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Summary We propose two new parametric tests for an unknown threshold in mod-
els with endogenous regressors. They are both based on unconventional 2SLS estimators
that use additional information about the linearity of the first stage. This information
leads to more accurate residuals and therefore tests with better size properties than
the Wald GMM test in Caner and Hansen (2004), which we show exhibits severe size
distortions in small samples pertinent to empirical applications.

We prove the bootstrap validity of our tests and evaluate their empirical relevance by
revisiting the question whether government spending multipliers are larger in recessions.
As Ramey and Zubairy (2018), we cannot rule out that they are the same in recessions
or expansions.

Keywords: 2SLS, GMM, threshold, bootstrap, government spending

1. INTRODUCTION

Threshold models are widely used in economics to model unemployment, output, growth,
bank profits, asset prices, exchange rates, and interest rates; see Hansen (2011) for a sur-
vey of economic applications. While threshold models with exogenous regressors have
been widely studied and their asymptotic properties are well known1, the literature on
threshold models with endogenous regressors remains relatively scarce.2 Nevertheless,
in many applications, the regressors are endogenous. For example, Ramey and Zubairy
(2018) (RZ henceforth) recently used a threshold model with endogenous regressors to
show that the US cumulative government spending multiplier is not necessarily larger in
recession regimes defined by high unemployment. One of the main questions of interest
in their paper is whether there are two government spending multiplier regimes defined
by the unemployment rate being below or above a threshold. This question can be an-

1See interalia Tong (1990), Hansen (1996, 1999, 2000) and Gonzalo and Wolf (2005) for inference,
Gonzalo and Pitarakis (2002) for multiple threshold regression and model selection, Caner and Hansen
(2001) and Gonzalo and Pitarakis (2006) for threshold regression with unit roots, Seo and Linton (2007)
for smoothed estimators of threshold models, Lee et al. (2011) for testing for thresholds, and Hansen
(2016) for threshold regressions with a kink.
2For some contributions with endogenous regressors, see interalia : for time-series, Caner and Hansen

(2004), who consider exogenous threshold variables and Kourtellos et al. (2015) who consider endogenous
threshold variables; for cross-sections and (short) panels, Seo and Shin (2016) (and references therein),
Yu and Phillips (2018) and Christopoulos et al. (2019), who consider endogenous threshold variables.
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swered by testing the null hypothesis of an unknown threshold in models with endogenous
regressors, as in general, the threshold is not known to the researcher apriori.3

Caner and Hansen (2004) (CH henceforth) proposed a Wald test for exactly this hy-
pothesis based on GMM (generalized method of moments) estimation.4 This test com-
putes the GMM estimators before and after each candidate threshold values between, say,
the 15% and 85% quantiles of the threshold variable that may drive the two regimes, and
compares the two estimators by computing the maximum over the Wald tests for each of
these candidate threshold values. Unfortunately, we find in simulations that this test has
serious size distortions, with rejection frequencies up to three times the nominal size in
small samples pertinent to applications (see tables 1 and 2), and erratic behavior in our
empirical application (see figure 2). Tables 1 and 2 show that these size distortions are
already present in just-identified models with strong instruments, even with homoskedas-
tic data, and even though the test is bootstrapped under the null hypothesis. Because
they do not occur with homoskedastic variance estimators, we find that the source of size
distortions is inaccurate heteroskedasticity-robust variance estimators when using data
only at the sample edges (e.g. below the 15% quantile or above the 85% quantiles). The
Online Supplement to this paper shows that the entries of these heteroskedasticity-robust
estimators can be more than a hundred times larger that their respective limits and five
times smaller than their bootstrap equivalents in small samples.

Since the use of heteroskedasticity-robust variance estimators cannot be avoided for op-
timal GMM estimation, in this paper, we focus instead on 2SLS (two-stage least squares)
estimation. The 2SLS estimators we compute are not conventional and therefore not a
special case of the GMM estimators used in the CH Wald test, because they use addi-
tional information about the first stage being either linear or having itself a threshold,
while the GMM estimators do not use this information by construction. Using this infor-
mation results in more accurate residuals and sample variances for data at the sample
edges. Therefore, the two test statistics we propose - a 2SLS likelihood ratio test and a
2SLS Wald test - fix the small sample issues associated with the GMM test.

As for the GMM test, the null asymptotic distributions of our tests depend on the data
generating process. We propose obtaining critical values via the wild bootstrap to mimic
potential heteroskedasticity in the initial sample. We prove the asymptotic validity of the
two bootstrap test statistics proposed and show via simulations that they do not have
similar size distortions to the GMM test in small samples. Since we find no systematic
difference between the two 2SLS tests, we conclude that both are valuable diagnostics
for the existence of an unknown threshold.

Our paper is closely related to several papers in the change-point literature. Boldea
et al. (2019) study the equivalent of the two test statistics in this paper but for change-
points. They also prove bootstrap validity of their tests, however we employ different
proof techniques in this paper because the threshold variable is typically correlated with
regressors, while the change-points are not. Magnusson and Mavroeidis (2014) use infor-
mation about change-points in the first stage to improve the power of tests for moment
conditions, while we use similar information to improve the size of our tests. Antoine and

3RZ fix this threshold throughout most of their analysis at an unemployment rate of 6.5%, based on
the Federal Reserve’s use of this threshold in a policy announcement, and later do robust checks with
different fixed or time-varying thresholds.
4This is the only test that we are aware of that is specific to parametric time series threshold models

with endogenous regressors and an exogenous threshold variable.
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Boldea (2015) and Antoine and Boldea (2018) also use a full sample first stage or change
points in the first stage for more efficient estimation, while we focus on testing.

It should be noted that we allow for endogenous regressors, but not for endogenous
threshold variables. For the latter, see interalia Kourtellos et al. (2015), Yu and Phillips
(2018) and Christopoulos et al. (2019). To account for regressor endogeneity, we use
instruments for constructing parametric test statistics for thresholds. As a result, our
tests have nontrivial local power for O(T−1/2) threshold shifts, where T is the sample
size. This is in contrast to Yu and Phillips (2018), who do not use instruments, but rather
local shifts around the threshold to construct a nonparametric threshold test. As a result,
their test covers more general functional forms, at the cost of losing power in O(T−1/2)
neighborhoods. Additionally, the later paper focuses on cross-sectional models, while our
tests are applicable to both cross-sectional models and time series models.

In the empirical application, using the same data and model specification as in RZ, we
revisit the question of whether the government spending multipliers are larger in reces-
sions. Based on the tests proposed, we find evidence that the instantaneous government
spending multiplier is different in recessions, but as RZ, we cannot rule out that the
cumulative government spending multipliers are the same in recessions and expansions
due to relatively weaker instruments in the recession regime. However, we do estimate
the threshold unemployment rate to be 8.3%, rather than 6.5% as imposed in RZ (or
than the 8% which RZ employ as a robustness check.) This new threshold (but also 8%)
causes the military spending instrument constructed in RZ to become weaker for deep
recessions, suggesting that it is probably most informative at moderate unemployment
rates somewhere between 6.5% and 8.3%.

The paper is organized as follows. Section 2 describe the model and test statistics.
Section 3 describes the bootstrap. Section 4 contains the assumptions and all the boot-
strap validity results. Section 5 contains simulations and section 6 contains the empirical
application. Section 7 concludes. Appendix A contains all the tables and figures, and
Appendix B all the proofs. An Online Supplement contains additional results in support
of sections 6 and 7.

2. THRESHOLD MODEL AND TEST STATISTICS

Our framework is a linear model with a possible threshold at γ0:

yt =
(
x>

t θ0
1x + z>1tθ

0
1z

)
1[qt ≤ γ0] +

(
x>

t θ0
2x + z>1tθ

0
2z

)
1[qt > γ0] + εt

= w>
t θ0

1 1[qt ≤ γ0] + w>
t θ0

2 1[qt > γ0] + εt, (1)

where yt is the scalar dependent variable, xt is a p1×1-vector of endogenous variables, z1t

a p2 × 1-vector of exogenous variables including the intercept and possibly lags of yt, qt

is the scalar exogenous threshold variable, 1[∙] is the indicator function, wt = (x>
t , z>1t)

>

and θ0
i = (θ0>

ix , θ0>
iz )>. Let γ0 ∈ Γ, a strict subset of the support of qt, and let p = p1 +p2.

The threshold variable is assumed exogenous and it can be a function of the exogenous
regressors. As in CH, the first stage can be a linear model

xt = Π0>zt + ut, (2)

or a threshold model:

xt = Π0>
1 zt1[qt ≤ ρ0] + Π0>

2 zt1[qt > ρ0] + ut, (3)
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where ρ0 ∈ Γ, and zt are q × 1 strong and valid instruments, including z1t, with q ≥ p1.
We assume that E((εt, ut)|Ft) = 0, where Ft = {qt, qt−1, . . . , zt, zt−1, . . . , xt−1, . . .}, so
that equation (1) can be estimated by either 2SLS or by GMM.

For the theory contribution, we assume that the researcher knows whether there is a
linear first stage (LFS) or a threshold first stage (TFS), but in general this is not known
and can be determined by testing for a threshold in the first stage (see Hansen (1996))
or by using the BIC criteria in Gonzalo and Pitarakis (2002).

We are interested in testing for an unknown threshold, i.e. H0 : θ0
1 = θ0

2 ≡ θ0. Such a
test is already available from CH.5 They proposed a test based on GMM estimators of
θ0

i , (i = 1, 2) for each γ ∈ Γ. Because zt and qt are exogenous, the moment conditions

E(ztεt1[qt ≤ γ]) = 0, E(ztεt1[qt > γ]) = 0 (4)

hold for all γ ∈ Γ. Based on these moment conditions, they construct the usual two-step
GMM estimators:

θ̂iγ,(2) = (N̂iγΩ̂−1
iγ N̂>

iγ)−1N̂iγΩ̂−1
iγ (T−1

∑
iγ ztyt),

where N̂iγ = T−1
∑

iγ wtz
>
t , Ω̂iγ = T−1

∑
iγ ε̂2t,(1)ztz

>
t ,
∑

1γ(∙) =
∑T

t=1(∙)1[qt ≤ γ],
∑

2γ(∙) =
∑T

t=1(∙)1[qt > γ] , ε̂t,(1) = yt − w>
t θ̂1γ,(1)1[qt ≤ γ] − w>

t θ̂2γ,(1)1[qt > γ] are

the first step GMM residuals, and θ̂iγ,(1) are consistent first-step versions of θ̂iγ,(2), for
example by replacing Ω̂iγ with M̂iγ = T−1

∑
iγ ztz

>
t . These estimators can be used to

construct a Wald test for each γ, and taking the maximum of this sequence of Wald tests
over γ ∈ Γ yields the test in CH:

WGT = sup
γ∈Γ

WGT (γ) = sup
γ∈Γ

T
(
θ̂1γ,(2) − θ̂2γ,(2)

)>
V̂ −1

γ,(1)

(
θ̂1γ,(2) − θ̂2γ,(2)

)
, (5)

where V̂γ,(1) =
∑2

i=1 V̂iγ,(1) and V̂iγ,(1) = (N̂iγΩ̂−1
iγ N̂>

iγ)−1.
As shown in the simulation section 5, this test has serious size distortions for sample

sizes often encountered in macroeconomic data. Even though CH prove bootstrap validity
of their test in large samples, Tables 1-2 shows that the bootstrap does not replicate well
the empirical distribution of the test statistic in finite samples.

Note that both for a LFS and a TFS, the moment conditions (4) are still valid, but they
do not reflect the additional information that the instruments are equally strong over the
entire sample (for a LFS), or they change strength over the sample (for a TFS). In both
cases, it may be possible to construct more efficient GMM estimators which use this
information, however the optimal GMM estimation require the use of heteroskedasticity-
robust variance estimators before and after each γ, leading precisely to the sample edge
inaccuracies in these estimators that we want to avoid.

For this reason and also because the 2SLS estimation we consider is a necessary step if
one also wants a consistent estimate of the threshold γ0 under the alternative hypothesis
HA : θ0

1 6= θ0
2, the paper focuses on 2SLS estimation of equations (1) and (2) or (1) and

(3).6

5They only considered a model with endogenous regressors, but their results straightforwardly generalize
to the case of both endogenous and exogenous regressors.
6The only available parametric method for consistently estimating γ0 in (1) we are aware of was

proposed in CH and is based on 2SLS. Note that it is not known whether the implicit maximizer of
WGT (γ) is a consistent estimator of γ0.
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The LFS (2) is estimated over the full sample:

Π̂ =
(∑T

t=1
ztz

>
t

)−1∑T

t=1
ztx

>
t , x̂t = Π̂>zt.

For the TFS (3), we first estimate the threshold ρ0 as in CH, by multivariate least-squares:

ρ̂ = arg min
ρ∈Γ

trace
T∑

t=1

[
(xt − Π̂>

tρzt)(xt − Π̂>
tρzt)

>
]
,

where Π̂iρ = (
∑

iρ ztz
′
t)

−1
∑

iρ ztx
>
t for i = 1, 2, and Π̂ρt = Π̂1ρ1[qt ≤ ρ] + Π̂2ρ1[qt > ρ].

At this threshold estimator,

Π̂i = Π̂iρ̂, x̂t = Π̂>
ρ̂tzt.

With this notation, in both cases, the 2SLS estimators θ̂iγ of equation (1) - over all γ ∈ Γ
- are7

ŵt = (x̂>
t , ẑ>1t)

>, θ̂iγ =
(∑

iγ
ŵtŵ

>
t

)−1∑

iγ
ŵtyt.

We now propose two tests for H0 : θ0
1 = θ0

2 and an unknown threshold. The first one
is a likelihood-ratio type test:

LRT = sup
γ∈Γ

LRT (γ) = sup
γ∈Γ

SSR0 − SSR1(γ)
SSR1(γ)/(T − 2p)

(6)

Here, SSR0 =
∑T

t=1(yt − ŵ>
t θ̂), with θ̂ = (

∑T
t=1 ŵtŵ

>
t )−1

∑T
t=1 ŵtyt the full-sample

2SLS estimator, and SSR1(γ) =
∑2

i=1

∑
iγ(yt − ŵ>

t θ̂iγ)2. This test has the advantage
that the implicit maximum is achieved at γ̂, which is a consistent estimator of γ0 in
equation (1) under the alternative HA : θ̂1 = θ̂2, as shown in CH.

