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Abstract

This paper studies independence of higher claims and independence of irrelevant
claims on the domain of bargaining problems with claims. Independence of higher
claims requires that the payoff of an agent does not depend on the higher claim of
another agent. Independence of irrelevant claims states that the payoffs should not
change when the claims decrease but remain higher than the payoffs. Interestingly, in
conjunction with standard axioms from bargaining theory, these properties characterize
a new constrained Nash solution, a constrained Kalai-Smorodinsky solution, and a
constrained Kalai solution.

Keywords: bargaining with claims, independence of higher claims, independence of
irrelevant claims, constrained Nash solution, constrained Kalai-Smorodinsky solution,
constrained Kalai solution
JEL classification: C78, D74

1 Introduction

A bargaining problem with multiple agents (cf. Nash (1950)) is described by a feasible set
and a reference point inside this set. The feasible set consists of all payoff allocations in the
utility space which can be jointly generated by the agents. The main question is which of
these allocations will be selected by the agents or should be recommended by an arbitrator.
The reference point, usually referred to as the disagreement point, serves as a lower bound,
with the interpretation that it is implemented when the agents do not reach agreement.

Bargaining problems are typically studied from two perspectives. The positive or strategic
approach studies solutions on the basis of their implementability, i.e. whether they result from
a natural negotiation procedure. The normative or axiomatic approach studies solutions on
the basis of their properties, i.e. whether they respect appealing fairness principles. Central
solutions in bargaining theory are the Nash (1950) solution, which maximizes the product
of the utility excesses with respect to the reference point, the Kalai and Smorodinsky (1975)
solution, which maintains the ratios of the maximally possible utility excesses, and the Kalai
(1977) solution, which equalizes the utility excesses.

∗Faculty of Business Administration, Basque Country University, Bilbao, Spain. The research reported in
this paper has been partially supported by the Ministerio de Economia y Competitividad (ECO2015-66803-
P), and by UPV/EHU (GIU17/0151).
†International Laboratory of Game Theory and Decision Making, National Research University Higher

School of Economics, St. Petersburg, Russian Federation. Support from the Basic Research Program of the
National Research University Higher School of Economics is gratefully acknowledged.
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More recently, Mariotti and Villar (2005) introduced rationing problems in which the
agents share a loss instead of a surplus, described by a feasible set and a reference point
outside this set. The reference point expresses rights, needs, demands, or aspirations, and
serves as an upper bound for payoff allocations.

Herrero and Villar (2010) and Sudhölter and Zarzuelo (2013) merged bargaining problems
and rationing problems into NTU sharing problems, where the reference point may be inside
or outside the feasible set. The reference point reflects the entitlements of the agents which
can be either satisfied or not.

Another line of research enriched original bargaining problems with a second exogenous
reference point. Gupta and Livne (1988) analyzed problems where both reference points
are inside the feasible set and serve as lower bounds. The first reference point has the
classic conflict interpretation, while the second reference point emerges from pre-negotiation
activities.

Chun and Thomson (1992) introduced bargaining problems with claims where one refer-
ence point is inside the feasible set and the other reference point is outside the feasible set.
The inside reference point is a lower bound from which the utility excesses are measured.
The outside reference point is an upper bound representing earlier commitments which can-
not all be honored anymore. The main solution studied in this context is the proportional
solution, which prescribes the efficient payoff allocation on the line connecting both reference
points. Chun and Thomson (1992) and Lombardi and Yoshihara (2010) derived several ax-
iomatic characterizations on domains with convex and nonconvex feasible sets, respectively.
An alternative solution was studied by Bossert (1993) and Marco-Gil (1994).

This paper takes a further axiomatic approach to bargaining problems with claims. For
convenience, we assume that the inside reference point equals the origin and we restrict to
nonnegative feasible set allocations. In other words, we implicitly incorporate translation
invariance and independence of individually irrational allocations into the definition of so-
lutions. In this way, bargaining problems with claims can also be interpreted as bankruptcy
problems with nontransferable utility (cf. Orshan, Valenciano, and Zarzuelo (2003)). This
model generalizes classic bankruptcy problems as introduced by O’Neill (1982) by allowing
agents to have nonlinear utility functions over their monetary payoffs. The proportional
solution of Chun and Thomson (1992) and Lombardi and Yoshihara (2010) corresponds to
a generalized proportional rule for bankruptcy problems. The solution studied by Bossert
(1993) and Marco-Gil (1994) corresponds to a generalized constrained equal losses rule for
bankruptcy problems.

