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Summary. Statistics that are published by official agencies are often generated by using pop-
ulation registries, which are likely to contain classification errors and missing values. A method
that simultaneously handles classification errors and missing values is multiple imputation of
latent classes (MILC). We apply the MILC method to estimate the number of serious road
injuries per vehicle type in the Netherlands and to stratify the number of serious road injuries
per vehicle type into relevant subgroups by using data from two registries. For this specific
application, the MILC method is extended to handle the large number of missing values in
the stratification variable ‘region of accident’ and to include more stratification covariates. After
applying the extended MILC method, a multiply imputed data set is generated that can be used
to create statistical figures in a straightforward manner, and that incorporates uncertainty due
to classification errors and missing values in the estimate of the total variance.

Keywords: Classification error; Combined data set; Latent class analysis; Missing values;
Multiple imputation

1. Introduction

When statistics are published by government or other official agencies, population registries are
often utilized to generate these statistics. Here, caution is advised as population registries are
collected for administrative purposes so they may not align conceptually with the target of inter-
est. Furthermore, they are likely to contain process-delivered classification errors. Another issue
is that population registries are likely not to have registered every single unit in the population
of interest, so the population registry is not complete.

An official agency dealing with the issues of classification errors and missing units in registers
when generating statistics is the Institute for Road Safety Research (in Dutch: Stichting Weten-
schappelijk Onderzoek Verkeersveiligheid (SWOV)). An important statistic that the SWOV
publishes every year is the number of serious road injuries in the Netherlands. The number of
serious road injuries is important because it is used to define the road safety target (Reurings
and Stipdonk, 2011). To gain more insight into the total number of serious road injuries, it can
be further stratified by vehicle type, severity of injury and region (Reurings and Bos, 2012).
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When estimating the number of serious road injuries in the Netherlands, the SWOV uses in-
formation from police and hospital registries. These registries contain classification errors and
are incomplete. The SWOV estimates the number of units that are missing in both registries by
a method based on capture–recapture (Reurings and Stipdonk, 2011). However, a procedure
to correct for classification errors and missing values within the observed cases has not been
applied.

A method to deal simultaneously with classification errors and missing values within the
observed cases is the recently proposed multiple imputation of latent classes (MILC) method
(Boeschoten et al., 2017). The MILC method combines two existing statistical methods: mul-
tiple imputation and latent class analysis. To apply the MILC method, it is necessary to have
multiple population registries that can be linked at a unit level. All registries are required to
contain identifier variables for their cases which makes it possible to link the information for
a specific case in one registry to its information in the other registries. In such a combined
data set, variables are selected that measure the same construct but originate from the differ-
ent registries. They are used as indicators of a latent variable of which it can be said that it
contains the ‘true scores’ which are estimated by using a latent class model. Information from
the latent class model is then used to create multiple imputations of the ‘true variable’. The
multiply imputed data sets can be used to generate statistics of interest, graphs or frequency
tables. Uncertainty due to classification errors and missing cases is reflected in the differences
between the imputations and is incorporated in the estimate of the total variance (Rubin (1987),
page 76).

In this paper, the MILC method is applied to a linked data set containing a police and a
hospital registry, to estimate the number of serious road injuries per vehicle type. Next, two
variables measuring vehicle type are used as indicators of a latent variable measuring the ‘true’
vehicle type. Because of the way in which this data set is constructed, a special feature of this
data set is that, whenever one of these two indicators is missing, the other is observed. To stratify
the serious road injuries into relevant groups, covariates are included in the latent class model.

A statistic that is currently not straightforward to estimate is the number of serious road
injuries per vehicle type per region, because the variable ‘region of accident’ is observed in
the police registry only and contains many missing cases. To estimate this statistic, the MILC
method is extended in two ways. First, the MILC method is extended to estimate two latent
variables simultaneously (vehicle type and region of accident). For the latent variable vehicle
type, two imperfectly measured indicators are specified. For the latent variable region of acci-
dent, one indicator (containing missing values) is assumed to be a perfect representation of the
latent variable, next to a second, imperfectly measured, indicator. Second, the MILC method is
extended to incorporate more covariates for investigating relevant stratifications in general. In
the remainder of this paper, we refer to this as the ‘extended MILC method’.

In the next section, a more detailed description of the data to which the extended MILC
method is applied is given. In the third section, a detailed description is given of how the
extended MILC method is applied to the unit-linked police–hospital data sets. In addition, an
illustrative simulation study is performed. Here, the results that are obtained after applying the
extended MILC method are compared with results that are obtained after applying a more
traditional hierarchical assignment procedure. In the fourth section, the output from the latent
class model and the number of serious road injuries are discussed.

The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-
a-datasets
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2. Background

The extended MILC method is applied on a unit-linked data set containing a police and a
hospital registry. It is applied separately to data sets from 1994, 2009 and 2014 as the quality
of the registries has changed substantially over time. In this section, the process of constructing
these data sets is described and variables of interest are discussed in more detail.

For every year, units that are observed in the two sources are linked by using information on
personal and accident characteristics (Reurings and Stipdonk, 2009). Changes in registration
systems over time influenced the success rate of the linking procedure. In addition, a weighting
factor was determined for many of the individual cases (Bos et al., 2017).

2.1. Variables measuring ‘vehicle type’
As can be seen in Table 1, the variable vehicle type is observed in both the police and the hospital

Table 1. Cross-table between the variables measuring vehicle type originating from the police registry
(columns) and from the hospital registry (rows) for the years 1994, 2009 and 2013†

Year Category Missing value 1 2 3 4 5 6 7 9 Total

1994 Missing value — 561 245 318 122 42 137 90 14 1529
1 M–car 918 2596 11 72 12 22 25 2 1 3659
2 M–moped 702 29 1131 21 60 2 8 2 1 1956
3 M–bicycle 397 40 70 1111 2 1 53 25 4 1703
4 M–motorcycle 347 16 41 2 633 3 0 0 0 1042
5 M–other 450 408 106 104 35 50 116 8 2 1279
6 M–pedestrian 421 128 37 231 4 5 537 5 5 1373
7 N–bicycle 3625 28 41 221 3 3 11 296 3 4231
8 N–other 34 1 0 2 0 4 0 2 0 43
9 N–pedestrian 94 2 2 2 0 0 20 6 22 148

