
  

 

 

Tilburg University

Model selection techniques for sparse weight-based principal component analysis

de Schipper, Niek; Van Deun, Katrijn

Published in:
Journal of Chemometrics

DOI:
10.1002/cem.3289

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
de Schipper, N., & Van Deun, K. (2021). Model selection techniques for sparse weight-based principal
component analysis. Journal of Chemometrics, 35(2), [e3289]. https://doi.org/10.1002/cem.3289

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420849708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/cem.3289
https://research.tilburguniversity.edu/en/publications/65dae8ab-2aa9-4e96-9b66-dfbd4738c080
https://doi.org/10.1002/cem.3289


S P E C I A L I S S U E - R E S E A R CH AR T I C L E

Model selection techniques for sparse weight-based
principal component analysis

Niek C. de Schipper | Katrijn Van Deun

Department of Methodology and
Statistics, Tilburg University, Tilburg,
Netherlands

Correspondence
Niek de Schipper, Department of
Methodology and Statistics, Tilburg
University, Tilburg, Netherlands.
Email: n.c.deschipper@uvt.nl

Funding information
Nederlandse Organisatie voor
Wetenschappelijk Onderzoek, Grant/
Award Number: NWO-VIDI 452.16.012

Abstract

Many studies make use of multiple types of data that are collected for the same

set of samples, resulting in so-called multiblock data (e.g., multiomics studies).

A popular analysis framework is sparse principal component analysis (PCA) of

the concatenated data. The sparseness in the component weights of these

models is usually induced by penalties. A crucial factor in the use of such

penalized methods is a proper tuning of the regularization parameters used to

give more or less weight to the penalties. In this paper, we examine several

model selection procedures to tune these regularization parameters for

sparse PCA. The model selection procedures include cross-validation, Bayesian

information criterion (BIC), index of sparseness, and the convex hull

procedure. Furthermore, to account for the multiblock structure, we present a

sparse PCA algorithm with a group least absolute shrinkage and selection

operator (LASSO) penalty added to it, to either select or cancel out blocks of

data in an automated way. Also, the tuning of the group LASSO parameter is

studied for the proposed model selection procedures. We conclude that when

the component weights are to be interpreted, cross-validation with the one

standard error rule is preferred; alternatively, if the interest lies in obtaining

component scores using a very limited set of variables, the convex hull, BIC,

and index of sparseness are all suitable.

KEYWORD S

model selection, multiblock data, sparse PCA

1 | INTRODUCTION

Many studies make use of multiple types of data that are collected for the same set of samples, resulting in so-called
multiblock data.1 Examples include multiomics studies in which the same set of samples is profiled using different
molecular assays such as mRNA expression, DNA methylation, DNA copy number, and somatic mutation data; see
Wang et al.2 for a multiomics study of breast cancer and Reinke et al.3 for a joint analysis of six different data blocks col-
lected from 22 individuals from an asthma cohort. Another example is multimodal studies that use different magnetic
resonance imaging (MRI) modalities (e.g., anatomical, diffusion, and resting state functional magnetic resonance), for
example, to study the same group of Alzheimer patients.4 Each of the data blocks gives a partial view of the complex
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system under study. A full understanding of how the system works requires to understand both the drivers of the sys-
tem that operate independently and those that operate only by concerted action. At the level of the data, this means that
insight is needed in the relations between variables both within and between the data blocks: components of the system
that work independently will show up as variation that is determined by the variables of a single block only whereas
those components that work by concerted action will show up as variation that is determined jointly by variables linked
throughout the blocks. A particular challenge in studying the jointly and individually determined variation is the need
to automatically select variables that are of interest; not only to ease interpretation but also because data are often col-
lected in an untargeted way and one of the primary aims of the data analysis is to hint at variables that may be key
players in the process under study.5 This is of particular relevance when using high-throughput approaches resulting in
thousands of measured variables.

Following the strong rise of multiblock data in many disciplines, several integrative methods for exploratory data
analysis have been put forward including clustering and dimension reduction techniques and combinations thereof;
see, for example, the review by Ment et al.6 Among the dimension reduction techniques, a number of methods that
model joint and individual variation, also called common and distinctive latent variables or components, have been
proposed.7,8 Some of these methods perform variable selection9-11 by adding a least absolute shrinkage and selection
operator (LASSO) penalty to the objective function.12 This penalty has the property to shrink the estimates to zero,
some exactly with the implication that that variable does not contribute (e.g., a zero regression weight means that the
predictor does not contribute to the prediction, and a zero component weight does mean that the variable does not con-
tribute to the component). The use of such penalties that introduce zeros in the estimates is the current state of the art
in variable selection. The main reasons for the popularity of penalties over subset selection methods such as best subset
selection are better stability of the penalized regression model12 and their computational efficiency (e.g., compared with
calculating the solutions for all possible subsets of variables13). A popular framework for the analysis of multiblock data
is sparse principal component analysis (PCA) (in the multiblock case also known as sparse simultaneous component
analysis [SCA]14); this framework will be the focus of the current paper.

A crucial factor in the use of penalized methods is the tuning of the regularization parameters used to give more or
less weight to the penalties. In practice, the amount of sparseness in the data and the number of common and
distinct components are not known beforehand. Hence, to make good use of penalized PCA approaches, model
selection tools are needed to determine the strength of the LASSO and group LASSO penalties. In the context of sparse
PCA, a few methods have been put forward to address this issue: these include popular solutions such as cross-
validation (CV)15 and the Bayesian information criterion (BIC)16,17 but also less known alternatives such as the index of
sparseness (IS)18,19 and the convex hull (CHull) procedure.20,21 A comparison of these methods in the context of sparse
PCA misses.

