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ON SIGN-SYMMETRIC SIGNED GRAPHS

EBRAHIM GHORBANI, WILLEM H. HAEMERS, HAMID REZA MAIMANI,
AND LEILA PARSAEI MAJD

Abstract. A signed graph is said to be sign-symmetric if it is switching isomorphic
to its negation. Bipartite signed graphs are trivially sign-symmetric. We give new
constructions of non-bipartite sign-symmetric signed graphs. Sign-symmetric signed
graphs have a symmetric spectrum but not the other way around. We present
constructions of signed graphs with symmetric spectra which are not sign-symmetric.
This, in particular answers a problem posed by Belardo, Cioabă, Koolen, and Wang
(2018).

1. Introduction

Let G be a graph with vertex set V and edge set E. All graphs considered in this
paper are undirected, finite, and simple (without loops or multiple edges).

A signed graph is a graph in which every edge has been declared positive or negative.
In fact, a signed graph Γ is a pair (G, σ), where G = (V,E) is a graph, called the
underlying graph, and σ : E → {−1,+1} is the sign function or signature. Often,
we write Γ = (G, σ) to mean that the underlying graph is G. The signed graph
(G,−σ) = −Γ is called the negation of Γ. Note that if we consider a signed graph
with all edges positive, we obtain an unsigned graph.

Let v be a vertex of a signed graph Γ. Switching at v is changing the signature of
each edge incident with v to the opposite one. Let X ⊆ V . Switching a vertex set
X means reversing the signs of all edges between X and its complement. Switching
a set X has the same effect as switching all the vertices in X, one after another.

Two signed graphs Γ = (G, σ) and Γ′ = (G, σ′) are said to be switching equivalent
if there is a series of switching that transforms Γ into Γ′. If Γ′ is isomorphic to a
switching of Γ, we say that Γ and Γ′ are switching isomorphic and we write Γ ' Γ′.
The signed graph −Γ is obtained from Γ by reversing the sign of all edges. A signed
graph Γ = (G, σ) is said to be sign-symmetric if Γ is switching isomorphic to (G,−σ),
that is: Γ ' −Γ.

For a signed graph Γ = (G, σ), the adjacency matrix A = A(Γ) = (aij) is an n× n
matrix in which aij = σ(vivj) if vi and υj are adjacent, and 0 if they are not. Thus
A is a symmetric matrix with entries 0,±1 and zero diagonal, and conversely, any
such matrix is the adjacency matrix of a signed graph. The spectrum of Γ is the list
of eigenvalues of its adjacency matrix with their multiplicities. We say that Γ has a
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symmetric spectrum (with respect to the origin) if for each eigenvalue λ of Γ, −λ is
also an eigenvalues of Γ with the same multiplicity.

Recall that (see [4]), the Seidel adjacency matrix of a graph G with the adjacency
matrix A is the matrix S defined by

Suv =

 0 if u = v
−1 if u ∼ v

1 if u � v

so that S = J − I − 2A. The Seidel adjacency spectrum of a graph is the spectrum
of its Seidel adjacency matrix. If G is a graph of order n, then the Seidel matrix of G
is the adjacency matrix of a signed complete graph Γ of order n where the edges of
G are precisely the negative edges of Γ.

Proposition 1.1. Suppose S is a Seidel adjacency matrix of order n. If n is even,
then S is nonsingular, and if n is odd, rank(S) ≥ n − 1. In particular, if n is odd,
and S has a symmetric spectrum, then S has an eigenvalue 0 of multiplicity 1.

Proof. We have det(S) ≡ det(I − J)(mod 2), and det(I − J) = 1− n. Hence, if n is
even, det(S) is odd. So, S is nonsingular. Now, if n is odd, any principal submatrix
of order n− 1 is nonsingular. Therefore, rank(S) ≥ n− 1. �

The goal of this paper is to study sign-symmetric signed graphs as well as signed
graphs with symmetric spectra. It is known that bipartite signed graphs are sign-
symmetric. We give new constructions of non-bipartite sign-symmetric graphs. It is
obvious that sign-symmetric graphs have a symmetric spectrum but not the other way
around (see Remark 4.1 below). We present constructions of graphs with symmetric
spectra which are not sign-symmetric. This, in particular answers a problem posed
in [2].

