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Latent Class Trees with the Three-Step Approach

Mattis Van Den Bergh and Jeroen K. Vermunt
Tilburg University

Latent class (LC) analysis is widely used in the social and behavioral sciences to find meaningful
clusters based on a set of categorical variables. To deal with the common problem that a standard
LC analysis may yield a large number classes and thus a solution that is difficult to interpret,
recently an alternative approach has been proposed, called Latent Class Tree (LCT) analysis. It
involves starting with a solution with a small number of “basic” classes, which may subsequently
be split into subclasses at the next stages of an analysis. However, in most LC analysis applica-
tions, we not only wish to identify the relevant classes, but also want to see how they relate to
external variables (covariates or distal outcomes). For this purpose, researchers nowadays prefer
using the bias-adjusted three-step method. Here, we show how this bias-adjusted three-step
procedure can be applied in the context of LCT modeling. More specifically, an R-package is
presented that performs a three-step LCTanalysis: it builds a LCTand allows checking how splits
are related to the relevant external variables. The new tool is illustrated using a cross-sectional
application with multiple indicators on social capital and demographics as external variables and
with a longitudinal application with a mood variable measured multiple times during the day and
personality traits as external variables.

Keywords: Latent classes, three-step approach, latent class trees, mixture models

The goal of any sort of cluster analysis is to determine the
number of meaningful subgroups simultaneously with their
characteristics. This also applies to Latent Class (LC) mod-
eling, which is a probabilistic clustering tool for categorical
variables (Clogg, 1995; Goodman, 1974; Hagenaars, 1990;
Lazarsfeld & Henry, 1968; McCutcheon, 1987) in which the
classes are interpreted based on their conditional response
probabilities (Muthén, 2004).

Typically, researchers estimate LC models with different
numbers of classes and select the best model using the
likelihood-based statistics, which weigh model fit and

complexity (e.g., Akaike information criterion [AIC] or
Bayesian information criterion [BIC]). Although, in theory,
there is nothing wrong with such a procedure, in practice it
is often perceived as being problematic, especially when
dealing with large data sets; that is, when the number of
variables and/or the number of subjects is large. One pro-
blem that occurs in such situations is that the selected
number of classes may be rather large. This causes the
classes to pick up very specific aspects of the data, which
might not be interesting for the research question at hand.
Moreover, these specific classes are hard to interpret sub-
stantively and compare to each other. A second problem
results from the fact that usually one would select a different
number of classes depending on the model-selection criter-
ion used. Owing of this, one may wish to inspect multiple
solutions, as each of them may reveal specific relevant
features in the data. However, it is fully unclear how solu-
tions with different numbers of classes are related, making it
very hard to see what a model with K þ 1 classes adds to
a model with K classes.

To circumvent the aforementioned issues, van Den
Bergh, Schmittmann, and Vermunt (2017) proposed the
Latent Class Tree (LCT) modeling approach, which is
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based on an algorithm for latent-class based density estima-
tion by Van der Palm, van der Ark, and Vermunt (2015).
LCT modeling involves imposing a hierarchical tree struc-
ture on the latent classes. After deciding on the initial
number of “basic” latent classes, the initial classes are
treated as parent nodes for which we estimate 1- and
2-class models. If the 2-class model is preferred according
to say the BIC, the sample at the parent node is split into
“child” nodes and separate data sets are constructed for each
of the child nodes with the class membership probabilities
serving as weights.1 Subsequently, each new child node is
treated as a parent and it is checked again whether a 2-class
model provides a better fit than a 1-class model on the
corresponding weighted data set. This procedure continues
until no node is split up anymore. This sequential splitting
algorithm yields a set of hierarchically connected clusters.
The higher-level clusters will typically be the most interest-
ing ones, since these capture the most dominant differences
between the individuals in the sample. Lower-level clusters
are special cases of higher-level clusters showing certain
more specific differences between respondents belonging
to the same higher-level cluster. Whether such more specific
differences are relevant or not depends on the purpose of the
LCT analysis. If this is not the case, one may consider
ignoring the lower-level splits concerned.

In most LC analysis applications, the identification of
classes is only the first step in an analysis, as researchers
are often also interested in how the classes are related to
external variables. Two possible approaches for dealing with
external variables are the one-step procedure in which these
external variables are included in the estimated LC model
(Dayton & Macready, 1988; Hagenaars, 1990; Van der
HeiHeijden, Dessens, & Bockenholt, 1996; Yamaguchi,
2000) and the three-step procedure in which one makes
use of class assignments (Bakk, Oberski, & Vermunt,
2016; Bakk & Vermunt, 2016; Bolck, Croon, &
Hagenaars, 2004; Vermunt, 2010). The three-step approach
is the more popular one, mainly because researchers find it
more practical to separate the construction of the measure-
ment part (in which the number of classes and their relation
with the indicator variables are determined) and the devel-
opment of a structural part (in which the LCs are related to
the external variables of interest). The state-of-art three-step
procedure accounts for classification errors to prevent
underestimation of the association between external vari-
ables and class membership (Bakk, Tekle, & Vermunt,
2013; Bolck et al., 2004; Vermunt, 2010).

