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Sequencing situations and games with non-linear cost functions

J. Schouten∗ ‡ A. Saavedra-Nieves§ M. G. Fiestras-Janeiro§

Abstract

This paper studies sequencing situations with non-linear cost functions. We show that the
neighbor switching gains are now time-dependent, in contrast to the standard sequencing
situations with linear cost functions, which complicate finding an optimal order and sta-
ble allocations. We derive conditions on the time-dependent neighbor switching gains in a
(general) sequencing situation to guarantee convexity of the associated sequencing game.
Moreover, we provide two procedures that uniquely specify a path from the initial order to
an optimal order and we define two corresponding allocation rules that divide the neighbor
switching gains equally in every step of the path. We show that the same conditions on the
gains also guarantee stability for the allocations prescribed by these rules.

Keywords: sequencing games, non-linear cost functions, time-dependent neighbor switch-
ing gains, convexity, stable allocations
JEL classification: C44, C71

1 Introduction

In this paper, we deal with one-machine sequencing situations with, in addition, an initial order
specified. Such a sequencing situation can be described by a set of players, each associated to
a job that need to be processed on a single machine, an initial order that provides the initial
processing rights on the machine, a processing time for each of the jobs and a cost function in
terms of the completion time. The total costs are the sum of the costs of the players and the
first goal is to find an optimal processing order that minimizes this total costs. By rearranging,
the players can obtain cost savings and more specifically, the optimal order can be reached by
interchanging consecutive players that are arranged different in the initial order than in the
optimal order. The second goal is to find a suitable allocation that divides these total cost
savings among the players.

Traditionally, the cost function is assumed to be linear, specified by linear cost coefficients. For
these standard sequencing situations, the first goal is achieved by Smith (1956), who showed
that in an optimal order, the players are arranged according to a (weakly) decreasing urgency
index, which is the ratio of the linear cost coefficient and the processing time. Moreover,
Curiel, Pederzoli, and Tijs (1989) defined the Equal Gain Splitting rule (EGS-rule), which is an
allocation for a standard sequencing situation that divides the cost savings of every neighbor
misplacement with regard to the initial order and an optimal order equally among the two
players involved. Hereby, the second goal is also achieved for standard sequencing situations.

∗CentER, Department of Econometrics & Operations Research, Tilburg University, P.O. Box 90153, 5000 LE
Tilburg, The Netherlands
‡E-mail: j.schouten@tilburguniversity.edu
§Departamento de Estat́ıstica e Investigación Operativa, Universidade de Vigo
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Interestingly, the allocation specified by the EGS-rule for a standard sequencing situation (with
linear cost functions) turned out to be a core-element of the associated sequencing game. A
sequencing game (cf. Curiel et al., 1989) is a transferable utility cooperative game that is
associated to a sequencing situation for which the worth of a coalition is defined as the maximal
cost savings the coalition can obtain by admissible rearrangements with respect to the initial
order. Curiel et al. (1989) showed that a standard sequencing game is a convex game.

Sequencing problems appear in different frameworks. The assumption of adding effects on the
unavailability of the machine was considered by Liu, Lu, and Qi (2018). Yang, Sun, Hou, and
Xu (2019) analyzed the influence of external players in the queue on the worth of the coalition.
Chen, Huang, Wang, and Yang (2019) applied the ideas of sequencing in cloud manufacturing
settings.

In this paper, we deal with sequencing situations with non-linear cost functions with as variable
the number of time units spent in the system. We follow the above-mentioned lines (cf. Curiel
et al., 1989) in the sense that we focus on conditions that guarantee convexity of the associated
sequencing game and on allocations that provide core-elements of the associated sequencing
game. In particular, we deal with three specific examples of non-linear cost functions, namely
exponential, discounting and logarithmic cost functions. Exponential sequencing situations were
recently introduced and analyzed by Saavedra-Nieves, Schouten, and Borm (2020), while se-
quencing situations with discounting cost functions, i.e. discounting sequencing situations, were
introduced by Rothkopf (1966). In the same spirit, we consider sequencing situations with loga-
rithmic cost functions. For logarithmic sequencing situations, we explicitly derive the expression
for the cost savings obtained by two players if they interchange their positions. Moreover, we
show that in an optimal order, players are arranged according to (weakly) increasing processing
times.

This line of approach follows the direction of research in which assumptions of the standard se-
quencing model are relaxed or modified. For example, Slikker (2006) relaxed the assumption of
cooperation between players, Lohmann, Borm, and Slikker (2014) modified the definition of the
time a job spends in the system, and Musegaas, Borm, and Quant (2015) relaxed the set of ad-
missible rearrangements. On the other hand, a lot of research is done in the direction of adding
components to the model. For example, Hamers, Borm, and Tijs (1995) added ready times,
Borm, Fiestras-Janeiro, Hamers, Sánchez, and Voorneveld (2002) studied due dates, Hamers,
Klijn, and Van Velzen (2005) added precedence relations, Biskup (2008) reviewed the literature
on scheduling with learning effects, and Estévez-Fernández, Borm, Calleja, and Hamers (2008)
incorporated repeated players.

First, we focus on convexity of the associated sequencing games. Saavedra-Nieves et al. (2020)
showed that, by imposing a set of conditions on the neighbor switching gains, the associated
sequencing game of a (general) sequencing situation is convex. These conditions require the
neighbor switching gains to be non-negative and non-decreasing for misplacements and non-
positive for non-misplacements. We impose a second set of conditions in which the neighbor
switching gains are required to be non-negative and non-increasing for misplacements and non-
positive for non-misplacements. We add a proof that also for this second set of conditions, the
associated sequencing game of a sequencing situation with an arbitrary non-linear cost function
is convex. As a consequence, we have that discounting and logarithmic sequencing games are
always convex.

Secondly, we focus on allocation rules for sequencing situations with non-linear cost functions.
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For standard sequencing situations with linear cost functions, the cost savings obtained by two
players who interchange their positions as they are ordered different in the optimal order than
in the initial order are independent of the position of these two players. In other words, these
neighbor switching gains are not dependent on the moment in time the players interchange their
positions. In contrast, for sequencing situations with non-linear cost functions, the neighbor
switching gains may be time-dependent. Hence, the neighbor switching gains depend on the
path from the initial order to an optimal order.

This implies that it is not possible to directly apply the EGS-rule to sequencing situations
with non-linear cost functions in the sense that the properties satisfied by the EGS-rule in the
standard case are not maintained in general. In a standard sequencing situation, every path
from the initial order to an optimal order leads to the same neighbor switching gains. For
sequencing situations with non-linear cost functions, we have to specify which path to choose.
We provide two different procedures that specify a path from the initial order to an optimal
order:

− The Growing Head procedure. This procedure starts with the player that occupies the
first position in the optimal order and consecutively moves this player to that position.
Secondly, the player that is in the second position of the optimal order moves to that
position and so on, successively until all players are in their positions in the optimal
order.

− The Growing Tail procedure. This procedure reverses the idea of the Growing Head
procedure and starts with the player that is in the last position of the optimal order.

To obtain an allocation, we adopt the idea of the EGS-rule and divide the neighbor switching
gains in every step of a path from the initial order to an optimal order equally among the two
players involved. This results in two distinct allocation rules, depending on the procedure that
is used: the Equal Gain Splitting Head rule (EGSH-rule) and the Equal Gain Splitting Tail
rule (EGST-rule). We show that, by reusing the two different sets of conditions on the neigh-
bor switching gains, both allocation rules prescribe a core-element of the associated sequencing
game. In particular, we show that for discounting and logarithmic sequencing situations, the
EGST-rule leads to a core-element, while for the three subclasses as defined in Saavedra-Nieves
et al. (2020), the EGSH-rule results in a core-element.

This paper is structured as follows. Section 2 contains all preliminaries. Section 3 provides an
analysis of exponential, discounting and logarithmic sequencing situations. Section 4 provides a
result on convexity and Section 5 introduces two allocation rules for sequencing situations with
an arbitrary non-linear cost function. Finally, Section 6 contains the concluding remarks.

2 Preliminaries

In a (general) sequencing situation, there is a finite, non-empty set of players N that each have
a job that needs to be processed on a single machine. A (processing) order of the players is
described by a bijective function σ : N → {1, 2, . . . , |N |} in which σ(i) = k means that the
job of player i is in position k of the order σ. The set of all orders of N is denoted by Π(N).
Moreover, let σ0 ∈ Π(N) denote the initial processing order of the players, providing the initial
processing rights on the machine. For every player i ∈ N , let pi ∈ R++ denote the processing
time of the job of player i and let the cost function of player i be given by ci : [0,∞)→ R, where
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t ∈ [0,∞) is the number of time units player i has spent in the system. Here, it is assumed that
the machine starts processing at time t = 0 and that all jobs are present at t = 0.

Following the lines as described in Saavedra-Nieves et al. (2020), a (general) sequencing sit-
uation is represented by a tuple (N, σ0, p, c), where p = (pi)i∈N and c = (ci)i∈N summarize
the processing times and cost functions, respectively. The set of all sequencing situations with
player set N is denoted by SEQN and a sequencing situation (N, σ0, p, c) is also denoted by
(σ0, p, c) ∈ SEQN .

Let (σ0, p, c) ∈ SEQN be a sequencing situation and let σ ∈ Π(N) be an order. The set of
predecessors of player i ∈ N with respect to σ is denoted by P (σ, i) and given by P (σ, i) =
{k ∈ N | σ(k) < σ(i)}, while the set of followers is denoted by F (σ, i) and given by F (σ, i) =
{k ∈ N | σ(k) > σ(i)}. The starting time of player i ∈ N with respect to σ is denoted by ti(σ)
and given by ti(σ) =

∑
k∈P (σ,i) pk. Similarly, the starting time of a group of players I ⊆ N is

denoted by tI(σ) and given by

tI(σ) = min
i∈I
{ti(σ)} .

Furthermore, the time player i ∈ N spends in the system when the players follow the order σ is
called the completion time, denoted by Ci(σ) and given by Ci(σ) = ti(σ) + pi. The total costs
of the order σ are denoted by TC(σ) and given by

TC(σ) =
∑
i∈N

ci(Ci(σ)).