2. Constructions of sign-symmetric graphs

We note that the property that two signed graphs Γ and Γ′ are switching iso-
morphic is equivalent to the existence of a ‘signed’ permutation matrix P such that
PA(Γ)P−1 = A(Γ′). If Γ is a bipartite signed graph, then we may write its adjacency
matrix as

A =

[
O B
B> O

]
.

It follows that PAP−1 = −A for

P =

[
−I O
O I

]
,

which means that bipartite graphs are ‘trivially’ sign-symmetric. So it is natural to
look for non-bipartite sign-symmetric graphs. The first construction was given in [1]
as follows.
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Theorem 2.1. Let n be an even positive integer and V1 and V2 be two disjoint sets of
size n/2. Let G be an arbitrary graph with the vertex set V1. Construct the complement
of G, that is Gc, with the vertex set V2. Assume that Γ = (Kn, σ) is a signed complete
graph in which E(G) ∪ E(Gc) is the set of negative edges. Then the spectrum of Γ is
sign-symmetric.

Theorem 2.1 says that for an even positive integer n, let B be the adjacency matrix
of an arbitrary graph on n/2 vertices. Then, the complete signed graph in which the
negatives edges induce the disjoint union of G and its complement, is sign-symmetric.

2.1. Constructions for general signed graphs. Let Mr,s denote the set of r × s
matrices with entries from {−1, 0, 1}. We give another construction generalizing the
one given in Theorem 2.1:

Theorem 2.2. Let B,C ∈Mk,k be symmetric matrices where B has a zero diagonal.
Then the signed graph with the adjacency matrices

A =

[
B C
C −B

]
is sign-symmetric on 2k vertices.

Proof. [
O −I
I O

] [
B C
C −B

] [
O I
−I O

]
=

[
−B −C
−C B

]
= −A

�

Note that Theorem 2.2 shows that there exists a sign-symmetric graph for every
even order.

We define the family F of signed graphs as those which have an adjacency matrix
satisfying the conditions given in Theorem 2.2. To get an impression on what the
role of F is in the family of sign-symmetric graphs, we investigate small complete
signed graphs. All but one complete signed graphs with symmetric spectra of orders
4, 6, 8 are illustrated in Fig. 6 (we show one signed graph in the switching class of
the signed complete graphs induced by the negative edges). There is only one sign-
symmetric complete signed graph of order 4. There are four complete signed graphs
with symmetric spectrum of order 6, all of which are sign-symmetric, and twenty-one
complete signed graphs with symmetric spectrum of order 8, all except the last one are
sign-symmetric, and together with the negation of the last signed graph, Fig. 6 gives
all complete signed graphs with symmetric spectrum of order 4, 6 and 8. Interestingly,
all of the above sign-symmetric signed graphs belong to F .

The following proposition shows that F is closed under switching.

Proposition 2.3. If Γ ∈ F and Γ′ is obtained from Γ by switching, then Γ′ ∈ F .

Proof. Let Γ ∈ F . It is enough to show that if Γ′ is obtained from Γ by switching
with respect to its first vertex, then Γ′ ∈ F . We may write the adjacency matrix of
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Γ as follows:

A =



0 b> c c>

b B′ c C ′

c c> 0 −b>

c C ′ −b −B′



.

After switching with respect to the first vertex of Γ, the adjacency matrix of the
resulting signed graph is



0 −b> −c −c>

−b B′ c C ′

−c c> 0 −b>

−c C ′ −b −B′



.