Also, in the context of LCT modeling, the three-step
approach seems the most natural way to proceed when

investigating the association between the latent classes
formed at the various splits and the external variables at
hand. The aim of this paper is threefold. First, we show
how the bias-adjusted three-step LC analysis approach
can be adapted to be applicable in LCT models. This
three-step LCT method is discussed in the next
section. Second, we present an R package called
LCTree, which allows building LCTs and performing
the subsequent three-step analyses with external vari-
ables. This package, which runs the Latent GOLD pro-
gram (Vermunt & Magidson, 2016) on the background
to perform the actual estimation steps, deals with the
rather complicated logistics involved when using LCT
models. Third, we provide two step-by-step illustrative
examples on how to use the LCTree package. The first
example concerns a standard cross-sectional application
with multiple (18) categorical indicators and the second
is longitudinal application in which we use a Latent
Class Growth Tree (LCGT).

METHOD

Bias-adjusted three-step LC modeling has been described
among others by Vermunt (2010) and Bakk and Vermunt
(2016). What we will do here is show how the three
steps – 1) building a LC model, 2) classification and
quantifying the classification errors, and 3) bias-adjusted
three-step analysis with external variables – look like in
the case of a LCT model. As is shown below in more
detail, the key modification compared to a standard three-
step LC analysis is that these three steps are now per-
formed conditional on the parent class. In fact, a separate
three-step analysis is performed at each node of the LCT
where a split occurs.

Step 1: building a LCT

The first step of bias-adjusted three-step LCT modeling
involves building a LCT without inclusion of the exter-
nal variables. Let yi denote the response of individual i
on all J variables, X the discrete latent class variable,
and k a particular latent class. Moreover, subscripts p
and c are used to refer to quantities of parent and child
nodes, respectively. Then, the 2-class LC model defined
at a particular parent node can be formulated as follows:

PðyijXpÞ ¼
X2

k¼1

PðXc ¼ kjXpÞ
YJ

j¼1

PðyijjXc ¼ k;XpÞ; (1)

where Xp represents the parent class at level t of the tree and
Xc one of the two possible newly formed child classes at
level t þ 1. In other words, as in a standard LC model, we
define a model for yi, but now conditioning on belonging to

1 This is comparable with how some distance based clustering
approaches work (e.g., divisive hierarchical clustering). However, these
yield a hard-partitioning at each split meaning that uncertainty about cluster
memberships is not taken into account. LCT models do so, as will be
shown in the method section.
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the parent class concerned. If the 2-class model is preferred
according to a certain information criterion, the data are split
into “child” nodes. This split is based on the posterior
membership probabilities, which can be assessed by apply-
ing the Bayes theorem to the estimates obtained from
Equation (1):

PðXc ¼ kjyi;XpÞ ¼

PðXc ¼ kjXpÞ
QJ

j¼1
PðyijjXc ¼ k;XpÞ

PðyijXpÞ :

(2)

For each child class, a separate data set is constructed,
which not only contains the same observations as the origi-
nal data set, but also the cumulative posterior membership
probabilities as weights. Hereafter, each of these data sets
becomes parent class itself, and the 1-class model and the
2-class model defined in Equation (1) are estimated again
for each newly created data set with the corresponding
weights for each of the parent classes (wp). The splitting
procedure is repeated until no 2-class models are preferred
anymore over 1-class models. This results in a hierarchical
tree structure of classes. Within a LCT, the name of a child
class equals the name of the parent class plus an additional
digit, a 1 or a 2. For convenience, the child classes are
sorted by size, with the first one being the largest class.
For a more detailed description on how to build a LCT, see
van Den Bergh et al. (2017).