The second one is a Wald-type test:

WT = sup
γ∈Γ

WT (γ) = sup
γ∈Γ

T
(
θ̂1γ − θ̂2γ

)>
V̂ −1

γ

(
θ̂1γ − θ̂2γ

)
, (7)

where V̂γ
p
−→Vγ = limVar [ T 1/2(θ̂1γ − θ̂2γ)], and the explicit expression for V̂γ and Vγ can

be found in Appendix B, Definition B.1 for a LFS and Appendix B, Definition B.2 for a
TFS. Unlike the sup Wald test in Hall et al. (2012), which is the change-point counterpart
of the test here, our test - through the way V̂γ is defined - takes into account that the
2SLS estimators θ̂1γ and θ̂2γ are correlated through either a full-sample first-stage or
through misalignment of ρ0 and γ.

Since the asymptotic distribution of both 2SLS tests is shown in Appendix B, Theorem
B.1 to depend on moments and parameters of the data generating process, we propose
bootstrapping these tests and prove the asymptotic validity of the bootstrap. The GMM
test was also shown to be non-pivotal in CH, and they also proposed a (variant of) boot-
strap which they showed to be asymptotically valid. All these bootstraps are described
in the next section.

7In the computation, one does not search over all possible values in Γ, but only consider unique values
of qt taken in the sample, from the η to the (1 − η) quantile, where typically η ∈ [0.10, 0.25].



6 M.P. Rothfelder and O. Boldea

3. BOOTSTRAP

Motivated by the good performance of the wild bootstrap for 2SLS change-point tests
in Boldea et al. (2019), for our 2SLS tests, we propose using the fixed regressor wild
bootstrap, where the instruments and the exogenous regressors are kept fixed, and the
residuals are multiplied with the i.i.d. variable ηt described in Assumption 4.2 to preserve
the potential conditional heteroskedasticity in the data.8 A bootstrap sample is computed
always under H0 : θ0

1 = θ0
2, as follows:

• estimate a LFS or TFS (with ρ̂ fixed), and compute the full-sample 2SLS estimates
θ̂ = (T−1

∑
t=1 ŵtŵ

>
t )−1T−1

∑
t=1 ŵtyt;

• obtain the residuals ût = xt − x̂t and ε̂t = yt − w>
t θ̂;

• let ub
t = ûtηt and εb

t = ε̂tηt, where ηt ∼ i.i.d.(0, 1)
• let xb

t = Π̂>
t zt + vb

t , wb
t = (xb>

t , z>1t)
> and yb

t = wb
t θ̂ + ub

t .

Let Π̂b
t be computed as Π̂ρ̂t but with the bootstrap data, so either under a LFS, in which

case Π̂b
t = Π̂b = (

∑T
t=1 ztz

>
t )−1

∑t
t=1 ztx

b>
t , or under a TFS, in which case Π̂b

t = 1[qt ≤
ρ̂]Πb

1 + 1[qt > ρ̂]Πb
2, and Π̂b

i = (
∑

iρ̂ ztz
>
t )−1

∑
iρ̂ ztx

b>
t for i = 1, 2.

Let θ̂b
iγ = (

∑
iγ ŵb

t ŵ
b>

t )−1
∑

iγ ŵb
ty

b
t , where x̂b

t = Π̂b>
t zt and ŵb

t = (x̂b>
t , z>1t)

>, and let

θ̂b = (
∑T

t=1 ŵb
t ŵ

b>

t )−1
∑T

t=1 ŵb
ty

b
t .

Then the bootstrap equivalent of LRT = supγ∈Γ LRT (γ) is LRb
T = supγ∈Γ LRb

T (γ),
where LRb

T (γ) is computed in the same way as LRT (γ), but with SSR0 replaced by
SSRb

0 =
∑T

t=1(y
b
t − ŵb>

t θ̂b)2 and SSR1(γ) by SSRb
1(γ) =

∑2
i=1

∑
iγ(yb

t − ŵb>
t θ̂b

iγ)2.
The bootstrap equivalent of WT = supγ∈Γ WT (γ) is W b

T = supγ∈Γ W b
T (γ), where

W b
T (γ) = T (θ̂b

1γ − θ̂b
2γ)>(V̂ b

γ )−1(θ̂b
1γ − θ̂b

2γ), with V̂ b
γ obtained as V̂γ in Appendix B,

Definition B.1 for a LFS or Definition B.2 for a TFS, but replacing all sample estimators
by their bootstrap equivalents, except for ρ̂, which is kept fixed throughout the bootstrap
samples for a TFS.

We now describe the bootstrap in CH, to which we make two slight modifications which
have no asymptotic consequence for their test, but improve its finite sample performance
under H0. A bootstrap sample is computed as follows:

• obtain the full-sample two-step GMM estimator

θ̂(2) = (N̂ Ω̂−1N̂>)−1N̂ Ω̂−1(T−1
∑T

t=1
ztyt),

with Ω̂ = T−1
∑T

t=1 ztz
>
t ε̌2t,(1), ε̌t,(1) = yt − w>

t θ̂(1), where θ̂(1) is obtained as θ̂(2)

but replacing Ω̂ with T−1
∑T

t=1 ztz
>
t , and N̂ = T−1

∑T
t=1 wtz

>
t ;

• obtain the two-step residuals ε̌t,(2) = yt − w>
t θ̂(2);

• let εb
t = ε̌t,(2)ηt, where ηt ∼ i.i.d.(0, 1);

• let yb
t = w>

t θ̂(2) + εb
t .

8It is perhaps possible to design a recursive wild bootstrap method for threshold models, but as shown
in Boldea et al. (2019), it would come at the cost of stronger moment assumptions. One could also
consider a pairs bootstrap, but as shown in MacKinnon (2009), it does not necessarily outperform the
wild bootstrap in small samples.
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Note that the two changes to CH are: (1) that we bootstrap under the null rather than
the alternative, and therefore use ε̌t,(1) instead of ε̂t,(1) and ε̌t,(2) instead of ε̂t,(2) =

yt − w>
t (θ̂1γ1[qt ≤ γ] + θ̂2γ1[qt > γ]); (2) that we add back the conditional mean for yb

t

instead of writing yb
t = εb

t , for the purposes of better replicating the variation in yt. Then
the bootstrap equivalent of the GMM test is WGb

T = supγ∈Γ WGb
T , with

WGb
T = T

(
θ̂b
1γ,(2) − θ̂b

2γ,(2)

)>
(V̂ b

γ,(1))
−1
(
θ̂b
1γ,(2) − θ̂b

2γ,(2)

)
,

where θ̂b
iγ,(2) = (N̂iγΩ̂b−1

iγ N̂>
iγ)−1N̂iγΩ̂b−1

iγ (T−1
∑

iγ wty
b
t ), V̂ b

γ,(1) =
∑2

i=1 V̂ b
iγ,(1), V̂ b

iγ,(1) =

(N̂iγ(Ω̂b
iγ)−1N̂>

iγ)−1, Ω̂b
iγ = T−1

∑
iγ(ε̂b

t,(1))
2ztz

>
t and ε̂b

t,(1) = yb
t − w>

t θ̂b
1γ,(1)1[qt ≤ γ] −

w>
t θ̂b

2γ,(1)1[qt > γ].
Note that this bootstrap keeps all regressors xt, zt, qt fixed, and only bootstraps yt,

while our test also bootstraps xt; the latter cannot be avoided for 2SLS.

4. BOOTSTRAP VALIDITY

Define gt = xt − ut, ht = yt − εt, M1(γ) = E[ztz
>
t 1[qt ≤ γ]], M = M(γmax) = E[ztz

>
t ],

where Γ0 = [γmin, γmax] is the support of qt, M2(γ) = M − M1(γ), and vt = (εt, u
>
t )>.

Let ‖ ∙ ‖ be the Euclidean norm. The following assumptions are similar to CH.

Assumption 4.1.

(a) E[vt|Ft] = 0 with Ft = σ{zt−s, vt−s−1, qt−s|s ≥ 0};
(b) The series (vt, gt, ht, qt, zt) is strictly stationary with ρ-mixing coefficient ρ(m) =

O(m−A) for some A > a
a−1 and 1 < a ≤ r;

(c) sup
t
E‖zt‖4r < ∞, sup

t
E‖vt‖4r < ∞;

(d) inf
γ∈Γ0

det M1γ > 0, and if (3) holds, then M1γ is strictly increasing in γ (strictly

increasing here means that if γ1 > γ2 > 0, then M1γ1 − M1γ2 is p.d.);
(e) The threshold variable qt has a continuous pdf f(qt) with sup

qt∈Γ0
|f(qt)| < ∞;

(f) E[vtv
>
t ] and E[(vtv

>
t ) ⊗ (ztz

>
t )] are two p.d. matrices of constants;

(g) The coefficient matrices Π0 (for the LFS (2)) or Π0
1, Π

0
2 (for the TFS (3)) are full

rank, and Π0
1 − Π0

2 6= 0.

Assumption 4.1(a) is typically needed for nonlinear models, as discussed in CH. As-
sumption 4.1(b) is also needed, as the only uniform law of large numbers and functional
central limit theorem for partial sums in 1[qt ≤ γ] that we are aware of derives from
Hansen (1996) and require strict stationarity (see Lemma B.1-B.2 in the Appendix).
This assumption is also in CH. Assumption 4.1(c) is a typical moment condition similar
to CH. Assumption 4.1(d) is slightly different than CH: they also impose that M1γ is p.d.
for all γ, but we require that the increments in M1γ are p.d. in the limit. This assumption
is used to provide a self-contained proof of super-consistency of ρ̂ in a TFS, and is further
discussed after Theorem 4.1. Assumptions 4.1(e) and 4.1(g) are also imposed in CH, and
Assumption 4.1(f) is needed for uniqueness of the asymptotic distributions of the test
statistics proposed.

With this assumption, we first show super-consistency of ρ̂, which allows one to treat
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the first stage threshold as if it was known in subsequent analysis. This result is also
needed for deriving the asymptotic distribution of the proposed tests and their bootstrap
versions.

Theorem 4.1. Under Assumption 4.1 and the TFS in (3), (i) ρ̂−ρ0 p
−→ 0; (ii) T (ρ̂−ρ0) =

Op(1); (iii) T 1/2 vec(Π̂i − Π0
i ) = T 1/2 vec(Π̂iρ0 − Π0

i ) + op(1).

This theorem was also shown in Chan (1993), under different assumptions that pertain
directly to a threshold autoregressive model where zt, qt are lags of xt. CH state that
under their assumptions, the result in Theorem 4.1 holds, but they do not provide an
explicit proof. We therefore provide a self-contained proof of this theorem in Appendix
B. This proof may be of interest in its own right, as it extends proof techniques from
change point analysis to threshold models.

We require the following assumption for proving bootstrap validity.

Assumption 4.2. (a) ηt
iid
∼ (0, 1) with supt Eb(η4

t ) < ∞, where Eb(∙) is the expectation
with respect to the bootstrap probability measure; (b) supt E||zt||4r/(r−1) = o(T ).

Assumption 4.2(a) is common for wild bootstraps (also see Boldea et al. (2019)),
and typical choices for ηt are the normal distribution, the Rademacher distribution,
and the asymmetric two-point distribution in Mammen (1993). CH propose using the
normal distribution, but we use both the normal distribution and the Mammen (1993)
distribution, as the latter yields better results for the Wald GMM test. Assumption
4.2(b) is only needed for the W b

T test, in particular for V̂ b
γ to weakly converge to Vγ in

probability under the bootstrap measure.

Theorem 4.2. (Bootstrap validity) Let yt be generated by (1) and xt be generated
by the LFS (2) or by the TFS (3). Then, under H0,
(i) supc∈R

∣
∣P b

(
|LRb

T − LRT | ≤ c
)∣∣ p
−→ 0 under Assumptions 4.1-4.2(a);

(ii) supc∈R

∣
∣P b

(
|W b

T − WT | ≤ c
)∣∣ p
−→ 0, under Assumptions 4.1-4.2.

This theorem proves bootstrap validity of the proposed test statistics. The bootstrap
validity of WGb

T was also explained in CH under their Assumption 1, Assumption 2

in Hansen (1996) and ηt
iid
∼ N (0, 1), although from Hansen (1996) it is clear that the

normality assumption is not necessary for their results to go through. All of these are
comparable to our Assumptions 4.1-4.2. In the next section, we compare the three test
statistics through simulations for which both our assumptions and their assumptions are
satisfied.

5. SIMULATIONS

Consider the following data generating process (DGP) for t = 1, . . . , T :

yt = 1 + xt + δx xt1[qt > γ0] + εt, xt = 1 + zt + δΠ zt1[qt > ρ0] + ut,
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where zt
iid
∼ N (1, 1), qt = zt + 1, and zt, xt, qt are scalars. We set δΠ = 0 for a LFS and

δΠ ∈ {−0.5, 0.5, 1} for a TFS. For a TFS, ρ0 = 1.75. Under the null, δx = 0, and under
the alternative, δx = 0.25 with γ0 = 2.25.9

Let νt
iid
∼ N (0, 1). We consider three cases. In case (a), the errors are homoskedas-

tic - εt = νt, we use the i.i.d. bootstrap instead of the wild bootstrap, and make

two adjustments to the computation of the test statistics. First, vb
t

i.i.d.
∼ N (0, Σ̂v) with

Σ̂v = T−1
∑T

t=1 v̂tv̂
>
t for 2SLS. For GMM, εb

t
i.i.d.
∼ N (0, σ̂2

ε ) with σ̂2
ε = T−1

∑T
t=1 ε̂2t,(1),

and ε̂t,(1) = yt − w>
t θ̂, where recall that θ̂ is the full-sample 2SLS estimator. Second,

all heteroskedasticity-robust estimators are replaced by their homoskedastic analogs. For
example, E[ztz

>
t ε2t1{qt ≤ γ}] is no longer estimated by T−1

∑
1γ ztz

>
t ε̂2t1[qt ≤ γ], but by

σ̂2
ε (T−1

∑
1γ ztz

>
t 1[qt ≤ γ]).

