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Original Article

Continuous-Time Latent Markov
Factor Analysis for Exploring
Measurement Model Changes
Across Time
Leonie V. D. E. Vogelsmeier1, Jeroen K. Vermunt1, Florian Böing-Messing1,2,
and Kim De Roover1

1Department of Methodology and Statistics, Tilburg University, The Netherlands
2Jheronimus Academy of Data Science, 's-Hertogenbosch, The Netherlands

Abstract: Drawing valid inferences about daily or long-term dynamics of psychological constructs (e.g., depression) requires the measurement
model (indicating which constructs are measured by which items) to be invariant within persons over time. However, it might be affected by
time- or situation-specific artifacts (e.g., response styles) or substantive changes in item interpretation. To efficiently evaluate longitudinal
measurement invariance, and violations thereof, we proposed Latent Markov factor analysis (LMFA), which clusters observations based on
their measurement model into separate states, indicating which measures are validly comparable. LMFA is, however, tailored to “discrete-
time” data, where measurement intervals are equal, which is often not the case in longitudinal data. In this paper, we extend LMFA to
accommodate unequally spaced intervals. The so-called “continuous-time” (CT) approach considers the measurements as snapshots of
continuously evolving processes. A simulation study compares CT-LMFA parameter estimation to its discrete-time counterpart and a
depression data application shows the advantages of CT-LMFA.

Keywords: experience sampling, measurement invariance, factor analysis, latent Markov modeling, continuous-time

Longitudinal studies are important to investigate dynamics
of latent (i.e., unobservable) psychological constructs (e.g.,
how depression evolves during or after a therapy). The
study design may be, for instance, a traditional daily or
weekly diary study or modern Experience Sampling
Methodology (ESM; e.g., Scollon, Kim-Prieto, & Diener,
2003), in which subjects may rate questionnaire items say
three times a day at randomized time-points over a course
of several weeks. Regardless of the design, a measurement
model (MM), obtained by factor analysis (FA), indicates to
what extent the latent constructs (or “factors”) are mea-
sured by which items, as indicated by the values of “factor
loadings.” In order to draw valid inferences about the
measured constructs, it is crucial that the MM is invariant
(i.e., equal) across time because only then constructs are
conceptually similar. However, this longitudinal measure-
ment invariance (MI) is often not tenable because artifacts
such as response styles (e.g., an agreeing response style
leads to higher loadings; Cheung & Rensvold, 2000), sub-
stantive changes in either item interpretation or the number
and nature of the measured constructs (e.g., high and low
arousal factors replace positive and negative affect factors;

Feldman, 1995) may affect the MM differently over time.
A confirmatory testing approach is often too restrictive
because researchers often have no or incomplete a priori
hypotheses about such discrete MM changes. Therefore,
Vogelsmeier, Vermunt, van Roekel, and De Roover (2019)
proposed latent Markov factor analysis (LMFA), which is
an exploratory method that clusters observations of multi-
ple subjects into a few latent states depending on the under-
lying MM, where each state gathers validly comparable
observations as will be described in detail below.

However, an important aspect of longitudinal data
neglected in LMFA so far is that the time lags between
two adjacent measurement occasions may vary between
and within subjects. For traditional diary studies, the inter-
vals may differ, for instance, because intervals during
therapy are shorter (e.g., a day or a week) than follow up
intervals after therapy (e.g., 6 months). Intervals in ESM
studies may be unequal because of the “signal-contingent”
sampling scheme, which is the most widely used scheme to
determine when and how often the participants are ques-
tioned (de Haan-Rietdijk, Voelkle, Keijsers, & Hamaker,
2017). That is, random beeps request the participants to fill
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in questionnaires with the aim to reduce memory bias
and predictability of the measurements. Additionally,
night intervals are usually longer than the intervals during
the day and, in any study design, participants may skip
measurement occasions so that the interval becomes
longer.

To accommodate unequally spaced measurement inter-
vals, we extend LMFA in this paper, following the trend
of various modeling approaches to move away from the
so called “discrete-time” (DT) modeling approach that
assumes equal intervals and instead adopt a “continuous-
time” (CT) approach that allows for unequal time intervals
(TIs). The CT approach fits the idea that we only capture
snapshots of the studied process (e.g., because the limita-
tion of observing the entire process) but that processes
evolve continually and not only at discrete measurement
occasions (Böckenholt, 2005; Crayen, Eid, Lischetzke, &
Vermunt, 2017; de Haan-Rietdijk et al., 2017; Voelkle &
Oud, 2013). Furthermore, in contrast to results from DT
studies, where parameters are estimated for a specific inter-
val, results obtained from CT studies are comparable across
studies because they are transferable to any interval of
interest (de Haan-Rietdijk et al., 2017; Voelkle & Oud,
2013). Moreover, analyzing data containing unequal inter-
vals with DT methods possibly leads to wrong conclusions
when not accounting for the exact elapsed time (Driver,
Oud, & Voelkle, 2017; Voelkle & Oud, 2013).

The paper is organized as follows: The Method section
describes the data structure, the differences between CT-
and DT-LMFA, how the DT approach may approximate
CT, and the general model estimation. The following sec-
tion presents a simulation study comparing the perfor-
mance of CT- and DT-LMFA. After this, we illustrate CT-
LMFA with an application. The last section discusses how
CT-LMFA safeguards further analyses of factor mean
changes when MI cannot be established (e.g., by means
of continuous-time structural equation modeling; ctsem;
Driver et al., 2017) and finally ends with future research
plans.

Method

Data Structure

The repeated measures observations (with multiple
continuous variables), nested within subjects are denoted
by yijt (with i = 1,. . ., I referring to subjects, j = 1,. . ., J
referring to items, and t = 1,. . ., T to time-points) and are
collected in the J � 1 vectors yit ¼ ðyi1t; yi2t; . . . ; yiJtÞ0, which
themselves are collected in the T � J data matrix
Yi ¼ y0

i1; y
0
i2; . . . ; y

0
iT

� �0
for subject i. Note that T may differ

across subjects but for simplicity, we omit the index i in Ti.

Latent Markov Factor Analysis

We first give the building blocks of the regular DT-LMFA
and then present CT-LMFA.