Special attention needs to be dedicated to the first split at
the root node of a LCT (or LCGT), in which one picks up
the most dominant features in the data (van Den Bergh, van
Kollenburg, & Vermunt, 2018). In many situations, a binary
split at the root may be too much of a simplification, and
one would prefer allowing for more than two classes in the
first split. For this purpose, we cannot use the usual criteria
such as AIC or BIC, as this would boil down to using
a standard LC model. Instead, for the decision to use more
than two classes at the root node, van Den Bergh et al.
(2018) proposed looking at the relative improvement in fit
compared to the improvement between the 1- and 2-class
models. When using the log-likelihood value as the fit
measure, this implies assessing the increase in log-
likelihood between, say, the 2- and 3-class models and
compare it to the increase between the 1- and 2-class mod-
els. More explicitly, the relative improvement between mod-
els with K and K þ 1 classes (RIK;Kþ1) can be computed as:

RIK;Kþ1 ¼ log LKþ1 � log LK
log L2 � log L1

; (3)

which yields a number between 0 and 1, where a small
value indicates that the K-class model can be used as the
first split, while a larger value indicates that the tree might
improve with an additional class at the root of the tree. Note

that instead of an increase in log-likelihood, in Equation 3
one may use other measures of improvement in fit, such as
the decrease of the BIC or the AIC.

The procedure described above concerns LC analysis with
cross-sectional data. However, if the recorded responses are
repeated/longitudinal measurements of the same variable, the
procedure can also be carried out with a Latent Class Growth
(LCG) model. Such a model is very similar to a standard LC
model, except that the class-specific conditional response
probabilities are now restricted using a regression model con-
taining time variables as predictors (typically, a polynomial).
By using a similar stepwise estimation algorithm as already
described, one can also construct a tree version of a LCG
model, which we called a LCGT. This was described in more
detail in van Den Bergh and Vermunt (2017).

Step 2: classification and quantification of the
classification errors at every split of the LCT

The second step of a three-step LC analysis involves assign-
ing respondents to classes using their, posterior membership
probabilities. The two most popular assignment methods are
modal and proportional assignments. Modal assignment
consists of assigning a respondent to the class with the
largest estimated posterior membership probability. This is
also known as hard partitioning and can be conceptualized
as a respondent having a weight of one for the class with the
largest posterior membership probability and zero for the
other classes. Proportional assignment, also known as soft
partitioning, implies that the class membership weights are
set equal to the posterior membership probabilities.

Irrespective of the assignment method used, the true (X )
and assigned (W ) class membership scores will differ. That
is, classification errors are inevitable. As proportional
assignment is what is used to build a LCT, this is also the
method we will use for the classification itself and the
determination of the classification errors at each split.

After obtaining the class assignments, which we refer to
by W, we can compute the correction for classification
errors needed in the third step (Bolck et al., 2004). The
amount of classification errors can be expressed as the
probability of an assigned class membership W ¼ s condi-
tional on the true class membership X ¼ k (Vermunt, 2010).
For every split of the LCT, this can be assessed as follows:

PðW ¼ sjXc ¼ k;XpÞ ¼
1
Np

PN
i¼1 wp;i PðXc ¼ k yi;XpÞPðW ¼ s

�� ��yi;XpÞ
PðXc ¼ kjXpÞ :

(4)

The main modification compared to the equation in the case
of a standard LC model is that we have to account for the
contribution of every individual at the parent node con-
cerned, which is achieved with the weight wp;i indicating
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the person i’s prevalence in the node concerned. The total
“sample” size, which is denoted as (Np), is obtained as the
sum of the wp;i. Note that most of the terms are conditional
on the parent node concerned.

Step 3: relating class membership with external
variables

After the tree has been built in the first step and the classifica-
tion and their errors have been assessed in the second step, the
third and final step consists of relating the class memberships
and some external variables while correcting for the classifica-
tion errors. The goal can either be to investigate how the mean
or the distribution of a certain variable differs across classes
(e.g., is there a difference in age between the classes) or to
investigate to what extent a variable predicts class membership
(e.g., does age influence the probability of belonging to
a certain class). The first variant, in which one compares the
distribution on an external variable Zi across latent classes, is
defined as follows:

PðW ¼ s; ZijXpÞ ¼
XK

k¼1

PðXc ¼ kjXpÞ

f ðZijXc ¼ k;XpÞPðW ¼ sjXc ¼ k;XpÞ;
(5)

while the second option, in which the external variables are
covariates predicting class membership, is defined as follows:

PðW ¼ sjZi;XpÞ ¼
XK

k¼1

PðXc ¼ kjZi;XpÞ

PðW ¼ sjXc ¼ k;XpÞ:
(6)

As pointed out by Vermunt (2010) and Bakk et al. (2013),
both Equations (5) and (6) are basically LC models, in
which the classification errors PðW ¼ sjXc ¼ k;XpÞ can be
fixed to their values obtained from the second step. These
models can be estimated either by maximum likelihood
(ML) (Vermunt, 2010) or a specific type of weighted ana-
lysis, also referred to as the BCH-approach (Bolck et al.,
2004). The ML option is the best option when the external
variables serve as covariates of class membership, while the
BCH approach is the more robust option when the external
variables are distal outcomes (Bakk & Vermunt, 2016).