In case (b), the errors are still homoskedastic - εt = νt, but we assume we do not know
this, and therefore use the heteroskedasticity-robust variance estimators described in sec-
tions 2 and 3. In case (c), the errors are conditional heteroskedastic - εt = νt ∙ zt/

√
2 with

V ar(νt) = V ar(ut) = 1 and Cov(ut, νt) = 0.5, and we use the same heteroskedasticity-
robust variance estimators. In table 1 cases (b)-(c), the bootstrap is performed using

ηt
iid
∼ N (0, 1). For all other results, ηt

iid
∼ (0, 1) with draws from the asymmetric two-

point distribution proposed by Mammen (1993). In all cases besides (a), we use the wild
bootstrap as described in section 3.

There are 500 bootstrap samples. For each simulation, we compute the 95% quantile
of the bootstrap distribution of the test statistic, and if the test in the original sample
is above this quantile, we reject, else we do not reject. γ is varied between all sample
realizations of qt from its 15% quantile to its 85% quantile. We report the rejection
frequency of each test statistic in 1000 simulations under the null and at 5% nominal size
(tables 1 and 2), and under the alternative we plot the size-adjusted power, where the
size-adjustment is made relative to the null DGPs described above (figure 1).

Tables 1 and 2 show that our tests have in all cases close to nominal sizes, even in
small samples. Under known conditional homoskedasticity, the GMM test is also close
to its nominal size. However, as soon as we correct for (potential) heteroskedasticity, it
become oversized in small samples, with empirical sizes more than twice the nominal
size. This means that it will overreject the null of no threshold and cannot be trusted
even for sample sizes around T = 500, unless one truly believes the data is conditional
homoskedastic. This problem is mitigated in some cases by the use of the asymmetric
distribution in Mammen (1993) instead of the normal distribution, but the test still
displays sizes of up to 15.5% at a 5% nominal size, as shown in table 2.

The size distortions of the GMM test originate from imprecise heteroskedasticity-
robust estimates Ω̂iγ for small and moderate sample sizes pertinent to applications. In
particular, when γ is close to the 15% or 85% quantiles of qt, there is not enough data to
precisely estimate Ωiγ . In the Online supplement, Section S1, we compute Ωiγ , Ω̂iγ and
Ω̂b

iγ for a sample size of T = 100 and case (c). We show that the entries of Ω̂iγ can be 100
times larger than their limits in Ωiγ , and also twice as large or five times smaller than

9Note that because of just-identification, there is no difference between the first and the second-step

GMM estimators, therefore θ̂(2) = θ̂(1) = (
∑T

t=1 wtz>t )−1(T−1
∑T

t=1 ztyt), and θ̂iγ,(2) = θ̂iγ,(1) =

(N̂>
iγ)−1(T−1

∑
iγ ztyt). Also, V̂γ,(1) =

∑2
i=1 V̂iγ,(1), V̂iγ,(1) = (N̂iγΩ̂−1

iγ N̂>
iγ)−1 and ε̂t,(2) = ε̂t,(1) =

yt − w>
t θ̂1γ,(1)1[qt ≤ γ] − w>

t θ̂2γ,(1)1[qt > γ].
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their bootstrap equivalents in Ω̂b
iγ when γ is at the edges of the sample, but that the same

entries are approximately equal to their limits and close to their bootstrap equivalents
if γ is equal to the median.10 This is precisely why the bootstrap does not replicate well
the empirical distribution of the GMM test in small samples.

Note that this is exactly the problem that our tests mitigate, because for γ close the
edges of the sample, the 2SLS residuals are estimated using additional data from the
first stage, either from the full-sample in the case of a LFS, or from a larger sub-sample
dictated by the TFS, improving their finite sample properties.

We also assess the power of all tests. For a large threshold δx = 1, all tests have power
virtually equal to one even for sample sizes of T = 250 and therefore we do not report
these results. Figure 1 shows the power properties for a small threshold of δx = 0.25. In
small samples, the Wald tests dominates the LR test for all cases (a)-(c). Note that this
is not necessarily for classical reasons of correcting for heteroskedasticity, as all tests are
non-pivotal and bootstrapped. For the GMM test, the power is suspiciously large for a
small threshold, and it is probably due to the same inaccuracies of Ω̂iγ at the edges of the
sample mentioned earlier. However, the power differences among all three tests vanish as
the sample size grows.

Therefore, we argue that our tests provide a reliable alternative to the GMM test in
smaller samples pertinent to macroeconomic applications.

6. APPLICATION TO GOVERNMENT SPENDING MULTIPLIERS

In this section, we revisit the question whether government spending is more effective in
recessions, and address it as in RZ, using exactly the same data and model specifications,
except that we test and estimate an unknown threshold rather than imposing it.11 For
simplicity, we first focus on the instantaneous government spending multiplier θg,i(i =
1, 2), estimated similarly to RZ from:

yt = (θg,1 gt + z>1,tθz,1)1[qt ≤ γ0] + (θg,2 gt + z>1,tθz,2)1[qt > γ0]) + εt (8)

gt = Π>
1 zt1[qt ≤ ρ0] + Π>

2 zt1[qt > ρ0] + vt (9)

where yt is real GDP divided by trend GDP, gt is real government spending divided
by trend GDP - which is endogenous and instrumented by military spending news mt -
and the threshold variable is qt, the first lag of the unemployment rate. The exogenous
regressors z1t are also included in zt and contain an intercept and four lags of gt, yt,mt.
Thus, zt = [z>1t,m

>
t ]>.

The data is from the RZ replication package which can be found at http://econweb.
ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip. For details on
the data construction, the validity of instruments, or the interpretation of θg,i(i = 1, 2)
as cumulative spending multipliers, we refer the interested reader to RZ.

10These size distortions persist when using other heteroskedasticity-robust variance estimators such as
the HC1-HC3 described in Davidson and MacKinnon (1993). HC1 is just a degree of freedom adjustment
that leads to exactly the same results, because the test statistics and the bootstrap critical value are
multiplied by the same constant. With the same DGP as in table 2, we obtain sizes up to 13 .4% for
T = 100 and 12.5% for T = 250 using HC2, and sizes up to 13.7% for T = 100 and 12.5% for T = 250
using HC3.
11An earlier draft of this paper, Rothfelder and Boldea (2016), answered the same question but only with
more recent data. RZ explained that this data does not vary enough with the business cycles to identify
changes in government spending multipliers. We are grateful for the rich dataset they constructed and
we redid the empirical analysis in Rothfelder and Boldea (2016) using their data and approach.
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Letting θ0
i = (θg,i, θ

>
z,i)

> and wt = (gt, z
>
1,t)

>, the RZ estimators of θ0
i are exactly the

just-identified GMM (or instrumental variables, IV henceforth) estimators θ̂iγ,(1) defined
in Section 2, but evaluated in RZ at γ = 6.5 (and ignoring the first stage which is
irrelevant for conventional IV estimators).12 The threshold γ = 6.5 is chosen by RZ as
in Owyang et al. (2013), based on the US Federal Reserve use of this threshold in its
policy announcement; RZ also do a robustness check with a threshold of 8.0. Since it is
unclear why 6.5 or 8.0 would be the threshold that defines recessions versus expansions,
we do not assume that the threshold γ0 is known or even that there is a threshold γ0;
we instead test for the presence of γ0 first.

Our methods require first estimating ρ0 in equation (9).13 Table 3 reports the multi-
variate threshold estimates ρ̂ described in Section 2, along with the decisions of a LFS
or a TFS based on the BIC3 criterion proposed in Gonzalo and Pitarakis (2002) and on
the ordinary least-squares (OLS) versions of LRb

T and W b
T tests described in Section 3,

which were proposed in Hansen (1996). The estimate of ρ0 and the decisions change with
the cut-off considered. But if there is a threshold, the maximizer of the OLS version of
LRT (γ) is a consistent estimator of ρ0. This is because the likelihood ratio test is maxi-
mized exactly at ρ̂, the minimizer of the multivariate sum of squared residuals described
in section 2, which is consistent as shown in Theorem 4.1. Therefore, we use a TFS with
ρ̂ in table 3.

Given ρ̂ obtained for each cut-off, we test for an unknown threshold in equation (8).
Table 4 shows that the LR test clearly rejects the null. The 2SLS Wald test does not
always reject but its values are relatively close to the critical values at certain cut-offs.
The GMM Wald test only rejects with 25% trimming, but both the test and its critical
values are very large at 10% trimming, and these may be due to its distortions around
cut-offs discussed in the simulation section and further illustrated in figure 2, where the
sample-edge erratic behavior of the test is apparent.

Because equations (8)-(9) control for several lags - in line with the RZ specification -
we choose the 25% cut-off results with ρ̂ = 4.0636 and γ̂ = 8.3363, where the latter is
the 2SLS threshold estimate proposed in CH (equivalently, the implicit maximizer of the
LRT (γ) quantity in this paper).14

Our empirical illustration could conclude that the instantaneous government spending
multiplier is different in recessions, and that the threshold defining recessions is larger
than 6.5. However, we now show results that cast doubt on this conclusion and further
explain why both RZ and this paper cannot rule out that multipliers are the same in
recessions and expansions. As in RZ, we compute the cumulative government spending

12All numbers referring to unemployment rates, such as 6.5, should be interpreted as percentages: 6.5%.
13RZ do not further investigate the regimes in equation (9) because they are irrelevant for the IV
estimation. For IV estimation, one can treat equation (9) as a mere projection that helps estimate θg,i.
We treat equation (9) as the ”true specification” for testing for a threshold in instantaneous government
multipliers, although it could also be viewed as a projection, as long as it satisfies Assumption 4.1.
14The confidence sets for both these thresholds obtained by inverting the likelihood ratio tests in Hansen
(2000) and CH, or by simulating the asymptotic distribution in CH, are very tight when using the default
nonparametric kernel. However, since both estimators are close to the 25% cut-off, and increase ( γ̂) or
decrease (ρ̂) when decreasing the cut-offs used, we can only interpret these estimators as close to the
lower bounds of the true threshold values that are identified in the sample.
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multipliers θh
g,i(i = 1, 2) at horizon h = 0, 1, . . . , H from the IV regression:

∑H

h=0
yh

t+h = (θh
g,1

∑H

h=0
gt+h + z>1,tθ

h
z,1)1[qt ≤ γ̂]

+ (θh
g,2

∑H

h=0
gt+h + z>1,tθ

h
z,2)1[qt > γ̂] + εt,

where
∑H

h=0 gt+h is instrumented by mt.15

Tables 5 and 6 show the RZ multipliers and our multipliers for two years ahead, cal-
culated exactly as in RZ but with γ̂ = 8.3383. We also report classical heteroskedasticity
and autocorrelation (HAC) robust standard errors, weak instrument HAC robust con-
fidence sets, and classical and weak-instrument HAC-robust tests for the difference in
multipliers at the imposed thresholds.16 These tables show that in both cases, there is
no evidence that government spending multipliers are different in recessions, once the
possibility of weak instruments is taken into account.

We therefore plot in figure 3 a weak instrument test across horizons (the effective F-
statistic for the null hypothesis of weak instruments in each regime) for both thresholds.17

These figures show evidence of weak instruments in both regimes at horizon h = 0, and
for both our threshold and the RZ threshold. This also holds for the effective F-statistics
for our TFS specification with ρ̂ = 4.0636: they are equal to approximately −19 for
qt ≤ 4.0636 (101 observations), and −17.5 for qt > 4.0636 (399 observations), so well
below zero. Therefore, the weak instrument problem hampers further conclusions about
the difference in government spending multipliers both in our paper and in RZ.

What we do learn from the analysis is that military spending news becomes a weaker
instrument for longer horizons when the threshold increases from 6.5 to 8.0 or to 8.3363,
and therefore the usefulness of this variable as an instrument for government spending is
not robust to the threshold used.18 This is also indicated in figure 4, which shows that,
except for the World War II period, the news variable does not exhibit much variation
when the unemployment rate is above 8.3363. Apart from small sample and specification
issues, the results suggest that the RZ military news instrument is more informative
for intermediate values of unemployment, so for ”normal” recessions rather than ”deep”
recessions.

7. CONCLUSIONS

In this paper we proposed two new test statistics for threshold detection in linear models
with endogenous regressors and exogenous thresholds. Even though the paper is derived
for time series models, our assumptions indicate that it can also be applied to cross-
sectional models. We showed that our test statistics works better in finite samples than
an existing GMM test because they use more information available from the first stage.

15It is unclear how to use the TFS specification (9) to obtain cumulative government spending multipliers
at h > 0, because of the misalignment between the first and the second stage threshold, and we leave
this to future research.
16Table 1 in the Online Supplement, Section S2, also shows these results with a 8.0 threshold; the results
are similar to the γ̂ = 8.3363 threshold, and it makes sense as the difference in the regimes amounts to
14 more observations.
17Figure 1 in the Online Appendix shows the same plot with a 8.0 threshold; the results are similar to
the γ̂ = 8.3363 threshold.
18The Online Supplement, figure 1, shows that this problem already occurs for a threshold of 8 .0.
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Rothfelder and Boldea (2016) show in their Theorem 1 that under conditional ho-
moskedasticity and one endogenous regressor, the 2SLS estimators with a LRF or a TRF
can be more efficient than the GMM estimators that ignore this information. It would
be interesting to assess when this efficiency carries over to more general settings, and
whether there exists an optimal GMM estimator that uses similar information from the
first stage as the 2SLS estimators.