Now by interchange the 1st and (k + 1)-th rows and columns we obtain
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0 c> −c −b>

c B′ −b C ′

−c −b> 0 −c>

−b C ′ −c −B′


which is a matrix of the form given in Theorem 2.2 and thus Γ′ is isomorphic with a
signed graph in F . �

In the following we present two constructions for complete sign-symmetric signed
graphs using self-complementary graphs.

2.2. Constructions for complete signed graphs. In the following, the meaning
of a self-complementary graph is the same as defined for unsigned graphs. Let G
be a self-complementary graph so that there is a permutation matrix P such that
PA(G)P−1 = A(G) and PA(G)P−1 = A(G). It follows that if Γ is a complete signed
graph with E(G) being its negative edges, then A(Γ) = A(G)−A(G), (in other words,
A(Γ) is the Seidel matrix of G). It follows that PA(Γ)P−1 = −A(Γ). So we obtain
the following:

Observation 2.4. If Γ is a complete signed graph whose negative edges induce a
self-complementary graph, then Γ is sign-symmetric.

We give one more construction of sign-symmetric signed graphs based on self-
complementary graphs as a corollary to Observation 2.4. We remark that a self-
complementary graph of order n exists whenever n ≡ 0 or 1 (mod 4).

Proposition 2.5. Let G,H be two self-complementary graphs, and let Γ be a complete
signed graph whose negative edges induce the join of G and H (or the disjoint union
of G and H). Then Γ is sign symmetric. In particular, if G has n vertices, and if
H is a singleton, then the complete signed graph Γ of order n+ 1 with negative edges
equal to E(G) is sign-symmetric.

In the following remark we present a sign-symmetric construction for non-complete
signed graphs.



6 E. GHORBANI, W.H. HAEMERS, H.R. MAIMANI AND L. PARSAEI MAJD

Remark 2.6. Let Γ′,Γ′′ be two signed graphs which are isomorphic to−Γ′,−Γ′′, respec-
tively. Consider the signed graph Γ obtained from joining Γ′ and Γ′′ whose negative
edges are the union of negative edges in Γ′ and Γ′′. Then, Γ is sign-symmetric.

Remark 2.7. By Proposition 2.5, we have a construction of sign-symmetric complete
signed graphs of order n ≡ 0, 1 or 2 (mod 4). All complete sign-symmetric signed
graphs of order 5 and 9 (depicted in Fig. 7) can be obtained in this way. There is just
one sign-symmetric signed graph of order 5 which is obtained by joining a vertex to a
complete signed graph of order 4 whose negative edges form a path of length 3 (which
is self-complementary). Moreover, there exist sixteen complete signed graphs of order
9 with symmetric spectrum of which ten are sign-symmetric; the first three are not
sign-symmetric, and when we include their negations we get them all. All of these
ten complete sign-symmetric signed graphs can be obtained by joining a vertex to a
complete signed graph of order 8 whose negative edges induce a self-complementary
graph. Note that there are exactly ten self-complementary graphs of order 8.

Theorem 2.8. There exists a complete sign-symmetric signed graph of order n if and
only if n ≡ 0, 1 or 2 (mod 4).

Proof. Using the previous results obviously one can construct a sign-symmetric signed
graph of order n whenever n ≡ 0, 1 or 2 (mod 4). Now, suppose that there is a
complete sign-symmetric signed graph Γ of order n with n ≡ 3 (mod 4). By [7,
Corollary 3.6], the determinant of the Seidel matrix of Γ is congruent to 1−n (mod 4).
Since n ≡ 3 (mod 4), the determinant of the Seidel matrix (obtained from the negative
edges of Γ) is not zero. Hence, we can conclude that all eigenvalues of Γ are non-
zero. Therefore, Γ cannot have a symmetric spectrum, and also it cannot be sign-
symmetric. �

In [9] all switching classes of Seidel matrices of order at most seven are given. There
is a error in the spectrum of one of the graphs on six vertices in [9, Table 4.1] (2.37
should be 2.24), except for that, the results in [9] coincide with ours.