Discrete-Time (DT)-LMFA
The first building block of LMFA is a latent Markov model
(LMM; Bartolucci, Farcomeni, & Pennoni, 2014; Collins &
Lanza, 2010), which is a latent class model that allows
subjects to transition between latent classes (referred to
as “states”). These transitions are captured by a latent
“Markov chain,” which follows: (a) the “first-order Markov
assumption,” saying that the probability of being in state
k (k = 1, . . ., K) at time-point t depends only on the previous
state at t � 1 and (b) the “independence assumption,”
saying that the responses at time-point t only depend on
the state at this time-point. The probability of starting in a
state k is given by the initial state K � 1 probability vector
π with elements πk = p(s1k = 1), where stk = 1 refers to

state-membership k at time-point t and
PK
k¼1

πk ¼ 1. The

probability of being in a state k at time-point t conditional
on the state-membership l (l = 1, . . ., K) at t � 1 is given
by the K � K transition probability matrix P with elements

plk = p(stk = 1|st�1,l = 1), where the row sums
PK
k¼1

plk ¼ 1. In

practice, the transition probabilities depend on the interval
length between measurements (e.g., the probabilities to stay
in a state are larger if the interval amounts to an hour than
when it amounts to a day). Note that typically these
probabilities, P, are assumed to be constant over time.

The second building block is a factor analysis (FA;
Lawley & Maxwell, 1962) model, which defines the state-
specific MMs. The state-specific factor model is

yit ¼ νk þ Λk f it þ eit; ð1Þ

with the state-specific J � Fk loading matrix Λk; the
subject-specific Fk � 1 vector of factor scores fit � MVN
(0; Ψk) at time-point t (where Fk is the state-specific
number of factors and Ψk the state-specific factor (co-)
variances); the state-specific J � 1 intercept vector νk;
and the subject-specific J � 1 vector of residuals eit �
MVN(0; Dk) at time-point t, where Dk contains the unique
variances dkj on the diagonal and zeros on the off-diago-
nal. Note that for maximum flexibility regarding possible
MM differences occurring across persons and time-points,
LMFA generally employs an exploratory FA (EFA)
approach, thus without a priori constraints on the factor
loadings. If desired, however, confirmatory FA (CFA)
could also be used by imposing zero loadings.

From Equation 1 it becomes apparent that the state-
specific MMs can differ regarding their loadings Λk,
intercepts νk, unique variances Dk, and factor covariances
Ψk, implying that LMFA explores all levels of measurement
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non-invariance (described in detail in, e.g., Meredith, 1993):
Configural invariance (equal number of factors and zero
loading pattern), weak factorial invariance (equal loading
values), strong factorial invariance (equal intercepts) and
strict invariance (equal unique variances).

To identify the model, factor variances in Ψk are
restricted to one and rotational freedom is dealt with by
means of criteria to optimize simple structure of the factor
loadings (e.g., oblimin; Clarkson & Jennrich, 1988),
between-state agreement (e.g., generalized Procrustes;
Kiers, 1997) or the combination of the two (De Roover &
Vermunt, 2019). The multivariate normal distribution with
the state-specific covariance matrices Σk ¼ ΛkΛ

0
k þDk

defines the state-specific response densities p(yit|st), indicat-
ing the likelihood of the J observed item responses at time-
point t given the state-membership at t.

Summarized, there are three types of probabilities that
together make up the joint probability density of subject
i’s observations and state-memberships:

pðYi; SÞ ¼ pðs1Þ
zffl}|ffl{initial state probabilities YT

t¼2

p stjst�1ð Þ
zfflfflfflfflffl}|fflfflfflfflffl{transition probabilities

YT
t¼1

p yitjst
� �zfflfflfflffl}|fflfflfflffl{

;

response probabilities

ð2Þ

where S = (s1, s2,. . ., sT) is the K � T state-membership
indicator matrix. Here, the columns st = (st1, . . ., stK)0, for
t = 1, . . ., T, are binary vectors indicating the state-
memberships at time-point t (e.g., if K = 3 and a subject
is in state 3 at time point t, then st = (0, 0, 1)0. When
applying this model in situations in which measurement
intervals are not equal, the encountered transition proba-
bilities will refer to more or less the average interval length
in the dataset concerned. For intervals shorter than the
average, the transition probabilities yield an overestima-
tion of transitions while for intervals longer than the aver-
age, the transition probabilities yield an underestimation.

One solution to account for unequal intervals in the DT
approach to a certain extent is to rescale intervals to a finer
unit (e.g., 1 hr) and to round the time-points to the nearest
unit. So-called “phantom variables” (Driver et al., 2017;
Rindskopf, 1984) containing missing values are inserted
for all time-points without observations. Although this is
good approximation if the grid is fine enough, for substantive
researchers, transforming the dataset is burdensome and
choices regarding the interval lengths difficult. Moreover, a
high number of iterations of the algorithm described in the

Estimation section is required to achieve convergence,
causing long computation times (for more information on
this see Electronic Supplementary Material 1A). Therefore,
we only consider the CT-approach, which is a much more
natural alternative to account for the unequal TI.

Continuous-Time (CT)-LMFA
The CT approach has been extensively discussed in the lit-
erature on Markov models (Cox & Miller, 1965; Kalbfleisch
& Lawless, 1985) and latent Markov models (Böckenholt,
2005; Jackson & Sharples, 2002) and overcomes inaccurate
estimation by considering the length of time, δ, spent in
each of the states. Specifically, transitions from current
state l to another state k are here defined by probabilities
of transitioning from one state to another per very small
time unit and are called transition intensities or rates qlk.
These intensities can be written as:

qlk ¼ lim
δ!0

pðstk ¼ 1jst�δ;l ¼ 1Þ
δ

: ð3Þ

The K � K intensity matrix Q contains the transition inten-
sities qlk for k 6¼ l as off-diagonal elements and their nega-
tive row sums, that is, �P

k6¼l
qlk; on the diagonals. For

example, for K = 3,

Q ¼
�ðq12 þ q13Þ q12 q13

q21 �ðq21 þ q23Þ q23
q31 q32 �ðq31 þ q32Þ

0
B@

1
CA:

ð4Þ
There are three assumptions underlying the CT latent
Markov model: (1) the time spent in a state is independent
of the time spent in a previous state, (2) the transition inten-
sities qlk are independent of and thus constant across time,1

and (3) the time spent in a state is exponentially distributed
(Böckenholt, 2005). The matrix of transition probabilities P
can be computed as the matrix exponential2 of the intensity
matrix Q times the TI δ (Cox & Miller, 1965):