ACKNOWLEDGEMENTS

We would like to thank for very valuable comments and suggestions on this work: Jef-
frey Campbell, Pavel C̆́ız̆ek, Bruce Hansen, Frank Kleibergen, André Lucas, Bertrand
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A. APPENDIX A

Table 1. Rejection frequencies under the null DGP and 5% nominal size

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

Case T LR W WG LR W WG LR W WG LR W W G

(a)

100 6.1% 5.9% 4.3% 2.8% 5.6% 2.7% 2.5% 3.4% 5.0% 3.8% 4.1% 5.4%
250 5.3% 5.5% 2.6% 2.7% 2.8% 2.7% 1.0% 2.4% 3.4% 3.8% 3.7% 3.5%
500 5.1% 5.3% 3.5% 2.7% 3.8% 3.1% 3.6% 4.1% 4.2% 5.4% 4.6% 4.4%
1000 5.5% 5.8% 4.0% 5.2% 4.5% 3.2% 4.4% 4.3% 4.4% 5.4% 5.1% 4.4%

(b)

100 4.6% 7.3% 11.9% 6.1% 10.0% 12.7% 3.1% 5.9% 12.7% 3.5% 7.7% 12.0%
250 4.2% 5.8% 12.2% 5.9% 7.9% 11.0% 3.6% 4.6% 9.8% 5.2% 5.9% 9.3%
500 4.9% 4.6% 11.1% 5.3% 6.3% 8.8% 5.3% 3.9% 8.4% 6.2% 5.4% 8.0%
1000 5.1% 4.8% 9.2% 5.9% 5.9% 7.4% 5.8% 5.9% 6.2% 5.8% 6.1% 5.9%

(c)

100 4.6% 7.3% 11.9% 6.1% 10.0% 12.7% 3.1% 5.9% 12.7% 3.5% 7.7% 12.0%
250 4.2% 5.8% 12.2% 5.9% 7.9% 11.0% 3.6% 4.6% 9.8% 5.2% 5.9% 9.3%
500 4.9% 4.6% 11.1% 5.3% 6.3% 8.8% 5.3% 3.9% 8.4% 6.2% 5.4% 8.0%
1000 5.1% 4.8% 9.2% 5.9% 5.9% 7.4% 5.8% 5.9% 6.2% 5.8% 6.1% 5.9%

Here, ηt
iid
∼ N (0, 1). LR and W refer to our tests LRT and WT , and WG refers to the WGT test in CH

Table 2. Rejection frequencies under the null DGP and 5% nominal size

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

Case T LR W WG LR W WG LR W WG LR W W G

(b)

100 5.2% 6.8% 12.2% 2.4% 6.1% 12.7% 2.3% 5.1% 10.1% 3.7% 5.9% 9.9%
250 5.1% 5.8% 12.4% 1.7% 4.5% 15.5% 2.7% 4.6% 11.0% 3.6% 6.2% 10.8%
500 4.8% 5.4% 8.9% 3.5% 3.9% 10.0% 3.1% 4.0% 8.0% 3.9% 4.3% 7.0%
1000 4.3% 4.9% 9.5% 3.3% 4.0% 12.3% 3.6% 3.8% 8.7% 4.7% 5.0% 8.7%

(c)

100 6.2% 6.7% 10.0% 4.5% 6.1% 10.3% 3.5% 3.9% 8.8% 4.1% 5.1% 8.8%
250 4.6% 6.2% 10.4% 2.9% 4.9% 12.2% 4.1% 4.8% 7.9% 4.8% 5.4% 7.0%
500 4.9% 6.4% 7.8% 4.1% 4.1% 9.8% 4.2% 4.9% 6.5% 4.6% 4.9% 5.7%
1000 5.4% 4.6% 6.6% 5.1% 4.9% 9.8% 5.0% 5.5% 6.7% 4.9% 5.8% 6.3%

See table 1: test statistics are the same but ηt
iid
∼ (0, 1) follows the Mammen (1993) distribution.

Table 3. Presence of Thresholds in the First Stage

ρ̂ BIC3 LR W
10% 3.5264 TFS TFS LFS
15% 3.5264 TFS TFS LFS
20% 3.7530 LFS TFS LFS
25% 4.0636 LFS TFS LFS

BIC3 is the BIC3 criterion in Gonzalo and Pitarakis (2002), and LR and W are the OLS bootstrap

equivalents of LRT and WT .
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Table 4. Presence of Thresholds in model (8)

Trim TFS ρ̂ γ̂ LR 5%CV Reject W 5%CV Reject WG 5%CV Reject

10% 3.5264 11.9660 93.526 77.308 Yes 29.335 28.775 Yes 178.296 198.705 No
15% 3.5264 10.7000 78.158 60.051 Yes 27.698 28.775 No 66.523 83.339 No
20% 3.7530 9.3443 75.332 51.311 Yes 27.505 29.772 No 66.523 67.292 No
25% 4.0636 8.3363 65.719 48.726 Yes 24.365 28.352 No 66.523 66.433 Yes

”5%C.V.” display the bootstrap 5% critical values. ”Reject” indicates whether the null of no threshold in (8)
is rejected. For all cases, we use a TFS with ρ̂ obtained with the same cut-offs as the column ”Trim” indicates.

Table 5. IV Multipliers with RZ threshold

State 1, qt ≤ 6.5: 319 obs. State 2, qt > 6.5: 181 obs.

h Mult. s.e. AR LB AR UB Mult. s.e. AR LB AR UB p-val. AR p-val.

0 1.24 0.45 -0.51 2.99 -0.61 0.98 -4.43 3.22 0.04 0.22
1 1.11 0.29 -0.02 2.24 -1.92 1.54 -7.95 4.10 0.04 0.24
2 0.89 0.19 0.13 1.64 -0.17 0.25 -1.16 0.81 0.00 0.24
3 0.71 0.14 0.15 1.28 0.22 0.16 -0.42 0.87 0.01 0.25
4 0.64 0.12 0.17 1.12 0.46 0.14 -0.09 1.01 0.26 0.39
5 0.63 0.10 0.24 1.03 0.54 0.12 0.08 1.00 0.52 0.57
6 0.62 0.09 0.26 0.99 0.59 0.11 0.17 1.01 0.81 0.82
7 0.59 0.09 0.24 0.95 0.60 0.10 0.23 0.97 0.95 0.95
8 0.59 0.09 0.23 0.95 0.62 0.09 0.29 0.95 0.82 0.82
9 0.62 0.10 0.25 1.00 0.63 0.08 0.33 0.92 0.97 0.97
10 0.66 0.10 0.27 1.05 0.64 0.07 0.37 0.91 0.87 0.87
11 0.68 0.10 0.28 1.08 0.64 0.07 0.39 0.90 0.79 0.80
12 0.68 0.11 0.27 1.10 0.65 0.06 0.41 0.90 0.81 0.82
13 0.68 0.11 0.26 1.11 0.67 0.06 0.44 0.89 0.89 0.90
14 0.68 0.11 0.24 1.13 0.68 0.05 0.47 0.89 0.99 0.99
15 0.67 0.12 0.19 1.15 0.68 0.05 0.48 0.88 0.92 0.92

”Mult.” indicates the IV estimates at each horizon, ”obs.” the number of observations, and
”s.e.” the Newey-West HAC standard errors using the Bartlett kernel and the data-dependent
bandwidth. ”AR LB (AR UB)” refer to 95% Anderson-Rubin confidence lower (upper) bounds.
”p-val.” indicate classical p-values for the t-test of no difference between the multipliers, and
”AR p-val.” indicate Anderson-Rubin p-values for the same test. All the results are computed
with RZ’s replication package code.

Table 6. IV Multipliers with our threshold

State 1, qt ≤ 8.3363: 410 obs. State 2, qt > 8.3363: 90 obs.

h Mult. s.e. AR LB AR UB Mult. s.e. AR LB AR UB p-val. AR p-val.

0 1.30 0.38 -0.20 2.80 -0.93 1.36 -6.27 4.41 0.05 0.19
1 1.14 0.25 0.17 2.11 -1.68 1.37 -7.05 3.68 0.03 0.23
2 0.93 0.16 0.28 1.57 -0.55 0.48 -2.42 1.33 0.00 0.25
3 0.74 0.13 0.25 1.23 -0.02 0.20 -0.80 0.76 0.00 0.26
4 0.67 0.11 0.24 1.09 0.32 0.17 -0.36 1.00 0.07 0.31
5 0.65 0.10 0.28 1.03 0.52 0.18 -0.19 1.22 0.45 0.52
6 0.63 0.10 0.26 1.01 0.62 0.19 -0.14 1.38 0.94 0.94
7 0.60 0.09 0.24 0.96 0.66 0.20 -0.13 1.45 0.77 0.78
8 0.60 0.09 0.25 0.94 0.66 0.18 -0.04 1.37 0.71 0.73
9 0.62 0.09 0.29 0.96 0.66 0.15 0.07 1.25 0.84 0.85
10 0.65 0.09 0.31 0.10 0.66 0.13 0.14 1.18 0.96 0.96
11 0.67 0.09 0.32 1.02 0.65 0.12 0.17 1.13 0.87 0.87
12 0.67 0.09 0.32 1.03 0.64 0.12 0.17 1.11 0.85 0.85
13 0.66 0.09 0.30 1.03 0.67 0.11 0.22 1.11 0.98 0.98
14 0.65 0.10 0.27 1.03 0.70 0.11 0.28 1.11 0.75 0.76
15 0.64 0.11 0.22 1.05 0.71 0.10 0.31 1.18 0.58 0.60

See table 5 notes.
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Figure 2. Plot of LRT (γ), WT (γ) and WGT (γ)
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Figure 3. Effective F-statistic
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The effective F- or KP-Test statistic is the Kleibergen and Paap (2006) Wald rank test in Stata, equal to the
HAC-robust Wald significance test of the first-stage coefficient on mt in each regime, minus the Montiel-Olea and

Pflueger (2013) critical value 23.11, the 5% critical value that tolerates 10% relative bias of 2SLS compared to OLS.
The values are capped just below 40. The first two plots reproduce figure 10 in RZ.
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Figure 4. Data plots with with shaded areas qt > 8.3363
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B. APPENDIX B

General notation. Let ‖ ∙ ‖ be the Euclidean norm for vectors, and the Frobenius
norm for matrices: ‖P‖ =

√
tr(P>P ). Also, for (matrix valued) random variable P , let

‖P‖α = (E‖P‖α)1/α, for any α > 0. Let Im the m × m-identity matrix, 0a×b a a × b
vector of zeros (we use this notation only when the dimension is not obvious from the
derivations, else we use 0), and let K denote a generic constant. All convergence re-
sults, if not stated otherwise, are uniformly in γ ∈ Γ, and all op(1) terms are uniform in

γ. “⇒” stands for weak convergence in Skorokhod metric, “
db

⇒ ” for weak convergence

in Skorokhod metric under the bootstrap measure, and “
pb

−→ ” for weak convergence in
probability under the bootstrap measure. Let K be an universal constant.

Lemma B.1. [ULLN] If (i) {at} and {qt} are two scalar strictly stationary and ρ-mixing
series, with ρ-mixing coefficient ρ(m) = O(m−A) for some A > a

a−1 and 1 < a < r;(ii)
supt ‖at‖1+δ < ∞ for some δ > 0; (iii) qt has a continuous distribution, with its pdf f(∙)

bounded: supx∈Γ |f(x)| < ∞, then supγ∈Γ

∣
∣
∣T−1

∑
1γ at − E[at1[qt ≤ γ]]

∣
∣
∣

p
−→ 0.

Proof of Lemma B.1. This uniform law of large numbers (ULLN) can be proven using
the same steps as the proof of Lemma 1 in Hansen (1996), with a slight modification as
we do not assume that at has a continuous and bounded pdf. First, note that ρ-mixing
implies ergodicity. Second, set in the proof of their Lemma 1 wt = (at, qt), φ(wt) = at,
and {wt ≤ γ} = 1[qt ≤ γ]. Follow the steps in Hansen (1996), until their equation
(15). Then note that supt ||at||1+δ ≤ K by Assumption 4.1(c), and for some ε > 0, set
Kε = (2K/ε)(1+δ)/δ. Since qt is assumed to have a continuous and bounded pdf, there
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exists an ε such that
∫ γk+1

γk
f(x)dx ≤ 1/Kε = (ε/(2K))(1+δ)/δ. Therefore, replace equation

(15) by the inequality below (derived using Hölder’s inequality with p = 1/(1 + δ) and
q = δ/(1 + δ)):

E[|at|1[γk < qt ≤ γk+1]] ≤ ‖at‖1+δ‖1[γk < qt ≤ γk+1]]‖(1+δ)/δ

= sup
t

‖at‖1+δ

(∫ γk+1

γk

f(x)dx

)δ/(1+δ)

≤ K

(∫ γk+1

γk

f(x)dx

)δ/(1+δ)

≤ K(ε/(2K)) = ε/2.

The rest of the proof is as in Hansen (1996), where only the last equation in their proof
should be replaced by:

E|fu
ε,k(wt) − f l

ε,k(wt)| ≤ 2E[|at|1[γk < qt ≤ γk+1]] ≤ ε.

Lemma B.2. [FCLT] If the assumptions in Lemma B.1 hold but with at being a vector
of m.d.s, and additionally (i) supt ‖at‖2r < ∞; (ii) E[ata

′
t1[qt ≤ γ]] = Fγ , a p.d. matrix

of constants, (iii) infγ∈Γ det Fγ > 0, then: T−1/2
∑

1γ at ⇒ J (γ), a vector of Gaussian
processes with covariance function E[ata

′
t1[qt ≤ (γ1 ∧ γ2)]].

Proof of Lemma B.2. This functional central limit theorem (FCLT) follows directly
from Theorem 3 and then Theorem 1 in Hansen (1996). Note that only supt ‖at‖2r < ∞
is needed, as evident from replacing xtεt with at in the first two equations of the proof
of Theorem 3 in Hansen (1996).

General notation continued. For a generic matrix P , with P1γ = E[Pt1[qt ≤ γ]],
and {Pt}T

t=1 a matrix of random variables, we let P = P1γmax
= E[Pt], and P2γ =

P − P1γ . For example, since M1γ = E[ztz
>
t 1[qt ≤ γ]], we have M = E[ztz

>
t ] and

M2γ = E[ztz
′
t1[qt > γ]]. Let their sample equivalents (replacing expectations by aver-

ages and unobserved quantities with estimates) be denoted by hats, for example, for
M1γ , its sample equivalent is M̂1γ = T−1

∑
1γ ztz

>
t , for M it is M̂ = T−1

∑T
t=1 ztz

>
t ,

for Ha,1γ = E[ztz
>
t ε2t1[qt ≤ γ]], it is Ĥa,1γ = T−1

∑
1γ ztz

>
t ε̂2t , where ε̂t is an estimate of

the residual εt, and so on. When the notation P̂iγ does not conform with this definition,
it is specifically indicated in the text. Let G1(γ) be a q(p1 + 1) vector of independent
zero mean Gaussian processes with covariance matrix H1γ = E[(vtv

>
t ⊗ ztz

>
t )1[qt ≤ γ]],

and covariance function E[G1(γ1)G>
1 (γ2)] = E[(vtv

>
t ⊗ ztz

>
t )1[qt ≤ (γ1 ∧ γ2)]. We denote

G = G(γmax), where recall that [γmin, γmax] is the support of qt, and G2(γ) = G−G1(γ).
Let σ2 = E(εt + u>

t θ0
x)2, θ̃0 = vec(1, θ0

x) and θ̌0 = vec(0, θ0
x).