In this paper, we will discuss and evaluate several existing model selection procedures to select proper values of the
tuning parameters used in sparse PCA. Furthermore, we will extend sparse PCA with a group LASSO penalty22 to
model the common and distinct variation, by selecting at the level of the data blocks. The main focus of the paper will
be on comparing several model selection procedures with respect to finding those values of the tuning parameters that
yield the correct structure of the data, that is, selecting the right set of variables both in the single block setting and in
the multiblock setting with common and distinct variations. The following model selection procedures, and adaptations
thereof, will be discussed: CV with the eigenvector method,15 BIC,16,17 CHull,21 and the IS.18,19 We will examine these
model selection procedures because they are readily available from the existing literature and can be used to estimate
metaparameters for the weight-based PCA model with little to no modification of the original propositions. For sparse
PCA, we will examine these model selection procedures in a simulation study with a single block of data (the most
common case where all variables are assumed to represent one unit of interest). For sparse SCA, we will examine the
procedures by making use of multiblock data (several sets of variables are available for the same cases with variables
within one set representing a unit of interest). In the multiblock case, we will assess whether the model selection proce-
dures produce a final model that correctly identifies the joint and individual structure of the components. In order to
inform the analysis of the block structure of the variables, we implemented the group LASSO penalty in a blockwise
fashion, to either select or cancel out blocks of data in an automated way.

The remainder of the paper is structured as follows: first, we will introduce sparse PCA with the LASSO penalty and
its extension to the multiblock setting including a group LASSO penalty. Second, we will discuss several existing or
adapted model selection procedures for tuning the LASSO and group LASSO penalty in sparse PCA. Third, we will
examine these model selection procedures in the case of single and multiblock data in a simulation study. Lastly, we
conclude with a discussion.
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2 | SPARSE PCA FOR SINGLE AND MULTI-BLOCK DATA

In this section, we will introduce the notation and give a brief introduction to sparse PCA. Then we will discuss the
extension to the multiblock setting and introduce the group LASSO penalty to account for common and distinct
variation.

We will make use of the standardized notation proposed by Kiers23: bold lowercase and uppercases will denote vec-
tors and matrices, respectively; the superscript “T” denotes the transpose of a vector or matrix, and a running index will
range from 1 to its uppercase letter (e.g., there is a total of I cases where i runs from i= 1,… , I).

Given is a data matrix X that contains the scores for I observations on J variables; we follow the convention to pre-
sent the J variable scores of observation i in row i and thus X has size I × J. PCA decomposes the data into
Q components, as follows:

X=XWPT +E

subject toPTP= I,
, ð1Þ

where W is a J ×Q component weight matrix, P is a J ×Q loading matrix, and E is a I × J residual matrix. Often, the
model is presented using the notation T for the component score matrix that results from the linear combinations
shown explicitly in XW. In this type of representation of the PCA model, interpretation is usually based on the load-
ings. Yet an attractive property of the PCA formulation in (1) is that it explicitly shows how the variables contribute to
the construction of the components: the meaning of the components scores tiq =

P
j
xijwjq can be derived by inspecting

what variables are weighted together to form the components; see de Schipper and Van Deun11 for a further discussion
of weights versus loadings. Automatic selection of variables that contribute to the component scores can be obtained by
penalizing W in the least squares problem that is typically solved to obtain suitable estimates for the component
weights and loadings. This leads to the following penalized least squares problem: minimize with respect to W and P

LðW,PÞ= kX−XWPTk22 + λLkWk1 + λRkWk22
subject toPTP= I

, ð2Þ

with kWk1 =
P
j,r
jwjqj the LASSO penalty (tuned by λL≥ 0) and kWk22 =

P
j,r
w2
jq the ridge penalty, also known as Tikhonov

regularization (tuned by λR≥ 0). The objective function in Equation (2) has been popularized by Zou et al.24 As pointed
out there, the inclusion of a ridge penalty is needed in the high dimensional setting, and this has J> I; the combination
of LASSO and ridge is known as the elastic net.

The decomposition in (1) can be extended to the case of multiblock data by taking X= [X1,… ,XK]; this is
concatenating the K data blocks composed of different sets of variables for the same observation units. The decomposi-
tion of X has the same block structured decomposition with W= ½WT

1 ,…,W
T
K �T and P= ½PT

1 ,…,P
T
K �T . This multiblock

formulation of PCA is known as SCA.
25

Also in the multiblock case, W can be penalized to obtain sparse weights, and
we will call this variant sparse SCA. When analyzing multiblock data with sparse SCA, we can search for blockwise
structures in the component weights that tell us whether a component is uniquely determined by variables from one
single data block (distinctive component), or whether it is a component that is determined by variables from multiple
data blocks (common component). In other words, a distinctive component is a linear combination of variables of a par-
ticular data block only, whereas a common component is a linear combination of variables of multiple data blocks. An
example of common and distinctive components in the situation with two data blocks is given below. The first two com-
ponents are distinctive components, and the third component is a common component:

T= X1 X2½ � W1

W2

� �
= X1 X2½ �

0 w112 w113

0 w212 w213

0 w312 w313

w121 0 w123

w221 0 w223

w321 0 w223

2666666664

3777777775
:
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In total, there are ð2K −1Þ+Q−1
Q

� �
possible combinations of common and distinctive components. There are 2K− 1 states

for each component (minus one to exclude components with only zero weights), and each of these specific states can be
assigned to each of the components where the ordering does not matter. Therefore, counting all possible common and
distinct configurations for Q components takes on the form of unordered sampling with replacement.

In the work of de Schipper and Van Deun,11 the challenge of finding the right sparse block structure for the compo-
nent weight matrix was handled by an exhaustive approach, examining all possible common and distinctive structures.
If the number of components and blocks is not too large, calculating all possible models is feasible. However, if the
number of blocks and components is large, it is not and can be expected to yield highly variable results (as is the case
with the best subset selection method for variable selection). Another option to perform selection at the level of the
blocks is to add a group LASSO penalty to the PCA objective; see Jenatton et al.,26 Deun et al.,14 and Erichson et al.27

for similar proposals. Let wðkÞ
q denote the component weights of the variables of block k in component q. To have selec-

tion at both the level of the blocks and within blocks, the following penalized least squares criterion can be used:

LðW,PÞ= kX−XWPTk22 + λLkWk1 + λRkWk22 + λG
P
q,k

ffiffiffiffiffi
Jk

p kwðkÞ
q k2

� �
subject toPTP= I:

ð3Þ

Hence, the group LASSO is tuned by λG≥ 0 with sufficiently large values resulting in components that are based on
a linear combination of variables of just one or a few data blocks. To find estimates that minimize Equation (3) under
the constraint of orthonormal component loading vectors, we rely on an alternating procedure that yields a non-
increasing sequence of loss values thus converging—in practice—to a fixed point. The details of this numerical routine
are discussed in Appendix (A0.1). Importantly, the numerical procedure only optimizes with respect to the component
weights and loadings and thus needs fixed values for the number of components and the tuning parameters of the pen-
alties. How to obtain suitable values for λL, λR, and λG is the main topic of this paper.