Total 6988 3809 1684 2084 871 132 907 436 52 16963

2009 Missing value — 209 111 126 38 20 62 26 6 598
1 M–car 779 969 8 29 8 17 3 0 0 1813
2 M–moped 1117 4 611 10 23 20 2 0 0 1787
3 M–bicycle 565 23 17 701 0 9 20 9 0 1344
4 M–motorcycle 668 9 74 2 367 6 0 0 0 1126
5 M–other 350 51 40 21 11 23 23 1 1 521
6 M–pedestrian 363 39 15 62 2 2 202 2 2 689
7 N–bicycle 6369 17 22 161 2 4 5 144 4 6728
8 N–other 99 0 2 4 0 0 0 4 1 110
9 N–pedestrian 136 0 1 4 0 0 6 8 16 171

Total 10446 1321 901 1120 451 101 323 194 30 14887

2013 Missing value — 59 29 33 15 36 11 5 1 189
1 M–car 877 566 3 1 4 65 3 0 0 1519
2 M–moped 2220 8 419 3 167 63 2 1 0 2883
3 M–bicycle 944 4 11 451 0 155 10 7 0 1582
4 M–motorcycle 69 0 10 0 21 3 0 0 0 103
5 M–other 556 18 8 1 19 27 4 0 0 633
6 M–pedestrian 392 2 3 30 0 64 123 0 1 615
7 N–bicycle 7230 12 7 41 1 29 2 44 1 7367
8 N–other 13 0 0 0 0 0 0 0 0 13
9 N–pedestrian 117 0 0 1 0 4 2 0 5 129

Total 12418 669 490 561 227 446 157 57 8 15033

†Note that there are no observations for the category ‘Non-motorized—other’ in the police registry.
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registry and has nine categories. The categories make a distinction between injuries caused by
motorized vehicles (with an ‘M’ in the category label) and non-motorized vehicles (with an ‘N’ in
the category label). For example, there is a category ‘M–bicycle’ and ‘N–bicycle’. The difference
between these categories is that, for the category M–bicycle, the injured person was on a bike
and experienced an accident with a motorized vehicle, whereas, for the category N–bicycle,
the injured person was on a bike and no motorized vehicle was involved in the accident. The
distinction between motorized and non-motorized is important because it provides information
on the cause of the injury. For example, when the number of injuries increases in the category
N–bicycle, it can be caused by unsafe bicycle lanes. If the number of injuries increases in the
category M–bicycle, it can be caused by a high speed limit on roads that are shared by cars and
bicycles.

As shown in Table 1, many injuries were classified differently by the police and the hospital. In
addition, it can also be seen that injuries in the ‘non-motorized’ (‘N’) categories are particularly
often missing in the police registry, as the police are generally not involved in, for example,
one-sided bicycle accidents. Also note that the category ‘N–other’ is not observed in the police
registry at all.

2.2. Variables describing relevant subgroups
Besides estimating the number of serious road injuries per vehicle type, stratifications in relevant
subgroups need to be made, such as age, gender, severity of injury or region of accident. To be

Drenthe

Groningen

Limburg

Noord−Brabant

Noord−Holland

Overijssel

Utrecht

Zeeland

Zuid−Holland

Flevoland

Friesland

Gelderland

Fig. 1. Map of the Netherlands
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able to make such stratifications, the variables need to be included as covariates in the latent
class model that is used to estimate ‘true vehicle type’.

The reason for estimating the latent class model is to create imputations for true vehicle
type for every observed case. To be able to stratify all cases, the covariates need to be observed
completely as well. For the variables ‘age’, ‘gender’ and ‘injury severity’ this is so. For the variable
region of accident, this is a problem, as this variable is observed in the police registry only.

To solve the issue of missing values in region of accident the traditional MILC method is
extended in such a way that missing values in region of accident are imputed simultaneously
whereas the latent variable true vehicle type is estimated. To create these imputations, infor-
mation is used from region of hospital, which is observed for the cases that contain missing
values for region of accident. The two variables have a strong, but not perfect, relationship. For
example, from the serious road injuries in 2013 of which the injured person was in a hospital in
Groningen, 53 were also registered to have taken place in Groningen, whereas 12 of those acci-
dents were registered to have taken place in Friesland (Table 2), which is a neighbouring region
of Groningen. There was also one person in a hospital in Groningen for whom the accident was
registered to be in Zuid-Holland, which is quite far away from Groningen (see Fig. 1 for the
regions of the Netherlands). A reason for this observation can be classification error in one of
the registries or incorrect linkage of a case in the police registry to a case in the hospital registry
(wrongfully assuming that the cases contained the same person). However, it is also possible
that this person indeed had a road accident in Zuid-Holland and was transfered to a hospital in
Groningen because it was closer to the person’s home or it could provide a form of specialized
healthcare.

3. Applying the extended multiple imputation of latent classes method

In this section, it is described step by step how the extended MILC method is applied to estimate
the number of serious road injuries per vehicle type in the Netherlands. The procedure of
applying the MILC method starts with the data set that is linked and processed as described in
the previous section.

3.1. Bootstrapping for parameter uncertainty
To account for parameter uncertainty when applying the extended MILC method, we use a
non-parametric bootstrap procedure. This involves creating M bootstrap samples by drawing
observations from the observed data set with replacement. Subsequently, for each bootstrap
sample, the latent class model of interest is estimated and the M imputations are created by using
the M sets of parameter values that are obtained. This is preferable over creating imputations
based on the maximum likelihood estimates that are obtained with the observed data, which
would imply ignoring the uncertainty regarding the estimated parameters of the latent class
model. Thus, by applying a non-parametric bootstrap procedure, parameter uncertainty is
incorporated in the final pooled standard error estimates of the statistics of interest.

