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Abstract

Having large sets of predictors from multiple sources concerning the same

observation units and the same criterion is becoming increasingly common in

chemometrics. When analyzing such data, chemometricians often have multi-

ple objectives: prediction of the criterion, variable selection, and identification

of underlying processes associated to individual predictor sources or to several

sources jointly. Existing methods offer solutions regarding the first two aims of

uncovering the predictive mechanisms and relevant variables therein for a

single block of predictor variables, but the challenge of uncovering joint and

distinctive predictive mechanisms and the relevant variables therein in the

multisource setting still needs to be addressed. To this end, we present a multi-

block extension of principal covariates regression that aims to find the complex

mechanisms in which several or single sources may be involved; taken

together, these mechanisms predict an outcome of interest. We call this

method sparse common and distinctive covariates regression (SCD-CovR).

Through a simulation study, we demonstrate that SCD-CovR provides

competitive solutions when compared with related methods. The method is

also illustrated via an application to a publicly available dataset.

KEYWORD S

common and distinctive processes, data integration, multiblock data, principal covariates

regression, variable selection

1 | INTRODUCTION

When predicting an outcome by a number of predictor variables, there often is the additional aim to obtain insight in
the mechanisms at play. For example, when modeling vaccine efficacy as a function of mRNA transcription rates soon
after vaccination,1 setting up a prediction tool was not the only aim. The authors also wanted to understand the
involved biological processes by finding—in the transcriptomics data—those biological pathways that are associated to
the efficacy of the vaccine. To obtain an even deeper understanding of the system under study often, large and heteroge-
neous collections of data are used, which results in several blocks of predictors pertaining to the same observation units.
A prominent example is multi-omics studies. These are used to obtain a better understanding of disease mechanisms by
jointly studying several features of the biological system (e.g., genomic, transcriptomic, and proteomic data collected
from the same sample of patients and controls).2 Obtaining insights from such large multiblock data implies revealing
(1) the relevant features in the system and (2) the orchestration of the system (which features act jointly and which ones
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act individually in shaping the outcome). For example, the emergence of asthma is known to depend on a complex
interplay between genetic susceptibility and environmental exposure.3 A complicating factor in the analysis of the data
is that they often consist of large collections of untargeted variables, which implies that it is the data analyst's task to
sort out the relevant predictors from the variables that are irrelevant for the process under study. Moreover, such selec-
tion of variables is necessary to ease the interpretation of the resulting model and to address model inconsistency in the
high-dimensional setting of (many) more variables than cases.4

Within chemometrics, partial least squares (PLS) and principal covariates regression (PCovR) are popular methods
that target the twofold goals of deriving the components that represent the underlying processes and predicting the
criterion variables. Variants of the methods suited for multiblock data have been devised and shown to be useful at
extracting insight about the mechanisms while predicting the criterion variable. Examples include incorporating
information on physical properties of intermediate granules when modeling the relationship between process variables
and crushing strength of finished tablets,5 predicting sensory attributes of carrot genotypes via finding joint
mechanisms concerning dry matter content, non-volatile and volatile compounds,6 and mapping an interrelated model
between consumer preference and sensory information such as odor and flavor pertaining to different flavored water
samples.7 As these multiblock methods are subject to interpretational difficulties due to a large number of predictors,
sparse PCovR (SPCovR) and sparse PLS (SPLS) were devised to provide solutions that perform variable selection.8,9

Furthermore, viewing each block of predictors as representative of a part of the system under study, multiblock data
may present two different types of underlying predictive mechanisms; those that pertain only to variables from a single
predictor block and the mechanisms that require joint involvement of variables from multiple predictor blocks. We
denote the two types of mechanisms by distinctive and (partially) common mechanisms, respectively (with partially
indicating mechanisms that pertain to variables from multiple though not all blocks). Identification of these
mechanisms has not been fully addressed in the context of criterion prediction by the existing methods.

On the other hand, for purely explorative purposes (this is, only revealing underlying mechanisms without trying to
predict a criterion), methods that specifically aim to capture common and distinctive processes have been put forward.
Simultaneous component analysis (SCA) with distinctive and common components (DISCO-SCA), joint and individual
variation explained (JIVE), and similar other approaches aim to unravel the structure of the underlying processes by
separating common and distinctive mechanisms.10,11 Måge et al12 provided a comprehensive comparison of the perfor-
mance of several of these approaches under varying data structures, whereas Smilde et al13 proposed a general frame-
work for the methods devised to decompose multiblock data into common and distinctive processes. Moreover, to
attain more interpretable solutions especially with high dimensional data, sparse methods have been developed that
capture the common and distinctive processes by incorporating particular penalty terms or prespecified structures.14-16

Along these lines of research, a method is needed that serves the twofold goals of obtaining insightful predictive
models in the setting of high dimensional multiblock data. As discussed, such a method should incorporate predictor
selection and uncover the common and distinctive predictive mechanisms. The development of such a method could be
envisaged both along the PLS and PCovR lines. Yet, in comparison with SPLS, SPCovR has been shown to be more
effective in recovering the underlying processes,8 and it also offers more flexibility concerning the importance assigned
to the dual aim of prediction of the criterion variable and the reconstruction of the predictor variables. Therefore, the
current paper focuses on PCovR and integrates the sparse PCovR and SCA methods in the new sparse common and
distinctive covariates regression (SCD-CovR) method. We evaluate the performance of SCD-CovR by comparing it with
other methods that are characterized by similar goals such as sparse generalized canonical correlation analysis
(SGCCA) that is based on PLS.17

The paper is arranged as follows. First, we describe SCD-CovR in detail, followed by a brief overview of existing
related methods. Then, simulation studies that comparatively demonstrate the performance of SCD-CovR and other
methods are presented, and their results are discussed. Finally, we conclude the paper by formulating some limitations
and directions for future research. The implementation of SCD-CovR was done in R, and it can be found on Github:
https://github.com/soogs/SCD-CovR, along with the code used to generate the results reported in this paper.

2 | SPARSE COMMON AND DISTINCTIVE COVARIATES REGRESSION

We will use the following notation throughout the paper: scalars, vectors, and matrices are denoted by italic lowercase,
bold lowercase, and bold uppercase letters, respectively. Transposing is indicated by the superscript T. Lowercase
subscripts running from 1 to corresponding uppercase letters denote indexing: i 2 {1,2, …, I}. Subscript C indicates
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concatenation of multiple data blocks, whereas superscripts (X) and (y) highlight affiliation with predictor and criterion
variables, respectively.

2.1 | Model and objective function

SCD-CovR models a criterion in function of multiple blocks of predictors all obtained from the same set of observation
units. Let Xk be a column-centered matrix containing the scores of the I observation units on the Jk predictors in the
kth predictor block, with k 2 {1,2, …, K}. Also, let y be a centered vector containing the I scores on the criterion.