An order for which the total costs are minimized is called an optimal order and denoted by
σ̂, that is, TC(σ̂) ≤ TC(σ) for all σ ∈ Π(N). Given an optimal order σ̂ ∈ Π(N), the set of
misplacements contains all pairs of players that need to be interchanged in order to reach the
optimal order from the initial order:

MP (σ0, σ̂) = {(i, j) ∈ N ×N | σ0(i) < σ0(j) and σ̂(i) > σ̂(j)} .

In order to formally define the notion of a path from the initial order to an optimal order, as
introduced by Saavedra-Nieves et al. (2020), we first define a neighbor switch associated to two
orders σ, σ′ ∈ Π(N) as a pair of players (i, j) ∈ N×N for which it holds that σ(j) = σ(i)+1 and
σ(i) = σ′(j), σ(j) = σ′(i) and σ(k) = σ′(k) for all k ∈ N \ {i, j}. Now, we adopt the notion of a
path from the initial order σ0 to an optimal order σ̂ as a sequence of orders (σ0, σ1, σ2, . . . , σm)
with σm = σ̂ corresponding to neighbor switches (ik, jk), for every k ∈ {1, 2, . . . ,m}, associated
to orders σk−1 and σk such that there does not exist k, ` ∈ {1, 2, . . . ,m}, k 6= `, such that ik = j`
and jk = i`. In other words, a path from the initial order to an optimal order consecutively
interchanges misplacements and interchanges a particular misplacement exactly once. Hence,
m = |MP (σ0, σ̂)|.

t

i j

j i. . .

. . .

. . .

. . .

Figure 1 – Interchanging players i and j, leading to the neighbor switching gain gij(t).

The players can jointly obtain cost savings by following a path from the initial order to an
optimal order. More specifically, the neighbor switching gain of a neighbor switch (i, j) ∈ N×N
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at time t ∈ [0,∞) (see Figure 1) is defined by

gij(t) = ci(t+ pi) + cj(t+ pi + pj)− ci(t+ pi + pj)− cj(t+ pj). (1)

t

i

i

J

J

j1 j2 jm

j1 j2 jm. . .

. . .. . .

. . .

. . .

. . .

Figure 2 – Interchanging player i with a group of players J , leading to the gain giJ(t).

For notational convenience, we also define the consecutive neighbor switching gains of player
i ∈ N and a group J ⊆ N at time t ∈ [0,∞) with player i directly in front of the group
J = {j1, . . . , jm}, which are ordered consecutively (see also Figure 2), denoted by giJ(t) and
defined by

giJ(t) = gij1(t) + gij2(t+ pj1) + . . .+ gijm(t+ pj1 + . . .+ pjm−1). (2)

Similarly, we define the consecutive neighbor switching gains of player j ∈ N and a group I ⊆ N
at time t ∈ [0,∞) with player j directly behind the group I = {i1, . . . , im}, which are ordered
consecutively (see also Figure 3), denoted by gIj(t) and defined by

gIj(t) = gimj(t+pi1 + . . .+pim−1)+gim−1j(t+pi1 + . . .+pim−2)+ . . .+gi2j(t+pi1)+gi1j(t). (3)

t

j

j

I

I

i1 im−1 im

i1 im−1 im. . .

. . .. . .

. . .

. . .

. . .

Figure 3 – Interchanging player j with a group of players I, leading to the gain gIj(t).

Obviously, for a path (σ0, σ1, σ2, . . . , σm) with σm = σ̂ from the initial order to an optimal order
corresponding to neighbor switches (i1, j1), (i2, j2), . . . , (im, jm), the total cost savings can be
expressed in terms of the neighbor switching gains:

TC(σ0)− TC(σ̂) =
m∑
k=1

gikjk(tik(σk−1)).

How to allocate these joint total cost savings among the players is the central question in
cooperative game theory. A cooperative game with transferable utility is represented by a tuple
(N, v), where v : 2N → R with v(∅) = 0 is the characteristic function which assigns to every
coalition S ∈ 2N the worth of the coalition. Here, 2N denotes the set of all subsets of N . The
set of all cooperative games on N is denoted by TUN and a cooperative game (N, v) is also
denoted by v ∈ TUN .
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In this paper, we focus on two distinguished concepts within cooperative game theory: the core
and convexity. Let v ∈ TUN be a cooperative game. Then, the core is denoted by C(v) and
given by

C(v) =

{
x ∈ RN

∣∣∣∣∣ v(N) =
∑
i∈N

xi and v(S) ≤
∑
i∈S

xi for all S ∈ 2N \ {∅}
}
.

Here, the first condition is called efficiency, while the latter condition is called stability. More-
over, v is convex (cf. Shapley, 1971) if v(S∪T )+v(S∩T ) ≥ v(S)+v(T ) for all S, T ∈ 2N \{∅}.
Let (σ0, p, c) ∈ SEQN be a sequencing situation, S ∈ 2N \ {∅} a coalition and σ ∈ Π(N) an
order. Then, σ is admissible for S with respect to σ0 if P (σ, i) = P (σ0, i) for all i ∈ N \ S. In
other words, all players outside S are in the same position in both σ and σ0 and players in S
can only interchange with other players in S if all players in between, according to the initial
order, are also in S. The set of all admissible orders for S with respect to σ0 is denoted by
A(σ0, S). We define the associated sequencing game v ∈ TUN by

v(S) = max
σ∈A(σ0,S)

{∑
i∈S

ci(Ci(σ0))−
∑
i∈S

ci(Ci(σ))

}
,

for all S ∈ 2N \ {∅}, that is, the worth of a coalition is equal to the maximal cost savings the
coalition can achieve by admissible rearrangements with respect to σ0.

An order σ induces an order σS if σS ∈ A(σ0, S) and P (σ, i)∩S = P (σS , i)∩S for all i ∈ S. In
other words, all players outside S are in the same position in σS compared to σ0 and all players
in S are ordered in σS in the same order compared to σ. An optimal order for S, denoted by
σ̂S ∈ Π(N), is an admissible order for S with respect to σ0 that minimizes the total costs for
S, i.e. TC(σ̂S) ≤ TC(σ) for all σ ∈ A(σ0, S). Lemma 2.1 (cf. Saavedra-Nieves et al., 2020)
combines these two concepts and provides two conditions on the neighbor switching gains such
that it is guaranteed that we can obtain optimal orders for coalitions from an optimal order for
the grand coalition.

Lemma 2.1 [Saavedra-Nieves et al. (2020)] Let (σ0, p, c) ∈ SEQN be a sequencing situ-
ation and let σ̂ ∈ Π(N) be an optimal order. If

1) for all t ∈ [0,∞), gij(t) ≥ 0 for all (i, j) ∈MP (σ0, σ̂);

2) for all t ∈ [0,∞), gij(t) ≤ 0 for all (i, j) /∈MP (σ0, σ̂),

then, for every S ∈ 2N \ {∅}, the induced order σ̂S is optimal for S.

Finally, S is connected with respect to σ if for all i, j ∈ S and k ∈ N for which σ(i) < σ(k) <
σ(j), it holds that k ∈ S. Following Borm et al. (2002), we use the following notation for some
special connected coalitions:

(i, j)σ = {k ∈ N | σ(i) < σ(k) < σ(j)} ;

(i, j]σ = {k ∈ N | σ(i) < σ(k) ≤ σ(j)} ;

[i, j)σ = {k ∈ N | σ(i) ≤ σ(k) < σ(j)} ;

[i, j]σ = {k ∈ N | σ(i) ≤ σ(k) ≤ σ(j)} ,

where i, j ∈ N are two players such that σ(i) < σ(j). Also, we will benefit from their following
result:
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Proposition 2.1 [Borm et al. (2002)] Let (σ0, p, c) ∈ SEQN be a sequencing situation.
Then, v is convex if and only if for all i, j ∈ N such that σ0(i) < σ0(j),

v([i, j]σ0)− v([i, j)σ0)− v((i, j]σ0) + v((i, j)σ0) ≥ 0.

Proposition 2.1 shows that in order to prove convexity, one only has to consider the special type
of connected coalitions.

3 Sequencing situations with non-linear cost functions

This section is devoted to sequencing situations with non-linear cost functions. Traditionally,
the focus is on standard sequencing situations, in which the cost functions are linear: ci(t) = αit
for all t ∈ [0,∞), where αi ∈ R++ is the linear cost coefficient of player i ∈ N . The set
of all standard sequencing situations is denoted by SSEQN . For these standard sequencing
situations, Smith (1956) showed that an optimal order can be reached by arranging the players
according to weakly decreasing urgency, defined as the ratio of the linear cost coefficient and
the processing time. The neighbor switching gains can be expressed in terms of the linear cost
coefficients and processing times only:

gij(t) = αjpi − αipj , (4)

where i, j ∈ N are two neighbors at time t ∈ [0,∞). Note that the neighbor switching gains are
not time-dependent.

Recently, Saavedra-Nieves et al. (2020) studied exponential sequencing situations, in which the
cost functions are exponential: ci(t) = eαit for all t ∈ [o,∞), where αi ∈ R++ is called the
exponential cost coefficient of player i ∈ N . The set of all exponential sequencing situations
is denoted by ESEQN . For an exponential sequencing situation (σ0, p, c) ∈ ESEQN , the
neighbor switching gain of two consecutive players i, j ∈ N at time t ∈ [0,∞) is given by (cf.
Saavedra-Nieves et al., 2020)

gij(t) = eαi(t+pi) + eαj(t+pi+pj) − eαi(t+pj+pi) − eαj(t+pj). (5)

For sequencing situations with an exponential cost function, Saavedra-Nieves et al. (2020) de-
fined three subclasses that allow for a comparison index for determining an optimal order, like
the urgency index, which is only based on the processing times and exponential cost coefficients.
The following proposition summarizes the main results with regard to the neighbor switching
gains for each of these three subclasses. Note that both statement 1) and 2) of Proposition 3.1
also hold for a standard sequencing situation.