P δð Þ ¼ eQ δ: ð5Þ
Note that the specific structure of Q (with negative row
sums on the diagonal) is a consequence of taking the

matrix logarithm of P with its restriction
PK
k¼1

plk ¼ 1 (Cox

& Miller, 1965). With Equation 5, we can compute the
transition probabilities for arbitrary TIs, which is, as
mentioned in the introduction, a distinctive advantage
of the CT approach. Thus, the probabilities change
depending on the interval length between two consecu-

1 Note that this assumption might be relaxed. For example, one might assume different transition intensities for night and day intervals or that
transition intensities change over time. In these cases, one may use covariates or specific model approaches (e.g., a model with a Weibull
distribution that models the intensities as a function of time). However, this is beyond the scope of the current paper.

2 The matrix exponential eA, where A can be any square matrix, is equal to
P1
a¼0

Aa

a! ¼ Iþ Aþ AA
2! þ AAA

3! þ . . . ; where I is the identity matrix.
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tive observations. How the transition probability matrix P
changes depending on TI δ is shown in Figure 1 based on
an arbitrary intensity matrix Q.

As a final remark, note that the joint probability density
of subject i’s observations and state-memberships for
DT-LMFA in Equation 2 also applies to CT-LMFA. The only
difference is that the transition probabilities p(st|st�1)
depend on the qlk and the TI δ for subject i at time-point
t (with regard to t� 1) such that pδti(st|st�1) is a more appro-
priate notation.

Estimation

Using syntax, Latent GOLD (LG; Vermunt & Magidson,
2016) can be used to find the parameters previously
described – collectively referred to as θ – that maximize
the loglikelihood function log L. Apart from the transition
probability formulation in DT, where pδtiðstjst�1Þ ¼
pðstjst�1Þ, the log L formulation is the same for DT-LMFA
and CT-LMFA. The log L for both models is given by:

log LðθjYÞ ¼
XI
i¼1

log
X
si1

. . .
X
siT

p si1ð Þ
YT
t¼2

pδtiðstjst�1Þ
YT
t¼1

p yitjsit
� � !

;

ð6Þ
which is complicated by the latent states. Therefore, to
find the maximum likelihood (ML) solution, LG utilizes

the Expectation Maximization (EM; Dempster, Laird, &
Rubin, 1977) algorithm, more specifically the forward-
backward algorithm (Baum, Petrie, Soules, & Weiss,
1970), which is described in detail for DT-LMFA in
Vogelsmeier et al. (2019). Estimation of the CT-LMFA
differs in that the Maximization step (M-step) requires
using a Fisher algorithm not only for updating the state-
specific covariance matrices (Lee & Jennrich, 1979) but
also for updating the log transition intensities (Kalbfleisch
& Lawless, 1985). A summary is provided in the
Appendix. Note that the estimation procedure assumes
that we know the number of states K and factors within
the states Fk. Since these numbers are only known in
simulation studies, a model selection procedure is
required when working with real data. For LMFA, the
Bayesian information criterion (BIC) proved to perform
well in terms of selecting the best model complexity
(Vogelsmeier et al., 2019).

Simulation Study

Problem

We employed an ESM design with unequal TIs – currently
the go-to research design to study daily-life dynamics – to
evaluate how CT-LMFA and standard DT-LMFA differ in
recovering the model parameters. Generally, we expected
CT-LMFA to outperform DT-LMFA, although the
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Figure 1. Probabilities of transitioning to another state as a function of the time interval δ between two measurement occasions. The transition
probabilities increase with δ until they reach a stationary distribution. Three example probability matrices are calculated based on Q (left matrix)
and δ = 1, 10, 80. Note that [l, k] indicates the elements in the matrices with l referring to the rows and k to the columns and that the exact Q
matrix can be obtained by taking the matrix logarithm of P for δ = 1.
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performance difference might be small (Crayen et al.,
2017). We manipulated three types of conditions that previ-
ously were shown to influence MM parameter recovery and
state recovery (Vogelsmeier et al., 2019): (1) factor overde-
termination, (2) state similarity, and (3) amount of informa-
tion available for estimation. We expect the differences in
MM parameter recovery and state recovery across the
two methods to be especially pronounced for (1) a lower
factor overdetermination, (2) a lower state similarity, and
(3) a lower amount of information because the posterior
state probabilities are functions of the observed data and
the state-memberships at the adjacent time-points (see E-
Step in Appendix). Hence, the estimation benefits from pre-
cisely estimated transition probabilities. These precise esti-
mates are likely more important for more “difficult”
conditions, where the state-membership is more difficult
to predict based on the observed data.

Based on the simluation study of Vogelsmeier et al.
(2019), the conditions for (1) factor overdetermination were
(a) number of factors (where a higher number causes lower
factor overdetermination for a fixed number of items; e.g.,
Preacher & MacCallum, 2002) and (b) unique variances
(where lower unique variances increase common variance
and therefore also factor overdetermination; e.g., Briggs &
MacCallum, 2003). The conditions for (2) state similarity
were (c) between-state loading similarity and (d) between-
state intercept difference. The conditions for (3) amount
of information – with (e) sample size, N, (f) number of days
of participation, D, and (g) number of observations per day,
Tday – were based on a typical ESM design.

Note that Tday determines the amount of DT violation
(i.e., to what degree the intervals differ from the average
day interval) as well as the transition probabilities. A higher
Tday implies smaller DT violations and fewer transitions to
other states at two consecutive observations as will be
described in Section Design and Procedure. Performance
differences regarding the transition parameter recovery
are expected to be especially pronounced for a lower Tday

and thus for higher DT violations and higher transition
probabilities to other states, where the latter leads to lower

dependence of states at two consecutive time-points,
making estimation more difficult (Vogelsmeier et al., 2019).