Throughout the text, quantities of the form vtv
>
t ⊗ ztz

>
t should be read as (vtv

>
t ) ⊗

(ztz
>
t ). Define ε̃t = εt + (xt − x̂t)>θ0

x, where x̂t is obtained either with a LFS or a TFS
specification, depending on the context. Define Ĉiγ = T−1

∑
iγ ŵtŵ

>
t , and Ĉ = Ĉ1γ+Ĉ2γ ,

both for a LFS and a TFS.

LINEAR FIRST STAGE

Notation specific for a LFS: Let A0 = [Π0, S>]> be the augmented matrix of the
FS slope parameters, where S = [Ip2 ,0p2×(q−p2)] and let Â = [Π̂, S>]>. Hence, z1t =
Szt and wt = A0zt + (u>

t , 01×q1)
>. Define Ciγ = A0MiγA0>, Riγ = MiγM−1, Cγ =

[C−1
1γ ,−C−1

2γ ], Diγ = [θ̃0>⊗Iq]−[θ̌0>⊗Riγ ], D̂iγ = [θ̃0>⊗Iq]−[θ̌0>⊗R̂iγ ], R̂iγ = M̂iγM̂−1,
D = D1γ + D2γ = [1, 01×p2 ] ⊗ Iq and Qγ = C1γC−1C2γ . Also, define the Gaussian
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processes Bi(γ) = A0Diγ Gi(γ)for i = 1, 2, B = B1(γ) + B2(γ) = A0D G, as well as the
processes B(γ) = vec(B1(γ),B2(γ)) and E(γ) = CγB(γ), whose covariance matrices VB,γ

and respectively Vγ are defined below, along with V̂γ used in the construction of the
supγ∈Γ WT (γ) test.

Definition B.1. Denote VB,1γ = A0D1γH1γD>
1γA0, VB = A0D H D> A0, VB,12,γ =

A0D1γH1γD>A0>, VB,2γ = VB+VB,1γ−VB,12,γ−V >
B,12,γ . Then VB,γ =

[
VB,1γ VB,12,γ

V >
B,12,γ VB,2γ

]

,

and Vγ = CγVB,γC>
γ . Define D̄iγ = [θ̃>⊗Iq]−[θ̌>⊗R̂iγ ], where θ̃ = [1, θ̂x] and θ̌ = [0, θ̂x].

Then V̂γ is defined as Vγ , but replacing Ciγ with Ĉiγ , A0 with Â, Diγ by D̄iγ , and H1γ

by Ĥ1γ = T−1
∑

γ v̂tv̂
>
t ⊗ ztz

>
t , and H by Ĥ = T−1

∑T
t=1 v̂tv̂

>
t ⊗ ztz

>
t .

Lemma B.3. Suppose Assumption 4.1 holds, yt is generated by (1), and xt is gener-
ated by the LFS (2). Then, under H0 and for i = 1, 2, (i) T−1

∑
iγ ztz

>
t

p
−→Miγ and

T−1
∑

iγ ŵtŵ
>
t

p
−→Ciγ ; (ii) T−1/2

∑
iγ vt ⊗ zt ⇒ Gi(γ), T−1/2

∑
iγ ŵtε̃t ⇒ Bi(γ), and

T−1/2 vec(
∑

1γ ŵtε̃t,
∑

2γ ŵtε̃t) ⇒ B(γ).

Proof of Lemma B.3. Part (i). T−1
∑

iγ ŵtŵ
>
t = T−1

∑
iγ Âztz

>
t Â>. By Assump-

tion 4.1 and standard arguments, we have that Â = A0 + op(1), so T−1
∑

iγ ŵtŵ
>
t =

(A0 + op(1))T−1
∑

iγ ztz
>
t (A0 + op(1))>. By Assumption 4.1(b),(c) and (e), the assump-

tions of Lemma B.1 are satisfied for elements of at = ztz
>
t , so T−1

∑
1γ ztz

>
t

p
−→M1γ ,

T−1
∑

2γ ztz
>
t

p
−→M2γ , and T−1

∑
iγ ŵtŵ

>
t

p
−→A0MiγA0> = Ciγ .

Part (ii).

T−1/2
∑

1γ

ŵtε̃t = Â
(
T−1/2

∑

1γ
zt(εt + u>

t θ0
x) − R̂1γT−1/2

∑

1γ
ztu

>
t θ0

x

)

= Â D̂1γ

(
T−1/2

∑

1γ
zt ⊗ vt

)
,

where by Lemma B.1(i), M̂1γ
p
−→M1γ and M̂

p
−→M , therefore D̂1γ

p
−→D1γ . By Assumption

4.1(a)-(f), the conditions of Lemma B.2 are satisfied (because ‖vt⊗zt‖2r ≤ ‖vt‖4r‖zt‖4r <

K), so T−1/2
∑

1γ vt ⊗ zt ⇒G1(γ). Because Â
p
−→A0, T−1/2

∑
1γ ŵtε̃t ⇒A0 D1γG1(γ) =

B1(γ). Because

T−1/2
∑T

t=1
ŵtε̃t = ÂT−1/2

∑T

t=1
ztεt = ÂD(T−1/2

∑T

t=1
zt ⊗ vt) ⇒ A0 D G = B,

T−1/2
∑

2γ ŵtε̃t = T−1/2
∑T

t=1 ŵtε̃t−T−1/2
∑

1γ ŵtε̃t ⇒ B−B1(γ) = B2(γ), and therefore

T−1/2 vec(
∑

1γ ŵtε̃t,
∑

2γ ŵtε̃t) ⇒ B(γ).

Theorem B.1. (Asymptotic Distribution LFS) Let yt be generated by (1) and xt

be generated by the LFS (2). Then, under H0 and Assumption 4.1,
(i) T 1/2(θ̂1γ − θ̂2γ)⇒E(γ),
(ii) supγ∈Γ LRT (γ) ⇒ supγ∈Γ[E>(γ) Qγ E(γ)/σ2],
(iii) supγ∈Γ WT (γ) ⇒ [supγ∈Γ E>(γ)V −1

γ E(γ)], where Vγ is in Definition B.1.

Proof of Theorem B.1. Part (i). By Lemma B.3, we have that T−1/2(θ̂iγ − θ0) =
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Ĉ−1
iγ (T−1/2

∑
iγ ŵtε̃t)⇒C−1

iγ Bi(γ), so

T 1/2(θ̂1γ − θ̂2γ)⇒[C−1
1γ ,−C−1

2γ ] vec(B1γ ,B2γ) = Cγ B(γ) = E(γ).

Part (ii). Since θ̂ = Ĉ−1(T−1
∑T

t=1 ŵtyt), Ĉθ̂ =
∑2

i=1 Ĉiγ θ̂iγ , so θ̂ =
∑2

i=1 C−1Ciγ θ̂iγ +
op(1), and therefore θ̂1γ − θ̂ = C−1C2γ(θ̂1γ − θ̂2γ) + op(1) and θ̂2γ − θ̂ = C−1C1γ(θ̂2γ −
θ̂1γ) + op(1) . Hence,

SSR0 − SSR1(γ) =
∑2

i=1

[∑

iγ
(yt − ŵ>

t θ̂)2 − (yt − ŵ>
t θ̂iγ)2

]

=
∑2

i=1
(θ̂iγ − θ̂)>

[
2
∑

iγ
ŵtε̃t −

∑

iγ
ŵtŵ

>
t (θ̂ − θ0) −

∑

iγ
ŵtŵ

>
t (θ̂iγ − θ0)

]

=
∑2

i=1
T 1/2(θ̂iγ − θ̂)>

(
T−1

∑

iγ
ŵtŵ

>
t

)
T−1/2(θ̂iγ − θ̂)>

= T 1/2(θ̂1γ − θ̂2γ)[C2γC−1C1γC−1C2γ + C1γC−1C2γC−1C1γ ]T 1/2(θ̂1γ − θ̂2γ) + op(1)]

= T 1/2(θ̂1γ − θ̂2γ)>Qγ T 1/2(θ̂1γ − θ̂2γ) + op(1),

where the last line follows because C =
∑2

i=1 Ciγ , therefore C−1C1γ = Ip − C−1C2γ ,
C1γC−1C2γ = (C−C2γ)C−1(C−C1γ) = C−C1γ−C2γ +C2γC−1C1γ = C2γC−1C1γ , and
so C2γC−1C1γC−1C2γ + C1γC−1C2γC−1C1γ = C2γC−1C1γC−1C2γ + C1γC−1C2γ(Ip −
C−1C2γ) = Qγ+(C2γC−1C1γ−C1γC−1C2γ)C−1C2γ = Qγ . Since T−1/2(θ̂1γ−θ̂2γ)⇒E(γ),
SSR0 − SSR1(γ)⇒E>(γ)Qγ E(γ).

Now SSR1(γ)/(T − 2p) = T−1SSR1(γ) + op(1), since show below T−1SSR1(γ)
p
−→σ2:

T−1SSR1(γ) =
∑2

i=1
T−1

∑

iγ
(yt − ŵ>

t θ̂iγ)2 =
∑2

i=1
T−1

∑

iγ
(ε̃t − ŵ>

t (θ̂iγ − θ0))2

= T−1
∑T

t=1
ε̃2t − 2

∑2

i=1
T−1

∑

iγ
ε̃tŵ

>
t (θ̂iγ − θ0)

+
∑2

i=1
(θ̂iγ − θ0)>(T−1

∑

iγ
ŵtŵ

>
t )(θ̂iγ − θ0).

By Lemma B.3, T−1
∑

iγ ŵtŵ
>
t

p
−→Ciγ , and T−1

∑
iγ ε̃tŵ

>
t = op(1). Since θ̂iγ−θ0 = op(1),

T−1SSR1(γ) = T−1
∑T

t=1
(εt + u>

t θ0
x − z>t (Π̂ − Π0)θ0

x)2 + op(1) (10)

= T−1
∑T

t=1
(εt + u>

t θ0
x)2 + θ0>

x (Π̂ − Π0)T−1
∑T

t=1
ztz

>
t (Π̂ − Π0)θ0

x

−2T−1
∑T

t=1
zt(εt + u>

t θ0
x)(Π̂ − Π0)θ0

x + op(1)

= T−1
∑T

t=1
(εt + u>

t θ0
x)2 + op(1),

where the last equality used Lemma B.3(ii) and Π̂ − Π0 = op(1). We now apply Lemma
B.1 to at = (εt + u>

t θ0
x)2. First, E(εt + u>

t θ0
x)2 = σ2. Second, by Assumption 4.1(b),

at is strictly stationary with ρ-mixing coefficients satisfying condition (i) in Lemma B.1.
Third, by Minkowski’s inequality, ‖(εt +u>

t θ0
x)2‖2 ≤ ‖ε2t‖2 +‖θ0>

x utu
>
t θ0

x‖2 +2‖εtu
>
t θ0

x‖2.
Note that ‖ε2t‖2 = (E|ε4t |)

1/2 < K by Assumption 4.1(c). By the same assumption and
Hölder and Minkowksi inequalities, letting θ0

x,j be the jth element of θ0
x, we have:

‖θ0>
x utu

>
t θ0

x‖2 ≤ ‖
∑p1

j,k=1
θ0

x,jθ
0
x,kut,jut,k‖2 ≤ max

j,k
|θ0

x,jθ
0
x,k| p

2
1‖ut‖

2
2 < K,
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and similarly, ‖εtu
>
t θ0

x‖2 < K. Therefore, by Lemma B.1, T−1
∑T

t=1(εt + u>
t θ0

x)2
p
−→σ2,

completing the proof of part (ii).
Part (iii). We are left to show V̂γ

p
−→Vγ . Since Ĉiγ

p
−→Ciγ , Â

p
−→A0, θ̂x

p
−→ θ0

x, and therefore
D̄iγ

p
−→Diγ , to show that V̂γ

p
−→Vγ , it suffices to show that Ĥiγ = Var(T−1/2

∑
iγ v̂t ⊗

zt)
p
−→Hiγ for i = 1, 2. We show Ĥa,1γ = T−1

∑
iγ ztz

>
t ε̂2t

p
−→Ha,1γ = E[ztz

>
t ε2t1[qt ≤ γ]];

the rest of the proof is similar.

Ĥa,iγ = T−1
∑

1γ
ztz

>
t ε̂2t = T−1

∑

1γ
ztz

>
t [εt + w>

t (θ0 − θ̂)]2 = T−1
∑

1γ
ztz

>
t ε2t

+ T−1
∑

1γ
ztz

>
t [(θ0 − θ̂)>wtw

>
t (θ0 − θ̂)] + 2T−1

∑

1γ
ztz

>
t [(θ0 − θ̂)>wtεt].

First, by Assumption 4.1(b),(c) and (e), and Lemma B.1, T−1
∑

1γ ztz
>
t ε2t

p
−→Ha,1γ . Sec-

ond, T−1
∑

1γ ztz
>
t [(θ0 − θ̂)>wtw

>
t (θ0 − θ̂)] = [Iq ⊗ (θ0 − θ̂)]>T−1

∑
1γ ztz

>
t ⊗wtw

>
t [Iq ⊗

(θ0 − θ̂)]. We know that θ0 − θ̂ = Op(T−1/2). Also, it can be shown that for typical
element ξt = zt,izt,jwt,kwt,l, with i, j = 1, . . . , q and k, l = 1, . . . p, we have: ‖ξt‖r ≤
K maxi ‖zt,i‖4r < ∞, by Assumption 4.1(c), where r > 1. Therefore, by Assumption
4.1(b)-(c) and Lemma B.1, T−1

∑
iγ ztz

>
t ⊗wtw

>
t = Op(1) uniformly in γ. It follows that

T−1
∑

1γ ztz
>
t [(θ0 − θ̂)>wtw

>
t (θ0 − θ̂)] = op(1). Similarly, T−1

∑
1γ ztz

>
t (θ0 − θ̂)>wtεt =

op(1), therefore Ĥa,1γ
p
−→Ha,1γ , so by similar arguments, Ĥa,2γ

p
−→Ha,2γ , completing the

proof of part (ii).