The SCD-CovR model is based on the well-known principal component analysis (PCA) model that takes the
following formulation for Xk:

Xk =XkWk P Xð Þ
k

� �T
+E Xð Þ, ð1Þ

where Wk and P Xð Þ
k are Jk×R matrices of component weights and loadings, respectively. To identify the solution,

usually, the constraint P Xð Þ
k

� �T
P Xð Þ
k = IR is added under a principal axes orientation. The weights define how the predic-

tors are combined into the R principal components (viz., Tk=XkWk, implying tir =
P

jk
xi jkw jkr ) whereas the loadings

express the relationship between them. E(X) is used to denote the matrix of residuals. This formulation is known as the
weight-based model.14

PCovR explicitly models the criterion as a function of the components in the PCA model (1):

y=XkWkp yð Þ + e yð Þ, ð2Þ

with p yð Þ
k the vector of R regression coefficients and e(y) the residuals pertaining to the criterion. The twofold aim of

PCovR in reconstructing Xk and predicting y is expressed by the objective function to be minimized18:

L Wk, P
Xð Þ
k , p yð Þ

� �
= α

y−XkWkp yð Þ�� ��2
2

yk k22
+ 1−αð Þ

Xk−XkWk P Xð Þ
k

� �T
����

����
2

2

Xkk k22
, ð3Þ

with 0≤ α≤ 1 a known constant. The α parameter specifies the balance between modeling the criterion and modeling
the block of predictors. With α set at 0, the method is identical to PCA followed by regression, whereas at 1, it becomes

equivalent to linear regression (viz., yi =
P

rp
yð Þ
r tir =

P
r

P
jk
p yð Þ
r xi jkw jkr

� �
=
P

jk

P
rp

yð Þ
r w jkr

� �
xi jk , with

P
rp

yð Þ
r w jkr as a

regression coefficient for the jkth predictor). How to optimally balance α has been explicitly explored by Vervloet et al.19

Note that to identify the PCovR solution, De Jong and Kiers18 introduced the constraint TTT= IR . As pointed out by
Vervloet et al,19 the solution is still subject to rotational freedom.

As PCA and PCovR construct the components by linearly combining all the predictors, the interpretation of the
components can be difficult, especially when the number of predictors grows large. The solutions can also be inconsis-
tent in the high-dimensional setup.20 To overcome these issues, Zou et al21 devised a sparse PCA method that imposes
regularization penalties on the objective function. Note that sparse implies that many of the component weights are
penalized to become zero. A sparse variant of PCovR, SPCovR, was also developed in a similar manner.8 SPCovR finds
the solutions by minimizing the following objective function:

L Wk, P
Xð Þ
k , p yð Þ

� �
= α

y−XkWkp yð Þ�� ��2
2

yk k22
+ 1−αð Þ

Xk−XkWk P Xð Þ
k

� �T
����

����
2

2

Xkk k22
+ λL Wkj j1 + λR Wkk k22

, ð4Þ
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such that P Xð Þ
k

� �T
P Xð Þ
k = IR and with λL≥ 0, λR≥ 0 and α≥ 0. The regularization parameters are the lasso, with

Wkj j1 =
P

jk ,r
jw jkrj, and the ridge Wkk k22 =

P
jk ,r

w2
jkr
, together forming the elastic net.22 The former shrinks and forces

certain weights to be exactly zero, whereas the latter only shrinks the estimates. Therefore, the lasso penalty is
employed to obtain sparse weights, whereas the ridge penalty is required to ensure stable estimates under
high-dimensionality. It can also be seen that when both of the tuning parameters, λL and λR, are 0, the PCovR
formulation (3) is retrieved. Note that because of the penalties, the SPCovR model is identified and not subject to
rotational freedom. However, the components pertain to permutational freedom and sign invariance.

SPCovR and the above methods only target data with a single predictor block and hence do not address the
questions associated with multiple predictor blocks. These questions can be answered by performing a joint
decomposition of the K predictor blocks into components by imposing a SCA model23:

XC =XCWC P Xð Þ
C

� �T
+E Xð Þ, ð5Þ

where XC = X1,…,XK½ � (of size I ×
PK

k=1J
Xð Þ
k ) denotes the supermatrix that concatenates the predictor blocks.

Consequently, WC and P Xð Þ
C are weight and loading matrices of size

PK
k=1J

Xð Þ
k ×R. Hence, the criterion variable can be

modeled using the SCA weights:

y=XCWCp yð Þ + e yð Þ, ð6Þ

with p yð Þ
C a vector of R regression coefficients.

As the interpretation of SCA solutions is even more challenging, sparse SCA methods were devised.14 Furthermore,
a sparse SCA method that explicitly models common and distinctive processes was proposed. This method, sparse
common and distinctive SCA (SCaDS), minimizes the following objective function16:

L WC ,P
Xð Þ
C

� �
= XC−XCWC P Xð Þ

C

� �T
����

����
2

2
+ λL WCj j1 + λR WCk k22, ð7Þ

such that P Xð Þ
C

� �T
P Xð Þ
C = IR and subject to zero block constraints on WC that fix block-specific sets of weights—

pertaining to one or several predictor blocks—to zero. This implies that the component is determined only by predictors
of those blocks for which the weights have not been fixed to zero. Common components are obtained by not placing
such zero block constraints on the component. The lasso penalty is used in addition to the zero block constraints to
achieve sparseness within the common and distinctive components. As an alternative to using such a fixed structure,
sparse multiblock PCA methods that rely on a group lasso penalty (which has the property to shrink entire groups of
coefficients to zero) have also been proposed.15

Building upon SCaDS and SPCovR, we propose the SCD-CovR that predicts the criterion, while providing sparse
solutions that capture the common and distinctive processes in the predictor blocks. SCD-CovR implies minimizing the
following objective function:

L WC,P
Xð Þ
C ,p yð Þ

� �
= α

y−XCWCp yð Þ�� ��2
2

yk k22
+ 1−αð Þ

XC−XCWC P Xð Þ
C

� �T
����

����
2

2

XCk k22
+ λL WCj j1 + λR WCk k22

, ð8Þ

such that P Xð Þ
C

� �T
P Xð Þ
C = IR, and subject to zero block constraints on WC.

As in SCaDS, common and distinctive components can be obtained with SCD-CovR through the zero block con-
straints on WC. Similarly, as for SPCovR, the components both account for variation in the criterion and predictor
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variables with α allowing to flexibly tune prediction and reconstruction. The WC weights can be examined to
understand which predictors define the derived common and distinct components. It is also easy to see that this method
is an adaptation of PCovR. When λL and λR are equal to zero and with the absence of the zero block constraints, the
formulation is identical to PCovR.

2.2 | Algorithm

To solve the optimization problem defined in (8), we use an alternating procedure where the loadings P Xð Þ
C and the

regression coefficients p(y) are solved for conditional upon fixed values for the weights WC and vice versa. A schematic
outline of the algorithm is given here below. The optimization procedure that we propose here closely follows those
proposed for SCaDS and SPCovR.8,16 This procedure boils down to solving for all components together (unlike deflation
methods that solve for each component in turn) and using a coordinate descent procedure to solve the conditional
elastic net problem to estimate the sparse weights. More details on the procedure can be found in Appendix A. The
alternating routine ensures that the loss is nonincreasing and the algorithm converges to a stationary point, usually a
local minimum. To avoid local minima problems, we recommend to use multiple random and a rational starting value
based on PCovR.