To build a LCT and apply the three-step method, we devel-
oped an R-package (R Core Team, 2016), called LCTpackage,
which uses the Latent GOLD 5.1 program (Vermunt &
Magidson, 2016) for the actual parameter estimation at step
one and step three. Apart from dealing with the logistics of
performing the many separate steps required to build a tree and
perform the subsequent three-step analyses, the LCTpackage
provides various visual representations of the constructed tree,
including one showing the three-step information about the

external variables at each of the nodes. For both empirical
examples, the R-code is provided to run the analysis in ques-
tion. To install the package, the code presented below should
be used (as it is not yet available CRAN) and it must also be
indicated where the executable of Latent GOLD is located.

library(devtools)
install_github(“MattisvdBergh/LCT”)
library(LCTpackage)

# Filepath of the Latent GOLD 5.1 executable, e.g.:
LG = “C:/LatentGOLD5.1/lg51.exe”

EMPIRICAL EXAMPLES

Example 1: Social Capital

The data set in this first example comes from a study by
Owen and Videras (2009) and contains a large number of
respondents and indicators, corresponding to applications
for which LCTs are most suited. Owen and Videras
(2009) used the information from 14.527 respondents of
several samples of the General Social Survey to con-
struct “a typology of social capital that accounts for the
different incentives that networks provide.” The data set
contains 16 dichotomous variables indicating whether
respondents participate in specific types of voluntary
organizations (the organizations are listed in the legend
of Figure 2) and two variables indicating whether
respondents agree with the statements “other people are
fair” and “other people can be trusted”. In this example,
these variables are used to build a LCT for this data set
and the three-step procedure for LCTs is used to assess
class differences in several demographic variables, to
which age and gender. For this example, we estimate
the three-step model at the splits with the BCH-
approach (Vermunt, 2010), as this is the preferred option
for continuous distal outcomes (Bakk & Vermunt, 2016).

To decide on the number of classes at the root of the tree,
standard LC models with increasing number of classes were
estimated. The fit statistics and the relative improvement of
the fit statistics are shown in Table 1. The relative fit
improvement is about 20% when expanding a model from
class 2 to class 3, compared to the improvement in fit when
expanding from class 1 to class 2. Adding more classes
improves the fit only marginally and thus a root size of
three classes is used.

To estimate a LCT for this data set in R, the data can be
loaded once the LCTpackage is loaded in the R-environment.
Subsequently, the names of the items need to be provided and
all items have to be classified as factors to treat them as
ordinal variables in the LCT. Subsequently, the tree can be
constructed with the LCT function as shown in the syntax
below. All results are written to a folder called
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Results_Social_Capital in the working directory, while the
variables age and sex are retained for the three-step analysis.

data(“SocialCapital”)
itemNames = c(“fair”, “memchurh”, “trust”, “memfrat”,

“memserv”, “memvet”, “mempolit”, “memunion”,
“memsport”, “memyouth”, “memschl”,
“memhobby”, “memgreek”, “memnat”,
“memfarm”, “memlit”, “memprof”, “memother”)

# Make the items factors, to be ordinal in the model
SocialCapital[itemNames] = sapply(SocialCapital[,item

Names],
function(x){as.factor(x)})

Results.SC3 = LCT(Dataset = SocialCapital,
LG = LG,
maxClassSplit1 = 3,
resultsName = “_Social_Capital”,
itemNames = itemNames,
nKeepVariables = 2,
namesKeepVariables = c (“age”, “sex”))

The layout of the LCT is shown in Figure 1, with the
class sizes displayed for every node of the tree. For every
final node, it holds that, according to the BIC, a 1-class
model is preferred to a 2-class model.

To interpret the tree, the profile plots of every split, as
shown in Figure 2, can be investigated. The first split shows
three classes, of which the first has a low probability on all
variables, the second displays a low probability on partici-
pation in all voluntary organizations and very high prob-
abilities on the variables fair and trust, while the class 3
displays relative high probabilities on participation in the
voluntary organizations and rather high probabilities for fair
and trust. Subsequently, the first and class 3 are split further,
while the second is not. The class 1 is split into classes with
low and with very low probabilities on all variables, while
the class 3 is split into two classes with preferences for
different voluntary organizations (e.g., a high probability
for being part of a professional organization in class 31

versus a high probability for being part of a youth group
in class 32). Subsequently, class 31 is split further, in classes
311 and 312, which seem to differ mainly in participation in
all voluntary organizations. The final split in classes 3111
and 3112 results in classes which differ again in preferences
for different voluntary organizations (e.g., a high probability
for being part of a literary or art group in class 3111 versus
a high probability for being part of a fraternity in class
3112).