3.2. Specifying the latent class model
The second step of the extended MILC method is specifying the latent class model. The latent
class model is estimated separately for each bootstrap sample so that the differences between
the parameters in the different latent class models reflect parameter uncertainty. A graphical
overview of the specified latent class model can be found in Fig. 2. First, the latent variable
measuring vehicle type, X1, is specified. The variables measuring vehicle type originating from
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Fig. 2. Graphical overview of the latent class model specified in Latent GOLD

the police registry, Y11, and from the hospital registry, Y21, are specified as indicators of this
latent variable. Note that this notation differs from traditional notation where X-variables are
predictors and Y -variables are responses, e.g. in regression analysis. As was discussed in Section
2, the vehicle type indicator variables contain nine categories in total: six representing motorized
vehicles and three representing non-motorized vehicles. However, specifying nine latent classes
would be problematic, since the number of observed non-motorized accidents in the police
registry is very low. Therefore, the non-motorized categories are grouped into one category,
resulting in the specification of a seven-class model. By saving the original scores of this indicator
variable in separate variables, these can be reassigned to the accidents which were assigned to
the latent class ‘accidents without motorized vehicle’ after multiple imputation. For this, the
proportions of the categories in the observed data are used.

Second, all covariates of interest need to be included in the latent class, because otherwise
point estimates describing the relationship between a latent variable and an excluded covariate
will be biased (Bolck et al., 2004). As discussed in Section 2, region of accident cannot be
included directly as a covariate as it contains a large proportion of missing values. Therefore,
multiple imputations are created for this variable to be able to stratify for vehicle type over the
different regions in the Netherlands. For this purpose, a second latent variable is specified to
measure region of accident, X2. The first indicator is region of accident measured in the police
registry, Y12. The second indicator variable is region of hospital, Y22. Since the first indicator
is actually the variable for which imputations are created, the relationship between the latent
variable and the indicator variable is restricted such that, if the indicator variable is observed,
this score is assigned directly to the latent variable as well. Only if this indicator variable contains
a missing value are the outcomes of this latent class model used.

Other covariates that are needed to make relevant stratifications can be included in the latent
class model directly, since they do not contain any missing values. The other covariates that are
included in the latent class model are

(a) age, 0–17, 18–44, 46–69 and 70 years or older .Q1/,
(b) gender, male or female .Q2/,
(c) external information, standard, falling, non-public road, no driving vehicle and other

.Q3/, and
(d) injury severity by using the abbreviated injury scale, which is an anatomical scoring system

where injuries are ranked on a scale from 1 to 6. As ‘1’ represents ‘minor injuries’ and
‘6’ represents ‘unsurvivable injuries’, these do not fit in the scope of this research, as
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this research pertains to ‘serious road injuries’. Therefore, the following scores on the
abbreviated injury scale are included: ‘2’ means ‘moderate’; ‘3’ means ‘serious’; ‘4’ means
‘severe’; ‘5’ means ‘critical’ .Q4/ (Wong, 2011).

To ensure that all parameters can be estimated for each bootstrap sample, only main effects
of the covariates are included in the latent class model.

The latent class model for response pattern P.Y =y|Q=q/ is

P.Y =y|Q=q/=
7∑

x1=1

12∑
x2=1

2∏
l1=1

P.Yl1,1 =yl1,1|X1 =x1/
2∏

l2=1
P.Yl2,2 =yl2,2|X2 =x2/

×P.X1 =x1, X2 =x2|Q=q/: .1/

In this latent class model, X1 represents the latent variable vehicle type with seven classes and
X2 represents the latent variable region of accident with 12 classes. Furthermore, Q represents
the covariate variables and Y represents the indicator variables, where l1 stands for the two
indicator variables corresponding to X1 and l2 for the two indicator variables corresponding to
X2 (which corresponds to what can be seen in Fig. 2). The latent class model is estimated by using
Latent GOLD 5.1 (Vermunt and Magidson, 2015), where the recommendations by Vermunt
et al. (2008) for large data sets have been followed to ensure convergence. See Appendix A for
the Latent GOLD syntax that was used.

By specifying the previously described latent class model, the first assumption made is that
the probability of obtaining a specific response pattern is a weighted average of all conditional
response probabilities, which is also known as the mixture assumption. Second, the assumption
is made that the observed indicators are independent of each other given a unit’s score on
the underlying true measure. In other words, this means that, if a classification error is made
in the police registry, we assume that this is independent of the probability of also having a
classification error in the hospital registry. For most cases this assumption can be considered
realistic, since the police registry and the hospital registry are generally filled out by two different
and independent people. In rare situations, dependences might arise. For example, in a ‘hit-
and-run’ situation, both registries will probably be filled out on the basis of information that is
provided by the victim and are therefore not independent. Third, the assumption is made that
the misclassification in the indicators is independent of the covariates. It is unlikely that scores
on covariates such as age or gender will influence this. However, for example for the variable
‘external information’, it can be that, if an accident takes place outside the public road, it is more
difficult for the police to reach this location and therefore the probability of an error can increase.
Fourth, the assumption is made that the covariate variables are free of error. This is, of course,
an unrealistic assumption, especially given the substantial amounts of classification error that
is found in the vehicle type indicator variables. At this point we unfortunately do not have any
information about the extent of possible classification errors in the other variables. However,
these errors are considered less problematic as long as they are random. Lastly, assumptions are
made with respect to the missingness mechanisms in the data. More specifically, the mechanism
that governs the probability that each data point has of being missing is considered missing
at random for the variables ‘vehicle type observed in the police registry’, Y11, and region of
accident, Y12, as the probability of being missing is larger for ‘non-motorized’ vehicles, which
is measured by the hospital registry, Y21. Formally, it can be stated that Y11 consists of a part
Y11,obs and Y11,mis and that a vector R11 can be defined:

R11 =
{

0 if Y11,obs, .2/

1 if Y11,mis: .3/
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As we assume the missingness mechanism to be missingness at random, the distribution of
missing values is related to Y21:

P.R11 =0|Y11,obs, Y11,mis, Y21/=P.R11 =0|Y11,obs, Y21/: .4/

If a value is missing in Y11, it is by definition missing in Y12 as well, as unit missingness is con-
sidered here and both variables originate from the same data set. Furthermore, the mechanism
that governs the probability of being missing is considered missing completely at random for
the variable ‘vehicle type observed in the hospital registry’, Y21. Here,

P.R21 =0|Y21,obs, Y21,mis, Y11,obs/=P.R21 =0/: .5/

The distribution of missing values in Y11 and Y12 is related to Y21, which in itself also contains
missing values. Generally this would mean that we are not dealing with a missingness at random
mechanism for Y11 and Y12. However, because of the special structure of our data set in which
Y11 and Y12 never contain missing values if Y21 contains missing values and vice versa, we are still
dealing with a missingness at random mechanism. Cases containing missing values on all above-
mentioned variables are by definition not included in the data set and are treated separately.