Proposition 3.1 [Saavedra-Nieves et al. (2020)] Let (σ0, p, c) ∈ ESEQN be an exponen-
tial sequencing situation such that one of the following three cases holds:

i) there is an α ∈ R++ such that, for all i ∈ N and all t ∈ [0,∞), ci(t) = eαt;

ii) there is a p ∈ R++ such that, for all i ∈ N , pi = p;

iii) there are αL, αH , pL, pH ∈ R++ with αL < αH and pL < pH such that, for all i ∈ N ,
αi ∈ {αL, αH}, pi ∈ {pL, pH} and

eαHpH − eαLpL ≤ eαH(pL+pH) − eαL(pL+pH).
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Let σ̂ ∈ Π(N) be an optimal order. Then,

1) gij(t) ≥ 0 for all t ∈ [0,∞) and gij(s) ≤ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) ∈MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0,∞) and gij(s) ≥ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) /∈MP (σ0, σ̂).

Furthermore, Rothkopf (1966) studied discounting sequencing situations, in which the cost func-
tion of player i ∈ N is given by ci(t) = αi(1−e−rt). Here, r ∈ R++ denotes the discount rate and
αi ∈ R++ the discounting cost coefficient of player i ∈ N . The set of all discounting sequencing
situations with player set N is denoted by DSEQN .

For a discounting sequencing situation (σ0, p, c) ∈ DSEQN , the neighbor switching gain of two
consecutive players i, j ∈ N at time t ∈ [0,∞) is, using Equation (1), given by (cf. Rothkopf,
1966)

gij(t) = ci(t+ pi) + cj(t+ pi + pj)− ci(t+ pi + pj)− cj(t+ pj)

= αi − αie−r(t+pi) + αj − αje−r(t+pi+pj) − αi + αie
−r(t+pi+pj) − αj + αje

−r(t+pj)

= αie
−r(t+pi+pj) + αje

−r(t+pj) − αie−r(t+pi) − αje−r(t+pi+pj). (6)

Rothkopf (1966) showed that (by using Equation (6), this can be readily verified), for a dis-
counting sequencing situation (σ0, p, c) ∈ DSEQN and an order σ̂ ∈ Π(N) it holds that σ̂ is
optimal if and only if

for all i, j ∈ N :
αje
−rpj

1− e−rpj <
αie
−rpi

1− e−rpi ⇒ σ̂(i) < σ̂(j). (7)

Equation (7) can be used to define the pairs of players that should be interchanged and hence,
are in the set of misplacements. For a discounting sequencing situation, all neighbor switching
gains corresponding to misplacements are non-negative and non-increasing, while the neigh-
bor switching gains corresponding to non-misplacements are non-positive and non-decreasing.
This partly contrasts Proposition 3.1, in which the neighbor switching gains corresponding
to misplacements are non-decreasing and the gains corresponding to non-misplacements non-
increasing.

Proposition 3.2 Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation. Let i, j ∈ N
be such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal order. Then,

1) gij(t) ≥ 0 for all t ∈ [0,∞) and gij(s) ≥ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) ∈MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0,∞) and gij(s) ≤ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) /∈MP (σ0, σ̂).

Proof: First, from Equation (6), it readily follows that g′ij(t) = −rgij(t) for all t ∈ [0,∞).

1) If (i, j) ∈MP (σ0, σ̂), then,

αie
−rpi

1− e−rpi ≤
αje
−rpj

1− e−rpj .

Hence,

αie
−rpi − αie−r(pi+pj) ≤ αje−rpj − αje−r(pi+pj),
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and consequently, gij(t) ≥ 0 for all t ∈ [0,∞). Moreover, since r > 0, g′ij(t) ≤ 0 for all
t ∈ [0,∞), which implies that gij(s) ≥ gij(t) for all s, t ∈ [0,∞) with s ≤ t.

2) If (i, j) /∈MP (σ0, σ̂), then,

αie
−rpi

1− e−rpi ≥
αje
−rpj

1− e−rpj .

Hence,

αie
−rpi − αie−r(pi+pj ≥ αje−rpj − αje−r(pi+pj),

and consequently, gij(t) ≤ 0 for all t ∈ [0,∞). Moreover, since r > 0, g′ij(t) ≥ 0 for all
t ∈ [0,∞), which implies that gij(s) ≤ gij(t) for all s, t ∈ [0,∞) with s ≤ t. �

Finally, in this paper we introduce the notion of a logarithmic sequencing situation which deals
with logarithmic cost functions: ci(t) = ln(αit) for all t ∈ [o,∞), where αi is called the loga-
rithmic cost coefficient of player i ∈ N and is such that ln(αit) > 0 for all t > pi. The set of all
logarithmic sequencing situations with player set N is denoted by LSEQN .

For a logarithmic sequencing situation (σ0, p, c) ∈ LSEQN , the neighbor switching gain of two
consecutive players i, j ∈ N at time t ∈ [0,∞) is, using Equation (1), given by

gij(t) = ci(t+ pi) + cj(t+ pi + pj)− ci(t+ pi + pj)− cj(t+ pj)

= ln(αi(t+ pi)) + ln(αj(t+ pi + pj))− ln(αi(t+ pj + pi))− ln(αj(t+ pj))

= ln(t+ pi) + ln(t+ pi + pj)− ln(t+ pj + pi)− ln(t+ pj)

= ln(t+ pi)− ln(t+ pj) = ln

(
t+ pi
t+ pj

)
. (8)

Equation (8) shows that the neighbor switching gains for a logarithmic sequencing situation are
time-dependent. Moreover, the logarithmic cost coefficients turn out to be irrelevant from an
optimization perspective. Even more, the total costs consist of a fixed part of the sum of the
logarithmic cost coefficients and another part that is dependent on the order. Formally, for a
logarithmic sequencing situation (σ0, p, c) ∈ LSEQN and an order σ ∈ Π(N), we have that

TC(σ) =
∑
i∈N

ci(Ci(σ)) =
∑
i∈N

ln(αiCi(σ)) =
∑
i∈N

ln(αi) +
∑
i∈N

ln(Ci(σ)). (9)

Consequently, an optimal order can be determined by considering the processing times only.
The following theorem shows that in an optimal order, the players are arranged according to
weakly increasing processing times. This is also known as the so-called Shortest Processing
Time first (SPT) rule. The structure of the proof is due to Saavedra-Nieves et al. (2020).

Theorem 3.1 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation and let σ̂ ∈ Π(N)
be an order. Then it holds that σ̂ is optimal if and only if

for all i, j ∈ N : pi < pj ⇒ σ̂(i) < σ̂(j). (10)

Proof: First, we prove that, if σ̂ is an optimal order, then it satisfies Equation (10). For this,
assume that σ̂ is an optimal order and suppose for the sake of contradiction that σ̂ does not
satisfy Equation (10). Then there are i, j ∈ N such that pi < pj , while σ̂(i) > σ̂(j). W.l.o.g.
we can assume that σ̂(i) = σ̂(j) + 1, i.e., that players i and j are neighbors in σ̂. We show that

9



τ

σ̂

tj(σ̂)

j i

i j. . .

. . .

. . .

. . .

Figure 4 – Interchanging players i and j from σ̂ to τ .

interchanging players i and j lead to an order for which the total costs are less than the total
costs of σ̂.

Define this order τ ∈ Π(N) as follows: τ(k) = σ̂(k) for all k ∈ N \ {i, j}, τ(i) = σ̂(j) and
τ(j) = σ̂(i) (see also Figure 4). Then it holds that,

TC(σ̂)− TC(τ) =
∑
k∈N

ln(αkCk(σ̂))−
∑
k∈N

ln(αkCk(τ))

= ln(αjCj(σ̂)) + ln(αiCi(σ̂))− ln(αiCi(τ))− ln(αjCj(τ))

= ln(αj(tj(σ̂) + pj)) + ln(αi(tj(σ̂) + pi + pj))

− ln(αi(tj(σ̂) + pi))− ln(αj(tj(σ̂) + pi + pj))

= ln(tj(σ̂) + pj)− ln(tj(σ̂) + pi) > 0.

Here, the second equality follows from the fact that Ck(σ̂) = Ck(τ) for all k ∈ N \ {i, j} and
the strict inequality from the fact that ln(t+ pj)− ln(t+ pi) > 0 for all t ∈ [0,∞), since pi < pj .
Hence, TC(σ̂) > TC(τ).

Secondly, we prove that if two orders both satisfy Equation (10), then both orders yield the
same total costs. For this, consider two different orders σ, σ′ ∈ Π(N), σ 6= σ′ that both satisfy
Equation (10). It is readily seen that the only differences between the two orders can be within
a block of players with identical processing times. Hence, using Equation (9), it follows that
TC(σ) = TC(σ′). �

Using Theorem 3.1, it is easily seen that, in order to reach an optimal order from the initial
order, at least the pairs of players i, j ∈ N for which it holds that σ0(i) < σ0(j) and pi > pj
should be interchanged. Obviously, other optimal orders can be obtained by interchanging,
besides the necessarily ones, even more pairs of players with identical processing times. Similar
to Proposition 3.2, we show that all neighbor switching gains corresponding to misplacements
are non-negative and non-increasing, while the neighbor switching gains are non-positive and
non-decreasing for non-misplacements.

Proposition 3.3 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation. Let i, j ∈ N
be such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal order. Then,

1) gij(t) ≥ 0 for all t ∈ [0,∞) and gij(s) ≥ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) ∈MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0,∞) and gij(s) ≤ gij(t) for all s, t ∈ [0,∞) with s ≤ t,
if (i, j) /∈MP (σ0, σ̂).

Proof: First, we have that gij(t) = ln(t + pi) − ln(t + pj) and g′ij(t) = 1
t+pi
− 1

t+pj
for all

t ∈ [0,∞).
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1) If (i, j) ∈ MP (σ0, σ̂), then, pi ≥ pj . Hence, ln(t + pi) ≥ ln(t + pj) and 1
t+pi

≤ 1
t+pj

.