BOOTSTRAP VALIDITY LFS

Lemma B.4. Let Assumptions 4.1-4.2 hold, yt is generated by (1), and xt is generated by
the LFS (2). Then, under H0, (i) T−1

∑
iγ vtηt ⊗zt = ob

p(1); (ii) T−1
∑

iγ ztz
>
t ηt = ob

p(1);

(iii) T−1/2
∑

iγ vtηt ⊗ zt
db

⇒Gi(γ); (iv) T−1/2
∑

iγ vb
t ⊗ zt

db

⇒Gi(γ); (v) T 1/2(Π̂b − Π̂) =

T 1/2(Π̂ − Π0) + ob
p(1); (vi) T−1

∑
iγ ŵb

t ŵ
b>
t

pb

−→Ciγ ; (vii) T−1/2
∑

iγ ŵb
t ε̃

b
t

db

⇒Bi(γ) and

vec(T−1/2
∑

1γ ŵb
t ε̃

b
t , T

−1/2
∑

2γ ŵb
t ε̃

b
t)

db

⇒B(γ), where ε̃b
t = yb

t − ŵb>
t θ̂.

Proof of Lemma B.4. We will show Lemma B.4 for i = 1; for i = 2, the proof is similar
and omitted for brevity.
Part (i). By Markov’s inequality and Assumptions 4.1(c) and 4.2(a), P b(‖T−1

∑
iγ vtηt ⊗

zt‖ > c) ≤ c−1Eb‖T−1
∑

iγ vtηt⊗zt‖ = c−1‖T−1
∑

iγ vt⊗zt‖Eb|ηt| ≤ c−1K‖T−1
∑

iγ vt⊗
zt‖ = op(1), where the last equality follows from Lemma B.3(ii). Therefore, T−1

∑
iγ vtηt⊗

zt = ob
p(1).

Part (ii). ‖T−1
∑

1γ ztz
>
t ηt‖ ≤ ‖T−1

∑
1γ(ztz

>
t − M1γ)ηt‖ + ‖M1γT−1

∑
1γ ηt‖. First,

P b(‖T−1
∑

1γ(ztz
>
t − M1γ)ηt‖ > c) ≤ ηtKEb|ηt| ‖T−1

∑
1γ(ztz

>
t − M1γ)‖ = ob

p(1),
where the last equality follows from Lemma B.3(i). By Assumptions 4.1(e), 4.2 and
Lemma B.1, it can be shown that T−1

∑
1γ ηt = ob

p(1), therefore ‖M1γT−1
∑

1γ ηt‖ ≤
‖M1γ‖|T−1

∑
iγ ηt| = ob

p(1), so T−1
∑

1γ ztz
>
t ηt = ob

p(1).

Part (iii). To show T−1/2
∑

1γ vtηt ⊗ zt
db

⇒GP1(γ), we apply Lemma B.2 (FCLT) and

verify that V arb(T−1/2
∑

1γ vtηt ⊗ zt)
p
−→H1γ . First, Eb(vtηt ⊗ zt) = 0. Conditions (ii)

and (iii) in Lemma B.2 are satisfied by Assumption 4.1(b),(c), (e) and Assumption 4.2(a).
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Condition (i) is satisfied because Eb(‖vtηt ⊗zt‖2r)1/(2r) ≤ (Eb|ηt|2r)1/(2r)‖vtzt|| = Op(1)
by Assumptions 4.1(c) and 4.2. Finally, V arb(T−1/2

∑
1γ vtηt ⊗ zt) = T−1

∑
1γ vtv

>
t ⊗

ztz
>
t

p
−→H1γ , where the last statement follows by applying Lemma B.1(ULLN). There-

fore, by Lemma B.2, T−1/2
∑

1γ vtηt ⊗ zt
db

⇒G1(γ).

Part (iv). Since ût = x>
t − x̂>

t = ut − (Π̂ − Π0)>zt,

T−1/2
∑

1γ
ub

t ⊗ zt = T−1/2
∑

1γ
ûtηt ⊗ zt

= T−1/2
∑

1γ
utηt ⊗ zt − (T 1/2(Π̂ − Π0)> ⊗ Iq)

(
T−1

∑

1γ
ztηt ⊗ zt

)

= T−1/2
∑

1γ
utηt ⊗ zt + Op(1) × vec(T−1

∑

1γ
ztz

>
t ηt)

= T−1/2
∑

1γ
utηt ⊗ zt + ob

p(1).

Similarly, T−1/2
∑

1γ εb
tzt = T−1/2

∑
1γ εtηt⊗zt+ob

p(1), therefore T−1/2
∑

1γ vb
t ⊗zt

db

⇒G1(γ).

Part (v). Since vt = (εt, u
>
t )>, from part (iv) and Lemma B.3(ii), T 1/2(Π̂b − Π̂) =

M̂(T−1/2
∑T

t=1 ztu
b>
t ) = M̂(T−1/2

∑T
t=1 ztu

>
t + ob

p(1)) = T 1/2(Π̂ − Π0) + ob
p(1).

Part (vi). T−1
∑

1γ ŵb
t ŵ

b
t = Âb(T−1

∑
1γ ztz

>
t )Âb>, where Âb = [Π̂b, S>]>. From part

(v), T 1/2(Π̂b−Π0) = Ob
p(1), so Π̂b pb

−→Π0, therefore Âb pb

−→A0, and T−1
∑

1γ ŵb
t ŵ

b>
t

pb

−→C1γ .
Part (vii). By part (iv) and (v) and Lemma B.3(i)-(ii), and recalling that D̄1γ =
[θ̃ ⊗ Iq] − [θ̌ ⊗ R̂1γ ]

p
−→D1γ , we have:

T−1/2
∑

1γ
ŵb

t ε̃
b
t = Âb

(
T−1/2

∑

1γ
zt(ε

b
t + (wb

t − ŵb
t )

>θ̂)
)

= Âb
(
T−1/2

∑

1γ
zt(ε

b
t + ub>

t θ̂x) − T−1
∑

1γ
ztz

>
t T 1/2(Π̂b − Π̂)θ̂x

)

= A0D̄1γ

(
T−1/2

∑

1γ
vb

t ⊗ zt

)
+ ob

p(1) = A0D1γ

(
T−1/2

∑

1γ
vb

t ⊗ zt

)
+ ob

p(1)
db

⇒B1(γ).

Similarly, T−1/2
∑

2γ ŵb
t ε̃

b
t

db

⇒B2(γ), so vec(T−1/2
∑

1γ ŵb
t ε̃

b
t , T

−1/2
∑

2γ ŵb
t ε̃

b
t)

db

⇒B(γ).

Proof of Theorem 4.2. Part (i).

SSRb
0 − SSRb

1(γ) =
∑2

i=1

[∑

iγ
(yb

t − ŵb>
t θ̂b)2 − (yb

t − ŵb>
t θ̂b

iγ)2
]

=
∑2

i=1
(θ̂b

iγ − θ̂b)>
[
2
∑

iγ
ŵb

t ε̃
b
t −

∑

iγ
ŵb

t ŵ
b>
t (θ̂b − θ̂) −

∑

iγ
ŵb

t ŵ
b>
t (θ̂b

iγ − θ̂)
]

=
∑2

i=1
T 1/2(θ̂b

iγ − θ̂b)>
(
T−1

∑

iγ
ŵb

t ŵ
b>
t

)
(θ̂b

iγ − θ̂b)

=
∑2

i=1
T 1/2(θ̂b

iγ − θ̂b)>Ciγ

∑2

i=1
T 1/2(θ̂b

iγ − θ̂b) + ob
p(1)

= T 1/2(θ̂b
1γ − θ̂b

2γ)>QγT 1/2(θ̂b
1γ − θ̂b

2γ) + ob
p(1), (11)

where the second to last line follows by Lemma B.4(vi), and the last line by similar
calculations as in the first two paragraphs of the Proof of Theorem B.1(ii). By Lemma
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B.4(vi) and (vii),

T 1/2(θ̂b
1γ − θ̂b

2γ) = T 1/2(θ̂b
1γ − θ̂) − T 1/2(θ̂b

1γ − θ̂)

= (T−1
∑

1γ
ŵb

t ŵ
b>
t )−1T−1/2

∑

1γ
ŵb

t ε̃
b>
t − (T−1

∑

2γ
ŵb

t ŵ
b>
t )−1T−1/2

∑

2γ
ŵb

t ε̃
b>
t

db

⇒C−1
1γ B1(γ) − C−1

2γ B2(γ) = E(γ). (12)

Using (12) into (11), we have: SSRb
0 − SSRb

1(γ)
db

⇒E>(γ)Qγ E(γ). It remains to show

that SSRb
1(γ)/(T − 2p)

pb

−→σ2, or, equivalently, that T−1SSRb
1(γ)

pb

−→σ2.

T−1SSRb
1(γ) =

∑2

i=1
T−1

∑

iγ
(yb

t − ŵb>
t θ̂b

iγ)2 =
∑2

i=1
T−1

∑

iγ
(ε̃b

t − ŵb>
t (θ̂b

iγ − θ̂))2

= T−1
T∑

t=1

(ε̃b
t)

2 − 2
∑2

i=1
T−1

∑

iγ
ε̃b
tŵ

b>
t (θ̂b

iγ − θ̂)

+
∑2

i=1
(θ̂b

iγ − θ̂)>(T−1
∑

iγ
ŵb

t ŵ
b>
t )(θ̂b

iγ − θ̂).

By Lemma B.4(vi) and (vii), T−1
∑

iγ ŵb
t ŵ

b>
t

pb

−→Ciγ , and T−1
∑

iγ ε̃b
tŵ

b>
t = Ob

p(T
−1/2).

From above,

θ̂b
iγ − θ̂ = Ob

p(T
−1/2) = ob

p(1). (13)

Therefore, T−1SSRb
1(γ) = T−1

∑T
t=1(ε̃

b
t)

2 + ob
p(1) = T−1

∑T
t=1(ε

b
t + ub>

t θ̂x − z>t (Π̂b −

Π̂)>θ̂x)2 + ob
p(1) = T−1

∑T
t=1(ε

b
t + ub>

t θ0
x)2 + ob

p(1), where the last equality used Lemma

B.4(v), which implies Π̂b − Π̂ = op(1). We now show that T−1
∑T

t=1(ε
b
t + ub>

t θ0
x)2

pb

−→σ2,
which then would complete the proof of part (i).

Since T−1
∑T

t=1(ε
b
t+ub>

t θ0
x)2 = θ̃0>(T−1

∑T
t=1 v̂tv̂

>
t η2

t )θ̃0, we analyze T−1
∑T

t=1 v̂tv̂
>
t η2

t .
First consider T−1

∑T
t=1 ε̂2t η

2
t , the first element of this matrix. We have:

T−1
∑T

t=1
ε̂2t η

2
t = T−1

∑T

t=1
(εt − w>

t (θ̂ − θ0))2η2
t = T−1

∑T

t=1
ε2t η

2
t

+ (θ̂ − θ0)>A0(T−1
∑T

t=1
ztz

>
t η2

t )A0>(θ̂ − θ0) − 2(T−1
∑T

t=1
εtz

>
t η2

t )A0>(θ̂ − θ0)

= T−1
∑T

t=1
ε2t η

2
t + op(1)(T−1

∑T

t=1
ztz

>
t η2

t )op(1) − (T−1
T∑

t=1

εtz
>
t η2

t )op(1). (14)

First, we show that T−1
∑T

t=1 ε2t η
2
t

pb

−→E(ε2t ). Note that Eb(T−1
∑T

t=1 ε2t η
2
t ) = T−1

∑T
t=1 ε2t .

Also, letting K∗ = Eb(η4
t ), Eb(T−1

∑T
t=1 ε2t η

2
t )2 = T−2

∑T
t=1 ε4t K

∗+T−2
∑T

t,s=1,t 6=s ε2t ε
2
s.

By Assumption 4.1(b)-(c), ε4t satisfies Lemma B.1, so T−1
∑T

t=1 ε4t
p
−→E(ε4t ), and there-

fore T−2
∑T

t=1 ε4t K
∗ = op(1). Also, note that T−2

∑T
t,s=1,t 6=s ε2t ε

2
s = (T−1

∑T
t=1 ε2t )

2 −

T−2
∑T

t=1 ε4t
p
−→[E(ε2t )]

2. Hence, Eb(T−1
∑T

t=1 ε2t (η
2
t − 1)) = 0, and Eb(T−1

∑T
t=1 ε2t (η

2
t −

1))2 = op(1), so, by Markov’s inequality, P b(|T−1
∑T

t=1 ε2t η
2
t − ε2t | > η)

p
−→ 0, therefore

T−1
∑T

t=1 ε2t η
2
t

pb

−→E(ε2t ).
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Second, we show that T−1
∑T

t=1 ztz
>
t η2

t = Ob
p(1). We have Eb(ztz

>
t η2

t ) = ztz
>
t . Also,

Eb[(vec(T−1
∑T

t=1
ztz

>
t η2

t )) vec(T−1
∑T

t=1
ztz

>
t η2

t )]

= T−2
∑T

t=1
(ztz

>
t ⊗ ztz

>
t )K + (T−1

∑T

t=1
zt ⊗ zt)(T

−1
∑T

t=1
zt ⊗ z>t )

− T−2
∑T

t=1
ztz

>
t ⊗ ztz

>
t ,

By Assumption 4.1(b)-(c) and Lemma B.1, T−2
∑T

t=1(ztz
>
t ⊗ ztz

>
t ) = op(1). Also, by

Lemma B.3(a), T−1
∑T

t=1 zt ⊗ zt = vec M̂
p
−→ vec M . So, Eb vec(T−1

∑T
t=1 ztz

>
t η2

t ) =
zt ⊗ zt, and V arb(vec(T−1

∑T
t=1 ztz

>
t η2

t − ztz
>
t )) = 0. Therefore, by Markov’s inequality,

T−1
∑T

t=1 ztz
>
t η2

t − ztz
>
t = ob

p(1), hence T−1
∑T

t=1 ztz
>
t η2

t = T−1
∑T

t=1 ztz
>
t + ob

p(1) =
M + ob

p(1) = Ob
p(1).