On the one hand, we focus on the property independence of higher claims, originally
appearing in the cost sharing literature (cf. Moulin and Shenker (1992)). On the domain of
bargaining problems with claims, this property requires that for each pair of agents being
symmetric within the feasible set, the payoff allocated to the agent with the lower claim
does not depend on the higher claim of the other agent. This protects the payoffs of smaller
claimants from being influenced by the big players. The proportional solution does not
satisfy independence of higher claims. Interestingly, we show that, in conjunction with the
standard axioms from bargaining theory, independence of higher claims characterizes a new
constrained Nash solution, a constrained Kalai-Smorodinksy solution, and a constrained
Kalai solution, obtained by explicitly bounding the original bargaining solutions by the
claims. These three constrained bargaining solutions all correspond to a generalized con-
strained equal awards rule for bankruptcy problems.
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On the other hand, we focus on the property independence of irrelevant claims, which
says that the prescribed allocation should not change when the claims diminish but still
dominate the allocation. For classic bankruptcy problems, this property was studied by
Kibris (2012) and Stovall (2014). The proportional rule does not satisfy independence of
irrelevant claims. Interestingly, we show that, in conjunction with standard axioms from
bargaining theory, independence of irrelevant claims also characterizes the constrained Nash
solution and the constrained Kalai solution.

This paper is organized in the following way. Section 2 provides preliminary notions
for bargaining problems with claims. Section 3 formally introduces independence of higher
claims and independence of irrelevant claims. In conjunction with standard axioms from
bargaining theory, Section 4, Section 5, and Section 6 characterize the constrained Nash
solution, the constrained Kalai-Smorodinsky solution, and the constrained Kalai solution,
respectively. Section 7 formulates some concluding remarks and some suggestions for future
research.

2 Bargaining Problems with Claims

Let N be a nonempty and finite set of agents. For all x, y ∈ RN
+ , x < y denotes xi < yi for

all i ∈ N , and x ≤ y denotes xi ≤ yi for all i ∈ N . For all θ ∈ RN
++, x ∈ RN

+ , and A ⊆ RN
+ ,

θx ∈ RN
+ denotes θx = (θixi)i∈N , and θA ⊆ RN

+ denotes θA = {θx ∈ RN
+ | x ∈ A}.

A bargaining problem with claims (cf. Chun and Thomson (1992)) is a pair (E, c), where
E ⊆ RN

+ with E∩R++ 6= ∅ is a closed, bounded, convex, and strictly comprehensive1 feasible

set and c ∈ RN
++ represents the claims of N on E such that c ≮ x for all x ∈ E. Let BCN

denote the class of all bargaining problems with claims. Contrary to Chun and Thomson
(1992), we restrict to strictly comprehensive feasible sets, but we allow for claims which
exceed the maximally feasible individual payoffs.

Let (E, c) ∈ BCN . Agents i, j ∈ N are symmetric in E if

E =
{
x ∈ RN

+

∣∣ ∃y ∈ E : yi = xj , yj = xi, yN\{i,j} = xN\{i,j}
}
.

The utopia point uE ∈ R++ is given by

uE = (max{xi | x ∈ E})i∈N .

The truncated feasible set Êc ⊆ RN
+ is given by

Êc = {x ∈ E | x ≤ c} .

A solution for bargaining problems with claims φ : BCN → RN
+ assigns to any bargaining

problem with claims (E, c) ∈ BCN an allocation φ(E, c) ∈ Êc. The proportional solution
(cf. Chun and Thomson (1992)) P : BCN → RN

+ assigns to any (E, c) ∈ BCN the allocation

P(E, c) = λE,cc,

where λE,c = max{θ ∈ [0, 1] | θc ∈ E}. In other words, the proportional solution prescribes
the maximally feasible allocation on the line connecting the origin with the claims point.

1i.e. for all x, y ∈ RN
+ with x ≤ y and x 6= y, y ∈ E implies x ∈ E and x < z for some z ∈ E.
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Example 1
Let N = {1, 2} and consider (E, c) ∈ BCN given by

E = c.c.h. {(6, 0), (4, 1), (0, 2)} 2 and c = (2, 4).

Then λE,c = 4
9 and P(E, c) = (8

9 , 1
7
9 ).

E

c

x10 1 2 3 4 5 6

x2

1

2

3

P(E, c)

4

The proportional solution satisfies the following standard properties from bargaining theory.

Efficiency (EFF)
For all (E, c) ∈ BCN , φ(E, c) ≮ x for all x ∈ E.