Consequently, gij(t) ≥ 0 and g′ij(t) ≤ 0 for all t ∈ [0,∞). The latter implies that gij(s) ≥
gij(t) for all s, t ∈ [0,∞) with s ≤ t.

2) If (i, j) /∈ MP (σ0, σ̂), then, pi ≤ pj . Hence, ln(t + pi) ≤ ln(t + pj) and 1
t+pi

≥ 1
t+pj

.

Consequently, gij(t) ≤ 0 and g′ij(t) ≥ 0 for all t ∈ [0,∞). The latter implies that gij(s) ≤
gij(t) for all s, t ∈ [0,∞) with s ≤ t. �

4 Convexity

Convexity is an appealing property for a cooperative game, because for a convex cooperative
game, the marginal costs of joining a coalition are lower if the coalition is larger. This provides
a definite drive to cooperate. Moreover, the core of a convex game is equal to the convex hull
of all marginal vectors (cf. Shapley, 1971 and Ichiishi, 1981) and hence, the Shapley value (cf.
Shapley, 1953) is the barycentre of the core.

In this section, we study the sequencing games that are associated to sequencing situations with
non-linear cost functions. In particular, following the lines of Saavedra-Nieves et al. (2020), the
associated sequencing game of a standard sequencing situation (with a linear cost function) is
called a standard sequencing game, the associated game of an exponential sequencing situation
(with an exponential cost function) is called an exponential sequencing game, the one associated
with a discounting sequencing situation is called a discounting sequencing game and finally, the
associated game of a logarithmic sequencing situation is called a logarithmic sequencing game.

For standard sequencing situations, Curiel et al. (1989) showed that the associated standard
sequencing games are convex. For exponential sequencing situations, Saavedra-Nieves et al.
(2020) provided three subclasses (see also Proposition 3.1) that yield a convex exponential
sequencing game. The proof of this result is based on a general result for a sequencing situation
with an arbitrary non-linear cost function, which provides three conditions on the neighbor
switching gains to guarantee convexity for the associated exponential sequencing games:

Theorem 4.1 [Saavedra-Nieves et al. (2020)] Let (σ0, p, c) ∈ SEQN be a sequencing
situation, σ̂ ∈ Π(N) an optimal order and v ∈ TUN the associated sequencing game. If

i) for all t ∈ [0,∞), gij(t) ≥ 0 for all (i, j) ∈MP (σ0, σ̂);

ii) for all t ∈ [0,∞), gij(t) ≤ 0 for all (i, j) /∈MP (σ0, σ̂);

iii) for all s, t ∈ [0,∞) with s ≤ t, gij(s) ≤ gij(t) for all (i, j) ∈MP (σ0, σ̂),

then, v is convex.

Combining Theorem 4.1 and Proposition 3.1, the following result immediately follows.

Corollary 4.1 [Saavedra-Nieves et al. (2020)] Let (σ0, p, c) ∈ ESEQN be an exponential
sequencing situation such that one of the following three cases holds:

i) there is an α ∈ R++ such that, for all i ∈ N and all t ∈ [0,∞), ci(t) = eαt;

ii) there is a p ∈ R++ such that, for all i ∈ N , pi = p;

iii) there are αL, αH , pL, pH ∈ R++ with αL < αH and pL < pH such that, for all i ∈ N ,
αi ∈ {αL, αH}, pi ∈ {pL, pH} and

eαHpH − eαLpL ≤ eαH(pL+pH) − eαL(pL+pH).
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Let v ∈ TUN be the associated exponential sequencing game. Then, v is convex.

In Theorem 4.1, convexity for the associated game is guaranteed if the neighbor switching gains
of the sequencing situation are non-negative and non-decreasing for misplaced pairs of players
and non-positive for non-misplaced pairs of players. Next, we show that it also suffices to
require that the neighbor switching gains are non-increasing for misplacements, together with
non-negativity for misplacements and non-positivity for non-misplacements. The proof of this
result follows the same structure as the proof of Theorem 4.1 from Saavedra-Nieves et al. (2020).

Theorem 4.2 Let (σ0, p, c) ∈ SEQN be a sequencing situation, σ̂ ∈ Π(N) an optimal order
and v ∈ TUN the associated sequencing game. If

i) for all t ∈ [0,∞), gij(t) ≥ 0 for all (i, j) ∈MP (σ0, σ̂);

ii) for all t ∈ [0,∞), gij(t) ≤ 0 for all (i, j) /∈MP (σ0, σ̂);

iii) for all s, t ∈ [0,∞) with s ≤ t, gij(s) ≥ gij(t) for all (i, j) ∈MP (σ0, σ̂),

then, v is convex.

Proof: To prove convexity, we show that

v([i, j]σ0)− v([i, j)σ0) ≥ v((i, j]σ0)− v((i, j)σ0),

for all i, j ∈ N with σ0(i) < σ0(j), which is sufficient according to Proposition 2.1. Let i, j ∈ N
with σ0(i) < σ0(j) (see Figure 5).

Cj(σ0)

σ0 ji . . .. . . . . .

Figure 5 – Players i, j ∈ N in the initial order σ0.

According to Lemma 2.1, the induced orders σ̂[i,j]σ0 , σ̂[i,j)σ0 , σ̂(i,j]σ0 and σ̂(i,j)σ0 are optimal for
[i, j]σ0 , [i, j)σ0 , (i, j]σ0 and (i, j)σ0 , respectively. First, consider the case where σ̂(i) < σ̂(j).

Cj(σ0)

Cj(σ0)

σ̂(i,j) ji J. . .. . . . . .

σ̂(i,j] ji J. . .. . . . . .

σ̂[i,j) ji J. . .. . . . . .

σ̂[i,j] ji J. . .. . . . . .

Figure 6 – Schematic overview of the first case.

In Figure 6, the order of the relevant players is shown for the different induced orders. Here,
J ⊆ N is defined as the set of players that have to switch with player j:

J = {k ∈ (i, j)σ0 | (k, j) ∈MP (σ0, σ̂)} .
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Hence,

v([i, j]σ0)− v([i, j)σ0) = gJj(Cj(σ0)− pj −
∑
k∈J

pk)

= v((i, j]σ0)− v((i, j)σ0),

where gJj(Cj(σ0) − pj −
∑

k∈J pk) is the consecutive neighbor switching gain as defined in
Equation (2).

Secondly, consider the case where σ̂(i) > σ̂(j). Figure 7 provides the order of the relevant
players for the different induced orders. Here, I,J ⊆ N are defined as follows:

I = {` ∈ (i, j)σ0 | σ̂(j) < σ̂(`) < σ̂(i)} ;

J = {k ∈ (i, j)σ0 | σ̂(i) < σ̂(k)} .

Cj(σ0)

Cj(σ0)

σ̂(i,j) ji JI. . . . . .

σ̂(i,j] i j JI. . . . . .

σ̂[i,j) i JI j. . . . . .

σ̂[i,j] ij JI. . . . . .

Figure 7 – Schematic overview of the first case.

Hence,

v([i, j]σ0)− v([i, j)σ0) = gJj(Cj(σ0)− pj −
∑
k∈J

pk)

+ gij(Cj(σ0)− pi − pj −
∑
k∈J

pk)

+ gIj(Cj(σ0)− pi − pj −
∑
`∈I

p` −
∑
k∈J

pk),

and

v((i, j]σ0)− v((i, j)σ0) = gJj(Cj(σ0)− pj −
∑
k∈J

pk)

+ gIj(Cj(σ0)− pj −
∑
`∈I

p` −
∑
k∈J

pk).

First, note that gij(Cj(σ0)− pi − pj −
∑

k∈J pk) ≥ 0, since (i, j) ∈MP (σ0, σ̂). Secondly,

Cj(σ0)− pi − pj −
∑
`∈I

p` −
∑
k∈J

pk < Cj(σ0)− pj −
∑
`∈I

p` −
∑
k∈J

pk,

since pi > 0. Using condition iii), we then have that

gIj(Cj(σ0)− pi − pj −
∑
`∈I

p` −
∑
k∈J

pk) ≥ gIj(Cj(σ0)− pj −
∑
`∈I

p` −
∑
k∈J

pk),

and hence,

v([i, j]σ0)− v([i, j)σ0) ≥ v((i, j]σ0)− v((i, j)σ0). �

13



As a direct consequence of Theorem 4.2, we have that, using Propositions 3.2 and 3.3, any
discounting sequencing game and any logarithmic sequencing game is convex.

Corollary 4.2 The two following statements hold:

1) Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation and let v ∈ TUN be the
associated discounting sequencing game. Then, v is convex.

2) Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation and let v ∈ TUN be the
associated logarithmic sequencing game. Then, v is convex.

It is worth recalling that the Shapley value of a convex cooperative game is the barycentre of the
core. Although this result is very positive, the computation of the Shapley value may become a
difficult task. For this reason, we are aiming to find simpler alternative procedures for sharing
the cost savings.

5 Cost savings allocation rules

In this section, we introduce two specific allocation rules that can be directly computed from
the sequencing situation itself. Both rules use the ideas of the Equal Gain Splitting Rule for
standard sequencing problems, now applied in the more general setting. We are also interested
in the game-theoretical properties that they satisfy. In particular, we study if the allocations
we obtain are stable, in the sense that they belong to the core of the associated cooperative
game, for the sequencing situations analyzed in this paper.

For standard sequencing situations, the Equal Gain Splitting Rule (EGS-rule) (cf. Curiel et al.,
1989) provides such an allocation. This means that, for (σ0, p, c) ∈ SSEQN , we have that
EGS(σ0, p, c) ∈ C(v), where v denotes the associated standard sequencing game, i.e.,

v(S) ≤
∑
i∈S

EGSi(σ0, p, c),

for all S ∈ 2N \ {∅} and

v(N) =
∑
i∈N

EGSi(σ0, p, c).

Formally, the allocation prescribed by the EGS-rule, which is independent of the choice of an
optimal order σ̂ ∈ Π(N), is given by

EGS(σ0, p, c) =
∑

(i,j)∈MP (σ0,σ̂)

1

2
(αjpi − αjpi)1{i,j},

where 1{i,j} ∈ RN is such that, for all k ∈ N ,

(1{i,j})k =

{
1, if k = i or k = j;

0, otherwise.