After building the tree, the three-step procedure is used to
investigate the class differences in terms of the continuous
variable age and the dichotomous variable gender. That is,
we compare the mean age and the gender distribution
between the newly formed classes at each split.

Within R, this is done with the exploreTree function. The
argument resTree refers to the R-object containing the results of
the LCT analysis, the argument dirTreeResults indicates the
directory with the results of the LCT analysis, and
ResultsFolder specifies where the results of the three-step ana-
lysis should be written (here the exploreTree_Social_Capital
folder). The analysis argument indicates whether the external
variables are “dependent” on the class membership (as is the
case in this example) or “covariates” predicting the class mem-
bership (as will be shown in the next example). The names,
number of response options, and scale types of the external
variables age and sex are indicated by the remaining arguments.
Note that setting the number of response options equal to one
implies that the variable is treated as continuous. The final
argument called method determines the correction method and
indicates whether the ML or BCH method should be used.

explTree.SC3 = exploreTree (resTree = Results.SC3,
dirTreeResults =
paste0(getwd (), “/Results_Social_Capital”),

ResultsFolder = “exploreTree_Social_Capital”,
analysis = “dependent”,
Covariates = c(“sex”, “age”),
sizeMlevels = c(2, 1),
mLevels = c(“ordinal”, “continuous”),
method = “bch”)

TABLE 1
Log-Likelihood, Number of Parameters, BIC, AIC, and Relative

Improvement of the Log-Likelihood, BIC, and AIC of a Traditional LC
Model with 1 to 9 Classes

logL P BIC AIC RIlogL RIBIC RIAIC

1 −94204 3 188581 188444
2 −89510 7 179376 179095
3 −88501 11 177539 177115 0.215 0.199 0.212
4 −88117 15 176952 176383 0.082 0.064 0.078
5 −87826 19 176553 175840 0.062 0.043 0.058
6 −87619 23 176321 175464 0.044 0.025 0.040
7 −87425 27 176114 175113 0.041 0.022 0.038
8 −87322 31 176090 174945 0.022 0.003 0.018
9 −87234 35 176098 174808 0.019 −0.001 0.015

14527

7518 3916 3093

4313 3205 1901 1193

1688 213

1064 624

FIGURE 1 Layout of a LCT with a root of three classes on social capital.
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The results of the three-step method are visually displayed
in Figure 3. From this figure, we can conclude that after the
first split the age is highest in class 2 and lowest in class 3,
while the percentage of (wo)men is about the same in every
class, though still significantly different according to a Wald
test (W(2) ¼ 11.690, p< 0.05). After the split of class 1, there
is no noticeable difference in age between classes 11 and 12, as
can be seen in Figure 3 and this is also confirmed by a Wald
test (W(1) ¼ 0.040, p ¼ 0.84). There is a significant difference
in the percentage of (wo)men between classes 11 and 12

(W(1) ¼ 192.656, p < 0.05). It seems that class 12, with very
low probabilities on all variables, mainly consists of women,
while class 11, with low probabilities on all variables, consists
of more men. The split of class 3 results in two classes which
differ both on average age (W(1) ¼ 258.988, p < 0.05) and
percentage of (wo)men (W(1) ¼ 46.090, p< 0.05). The differ-
ence in age between these classes (and the direction of the
difference) could be explained by the fact that class 31 contains
more respondents that are part of a professional organization,
while class 32 contains more respondents that are part of

Classes
1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Classes

11 12

0.0

0.2

0.4

0.6

0.8

1.0

Classes

31 32

0.0

0.2

0.4

0.6

0.8

1.0

Classes Classes

311 312

0.0

0.2

0.4

0.6

0.8

1.0

3111 3112

0.0

0.2

0.4

0.6

0.8

1.0

Fair
Trust
Church
Fraternity
Service group
Veteran group
Political club
Labour union
Sports club

Youth group
School service group
Hobby club
School fraternity
Nationality group
Farm organization
Literary or art group
Professional society
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FIGURE 2 Profile plots of a LCT with a root of three classes on social capital.
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a youth group and the latter are a lot younger than the former.
The difference in the proportion of men and women is not that
large in class 31 (53% men and 47% women), while this
difference is quite profound in class 32 (34% men and 66%
women). The next split in classes 311 and 312 does not result
in any significant differences on age (W(1) ¼ 2.090, p ¼ 0.15)
and percentage of (wo)men (W(1) ¼ 0.746, p < 0.39), while
the final split in classes 3111 and 3112 results in differences in
both age (W(1) ¼ 116.411, p < 0.05) and percentage of (wo)
men (W(1) ¼ 42.934, p < 0.05).