Efficiency states that not all agents could be made better off within the feasible set.

Symmetry (SYM)
For all (E, c) ∈ BCN and all i, j ∈ N symmetric in E with ci = cj ,

φi(E, c) = φj(E, c).

Symmetry requires that symmetric agents with equal claims get equal payoffs.

Scale Covariance (SCOV)
For all (E, c) ∈ BCN and all θ ∈ RN

++,

φ(θE, θc) = θφ(E, c).

Scale covariance implies that the solution is covariant under individual rescaling of utility.

Independence of Irrelevant Alternatives (IIA)
For all (E, c), (E′, c) ∈ BCN with E′ ⊆ E and φ(E, c) ∈ E′,

φ(E, c) = φ(E′, c).

Suppose that a particular allocation is selected but the feasible set is smaller than initially
thought. Fortunately, the selected allocation is still feasible. In that case, independence of
irrelevant alternatives says that the selected allocation should still be implemented.

2c.c.h.A denotes the smallest convex and comprehensive set containing A.
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Restricted Monotonicity (RMON)
For all (E, c), (E′, c) ∈ BCN with E ⊆ E′ and uE = uE

′
,

φ(E, c) ≤ φ(E′, c).

Suppose that the feasible set turns out to be larger than expected but the utopia point was
correctly estimated. Then restricted monotonicity ensures that all agents are allocated at
least their promised payoffs.

Monotonicity (MON)
For all (E, c), (E′, c) ∈ BCN with E ⊆ E′,

φ(E, c) ≤ φ(E′, c).

Monotonicity requires that no agent is worse off when the feasible set expands. Note that
monotonicity implies restricted monotonicity. Moreover, efficiency and monotonicity to-
gether imply independence of irrelevant alternatives.

As shown by Chun and Thomson (1992), efficiency, symmetry, scale covariance, and
monotonicity together characterize the proportional solution. Since their results are ob-
tained on a slightly different domain, we provide a proof of this characterization.

Theorem (cf. Chun and Thomson (1992))
P is the unique solution on BCN satisfying EFF, SYM, SCOV, and MON.

Proof. Clearly, P satisfies EFF, SYM, SCOV, and MON. Let φ : BCN → RN
+ be a solution

satisfying EFF, SYM, SCOV, and MON. Let (E, c) ∈ BCN . By SCOV, assume without loss
of generality that Pi(E, c) = 1 for all i ∈ N . Let ε > 0 be small. Define E′ ⊆ RN

+ by

E′ = c.c.h.

{((
Pi(E, c) +

|N | − |S|
|N | − 1

ε

)
i∈S

, (0)i∈N\S

) ∣∣∣∣ S ∈ 2N \ {∅}
}
.

Then E′ ⊆ E. By EFF and SYM, φ(E′, c) = P(E, c). By MON, φ(E, c) ≥ φ(E′, c) = P(E, c).
By EFF, φ(E, c) = P(E, c). Hence, φ = P.

3 Independence of Higher or Irrelevant Claims

In this section, we formally introduce independence of higher claims and independence of
irrelevant claims for solutions for bargaining problems with claims. Independence of higher
claims plays an essential role in a characterization of the serial cost sharing mechanism (cf.
Moulin and Shenker (1992)). On the domain of bargaining problems with claims, it can be
defined in such a way that the payoff of an agent does not depend on the higher claim of
another agent which is symmetric within the feasible set.

Independence of Higher Claims (IHC)
For all (E, c) ∈ BCN and all i, j ∈ N , i 6= j, symmetric in E with ci ≤ cj ≤ c′j ,

φi (E, c) = φi
(
E, (c′j , cN\{j})

)
.

Note that the proportional solution does not satisfy independence of higher claims. On the
subdomain of bankruptcy problems (cf. O’Neill (1982)), independence of higher claims can
be used to characterize the constrained equal awards rule.
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Let BANKN ⊆ BCN denote the subclass of problems (E, c) ∈ BCN with E = {x ∈ RN
+ |∑

i∈N xi ≤ M} for some M ∈ R++. Such a problem arises for instance when a firm goes
bankrupt and the estate should be divided among the creditors.

The constrained equal awards rule CEA : BANKN → RN
+ divides the estate as equally as

possible subject to claims boundedness, so it assigns to any (E, c) ∈ BANKN the allocation

CEA(E, c) =
(
min{ci,mE,c}

)
i∈N ,

where mE,c = sup{θ ∈ R+ | (min{ci, θ})i∈N ∈ E}. On the class of bankruptcy problems,
efficiency, symmetry, and independence of higher claims characterize the constrained equal
awards rule.