3 | MODEL SELECTION PROCEDURES FOR SPARSE PCA

In this paper, we will discuss several model selection techniques for the selection of the penalty tuning parameters.
These methods are CV with the eigenvector method,15 the BIC,16,17 CHull21, and the IS.18,19 These model selection tech-
niques have been previously proposed in the context of PCA, some also in the context of sparse PCA as defined here;
this is with penalties on the weights. The application of these methods to sparse SCA with a group LASSO penalty is
novel. A thorough comparison of these methods—for both sparse PCA and SCA—is lacking.

3.1 | CV with the eigenvector method

In the context of PCA, CV can be applied in several ways; a discussion and comparison with respect to selecting the
number of components for the X=TPT model can be found in Bro et al.15 In that comparison, the best performing
method was CV with the eigenvector method; de Schipper and Van Deun11 discussed the method in the context of
sparse SCA to determine the value of the LASSO and ridge tuning parameters. Let (− j) denote that (the coefficients of)
variable j are removed. Following Bro et al. and de Schipper and Van Deun, given a number of components Q, to deter-
mine the value of a tuning parameter λ, the method then works as follows1:

1. Divide the sample into K folds each of size Ik.

2. Leave out the kth fold and calculate Ŵ and P̂ on the remainder given a set of tuning parameters λ.

3. For the left-out samples in the kth fold i= 1,… , Ik, for variables j= 1,… , J,

(a.) Estimate the score as tð− jÞ
i = xð− jÞT

i Ŵ
ð− jÞ

.

1Note that here K is used to denote the number of folds used in the CV procedure and not the number of data blocks
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(b.) Estimate xij as x̂ij = tð− jÞ
i p̂T

j , where p̂j is the jth row of P̂.

(c.) Find the prediction error of the element xij by taking eij = xij− x̂ij.

4. Calculate the mean squared error of the kth fold, dMSEðλÞk = 1
IkJ

PIk
i

PJ
j e

2
ij.

5. Repeat 2 and 3 for each fold and calculate the overall mean squared error,

dMSEðλÞ= 1P
Ik

XK
k=1

Ik dMSEðλÞk: ð4Þ

The standard error of Equation (4) is obtained by taking the sample standard deviation of dMSEðλÞ1 ,…, dMSEðλÞK
divided by

ffiffiffiffi
K

p
(see, e.g., Gordon et al.28). Typically, the data are split into K= 10 folds of (approximately) equal size,

which we will also do in the current paper. The attractive features of CV with the eigenvector method are that it is rela-
tively fast to perform and that the estimated data x̂ij are obtained independent of the data used to construct the model.
For more detailed information, we refer the reader to Bro et al.15

The model with the lowest MSE is chosen as the best model. CV tends to select models that are too complex; there-
fore, the one standard error rule was developed.29 The one standard error rule selects the set of tuning parameters that
lead to the least complex model, still within one standard error of the best model. In this paper, we will examine the
models chosen according to the best (this has the lowest MSE) and the one standard error rule.

3.2 | The BIC

Let RV be the residual variance resulting from the PCA decomposition with Q components,

RV = kX−XŴP̂
Tk22: ð5Þ

Likewise, let gRV denotes the residual variance for a given a model with a specific λ and Q. Following Guo et al.16

and Croux et al.,17 the BIC for a set of tuning parameters λ and given the number of components Q is then given by

BICðλÞ=
gRV
RV

+ df ðλÞ logðIÞ
I

, ð6Þ

with df(λ) the number of nonzero weights in Ŵ. The optimal set of λ values is then defined as the set of λ's that results
in the model with the lowest BIC.

3.3 | CHull: A convex hull-based model selection method

CHull,21 also known as L-curve (see, e.g., Hansen and O'Leary30), is a generic model selection procedure that aims at
striking an optimal balance between the goodness-of-fit/misfit and model complexity. As stated by the authors: “The
CHull procedure consists of (1) determining the convex hull of the fit-measure-by-complexity-measure plot of the
models under consideration and (2) identifying the model on the boundary of the convex hull for which it is true that
increasing the complexity (i.e., adding more parameters) has only a small effect on the fit measure, whereas lowering
complexity (e.g., dropping parameters from the model) changes the goodness of fit (or, respectively, the misfit) substan-
tially.”21, p. 2 In this application of CHull, we will use the variance accounted for (VAF) as a goodness-of-fit measure:

VAFλ =
kXŴP̂

Tk22
kXk22

: ð7Þ
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This is the goodness-of-fit measure that the authors originally used in their application of CHull as a method to
determine the number of components in PCA. In our example, we will also make use of the dMSEðλÞ as a goodness-of-
fit measure; that is, the MSE values we obtain from the CV procedure as described before; see Equation (4). Our motiva-
tion is that VAFλ is subject to overfitting and gives a downward biased estimate of the error. For the complexity mea-
sure, we use the number of nonzero weights in Ŵ. The models are selected using the multichull package.31

3.4 | Index of sparseness

According to Gajjar et al.18 and Trendafilov et al.,19 the IS given by

ISðλÞ=VAFpca ×VAFλ ×
df ðλÞ
JQ

, ð8Þ

where df(λ) is defined as previously; the VAFpca is given by Equation (7) with Ŵ and P̂ resulting from the PCA decom-
position with Q components and all λ= 0; and VAFλ is also given by Equation (7) but with Ŵ and P̂ resulting from
PCA with Q components and a set of regularization parameters λ≥ 0. The IS increases with goodness of fit and the
sparseness of the solution. The (combination of) value(s) of the tuning parameter(s) λ that result(s) in the model with
the largest IS is picked as the optimal value(s).