Example 2: Mood Regulation

The second data set stems from a momentary assessment
study by Crayen, Eid, Lischetzke, Courvoisier, and Vermunt
(2012). It contains eight mood assessments per day during
a period of 1 week among 164 respondents (88 women and
76 men, with a mean age of 23.7, SD = 3.31). Respondents

answered a small number of questions on a handheld device
at pseudo-random signals during their waking hours. The
delay between adjacent signals could vary between 60 and
180 min (M [SD] = 100.24[20.36] min, min = 62 min,
max = 173 min). Responses had to be made within a 30-
min time window after the signal, and were otherwise
counted as missing. On average, the 164 participants
responded to 51 (of 56) signals (M [SD] = 51.07 [6.05]
signals, min = 19 signals, max = 56 signals). In total, there
were 8374 non-missing measurements.

At each measurement occasion, participants rated their
momentary mood on an adapted short version of the
Multidimensional Mood Questionnaire (MMQ). Instead of the
original monopolar mood items, a shorter bipolar version was
used to fit the need for brief scales. Four items assessed pleasant-
unpleasant mood (happy-unhappy, content-discontent, good-
bad, and well-unwell). Participants rated how they momentarily
felt on a 4-point bipolar intensity scales (e.g., very unwell, rather

1 2 3

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

Classes

35

40

45

50

M
ea

n 
ag

e

11 12

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

Classes

35

40

45

50

M
ea

n 
ag

e

31 32
P

ro
ba

bi
lit

y

0.0

0.2

0.4

0.6

0.8

1.0

Classes

35

40

45

50

311 312

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

Classes Classes

35

40

45

50

M
ea

n 
ag

e

3111 3112

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

35

40

45

50

M
ea

n 
ag

e

Male
Female
age

FIGURE 3 Results of the three-step procedure for gender and age on the LCT on social capital.
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unwell, rather well, very well). For the current analysis, we
focus on the item well-unwell. Preliminary analysis of the
response-category frequencies showed that the lowest category
(i.e., very unwell) was only chosen in approximately 1% of all
occasions. Therefore, the two lower categories were collapsed
together into one unwell category. The following LCGT model
is based on the recoded item with three categories (conform
Crayen et al. (2012)). For the subsequent bias-adjusted three-
step tree procedure, three personality traits (neuroticism, extra-
version, and conscientiousness) are used to predict latent class
membership. These traits were assessed with the German NEO-
FFI (Borkenau & Ostendorf, 2008) before the momentary
assessment study started. The score of each trait is a mean of
12 items per dimension, ranging from 0 to 4. For this example,
we estimate the three-step model of every split with the ML
method (Vermunt, 2010), as this is the preferred option when the
external variables as used as covariates predicting classmember-
ship (Bakk & Vermunt, 2016).

Also, this data set is part of the LCTpackage and can be
loaded in the R-environment as shown below. The depen-
dent variable called “well” needs to be recoded as a factor to
be modeled as an ordinal variable. Note furthermore that
this data set is organized in long format and thus contains
multiple rows (one for each time point) per respondent.

data(“MoodRegulation”)
# Make the items factors, to be ordinal in the model
MoodRegulation[,“well”] = as.factor (MoodRegulation[,

“well”])

For the analysis, we used a LCG model based on an ordinal
logit model. The time variable was the time during the day,
meaning that we model the mood change during the day. There
was a substantial difference between a tree based on a second- or
a third-degree polynomial, which indicates that developments
are better described by cubic growth curves than quadratic
growth curves (see also the trajectory plots in Figure 5).
Because there was no substantial difference between a tree
based on a third- or a fourth-degree polynomial, a third-degree
polynomial was used. Based on the relative improvement of the
log-likelihood, BIC, and AIC (Table 2), it seems sensible to start
with three classes at the root of the tree to three. This model can
be estimated in R with the LCGT function presented below. The
argument dependent should be provided with the name of the
dependent variable (in this case well) and the argument inde-
pendent should be provided with the names of the time variables
that are part of the polynomial (in this case, a third-order poly-
nomial). The LCGT function also requires the argument caseid
specifying the identifier linking the multiple records of the same
respondent. Furthermore, the argument levelsDependent needs
to be provided with the number of response options of the
dependent variable, while the results are written to the newly
created folder Results_MoodRegulation_3 within the current
working directory. The last argument is used again to retain
the variables for the three-step analysis.