Theorem 1
CEA is the unique solution on BANKN satisfying EFF, SYM, and IHC.

Proof. Clearly, CEA satisfies EFF, SYM, and IHC. Let φ : BANKN → RN
+ be a solution

satisfying EFF, SYM, and IHC. Let (E, c) ∈ BANKN . Denote N = {1, . . . , |N |} such that
c1 ≤ . . . ≤ c|N |. For all i ∈ N , define ĉi ∈ RN

++ by

ĉi = (min{ci, cj})j∈N .

Then ĉ1 ≤ . . . ≤ ĉ|N |. By EFF, φ(E,CEA(E, c)) = CEA(E, c). By sequentially applying
EFF, SYM, and IHC, φ(E, ĉi) = CEA(E, c) for all i ∈ N with ĉi /∈ E. In particular,
φ(E, c) = φ(E, ĉ|N |) = CEA(E, c). Hence, φ = CEA.

The constrained equal awards rule also satisfies independence of irrelevant claims. This
property can be described as follows. Suppose that a particular allocation is selected but the
claims are smaller than initially thought. Fortunately, all claimants were not allocated more
than their real claims. In that case, independence of irrelevant claims says that the selected
allocation should still be implemented.

Independence of Irrelevant Claims (IIC)
For all (E, c), (E, c′) ∈ BCN with c′ ≤ c and φ(E, c) ≤ c′,

φ(E, c) = φ(E, c′).

Note that the proportional rule does not satisfy independence of irrelevant claims. On the
class of bankruptcy problems, independence of irrelevant claims was explored by Kibris
(2012) and Stovall (2014). They characterized a family of rationalizable rules and a family
of monotone path rules, respectively. As the following example shows, efficiency, symmetry,
and independence of irrelevant claims do not characterize the constrained equal awards rule
for bankruptcy problems.

Example
Let N = {1, 2} and let φ : BANKN → RN

+ be the solution defined by

φ(E, c) =

{
(0, E) if c1 <

1
2E and c2 ≥ E;

CEA(E, c) otherwise.

Then φ satisfies efficiency, symmetry, and independence of irrelevant claims, but does not
coincide with the constrained equal awards rule. 4

On the full domain of bargaining problems with claims, efficiency, symmetry, indepen-
dence of higher claims, and independence of irrelevant claims are satisfied by more than one
solution. However, in conjunction with other axioms from bargaining theory, these properties
induce some specific solutions.
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4 The Constrained Nash Solution

For classic bargaining problems, efficiency, symmetry, scale covariance, and independence of
irrelevant alternatives characterize the Nash (1950) solution. This solution prescribes the
feasible allocation which maximizes the product of the payoffs. For bargaining problems with
claims, the proportional solution satisfies all these properties. However, if we additionally
impose independence of higher claims or independence of irrelevant claims, a single alterna-
tive solution pops up, which maximizes the payoff product over the truncated feasible set.

The constrained Nash solution CN : BCN → RN
+ assigns to any (E, c) ∈ BCN the allocation

CN(E, c) = argmax
x∈Êc

∏
i∈N

xi.

Note that the conditions on the feasible set imply that the constrained Nash solution is
uniquely defined. Moreover, CN = CEA on BANKN .

Example 2
Let N = {1, 2} and consider (E, c) ∈ BCN given by

E = c.c.h. {(6, 0), (4, 1), (0, 2)} and c = (2, 4).

Then Êc = c.c.h.{(2, 1 1
2 ), (0, 2)} and CN(E, c) = (2, 1 1

2 ).

Êc

c

x10 1 2 3 4 5 6

x2

1

2

3

CN(E, c)

4

Theorem 2
CN is the unique solution on BCN satisfying EFF, SYM, SCOV, IIA, and IHC.3

Proof. Clearly, CN satisfies EFF, SYM, SCOV, IIA, and IHC. Let φ : BCN → RN
+ be a

solution satisfying EFF, SYM, SCOV, IIA, and IHC. Let (E, c) ∈ BCN . By SCOV, assume
without loss of generality that CNi(E, c) = 1 for all i ∈ N . Define E′ ⊆ RN

+ by

E′ =

{
x ∈ RN

+

∣∣∣∣∣ ∑
i∈N

xi ≤ |N |

}
.