4 | SIMULATION STUDIES

The model selection techniques are assessed under different conditions by means of a simulation study. First, we will
discuss the case of a single block of data with an unstructured sparsity pattern, and then we will discuss the case of mul-
tiblock data with structured sparsity resulting in common and distinct variation.

4.1 | Single-block data

In the simulation study, we kept the number of variables fixed to J= 50 and the number of components to Q= 3. The
study included the following design factors:

• The number of observation units I: 25 , 50, and 100.
• The level of sparseness (percentage of the—in total JQ= 150 weights—that are equal to zero): 30% and 80%.
• The noise level: 5% and 20%.

The design is fully crossed, resulting in 3 × 2 × 2 = 12 design cells. For each design cell, 50 data sets were simulated.
The generation of the data is detailed in Appendix (A1.0.2). The resulting data were analyzed using an implementation
of Algorithm (1) (see the Appendix) in the R software for statistical computing.32 Algorithm (1) is freely available in R32

and downloadable from github.com/trbKnl. Each data set was analyzed using a 50 × 10 grid of LASSO and ridge pen-
alty tuning parameters. For the ridge, a sequence of 10 values equally spaced on the interval ln0 to ln500 was used and
for the LASSO 50 equally spaced values on the same interval. Note that the values were back-transformed to the range
0–500. For each obtained (sparse) PCA model, the model selection statistics were calculated, and a best model was
obtained for each of the six model selection methods. The chosen models according to the model selection criterion
were then evaluated by looking at the following performance measures:

• The similarity between the true model matrix W and the estimated Ŵ. We use Tucker congruence between the vec-

torized version of W and Ŵ to measure the similarity. The Tucker congruence (also known as cosine similarity) is
defined as the cosine of the angle between two vectors. If the two vectors share no similarity, they are orthogonal,
and the Tucker congruence will be 0. If the vectors are linearly dependent, that is, perfect similarity, the angle
between these two vectors is 0 and the Tucker congruence will be 1.
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• The percentage of correctly identified zero weights, calculated as the percentage of zero weights in the true matrix
that are recovered as a zero weight in the estimated matrix.

• The percentage of correctly identified nonzero weights, calculated as the percentage of nonzero weights in the true
matrix that are recovered as a nonzero weight in the estimated matrix.

4.1.1 | Results

The results of the simulation study for the single block data are summarized in Figures 1 and 2. Figure 1 shows the
Tucker congruence coefficient for the different model selection methods. Usually, a threshold of 0.85 is rec-
ommended.33 In the condition where the sparsity is 80%, only 10-fold CV, 10-fold CV with the one standard error rule,
and CHull with the MSE often attain Tucker congruence values above the threshold value of acceptable similarity.
Interestingly, CHull with MSE performs well, whereas this is not the case for the CHull badness-of-fit measure previ-
ously used in the literature. In the conditions were the sparsity is 30%, only 10-fold CV and 10-fold CV with the one
standard error rule attain Tucker congruence values above 0.85. This means that the BIC, IS, and the CHull with VAF
procedures result in models where the estimated component weights are too dissimilar from the true component
weights. When the true underlying models are very sparse (the conditions with 80% of sparsity), the procedures in gen-
eral perform better.

Because the Tucker congruence coefficient is relatively insensitive to whether the correct status of the weights
(i.e., zero or nonzero status) is estimated back, we also inspect whether the model selection procedures result in models
that select the right subset of variables. The results are summarized in Figure 2. Three patterns can be discerned. First,
CV finds almost 100% of the nonzero weights yet recovers very few of the zero weights; this confirms that CV is known
to yield too complex models. Second, the IS, BIC, and CHull with VAF show the opposite behavior and favor very sparse
models, which results in good recovery of the zero weights at the expense of recovering very few of the nonzero weights.
Third, CV with the one standard error rule yields a high percentage of recovery for both the zero and nonzero weights.

FIGURE 1 The Tucker congruence coefficient between W and Ŵ for the various model selection procedures. The dashed line indicates

a threshold value of 0.85 used as a cut-off for fair similarity. In each condition, 50 replicate data sets were used. The boxplots display the

median and upper and lower quartiles
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It may seem surprising that most of these model selection techniques perform badly while having showed good per-
formance in the literature with sparse loadings (e.g., Gu et al.34). This can be explained by the fact that—for the
reconstruction of the data—the component scores and the loadings matter while the component weights play an indi-
rect role. The component weights enter in the construction of the scores: T̂=XŴ. As long as the scores are recovered
well, the data are reconstructed well. This is the case for the data here: Tucker congruence between T̂ and T is larger
than 0.85 for the bulk of the selected models with each of the model selection procedures; see Figure 3. This in fact
means that the component scores themselves can be retrieved rather well without the need of having to estimate that
many nonzero weights. Hence, model selection procedures that balance fit with the number of nonzero coefficients
result in very sparse models. This implies that few weights actually need to be estimated in order for the model to attain
a good fit.

FIGURE 2 The percentage of correctly classified weights in Ŵ, for the various model selection procedures. For good recovery, both the

percentage of correctly classified nonzero and zero weights should be high. The boxplots display the median and upper and lower quartiles
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4.2 | Multiblock data

In this simulation study, we assess the performance of the model selection criteria for the case of multiblock data that
have structured sparsity; that is, we assume the component weights to have a common and distinctive structure. Here,
particular interest will be in evaluating whether the model selection methods recover the common and distinctive
structure.

4.2.1 | Simulation study design

The data that will be analyzed in this simulation study consist of two data blocks (X= [X1 X2]) each with 25 variables.
The structure imposed on the data is Q= 3 components with two distinctive components and one common component.
The study includes the following design factors:

• The number of samples I: 25 and 100.
• The level of sparseness in the nonzero blocks in the columns of W: 30% and 80%.
• The noise level: 5% and 20%.

The design was fully crossed, resulting in 2 × 2 × 2 = 8 design cells. For each design cell, 50 data sets were generated.
The details of the data generation scheme used can be found in Appendix A1.0.2. The data were analyzed with Algo-
rithm 1 for a grid of LASSO, group LASSO, and ridge tuning parameters. The sequences of the ridge, LASSO, and group
LASSO parameters are given by a sequence from 0 to 500 of length 10 on the natural log scale for each of the three tun-
ing parameters. The chosen model according to the model selection criteria is then evaluated by looking at the follow-
ing performance measures:

• Tucker congruence coefficient.
• Whether the two distinctive components are estimated back (i.e., all weights in the zero segments are estimated as

zero),
• Whether the common component is estimated back (i.e., at least one nonzero weight in each data block).