The latent class model gives different forms of relevant output. The first form of relevant
output is the entropy R2. Entropy can be formally defined as

EN.α/=−
N∑

j=1

X∑
x=1

αjx log.αjx/, .6/

where αjx is the probability that observation j is a member of class x, X the number of classes
and N is the number of units in the combined data set. Rescaled to values between 0 and 1,
entropy R2 is measured by

R2 =1− EN.α/

N log.X/
, .7/

where 1 means perfect prediction (Dias and Vermunt, 2008). Boeschoten et al. (2017) showed that
the performance of the MILC method is closely related to the entropy R2 of the corresponding
latent class model.

A second form of relevant output is the conditional response probabilities. They provide us
with the probability of obtaining a specific response on the indicator conditionally on belonging
to a certain latent class. These values can be used to investigate the relationships between the
indicator variables and the latent variables in detail. For example, they show us the probability
of having the score M–car on the indicator originating from the police registry given that the
model assigned a case to the latent class M–car, but also the probability of having the score M–
bicycle on the indicator given that the model assigned a case to the latent class M–car. Here, the
former should be much higher compared with the latter. By comparing the conditional response
probabilities with the cross-table between the variables measuring vehicle type originating from
the police registry and the hospital registry (as seen in Table 1), it can be investigated whether
the latent classes that are identified as certain categories of vehicle type are related to other
categories in the indicator variables in a comparable way with that in the observed data. In this
way, it is checked whether the latent class model reflects the main relationships that are found
in the observed data, which is an important indication of adequate imputations in the next step.

Third, the posterior membership probabilities represent the probability that a unit belongs
to a latent class given its combination of scores on the indicators and covariates that are used
in the latent class model. These values are used to create multiple imputations for the latent
variables, and the exact procedure for this is described in the next section.
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3.3. Creating multiple imputations
The posterior membership probabilities are used to create multiple imputations of the latent
variables containing the true scores. The posterior membership probabilities can be estimated
by applying the Bayes rule to the latent class model that is described in equation (1):

P.X1 =x1, X2 =x2|Y =y, Q=q/= P.X1 =x1, X2 =x2, Y =y|Q=q/

P.Y =y|Q=q/
, .8/

where

P.X1 =x1, X2 =x2, Y =y|Q=q/=
2∏

l1=1
P.Yl1,1 =yl1,1|X1 =x1/

2∏
l2=1

P.Yl2,2 =yl2,2|X2 =x2/

×P.X1 =x1, X2 =x2|Q=q/, .9/

and P.Y =y|Q=q/ is defined in equation (1).
Since two latent variables are specified in this model, the joint posterior membership probabil-

ities are obtained which represent the probability that a unit is a member of a specific latent class
in the latent variable vehicle type, and a member of a specific latent class in the latent variable
region of accident. Since vehicle type has seven classes and region of accident has 12 classes,
there are 84 posterior membership probabilities which add up to 1, and there is a different set
of posterior membership probabilities for each combination of scores on the indicators and
covariates. Parameter estimation was constrained in such a way that, if a case had an observed
score on region of accident in the police registry, this score is automatically assigned to the latent
variable as well. In those cases, there are only seven posterior membership probabilities with a
value larger than 0 (those representing the different classes for vehicle type in combination with
that specific region); all other posterior membership probabilities are exactly 0.

For each case in the original data set, the posterior membership probabilities corresponding to
its combination of scores on the indicators and covariates are used as a multinomial distribution
to draw a joint score on both latent variables. These joint scores are then used to create separate
imputations for vehicle type and region of accident.

By drawing multiple times from the posterior membership probabilities, multiple imputations
for both latent variables are created. The scores that are assigned to the latent variables can be
different for the different imputations. The differences between them reflect the uncertainty due
to the missing and conflicting values in the indicator variables. Boeschoten et al. (2017) con-
cluded that a low number of imputations, such as 5, is already sufficient for a correct estimation
of the standard errors. However, in that simulation study the number of classes was much lower
compared with the number of classes that is needed for this data set. To evaluate what the appro-
priate number of imputations would be, the number of imputations was gradually increased and
the fraction of missing information was compared between the differing numbers of imputations
(Graham et al., 2007), resulting in 20 imputations. This is in line with the recommendations by
Wang et al. (2005).

3.4. Pooling of the results
At this point, 20 imputations are created for vehicle type and region of accident for every unit
in the combined data set. The goal is to obtain estimates of interest by using these imputed
variables. This is done by obtaining the estimate of interest for every imputed variable, and
pooling these estimates by using the pooling rules that were defined by Rubin (Rubin (1987),
page 76). Although our context differs from the traditional statistical context for which the
pooling rules were originally developed, the rules are considered appropriate for the context of
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multiple imputation for measurement error (Reiter and Raghunathan, 2007). For this specific
research, the main estimates of interest are frequency tables.

The first step is to calculate a pooled frequency table. In other words, we take the average
over the imputations for every cell in the frequency table. This can be for the imputed variable
vehicle type, for the imputed variable region of accident or for a cross-table between (one of)
these variables and covariate(s). A pooled cell count is obtained by

θ̂j = 1
m

m∑
i=1

θ̂ij, .10/

where θ refers to a cell count, j refers to a specific cell in the frequency table, i refers to one
imputation and m refers to the total number of imputations.