2.3 | Model selection

To use our proposed SCD-CovR method, values have to be provided for the number of components R, the weighting
parameter α, the number of (partially) common and distinct components, and the ridge and lasso regularization
parameters λL and λR. In order to select a suitable model, these parameters need to be tuned according to some
optimality criterion. Several model selection strategies exist targeting different optimality criteria. These include cross-
validation that is often recommended within the literature for methods involving regularization parameters. To
optimize the optimality criterion, a grid search can be used, which exhaustively compares all possible combinations of
the tuning values for the different parameters. A sequential approach where each parameter is tuned in turn can also
be considered as it was demonstrated to work well for cross-validation for PCovR.24 As cross-validation is computation-
ally costly if we consider all combinations of the tuning parameters, we therefore opt to use the sequential approach in
the simulation study and the empirical application. The procedures are implemented slightly differently in these two
sections because no oracle information is available for the empirical example. However, in general, the procedures first
optimize R, λR and α simultaneously, followed by tuning the zero block constraints and λL. An interesting feature of the
sparse PCA or PCovR methods with sparse weights instead of loadings is that the level of sparsity does not closely relate

PARK ET AL. 5 of 23



to the amount of variance explained; models comprised of components with very sparse weights can account for a
comparable amount of variance as models that are much less or barely sparse.16 The weights are used to construct the
component scores and these can be approximated very well with few nonzero weights. This even means that distinctive
components can still account for a considerable amount of variance in the data block(s) for which the component has
all zero weights.

2.4 | Related methods

SCD-CovR is a method with three main objectives. It (a) predicts a criterion, (b) recovers the underlying common and
distinctive predictor mechanisms via dimension reduction, and (c) derives sparse and therefore interpretable
components. The method offers a solution that achieves all of these objectives in a balanced and a flexible manner. This
section lists other component based methods devised to fulfill and balance these multiple objectives. When prediction
is the only objective, methods with more emphasis on prediction may outperform SCD-CovR. In a similar vein, Smilde
et al25 commented that PLS usually yields better prediction if the multiple blocks are analyzed as one single
“superblock”. Accounting for the multiblock structure helps in revealing meaningful insights but may come with lower
prediction quality. On the other hand, applying a componentwise approach or explicitly taking into account the
multiblock structure regularizes the problem. As such procedures safeguard against overfitting, they may improve the
prediction quality especially in unstable settings (e.g., high dimensional data).

A method often used to aim both at prediction and modeling the variation in the block of predictors is principal
component regression (PCR). This method first performs PCA and then, in a second and separate step, regresses the
criterion on the components. The PCA step can be performed with SCaDS (leading to PCR-SCaDS) to also meet the
objectives of finding common and distinctive mechanisms and having sparse component weights. It is closely related to
SCD-CovR, as the components found by PCR-SCaDS are equal to the SCD-CovR components that we would obtain if
we set the weighting parameter α to zero. Moreover, both methods encourage the recovery of the common and
distinctive structure by imposing zero block constraints on the weights matrix. In comparison with SCD-CovR,
PCR-SCaDS does not take the regression problem into consideration when deriving the components, implying that the
processes that underlie the predictors would be retrieved with higher quality. However, simultaneously, PCR-SCaDS
suffers from the weakness that predictor components that explain a lot of variance in the criterion may not be
recovered.24

SGCCA is another component-based method that addresses the multiple goals of simultaneous prediction and
modeling the variation in the predictors. Being an extension of PLS, multiple data blocks are analyzed simultaneously
to obtain sparse components while at the same time these components should account for the variation in the
criterion.17 Extracting components that also allow to predict well is similar to SCD-CovR but unlike PCR-SCaDS.
However, whereas SCD-CovR provides a flexible framework to weight reconstruction of the predictors and prediction
of the criterion, PLS-based methods tend to lean closer to prediction.8,24 This also means that SGCCA may have more
difficulties in recovering the underlying processes. Furthermore, methods based on PLS are often more prone to
overfitting than those derived from PCovR, which in turn results in a diminished quality of out-of-sample prediction.
Finally, SGCCA does not explicitly facilitate the retrieval of common and distinctive processes.

On top of these two methods, SPCovR can also be considered closely related to SCD-CovR. Their only difference is
the zero block constraints on the weights for finding the common and distinctive structure. The two methods are
expected to yield similar performance with respect to prediction. However, SCD-CovR can be expected to be better at
capturing the common and distinctive underlying processes and thus in giving insight into joint and distinctive
mechanisms.

Summarizing, the four methods can be expected to perform differently in terms of prediction and recovering the
underlying components when administered to the same data. Concerning prediction, PCR-SCaDS is expected to
underperform because it would be unable to capture an underlying process that is strongly associated to the criterion
but accounts only for a minor portion of the variation in the predictor variables. We anticipate SGCCA to be more
prone to overfitting than the other methods. Regarding correct recovery of the component weights, SGCCA would be
relatively worse than the other methods due to its stronger focus on the prediction. Lastly, SCD-CovR and PCR-SCaDS
are expected to recover the underlying common and distinctive processes more effectively than the other methods as
they specifically target these processes through the zero block constraints.
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3 | SIMULATION STUDY

Although adaptations of PLS, PCR, and PCovR have been compared in previous research,8,24 they have not been put to
test in settings where underlying common and distinctive processes are expected. Also, the effectiveness of the methods
may depend on certain data characteristics. Therefore, we have conducted a simulation study in which we examine the
performance of the methods with respect to sparse retrieval of the underlying processes, identification of common and
distinctive components, and the prediction of the criterion.

3.1 | Design and procedure

Fixing the number of observations I to 100, two blocks of predictor variables were generated to represent three
components with a common and distinctive structure. Two components represented processes distinctive to predictor
block 1 and 2, respectively. The remaining component reflects a common process involving both of the blocks. We
defined the three components such that one of them explains 50% of the true structural variance in the predictors,
another one 40%, and the remaining one 10%. Adopting the terminology from Vervloet et al,24 we refer to the first two
components as “strong” components and call the third one a “weak” component. On the other hand, the three
components also differ in “relevance” for predicting the criterion, in that one of them explains 66.7% of the true
criterion variance and the other two 16.67% each. Finally, 70% of the weights and the loadings were made sparse.

We manipulated five data characteristics that are listed in the overview below. Each level within the manipulated
factors is provided in square brackets. For the second and third factor which concern the strength and the relevance of
the components, the proportion of variance explained is provided in the following order: [component distinctive to
block 1, component distinctive to block 2, and common component].

Study setup

1. Number of predictors Jk in each block: [100], [10]
2. Strength of the three components: [50%, 40%, 10%], [10%, 40%, 50%]; in the first case, the common component is

weak. In the second case, the first distinctive component is weak.
3. Relevance of the three components: [16.67%, 16.67%, 66.67%], [66.67%, 16.67%, 16.67%]; in the first case, the

common component is the most relevant. In the second case, the first distinctive is.
4. Proportion of error in XC: [10%], [50%]
5. Proportion of error in y: [10%], [50%]

To obtain two predictor blocks that correspond to the settings described above, the following procedure was

followed. The true predictor matrix X∗
C is defined by the model X∗

C =X∗
CWC P Xð Þ

C

� �T
where the weights and the loadings

are equal and column-orthogonal: WC =P Xð Þ
C . First, a random column-centered matrix T∗ of size I×R was generated

from a multivariate normal distribution with the identity matrix as covariance matrix. Subsequently, T∗ was centered
and column-orthogonalized to yield T. Second, to obtain a sparse and orthogonal weights matrix, we started by
generating a random weights matrix of W∗