Then Êc ⊆ E′. This means that φ(E, c) ∈ E′. By IIA, φ(E, c) = φ(E ∩ E′, c). Denote
N = {1, . . . , |N |} such that c1 ≤ . . . ≤ c|N |. For all i ∈ N , define ĉi ∈ RN

++ by

ĉi = (min{ci, cj})j∈N .

3This result is also valid on the domain of comprehensive feasible sets (not necessarily strictly).
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Then ĉ1 ≤ . . . ≤ ĉ|N |. By sequentially applying EFF, SYM, and IHC, φ(E′, ĉi) = CN(E, c)
for all i ∈ N . In particular, φ(E′, c) = φ(E′, ĉ|N |) = CN(E, c). Then φ(E′, c) ∈ E. By IIA,
φ(E′, c) = φ(E ∩ E′, c). This means that

φ(E, c) = φ(E ∩ E′, c) = φ(E′, c) = CN(E, c).

Hence, φ(E, c) = CN(E, c).

Theorem 3
CN is the unique solution on BCN satisfying EFF, SYM, SCOV, IIA, and IIC.3

Proof. Clearly, CN satisfies EFF, SYM, SCOV, IIA, and IIC. Let φ : BCN → RN
+ be a

solution satisfying EFF, SYM, SCOV, IIA, and IIC. Let (E, c) ∈ BCN . By SCOV, assume
without loss of generality that CNi(E, c) = 1 for all i ∈ N . Define E′ ⊆ RN

+ by

E′ =

{
x ∈ RN

+

∣∣∣∣∣ ∑
i∈N

xi ≤ |N |

}
.

Then Êc ⊆ E′. This means that φ(E, c) ∈ E′. By IIA, φ(E, c) = φ(E ∩ E′, c). Define
c̄ ∈ RN

++ by

c̄ =

(
max
i∈N
{ci}

)
j∈N

.

Then c ≤ c̄. By EFF and SYM, φ(E′, c̄) = CN(E, c). By IIC, φ(E′, c) = φ(E′, c̄) = CN(E, c).
Then φ(E′, c) ∈ E. By IIA, φ(E′, c) = φ(E ∩ E′, c). This means that

φ(E, c) = φ(E ∩ E′, c) = φ(E′, c) = CN(E, c).

Hence, φ(E, c) = CN(E, c).

5 The Constrained Kalai-Smorodinsky Solution

For classic bargaining problems, efficiency, symmetry, scale covariance, and restricted mono-
tonicity characterize the Kalai and Smorodinsky (1975) solution. This solution prescribes
the maximally feasible allocation on the line connecting the origin with the utopia point.
For bargaining problems with claims, the proportional solution satisfies all these properties.
However, if we additionally impose independence of higher claims, a single alternative solu-
tion pops up, which minimizes the distance to the line connecting the origin with the utopia
point over the efficient allocations within the truncated feasible set.

The constrained Kalai-Smorodinsky solution4 CKS : BCN → RN
+ assigns to any (E, c) ∈

BCN the allocation
CKS(E, c) =

(
min{ci, αE,cuEi }

)
i∈N ,

where αE,c = max{θ ∈ [0, 1] | (min{ci, θuEi })i∈N ∈ E}. Note that the conditions on the feasi-
ble set imply that the constrained Kalai-Smorodinsky solution is uniquely defined. Moreover,
CKS = CEA on BANKN .

4Dietzenbacher, Estévez-Fernández, Borm, and Hendrickx (2016) and Dietzenbacher and Peters (2018)
studied this solution under the name constrained relative equal awards rule.
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Example 3
Let N = {1, 2} and consider (E, c) ∈ BCN given by

E = c.c.h. {(6, 0), (4, 1), (0, 2)} and c = (2, 4).

Then αE,c = 3
4 and CKS(E, c) = (2, 1 1

2 ).

E

uE

c

x10 1 2 3 4 5 6

x2

1

2

3

CKS(E, c)

4

Theorem 4
CKS is the unique solution on BCN satisfying EFF, SYM, SCOV, RMON, and IHC.

Proof. Clearly, CKS satisfies EFF, SYM, SCOV, RMON, and IHC. Let φ : BCN → RN
+ be

a solution satisfying EFF, SYM, SCOV, RMON, and IHC. Let (E, c) ∈ BCN . By SCOV,
assume without loss of generality that uEi = 1 for all i ∈ N . Denote N = {1, . . . , |N |} such
that c1 ≤ . . . ≤ c|N |. For all i ∈ N , define ĉi ∈ RN

++ by

ĉi = (min{ci, cj})j∈N .