Third, we show that ξt = T−1
∑T

t=1 εtztη
2
t = ob

p(1). Note that Eb(T−1
∑T

t=1 εtztη
2
t ) =

εtzt, and, by similar arguments as before, Eb(ξtξ
>
t )

p
−→ 0, so, by Markov’s inequality,

ξt
pb

−→ 0. Substituting these results into (14), it follows that T−1
∑T

t=1 ε̂2t η
2
t

pb

−→E(ε2t ).
Next,

T−1
∑T

t=1
ûtû

>
t η2

t = T−1
∑T

t=1
(ut + z>t (Π̂ − Π0))(ut + z>t (Π̂ − Π0))>η2

t

= T−1
∑T

t=1
utu

>
t η2

t + (Π̂ − Π0)>T−1
∑T

t=1
ztz

>
t η2

t (Π̂ − Π0) + [T−1
∑T

t=1
utz

>
t η2

t (Π̂ − Π0)]

+ [T−1
∑T

t=1
utz

>
t η2

t (Π̂ − Π0)]>
pb

−→E(utu
>
t ),

by similar arguments as for T−1
∑T

t=1 ε̂2t η
2
t

pb

−→E(ε2t ). Similarly, T−1
∑T

t=1 ûtε̂
>
t η2

t
pb

−→E(utεt).
Therefore, T−1

∑T
t=1(ε

b
t +ub>

t θ0
x)2 = θ̃0>(T−1

∑T
t=1 v̂tv̂

>
t η2

t )θ̃0 = θ̃0>E[vtv
>
t ]θ̃0 +ob

p(1) =
σ2 + ob

p(1), completing the proof of part (i).

Part (ii). Let D̄b
iγ = [θ̃b> ⊗ Iq] − [θ̌b> ⊗ R̂iγ ], where θ̃b = [1, θ̂b

x] and θ̌b = [0, θ̂b
x].

From (12), T 1/2(θ̂b
1γ − θ̂b

2γ)
db

⇒E(γ), so it remains to show that V̂ b
γ

pb

−→Vγ . We will just

show that V̂ b
B,1γ = ÂbD̄b

1γĤb
1γD̄b>

1γ Âb> p
−→A0 D1γ H1γD>

1γA0> = VB,1γ , where Ĥb
1γ =

T−1
∑

1γ v̂b
t v̂

b
t ⊗ ztz

>
t ; the rest follows by similar arguments. Since Âb pb

−→A0, D̄b
iγ

p
−→Diγ ,

and the proof for Ĥb
1γ

pb

−→H1γ is similar to Ĥb
a,1γ

pb

−→Ha,1γ , where Ĥb
a,1γ = T−1

∑
1γ(ε̂b

t)
2ztz

>
t ,

we only show Ĥb
a,1γ

pb

−→Ha,1γ .

Ĥb
a,1γ = T−1

∑

1γ

ztz
>
t (yb

t − wb>
t θ̂b

1γ)2 = T−1
∑

1γ

ztz
>
t [εb

t + wb>
t (θ̂ − θ̂b

1γ)]2

= T−1
∑

1γ

ztz
>
t (εb

t)
2 + T−1

∑

1γ

ztz
>
t [wb>

t (θ̂ − θ̂b
1γ)]2 + 2T−1

∑

1γ

ztz
>
t [εb

tw
b>
t (θ̂ − θ̂b

1γ)]

= T−1
∑

1γ

ztz
>
t (εb

t)
2 + [Iq ⊗ ((θ̂ − θ̂b

iγ)>Âb)] (T−1
∑

1γ

ztz
>
t ⊗ ztz

>
t ) [Iq ⊗ (Âb>(θ̂ − θ̂b

1γ))]

+ 2[Iq ⊗ ((θ̂ − θ̂b
1γ)>Âb)] (T−1

∑

1γ

ztz
>
t εb

t ⊗ zt).
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We already showed that T−1
∑

1γ ztz
>
t ⊗ ztz

>
t = Op(1), θ̂ − θ̂b

iγ = Ob
p(T

−1/2), and Âb =
A0 + ob

p(1). Therefore,

Ĥb
a,iγ = T−1

∑
1γ ztz

>
t ε̂2t η

2
t + Ob

p(T
−1/2)(T−1

∑
1γ ztz

>
t εb

t ⊗ zt) + ob
p(1)

≡ Lb
1 + Lb

2 + ob
p(1). (15)

Lb
1 = T−1

∑

1γ
ztz

>
t ε̂2t η

2
t = T−1

∑

1γ
ztz

>
t (εt − w>

t (θ̂ − θ0))2η2
t = T−1

∑

1γ
ztz

>
t ε2t η

2
t

+[Iq ⊗ ((θ̂ − θ0)>A0)] (T−1
∑

1γ
ztz

>
t ⊗ ztz

>
t η2

t ) [Iq ⊗ (A0>(θ̂ − θ0))]

−2[Iq ⊗ ((θ̂ − θ0)>A0)] (T−1
∑

1γ
ztz

>
t ⊗ εtztη

2
t )

= T−1
∑

1γ
ztz

>
t ε2t η

2
t + Op(T

−1/2) (T−1
∑

1γ
ztz

>
t ⊗ ztz

>
t η2

t )Op(T
−1/2)

+Op(T
1/2) (T−1

∑

1γ
ztz

>
t ⊗ εtztη

2
t ) ≡

3∑

i=1

Lb
1,i. (16)

For any element ξt of ztz
>
t ⊗ztz

>
t , Eb|ξtη

2
t | = |ξt|Eb(η2

t ) = |ξt|. So, T−1−α
∑

1γ Eb|ξtη
2
t | ≤

T−α(T−1
∑

1γ |ξt|) = T−αOp(1) = op(1). Therefore, by Markov’s inequality (for the
bootstrap probability measure), T−1−α

∑
1γ ztz

>
t ⊗ ztz

>
t η2

t = ob
p(1), for any α > 0,

so T−1
∑

1γ ztz
>
t ⊗ ztz

>
t η2

t = Ob
p(T

α). Therefore, Lb
1,2 = Op(T−1/2) (T−1

∑T
t=1 ztz

>
t ⊗

ztz
>
t η2

t )Op(T−1/2) = Ob
p(T

α−1) = ob
p(1), choosing α < 1. Similarly, it can be shown that

Lb
1,3 = ob

p(1). Also, Eb(Lb
1,1) = T−1

∑
1γ ztz

>
t ε2t . Recalling that Eb(η4

t ) = K∗, noting that
vec(ztz

>
t ) = zt ⊗ zt, and using V ar(a) = E(aa>) − E(a)E(a>) for a vector a,

V arb(vec Lb
1,1 vec Lb>

1,1) = T−2
∑

1γ
ztz

>
t ⊗ ztz

>
t ε4t K

∗

+ T−2
∑T

t=1

∑T

s=1,s 6=t
ztz

>
t ⊗ zsz

>
s ε2t ε

2
s1[qt ≤ γ]1[qs ≤ γ]

− (T−1
∑

1γ
zt ⊗ ztε

2
t )(T

−1
∑

1γ
z>t ⊗ z>t ε2t ) = T−2

∑

1γ
ztz

>
t ⊗ ztz

>
t ε4t (K

∗ − 1).

By Hölder’s inequality applied for p = r/r − 1 and q = r, and Assumption 4.2(b),

E‖ztz
>
t ⊗ ztz

>
t ε4t‖ ≤ (E‖ztz

>
t ⊗ ztz

>
t ||r/(r−1))(r−1)/r(E‖εt‖4r)1/4r

≤ supt(E‖zt‖4r/(r−1))(r−1)/(4r)K = o(T ).

Therefore, by Markov’s inequality, T−2
∑

1γ ztz
>
t ⊗ztz

>
t ε4t (K

∗−1) = op(1). From Cheby-
shev’s inequality, it follows that Lb

1,1−T−1
∑

1γ ztz
>
t ε2t = op(1). By Assumption 4.1(b),(c)

and (e) and Lemma B.1, T−1
∑

1γ ztz
>
t ε2t

p
−→Ha,1γ , therefore Lb

1,1
pb

−→Ha,1γ , so Lb
1

pb

−→Ha,1γ .

We now analyze Lb
2 = Ob

p(T
−1/2)(T−1

∑
1γ ztz

>
t εb

t ⊗ zt).

T−1
∑

1γ

ztz
>
t εb

t ⊗ zt = T−1
∑

1γ

ztz
>
t ε̂tηt ⊗ zt = T−1

∑

1γ

ztz
>
t ⊗ zt(εt − w>

t (θ̂ − θ0))ηt

= T−1
∑

1γ

ztz
>
t ⊗ ztεtηt − (T−1

∑

1γ

ztz
>
t ⊗ ztz

>
t ηt) [Iq ⊗ A0>(θ̂ − θ0)]

= T−1
∑

1γ

ztz
>
t ⊗ ztεtηt − (T−1

∑

1γ

ztz
>
t ⊗ ztz

>
t ηt)Op(T

−1/2).
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For any element ξt of ztz
>
t ⊗ ztεt, Eb|T−1−α

∑
1γ ξtηt| ≤ T−α(T−1

∑
1γ ξt) supt Eb|ηt| =

T−αOp(1)O(1) = op(1), give any α > 0. Therefore, T−1
∑

1γ ztz
>
t ⊗ztεtηt = ob

p(T
α). Sim-

ilarly, T−1
∑

1γ ztz
>
t ⊗ztz

>
t ηt = ob

p(T
α). Choose α < 1/2; then Lb

2 = Ob
p(T

−1/2)ob
p(T

α) =

ob
p(1). Substituting this and Lb

1
pb

−→Ha,1γ into (15), it follows that Ĥb
a,1γ

pb

−→Ha,1γ , com-
pleting the proof.

THRESHOLD FIRST STAGE

Wlog, assume that ρ ≤ ρ0 (the proofs for ρ > ρ0 are similar and omitted for simplicity).
Proof of Theorem 4.1. Part (i).
Let Q(Π̂iρ̂, ρ̂) ≡ T−1

∑T
t=1 û>

t ût = T−1
∑2

i=1

∑
1ρ̂(x

>
t − z>t Π̂iρ̂)(xt − Π̂>

iρ̂zt), and dt =

ût − ut. Then, by definition, Q(Π̂iρ̂, ρ̂) = T−1
∑T

t=1(ut + dt)>(ut + dt) ≤ Q(Π0
i , ρ

0) =
T−1

∑T
t=1 u>

t ut. This implies that 2T−1
∑T

t=1 u>
t dt +T−1

∑T
t=1 d>

t dt ≤ 0. We now prove
consistency in two steps. In part (i1), we show that T−1

∑T
t=1 d>

t dt = Op(1) and that

T−1
∑T

t=1 u>
t dt = op(1), implying plim(T−1

∑T
t=1 d>

t dt) ≤ 0, so T−1
∑T

t=1 d>
t dt

p
−→ 0. In

part (i2), we show that if ρ̂
p
9 ρ0, then, with positive probability, T−1

∑T
t=1 d>

t dt > K

for some K > 0, contradicting T−1
∑T

t=1 d>
t dt

p
−→ 0, and therefore yielding ρ̂

p
−→ ρ0.

Part (i1). For random variables st, let
∑

Δ st =
∑T

t=1 st1[ρ ≤ qt ≤ ρ0]. Then, for any
ρ ≤ ρ0 instead of just ρ̂, and using vec(ABC) = (C> ⊗ A) vec(B), we have:

T−1
∑T

t=1
u>

t dt = T−1
∑

1ρ
u>

t (Π0
1 − Π̂1ρ)

>zt + T−1
∑

Δ
u>

t (Π0
1 − Π̂2ρ)

>zt

+ T−1
∑

2ρ0
u>

t (Π0
2 − Π̂2ρ)

>zt = (T−1
∑

1ρ
zt ⊗ ut)

> vec(Π0
1 − Π̂1ρ)

+ (T−1
∑

Δ
zt ⊗ ut)

> vec(Π0
1 − Π̂2ρ) + (T−1

∑

2ρ0
zt ⊗ ut)

> vec(Π0
2 − Π̂2ρ).

By standard arguments, Π0
1− Π̂1ρ = op(1), Π0

1− Π̂2ρ = Op(1), and Π0
2− Π̂2ρ = Op(1). By

Lemma B.3(ii), T−1
∑

1ρ zt ⊗ ut = op(1). Therefore, T−1
∑T

t=1 u>
t dt = op(1) (uniformly

in ρ). Similarly, T−1
∑T

t=1 d>t dt = Op(1). Because these results hold uniformly over
ρ, we have op(1) + T−1

∑T
t=1 d>

t dt ≤ 0 uniformly over ρ, and therefore also at ρ̂, so

T−1
∑T

t=1 d>
t dt

p
−→ 0.

Part (i2). By the continuity assumption 4.1(e), there exist an ε > 0 such that with
positive probability, qt ∈ [ρ0 − ε, ρ0 + ε]. If ρ̂

p
9 ρ0, because ρ̂ ≤ ρ0, ρ̂ < ρ0 − ε. Because

Π̂2ρ̂ is the multivariate LS estimator in the sample qt > ρ0 − ε, the residuals evaluated
over the sub-sample qt ∈ [ρ0 − ε, ρ0 + ε] will also be evaluated at Π̂2ρ̂ = Π̂2. However, the
true parameter values are Π0

1 for qt ∈ [ρ0 − ε, ρ0], and Π0
2 for qt ∈ (ρ0, ρ0 + ε]. Let

∑
A =∑

1[qt ∈ [ρ0 − ε, ρ0]],
∑

B =
∑

1[qt ∈ (ρ0, ρ0 + ε]], and
∑

AB =
∑

1[qt ∈ [ρ0 − ε, ρ0 + ε]].
Then:

T−1
∑

AB

d>t dt = T−1
∑

AB
(xt − Π̂>

2 zt)
>(xt − Π̂>

2 zt)

= (Π0
1 − Π̂2)

>(T−1
∑

A
ztz

>
t )(Π0

1 − Π̂2) + (Π0
2 − Π̂2)

>(T−1
∑

B
ztz

>
t )(Π0

2 − Π̂2)

≥ ||Π0
1 − Π̂2||

2||T−1
∑

A
ztz

>
t || + ||Π0

2 − Π̂2||
2||T−1

∑

B
ztz

>
t ||

= ||Π0
1 − Π̂2||

2||M1ρ0 − M1,ρ0−ε|| + ||Π0
2 − Π̂2||

2||M2,ρ0+ε − M2ρ0 || + op(1).
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Let the minimum eigenvalues of (M1ρ0 − M1,ρ0−ε) and (M2,ρ0+ε − M2ρ0) be η1 and η2

respectively. By Assumption 4.1(d), η = min(η1, η2) > 0. Therefore,

T−1
t∑

t=1

d>t dt ≥ T−1
∑

AB

d>
t dt > η(||Π0

1 − Π̂2||
2 + ||Π0

2 − Π̂2||
2)

+ op(1) ≥ ||Π0
1 − Π0

2||
2η/2 + op(1) > K + op(1),

where for the second to last inequality, we used the fact that for any vectors a, b, c of
the same length, (a − b)>(a − b) + (c − b)>(c − b) ≥ (a − c)>(a − c)/2. This means that
plim T−1

∑t
t=1 d>

t dt > K with positive probability, reaching a contradiction.