C of size
P

kJk ×R from a uniform distribution over the interval of [0, 1]. To
create one distinctive component for each of the two predictor blocks, the weights of the predictors on this component
were set to zero in the other block. In the remaining nonzero parts, randomly chosen elements were replaced by zeros
to attain a sparsity level of 70% when computed across the full matrix. The resulting matrix was orthogonalized using a
Gram–Schmidt procedure in a manner that the sparse elements are retained to yield the true weights matrix WC.
Furthermore, a diagonal matrix D was created with the diagonal values representing the relative proportion of variance

accounted for by the components (i.e., reflecting their strength). Because WC =P Xð Þ
C , the true predictor matrix X∗

C was

then obtained as XC
� =TD P Xð Þ

C

� �T
=X�

CWC P Xð Þ
C

� �T
. Finally, residuals were added generated from a standard normal

distribution and scaled such that the predictor blocks contain the desired level of error to yield XC. The proportion of
error is defined as the proportion of total variance in the observed XC or y that is due to error. The scores on the

criterion variable were obtained in a similar fashion with the equation y=TDp yð Þ + e yð Þ =X∗
CWCp yð Þ + e yð Þ . To specify
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the regression coefficients p(y), we first fixed the coefficient pertaining to the second component to −0.3. This second
component is constantly irrelevant across the conditions. The other two coefficients were specified according to the
different levels of strength and relevance.

Fully crossing the conditions and generating 50 replicate datasets per condition, 2 × 2 × 2 × 2 × 2 × 50 = 1600
datasets were produced. Each of the 1600 datasets was subjected to eight different analyses. The different analysis
methods resulted from crossing the following four methods with two different numbers of extracted components.

Analysis methods

1. Method: [SCD-CovR], [SPCovR], [PCR-SCaDS], [SGCCA]
2. Number of components extracted: [2], [3]

Although a three-component model was used for data generation, we varied the extracted number of components
because we aim to understand the behavior and the performance of different methods at identifying the components.
When methods extract two components from data generated using a three-component model, methods can focus on
different aspects and thus yield different subsets of components. As the relevance and the strength of the three
components are manipulated across the conditions, we can observe how both aspects determine which two components
are extracted. For example, as mentioned in Section 2.4, we expect PCR-SCaDS to recover the strong components rather
than the relevant components.

3.2 | Model selection

The number of components R extracted for all four methods is fixed by the study design. A few other tuning parameters
were fixed such as to correspond to the true model structure. Suitable values for the tuning parameters that were not
fixed were found sequentially, for each data set and each analysis method.

For SCD-CovR, using the given R, we first simultaneously tuned the weighting parameter α and the ridge penalty λR
via 10-fold cross-validation, keeping the lasso penalty λL at 0 (which therefore does not induce any sparsity) and the
zero block constraints such that no distinctive components are imposed. We adopted the one standard error (SE) rule to
select a parameter that yields the most general model among the set of parameters with errors within one SE from the
minimal cross validation error. Usually, generality of models indicates that the model is unsaturated and thus easy to
interpret and unlikely to overfit. Because higher α values place more emphasis on criterion prediction and therefore
lead to a model more prone to overfitting, we chose the lowest α value via the one SE rule. Second, a suitable common
and distinctive component structure was determined. When extracting two components, the zero block constraints on
WC that provide the structure of the common and distinctive components were chosen through 10-fold cross-validation.
We selected the common and distinctive structure of the two components which led to the smallest cross validation
error. The one SE rule was not used because it is difficult to define what a general model is with regards to the common
and distinctive structure. On the other hand, for retrieving three components, the defined true structure was provided.
The lasso parameter was tuned by selecting the value that results in the correct number of zero component weights.

For SPCovR, the set of tuning parameters is the same as SCD-CovR except for the zero block constraints. As α and
λR were selected without any zero block constraints for SCD-CovR, these values were adopted for SPCovR (note that
when the zero block constraints do not impose distinctive components, SCD-CovR is equivalent to SPCovR). Also here,
λL was tuned to return the correct number of zero coefficients.

For PCR-SCaDS, the number of common and distinctive components as well as λR and λL needs to be determined.
We started the sequential approach by performing 10-fold cross-validation with the one SE rule for determining λR.
Next, the zero block constraints and λL were found as previously discussed for SCD-CovR.

Finally, for SGCCA, the λL tuning parameter was fixed to yield the same number of zero-coefficients as in the
generated data. The ridge penalty in SGCCA was tuned using the default setting the package provides.

3.3 | Evaluation criteria

The four considered methods serve multiple aims: predicting a criterion, capturing possible common and distinctive
underlying processes, and providing sparse solutions for better interpretation. To assess the effectiveness of the methods
at meeting these aims, we employed two evaluation criteria.
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1. Out-of-sample R2: equivalent to the R2 measure for ordinary least squares (OLS) but applied for an independent
out-of-sample test set.

2. Correct classification rate: proportion of WC coefficients correctly classified as zero and nonzero elements relative to
the total number of coefficients.

The independent test set (of 100 observation units) needed for computing the out-of-sample R2 was generated
following the same underlying model and the procedures as the data used for estimation. The out-of-sample R2 measure
is computed by the following equation:

R2
out-of -sample =1−

ytest−bytestk k22
ytestk k22

, ð9Þ

where ytest refers to the y scores from an out-of-sample test set and bytest indicates the predicted score that corresponds

to ytest. Therefore,
ytest−bytest�� ��2

2

ytestk k22
refers to the scaled sum of squared prediction error. Because this scaled sum of prediction

error can be larger than one, it is possible for the out-of-sample R2 to take a negative value. The correct classification
rate is computed by comparing the true and the estimated WC weights matrices. To handle the permutational freedom
and the sign invariance of the estimated components, we calculated Tucker congruence between the columns of the
true WC matrix and those of the estimated WC matrix. After pairing the true and estimated WC columns that resulted
in the highest Tucker congruence, the correct classification rate is calculated from the matching pairs of true and
estimated WC columns. This strategy was also used when only two components were extracted: they were matched to
those two components of the three true ones that yield the highest Tucker congruence.

3.4 | Results

3.4.1 | Out-of-sample R2

First, we consider the performance of the four methods in terms of how well they predict new data. The results are
summarized in Figures 1-3, and 4. The first two of these refer to the results obtained when extracting two components
only, whereas the latter two refer to the analyses with three extracted components.

The aggregated results over all conditions, for the analyses with two extracted components, can be found in
Figure 1. It can be observed that on average, PCR-SCaDS has smaller out-of-sample R2 than the other three methods.
The latter show similar performance among each other. To examine whether there is an effect of the design factors and
of the used method on out-of-sample R2, we studied how the out-of-sample R2 changes according to each of the
conditions in the design by observing the boxplots.

Figure 2 presents these boxplots of out-of-sample R2 arranged for each condition, conveying that the proportion of
error variance in y plays an influential role in the performance of the methods. In the conditions where the error

FIGURE 1 Box plots of the out-of-sample

R2 when two components are extracted:

aggregated results. The red dot indicates the

mean. PCR-SCaDS, principal component

regression followed by sparse common and

distinctive simultaneous component analysis,

SCD-CovR, sparse common and distinctive

covariates regression; SGCCA, sparse

generalized canonical correlation analysis;

SPCovR, sparse principal covariates regression
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variance in y equals 10%, the four methods have comparable levels of prediction performance in those situations where
the strong component is relevant for prediction (the two columns in the middle). In contrast, when the component rele-
vant for prediction is a weak one, the out-of-sample R2 of PCR-SCaDS decreases considerably. On the other hand,
although this trend of underperformance of PCR-SCaDS can also be found in the 50% error on y conditions, it is not as
pronounced.