We have the following expression for the EGS-rule, according to Curiel, Potters, Prasad, Tijs,
and Veltman (1993) and Curiel, Potters, Prasad, Tijs, and Veltman (1994):

EGSi(σ0, p, c) =
1

2

(
v(P (σ0, i) ∪ {i})− v(P (σ0, i))

)
+

1

2

(
v(F (σ0, i) ∪ {i})− v(F (σ0, i))

)
.
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Hence, the EGS-rule can be expressed by using the marginal contributions of a player when
the players are joining the coalition according to the initial order and by using the marginal
contributions of a player when the players are joining the coalition according the reversed initial
order.

Furthermore, since for a standard sequencing situation it holds that gij(t) = αjpi−αipj for every
misplacement (i, j) ∈ MP (σ0, σ̂) at time t ∈ [0,∞), the EGS-rule thus divides the neighbor
switching gain for every misplaced pair of players equally between the two players involved.
Since the neighbor switching gains are not dependent on the moment in time both players
interchange their positions, the EGS-rule does not dependent on the path from the initial order
to an optimal order. In other words, every path from the initial order to an optimal order lead
to the same neighbor switching gains and hence, to the same allocation.

However, in sequencing situations with non-linear cost functions, the neighbor switching gains
may be time-dependent. For example, for sequencing situations with exponential, discounting
or logarithmic cost functions, the exact value of the neighbor switching gain of a misplaced pair
of players depends on the moment the players interchange their positions. Hence, the neighbor
switching gains depend on the path from the initial order to an optimal order. The following
example shows this for a logarithmic sequencing situation.

Example 5.1 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation, where N =
{1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N , and p1 = 4, p2 = 3 and p3 = 2. The total costs for
all possible orders are given below.

σ TC(σ)

(1, 2, 3) 5.5294

(1, 3, 2) 5.3753

(2, 1, 3) 5.2417

(2, 3, 1) 4.9053

(3, 1, 2) 4.6821

(3, 2, 1) 4.4998

Obviously, σ̂ = (3, 2, 1) is the unique optimal order and MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}.
Hence, there are two paths from the initial order to the optimal order that repairs all neighbor
misplacements:

σ0 = (1, 2, 3)
g23(p1)−−−−→ (1, 3, 2)

g13(0)−−−−→ (3, 1, 2)
g12(p3)−−−−→ (3, 2, 1) = σ̂,

corresponding to neighbor switches (2, 3), (1, 3) and (1, 2) respectively, and

σ0 = (1, 2, 3)
g12(0)−−−−→ (2, 1, 3)

g13(p2)−−−−→ (2, 3, 1)
g23(0)−−−−→ (3, 2, 1) = σ̂,

corresponding to neighbor switches (1, 2), (1, 3) and (2, 3) respectively. Below, the values of the
neighbor switching gains are given.

g12(0) 0.2877

g12(p3) 0.1823

g13(0) 0.6932

g13(p2) 0.3365

g23(0) 0.4055

g23(p1) 0.1542
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It can be clearly seen that the neighbor switching gains depend on the choice of the path from
the initial order to the optimal order. 4

In order to obtain a reasonable allocation in sequencing situations with non-linear cost functions,
we adopt the idea behind the EGS-rule of splitting the neighbor switching gains equally between
the two neighbors involved. In addition, we need to specify which path to choose to reach an
optimal order from the initial order. Together, this yields an allocation rule of prescribing
allocations to sequencing situations with non-linear cost functions.

5.1 Specifying a path

We start out by focusing on the choice of the path from the initial order to an optimal order
that repairs all neighbor misplacements. Below, we prescribe two procedures that specify such
a path. For the first procedure, named the Growing Head procedure, we start with the player
that occupies the first position in an optimal order. In the initial order, this player may not
be in the first position, but in a different position. The Growing Head procedure starts by
consecutively moving this player to the first position, that is, this player consecutively switches
with the players in front (according to the initial order) of him, until he reaches the first
position. Secondly, we consider the player that is in second position in the optimal order.
Again, we consecutively move this player to the second position. We continue this process until
all players are positioned in the position according to the optimal order. Formally, the Growing
Head procedure is defined as follows:

Procedure 5.1 [Growing Head] Let (σ0, p, c) ∈ SEQN be a sequencing situation and let
σ̂ ∈ Π(N) be an optimal order.

Step 1: For the first step, set j = σ̂−1(1), i.e., j is the player that is in the first position
according to σ̂. Consider the path (σ0, . . . , σ1) corresponding to neighbor switches (i, j) for every
i ∈ I, where I = P (σ0, j). Here, σ1 ∈ Π(N) is the order in which σ1(j) = 1, σ1(k) = σ0(k) + 1
for all k ∈ P (σ0, j) and σ1(k) = σ0(k) for all k ∈ F (σ0, j).

σ1 j I F (σ0, j)

σ0 jI F (σ0, j)

Figure 8 – Step 1 of the Growing Head procedure.

For ` > 1 until ` = |N | − 1, perform the following step:

Step `: Set j = σ̂−1(`) and k = σ̂−1(` − 1), i.e., j is the player that is in the `th position
according to σ̂ and k the player that is ` − 1th position. Note that σ`−1(k) = σ`(k) = ` − 1.
Consider the path (σ`−1, . . . , σ`) corresponding to neighbor switches (i, j) for every i ∈ I, where
I = (k, j)σ`−1

. Here, σ` ∈ Π(N) is the order in which σ`(j) = `, σ`(i) = σ`−1(i) + 1 for all
i ∈ I, σ`(r) = σ`−1(r) for all r ∈ F (σ`−1, j) and σ`(r) = σ`−1(r) for all r ∈ P (σ`−1, k) ∪ {k}.

σ` k. . . Ij F (σ`−1, j)

σ`−1 k. . . I j F (σ`−1, j)

Figure 9 – Step ` of the Growing Head procedure.
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The second procedure, named the Growing Tail procedure, reverses the idea of the first proce-
dure: instead of starting with the player that is in the first position in the optimal order, we
now start with the player that is in the last position. We consecutively move this player to the
back, in a similar way as in the Growing Head procedure. Formally, the Growing Tail procedure
is defined as follows:

Procedure 5.2 [Growing Tail] Let (σ0, p, c) ∈ SEQN be a sequencing situation and let
σ̂ ∈ Π(N) be an optimal order.

Step 1: For the first step, set i = σ̂−1(|N |), i.e., i is the player that is in the last position
according to σ̂. Consider the path (σ0, . . . , σ1) corresponding to neighbor switches (i, j) for every
j ∈ J , where J = F (σ0, i). Here, σ1 ∈ Π(N) is the order in which σ1(i) = |N |, σ1(k) = σ0(k)
for all k ∈ P (σ0, i) and σ1(k) = σ0(k)− 1 for all k ∈ F (σ0, i).

σ1 iP (σ0, i) J

σ0 iP (σ0, i) J

Figure 10 – Step 1 of the Growing Tail procedure.

For ` > 1 until ` = |N | − 1, perform the following step:

Step `: Set i = σ̂−1(|N | − ` + 1) and k = σ̂−1(|N | − ` + 2), i.e., i is the player that is in
the |N | − ` + 1th position according to σ̂ and k the player that is |N | − ` + 2th position. Note
that σ`−1(k) = σ`(k) = |N | − `+ 2. Consider the path (σ`−1, . . . , σ`) corresponding to neighbor
switches (i, j) for every j ∈ J , where J = (i, k)σ`−1

. Here, σ` ∈ Π(N) is the order in which
σ`(i) = |N | − `+ 1, σ`(j) = σ`−1(j)− 1 for all j ∈ J , σ`(r) = σ`−1(r) for all r ∈ P (σ`−1, i) and
σ`(r) = σ`−1(r) for all r ∈ F (σ`−1, k) ∪ {k}.

σ` k . . .J iP (σ`−1, i)

σ`−1 k . . .JiP (σ`−1, i)

Figure 11 – Step ` of the Growing Tail procedure .

/

In the following example, which is a continuation of Example 5.1, it is shown that both proce-
dures specify a path from the initial order to the optimal order.

Example 5.2 Reconsider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN , as de-
scribed in Example 5.1, with N = {1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N , and p1 =
4, p2 = 3 and p3 = 2. Recall that σ̂ = (3, 2, 1) is the unique optimal order and MP (σ0, σ̂) =
{(1, 2), (1, 3), (2, 3)}. We first perform the Growing Head procedure, according to Procedure
5.1. Note that σ̂(3) = 1, so we start by consecutively moving player 3 to the front:

σ0 = (1, 2, 3)→ (1, 3, 2)→ (3, 1, 2) = σ1.

In the second step, we move player 2 to the second position, since σ̂(2) = 2:

σ1 = (3, 1, 2)→ (3, 2, 1) = σ2 = σ̂.

17



Note that this path corresponds to the first path as described in Example 5.1.

Next, we perform the Growing Tail procedure, following Procedure 5.2. Note that σ̂(1) = 3, so
we start by consecutively moving player 1 to the back:

σ0 = (1, 2, 3)→ (2, 1, 3)→ (2, 3, 1) = σ1.

In the second step, we move player 2 to the second position, since σ̂(2) = 2:

σ1 = (2, 3, 1)→ (3, 2, 1) = σ2 = σ̂.

Note that this path corresponds to the second path as described in Example 5.1. 4

Starting with an initial order, one can follow either one of the two procedures in order to reach
an optimal order. For example, by consecutively moving players to the front, forming an optimal
order by letting the head grow larger and larger, the Growing Head procedure specifies a path
from the initial order to an optimal order. To check that such a path indeed corresponds to
the Growing Head procedure, one has to trace the steps of the procedure. An alternative way
of checking this makes use of the characteristics of the Growing Head (and the Growing Tail)
procedure. In a path specified by the Growing Head procedure, if players i and j interchange
positions, then it should hold that all players before player j in the optimal order are already in
their position according to the optimal order. This exactly reflects the idea of letting the head
of an optimal order grow larger. Similarly, in a path specified by the Growing Tail procedure,
if players i and j interchange positions, then all players after player i in the optimal order are
already in their position according to the optimal order. Together, we obtain the following
corollary as a consequence of both Procedures 5.1 and 5.2.