Results.MR3 = LCGT(Dataset = MoodRegulation,
LG = G,
maxClassSplit1 = 3,
dependent = “well”,
independent = c(“time_cont”,

“time_cont2”,
“time_cont3”),

caseid = “UserID”,
levelsDependent = 3,
resultsName = “_MoodRegulation_3”,
nKeepVariables = 3,
namesKeepVariables = c(“Neuroticism”,

“Extraversion”,
“Conscientiousness”))

The layout and size of the LCGT with three root classes
is presented in Figure 4 and its growth curve plots in Figure
5. The growth plots show that at the root of the tree, the
three different classes all improve their mood during
the day. They differ in their overall mood level, with class
3 having the lowest and class 2 having the highest overall
score. Moreover, class 1 seems to be more consistently
increasing than the other two classes. These three classes
can be split further. Class 1 splits into two classes with both
an average score around one, class 11 just above and class
12 just below. Moreover, the increase in class 11 is larger
than in class 12. The split of class 2 results in class 21
consisting of respondents with a very good mood in the
morning, a rapid decrease until mid-day, and a subsequent
increase. In general, the mean score of class 21 is high
relative to the other classes. Class 22 starts with an average
mean score and subsequently only increases. The splitting
of class 3 results in two classes with a below average mood.
Both classes increase, class 31 mainly in the beginning and
class 32 mainly at the end of the day.

After building the tree, the three-step procedure is used to
investigate the relation of the three personality traits (neu-
roticism, extraversion, and conscientiousness) with latent
class membership. It is investigated to what extent each of

TABLE 2
Log-Likelihood, Number of Parameters, BIC, AIC, and Relative

Improvement of the Log-Likelihood, BIC, and AIC of a Traditional LC
Growth Model with 1 to 9 Classes

log L P BIC AIC RIlogL RIBIC RIAIC

1 −7199 4 14424 14408
2 −6741 9 13538 13504
3 −6578 14 13244 13191 0.355 0.333 0.347
4 −6516 19 13149 13077 0.137 0.107 0.126
5 −6471 24 13091 13001 0.097 0.065 0.085
6 −6443 29 13064 12956 0.062 0.030 0.050
7 −6424 34 13058 12931 0.040 0.007 0.028
8 −6415 39 13069 12923 0.021 −0.013 0.008
9 −6404 44 13078 12914 0.024 −0.010 0.011
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the personality traits can predict latent class membership,
while controlling for the other traits. The R-code below
shows how the exploreTree function (the same as used in
the social capital example) can be used for the three-step
analysis. The arguments are basically the same as in the
previous example, as resTree refers to the R-object contain-
ing the results of the LCGT function, dirTreeResults indi-
cates to the directory with the results of the LCGT analysis,
and the results of the three-step analysis will be written to
the folder exploreTree_MoodRegulation in the current
working directory. The analysis argument indicates with
the term “covariates” that the external variable should be
used as predictors of class membership. The method argu-
ment indicates which estimation method to use. By default,

this is the BCH method, as was used in the previous exam-
ple, while in the current example the ML method is used.
The last three arguments provide again information on the
names, response options, and measurement levels of the
covariates at hand.

explTree.MR3 = exploreTree (resTree = Results.MR3,
LG = LG,
dirTreeResults =
paste0(getwd(), “/Results_MoodRegulation_3”),

ResultsFolder = “exploreTree_MoodRegulation”,
analysis = “covariates”,
method = “ml”,
sizeMlevels = rep(1, 3),
Covariates = c(“Neuroticism”,

“Extraversion”,
“Conscientiousness”),

mLevels = rep (“continuous”,))

The results of this three-step LCGT procedure are depicted in
two separate figures, as the root of the tree splits into three
classes and is more complex than the subsequent splits of the
tree. In Figure 6, the results of the tree-step procedure on the first
split are displayed for every variable separately. Each line indi-
cates the probability of belonging to a certain class given the
score of one of the personality traits. Note that the probability of
belonging to a certain class depends on the combined score of
the personality traits. Therefore, the displayed probability for
each trait is conditional on the average of the other two traits.