Then ĉ1 ≤ . . . ≤ ĉ|N |. Define E′ ⊆ RN
+ by

E′ =

{
x ∈ RN

+

∣∣∣∣∣ ∑
i∈N

xi ≤ 1

}
.

Then E′ ⊆ E and uE
′

= uE . By EFF, φ(E′,CKS(E′, c)) = CKS(E′, c). By sequentially
applying EFF, SYM, and IHC, φ(E′, ĉi) = CKS(E′, c) for all i ∈ N with ĉi /∈ E′.

Let k ∈ N be such that ĉi ∈ E′ for all i ∈ N with i < k and ĉi /∈ E′ for all i ∈ N with i ≥ k.
Let ` ∈ N be such that ĉi ∈ E for all i ∈ N with i ≤ ` and ĉi /∈ E for all i ∈ N with i > `.
For all i ∈ N with k ≤ i ≤ `, define Ei ⊆ RN

+ by

Ei = c.c.h.

(
E′ ∪

{((
ĉij +

|N | − |S|
|N | − 1

ε

)
j∈S

, (0)j∈N\S

) ∣∣∣∣∣ S ∈ 2N \ {∅}

})
.

Then E′ ⊆ Ek ⊆ . . . ⊆ E` and uE
′

= uE
k

= . . . = uE
`

. By RMON, φi(E
k, ĉj) = ci = ĉki for

all i, j ∈ N with i < k ≤ j. By sequentially applying EFF, SYM, and IHC, φ(Ek, ĉj) = ĉk

for all j ∈ N with j ≥ k. By RMON, φk(Ei, ĉj) = ck for all i, j ∈ N with k ≤ i ≤ j and
k ≤ i ≤ `. By sequentially applying this whole argument, φ(Ei, ĉj) = ĉi for all i, j ∈ N with
k ≤ i ≤ j and k ≤ i ≤ `.
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Define E′′ ⊆ RN
+ by

E′′ = c.c.h.

(
E′ ∪

{((
CKSi(E, c) +

|N | − |S|
|N | − 1

ε

)
i∈S

, (0)i∈N\S

) ∣∣∣∣ S ∈ 2N \ {∅}
})

.

Then E` ⊆ E′′ ⊆ E and uE
`

= uE
′′

= uE . By RMON, φi(E
′′, ĉj) = ci = CKSi(E, c) for

all i, j ∈ N with i ≤ ` < j. By sequentially applying EFF, SYM, and IHC, φ(E′′, ĉj) =
CKS(E, c) for all j ∈ N with j > `. In particular, φ(E′′, c) = φ(E′′, ĉ|N |) = CKS(E, c).
By RMON, φ(E, c) ≥ φ(E′′, c) = CKS(E, c). By EFF, φ(E, c) = CKS(E, c). Hence, φ =
CKS.

The constrained Kalai-Smorodinsky solution also satisfies independence of irrelevant
claims. However, as the following example shows, efficiency, symmetry, scale covariance,
restricted monotonicity, and independence of irrelevant claims do not characterize the con-
strained Kalai-Smorodinsky solution.

Example
Let N = {1, 2} and let φ : BCN → RN

+ be the solution defined by

φ(E, c) =

{
(0, uE2 ) if c1 <

1
2u

E
1 and c2 ≥ uE2 ;

CKS(E, c) otherwise.

Then φ satisfies efficiency, symmetry, scale covariance, restricted monotonicity, and indepen-
dence of irrelevant claims, but does not coincide with the constrained Kalai-Smorodinsky
solution. 4

6 The Constrained Kalai Solution

For classic bargaining problems, efficiency, symmetry, and monotonicity characterize the
Kalai (1977) solution. This solution prescribes the maximally feasible allocation with equal
payoffs. For bargaining problems with claims, the proportional solution satisfies all these
properties. However, if we additionally impose independence of higher claims or indepen-
dence of irrelevant claims, a single alternative solution pops up, which minimizes the distance
to equal payoff allocations over the efficient allocations within the truncated feasible set.

The constrained Kalai solution CK : BCN → RN
+ assigns to any (E, c) ∈ BCN the allocation

CK(E, c) =
(
min{ci, µE,c}

)
i∈N ,

where µE,c = sup{θ ∈ R+ | (min{ci, θ})i∈N ∈ E}. Note that the conditions on the feasible
set imply that the constrained Kalai solution is uniquely defined. Moreover, CK = CEA on
BANKN .