Next, an estimate of the uncertainty around these frequencies is of interest. Therefore, the
pooled frequencies need to be transformed into pooled proportions:

p̂j =
.1=m/

m∑
i=1

θ̂ij

s∑
j=1

.1=m/
m∑

i=1
θ̂ij

, .11/

where s refers to the number of cells in the frequency table.
Since we work with a multiply imputed data set, an estimate of the variance is obtained that

is a combination of sampling uncertainty and uncertainty due to missing and conflicting values
in the data set. This is the total variance that consists of a ‘within-imputation’ and ‘between-
imputation’ component:

VARtotalj =VARwithinj
+VARbetweenj

+ VARbetweenj

m
: .12/

VARwithinj
is the within-imputation variance of p̂j calculated by

VARwithinj
= 1

m

m∑
i=1

VARwithinij
, .13/

where VARwithinij
is estimated as the variance of p̂ij:

p̂ij.1− p̂ij/

N
, .14/

where N is the total size of the observed data set and p̂ij is estimated as

p̂ij = θ̂ij
s∑

j=1
θ̂ij

: .15/

VARbetweenj
is calculated by

VARbetweenj
= 1

m−1

m∑
i=1

.p̂ij − p̂j/.p̂ij − p̂j/′: .16/

When VARtotalj is estimated, it can be used to estimate the standard error of p̂j:

SE.p̂j/=√
VARtotalj : .17/

From here, the confidence interval around p̂j can be estimated by
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Fig. 3. Graphical overview of the latent class model used for the simulation study

p̂j ±Z0:975 SE.Pj/, .18/

where 0.975 corresponds to the .1−α=2/-quantile of a standard normal distribution forα=0:05.
The values that are obtained here can simply be multiplied by N to obtain the 95% confidence in-
tervals around the observed frequencies θ̂j. Note that a standard normal distribution is assumed
so problems can be encountered when dealing with very small proportions.

3.5. Performance of the multiple imputation of latent classes method
Boeschoten et al. (2017) introduced the MILC method and evaluated the method under a range
of conditions in terms of data quality. In addition, Boeschoten et al. (2018b) extended the method
for situations with longitudinal data and Boeschoten et al. (2018a) extended the method in such
a way that covariates can be included at later time points. All research performed on the MILC
method so far has shown a strong relationship between the performance of the method and the
entropy R2-value of the latent class model. To investigate how the MILC method performs in
comparison with the hierarchical assignment procedure that is traditionally used by the SWOV
(Bos et al., 2017), an illustrative simulation study is performed using a latent class model as
shown in Fig. 3.

In the theoretical population that is used for this simulation study, latent variable X has two
categories with probabilities 0.6 for X = 1 and 0.4 for X = 2. The probability distribution of
P.X, Q1/ is

X = 1 0.48

Q1 = 1 Q1 = 2

0.32

0.12

0.08X = 2

(19)

and the probability distribution of P.X, Q2/ is

Q2 = 1 Q2 = 2 Q2 = 3

X = 1 0.36 0.18 0.06

X = 2 0.24 0.12 0.04

(20)

From this population structure, 1000 samples are drawn. In each sample, indicator Y1 of X is
created with 5% misclassification and a missingness at random mechanism, where the probability
of being missing is related to a person’s score on the Q2-covariate:

Q2 =1, P.Y1 =NA/=0:20; .21/

Q2 =2, P.Y1 =NA/=0:15; .22/

Q2 =3, P.Y1 =NA/=0:10: .23/
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Table 3. Results of a simulation study where the hierarchical assignment procedure is compared with the
MILC method, which is performed with and without a non-parametric bootstrap†

Bias Coverage Confidence interval se/sd RMSE
width

Hierarchical assignment
Wass =1 −0:0134 0.2180 0.0193 0.9981 0.0143
Wass =2 0.0134 0.2180 0.0193 0.9981 0.0143
Wass =1×Q1 =1 −0:0106 0.4220 0.0196 0.9894 0.0117
Wass =2×Q1 =1 −0:0028 0.8380 0.0126 0.9964 0.0043
Wass =1×Q1 =2 0.0107 0.3590 0.0184 0.9963 0.0117
Wass =2×Q1 =2 0.0027 0.8380 0.0108 1.0191 0.0038
Wass =1×Q2 =1 0.0012 0.3560 0.0134 0.9433 0.0052
Wass =2×Q2 =1 −0:1676 0.6390 0.0107 1.0053 0.1677
Wass =1×Q2 =2 −0:2910 0.7770 0.0066 0.9898 0.2910
Wass =2×Q2 =2 −0:1115 0.3050 0.0121 0.9702 0.1116
Wass =1×Q2 =3 −0:2261 0.5920 0.0092 1.0201 0.2261
Wass =2×Q2 =3 −0:3022 0.7990 0.0056 1.0552 0.3022

MILC method, bootstrap excluded
W =1 −0:0317 0.1300 0.0216 0.1425 0.042
W =2 0.0317 0.1300 0.0216 0.1425 0.042
W =1×Q1 =1 −0:0252 0.1660 0.0213 0.1751 0.0335
W =2×Q1 =1 −0:0066 0.4410 0.0132 0.3912 0.0093
W =1×Q1 =2 0.0253 0.1660 0.0205 0.1683 0.0336
W =2×Q1 =2 0.0064 0.3980 0.0118 0.3628 0.0089
W =1×Q2 =1 −0:0191 0.2270 0.0201 0.2151 0.0257
W =2×Q2 =1 −0:0095 0.3470 0.0157 0.3278 0.0131
W =1×Q2 =2 −0:0031 0.5820 0.0096 0.5341 0.0048
W =2×Q2 =2 0.0191 0.1980 0.0188 0.2029 0.0255
W =1×Q2 =3 0.0095 0.3150 0.0142 0.2980 0.0131
W =2×Q2 =3 0.0031 0.5510 0.0085 0.4962 0.0046

MILC method including bootstrap
W =1 −0:0304 0.8880 0.1790 1.5797 0.0420
W =2 0.0304 0.8880 0.1790 1.5797 0.0420
W =1×Q1 =1 −0:0241 0.8950 0.1439 1.5811 0.0335
W =2×Q1 =1 −0:0063 0.9050 0.0383 1.4324 0.0093
W =1×Q1 =2 0.0243 0.8940 0.1437 1.5744 0.0336
W =2×Q1 =2 0.0062 0.9160 0.0378 1.4887 0.0089
W =1×Q2 =1 −0:0183 0.8880 0.1087 1.5375 0.0257
W =2×Q2 =1 −0:0091 0.9020 0.0560 1.5192 0.0131
W =1×Q2 =2 −0:0030 0.9290 0.0205 1.4125 0.0048
W =2×Q2 =2 0.0183 0.8910 0.1085 1.5562 0.0255
W =1×Q2 =3 0.0092 0.9050 0.0555 1.5085 0.0131
W =2×Q2 =3 0.0030 0.9280 0.0200 1.4670 0.0046

†Results are shown for the imputed mixture variable, denoted by W , and of the relationship of W with covariates
Q1 and Q2. Results are given in terms of bias, coverage of the 95% confidence interval, confidence interval width,
the average standard error se of the estimate divided by the standard deviation sd over the estimates and the
root-mean-squared error RMSE.