165
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FIGURE 4 Layout of a LCT with a root of three classes on mood
regulation.
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FIGURE 5 Profile plots of a LCGT on mood regulation with a root of three classes.
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The first graph of Figure 6 shows that a person with
a low score on neuroticism has a relatively high probability
of belonging to class 1. However, this probability decreases
when neuroticism increases and when a person has a score
on neuroticism above three this person is most likely to
belong to class 3. Hence, a very neurotic person is likely
to display a low overall mood level, while less neurotic
persons are most likely to display a mood level that is
neither very high nor very low. The second graph of
Figure 6 shows that a person with a low score on extraver-
sion has a high probability of belonging to class 1, but when
extraversion decreases, so does the probability of belonging
to class 1. Respondents with a score of 3.7 or higher on
extraversion most likely belong to class 2. Hence, a very
extravert person likely has a high overall positive mood

level, while less extravert persons are most likely to display
a positive mood level that is neither very high nor very low.
The last graph of Figure 6 shows that a person with a low
score on conscientiousness is most likely to belong to class
3. When a person’s score on conscientiousness is above 1.6,
this person is more likely to belong to class 1. This indicates
that persons with a low conscientiousness are most likely to
display a non-positive overall mood level, while persons
with a high conscientiousness are most likely to display an
average mood level.

Figure 7 shows the results of the tree-step analysis for
each of the three splits at the second level of the LCGT on
mood regulation. Each graph shows the results for one split
and every line indicates the probability of belonging to the
first and largest class of the split corresponding to the
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FIGURE 6 Results of the three-step procedure for the three personality traits on the root of the LCGT on mood regulation.
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personality trait in question (again conditional on an average
score of the other two personality traits). The probability of
belonging to the class 2 is not displayed, but when there are
only two classes, this is by definition the complement of the
probability of belonging to the class 1. Note that these
results are conditional on being in class 1, 2, or 3.

The first graph of Figure 7 shows that the probability of
belonging to class 11 increases mainly with a low score on
conscientiousness and/or a high score on extraversion. The
effect of neuroticism is less strong, but a higher score does
indicate a higher probability of belonging to class 11. Hence,
low conscientiousness, high extraversion, or high neuroticism
indicate a higher probability that respondents’ mood is in
general slightly more positive. The second graph of Figure 7
shows that class membership is not really influenced by
different scores of the personality traits, but only when extra-
version is very high. Hence, the three personality trait are not
good predictors for whether a respondent of class 2 has
a somewhat continuously rising mood, or a higher, but more
fluctuating mood. The third graph of Figure 7 shows that
a person with a low neuroticism, low conscientiousness,
and/or high extraversion is most likely to be a member of
class 31, while a person with a high neuroticism, high con-
scientiousness, or low extraversion is most likely to be
a member of class 32. Hence, a person with a high score on
neuroticism or conscientiousness or a low score on extraver-
sion is more likely to have a more negative overall mood than
a person with a low score on neuroticism or conscientiousness
or a high score on extraversion.

DISCUSSION

LC and LCG models are used by researchers to identify
(unobserved) subpopulations within their data. Because the
number of latent classes retrieved is often large, the inter-
pretation of the classes can become difficult. That is, it may
become difficult to distinguish meaningful and less mean-
ingful subgroupings found in the data set at hand. LCT
modeling and LCGT modeling have been developed to
deal with this problem. However, assessing and interpreting
the classes in LC and LCG models is usually just the first
part of an analysis. Typically, researchers are also interested
in how class membership is associated with other, external
variables. This is commonly done by performing a second
step in which respondents are assigned to the estimated
classes and a third step in which the relationships of interest
are studied using the assigned classes, where in the latter
step one may also take the classification errors into account
to prevent possible bias in the estimates. In this paper, we
have shown how to adapttransform the bias-adjusted three-
step LC procedure to be applicable also in the context of
LCT modeling and moreover introduced the LCTpackage.

The bias-adjusted three-step approach for LCT modeling
has been illustrated with two empirical examples, one in which

external variables are treated as distal outcomes of class mem-
bership and one in which external variables are used as pre-
dictors of class membership. The three-step approach, as
presented in this paper, yields results per split of the LCT. An
alternative could be to decide on the final classes of the LCT,
and subsequently apply the three-step procedure to these end
node classes simultaneously. This comes down to applying the
original three-step approach, but neglecting that a LCT is built
with sequential splits. Since these sequential splits are one of
the main benefits of LCTs that facilitate the interpretation of the
classes, the approach chosen here makes full use of the struc-
ture of a LCT. Another alteration could be to use modal assign-
ment in step two instead of proportional assignment, which
implies that one will have less classification errors. However,
we do not expect this will matter very much since in the third
step one takes into account the classification errors introduced
by the classification method used (Bakk, Oberski, & Vermunt,
2014).

The bias-adjusted three-step method has become quite
popular among applied researchers, but the basis of this
method, the LC and LCG models, are not easy at all for
applied researchers (Van De Schoot, Sijbrandij, Winter,
Depaoli,& Vermunt, 2016). The tree approach facilitates
the use of these models, which can lead to more interpre-
table and more meaningful classes. With the addition of the
bias-adjusted three-step method for LCTs and LCGTs, these
classes can now also be related to external variables.
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