Example 4
Let N = {1, 2} and consider (E, c) ∈ BCN given by

E = c.c.h. {(6, 0), (4, 1), (0, 2)} and c = (2, 4).

Then µE,c = 1 3
5 and CK(E, c) = (13

5 , 1
3
5 ).
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2
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CK(E, c)

4

Theorem 5
CK is the unique solution on BCN satisfying EFF, SYM, MON, and IHC.

Proof. Clearly, CK satisfies EFF, SYM, MON, and IHC. Let φ : BCN → RN
+ be a solution

satisfying EFF, SYM, MON, and IHC. Let (E, c) ∈ BCN . Denote N = {1, . . . , |N |} such
that c1 ≤ . . . ≤ c|N |. For all i ∈ N , define ĉi ∈ RN

++ by

ĉi = (min{ci, cj})j∈N .

Then ĉ1 ≤ . . . ≤ ĉ|N |. Let k ∈ N be such that ĉi ∈ E for all i ∈ N with i ≤ k and ĉi /∈ E for
all i ∈ N with i > k. For all i ∈ N with i ≤ k, define Ei ⊆ RN

+ by

Ei = c.c.h.

{((
ĉij +

|N | − |S|
|N | − 1

ε

)
j∈S

, (0)j∈N\S

) ∣∣∣∣∣ S ∈ 2N \ {∅}

}
.

Then E1 ⊆ . . . ⊆ Ek. By EFF, φ(E1, ĉ1) = ĉ1. By sequentially applying EFF, SYM, and
IHC, φ(E1, ĉj) = ĉ1 for all j ∈ N . By MON, φ1(Ei, ĉj) = c1 for all i, j ∈ N with i ≤ j and
i ≤ k. By sequentially applying this whole argument, φ(Ei, ĉj) = ĉi for all i, j ∈ N with
i ≤ j and i ≤ k.

Define E′ ⊆ RN
+ by

E′ = c.c.h.

{((
CKi(E, c) +

|N | − |S|
|N | − 1

ε

)
i∈S

, (0)i∈N\S

) ∣∣∣∣ S ∈ 2N \ {∅}
}
.

Then Ek ⊆ E′ ⊆ E. By MON, φi(E
′, ĉj) = ci = CKi(E, c) for all i, j ∈ N with i ≤ k < j.

By sequentially applying EFF, SYM, and IHC, φ(E′, ĉj) = CK(E, c) for all j ∈ N with j > k.
In particular, φ(E′, c) = φ(E′, ĉ|N |) = CK(E, c). By MON, φ(E, c) ≥ φ(E′, c) = CK(E, c).
By EFF, φ(E, c) = CK(E, c). Hence, φ = CK.

Theorem 6
CK is the unique solution on BCN satisfying EFF, SYM, MON, and IIC.

Proof. Clearly, CK satisfies EFF, SYM, MON, and IIC. Let φ : BCN → RN
+ be a solution

satisfying EFF, SYM, MON, and IIC. Let (E, c) ∈ BCN . Denote N = {1, . . . , |N |} such
that c1 ≤ . . . ≤ c|N |. For all i ∈ N , define c̄i ∈ RN

++ by

c̄ij =

{
cj for all j ∈ N with j < i.

c|N | for all j ∈ N with j ≥ i;

11



Then c̄1 ≥ . . . ≥ c̄|N |. For all i ∈ N , define ĉi ∈ RN
++ by

ĉi = (min{ci, cj})j∈N .

Then ĉ1 ≤ . . . ≤ ĉ|N | = c = c̄|N | ≤ . . . ≤ c̄1. Let k ∈ N be such that ĉi ∈ E for all i ∈ N
with i ≤ k and ĉi /∈ E for all i ∈ N with i > k. For all i ∈ N with i ≤ k, define Ei ⊆ RN

+ by

Ei = c.c.h.

{((
ĉij +

|N | − |S|
|N | − 1

ε

)
j∈S

, (0)j∈N\S

) ∣∣∣∣∣ S ∈ 2N \ {∅}

}
.

Then E1 ⊆ . . . ⊆ Ek. By EFF and SYM, φ(E1, c̄1) = ĉ1. By IIC, φ(E1, c̄j) = φ(E1, c̄1) = ĉ1

for all j ∈ N . By MON, φ1(Ei, c̄j) = c1 for all i, j ∈ N with i ≤ j and i ≤ k. By sequentially
applying this whole argument, φ(Ei, c̄j) = ĉi for all i, j ∈ N with i ≤ j and i ≤ k.