A second indicator Y2 of X is created with 15% misclassification and 5% missing cases which are
missing completely at random. The latent class models had an entropy R2-value of approximately
0.75.

The MILC method as described in Sections 3.1, 3.2 and 3.3 is applied to the sample data sets,
where five bootstrap samples are drawn and subsequently five imputations of X are created. As
an illustration, the MILC method is also applied without the bootstrap procedure, with one
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Table 4. Entropy R2-values for the latent variables
vehicle type and region of accident for the years
1994, 2009 and 2013

Year Vehicle type Region of
accident

1994 0.8219 0.9050
2009 0.7444 0.8267
2013 0.8031 0.8077

latent class model directly estimated on the observed data and five imputations drawn from
one single set of posterior membership probabilities. Furthermore, the hierarchical assignment
procedure as used by the SWOV is also applied. At the SWOV, the score that is observed in
the police registry, Y1, is assigned if it is observed. Otherwise, the score that is observed in the
hospital registry, Y2, is assigned.

The imputations are evaluated in terms of bias, coverage of the 95% confidence interval, con-
fidence interval width, average standard error of the estimates divided by the standard deviation
over the estimates and the root-mean-squared error RMSE. Furthermore, the proportion of
correctly classified cases is evaluated for imputation and hierarchical assignment.

To evaluate the methods, the marginals of the imputed latent variable W are compared with
the hierarchically assigned variable Wass. In addition the estimated relationships of the latent
variable with covariates, W ×Q1, Wass ×Q1, W ×Q2 and Wass ×Q2, are examined.

In Table 3 the results of the simulation study comparing the MILC method (with and without
the bootstrap) and the hierarchical assignment procedure are shown. We first discuss the per-
formance of the MILC method in comparison with the hierarchical assignment method. The
results that were obtained with hierarchical assignment especially show substantial amounts of
bias for Wass ×Q2 compared with both implementations of the MILC method. For the unbi-
ased parameters that were obtained when applying hierarchical assignment, RMSE is in general
lower and more stable compared with the RMSE of the MILC method. The fact that, with hi-
erarchical assignment, bias is especially found in the results relating to Q2 can be explained by
the fact that the missingness mechanism of Y1 is defined by Q2.

A comparison of the MILC method with and without the bootstrap shows clearly that stan-
dard errors are very much underestimated when no bootstraps are performed, i.e. coverage rates
are too low and the ratios between the average standard error and the standard deviation across
replications are far below 1. In contrast, these ratios are larger than 1 when the bootstrap is
included in the MILC method, meaning that the standard errors are somewhat overestimated.
The large difference between the two approaches is caused by the fact that the statistics that
we are interested in are tables containing the latent variable X. By not applying the bootstrap,
one seriously underestimates the uncertainty about the latent class proportions. The fact that
the bootstrap procedure yields slightly too large standard errors can be considered to be less
problematic than having (much) too small standard errors.

The percentage of incorrectly classified cases is 4.5% for X = 1 and 10.1% for X = 2 when
hierarchical assignment is applied (these results are not shown in Table 3). When the MILC
method (including the bootstrap) is applied, the percentage of incorrectly classified cases is
8:6% for X= 1 and 20:5% for X= 2. With hierarchical assignment, the score on one indicator
variable is used per case, and the misclassification corresponds to the misclassification that is
specified in these variables. When the MILC method is applied, two indicator variables are used
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Table 5. Class-specific response probabilities for latent variable vehicle type for
the years 1994, 2009 and 2013

Vehicle type Results for 1994 Results for 2009 Results for 2013

Hospital Police Hospital Police Hospital Police

1 M–car 0.8226 0.9782 0.8004 0.9742 0.9590 0.8973
2 M–moped 0.8458 0.9781 0.7194 0.9786 0.9693 0.8848
3 M–bicycle 0.7393 0.9170 0.7635 0.9620 0.9263 0.7376
4 M–motorcycle 0.8353 0.9686 0.8876 0.9129 0.0774 0.7577
5 M–other 0.6890 0.0578 0.5276 0.2629 0.0000 0.4243
6 M–pedestrian 0.7132 0.8213 0.8758 0.8104 0.5358 0.6412
7 N–all 0.9920 0.6162 0.9916 0.5273 0.9931 0.3897

Table 6. Class-specific response probabilities for latent variable region of accident for the years 1994, 2009
and 2013

Region of accident Results for 1994 Results for 2009 Results for 2013

Region of Region of Region of Region of Region of Region of
hospital accident hospital accident hospital accident

1 Groningen 0.9351 1 0.8798 1 0.9167 1
2 Friesland 0.9063 1 0.8740 1 0.8433 1
3 Drenthe 0.7338 1 0.5897 1 0.6556 1
4 Overijssel 0.9103 1 0.9290 1 0.9675 1
5 Gelderland 0.7551 1 0.7961 1 0.8119 1
6 Utrecht 0.8292 1 0.8259 1 0.8149 1
7 Noord-Holland 0.9378 1 0.9267 1 0.9673 1
8 Zuid-Holland 0.9240 1 0.9248 1 0.9094 1
9 Zeeland 0.8506 1 0.8248 1 0.7941 1

10 Noord-Brabant 0.9084 1 0.9055 1 0.8884 1
11 Limburg 0.9397 1 0.9466 1 0.8725 1
12 Flevoland 0.7771 1 0.5374 1 0.4694 1

to generate the variables that are under evaluation here. When assigning scores, maintaining
the relationships with other variables is apparently considered more important than correctly
classifying individual cases. Including interaction terms in the latent class model may possibly
lead to more accurate results for the MILC method. Whether this really is so remains to be
examined, though.