3. Positive and negative cycles

A graph whose connected components areK2 or cycles is called an elementary graph.
Like unsigned graphs, the coefficients of the characteristic polynomial of the adjacency
matrix of a signed graph Γ can be described in terms of elementary subgraphs of Γ.

Theorem 3.1 ([3, Theorem 2.3]). Let Γ = (G, σ) be a signed graph and

(1) PΓ(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

be the characteristic polynomial of the adjacency matrix of Γ. Then

ai =
∑
B∈Bi

(−1)p(B)2|c(B)|σ(B),

where Bi is the set of elementary subgraphs of G on i vertices, p(B) is the number of
components of B, c(B) the set of cycles in B, and σ(B) =

∏
C∈c(B) σ(C).
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Remark 3.2. It is clear that Γ has a symmetric spectrum if and only if in its charac-
teristic polynomial (1), we have a2k+1 = 0, for k = 1, 2, . . ..

In a signed graph, a cycle is called positive or negative if the product of the signs of
its edges is positive or negative, respectively. We denote the number of positive and
negative `-cycles by c+

` and c−` , respectively.

Observation 3.3. For sign-symmetric signed graph, we have

c+
2k+1 = c−2k+1 for k = 1, 2, . . . .

Remark 3.4. If in a signed graph Γ, c+
2k+1 = c−2k+1 for all k = 1, 2, . . ., then it is not

necessary that Γ is sign-symmetric. See the complete signed graph given in Fig. 3.
For this complete signed graph we have c+

2k+1 = c−2k+1 for all k = 1, 2, . . ., but it
is not sign-symmetric. Moreover, one can find other examples among complete and
non-complete signed graphs. For example, the signed graph given in Fig. 2 is a non-
complete signed graph with the property that c+

2k+1 = c−2k+1 for all k = 1, 2, . . ., but
it is not sign-symmetric.

By Theorem 3.1, we have that a3 = 2(c−3 − c+
3 ). By Theorem 3.1 and Remark 3.2

for signed graphs having symmetric spectrum, we have c+
3 = c−3 . Further, for each

complete signed graph with a symmetric spectrum, it can be seen that c+
5 = c−5 .

However, the equality c+
2k+1 = c−2k+1 does not necessarily hold for k ≥ 3. The complete

signed graph in Fig. 1 has a symmetric spectrum for which c+
7 6= c−7 .

Figure 1. The graph induced by negative edges of a complete signed
graph on 9 vertices with a symmetric spectrum but c+

7 6= c−7

Remark 3.5. There are some examples showing that for a non-complete signed graph
we have c+

2k+1 = c−2k+1 for all k = 1, 2, . . ., but their spectra are not symmetric. As an
example see Fig. 2, (dashed edges are negative; solid edges are positive).

Now, we may ask a weaker version of the result mentioned in Remark 3.4 as follows.

Question 3.6. Is it true that if in a complete signed graph Γ, c+
2k+1 = c−2k+1 for all

k = 1, 2, . . ., then Γ has a symmetric spectrum?
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Figure 2. A signed graph with c+
2k+1 = c−2k+1 for k = 1, 2, . . ., but its

spectrum is not symmetric

4. Sign-symmetric vs. symmetric spectrum

Remark 4.1. Consider the complete signed graph whose negative edges induces the
graph of Fig. 3. This graph has a symmetric spectrum, but it is not sign-symmetric.
Note that this complete signed graph has the minimum order with this property.
Moreover, for this complete signed graph we have the equalities c+

2k+1 = c−2k+1 for
k = 1, 2, 3.