FIGURE 2 Box plots of the out-of-sample

R2 when two components are extracted; each

panel corresponds to one of the 16 conditions.

The column panels indicate the manipulated

strength and relevance of the three components;

D1 and D2 denote the components distinctive to

block 1 and 2, respectively, whereas C refers to

the common component. The row panels

indicate the number of variables Jk in each

predictor block. PCR-SCaDS, principal

component regression followed by sparse

common and distinctive simultaneous

component analysis, SCD-CovR, sparse common

and distinctive covariates regression; SGCCA,

sparse generalized canonical correlation

analysis; SPCovR, sparse principal covariates

regression

FIGURE 3 Box plots of the out-of-sample

R2 when three components are extracted:

aggregated results. The red dot indicates the

mean. PCR-SCaDS, principal component

regression followed by sparse common and

distinctive simultaneous component analysis,

SCD-CovR, sparse common and distinctive

covariates regression; SGCCA, sparse

generalized canonical correlation analysis;

SPCovR, sparse principal covariates regression
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SGCCA is more sensitive to whether the relevant component is strong or weak; when a strong component is rele-
vant, the method has comparable out-of-sample R2 with the other three methods. However, for datasets, where the
weak component is relevant, SGCCA outperforms the other methods. SCD-CovR and SPCovR outperform PCR-SCaDS
with respect to prediction in all conditions; they perform similar to or a bit better than SGCCA in terms of prediction
when the strong component is also the relevant one, but SGCCA has better predictive performance when the relevant
component is a weak component. The underperformance of PCR-SCaDS is not a surprising outcome because it only
considers the predictor variables in constructing the components. Therefore, the variance explained in y by a weak but
relevant component is not effectively captured by the method, because it extracts the two strong though irrelevant
components.

Figure 3 summarizes the out-of-sample R2 obtained when each of the methods extracted three components. SGCCA
appears to stand out with a slightly lower out-of-sample R2 on average, whereas the other three methods show very
similar performance. Figure 4 shows the results laid out in function of the factors.

In most of the conditions in Figure 4, we can observe the trend conveyed in Figure 3: SGCCA shows a lower level of
out-of-sample R2, whereas the other three methods perform comparably. The underperformance of SGCCA is clearer in
the conditions in which the proportion of error in y is 50%. This result can be attributed to overfitting: for these
conditions where SGCCA showed low levels of R2, the residuals (in-sample errors) were considerably smaller than the
prediction error computed with the out-of-sample observation of y. On the other hand, the two different types of errors
were comparable for the three other methods. In contrast to Figure 2 with two-component models, the prediction

FIGURE 4 Box plots of the out-of-sample

R2 when three components are extracted; each

panel corresponds to one of the 16 conditions.

The column panels indicate the manipulated

strength and relevance of the three components;

D1 and D2 denote the components distinctive to

block 1 and 2, respectively, whereas C refers to

the common component. The row panels

indicate the number of variables Jk in each

predictor block. PCR-SCaDS, principal

component regression followed by sparse

common and distinctive simultaneous

component analysis, SCD-CovR, sparse common

and distinctive covariates regression; SGCCA,

sparse generalized canonical correlation

analysis; SPCovR, sparse principal covariates

regression
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quality of PCR-SCaDS is similar with the one shown by SCD-CovR and SPCovR. This is reasonable, as in this setup,
where all three underlying components are extracted, PCR-SCaDS is able to extract the relevant but weak component.

In conclusion, the results for the out-of-sample R2 show that SCD-CovR yields a relatively high quality of prediction.
When two components are extracted, it outperforms PCR-SCaDS, whereas with three extracted components, the
method results greater R2 than SGCCA. Additionally, the performance of SPCovR is comparable with that of
SCD-CovR. It should be noted, however, that when not all components are extracted and there is a weak component
that is relevant for prediction, then SGCCA is the preferred method in terms of prediction.

3.4.2 | Correct classification rate

Figures 5 and 6 present the results of the correct classification rate. In Figure 5, which pertains to the analyses with two
extracted components, PCR-SCaDS yields the highest rate of weights correctly classified as zero or nonzero, closely
followed by SCD-CovR and SPCovR. SGCCA has a considerably lower correct classification rate. SCD-CovR, SPCovR,
and PCR-SCaDS again show comparable and high correct classification rates also when three components were
extracted (Figure 6), where SGCCA underperforms again. This general trend seen in Figures 5 and 6 is largely
consistent across conditions.

The outperformance of PCR-SCaDS and SCD-CovR is sensible. On top of the lasso penalty that induces sparsity,
these methods also constrain the weights such that an entire set of weights belonging to a predictor block are made
sparse. When three components are extracted, the oracle information of the common and distinctive component
structure is provided which further eases the correct classification. In contrast, SPCovR and SGCCA do not explicitly
cater for capturing common and distinctive processes and thus are expected to show a diminished rate of correct
classification. However, SPCovR resulted in a very similar level of performance as SCD-CovR, and this can be attributed
to the usage of rational starting values based on PCovR. Because the predictor variables were generated with an
underlying true unrotated structure of PCA, initializing the convergence with PCovR solutions helps SPCovR in
correctly retrieving the weights.

FIGURE 5 Box plots of the correct

classification rate when two components are

extracted: aggregated results. The red dot

indicates the mean. PCR-SCaDS, principal

component regression followed by sparse

common and distinctive simultaneous

component analysis, SCD-CovR, sparse common

and distinctive covariates regression; SGCCA,

sparse generalized canonical correlation

analysis; SPCovR, sparse principal covariates

regression

FIGURE 6 Box plots of the correct

classification rate when three components are

extracted: aggregated results. The red dot

indicates the mean. PCR-SCaDS, principal

component regression followed by sparse

common and distinctive simultaneous

component analysis, SCD-CovR, sparse common

and distinctive covariates regression; SGCCA,

sparse generalized canonical correlation

analysis; SPCovR, sparse principal covariates

regression
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To conclude, the results from the correct classification rate suggest that SCD-CovR and SPCovR return weights that
are of similar quality as those obtained with PCR-SCaDS which emphasizes the recovery of the weights more.

3.4.3 | Capturing common and distinctive components

On top of the prediction quality and the correct retrieval of sparse weights, SCD-CovR also targets another objective,
namely to capture common and distinctive predictive processes. For each of the 1600 simulated datasets that the
methods were administered to, we counted the number of common and distinctive components found by the methods.
Regardless of the presence of zero block constraints, a column of the estimated WC matrix that contains only zeroes for
a predictor block is considered a distinctive component. Otherwise, when nonzero weights are found for both blocks,
the component is a common component. For instances where an entire column is zero, the corresponding component
is identified as neither common nor distinctive. Table 1 provides the numbers of these components (note that we
generated all of the replicate datasets by a three-component model with two components distinctive to each predictor
block and one common component).