FIGURE 3 The Tucker congruence coefficient between T and T̂ for the various model selection procedures. The dashed line indicates a

threshold value of 0.85 used as a cut-off for fair similarity. In each condition, 50 replicate data sets were used. The boxplots display the

median and upper and lower quartiles
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4.2.2 | Results

The results of the multiblock simulation study are summarized in Figure 4 and Tables 1 and 2. In Figure 4, the Tucker
congruence coefficients are displayed; these mainly show low congruence; this is below the threshold of 0.85, except for
the two CV procedures. Also here, as was the case in the single block simulation, the low Tucker congruence coeffi-
cients are caused by most model selection procedures having put too many weights to zero, compared with the actual
number of zero weights. Compared with the first simulation, Tucker congruence is a bit higher because the distinctive
components induce higher levels of overall sparsity, meaning that the true model is more sparse and thus supportive of
selection methods that favor higher levels of sparsity.

We now turn to the question whether the model selection methods recover the common and distinct components.
Table 1 summarizes whether the common component is identified for the different model selection procedures, that is,
whether at least one nonzero component weight within each block was retained. Table 2 summarizes whether the dis-
tinctive components are identified by the different model selection procedures (i.e., whether all weights of the block not
making up the component are set to zero). Together, these tables show the same patterns previously observed for the
single block simulation study: CV favors complex models, which results in defining most components as common and
not finding the distinctive components; the BIC, CHull-VAF, CHull-MSE, and the IS estimate models that are too
sparse and hence declare most components to be distinctive at the expense of the common components; again, only
10-fold CV with the one standard error rule accurately estimates the sparsity, both within and between blocks.

To decide on which method is best on the basis of combining the identification rates for the common and distinct
components, we used sum of ranking differences (SRD) scores and summarized these in a plot. SRD scores are a con-
sensus decision making tool for situations with multiple optimality criteria35 (for further reading, also see Héberger36).
Here, the scores are based on rankings of the model selection procedures on the basis of the identification rates for com-
mon (see Table 1) and distinctive (see Table 2) components. For further details on how to obtain the SRD score, we
refer to Lourenco and Lebensztajn.35 The SRD scores are summarized in Figure 5 with lower scores indicating better
overall performance of the method. The gray solid curve denotes the cumulative distribution of SRD scores on the basis
of a random ranking of the methods on the different optimality criteria (we relied on an approximate distribution). In
the plot, the score corresponding to the 0.05 smallest SRD scores for the randomly ranked methods is indicated: this is

FIGURE 4 The Tucker congruence coefficient between W and Ŵ for the various model selection procedures in the case of multiblock

data. The dashed line indicates a threshold value of 0.85, which indicates fair similarity. In each condition, 50 replicated data sets were used.

The boxplots display the median and upper and lower quartiles
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our chosen cut-off for significance with methods having higher scores being considered to not perform consistently bet-
ter on each of the optimality criteria than based on a random ranking. It can be observed that only 10-fold CV with the
one standard error rule falls (just) below the cut-off, indicating that it is all-round better than the other methods. The
other model selection procedures do not consistently perform better.

For the interested reader, we will provide an example of the analysis of multiblock data making use of Equation (3)
in the next section.

5 | EMPIRICAL EXAMPLE: HERRING DATA

We will now provide an illustrative example where we analyze a data set on salted herring samples using sparse
weight-based SCA. The data set on salted herring consists of two blocks, each containing a specific set of variables on
21 herring samples with the samples corresponding to different ripening conditions; see Bro et al.37 and Nielsen et al.38

for more information about the data. The first block contains chemical and physical measurements, whereas the second
block consists of sensory variables. For an overview of the variable names, see Table 3.

TABLE 1 Common components identified in percentages

Error 5% Error 20%

I= 25 I= 100 I= 25 I= 100

Sparsity
30%

Sparsity
80%

Sparsity
30 %

Sparsity
80%

Sparsity
30%

Sparsity
80%

Sparsity
30%

Sparsity
80%

10-fold CV 100 98 100 96 100 100 100 100

10-fold CV 1std
error

88 78 100 82 96 82 88 82

BIC 44 12 82 36 58 30 48 20

CHull-MSE 46 86 88 92 66 62 94 70

CHull-VAF 66 44 82 38 82 62 96 68

IS 76 52 82 56 96 76 96 68

Note: The percentages of times the common component were identified (there is at least one nonzero weight in each data block). The per-
centages are based upon 50 replicate data sets.
Abbreviations: BIC, Bayesian information criterion; CHull, convex hull; CV, cross-validation; IS, index of sparseness; MSE, mean squared
error; VAF, variance accounted for.

TABLE 2 Distinctive components identified in percentages

Error 5% Error 20%

I= 25 I= 100 I= 25 I= 100

Sparsity
30%

Sparsity
80%

Sparsity
30 %

Sparsity
80%

Sparsity
30%

Sparsity
80%

Sparsity
30%

Sparsity
80%

10-fold CV 8 2 8 4 0 2 6 6

10-fold CV 1std
error

82 88 98 92 94 70 90 72

BIC 98 100 96 100 98 100 98 100

CHull-MSE 92 70 78 84 84 76 80 82

CHull-VAF 82 94 94 100 68 68 90 100

IS 78 92 92 100 46 48 92 100

Note: The percentages of times the two distinctive components were found (there are no nonzero weights estimated in the zero data block).
The percentages are based upon 50 replicate data sets. Abbreviations: BIC, Bayesian information criterion; CHull, convex hull; CV,
cross-validation; IS, index of sparseness; MSE, mean squared error; VAF, variance accounted for.
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The analysis of multiblock data follows three steps:

• Preprocessing of the data.
• Tuning the model; selecting the metaparameters.
• Analyzing the final model; interpreting the component weights.

We will discuss each of these steps here below.