Design and Procedure

We crossed seven factors with the following conditions in a
complete factorial design:
a. number of factors per state Fk = F at two levels: 2, 4;
b. unique variance e at two levels: .2, .4;
c. between-state loading difference at two levels: med-

ium loading difference and low loading difference;
d. between-state intercept difference at two levels: no

intercept difference, low intercept difference;
e. sample size N at two levels: 35, 75;
f. the number of days D at two levels: 7, 30;
g. the measurements per subject and day Tday at three

levels: 3, 6, 9;

resulting in 2(a) � 2(b) � 2(c) � 2(d) � 2(e) � 2(f) � 3(g) =
192 conditions. The number of items J was fixed to 20 and
the number of states K was fixed to 3.

The loading differences between the states (c) were
either medium or low. For both conditions, we started with
a common base loading matrix, ΛBase, which was a binary
simple structure, where all items loaded on only one factor
and all factors were measured by the same amount of items
(i.e., 10 for F = 2 and 5 for F = 4). To clarify this, consider
ΛBase for the example of F = 2 as depicted in Equation (7)
below.

To induce loading differences between the states, we
altered the base matrices differently for each state. Specifi-
cally, for the medium between-state loading difference con-
dition, we shifted respectively one loading from the first
factor to the second and one from the second to the first
for both for F = 2 and F = 4, so that, for F = 4, only the first
two factors differed across states. Items for which the load-
ings were shifted differed across states. This manipulation
did not affect the overdeterminaton of the factors, which
was therefore the same across states. Thus, for the example

ΛBase ¼
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

� �0

ð7Þ

Λ1 ¼
λ1 1 1 1 1 1 1 1 1 1 λ2 0 0 0 0 0 0 0 0 0

λ2 0 0 0 0 0 0 0 0 0 λ1 1 1 1 1 1 1 1 1 1

� �0

Λ2 ¼
1 λ1 1 1 1 1 1 1 1 1 0 λ2 0 0 0 0 0 0 0 0

0 λ2 0 0 0 0 0 0 0 0 1 λ1 1 1 1 1 1 1 1 1

� �0 ð8Þ
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of F = 2, the loading matrices for the first two (of the three)
states can be seen in Equation (8) below, with λ1 = 0 and
λ2 = 1. The low between-state loading difference condition
differed from the just described one only in that, instead
of shifting loadings, we added one cross-loading of

ffiffiffiffi
:5

p
to

the first and one to the second factor for different items
across states, thereby also lowering the primary loadings
to

ffiffiffiffi
:5

p
. Thus, the entries in Λ1 and Λ2 in Equation 8 were

λ1 ¼ ffiffiffiffi
:5

p
and λ2 ¼ ffiffiffiffi

:5
p

for this condition. Finally, we
rescaled the loading matrices row wise so that the sum of
squares per row was 1�e, where e was either .40 or .20.

To have a measure of between-state loading matrix sim-
ilarity, we computed the grand mean, φmean, of Tucker’s
(1951) congruence coefficient (defined by φxy ¼ x0yffiffiffiffiffi

x0x
p ffiffiffiffi

y0y
p ,

where x and y refer to columns of a matrix) across each pair
of factors, with φ = 1 indicating proportionally identical fac-
tors. For the medium loading difference condition, φmean

across all states and factors was .8 and for the low loading
difference condition .94, regardless of the number of
factors.

For creating between state intercept differences (d), we
first created a base intercept vector consisting of fixed val-
ues of 5 (see Equation (9) below).

For the no intercept difference condition, we used νBase
for each state. For the low intercept difference condition,
we increased two intercepts to 5.5 for different items across
the states. This resulted in the following two intercept vec-
tors for the first and the second states (Equation (10) below).

Datasets were generated for either 35 or 75 subjects, N, (e).
The number of days, D, for simulated participation was
either 7 or 30 (f), and the number of measures per day
(h), Tday, was 3, 6, or 9. The total number of observations
T for one data matrix was therefore, N � Tday � D. Factors
(f) and (g) also determined the sampling schedule. The day
lasted from 9 am and to 9 pm so that days and nights were
on average 12 h long. Depending on whether Tday was 3, 6,
or 9, the general intervals between measurement occasions
during the day were δtgeneral ¼ 12=ðTday � 1Þ and thus 6, 2.4
or 1.5 h, while the night intervals were not directly affected
by Tday. To obtain a CT sampling scheme with randomness
typical for ESM studies, we allowed for a uniform random

deviation around the fixed time-points with a maximum
of ±30% of the DT TIs (e.g., for Tday = 3, we calculated
the product of the general TI and the percentage of viola-
tion, 6 � 0.3, which is 1.8, and therefore, we sample the
deviation from the uniform distribution Unif(�1.8, 1.8)).
This explains why the DT violation is bigger for a smaller
Tday.

Finally, the transition intensities in Q were fixed across
all conditions, subjects, and time. To determine Q, we con-
sidered transition probabilities P realistic for short TIs and
determined them for the intermediate Tday = 6 condition
and thus for an interval of 2.4 h. That means, 2.4 h pertains
to one unit and therefore, all other intervals will be scaled
to this unit interval. From the chosen probabilities

P ¼
:950 :025 :025

:025 :950 :025

:025 :025 :950

0
B@

1
CA; ð11Þ

Q was derived by taking the matrix logarithm3:

Q ¼
�:05 :03 :03

:03 �:05 :03

:03 :03 �:05

0
B@

1
CA: ð12Þ

Because of the design, the transition probabilities across
measurement occasions will be larger for Tday = 3, where
intervals δti are longer, and smaller for Tday = 9, where
intervals are shorter.

In the open-source program R (R Core Team, 2018) for
each subject, we sampled Tday � D time-points as previously
described (see Design and Procedure section). Subse-
quently, we sampled a random initial state from a multino-
mial distribution with equal probabilities and, based on the
subject-specific TIs, generated a random CT latent Markov
chain (LMC) containing state memberships for each subject.
According to the LMCs, we generated N data matrices Yi

with the state-specific factor model of Equation 1, assuming
orthogonal factors, and concatenated the Yi’s into one data-
set Y ¼ Y

0
1; Y

0
2; . . . ;Y

0
N

� �0
. In total, 20 replicates of the 192

conditions and thus 3,840 datasets were generated.