Corollary 5.1 Let (σ0, p, c) ∈ SEQN be a sequencing situation and let σ̂ ∈ Π(N) be an
optimal order. Then,

1) the Growing Head procedure specifies the unique path from σ0 to σ̂ such that, for all
neighbor switches (i, j) associated to two consecutive orders σ and τ , it holds that τ(k) =
σ̂(k) for all k ∈ P (σ̂, j);

2) the Growing Tail procedure specifies the unique path from σ0 to σ̂ such that, for all neighbor
switches (i, j) associated to two consecutive orders σ and τ , it holds that τ(k) = σ̂(k) for
all k ∈ F (σ̂, i).

5.2 Extending the EGS-rule

In addition to the choice of a path from the initial order to an optimal order, we have to specify
how to divide the corresponding neighbor switching gains in every step in such a path. Analo-
gous to the EGS-rule, we divide the neighbor switching gains equally between the two neighbors
involved. Hence, we obtain two cost savings allocation rules based on the two procedures.

Definition 5.1 The Equal Gain Splitting Head Rule (EGSH-rule) specifies for every sequenc-
ing situation (σ0, p, c) ∈ SEQN and every optimal order σ̂ ∈ Π(N) the following allocation:

EGSH(σ0, p, c, σ̂) =

|N |−1∑
`=1

(
1

2
gIj(tI(σ`−1))1{j} +

∑
i∈I

1

2
gij(ti(σ`−1))1{i}

)
,
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where j = σ̂−1(`) for every ` ∈ {1, 2, . . . , |N | − 1}, σ` for every ` ∈ {1, 2, . . . , |N | − 1} according
to the Growing Head procedure, and

I =

{
P (σ0, j), if ` = 1;

(k, j)σ`−1
, if ` ∈ {2, 3, . . . , |N | − 1}.

Similarly, the Equal Gain Splitting Tail Rule (EGST-rule) specifies for every sequencing situa-
tion (σ0, p, c) ∈ SEQN and every optimal order σ̂ ∈ Π(N) the following allocation:

EGST (σ0, p, c, σ̂) =

|N |−1∑
`=1

1

2
giJ(ti(σ`−1))1{i} +

∑
j∈J

1

2
gij(tj(σ`−1)− pi)1{j}

 ,

where i = σ̂−1(|N | − `+ 1) for every ` ∈ {1, 2, . . . , |N | − 1}, σ` for every ` ∈ {1, 2, . . . , |N | − 1}
according to the Growing Tail procedure, and

J =

{
F (σ0, i), if ` = 1;

(i, k)σ`−1
, if ` ∈ {2, 3, . . . , |N | − 1}.

/

By definition, both the EGSH-rule and the EGST-rule lead to efficient allocations, that is,∑
i∈N

EGSHi(σ0, p, c, σ̂) = v(N) =
∑
i∈N

EGSTi(σ0, p, c, σ̂),

where v(N) is the worth of the grand coalition of the sequencing game associated to a sequencing
situation (σ0, p, c) ∈ SEQN and σ̂ ∈ Π(N) an optimal order. Additionally, we can guarantee
stability for the EGSH-rule, that is,∑

i∈S
EGSHi(σ0, p, c, σ̂) ≥ v(S),

for all S ∈ 2N \ {∅}, if the neighbor switching gains corresponding to misplacements are non-
decreasing. Similarly,∑

i∈S
EGSTi(σ0, p, c, σ̂) ≥ v(S),

for all S ∈ 2N \ {∅}, if the neighbor switching gains corresponding to misplacements are non-
increasing. This is formulated by the following theorem.

Theorem 5.1 Let (σ0, p, c) ∈ SEQN be a sequencing situation, σ̂ ∈ Π(N) an optimal order
and v ∈ TUN the associated sequencing game. Assume that, for all t ∈ [0,∞),

i) gij(t) ≥ 0 for all (i, j) ∈MP (σ0, σ̂);

ii) gij(t) ≤ 0 for all (i, j) /∈MP (σ0, σ̂).

Then the following two statements hold:

1) If, for all s, t ∈ [0,∞) with s ≤ t, gij(s) ≤ gij(t) for all (i, j) ∈MP (σ0, σ̂),
then EGSH(σ0, p, c, σ̂) ∈ C(v);

2) If, for all s, t ∈ [0,∞) with s ≤ t, gij(s) ≥ gij(t) for all (i, j) ∈MP (σ0, σ̂),
then EGST (σ0, p, c, σ̂) ∈ C(v).
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Proof: By definition, both allocations prescribed by the EGSH-rule and the EGST-rule are
efficient. For stability, it suffices to restrict to connected coalitions. Hence, let S ∈ 2N \ {∅} be
a connected coalition. Then,

v(S) =
∑

(i,j)∈MP (σ0,σ̂),i,j∈S

gij(t
S
ij),

where tSij is the starting time of player i for which players i and j switch positions if the group of
players S is rearranging to its optimal position. Let (i, j) ∈MP (σ0, σ̂) with i, j ∈ S. For both
statements, we can use Lemma 2.1 and either the Growing Head procedure or the Growing Tail
procedure, respectively, to obtain a direct expression for tSij :

1) Using the Growing Head procedure (according to Procedure 5.1), we see that

tSij =
∑

k∈P (σ0,i)

pk +
∑

k∈F (σ0,i)∩P (σ̂,j)∩S

pk; (11)

2) Using the Growing Tail procedure (according to Procedure 5.2), we see that

tSij =
∑

k∈P (σ0,S)

pk +
∑

k∈P (σ̂,i)∩P (σ0,j)∩S

pk. (12)

On the other hand, we denote by tij the starting time of player i for which the players i and
j switch positions if all players (the grand coalition N) are rearranging to its optimal position.
Again, we can derive a direct expression for tij , depending on the procedure we use:

1) Using the Growing Head procedure, we see that

tij =
∑

k∈P (σ0,i)

pk +
∑

k∈F (σ0,i)∩P (σ̂,j)

pk; (13)

2) Using the Growing Tail procedure, we see that

tij =
∑

k∈P (σ̂,i)∩P (σ0,j)

pk. (14)

Next, we show that gij(t
S
ij) ≤ gij(tij) in both cases.

1) From Equation (11) and Equation (13) and by using the fact that F (σ0, i)∩P (σ̂, j)∩S ⊆
F (σ0, i) ∩ P (σ̂, j), it follows that tSij ≤ tij . Consequently, we have that gij(t

S
ij) ≤ gij(tij);

2) From Equation (12) and Equation (14) and by using the fact that for every k ∈ P (σ̂, i) ∩
P (σ0, j), we have that either k ∈ P (σ0, S), if k /∈ S, or k ∈ P (σ̂, i)∩P (σ0, j)∩S, if k ∈ S,
it follows that tij ≤ tSij . Consequently, we have that gij(t

S
ij) ≤ gij(tij).

Hence, in both cases,∑
(i,j)∈MP (σ0,σ̂),i,j∈S

gij(tij) ≥
∑

(i,j)∈MP (σ0,σ̂),i,j∈S

gij(t
S
ij) = v(S). (15)

Finally, note that, for every (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S, we have that the corresponding
neighbor switching gain gij(tij) is divided equally between players i and j. This means that,
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when adding all allocations of the players for either the EGSH-rule or the EGST-rule, we have
that ∑

k∈S
EGSHk(σ0, p, c, σ̂) ≥

∑
(i,j)∈MP (σ0,σ̂),i,j∈S

gij(tij),

and ∑
k∈S

EGSTk(σ0, p, c, σ̂) ≥
∑

(i,j)∈MP (σ0,σ̂),i,j∈S

gij(tij).

Consequently, by combining this with Equation (15), we have that∑
k∈S

EGSHk(σ0, p, c, σ̂) ≥ v(S),

and ∑
k∈S

EGSTk(σ0, p, c, σ̂) ≥ v(S). �

For exponential sequencing situations, we see that for the subclasses as stated in Proposition
3.1, we can combine Theorem 5.1 with Proposition 3.1 to see that the EGSH-rule leads to core-
elements. Moreover, for both discounting sequencing situations and logarithmic sequencing
situations, we see that, by combining Theorem 5.1 with Propositions 3.2 and 3.3, the EGST-
rule leads to allocations that are core-elements of the associated (discounting or logarithmic)
sequencing games. Together, this yields the following corollary.

Corollary 5.2 The following three statements hold:

1) Let (σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that one of the fol-
lowing three cases holds:

i) there is an α ∈ R++ such that, for all i ∈ N and all t ∈ [0,∞), ci(t) = eαt;

ii) there is a p ∈ R++ such that, for all i ∈ N , pi = p;

iii) there are αL, αH , pL, pH ∈ R++ with αL < αH , pL < pH such that, for all i ∈ N ,
αi ∈ {αL, αH}, pi ∈ {pL, pH} and

eαHpH − eαLpL ≤ eαH(pL+pH) − eαL(pL+pH).

Let σ̂ ∈ Π(N) be an optimal order and v ∈ TUN the associated exponential sequencing
game. Then,

EGSH(σ0, p, c, σ̂) ∈ C(v).

2) Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation, σ̂ ∈ Π(N) an optimal order
and v ∈ TUN the associated discounting sequencing game. Then,

EGST (σ0, p, c, σ̂) ∈ C(v).

3) Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation, σ̂ ∈ Π(N) an optimal order
and v ∈ TUN the associated logarithmic sequencing game. Then,

EGST (σ0, p, c, σ̂) ∈ C(v).
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Note that, for standard sequencing situations, the allocations specified by both the EGSH-
rule and the EGST-rule boil down to the allocation prescribed by the EGS-rule, since every
path from the initial order to an optimal order lead to the same allocation. However, for, e.g.,
logarithmic, discounting, and exponential sequencing situations, the EGSH-rule and the EGST-
rule can prescribe different allocations. We illustrate this for the logarithmic case in Example
5.3 (similar examples can be found for each of the other two cases). Besides, it can be also seen
that the allocation prescribed by the EGST-rule for such logarithmic sequencing situation is
also in the core of the associated sequencing game. The example is a continuation of Examples
5.1 and 5.2.