5.1 | Preprocessing of the data

Preprocessing has a large impact on the final results of the analysis and should be done according to the needs of the
researchers; see Deun et al.25 for an overview. For the herring data here, we first centered and scaled (to unit variance)
the variables as we are not interested in scale differences. As the two blocks have the same number of variables, no fur-
ther block scaling is needed.

5.2 | Tuning the model

Multiple metaparameters need to be tuned in order to get to a satisfactory final model. For the sparse PCA method that
we use here, these are the number of components and the regularization parameters λL, λG, and λR. Also for the selec-
tion of the number of components, CV has been recommended.15 Hence, two strategies can be considered, namely, tun-
ing all parameters together or following a sequential strategy. Because of the computational burden of the simultaneous
strategy, we opt for the sequential approach: first, we select the number of components, and then, given the selected
number of components, we tune the LASSO and group LASSO parameters. To determine the number of components,
we used 10-fold CV with the one standard error rule on each block. This resulted twice in three components; hence, we
analyzed the concatenated data with the maximum number of components possible, that is, six distinctive components.

Also, the regularization parameters were tuned using 10-fold CV with the one standard error rule. More specifically,
we tuned the LASSO, ridge, and group LASSO regularization parameters on a three-dimensional grid with 25, equally
spaced values between 0 and 500 on the log scale; for the data here, this covers solutions ranging from no sparseness at
all to all coefficients being zero. We chose a log scale because it tends to do well in practice and has been recommended
elsewhere; see Friedman et al.39, p. 10 Note that the upper bound depends on the scale of the data.

FIGURE 5 The sum of ranking differences scores of the various model selection procedures. The solid gray line indicates an

approximation of the cumulative distribution function of random sum of ranking differences (SRD) scores. The vertical dashed lines indicate

the 0.05 and 0.95 cut-off points. Model selection procedures having an SRD score to the right of the 0.05 cut are not statistically different, at

the 0.05 level of significance, from random rankings
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5.3 | Analysis of the final mode and interpretation of the results

The component weights resulting from the final analysis (i.e., using six components and with the values of the regulari-
zation parameters set at those selected under the CV scheme) are summarized in Table 3. Note that in this case there
are two distinctive components (Components 2 and 5) and four common components (Components 1, 3, 4, and 6). The
component weights directly relate the components to the observed variable as tiq =

P
jwjqxij . For comparison, we

included results from a nonspare PCA of the concatenated data in Table 4 where the weights/loadings 2are estimated
using the singular value decomposition and subsequently rotated to a simple structure using varimax rotation.40 Strik-
ingly, there is no structuring of the components into common and distinctive components. Furthermore, components
in PCA are a linear combination of all variables, and interpreting these is much more difficult than sparse SCA. Take,
for example, the fifth component; in the case of PCA with varimax rotation, the component is a linear combination of
mainly the variable Spice, but other variables are weighted as well with nonnegligible loadings such as TCAIndexB,
Malt, and Stockfish smell. In the case of sparse SCA, the fifth component is just the variable Salty, making it the
unequivocal Salty component. Importantly, the gain in interpretation obtained by imposing sparseness comes at barely
any cost in terms of the variation accounted for.

As for the meaning of the components, we examine the first and most important component in terms of explained
variance (42.4% variance explained) from the sparse SCA. We observe that ProteinB, TCAIndexM, TCAM, and TCAB,
from the first block, together with Ripened, Malt, Sweetness, Softness, Toughness, and Watery from the second block,
make up the first component. Nielsen et al.38 note that softness (the most important quality indicator used in the

TABLE 3 MM sparse SCA: Estimated component weights for the herring data

Components 1 2 3 4 5 6

pHB 0 −0.148 −0.481 0 0 0.162

ProteinM −0.081 0.228 0 0 0 0

ProteinB 0.148 0 0 0.176 0 0

Water 0 −0.790 0 0 0 0

AshM 0 −0.126 0.595 −0.030 0 0

Fat 0 0.394 0 0 0 0

TCAIndexM 0.320 0 0 0 0 0.484

TCAIndexB 0 0.549 0 0 0 0

TCAM 0.102 0 0 0 0 0.502

TCAB 0.464 0 0 0 0 0

Ripened 0.275 0 0 0 0 0

Rawness 0 0 −0.126 −0.491 0 −0.196

Malt 0.402 0 0 −0.001 0 0

Stockfish smell 0 0.002 0.674 0 0 0

Sweetness 0.289 0 0 0 0 −0.530

Salty 0 0 0 0.855 0 −0.109

Spice 0 0 0 0 1.000 0

Softness 0.355 0 0 0 0 0

Toughness 0.349 0 0 0 0 0

Watery 0.360 0 0 0 0 0

%VAF: per component 42.4 20.0 11.4 9.1 5.5 5.2

%VAF: total 93.9

Note: The first block, corresponding to the first 10 variables (rows), consist of physical and chemical analyses of the herring samples mea-
sured either in brine (B) or fish muscle (M). The second block contains sensory data on the herring samples. These are the results are
obtained using Algorithm 1 with the chosen tuning parameters.

2Note that the loadings and the weights are the same in PCA when PTP= I
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herring industry) correlates with TCAM/B TCAIndexM and ProteinB, which to them makes sense because: “A correla-
tion between these parameters and softness may be expected as muscle proteins are broken down during the ripening
thus explaining the increase in low molecular nitrogenous compounds and at the same time softening of the tissue is
encountered. ProteinB is mainly salt soluble muscle protein diffusing into brine from the muscle. The solubilisation of
muscle proteins will therefore also probably affect the texture.”38, p. 23 Furthermore, they note that Softness, Toughness
and Watery measure the same characteristics and that TCAIndexM, TCAM and TCAB measure the same characteris-
tics. This corresponds to the reported weights for the first component, except for the small weight of ProteinM. We
could view component one as a “quality of herring” component. The first component obtained with PCA followed by
varimax rotation is also the most important component (31.9% variance explained), and we may expect this to also rep-
resent quality of herring. The weights for this component in Table 4 show a somewhat similar pattern, yet there are
some deviations, and the interpretation is much harder because all variables make up the first component. Further-
more, this component explains less variance compared with the first component of sparse SCA.