νBase ¼ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5ð Þ0 ð9Þ

ν1 ¼ 5:5 5:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5ð Þ0

ν2 ¼ 5 5 5:5 5:5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5ð Þ0
ð10Þ

3 Note that the rows do not sum to zero only because of rounding in this representation.
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Results

Performances were evaluated based on 3,831 out of 3,840
datasets that converged at the first try in both analyses
(99.7% analyses converged in CT-LMFA and all converged
in DT-LMFA).4

Performance Measures
First, the state recovery was examined with the Adjusted
Rand Index (ARI) between the true and the estimated state
MCs. The ARI is insensitive to state label permutations and
ranges from 0 (i.e., overlap is at chance) to 1 (i.e., perfect
overlap). Second, to obtain the differences in the goodness
of loading recovery (GOSL), we averaged the Tucker con-
gruence coefficient between the true and the estimated
loading matrices across factors and states:

GOSL ¼

PK
k¼1

PF
f¼1

φðΛf
k ; Λ̂

f
kÞ

PK
k¼1

Fk

: ð13Þ

We used Procrustes rotation (Kiers, 1997)5 to rotate state-
specific loadings Λ̂f

k to Λf
k . This solves the label switching

of the factors within that state. To account for differences
in state labels, we retained the permutation that maxi-
mized φðΛf

k ; Λ̂
f
kÞ. Third, for all other parameters (i.e., tran-

sition parameters, intercepts, unique variances, and initial
state probabilities), we computed the mean absolute dif-
ference (MAD) between the true and the estimated
parameters.6 Note that, for the transition and initial state
parameters, we considered the state permutation that was
found to maximize the loading recovery. Furthermore, the
transition parameters are probabilities for DT but
intensities for CT. In order to make deviations from the
population parameters as comparable as possible, we
transformed the intensities from the CT analyses to
probabilities for the 1-unit TI of 2.4. Moreover, the “true”
parameter in DT-LMFA to evaluate the MADtrans is based
on the average population TI.

Goodness of Parameter Recovery
As can be seen from the “average” results in Table 1,
CT-LMFA was slightly superior to DT-LMFA regarding
the general state and transition probability recovery, but
still very comparable regarding MM parameter recovery.

Moreover, contrary to our expectations, the difference in
MM and state recovery across the two analyses were not
affected by most of the manipulated conditions, probably
because the transition probabilities were overall very well
estimated. Only lower levels of Tday considerably increased
the performance difference between CT- and DT-LMFA,
which was in line with our expectations.

Conclusion and Recommendations
To sum up, there was a striking similarity in recovering
parameters under a wide range of conditions across the
CT- and DT-LMFA. Nevertheless, it was shown that CT-
LMFA leads to the best state recovery and, furthermore,
provides researchers with valid transition probabilities for
any TI of interest and should therefore be the preferred
method. Furthermore, although we demonstrated the
robustness of DT-LMFA in recovering the correct MMs
for a typical ESM design, where the degree of DT violation
is rather small, we cannot generalize the findings purport-
ing that DT-LMFA is an adequate substitute for datasets
with large DT violations.

Application

In the following, we apply CT-LMFA to longitudinal data of
the National Institute of Mental Health (NIMH) Treatment
of Depression Collaborative Research Program (TDCRP;
Elkin et al., 1989) to evaluate MM changes over time. In
brief, the data consisted of repeated depression measures
of 122 subjects with a major depression disorder. By means
of the 20-item Beck Depression Inventory (BDI; Beck,
Rush, Shaw, & Emery, 1979; items listed in Table 2),
depression was assessed on a 4-point scale before treat-
ment, during treatment (i.e., weekly and additionally after
4, 8, and 12 weeks), at termination, and at follow ups after
6, 12, and 18months. The total number of observations was
1,700 with an average of 14.24 per subject (ranging from 1
to 30). Intervals between the observations varied tremen-
dously from very small (e.g., a day when the weekly and
the 4-week questionnaire were completed on two consecu-
tive days) to very large (e.g., a year when certain follow ups
were skipped). Some additional information about choices
made regarding the data is provided in Electronic Supple-
mentary Material 1C.

4 Note that it may also happen that the estimation results in a locally maximum likelihood (ML) solution, implying that the local ML solution has a
smaller log L value than the global ML solution. Note that the latter is unknown but an approximation (“proxy”) can be obtained by using the
population parameters as starting values and comparing the multistart solution to the proxy solution: When log Lmultistart < log Lproxi (i.e., by .001
to exclude minor calculation differences), we considered the solution as local maximum. In the converging ML solutions, a local maximum was
found for only 0.55 % of the datasets analyzed with CT-LMFA and for 0.47 % of the datasets analyzed with DT-LMFA.

5 We conducted the rotation in R, since factor rotation was just added to LG after the study was conducted.
6 Note that the MADuniq may be affected by Heywood cases pertaining to improper factor solutions where at least one unique variance is zero or
negative (e.g., Van Driel, 1978). Heywood cases did not occur in any of the analyses and are therefore not further discussed.
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To begin with the data-analysis, model selection with the
BIC (comparing converged solutions of one to three states
and one-to three factors per state) indicated that the best
fitting model was a two state model with three factors in
the first state and two factors in the second state. The
syntax for the final model can be found in Electronic
Supplementary Material 1B. Hence, configural invariance
is clearly violated. In order to shed light on the state-specific
MMs, we investigated the standardized oblimin rotated
loadings (Table 2). Considering the standardized loadings
of higher than .3 in absolute value (e.g., Hair, Anderson,
Tatham, & Black, 2014), state-1 is characterized by three
factors pertaining to (1) “despair” – with strong loadings
of, for example, “mood,” “pessimism,” and “lack of
satisfaction” – , (2) “self-image” – with strong loadings of,
for example, “guilty feeling,” “self-hate,” and “self accusa-
tion” – , and (3) “cognition/body” – with strong loadings of,
for example, “irritability,” “sleep disturbance,” and “fatiga-
bility.” In state-2, all items beside “sense of punishment,
“self-punitive wishes” and loss of appetite,” which all have
no variation and thus no loadings at all, mainly load on one
factor, therefore pertaining to (1) “depression.” Only “inde-
cisiveness” and “work inhibition” have considerable load-
ings on the other factor as well, which may pertain to (2)
“cognition.” Moreover, intercepts and unique variances
are higher in the first than in the second state.