Example 5.3 Reconsider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN , as de-
scribed in Examples 5.1 and 5.2, with N = {1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N , and
p1 = 4, p2 = 3 and p3 = 2. Recall that σ̂ = (3, 2, 1), MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)} and the
corresponding neighbor switching gains as given below.

g12(0) 0.2877

g12(p3) 0.1823

g13(0) 0.6932

g13(p2) 0.3365

g23(0) 0.4055

g23(p1) 0.1542

Recall from Example 5.2 that the Growing Head procedure specifies the following path from
the initial order to the optimal order:

σ0 = (1, 2, 3)
g23(p1)−−−−→ (1, 3, 2)

g13(0)−−−−→ (3, 1, 2) = σ1
g12(p3)−−−−→ (3, 2, 1) = σ2 = σ̂.

Hence, by using Definition 5.1, the allocation prescribed by the EGSH-rule is

EGSH(σ0, p, c, σ̂) =
1

2
g{1,2}3(0)1{3} +

1

2
g13(0)1{1} +

1

2
g23(p1)1{2}

+
1

2
g{1}2(p3)1{2} +

1

2
g12(p3)1{1}

=
1

2
g23(p1)1{2,3} +

1

2
g13(0)1{1,3} +

1

2
g12(p3)1{1,2}

=
1

2
(g13(0) + g12(p3), g23(p1) + g12(p3), g23(p1) + g13(0))

=
1

2
(0.6932 + 0.1823, 0.1542 + 0.1823, 0.1542 + 0.6932)

= (0.4377, 0.1682, 0.4236) .

Example 5.2 also shows that the Growing Tail procedure specifies the following path from the
initial order to the optimal order:

σ0 = (1, 2, 3)
g12(0)−−−−→ (2, 1, 3)

g13(p2)−−−−→ (2, 3, 1)
g23(0)−−−−→ (3, 2, 1) = σ̂.
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Hence, by using Definition 5.1, the allocation prescribed by the EGST-rule is

EGST (σ0, p, c, σ̂) =
1

2
g1{2,3}(0)1{1} +

1

2
g12(0)1{2} +

1

2
g13(p2)1{4}

+
1

2
g2{3}(0)1{2} +

1

2
g23(0)1{3}

=
1

2
g12(0)1{1,2} +

1

2
g13(p2)1{1,3} +

1

2
g23(0)1{2,3}

=
1

2
(g12(0) + g13(p2), g12(0) + g23(0), g13(p2) + g23(0))

=
1

2
(0.2877 + 0.3365, 0.2877 + 0.4055, 0.3365 + 0.4055)

= (0.3121, 0.3466, 0.3710) .

Consequently,

EGSH(σ0, p, c, σ̂) = (0.4377, 0.1682, 0.4236) 6= (0.3121, 0.3466, 0.3710) = EGST (σ0, p, c, σ̂).

Furthermore, with regard to the associated logarithmic sequencing game v ∈ TUN , note that
v({1, 2}) = g12(0) and v({2, 3}) = g23(p1). The logarithmic sequencing game is shown below.

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 0 0.2877 0 0.1542 1.0296

We see that indeed, in line with Corollary 5.2, EGST (σ0, p, c, σ̂) ∈ C(v). Moreover, we see that
also EGSH(σ0, p, c, σ̂) ∈ C(v). 4

The last observation of Example 5.3, the fact that also EGSH(σ0, p, c, σ̂) ∈ C(v), can be proven
for any logarithmic sequencing situation with three players, as is shown below.

Lemma 5.1 Let (σ0, p, c) ∈ LSEQN with |N | = 3 be a logarithmic sequencing situation,
σ̂ ∈ Π(N) an optimal order and v ∈ TUN the associated logarithmic sequencing game. Then,

EGSH(σ0, p, c, σ̂) ∈ C(v).

Proof: Set N = {1, 2, 3} and w.l.o.g. assume that σ0 = (1, 2, 3). If

σ̂ ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2)},

then there is only one path from the initial order to the optimal order that repairs all mis-
placements. Hence, EGSH(σ0, p, c, σ̂) = EGST (σ0, p, c, σ̂). Using Corollary 5.2, we see that
EGSH(σ0, p, c, σ̂) ∈ C(v).

If σ̂ = (3, 2, 1), then p3 < p2 < p1, according to Theorem 3.1. Moreover, MP (σ0, σ̂) =
{(1, 2), (1, 3), (2, 3)} and the path as prescribed by the Growing Head procedure is given by

σ0 = (1, 2, 3)
g23(p1)−−−−→ (1, 3, 2)

g13(0)−−−−→ (3, 1, 2)
g12(p3)−−−−→ (3, 2, 1) = σ̂.

The associated logarithmic sequencing game v can be expressed in terms of the neighbor switch-
ing gains:

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 0 g12(0) 0 g23(p1) g23(p1) + g13(0) + g12(p3)
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Furthermore, we can also express the allocation prescribed by the EGSH-rule in terms of the
neighbor switching gains:

EGSH(σ0, p, c, σ̂) =
1

2
(g12(p3) + g13(0), g12(p3) + g23(p1), g13(0) + g23(p1)).

Note that v(S) ≤∑i∈S EGSHi(σ0, p, c, σ̂) for all S ∈ {{1}, {2}, {3}, {1, 3}}, since v(S) = 0 for
these coalitions, while EGSH(σ0, p, c, σ̂) ∈ RN+ . With regard to coalition {1, 2} ∈ 2N \ {∅}, we
notice the following, using the expression for the neighbor switching gains as in Equation (8):

EGSH1(σ0, p, c, σ̂) + EGSH2(σ0, p, c, σ̂)− v({1, 2})

=
1

2
(g12(p3) + g13(0) + g12(p3) + g23(p1))− g12(0)

=
1

2
ln

(
(p1 + p3) · (p1 + p3) · p1 · (p1 + p2)

(p2 + p3) · (p2 + p3) · p3 · (p1 + p3)

)
− ln

(
p1
p2

)
=

1

2
ln

(
(p1 + p3) · p1 · (p1 + p2)

(p2 + p3) · p3 · (p2 + p3)
· p2 · p2
p1 · p1

)
>

1

2
ln

(
(p1 + p3) · p1 · (p1 + p2)

(p2 + p3) · p2 · (p2 + p3)
· p2 · p2
p1 · p1

)
=

1

2
ln

(
(p1 + p3) · (p1 + p2)

(p2 + p3) · (p2 + p3)
· p2
p1

)
≥ 1

2
ln

(
(p1 + p3) · (p1 + p1)

(p2 + p3) · (p1 + p3)
· p2
p1

)
=

1

2
ln

(
2p1

p2 + p3
· p2
p1

)
>

1

2
ln

(
2p1

p2 + p2
· p2
p1

)
=

1

2
ln

(
p1
p2
· p2
p1

)
=

1

2
ln(1) = 0,

where we used that p3 < p2 for the first and third inequality and p3 < p1 together with the fact
that g13(t) is non-increasing, such that p1+p2

p2+p3
≥ p1+p1

p1+p3
for the second inequality. Hence,

EGSH1(σ0, p, c, σ̂) + EGSH2(σ0, p, c, σ̂) ≥ v({1, 2}).

Moreover, we have that

EGSH2(σ0, p, c, σ̂) + EGSH3(σ0, p, c, σ̂) = g23(p1) +
1

2
(g12(p3) + g13(0))

≥ g23(p1) = v({2, 3}),

where the inequality follows from the fact that all neighbor switching gains corresponding to
misplacements are non-negative. Finally, we have that

EGSH1(σ0, p, c, σ̂) + EGSH2(σ0, p, c, σ̂) + EGSH3(σ0, p, c, σ̂)

= g23(p1) + g13(0) + g12(p3) = v(N).

Consequently, EGSH(σ0, p, c, σ̂) ∈ C(v). �
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For logarithmic sequencing situations with more than three players, the allocation prescribed
by the EGSH-rule is not necessarily a core-element, as the following example shows.

Example 5.4 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation, where N =
{1, 2, 3, 4}, σ0 = (1, 2, 3, 4), αi = 1 for all i ∈ N and the processing times as specified in the
table below.

player 1 player 2 player 3 player 4

pi 2.96 1.8 1.78 1.75

The total costs for all 24 orders are given below.

σ TC(σ) σ TC(σ) σ TC(σ)

(1, 2, 3, 4) 6.6384 (2, 3, 1, 4) 5.8561 (3, 4, 1, 2) 5.8232

(1, 2, 4, 3) 6.6338 (2, 3, 4, 1) 5.6516 (3, 4, 2, 1) 25.6263

(1, 3, 2, 4) 6.6342 (2, 4, 1, 3) 5.8431 (4, 1, 2, 3) 6.0977

(1, 3, 4, 2) 6.6265 (2, 4, 3, 1) 5.6431 (4, 1, 3, 2) 6.0946

(1, 4, 2, 3) 6.6233 (3, 1, 2, 4) 6.1256 (4, 2, 1, 3) 5.815

(1, 4, 3, 2) 6.6202 (3, 1, 4, 2) 6.118 (4, 2, 3, 1) 5.615

(2, 1, 3, 4) 6.141 (3, 2, 1, 4) 5.845 (4, 3, 1, 2) 5.8062

(2, 1, 4, 3) 6.1364 (3, 2, 4, 1) 5.6404 (4, 3, 2, 1) 5.6093

Obviously, σ̂ = (4, 3, 2, 1) is the unique optimal order and

MP (σ0, σ̂) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

The Growing Head procedure specifies the following path from the initial order to the optimal
order:

σ0 = (1, 2, 3, 4)→ (1, 2, 4, 3)→ (1, 4, 2, 3)→ (4, 1, 2, 3) = σ1

→ (4, 1, 3, 2)→ (4, 3, 1, 2) = σ2

→ (4, 3, 2, 1) = σ̂.