6 | CONCLUSION

The current paper examined several model selection procedures to select the penalty tuning parameters of sparse
weight-based PCA for the unstructured case of a single block of data and of sparse weights SCA for the multiblock case
having structured sparsity. Most model selection procedures that have been proposed in the sparse PCA literature did
not perform well in terms of finding back the correct component weights. When analyzing single block data, the

TABLE 4 Varimax: Estimated component weights for the herring data

Components 1 2 3 4 5 6

pHB −0.107 −0.214 −0.470 0.053 −0.180 0.372

ProteinM −0.116 0.341 −0.113 −0.036 −0.084 −0.107

ProteinB 0.191 −0.075 0.029 0.264 −0.008 0.097

Water −0.009 −0.483 −0.076 −0.076 0.040 0.079

AshM −0.054 −0.327 0.597 −0.138 0.105 −0.024

Fat 0.025 0.486 0.047 0.019 0.036 0.062

TCAIndexM 0.082 −0.046 −0.000 0.019 0.019 0.481

TCAIndexB 0.032 0.448 −0.027 −0.245 0.115 0.181

TCAM 0.071 0.042 −0.011 0.032 0.009 0.504

TCAB 0.222 0.120 0.080 0.180 0.002 0.160

Ripened 0.281 0.056 0.244 0.064 −0.135 0.070

Rawness 0.105 0.024 −0.110 −0.510 0.018 −0.266

Malt 0.354 0.027 0.006 −0.098 −0.117 0.108

Stockfish smell −0.055 0.106 0.526 0.157 −0.161 0.079

Sweetness 0.502 −0.083 −0.176 0.060 −0.095 −0.353

Salty −0.069 0.053 −0.105 0.709 0.074 −0.254

Spice 0.039 −0.012 −0.044 0.039 0.922 0.046

Softness 0.372 0.008 −0.018 0.004 0.076 0.029

Toughness 0.366 0.036 0.032 0.024 0.060 0.021

Watery 0.353 −0.101 −0.018 −0.023 0.016 0.011

%VAF: per component 31.9 19.9 11.8 12.5 5.0 12.8

%VAF: total 94

Note:The first block, corresponding to the first 10 variables (rows), consists of physical and chemical analyses of the herring samples measured
either in brine (B) or fish muscle (M). The second block contains sensory data on the herring samples. These are the results from the loadings
obtained from the singular value decomposition rotated according to the varimax criterion.
Abbreviations: MM, majorization–minimization; SCA, simultaneous component analysis; VAF, variance accounted for.
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procedures led to either too complex or too sparse models. When analyzing multiblock data, it led to either identifying
most components as common components and not as distinctive or not identifying common components as such. The
only model selection procedure that seems to strike a good balance between model complexity and goodness of fit in
both the single and multiblock cases was 10-fold CV with the eigenvector method employing the one standard error
rule. It has to be noted that we did not tune the number of components together with the tuning parameters; this could
be addressed in further research.

As discussed in the paper, although the weights are recovered badly, this barely affects the recovery of the compo-
nent scores nor the reconstruction of the data and hints at the fact that the estimation of the weights is an ill-
conditioned problem. Importantly, this means that if the goal is to obtain good estimates of the component scores, load-
ings, or data yet with no interest in the estimates of the component weights, proper tuning of the penalties on the
weights is not needed. In this situation, an economical decision may be to select a very sparse model (e.g., as resulting
from the IS, BIC, or CHull) as good estimates of the component scores can be obtained with few variables. Yet when
insight in the processes at play in the data is needed, our advice is to use CV with the one standard error rule.

It has to be noted that a good solution for the component weights is in the eyes of the beholder; a situation where a
very sparse solution might be desirable is when the component scores themselves are of interest and when observing
new data are expensive. For newly observed cases, only the variables with nonzero component weights have to be
observed to compute component scores.
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APPENDIX A

Description of algorithm
In order to obtain the component weights, we need to optimize the following objective function with respect to Wc and
Pc:

LðWc,PcÞ = kXc−XcWcPT
c k22 + λLkWck1 + λRkWck22

+
P
q,k

λG
ffiffiffiffiffi
Jk

p kwðkÞ
q k2 + λEkwðkÞ

q k1,2
� �

, ðA1Þ

where Wc = ½ðWð1ÞÞT ,…,ðWðKÞÞT �T , and wðkÞ
q denotes the qth column from the submatrix W(k). In order to get a mini-

mum for (A1), we alternate between the estimation of Wc and Pc. Given Wc, we can estimate Pc by using procrustes
rotation.24,41 Given Pc, we can find estimates for Wc by using the majorization–minimization algorithm; for a short
review, see Hunter and Lange.42To majorize (A1), we can majorize all individual terms separately. First, we majorize
‖Wc‖1. For the ease of simplicity, let j=1,…,

P
kJk be index the rows of Wc and let q= 1,… ,Q be index the columns of

Wc, and then we can majorize ‖Wc‖1 as follows:

λLkWck1 = λL
P
j,q
jwjqj≤ λL

P
q, j

1
2

w2
jq

j~wjqj +
1
2
j~wjqj

 !

=
λL
2
vecðWcÞTD1vecðWcÞ+ c,

ðA2Þ

where ~wjq is the current estimate of wjq, vec() denotes the vectorized version of a matrix, D1 a diagonal matrix of jw−1
jq j,

and c contains the terms that do not depend on wjq and thus can be neglected in solving the optimization problem with
respect to the elements of W. Next, we consider a majorizing function for the QK group LASSO terms,

λG
P
k,q

ffiffiffiffiffi
Jk

p kwðkÞ
q k2 = λG

P
k,q

ffiffiffiffiffi
Jk

p XJk
j=1

ðwðkÞ
jq Þ2

 !1=2

≤
λG
2

X
k,q

ffiffiffiffiffi
Jk

p
2

XJk
j=1

ð~wðkÞ
jq Þ2

 !1=2

+
λG
2

X
k,q

ffiffiffiffiffi
Jk

p
2

XJk
j=1

ð~wðkÞ
jq Þ2

 !−1=2XJk
j=1

wðkÞ
jq

� �2
=
λG
2

X
k,q

wðkÞ
q

� �T
Dðk,qÞ

2 wðkÞ
q + c,

ðA3Þ

with Dðk,qÞ
2 being a diagonal matrix containing

ffiffiffiffi
Jk

p
2

PJk
j=1ð~wðkÞ

jq Þ2
� �−1=2

on its diagonal for a given k and q. The sum of
quadratic forms in the majorizing function in (A3) can be rewritten into one quadratic form by arranging the terms,