4. Results

First, results in terms of relevant model output will be discussed. Second, substantial results
that were obtained after creating multiple imputations for the latent variables are given.

4.1. Latent class model output
The first relevant model output from the latent class models comes in terms of the entropy R2.
A separate entropy R2-value is estimated for the two latent variables and for each year. The
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results are shown in Table 4. These results are obtained after applying a latent class model on
the original data set. Here it can be seen that the entropy R2-value in 2013 increased compared
with 2009 for vehicle type. Pankowska et al. (2017) showed in their simulation studies that, when
a latent class model is used to correct for misclassification in combined data sets, the model also
treats inconsistencies due to incorrect linkage as misclassification and thereby corrects for it in
a similar way. This implies that the increase in terms of entropy R2 in 2013 in comparison with
2009 for the latent variable vehicle type makes sense as the police improved their registration
system in 2013. This improvement caused an increase in the number of correctly linked cases and
therefore also improved the entropy R2. The higher entropy R2-values that were found for 1994
are likely to be caused by the fact that registration was performed more carefully and thoroughly
by the police at that period, which also resulted in the lower amount of missing values, as can
be seen in Table 1.

In Tables 5 and 6 the probability of correct classification for the indicators of both latent
variables are shown, for the three different time points, obtained after applying a latent class
model to the original data set. Class-specific response probabilities indicate the probability of
having a score on the indicator variable that is equal to the latent class. A high probability of
correct classification indicates that, when a specific case belongs to a certain latent class, the
probability is large that this same score was obtained on an indicator variable. For example, the
probability of correct classification of the 1994 indicator variable ‘hospital’ for the latent class
‘vehicle type≡M–car’ is 0.8226. This means that the probability of having scored M–car on the
indicator variable ‘vehicle type measured by hospital’ is 0.8226 given that this case truly belongs
to the latent class M–car.

When looking at the probabilities of correct classification for a specific latent class, the two
probabilities corresponding to the two indicators are often not equal. This may be due to
differences in the quality of the data. A low probability of correct classification can be caused by
the fact that, for this specific latent class, this category is observed many times in one indicator
(here this is often the indicator hospital), whereas, in the other indicator (‘police’), these cases
are often missing. This can clearly be seen for the latent class N–all. Conditionally on truly
belonging in this latent class, the probability of obtaining this score on the hospital indicator
was 0.9920 in 1994. In other words, almost everyone who is assigned to this class by the model
obtained this score in the hospital registry as well. However, the probability of obtaining this
score by the police is only 0.6162. A substantial part of the cases belonging to this latent class
obtained another score or no score at all by the police.

In general, it can be seen that the probabilities of correct classification for the police indicator in
1994 and 2009 are larger compared with the hospital indicator for all motorized classes except the
class M–other and the ‘all non-motorized’ category. However, in 2013 all probabilities of correct
classification are higher for the hospital indicator compared with the police indicator. This result
might be related to the improvement in the linking in 2013. An exception is the category M–
motorcycle, which is the only category with a probability of correct classification below 0:90
in the hospital registry. This is caused by the fact that some of the hospitals used a different
registration system, that categorizes both motorcycles and mopeds in the motorcycle category.

When investigating the probabilities of correct classification for the latent variable region of
accident, it can be seen that they are all exactly 1 for the indicator variable region of accident.
Conditionally on being in a specific class in the latent variable region of accident, the probability
of obtaining the same score on the indicator variable region of accident is 1. This restriction was
imposed on the latent class model. The probabilities of correct classification of the indicator
variable region of hospital now show us the probability that, conditionally on an accident truly
happening in a specific region, what is the probability of also going to a hospital in that same
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region? These probabilities are generally quite high and stable over the different time points.
The regions Drenthe and Flevoland stand out because the probability of going to a hospital in
these regions when having a serious road accident in this region is somewhat lower compared
with other regions.

4.2. Pooled results output
In Fig. 4, the number of serious road injuries per vehicle type is shown for the three years that
were investigated. For every year, the results that were obtained after applying the hierarchical
assignment procedure are compared with results obtained when the extended MILC method
is applied. Here, it can be seen that in general the frequencies that are obtained after applying
the extended MILC method are quite similar compared with the results that are obtained after
applying the hierarchical assignment procedure. When the extended MILC method is applied,
the number of cases that are assigned to the category M–other is larger whereas the number of
cases that were assigned to the category N–bicycle is smaller compared with the hierarchical
assignment procedure, particularly in 2013. This corresponds to a large amount of missing
cases for N–bicycle and a substantial amount of cases differently categorized by the police and
hospital. Furthermore, in 2013 the number of cases categorized as M–other by the hospital
increased, whereas this category was often classified differently by the police (see Table 1). At
last, it can be seen that the widths of the 95% confidence intervals are substantially larger
for all categories when the extended MILC method is applied. This directly results from the
misclassification between the hospital and the police registry. Because of this misclassification,
the latent class model is less certain about which value to assign to a specific case, resulting
in differences between imputations and a larger estimate of the total variance. Note also that
hierarchical assignment assumes that values that are observed in the police register are error
free. Since this assumption is unlikely to be correct, uncertainty in the hierarchical assignment
procedure is underestimated.

In Fig. 5, the number of serious road injuries per region is shown for the three years that
were investigated. For every year, the results that were obtained after applying the hierarchical
assignment procedure are compared with results obtained when the extended MILC method was
applied, which are very similar. The 95% confidence intervals are larger when the extended MILC
method was applied compared with the hierarchical assignment procedure, but the difference
is not as substantial as for vehicle type in Fig. 4.

5. Discussion

In this paper, an extension of the MILC method was developed and applied to estimate the
number of serious road injuries per vehicle type and to stratify this number in relevant subgroups.
Information on serious road injuries was found in registries from both police and hospitals,
which are both incomplete and contain misclassification. These variables were used as indicators
of a latent variable of which it can be said that it contains the true scores. Posterior membership
probabilities that were obtained from this latent class model were then used to create multiple
imputations of these true scores. Simultaneously, multiple imputations were created for the
missing values in region of accident by using this variable as a perfectly measured indicator of
the latent variable region of accident and supplementing it by specifying region of hospital as
an imperfectly measured indicator.