Figure 3. The graph induced by negative edges of a complete signed
graph on 8 vertices with a symmetric spectrum but not sign-symmetric

Remark 4.2. A conference matrix C of order n is an n×nmatrix with zero diagonal and
all off-diagonal entries ±1, which satisfies CC> = (n−1)I. If C is symmetric, then C
has eigenvalues ±

√
n− 1. Hence, its spectrum is symmetric. Conference matrices are

well-studied; see for example [4, Section 10.4]. An important example of a symmetric
conference matrix is the Seidel matrix of the Paley graph extended with an isolated
vertex, where the Paley graph is defined on the elements of a finite field Fq, with
q ≡ 1 (mod 4), where two elements are adjacent whenever the difference is a nonzero
square in Fq. The Paley graph is self-complementary. Therefore, by Proposition 2.5,
C is the adjacency matrix of a sign-symmetric complete signed graph. However,
there exist many more symmetric conference matrices, including several that are not
sign-symmetric (see [5]).

In [2], the authors posed the following problem on the existence of the non-complete
signed graphs which are not sign-symmetric but have symmetric spectrum.
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Problem 4.3 ([2]). Are there non-complete connected signed graphs whose spectrum
is symmetric with respect to the origin but they are not sign-symmetric?

We answer this problem by showing that there exists such a graph for any order
n ≥ 6. For s ≥ 0, define the signed graph Γs to be the graph illustrated in Fig. 4.

1

2

3

4

5

6

s vertices

Figure 4. The graph Γs

Theorem 4.4. For s ≥ 0, the graph Γs has a symmetric spectrum, but it is not
sign-symmetric.

Proof. Let S be the set of s vertices adjacent to both 1 and 5. The positive 5-cycles
of Γs are 123461 together with u1645u for any u ∈ S, and the negative 5-cycles are
u1465u for any u ∈ S. Hence, c+

5 = s+ 1 and c−5 = s. In view of Observation 3.3, this
shows that Γs is not sign-symmetric.

Next, we show that Γs has a symmetric spectrum. It suffices to verify that a2k+1 = 0
for k = 1, 2, . . ..

The graph Γs contains a unique positive cycle of length 3: 4564 and a unique
negative cycle of length 3: 1461. It follows that a3 = 0.

As discussed above, we have c+
5 = s + 1 and c−5 = s. We count the number of

positive and negative copies of K2∪C3. For the negative triangle 1461, there are s+1
non-incident edges, namely 23 and 5u for any u ∈ S and for the positive triangle 4564,
there are s + 2 non-incident edges, namely 12, 23 and 1u for any u ∈ S. It follows
that

a5 = −2((s+ 1)− s) + 2((s+ 2)− (s+ 1) = 0.

Now, we count the number of positive and negative elementary subgraphs on 7
vertices:

C7: s positive: u123465u for any u ∈ S, and no negative;
K2 ∪ C5: 2s positive: u5 ∪ 123461, and 23 ∪ u1645u for any u ∈ S, and s negative:

23 ∪ u1465u for any u ∈ S;
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2K2 ∪ C3: s+1 positive: u1∪23∪4564 for any u ∈ S, and s+1 negative: u5∪23∪1461
for any u ∈ S;

C4 ∪ C3: none.

Therefore,
a7 = −2(s− 0) + 2(2s− s)− 2((s+ 1)− (s+ 1)) = 0.

The graph Γs contains no elementary subgraph on 8 vertices or more. The result now
follows. �

More families of non-complete signed graphs with a symmetric spectrum but not
sign-symmetric can be found. Consider the signed graphs Γs,t depicted in Fig. 5, in
which the number of upper repeated pair of vertices is s ≥ 0 and the number of upper
repeated pair of vertices is t ≥ 1. In a similar fashion as in the proof of Theorem 4.4
it can be verified that Γs,t has a symmetric spectrum, but it is not sign-symmetric.

Figure 5. The family of signed graphs Γs,t
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negation) of order 4, 6, 8 having symmetric spectrum. The numbers next
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negation) of order 5, 9 having symmetric spectrum. The numbers next
to the graphs are the non-negative eigenvalues.The first three signed
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