λG
2

X
k,q

wðkÞ
q

� �T
Dðk,qÞ

2 wðkÞ
q =

λG
2
vecðWcÞTD2vecðWcÞ+ c: ðA4Þ
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Lastly, we will majorize the QK elitist LASSO penalty terms,

λE
P
k,q

kwðkÞ
q k1,2 = λE

P
k,q

XJk
j=1

jwðkÞ
jq j

 !2

≤ λE
P
q,k

XJk
j=1

~wðkÞ
jq

��� ��� !XJk
j=1

wðkÞ
jq

� �2
~wðkÞ
jq

��� ���
0B@

1CA
= λE

P
k,q

wðkÞ
q

� �T
Dðk,qÞ

3 wðkÞ
q ,

ðA5Þ

with Dðk,qÞ
3 being a diagonal matrix containing on its

PJk
j=1 ~wðkÞ

jq

��� ���� �
~wðkÞ
jq

��� ���� �−1
diagonal for a given k and q.

Equation (A5) can be rewritten (the same was as Equation (A4)) into λEvecðWcÞTD2vecðWcÞ by arranging the terms
correctly. Combining the above results, we can majorize Equation (A1) as follows:

LðWc,PcÞ= kXc−XcWcPT
c k22 + λLkWck1 + λRkWck22

+
P
q,k

λG
ffiffiffiffiffi
Jk

p kwðkÞ
q k2 + λEkwðkÞ

q k1,2
� �

≤ kvecðXcÞ−ðPc�XcÞvecðWcÞk22 + vecðWcÞTDsupvecðWcÞ+ c

=QðWc,PcÞ,

ðA6Þ

with Dsup = λL
2 D1 +

λG
2 D2 + λED3 + λRI. Because Q(Wc,Pc) is a quadratic function that can be easily minimized by taking

the partial derivatives with respect to the elements to vec(Wc) and setting them to zero, also see Deun et al.,14 doing
this gives us the following estimates for vec(Wc):

vecðŴcÞ= ðDsup + I�XT
c XcÞ−1

vecðXT
c XcPcÞ, ðA7Þ

with I being a Q ×Q identity matrix. Estimates for vecðŴcÞ can be found relatively efficiently by making use of the
block diagonality of ðDsup + I�XT

c XcÞ, meaning that the weights can be estimated per component separately,

ŵq = ðDðqÞ
sup +XT

c XcÞ−1
aq, ðA8Þ

with ŵq denoting the estimates of the qth component, DðqÞ
sup denoting the part of Dsup corresponding to the qth compo-

nent, and aq denoting the qth column of A=XT
c XcPc . The computation of the inverse in Equation (A8) can be costly ifP

Jk is large. To make the algorithm well suited to handle a large number of variables, we can implement a coordinate
descent procedure to solve for Wc in Q(Wc,Pc). For the ease of notation, we will drop subscript c and let j=1,…,Q

P
Jk .

Then, the update for an element of vec(Wc) is given by

vecðŴÞj : =
ðP�XÞTj vecðXÞ−ðP�XÞTj ðP�XÞ− jvecðWÞ− j

ðP�XÞTj ðP�XÞj +Djj

, ðA9Þ

where subscript j denotes the jth element of a vector or the jth column of a matrix and −j denotes the object minus the
jth element or column. Making use of the orthogonality of P and with j=1,…,

P
Jk, this simplifies to

ŵjq : =
pT
qX

Txj−xTj X− jw− jq

xTj xj +DðqÞ
jj

: ðA10Þ
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With these derivations, the estimation of Wc can be summarized in Algorithm 1.

Although different regularizers are implemented in Algorithm 1, it is not advised to combine them all together. For
example, it is not advised to combine the group LASSO and the elitist LASSO as they have opposing goals. A use case
for the elitist LASSO is when common components have to be extracted; this is imposing zeros on each block in such a
way that for each block segment also nonzero component weights remain.

Data generation
Single block

The data for the simulation study were generated from the following model:

X=XWPT , ðA11Þ

where W is J × J, WTW= I, and W= P. W is manipulated such that it contains a given level of sparsity. To achieve
this, we make use of an iterative procedure that proceeds as follows. First, a random W matrix is generated with zero
weights in the desired places. After this step, orthogonality of the columns is attempted by applying the Gram–Schmidt
orthogonalization procedure only on the intersection of the nonzero weights between two columns of W. When W only
has sets of columns that contain nonoverlapping sparsity patterns, this immediately results into orthogonal columns,
but when the columns in W have overlapping sparsity patterns, the procedure will not always lead to WTW= I on the
first pass. In such cases, multiple passes are needed in order to achieve orthogonality (additional coefficients might need
to be put to zero). Some sparsity patterns are not possible, for example, an initialization where W does not have full col-
umn rank, or an initial set that degenerates to a linearly dependent set after multiple passes. In those cases, the algo-
rithm fails to converge.

After a suitable W has been obtained, Σ can be constructed by taking Σ=WΛWT. Here, Λ is a diagonal matrix with
eigenvalues of the J components underlying the full decomposition. We specify these eigenvalues such that the first
Q components account for a set amount of structural variance and the remaining eigenvalues for a set amount of noise
variance. The data matrices X having a desired underlying sparse structure and noise level can then be obtained by
sampling from the multivariate normal distribution using Σ and a zero mean vector.

Multiblock

The data generation for the multiblock simulation study is the same as the data generation in the single set simulation
study, except that the data have been generated with two distinctive components and one common component. We
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define a distinctive component as being a linear combination of variables from a particular data block and a common
component as a linear combination of all data blocks. In order to achieve the desired common and distinctive structure,
full block segments of zeros are inserted in the W matrix.
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