilitate the process of 

technology transition, in a way to maintain their dominance in both the existing and the future 
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technology. The findings show that timely commitment and abandonment in different 

technological options via R&D collaborations enable incumbents to not only manage the 

underlying uncertainty of decision making in this transition, but also navigate this process.  

My findings offer significant insight into the dynamics of the era of ferment and the 

course of an incumbent’s action in this era. My detailed examination of the technological 

selection process in the era of ferment uncovers its underlying socio-technological mechanisms 

and contributes to the evolutionary perspective on technological change (Dosi, 1982; Dosi & 

Nelson, 2013). My observations show that the selection mechanism is ‘eliminative’. That is, 

rather than the triumph of one technological option over the others in such a technological 

contest, alternative options are fading away one by one by losing the required support and 

legitimacy for further development from the experts and investors. This observation is also in 

line with the evolutionary theory in which the survival of the fittest implies the extinction of 

failures.  

My findings also contribute to real-option theory. I matched the life cycle of real options 

with the stages of the era of ferment to investigate the rationale of a successful incumbent’s 

action at each stage, a rare opportunity to elaborate on the real option reasoning in such detail. 

My observation on the application of simple rules in the lack of reliable valuation signal to get 

through the whole lifecycle of real options is informative. My findings also offer an insight 

into the underlying dynamics of real option portfolio management. Received research suggests 

that when a firm forms a portfolio of competing options, the portfolio is sub-additive, as option 

investments overlap with one another (Vassolo et al., 2004). This study shows that when the 

total number of options is limited, having competitive options might be super-additive, as it 

significantly reduces the risk and increases the total value of the portfolio. In other words, the 

sub-additivity or super-additivity of a real option portfolio can be a function of the relative size 

of portfolio with respect to the size of all the existing options. When the portfolio size in 
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comparison to all possible options increases, the firm might be able to influence the total risk 

of its option portfolio. Hence, although it seems that at the option level competing option 

subsidizes the marginal value of each other, the total value of portfolio options might 

unproportionally increase. These findings have direct implication in alliance portfolio 

literature. 

Finally, the timing of acquisition or investment in technological options is very crucial 

in the management of real option portfolios in the era of ferment. There is a sweet spot in the 

timing of the acquisition and exercise of options. Investments in each option should not be too 

early, to impose not heavy research investment, but it should not also be too late to let the 

competitors take the option and leverage it to challenge the other options. In addition, the 

timing of abandonment give the chance to influence the social side of technology selection 

process, when the industry actors perceive it as a strong signal to accelerate the elimination 

procedure. This is a good example that shows how the abandonment of an option, or 

termination of an alliance, can increase the total value of a portfolio of options, or alliances.  

LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

Naturally, this research has several limitations. In the first two studies, chapter 2 and 3, 

I used archival data and employed quantitative analysis. In the third study, chapter 4, I studied 

a single case and ran a qualitative analysis. First, the alliances examined in the first two studies 

are those pertaining to R&D alliances, and although my argumentation is general and can apply 

to all types of alliances, there is a cautious in the generalizability of these findings to the other 

types of alliances (e.g., marketing, manufacturing, and supply chain). Second, I used patents to 

develop my main measures; however, the accuracy of patents to represent firm’s knowledge 

and inter-firm learning is questionable (Roach & Cohen, 2013). Finally, the fourth chapter is a 

single case study in a specific context of lithography technology in late 90’s. In this context, 
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there was a general belief that industry should collectively find a solution for the next 

generation of technology. This condition may not hold in technology transition in more 

fragmented industries, so generalization of findings should be considered with caution. These 

findings would need to be replicated to examine the boundary of transitions that allows the 

successful proactive engagement of incumbent firms.  

Future research may extend these studies in both theoretical and empirical aspects. 

From the theoretical point of view, I distinguished between two inter-firm learning 

opportunities in the second chapter. This approach invites future research to revisit knowledge 

sourcing strategies of firms. This study suggests that R&D alliances mainly provide 

opportunities to learn knowledge architecture rather than knowledge domain. Future studies 

may examine the other forms of knowledge sourcing such as M&A with this respect: which 

knowledge sourcing mode provides which learning opportunity.  

With respect to the third chapter, further studies are needed to understand better the 

complexity of configuration and dynamics of value creation and appropriation in MPAs. MPAs 

appear in different forms and I only focus on one form (i.e., R&D collaboration) in this 

research. Investigating the configuration and dynamics of the other forms of MPAs may 

improve the general understanding about this phenomenon. Future research might also take 

into account the other types of performance to improve the theoretical and empirical 

understanding of dynamic of value creation and appropriation in MPA. This research addresses 

the performance of MPAs in a specific context with elaboration on the alliance scope. 

However, it is necessary to develop a systematic examination of alliance performance measures 

at the alliance level, rather than at the common focal firm level. Finally, my approach to 

systematically examine the diversity in the context of multi-partner alliances can apply to other 

relevant phenomena such as alliance portfolios and corporate firms.  
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The fourth chapter calls for further research on the proactive actions of incumbent firms 

in the era of ferment. While the current research has extensively studied the success and failure 

of incumbent firms to adopt new technology, the underlying mechanisms and conditions of 

proactive actions of incumbent firms are relatively under explored. In addition, my contribution 

to real option perspective suggest that we need more empirical analysis to examine the 

boundary conditions of sub- vs super- additivity of real option portfolios as well as the 

boundaries between endogeneity and exogeneity in real options. These questions are directly 

applicable to the context of alliance portfolio studies.    

The goal of this dissertation was to provide insight into the multidimensionality of 

resources and the underlying socio-technological mechanisms of R&D collaborations. 

Answering the underlying research questions leads to novel insights and contributions to the 

extant literature. Nevertheless, numerous questions for future research remains.
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