The corresponding neighbor switching gains are shown in the table below.

g34(p1 + p2) 0.0046

g24(p1) 0.0106

g14(0) 0.5256

g23(p1 + p4) 0.0031

g13(p4) 0.2884

g12(p3 + p4) 0.1969

Hence, the EGSH-rule specifies the following allocation:

EGSH(σ0, p, c, σ̂) = (0.5054, 0.1053, 0.1480, 0.2704).

25



Then, we see that for coalition {1, 2, 3} ∈ 2N \ {∅}, we have that

v({1, 2, 3}) = TC(σ0)− TC((3, 2, 1, 4)) = 6.6384− 5.845

= 0.7935 > 0.7587

= EGSH1(σ0, p, c, σ̂) + EGSH2(σ0, p, c, σ̂) + EGSH3(σ0, p, c, σ̂),

where v denotes the associated logarithmic sequencing game. Hence, EGSH(σ0, p, c, σ̂) /∈ C(v).
4

However, Lemma 5.1 is a specific result for logarithmic sequencing situations. Counterexamples
can be obtained for other sequencing problems under the same conditions of Theorem 5.1
that logarithmic sequencing problems. Example 5.5 shows that the allocation specified by the
EGSH-rule is not a core-element in discounting sequencing situations with three players.

Example 5.5 Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation, where N =
{1, 2, 3}, r = 0.8838, σ0 = (1, 2, 3) and the discounting cost coefficients and processing times as
shown in the next table.

player 1 player 2 player 3

αi 0.1768 0.9070 0.5041

pi 0.8371 0.9450 0.6142

That leaves only six orders, for which the total costs are given below.

σ TC(σ)

(1, 2, 3) 1.2551

(1, 3, 2) 1.2546

(2, 1, 3) 1.0972

(2, 3, 1) 1.0461

(3, 1, 2) 1.1368

(3, 2, 1) 1.0451

Clearly, σ̂ = (3, 2, 1) is the unique optimal order and MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}. The
Growing Head procedure specifies the following path from σ0 to σ̂:

σ0 = (1, 2, 3)→ (1, 3, 2)→ (3, 1, 2) = σ1

→ (3, 2, 1) = σ̂.

By using the previous table, the corresponding neighbor switching gains are g23(p1) = 0.0005,
g13(0) = 0.1178 and g12(p3) = 0.0918, respectively. Thus, we obtain the following allocation
specified by the EGSH-rule:

EGSH(σ0, p, c, σ̂) = (0.1048, 0.0461, 0.0592).

To conclude, if we take coalition {1, 2} ∈ 2N \ {∅}, we have that

v({1, 2}) = TC(σ0)− TC((2, 1, 3)) = 0.1579

> 0.1509 = EGSH1(σ0, p, c, σ̂) + EGSH2(σ0, p, c, σ̂),

where v denotes the associated discounting sequencing game. Thus, EGSH(σ0, p, c, σ̂) /∈ C(v).
4
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Moreover, no result can be established to prove that EGST (σ0, p, c, σ̂) ∈ C(v) for an exponential
sequencing situations (σ0, p, c) ∈ ESEQN with three players. The concluding example by
Saavedra-Nieves et al. (2020) is a counterexample for this.

The following table provides an overview of the results whether the two cost savings allocation
rules, EGSH-rule and EGST-rule, are core-elements of the associated sequencing games or not.

EGSH(σ0, p, c, σ̂) ∈ C(v) EGST (σ0, p, c, σ̂) ∈ C(v)

Exponential sequencing situation
(σ0, p, c) ∈ ESEQN satisfying one
of the three cases as described in
Proposition 3.1

Yes (Corollary 5.2)
No (Counterexample by
Saavedra-Nieves et al.,
2020)

Discounting sequencing situation
(σ0, p, c) ∈ DSEQN No (Example 5.5) Yes (Corollary 5.2)

Logarithmic sequencing situation
(σ0, p, c) ∈ LSEQN

Yes for |N | = 3 (Lemma 5.1)
No for |N | ≥ 4 (Example 5.4)

Yes (Corollary 5.2)

Standard sequencing situation
(σ0, p, c) ∈ SSEQN Yes (EGS-rule) Yes (EGS-rule)

Table 1 – Overview of the results on the two cost savings allocation rules

The final two examples illustrate two issues regarding the EGSH-rule and the EGST-rule. First,
the next example shows that, if the conditions of Theorem 5.1 are not satisfied for a particular
exponential sequencing situation (and hence, we are not in one of the subclasses as defined
above), the EGSH-rule and the EGST-rule may not lead to allocations that are core-elements.
This example is also extracted from Saavedra-Nieves et al. (2020).

Example 5.6 Let (σ0, p, c) ∈ ESEQN be an exponential sequencing situation, where N =
{1, 2, 3}, σ0 = (1, 2, 3) and the exponential cost coefficients and processing times as specified in
the table below.

player 1 player 2 player 3

αi 1.880 1.904 1.902

pi 1.205 1.940 1.976

The total costs for all orders are given below.

σ TC(σ)

(1, 2, 3) 17394

(1, 3, 2) 17595

(2, 1, 3) 17396

(2, 3, 1) 16933

(3, 1, 2) 17599

(3, 2, 1) 16949

Obviously, σ̂ = (2, 3, 1) is the unique optimal order and MP (σ0, σ̂) = {(1, 2), (1, 3)}. Moreover,
there is only one path from the initial order to the optimal order:

σ0 = (1, 2, 3)→ (2, 1, 3)→ (2, 3, 1) = σ̂.
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Hence, EGSH(σ0, p, c, σ̂) = EGST (σ0, p, c, σ̂). Note that g12(0) = 17394− 17595 = −1.5783 <
0, which shows that the conditions of Theorem 5.1 are not satisfied. Consequently,

EGSH2(σ0, p, c, σ̂) = EGST2(σ0, p, c, σ̂) =
1

2
g12(0) < 0 = v({2}),

where v denotes the associated exponential sequencing game. This shows that both allocations
prescribed by either the EGSH-rule or the EGST-rule are not core-elements of the exponential
sequencing game. 4

The last example illustrates that for a logarithmic sequencing situation with two different op-
timal orders, the allocations prescribed by the EGSH-rule are different for each of the optimal
orders. The example can be easily modified by rearranging the processing times among the
players to obtain a logarithmic sequencing situation with two different optimal orders where
the allocations prescribed by the EGST-rule are different for each of the optimal orders.

Example 5.7 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation, where N =
{1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N , and p1 = 4 and p2 = p3 = 2. The total costs for all
possible orders are given below.

σ TC(σ)

(1, 2, 3) 5.2575

(1, 3, 2) 5.2575

(2, 1, 3) 4.5643

(2, 3, 1) 4.1589

(3, 1, 2) 4.5643

(3, 2, 1) 4.1589

Obviously, there are two optimal orders, σ̂1 = (2, 3, 1) and σ̂2 = (3, 2, 1). For the first optimal
order σ̂1, we have that MP (σ0, σ̂1) = {(1, 2), (1, 3)}. Hence, there is only one path from the
initial order to this optimal order that repairs all neighbor misplacements:

σ0 = (1, 2, 3)
g12(0)−−−−→ (2, 1, 3)

g13(p2)−−−−→ (2, 3, 1) = σ̂1,

corresponding to neighbor switches (1, 2) and (1, 3) respectively. Using the fact that g12(0) =
0.69315 and g13(p2) = 0.40547, we obtain the following allocation specified by the EGSH-rule:

EGSH(σ0, p, c, σ̂1) = (0.5493, 0.3466, 0.2027).

Similarly, MP (σ0, σ̂2) = {(1, 2), (1, 3), (2, 3)} and the path from the initial order to this second
optimal order σ̂2 is given by:

σ0 = (1, 2, 3)
g23(p1)−−−−→ (1, 3, 2)

g13(0)−−−−→ (3, 1, 2)
g12(p3)−−−−→ (3, 2, 1) = σ̂2,

corresponding to the neighbor switches (2, 3), (1, 3) and (1, 2) respectively. Using the fact that
g23(p1) = 0, g13(0) = 0.69315 and g12(p3) = 0.40547, we obtain the following allocation specified
by the EGSH-rule:

EGSH(σ0, p, c, σ̂2) = (0.5493, 0.2027, 0.3466).

Consequently,

EGSH(σ0, p, c, σ̂1) 6= EGSH(σ0, p, c, σ̂2). 4
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Example 5.7 shows the importance of fixing a specific optimal order first, as different optimal
orders may lead to different allocations. Analogous conclusions are obtained when different
paths exist from the initial order to the optimal one. In both cases, a linear combination of the
different allocations obtained is naturally bearable if there is no preference between one path
or another.

6 Concluding remarks

In this paper, we studied some sequencing situations with non-linear cost functions. We focused
on the convexity of the associated sequencing games as well as on allocation rules that prescribe
core-allocations. For both aspects, we derive conditions on the time-dependent neighbor switch-
ing gains to guarantee the desired outcome.

In particular, we showed that the two extensions of the EGS-rule based on either the Growing
Head procedure or the Growing Tail procedure result in core-allocations if certain conditions are
satisfied. These results could be generalized in a similar way as the EGS-rule is generalized by
Hamers, Suijs, Tijs, and Borm (1996). Instead of dividing the neighbor switching gains equally
among the two neighbors involved, the split core (cf. Hamers et al., 1996) consists of allocations
for which every neighbor switching gain is divided among the two neighbors in an arbitrary way
(providing that each player that is involved in a neighbor switch obtains a non-negative part of
the gain).

This idea of generalizing the EGS-rule can also be applied to both the EGSH-rule and the EGST-
rule. In these allocations, the neighbor switching gains are also divided equally among the two
neighbors. However, one could imagine that different divisions of the gains may be possible.
Note that the results obtained in this paper are also valid for this generalized allocations.
In particular, Theorem 5.1 does not depend on equal division, which ensures that all these
generalized allocations are also (under particular conditions as prescribed in Theorem 5.1) core-
elements of the associated sequencing game.
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