Concerning analyses with two components where the zero block constraints are selected via cross-validation for
SCD-CovR and PCR-SCaDS, it can be seen that almost all of the components found by PCR-SCaDS were distinctive.
SCD-CovR identified about 41% of the estimated components as distinctive components. SPCovR and SGCCA, which
do not impose an explicit constraint for the distinctive components, mostly identified common components, naturally.
With respect to the three-component models, SCD-CovR and PCR-SCaDS with the oracle information on the common
and distinctive structure returned the components reflecting the structure effectively. However, it can be seen that
SCD-CovR provided a few more distinctive components than defined. These are instances where the lasso penalty
sparsifies the weights corresponding to an entire predictor block, while the respective component is a common
component. Although SPCovR and SGCCA do not provide sufficient numbers of distinctive components, SPCovR
derived a lot more of those than in the two-component setting. Interestingly, the number of components did not appear
to influence the effectiveness of SGCCA in capturing the common and distinctive components. Also, a component
distinctive to the first predictor block was found much more frequently than the other distinctive component by
SGCCA.

These numbers of retrieved common and distinctive components suggest that SCD-CovR is as effective as
PCR-SCaDS with heavy emphasis on reconstructing the predictors when the correct common and distinctive structure
is given. SPCovR that has similar performance with SCD-CovR at correct classification of the weights falls short at
providing enough distinctive components, when the correct number of three components is used. This implies in
practice that far more components extracted by SPCovR would be interpreted as a common process rather than a
distinctive one, than the components derived using SCD-CovR. Evaluating the performance of the methods under

TABLE 1 Number of common and distinctive components considering the weights matrix

SCD-CovR SPCovR PCR-SCaDS SGCCA

Two-component model

D1 666 101 1596 197

D2 641 138 1599 9

C 1893 2961 0 2994

Three-component model

D1 1636 643 1601 200

D2 1601 840 1601 8

C 1563 3317 1595 4592

Note. D1 and D2 indicate components distinctive to block 1 and 2, respectively, and C refers to a common component. There were 1600 repli-
cate datasets, and thus, the total numbers of estimated components for the analyses with two and three components were 3200 and 4800,
respectively.
Abbreviations: PCR-SCaDS, principal component regression followed by sparse common and distinctive simultaneous component analysis,
SCD-CovR, sparse common and distinctive covariates regression; SGCCA, sparse generalized canonical correlation analysis; SPCovR, sparse
principal covariates regression.
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two-component model is less straightforward than three-component model, because now, the methods have to
summarize the structural variation governed by three true components by estimating only two. Methods can choose
certain favorable components or may create composite components that combine multiple true components. In such
cases, simply deriving more distinctive components perhaps does not directly link to outperformance. Although 50% of
the replicate datasets were characterized by the common component being a strong component, PCR-SCaDS extracted
only distinctive components. This indicates the method's strong inclination towards finding distinctive components. At
the same time, although the other 50% of the datasets did not feature the common component being strong, a vast
majority of the components retrieved by SPCovR and SGCCA were common components. This implies that these two
methods favor common components. In contrast, 59% of the components retrieved by SCD-CovR were common
components, and this appears to address the true component structure better than the other methods. To conclude, our
results from two-component models suggest that SCD-CovR is more capable than the other methods in finding an
adequate balance between common and distinctive components in reflecting the underlying component structure.

4 | ILLUSTRATIVE APPLICATION

In this section, we illustrate SCD-CovR by applying it to an empirical dataset. We also compare with results that are
obtained with the related methods to examine the practical effectiveness of SCD-CovR.

4.1 | Dataset and preprocessing

We analyzed a dataset originally from Thybo et al26 regarding texture measurements of potatoes. The dataset consists of
20 potato samples that were analyzed using three measurement platforms: chemical analysis, uniaxial compression,
and sensory analysis. The chemical analysis block contains 14 variables regarding chemical aspects of the potatoes, such
as the chemical composition. The uniaxial compression block with 36 variables provides measurements obtained from
administering uniaxial compression at six deformation rates on cooked potato samples. The sensory analysis block is
composed of nine sensory variables reported by trained experts. Here, we conduct SCD-CovR with the aim to predict
the sensory experience, while also exploring the underlying common and distinctive predictive processes in the
chemical and uniaxial compression blocks.

To this end, we constructed a univariate criterion from the sensory analysis data block by extracting the first
principal component. All variables were first centered and scaled to unit sum of squares. Next, in order to account for
the differing size of the two predictor data blocks, we scaled these blocks so that the sum of squares of each data block
is equal. We administered SCD-CovR along with the three related methods employed in the simulation study to assess
the performance of the methods when being applied to an empirical dataset.

4.2 | Model selection

The model selection strategy for this empirical dataset was largely in line with the strategy used in the simulation study,
applying the same tuning sequence. However, the true number of components as well as their status (common,
distinctive for block one or two) and the level of sparseness were unknown in this setting. We found the number of
components through a residual test where we observe the change of sum of squared residuals y−byk k22 (where y and by
indicate the observed criterion and the fitted values, respectively) while increasing the number of components. For the
test, we fixed the ridge and lasso penalties λR and λL to 0.01 (to account for high dimensionality) and 0, respectively. As
the common and distinctive structures of the model may interact with the number of components needed, we included
all the possible combinations of the common and distinctive components in the residual test. Concerning the weighting
parameter α, we used the maximum likelihood approach discussed in Vervloet et al.19 The following formula was used:

αML =1−
XCk k22

XCk k22 + yk k22
σ2
E Xð Þ
σ2
e yð Þ

, ð10Þ
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where σ2
E Xð Þ and σ2e yð Þ refer to the error variances to be estimated (see Vervloet et al.27 for details). The results from the

residual test are shown in Figure B1. Within each number of components, models comprised mostly of distinctive com-
ponents resulted in larger sums of residuals. However, when observing the overall trend, the sum of squared residuals
decreases sharply at three components independently of the common and distinctive structures. The sum of residuals
then stabilizes with subsequent numbers of components. The residual test using the aforementioned tuning parameters
therefore resulted in the choice of three components. In order to make the method comparison fair, we also used three
components when applying the other methods.

Given this number of components, we used the same model selection procedure as in the simulation study. This
procedure consists of conducting cross-validation for α and λR simultaneously, followed by cross-validation for the zero
block constraints. Both procedures employed 10-folds. The one SE rule was adopted for α and λR but not for the zero
block constraints. Out of the three different configurations of zero block constraints, which resulted in similar levels of
cross validation error, (D1,D2,C), (C,C,C), and (D2,C,C), the configuration with the smallest error, (D1, D2, C) was
selected (Figure B2). We acknowledge that it is hard to tell which of these three structures is the true underlying
common and distinctive structure, however. Because the oracle level of sparsity is unavailable for this empirical
example, λL was determined through 10-fold cross-validation with the one SE rule as well (Figure B3). The plots that
depict the cross-validation errors and the corresponding SEs can be found in Appendix B.

With regards to SPCovR, we adopted the same number of components, α and λR as used for SCD-CovR. The lasso
penalty λL was chosen through 10-fold cross-validation with the one SE rule (Figure B4). For PCR-SCaDS, the
procedures from the simulation study were taken (Figure B5, B6). λL was determined through 10-fold cross-validation
with the one SE rule (Figure B7). Lastly, SGCCA only needs tuning of the lasso penalty governing the level of sparsity,
this penalty was tuned via 10-fold cross-validation with the one SE rule as well (Figure B8). The plots in Appendix B
can be consulted for the cross-validation results.

4.3 | Results

The four methods were administered with the tuning parameters in Table 2. The table also provides the R2 values of

each method, calculated by R2 = 1− y−byk k22= yk k22
� �

, where y and by indicate the observed criterion and the fitted

values, respectively.