Next, we look at the estimated transition intensity matrix

Q ¼ �:02 :02

:01 �:01

� �
;

from which we can calculate P for any interval of interest,
for example, for 1 week

Pweek ¼
:89 :11

:08 :92

� �
;

6 months

P0:5year ¼
:43 :57

:42 :58

� �
;

and a year

Pyear ¼
:43 :57

:43 :57

� �
;

showing how transitions become more likely up to a cer-
tain point in time. Looking at the estimated initial state
probabilities π = (.9, .1) and Figure 2, which shows the
transitions between states over time for six exemplary
persons in the sample, it becomes apparent that patients
have a high probability of starting in state 1 with the trend
of moving toward state 2. Combined with knowing what

Table 1. Goodness of recovery per type of parameter and convergence conditional on the manipulated factors

Goodness of recovery for

States (ARI) Loadings
(GOSL)

Transition
parameters
(MADtrans)

Intercepts
(MADint)

Unique
variances
(MADuniq)

Initial states
(MADinitial)

Type LMFA

Condition Factors CT DT CT DT CT DT CT DT CT DT CT DT

Factors per
state Fk

2 .87 .85 1 1 .00 .06 .03 .03 .01 .01 .06 .06
4 .84 .83 1 1 .00 .06 .03 .03 .01 .01 .06 .06

Between-state
loading difference

Medium .89 .88 1 1 .00 .06 .02 .03 .01 .01 .06 .06
Low .82 .81 1 1 .01 .06 .03 .03 .01 .01 .06 .06

Between-state
intercept difference

No .80 .79 1 1 .01 .06 .03 .03 .01 .01 .06 .06
Low .90 .90 1 1 .00 .06 .02 .03 .01 .01 .06 .06

Unique variance e .2 .91 .90 1 1 .00 .06 .02 .02 .01 .01 .06 .06
.4 .79 .78 1 1 .01 .06 .03 .03 .02 .02 .06 .06

Sample size N 35 .85 .84 1 1 .01 .06 .03 .03 .02 .02 .07 .07
75 .86 .85 1 1 .00 .06 .02 .02 .01 .01 .05 .05

Number of
participation days D

7 .84 .83 1 1 .01 .06 .03 .03 .02 .02 .06 .06
30 .86 .85 1 1 .00 .06 .02 .02 .01 .01 .06 .06

Measurements
per day Tday

3 .75 .74 1 1 .01 .10 .03 .03 .02 .02 .06 .06
6 .88 .87 1 1 .00 .05 .02 .02 .01 .01 .06 .06
9 .93 .91 1 1 .00 .03 .02 .02 .01 .01 .06 .06

All conditions

Average .85 .84 1 1 .00 .06 .03 .03 .01 .01 .06 .06

SD 0.13 0.13 0 0 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.03

Notes. CT = continuous-time; DT = discrete-time; LMFA = latent Markov factor analysis. The perfect loading recoveries are a consequence of the highly
similar loading matrices across the states that have been mixed up.

Methodology (2019), 15(Suppl.), 29–42 �2019 Hogrefe Publishing Distributed under the
Hogrefe OpenMind License http://doi.org/10.1027/a000001

36 Leonie V. D. E. Vogelsmeier et al., Continuous-Time Latent Markov Factor Analysis

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
76

 -
 T

ue
sd

ay
, N

ov
em

be
r 

05
, 2

01
9 

12
:4

7:
08

 A
M

 -
 U

ni
ve

rs
ite

it 
T

w
en

te
 I

P 
A

dd
re

ss
:1

37
.5

6.
79

.2
32

 



the MMs look like, we conclude that, over time, patients
obtained a more unified concept of depression (high load-
ings on only one factor), improved assessing their degree

of symptoms by means of the BDI (lower unique vari-
ances), and perceived less symptoms (lower intercepts)
than at the beginning of their therapy. This broadly
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Figure 2. Six representative examples of individual transition plots. Note that the scale of the spacing of the x-axis is not in line with the amount of
days elapsed but, to enable the illustration, equal spaces are chosen.

Table 2. Standardized oblimin rotated factor loadings, intercepts, and unique variances of the CT-LMFA model with two states and respectively
three and two factors for the Beck Depression Inventory repeated-measures application data

State 1 State 2

Factors Factors

Items Despair Self-image Cognition/Body Int. Unique V. Depression Cognition Int. Unique V.

Mood .44 .22 .32 1.20 .30 .73 �.03

Pessimism .56 .29 .08 1.32 .31 .77 �.17 0.38 .15

Sense of failure .45 .52 �.03 1.29 .27 .79 �.25 0.34 .13

Lack of satisfaction .55 �.09 .42 1.38 .28 .70 .29 0.55 .14

Guilty feeling .13 .62 �.02 1.20 .49 .49 �.10 0.23 .18

Sense of punishment �.06 .43 �.01 0.98 .93 .00 .00 0.00 .00

Self-hate .20 .60 .17 1.39 .25 .77 �.15 0.52 .16

Self accusations .20 .70 �.08 1.30 .25 .80 �.28 0.50 .14

Self punitive wishes .41 .22 .05 0.65 .40 .00 .00 0.00 .00

Crying spells .01 .23 .45 0.97 .68 .43 .10 0.19 .13

Irritability .02 .14 .57 0.97 .31 .55 .24 0.53 .21

Social withdrawal .23 .04 .62 1.14 .30 .66 .25 0.46 .20

Indecisiveness .18 .18 .48 1.25 .43 .64 .34 0.50 .18

Body image �.10 .57 .18 1.23 .59 .62 �.18 0.53 .42

Work inhibition .37 .14 .28 1.29 .31 .64 .33 0.49 .15

Sleep disturbance .05 �.07 .58 1.26 .63 .42 .24 0.51 .33

Fatigability .26 �.01 .59 1.32 .32 .63 .29 0.61 .18

Loss of appetite �.01 �.10 .45 0.75 .54 .00 .00 0.00 .00

Somatic preoccupation �.15 .10 .40 0.56 .38 .42 �.04 0.29 .22

Loss of libido .04 .00 .55 1.08 .75 .44 .20 0.49 .43

Notes. Int. = Intercepts; V. = Variance; To aid interpretation, we standardized factor loadings by dividing them by the state-specific item standard deviations.
Loadings with an absolute value larger than 0.3 are depicted in boldface. In state 1, Cor(Despair, Self-image) = .57, Cor(Despair, Cognition/Body) = �.28, and
Cor(Self-image, Cognition/Body) = �.25; In state 2, Cor(Depression, Cognition/Body) = �.77.
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confirms previous research of Fokkema, Smits, Kelder-
man, and Cuijpers (2013) who compared the screening
and termination MMs of this dataset with CFA and found
that the participants obtained a more concrete idea of
their depression, perhaps because therapists explain the
concept of depression during sessions so that patients
learn about their illness, which may influence patients’
concepts of depression and how they evaluate their symp-
toms. However, due to the pure exploratory nature of this
study, drawing substantive conclusions would require
more research such as a replication study.