Multiple imputations were created for vehicle type and for region of accident. All variables are
now fully imputed for every case in the data set. Descriptive statistics of these variables, or esti-
mates of relationships with other variables, can now be investigated in a straightforward manner.
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The extended MILC method was applied on data sets for the years 1994, 2009 and 2013.
The quality of the data for these years was very different, which can be seen in the number of
observations per registry per year and which is reflected in the entropy R2 of the corresponding
latent class model. In general the quality of the data was sufficient for applying the MILC
method. The results of the extended MILC method were compared with the results that were
obtained when the hierarchical assignment procedure was applied (traditionally used to generate
these statistics). A clear difference was that the extended MILC method generated wider 95%
confidence interval widths. Based on the results that were obtained from the simulation study
performed in Section 3.5, it can be concluded that these wider confidence interval widths were
indeed necessary to obtain nominal coverage rates.

Some issues are worth reflecting on a little further. First, it is important to note that our
results heavily depend on the model assumptions that are made. In particular, the assumption is
made that the classification errors are independent of covariates. Furthermore, the assumption is
made that the covariate variables are free of error. Violating this assumption does not necessarily
have to be an issue if these errors are random. However, there is currently no literature on this
topic, so more research in this specific area is needed to be able to adapt the model. A more
crucial assumption is that the missingness is at random. Although from a theoretical perspective
this assumption is likely to hold, it could, however, lead to substantial bias in cases where this
assumption is violated.

A second issue is how the extended MILC method dealt with non-motorized vehicles. This
was an ad hoc procedure to handle an issue that could not be handled by the latent class model.
This ad hoc procedure turned out to be useful. It can be investigated whether a comparable
procedure could be applied to handle a moped or motorcycle issue in the 2013 data set and
whether there are other issues that can be solved like this.

This particular data set contained several issues, of which a substantial part has been inves-
tigated by means of a simulation study. The results of this simulation study made clear that the
extended MILC method could handle the missing values in the indicator variables and that the
non-parametric bootstrap was required to obtain nominal coverage rates. It is, however, not
investigated whether and how large numbers of categories influence the results. Therefore, the
number of imputations was increased and evaluated by using methods to evaluate the number
of imputations for missing values. A more thorough investigation could provide insight into
whether these methods are suitable to evaluate the number of imputations that are needed when
the MILC method is applied, and how many imputations are needed to evaluate data sets with
larger numbers of categories.

Furthermore, in the initial model that was proposed by Boeschoten et al. (2017), bootstrap
samples were taken of the original data to incorporate parameter uncertainty in the estimate of
the total variance. This appeared to be problematic for larger models with many interactions than
those used in our application, because not all parameters can be estimated for every bootstrap
sample. Alternatives to incorporate parameter uncertainty can be Bayesian Markov chain Monte
Carlo sampling or a parametric bootstrap. However, it should also be investigated whether such
a step is still necessary for larger sample sizes as parameter uncertainty can become minimal
in such cases. As the simulation study showed that it was necessary to incorporate parameter
uncertainty when creating imputations for this specific case, a model with only main effects was
used to enable estimation of all parameters.

Lastly, it is important to note that missing values in the combined data set and classification
errors in the observed data are not the only issues when estimating the total number of serious
road injuries per vehicle type. There are also serious road injuries that are neither observed by
the hospital nor by the police. Weighting and capture–recapture methods are typically used to
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obtain an estimate of the total number of serious road injuries; approaches which can easily
be combined with the MILC method by applying the methods on the imputations separately.
A variance estimate would then include uncertainty about the total number of injuries which
is typically estimated by making use of bootstrapping. This can also be applied separately to
every imputation before pooling of the results is applied (Gerritse et al., 2016).

By creating multiple imputations using a latent class model, multiply imputed versions of
variables that contained missing values and/or classification errors are created. These can be
used to provide frequencies easily, to divide these frequencies further into relevant subgroups
or to create statistical figures. This application showed that the initial MILC method can be
extended to handle problems that are data set specific. Furthermore, this application highlighted
various new problems that one may need to deal with when applying the MILC approach. In
future research, these will be investigated more thoroughly to exploit the potential of the MILC
method fully for dealing with classification error problems.
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Appendix A: Latent GOLD syntax

options
maxthreads=all;

algorithm
tolerance=1e-008 emtolerance=0.01 emiterations=20000 nriterations=0;

startvalues
seed=0 sets=200 tolerance=1e-005 iterations=500;

bayes
categorical=1 variances=1 latent=1 poisson=1;

missing
includeall;

output
profile;

outfile
’posteriors1.dat’ classification

keep
LRM2, BRON2, wfactor;

variables
caseweight b1;
dependent LRM nominal 7, BRON nominal 7, prov hosp nominal 12, prov acc

nominal 12;
independent ernst nominal, external nominal, gender nominal, age

nominal;
latent X nominal 7, Xacc nominal 12;

equations
LRM <- 1 | X;
BRON <- 1 | X;
prov acc <- (a˜wei)Xacc;
prov hosp <- 1 | Xacc;
X <- 1 | ernst + external + gender + age;
Xacc <- 1 | ernst + external + gender + age;
X <-> Xacc;
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a={1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1};

To ensure convergence and to minimize the probability of obtaining local maxima, the number of random
start sets is set to 200 with 500 iterations each. The use of Newton–Raphson iterations is suppressed and
the number of expectation–maximization iterations is increased to 20000, following the suggestions by
Vermunt et al. (2008).

To reduce computational time, the storing of parameters and the computation of standard errors is
suppressed, since conditional and posterior response probabilities are of main interest.

To ensure that in the latent variable region of accident (Xacc in the Latent GOLD syntax) the value
that is observed in the indicator variable region of accident (prov acc in the Latent GOLD syntax) is
assigned in cases where this variable is observed, the relationship between Xacc and prov acc is restricted
by using the matrix denoted by ‘a’ in the Latent GOLD syntax.
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