The R2 values are very high, except for PCR-SCaDS. In order to also test for out-of-sample prediction quality, we
conducted 10-fold cross-validation. The results can be seen in Figure 7 and are in agreement with those found in our
simulation study. SCD-CovR and SPCovR produced less cross-validation errors than PCR-SCaDS and SGCCA; cross-
validation error is comparable with prediction error. Inspecting the weights matrix produced by the two outperforming
methods, we found that SPCovR produced two common components and one component distinctive to the chemical
block, whereas SCD-CovR found one common component and one distinctive component for each predictor block. It is
difficult to determine which of the both solutions is more interpretable, but this finding indicates that SCD-CovR is
capable of capturing more distinctive components than SPCovR while providing competitive quality in prediction.

For interpretation of the final SCD-CovR model, we can first study the retrieved sparse weights matrix (Table C1 in
Appendix C). It displays that the resulting weights matrix is very sparse; there are only 7, 5, and 4 nonzero weights that

TABLE 2 Tuning parameters and R2 per method

R α Ridge Lasso Block R2

SCD-CovR 3 0.7 0.005 3.579 C, D1, D2 0.981

SPCovR 3 0.7 0.005 5.477 NA 0.933

PCR-SCaDS 3 NA 0.001 0.011 D1, D2, D2 0.663

SGCCA 3 NA NA 0.277 NA 0.954

Note. “Block” refers to the zero block constraints.
Abbreviations: PCR-SCaDS, principal component regression followed by sparse common and distinctive simultaneous component analysis,
SCD-CovR, sparse common and distinctive covariates regression; SGCCA, sparse generalized canonical correlation analysis; SPCovR, sparse
principal covariates regression.
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correspond to the three components respectively. As dictated by the tuned zero-block constraints, the weights matrix
contains nonzero coefficients from both predictor blocks only in the column that corresponds to the common
component.

We further investigated the model by inspecting Figure 8. This figure plots the component scores of the potato sam-
ples. Out of the 20 potato samples, 12 were grown conventionally, and 8 were grown organically. Although this infor-
mation was not incorporated when fitting the model, the two types can be clearly distinguished using the two
distinctive components. Therefore, these components found by SCD-CovR not only are capable of predicting the
response variable but also reveal existing structural variation. In summary, the exploration of the final model shows
that the method is able to fulfill its aims. It retrieves common and distinctive components that are sparse and thus more
interpretable. The components also adequately explain the variance in both response and the predictors.

5 | DISCUSSION

Data originating from multiple sources can be analyzed with several objectives: prediction of a criterion, selection of
relevant variables, and uncovering the common and distinctive underlying mechanisms. We proposed SCD-CovR to
address these three aims simultaneously.

Through a simulation study incorporating multiple evaluation criteria that reflect these aims, we demonstrated that
SCD-CovR outperforms three related methods that serve a subset of these goals; SPCovR, PCR-SCaDS, and SGCCA.
Our method resulted in better prediction than PCR-SCADS and was also more effective than SGCCA for prediction
under certain conditions. The coefficients retrieved by SCD-CovR better reflected the true underlying coefficients than
those found by SGCCA. Lastly, with respect to finding common and distinctive processes, the method outperformed

FIGURE 7 Cross-validation error and the

corresponding standard error of the four

methods. PCR-SCaDS, principal component

regression followed by sparse common and

distinctive simultaneous component analysis,

SCD-CovR, sparse common and distinctive

covariates regression; SGCCA, sparse

generalized canonical correlation analysis;

SPCovR, sparse principal covariates regression.

CV, cross-validation

FIGURE 8 Component scores of the potato samples. The two types of potato samples are displayed in different colors. C, D1, and D2

indicate the type of the components (i.e., D1 refers to the component distinctive to the first predictor block that is the chemical analysis)
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SPCovR and SGCCA in capturing the block structure of common and distinctive components. We further illustrated
this comparative advantage of SCD-CovR by reanalyzing a publicly available empirical dataset. The SCD-CovR
cross-validation error was lower than that of PCR-SCaDS and SGCCA. At the same time, SCD-CovR retrieved more
distinctive components than SPCovR.

These results provide further insight into the strengths of our proposed method. The outperformance in prediction
compared with PCR-SCaDS reiterates previous comparisons of PCovR and PCR.24,28 Deriving components while taking
the criterion into account is more effective for prediction, than adopting a two-step approach of first constructing the
components and then subsequently using them for prediction. Similarly, PLS methods have been found to be more
prone to overfitting than PCovR methods,8 and our outcome of the simulation study shows the same, with SCD-CovR
yielding better out-of-sample prediction under several conditions. Moreover, SPCovR and SCD-CovR being more
effective than SGCCA exhibit the benefits of the weighting parameter α. It enables a good balance between focusing on
the predictors or the criterion, whereas SGCCA emphasizes the criterion more strongly. Our results are all based on
α values established through cross-validation and thus indicate the effectiveness of the weighting parameter even
within a data-driven approach. Lastly, concerning the identification of common and distinctive components, the
simulation results from the three-component models illustrate the outperformance of SCD-CovR when the zero block
constraints are correctly specified. This implies that the method can be especially effective when supported by an
adequate model selection strategy.

Our proposed method also comes with some weaknesses. Model selection is an obvious challenge. As the method is
devised to serve multiple aims, it involves many parameters to be tuned. The weighting parameter α, the number of
components, the common and distinctive component structure, and the penalization parameters are all influential, and
the retrieved model heavily depends on the choice of these parameters. Furthermore, identifying and discerning
common and distinctive processes for data fusion methods is a very complicated task as it often interacts with other
aspects such as the number of components.12 In the same vein, the weighting parameter α involved with PCovR is also
difficult to tune.24 However, as the current paper focuses more on the proposal and the illustration of the new
SCD-CovR method, this intricate problem of model selection has not been extensively addressed.

The examples presented in the current study only concern a scenario with two data blocks, but it is possible to
extend our method to a situation with more blocks. In that case, a component that is constructed by predictors from a
single data block would be defined as a distinctive component. Components pertaining to predictors from multiple but
not all blocks would be called partially or locally common, as opposed to globally common components that involve
predictors from all of the data blocks. These terminologies are in line with the previous literature such as Måge et al.12

In such data circumstances, the challenge of model selection would involve heavy computational burden because our
method caters for capturing of common and distinctive underlying processes by means of the prespecified zero block

constraints. Given K data blocks and R components, no less than 2K −1ð Þ+R−1
R

� �
different zero block constraints should

be evaluated. Considering that the method also involves several other parameters for retrieving the sparse solutions, the
model selection procedure becomes a particularly intensive task.