Discussion

In this paper, we introduced continuous-time (CT) latent
Markov factor analysis (LMFA) – which models measure-
ment model (MM) changes in time-intensive longitudinal
data with unequal measurement intervals – and compared
the method to the regular discrete-time (DT)-LMFA.
Although the recovery of states was only slightly superior
in CT-LMFA, we demonstrated why the method should
be favored: CT-LMFA has a natural match with the
assumption that processes evolve at irregular time intervals
(TIs) and transition intensities can be transformed to DT
transition probabilities for arbitrary TIs. This allows
researchers to compare transition probabilities within and
across studies, leading to more freedom in interpreting
time-intensive longitudinal data.

CT-LMFA is a valuable first data-analysis step because,
by pinpointing changes in the MM, it safeguards valid
results when further investigating factor mean changes
(e.g., by means of ctsem; Driver et al., 2017). For example,
the structure of the MM in one state might indicate the
presence of a response style. Researchers may then con-
tinue with the “reliable” part of the data only (i.e., the
measures in the state without the response style) or choose
to correct for the response style in the corresponding part of
the data. If only, say, two item loadings are invariant across
states, researchers may decide to remove these items and
to continue with the entire dataset. CT-LMFA may also
indicate that there are unobserved groups of subjects that
mostly stay in one state. In that case, a mixture CT-SEM
analysis with latent subpopulations could be a suitable next
step.

In the future, one would ideally use hypothesis tests to
trace significant differences across the states. This will be
possible by means of Wald tests once rotational freedom
is dealt with in the estimation procedure so that proper
standard errors are obtained. To solve the rotation problem
for multiple groups simultaneously, De Roover and
Vermunt (2019) recently developed a “multigroup factor
rotation,” which rotates group-specific loadings both to sim-

ple structure and between-group agreement. The next step
is to tailor this promising method to the states in CT-LMFA
and, thereby, to enable hypothesis testing.

Electronic Supplementary Material

The electronic supplementary material is available with
the online version of the article at https://doi.org/
10.1027/1614-2241/a000176
ESM 1. (A) Additional information on the convergence
problems inherent to the phantom-variable approach of
LMFA. (B) Latent GOLD syntax for the application data.
(C) Additional information about the treatment and the
Becks Depression Inventory (BDI; Beck et al., 1979)
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Appendix

In (CT-)LMFA, the log L is complicated by the unknown
latent states and therefore requires non-linear optimization
algorithms. LG uses the Expectation Maximization algo-
rithm (EM algorithm; Dempster et al., 1977) that employs
the so-called complete-data loglikelihood (log Lc), which
means that the latent state assignments of all time-points
are assumed to be known. This is convenient because the
latent variables and the model parameters can be estimated
separately in an iterative manner as follows: In the Expec-
tation step (E-Step; see below), the parameters of interest,
θ̂, (i.e., the initial state probabilities, the transition intensi-
ties, and the state-specific measurement models, MMs)
are assumed to be given. In the first iteration, initial values
for the parameters are used and, for every other iteration,
the estimates from the previous iteration θ̂old are applied.
The time-specific univariate posterior probabilities of
belonging to the states and the bivariate posteriors for adja-
cent measurement occasions, conditional on the data, are
calculated by means of the forward-backward algorithm
(Baum et al., 1970). These posterior probabilities are in turn
used as expected values for the state memberships in order
to obtain the expected log Lc (E(log Lc)). Then, in the Max-
imization step (M-Step; see below), the parameters θ̂ get
updated so that they maximize E(log Lc). This procedure
is repeated until convergence (see Convergence section).

As mentioned in the Estimation section, the E-step and
the M-step (for all parameter updates but the transition
intensities) are largely identical with the steps for DT-LMFA.
Therefore, in the following, we only briefly summarize these
steps. For more details and derivation of the equations see
Vogelsmeier et al. (2019). However, we describe the M-step
to update the transition intensities inmore detail (seeUpdate

event history data analysis, multilevel analysis, and generalized
latent variable modeling.
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Transition Intensities and Convergence sections) because
this is the part where CT-LMFA differs from DT-LMFA.

E-Step

The E(log Lc) is given by

E log Lcð Þ
¼
XI
i¼1

XK
k¼1

γðsi1kÞ log πkð Þ

þ
XI
i¼1

XT
t2

XK
l¼1

XK
k¼1

ɛ sit�1;l; sitkð Þ log eqilkδti
� �

� 1
2

XI
i¼1

XT
t¼1

XK
k¼1

γ sitkð Þ J log 2πð Þ þ log Σkj jð Þ½
þ yit � νk

� �
Σ�1
k ðyit � νkÞ0�: ðA1Þ

here, δti refers to the time interval between time-point t
and t � 1 for subject i. Furthermore, γ(sitk) are the
expected values to belong to each of the states and
ɛ(sit�1,l, sitk) are the expected values to make transitions
between the states. Both are computed based on the so
called forward probabilities α(sitk) – which are the probabil-
ities of observing the observations for time-point 1 to t,
yi1:t, and ending in state sitk – and the backward probabili-
ties β(sitk) – which are the probabilities to be in state sitk
and to generate the remaining observations for time-point
t + 1 to T, yitþ1:T. For time-point t = 1, the forward proba-
bilities are computed with

α si1kð Þ ¼ πkp yi1jsi1k
� � ðA2Þ

and for all for all the remaining time-points with

α sitkð Þ ¼ p yitjsitk
� �XK

l¼1

α sit�1;lð Þeqilkδti : ðA3Þ

The backward probabilities for time-point t = T are com-
puted with

β siTkð Þ ¼ p ;jsiTkð Þ ¼ 1; ðA4Þ
where ; refers to “producing no outcome.” For all the
remaining time-points the backward probabilities are
computed with