Define E′ ⊆ RN
+ by

E′ = c.c.h.

{((
CKi(E, c) +

|N | − |S|
|N | − 1

ε

)
i∈S

, (0)i∈N\S

) ∣∣∣∣ S ∈ 2N \ {∅}
}
.

Then Ek ⊆ E′ ⊆ E. By MON, φi(E
′, c̄k+1) = ci = CKi(E, c) for all i ∈ N with i ≤ k.

By EFF and SYM, φ(E′, c̄k+1) = CK(E, c). By IIC, φ(E′, c̄j) = φ(E′, c̄k+1) = CK(E, c)
for all j ∈ N with j > k. In particular, φ(E′, c) = φ(E′, c̄|N |) = CK(E, c). By MON,
φ(E, c) ≥ φ(E′, c) = CK(E, c). By EFF, φ(E, c) = CK(E, c). Hence, φ = CK.

7 Concluding Remarks

In this paper, we axiomatically studied bargaining problems with claims and focused on the
properties independence of higher claims and independence of irrelevant claims. In particular,
we compared the proportional solution, the constrained Nash solution, the constrained Kalai-
Smorodinsky solution, and the constrained Kalai solution and illustrated them with the
following example.

Example 5
Let N = {1, 2} and consider (E, c) ∈ BCN given by

E = c.c.h. {(6, 0), (4, 1), (0, 2)} and c = (2, 4).

Then P(E, c) = (8
9 , 1

7
9 ), CN(E, c) = (2, 1 1

2 ), CKS(E, c) = (2, 1 1
2 ), and CK(E, c) = (13

5 , 1
3
5 ).

E

uE

c

x10 1 2 3 4 5 6

x2

1

2

3

P
CN = CKS

CK

4
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We studied the implications of independence of higher claims and independence of irrel-
evant claims in conjunction with the standard axioms efficiency, symmetry, scale covariance,
independence of irrelevant alternatives, restricted monotonicity, and monotonicity from bar-
gaining theory. The following table presents an overview of the properties and indicates the
axiomatic characterizations.

P CN CN CKS CK CK
EFF +∗ +∗ +∗ +∗ +∗ +∗

SYM +∗ +∗ +∗ +∗ +∗ +∗

SCOV +∗ +∗ +∗ +∗ − −
IIA + +∗ +∗ − + +
RMON + − − +∗ + +
MON +∗ − − − +∗ +∗

IHC − +∗ + +∗ +∗ +
IIC − + +∗ + + +∗

Alternatively, in line with the work of Dagan and Volij (1993), bargaining problems
with claims could be solved by converting them into regular bargaining problems with the
truncated feasible sets. The Nash solution for these converted bargaining problems would
coincide with the constrained Nash solution for bargaining problems with claims. The Kalai-
Smorodinsky solution for these bargaining problems would coincide with the truncated pro-
portional solution for bargaining problems with claims, which prescribes efficient allocations
proportional to the utopia point of the truncated feasible set. The truncated proportional
solution also satisfies efficiency, symmetry, scale covariance, and restricted monotonicity, but
does not satisfy independence or irrelevant alternatives, independence of higher claims, and
independence of irrelevant claims. The Kalai solution for converted bargaining problems
corresponds to a solution for bargaining problems with claims which satisfies symmetry,
monotonicity, independence of higher claims, independence or irrelevant claims, but does
not satisfy efficiency and scale covariance.

This paper only considers fixed population axioms, i.e. none of the axioms are based
on changes in the population. Future research could study independence of higher claims
and independence of irrelevant claims in conjunction with variable population axioms from
bargaining theory, e.g. population monotonicity (cf. Thomson (1983a), Thomson (1983b)),
consistency (cf. Lensberg (1988)), and converse consistency (cf. Chun (2002)). Population
monotonicity, which requires that no remaining agent is worse off when some agents leave
with zero payoff, is satisfied by the proportional solution, the constrained Kalai-Smorodinsky
solution, and the constrained Kalai solution, but is not satisfied by the constrained Nash
solution. Consistency, which requires invariance when some agents leave with their allocated
payoffs, is satisfied by the proportional solution, the constrained Nash solution, and the con-
strained Kalai solution, but is not satisfied by the constrained Kalai-Smorodinsky solution.
Converse consistency, which requires selection of a certain allocation when it is selected for all
reduced problems, is satisfied by the proportional solution and the constrained Kalai solution,
but not satisfied by the constrained Nash solution and the constrained Kalai-Smorodinsky
solution.
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