As it holds for many other methods that rely on the lasso and elastic net penalties to attain sparsity, SCD-CovR is
not free from the shortcoming that nonzero coefficients may be overly shrunken towards zero. Alternatives have been
proposed, including the adaptive lasso29 and the SCADS penalty,30 which apply different degrees of shrinkage
depending on the value of the coefficients. Stability selection31 is another effective method for variable selection that
does not shrink the nonzero coefficients. However, some degree of shrinkage of the nonzero coefficients may be
beneficial in terms of bias-variance tradeoff as it helps to stabilize the OLS estimates.32

There are several future directions that the method can extend towards. Handier solutions to retrieve the distinctive
components such as the Group lasso penalty can be adopted to greatly relieve the computational demand of the zero
block constraints. Gu and Van Deun33 have implemented the Group lasso to find distinctive components within the
multiblock sparse PCA setting, and this could be one of the possible future directions in extending the SCD-CovR
method. Another natural extension is to allow multiple criterion variables, as the current method only entails the
univariate regression problem. Furthermore, the method can be adapted to incorporate more diverse structures of
underlying processes. The current simulation study assumes that the data generating model follows the properties of
PCA where the weights and the loadings are equal. However, true structures where this equality does not hold may
exist. It would be interesting to examine the applicability of the method within such circumstances, as both weights
and loadings would need to be considered for interpretation. Similarly, our proposed method only enforces sparsity in
the weights, but the true structure may also include sparse loadings. Looking further into these other possible models
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where loadings or both weights and loadings are sparse can also be a plausible direction in devising a predictive method
that is more interpretable, in a modern multiblock setting.
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APPENDIX A: ALTERNATING LEAST SQUARES FOR SCD-COVR

As given in Section 2, the objective function to be minimized is

L WC,P
Xð Þ
C ,p yð Þ

C

� �
= α

y−XCWCp
yð Þ
C

T��� ���2
2

yk k22
+ 1−αð Þ

XC−XCWCP
Xð Þ
C

T��� ���2
2

XCk k22
+ λL WCj j1 + λR WCk k22

, ðA1Þ

such that P Xð Þ
C

� �T
P Xð Þ
C = IR, λL, λR≥ 0, α≥ 0 and zero block constraint on WC.

The solutions are found through an alternating procedure where the objective is minimized with regards to P Xð Þ
C

and p(y) conditional on a fixed value of WC and vice versa. The procedure iterates until a convergence criterion is met.
Many methods that attain sparse solutions from PCA through regularization penalty have adopted this approach to find

the solutions.8,16,21 The procedure for SCD-CovR is similar to these methods, but the minimization with respect to P Xð Þ
C

and p(y) given WC is slightly different. The loadings P Xð Þ
C are obtained via an analytical solution; P Xð Þ

C =UVT where U

and V are found through singular value decomposition of XT
CXCWC =UDVT . The regression coefficients y are given by

the ridge regression estimates; p yð Þ = XT
CXC + λRI

� �−1
XT
Cy , where I is a

PK
k Jk

� �
×

PK
k Jk

� �
identity matrix and λR is a

ridge penalty. Conditional on these values, the weights W are found through the coordinate descent algorithm. The
zero block constraint specifies the elements that will be put to zero to encourage the common and distinctive processes.

The details on the conditional estimation of W given P Xð Þ
C and p(y) can be found in de Schipper and Van Deun.16
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APPENDIX B: MODEL SELECTION FOR THE ILLUSTRATIVE APPLICATION

FIGURE B1 Sparse common and distinctive covariates regression (SCD-CovR): residual plot for determining the number of

components. Each dot represents one model with a certain common and distinctive component structure. The colors indicate the type of

component that occupies more than 65% of the total number of components in a model (e.g., when common components make up more

than 65% of the total set of components, the model is colored red). When one particular type of component does not dominate the model, it

is indicated by purple. D1 and D2 denote models dominated by components distinctive to block 1 and 2, respectively, whereas C refers to the

common component

FIGURE B2 Sparse common and

distinctive covariates regression (SCD-CovR):

cross-validation error and corresponding

standard error for zero block constraint for

common and distinctive structure. D1 and D2

indicate components distinctive to block 1 and

2, whereas C denotes the common component.

The selected zero block constraint with the

smallest cross-validation error is displayed in

red. CV, cross-validation

20 of 23 PARK ET AL.



FIGURE B3 Sparse common and

distinctive covariates regression (SCD-CovR):

cross-validation error and corresponding

standard error for the lasso penalty. The blue

dashed line indicates the bound used for the one

standard error (SE) rule, and the selected lasso

value is shown in red. CV, cross-validation

FIGURE B4 Sparse principal covariates

regression (SPCovR): cross-validation error and

corresponding standard error for the lasso

penalty. The blue dashed line indicates the

bound used for the one standard error (SE) rule

and the selected lasso value is shown in red. CV,

cross-validation

FIGURE B5 Principal component

regression followed by sparse common and

distinctive simultaneous component analysis

(PCR-SCaDS): cross-validation error and

corresponding standard error for the ridge

penalty. The blue dashed line indicates the

bound used for the one standard error (SE) rule

and the selected ridge value is shown in red. CV,

cross-validation

FIGURE B6 Principal component

regression followed by sparse common and

distinctive simultaneous component analysis

(PCR-SCaDS): cross-validation error and

corresponding standard error for zero block

constraint for the common and distinctive

structure. D1 and D2 indicate components

distinctive to block 1 and 2, respectively,

whereas C denotes the common component. The

selected zero block constraint with the smallest

cross-validation error is displayed in red. CV,

cross-validation
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APPENDIX C: ILLUSTRATIVE APPLICATION RETRIEVED WEIGHTS

FIGURE B7 Principal component

regression followed by sparse common and

distinctive simultaneous component analysis

(PCR-SCaDS): cross-validation error and

corresponding standard error for the lasso

penalty. The blue dashed line indicates the

bound used for the one standard error (SE) rule,

and the selected lasso value is shown in red. CV,

cross-validation

FIGURE B8 Sparse generalized canonical

correlation analysis (SGCCA): cross-validation

error and corresponding standard error for the

lasso penalty. The blue dashed line indicates the

bound used for the one standard error (SE) rule

and the selected lasso value is shown in red. CV,

cross-validation

TABLE C1 Weights retrieved by the final SCD-CovR model from the illustrative application

C D1 D2

Chemical analysis

PEU 0 0 0

starch 0 -6.004 0

TotalN 0 0 0

phytic 0 -0.024 0

Ca 0 -0.494 0

Mg 0 0 0

Na 0 -0.003 0

K -2.519 0 0

his1 0 0 0

his2 0.138 0 0

his3 0.306 0 0

(Continues)
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TABLE C1 (Continued)

C D1 D2

his4 0 1.130 0

his5 0.480 0 0

his6 0 0 0

Uniaxial compression

FractureWork20 0 0 0

BreakWork20 0 0 4.947

stressT20 0 0 0

strainH20 0 0 0

modulus20 0 0 0

slope20 0 0 0

FractureWor100 0 0 0

BreakWork100 0 0 0

stressT100 0 0 0

strainH100 0.133 0 0

modulus100 0 0 0

slope100 0 0 0

FractureWor250 0 0 0

BreakWork250 0 0 0

stressT250 0 0 0

strainH250 0 0 0

modulus250 0 0 1.766

slope250 0 0 0

FractureWor500 0 0 0

BreakWork500 0 0 0

stressT500 0 0 0

strainH500 0 0 0

modulus500 0 0 0

slope500 0 0 0

FractureWor750 0 0 0

BreakWork750 0 0 0

stressT750 0 0 0

strainH750 0 0 0

modulus750 0 0 1.663

slope750 0 0 0

FractureWor1000 0 0 0

BreakWork1000 5.758 0 0

stressT1000 0 0 0

strainH1000 0 0 0

modulus1000 0 0 1.104

slope1000 0.155 0 0

Note. The table above presents weights corresponding to the chemical analysis block, the one below corresponding to the uniaxial compres-
sion block.
Abbreviation: SCD-CovR, sparse common and distinctive covariates regression.
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