Part (ii). For ρ = ρ0, the proof is obvious. Therefore, we consider the case ρ0 − ρ̂ > 0,
and let ρ0 − ρ̂ ≤ ε, now for a chosen small ε > 0, as we know ρ̂

p
−→ ρ0. Let Vε(C) =

{ρ : 0 < ρ0 − ρ̂ ≤ ε, T (ρ0 − ρ̂) > C} for some chosen large enough C. For the rest of
the proof of part (ii) of this theorem, we write ρ instead of ρ̂ for simplicity. Let S1 be
the multivariate sum of squared residuals in (2) evaluated at ρ and parameters Π̂1, Π̂2,
S2 be the multivariate sum of of squared residuals evaluated at ρ0 with parameters
Π̂1ρ0 , Π̂2ρ0 , and let S3 be the multivariate sum of squared residuals when regressing xt

on zt1[qt ≤ ρ], zt1[ρ < qt ≤ ρ0], and zt1[qt > ρ0], evaluated at parameters Π̂1ρ, Π̂Δ, Π̂2ρ0 ,
where Π̂Δ = (

∑
Δ ztz

′
t)

−1
∑

Δ ztx
′
t. Then, by definition, S1−S2

T (ρ0−ρ) ≤ 0, We will now show

that S1−S2
T (ρ0−ρ) = Op(1), therefore plim S1−S2

T (ρ0−ρ) ≤ 0. We also show that if ρ ∈ Vε(C), then,

for sufficiently large C and small enough ε, plim S1−S2
T (ρ0−ρ) > K, for some positive constant

K, reaching a contradiction and establishing that T (ρ0 − ρ̂) ≤ C.
Note that S1 − S2 = (S1 − S3) − (S2 − S3). Letting Q̂Δ = 1

T (ρ0−ρ)

∑
Δ ztz

>
t and

M̂Δ = T−1
∑

Δ ztz
>
t , by Bai and Perron (1998), pp. 70,

S1 − S2

T (ρ0 − ρ)
= trace[(Π̂2ρ0 − Π̂Δ)>(Q̂Δ − Q̂ΔM̂−1

2ρ M̂Δ)(Π̂2ρ0 − Π̂Δ)]

S2 − S3

T (ρ0 − ρ)
= trace[(Π̂1ρ − Π̂Δ)>(Q̂Δ − Q̂ΔM̂−1

1ρ M̂Δ)(Π̂1ρ − Π̂Δ)].

By standard arguments, Π̂2ρ0 = Π0
2 + op(1), Π̂Δ = Π0

1 + op(1), and by Lemma B.3,
Π1ρ = Π1+op(1). Therefore, Π̂2ρ0−Π̂Δ = Π0

2−Π0
1+op(1) = Op(1), and Π̂1ρ−Π̂Δ = op(1).

For C large enough, Q̂Δ = Op(1) and M̂iρ = Op(1) for i = 1, 2. On the other hand,

||M̂Δ|| = ||E[ztz
>
t (1[qt ≤ ρ0] − 1[qt ≤ ρ])] + op(1)|| ≤ (E||zt||

4)1/2

(∫ ρ0

ρ

f(x)dx

)1/2

+ op(1) ≤ M

(∫ ρ0

ρ0−ε

f(x)dx

)1/2

+ op(1) = Mf(b)ε + op(1) ≤ Op(ε),

where the last equality holds by continuity and boundedness of f(x)(Assumption 4.1(e))
and for some b ∈ [ρ0 − ε, ρ0]. Therefore, Q̂Δ − Q̂ΔM̂−1

2ρ M̂Δ = Q̂Δ + Op(ε) = Op(1). This
implies that S1−S3

T (ρ0−ρ) = Op(1), and that S2−S3
T (ρ0−ρ) = op(1), therefore S1−S2

T (ρ0−ρ) = Op(1),
which completes the first part of the proof.

It also follows that the asymptotically dominant term in S1−S2
T (ρ0−ρ) is N1 = trace[(Π0

2 −

Π0
1)

>M̂Δ(Π0
2 − Π0

1)]. For ρ ∈ Vε(C), and C large enough, M̂Δ =
M1ρ0−M1ρ

ρ0−ρ + op(1), and
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because M1ρ0 −M1ρ is p.d. by Assumption 4.1(d), it follows that S1−S2
T (ρ0−ρ) = N1 +Op(ε) >

K > 0, for some positive constant K. This completes the second part of the proof of (i),
because it contradicts plim S1−S2

T (ρ0−ρ) ≤ 0. Therefore, ρ̂ 6∈ Vε(C), and so there is a C for

which |T (ρ0 − ρ)| < C.

Part (iii). Since any partial sum in the expression of Π̂i differs by the partial sum in the
expression of Π̂iρ0 by |T (ρ0−ρ̂)| < C terms, which are uniformly bounded by Assumption
4.1(c), it follows that T 1/2 vec(Π̂i − Π0

i ) = T 1/2 vec(Π̂iρ0 − Π0
i ) + op(1), for i = 1, 2. The

rest of the proof follows standard arguments.

By Theorem 4.1 and its proof, wlog, we treat below ρ̂ as if it was equal to ρ0.

Notation specific for a TFS. Let A0
i = [Π0

i , S
>]> be the augmented matrices of

the FS slope parameters, where S = [Ip2 ,0p2×q1 ], q1 = q − p2, and Âi = [Π̂i, S
>]>.

Hence, z1t = Szt and wt = A0
1zt1[qt ≤ ρ0] + A0

2zt1[qt > ρ0] + (u>
t ,01×q1)

>. Let A0
t =

A0
11[qt ≤ ρ0] + A0

21[qt > ρ0], Ât = Â11[qt ≤ ρ0] + Â21[qt > ρ0], Πt = Π0
11[qt ≤ ρ0] +

Π0
21[qt > ρ0], Π̂t = Π̂11[qt ≤ ρ0] + Π̂21[qt > ρ0].
Let ∧ and ∨ define the minimum and maximum operators. Let C1γ = A0

1M1,ρ0∧γA0>
1 +

A0
2(M1γ −M1,ρ0∧γ)A0>

2 and C2γ = A0
1(M1,ρ0∨γ −M1γ)A0>

1 +A0
2M2,ρ0∨γA0>

2 . Also, Cγ =
[C−1

1γ ,−C−1
2γ ], C = C1γ + C2γ , Riγ = MiγM−1

iρ0 for i = 1, 2, D = [1, 01×p1 ] ⊗ Iq, and

Qγ = C1γC−1C2γ . Let Fiγ = [θ̌0> ⊗ Riγ ] and Diγ = [θ̃0> ⊗ Iq] − Fiγ . Also define the
Gaussian processes:

B1(γ) =

{
A0

1

(
D1γ G1(γ) − F1γ(G1(ρ0) − G1(γ)

)
, γ ≤ ρ0

B − A0
2

(
D2γ G2(γ) − F2γ(G1(γ) − G1(ρ0)) γ > ρ0,

where B =
∑2

i=1 A0
i D Gi(ρ0).

Definition B.2. Let VB =
∑2

i=1 A0
i D Hi,γ D> A0

i ,

VB,1γ =






A0
1[D1γH1γ + F1γ(H1,ρ0 − H1γ)]D>A0>

1 , γ ≤ ρ0,

A0
1 D H1ρ0DA0

1 + A0
2[(D + F2γ)(H1γ − H1ρ0)(D + F2γ)>

+(D − D2γ)H2γ(D − D2γ)>A0>
2 , γ > ρ0

VB,12γ =

{
A0

1[D1γH1γ − F1γ(H1,ρ0 − H1γ)] D>A0>
1 − VB,1γ , γ ≤ ρ0

A0
2[(D − D2γ)H2γD2γ + (D + F2γ)(H1γ − H1ρ0)F>

2γ ]A0>
2 γ > ρ0,

and VB,2γ = VB + VB,1γ − VB,12,γ − V >
B,12,γ . Then VB,γ =

[
VB,1γ VB,12,γ

V >
B,12,γ VB,2γ

]

, and Vγ =

CγVB,γC>
γ .

Let F̄iγ = [θ̌> ⊗ R̂iγ ] and D̄iγ = [θ̃> ⊗ Iq] − F̄iγ , where θ̃> = [1, θ̂x] and θ̌ = [0, θ̂>].
where θ̃ = [1, θ̂x] and θ̌ = [0, θ̂x]. Then V̂γ is defined as Vγ , but replacing Ciγ with Ĉiγ ,
A0

i with Âi, Diγ by D̄iγ , Fıγ by F̄iγ , Hiγ by Ĥiγ = T−1
∑

iγ v̂tv̂
>
t ⊗ ztz

>
t .

With this new notation, we now reprove Lemmas B.3-B.4 and Theorem 4.2,
for xt generated by the TFS (3) instead of the LFS (2).
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Proof of Lemma B.3. Part (i). T−1
∑

iγ ztz
>
t

p
−→Miγ still holds, as the result is not

specific to a LFS or TFS. So,

T−1
∑

1γ
ŵtŵ

>
t = Â1

∑

1,ρ0∧γ
ztz

>
t Â>

1 + Â2(T
−1
∑

1γ
ztz

>
t − T−1

∑

1,ρ0∧γ
ztz

>
t )Â>

2

p
−→A0

1M1,ρ0∧γA0>
1 + A0

2(M1γ − M1,ρ0∧γ)A0>
2 = C1γ

T−1
∑

2γ
ŵtŵ

>
t = Â1(T

−1
∑

1,ρ0∨γ
ztz

>
t − T−1

∑

1,γ
ztz

>
t )Â>

1 + Â2T
−1
∑

2ρ0∨γ
ztz

>
t Â>

2

p
−→A0

1(M1,ρ0∨γ − M1γ)A0>
1 + A0

2M2ρ0∨γA0>
2 = C2γ .

Part (ii). The result T−1/2
∑

iγ vt ⊗ zt ⇒ Gi(γ) still holds. But now,

ε̃t = εt+(x̂t−xt)
>θ0

x = εt+u>
t θ0

x−1[qt ≤ ρ0][z>t (Π̂1−Π0
1)θ

0
x]−1[qt > ρ0][z>t (Π̂2−Π0

2)θ
0
x].

Therefore, for γ ≤ ρ0,

T−1/2
∑

1γ
ŵtε̃t = A0

1

(
T−1/2

∑

1γ
zt(εt + u>

t θ0
x) − M1γM−1

1ρ0T
−1/2

∑

1ρ0
ztu

>
t θ0

x)
)

⇒A0
1

(
[θ̃0 ⊗ Iq]G1(γ) − [θ̌0 ⊗ R1γ ]G1(ρ

0)
)

= A0
1

(
D1γ G1(γ) − F1γ(G1(ρ

0) − G1(γ)
)

= B1(γ).

For γ > ρ0,

T−1/2
∑

1γ
ŵtε̃t = T−1/2

∑T

t=1
ŵtε̃t − T−1/2

∑

2γ
ŵtε̃t

⇒A0
1 D G1(ρ

0) + A0
2 DG2(ρ

0) − A0
2([θ̃

0 ⊗ Iq]G2(γ) − F2γG2(ρ
0))

= B − A0
2

(
D2γ G2(γ) − F2γ(G1(γ) − G1(ρ

0)) = B1(γ).

Because T−1/2
∑T

t=1 ŵtε̃t ⇒A0
1 D G1(ρ0)+A0

2 DG2(ρ0), T−1/2
∑

2γ ŵtε̃t ⇒ A0
1 D G1(ρ0)+

A0
2 D G2(ρ0) − B1(γ) = B − B1(γ) = B2(γ), and vec(T−1/2

∑
1γ ŵtε̃t, T

−1/2
∑

2γ ŵtε̃t) ⇒
B(γ).

Proof of Theorem 4.2. Part (i). Because T−1/2(θ̂1γ − θ̂2γ) = Ĉ−1
1γ T−1/2

∑
1γ ŵtε̃t −

Ĉ−1
2γ T−1/2

∑
2γ ŵtε̃t, the desired result follows directly from Lemma B.3.

Part (ii). Follows the same steps as for the LFS proof until equation (10). Then note
that because Π̂i − Π0

i = op(1),

T−1SSR1(γ) = T−1
∑2

i=1

(∑

iρ0
(εt + u>

t θ0
x)2 − 2

∑

iρ0
(εt + u>

t θ0
x)z>t (Π̂i − Π0

i )θ
0
x

+
∑

iρ0
θ0>

x (Π̂i − Π0
i )

>T−1
∑

iρ0
ztz

>
t (Π̂i − Π0

i )θ
0
x

)
= σ2 + op(1),

following the same arguments as in the LFS proof.
Part (ii). It can be shown by similar arguments to the LFS, but now separately for

cases γ ≤ ρ0 and γ ≥ ρ0, and taking to account the different parameter estimates in
different regimes, that V̂γ

p
−→Vγ . Because of part (i) of this theorem, the desired result

follows.

Proof of Lemma B.4 and Theorem 4.2. As evident from the proof of Theorem
B.1 for a TFS, besides replacing Π̂ with Π̂i, and Π̂b with Π̂b

i , and re-deriving the terms
involving these, there are no essential differences between the proofs for a LFS and a
TFS, and for brevity we omit these proofs.
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