β sitkð Þ ¼
XK
l¼1

β sitþ1;lð Þp yitþ1jsitþ1;l
� �

eqilkδti : ðA5Þ

Finally, the expected univariate values to belong to each of
the states are calculated with

γ sitkð Þ ¼ p sitkjYið Þ ¼ α sitkð Þ β sitkð ÞPK
k¼1

α siTkð Þ
ðA6Þ

Methodology (2019), 15(Suppl.), 29–42 �2019 Hogrefe Publishing Distributed under the
Hogrefe OpenMind License http://doi.org/10.1027/a000001

40 Leonie V. D. E. Vogelsmeier et al., Continuous-Time Latent Markov Factor Analysis

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
76

 -
 T

ue
sd

ay
, N

ov
em

be
r 

05
, 2

01
9 

12
:4

7:
08

 A
M

 -
 U

ni
ve

rs
ite

it 
T

w
en

te
 I

P 
A

dd
re

ss
:1

37
.5

6.
79

.2
32

 



and the expected bivariate values to make transitions
between the states with

ɛ sit�1;l; sitkð Þ ¼ pðsit�1;l; sitk Yij Þ

¼ α sit�1;lð Þ pðyit sitkj Þ eqilkδti β sitkð ÞPK
k¼1

α siTkð Þ
: ðA7Þ

Note that, upon convergence (see Convergence section),
observations are assigned to the state they most likely
belong to (i.e., to the state with the largest probability
γ(sitk)).

M-Step

In the M-step, the parameters get updated so that they
maximize log Lc.

Update Initial State Probabilities and Intercepts

The initial state probabilities and state-specific intercepts
are updated as follows:

πnew
k ¼

PI
i¼1

γðsi1kÞ
PK
k¼1

PI
i¼1

γðsi1kÞ
; ðA8Þ

νnew
k ¼

PI
i¼1

PT
t¼1

γ sitkð Þyit

PI
i¼1

PT
t¼1

γ sitkð Þ
: ðA9Þ

Update State-Specific Covariance Matrices

In order to find the maximum likelihood estimates for
updating the state-specific covariance matricesPnew

k ¼ Λnew
k Λnew0

k þDnew
k , the observations are weighted

by the corresponding γ(sitk)-values and these K weighted
datasets Yk are in turn factor analyzed by means of Fisher
scoring (Lee & Jennrich, 1979).

Update Transition Intensities

In order to calculate the updates for the intensities, we also
have to apply a Fisher algorithm (Kalbfleisch & Lawless,
1985). This algorithm consists of two steps. First, the partial
derivatives of the transition probability matrix P(δti) have to
be computed and second, a scoring procedure is used to
find the maximum likelihood estimate of the parameters
in the transition intensity matrix Q, subsequently referred
to as θQ. For the example of K = 3 states, the parameters
would be θQ = (q12, q13, q21, q23, q31, q32). Note that Kalbfleisch

and Lawless (1985) suggest to re-parameterize the parame-
ters to θQ = (log(q12), log(q13), log(q21), log(q23), log(q31), log
(q32)) in order to prevent restrictions of the parameter space,
which is also what Latent GOLD (LG) does. In LG, the par-
tial derivatives of P(δti) with respect to the parameters
θQ
1 toθQ

b in θQ are calculated by means of the Padé approx-
imation (Moler & Van Loan, 2003). Once the partial deriva-
tives are obtained, we start the scoring procedure to get the
maximum likelihood estimate of θQ. This implies that we
first calculate the b � 1 vector S(θQ) with entries

S θQ
u

� � ¼ o logL
oθQ

u

¼
XI
i¼1

XT
t¼2

XK
k;l¼1

ɛ sit�1;l; sitkð Þ
plkðδtiÞ

oplkðδtiÞ
oθQ

u

; ðA10Þ

where u = 1,. . ., b. Here, ɛ(sit�1,l, sitk) are the expected
bivariate state-membership probabilities obtained from
the E-step (Equation A7). Next, we calculate the b � b
matrix M(θQ) with entries

M θQ
u ; θ

Q
v

� � ¼XI
i¼1

XT
t¼2

XK
k;l¼1

γ sit�1;kð Þ
plkðδtiÞ

oplkðδtiÞ
oθQ

u

� oplkðδtiÞ
oθQ

v

; ðA11Þ

where v = 1,. . ., b, just as u. Finally, we put all the elements
together to compute the update θQ

new:

θQ
new ¼ θQ

old þM θQ
old

� ��1
S θQ

old

� �
; ðA12Þ

where θQ
old is either the initial parameter vector (for the

first iteration) or the previous parameter vector (for all
other iterations). This procedure is repeated until conver-
gence within one M-step of the EM algorithm, before the
EM algorithm moves on to the next E-step. The conver-
gence criteria for the Fisher algorithm within the M-step
are based on the loglikelihood and the change in param-
eter estimates and are the same as the ones for the
“outer” total EM algorithm for CT-LMFA, which is
explained below.

Convergence

Convergence is evaluated with respect to either the loglike-
lihood or the change in parameter estimates. Primarily, LG
evaluates the sum of the absolute values of the relative
parameter changes, that is,

ω ¼
XR
r¼1

θ̂new
r � θ̂old

r

θ̂old
r

�����
�����;
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with r ¼ 1; . . . ; R referring to the parameters. By default,
LG stops when ω < 1 � 10�8. However, if the change in
the loglikelihood gets smaller than 1 � 10�10 prior to
reaching the stopping criterion for ω, LG stops iterating
as well.

Start Values

In LG, a specific multistart procedure with multiple (e.g., 25,
as used in our simulation study) sets of start values is

employed, which decreases the probability of finding a local
instead of a global maximum. The start sets generally con-
sist of random start values but, for loadings and residual
variances, they are based on principal component analysis
(PCA; Jolliffe, 1986) performed on the entire dataset. More
specifically, to get K different start sets, randomness is
added to the PCA solution per state k. For more details
on the entire multistart procedure see De Roover, Vermunt,
Timmerman, and Ceulemans (2017) and Vermunt and
Magidson (2016).
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