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Local Asymptotic Equivalence of the Bai and Ng (2004)
and Moon and Perron (2004) Frameworks for Panel Unit

Root Testing

Oliver Wicherta, I. Gaia Becherib, Feike C. Drosta, Ramon van den Akkera

aTilburg University, Department of Econometrics & Operations Research
bZurich Insurance Group Ltd.

Abstract

This paper considers unit-root tests in large n and large T heterogeneous
panels with cross-sectional dependence generated by unobserved factors. We
reconsider the two prevalent approaches in the literature, that of Moon and Perron
(2004) and the PANIC setup proposed in Bai and Ng (2004). While these
have been considered as completely different setups, we show that, in case of
Gaussian innovations, the frameworks are asymptotically equivalent in the
sense that both experiments are locally asymptotically normal (LAN) with
the same central sequence. Using Le Cam’s theory of statistical experiments
we determine the local asymptotic power envelope and derive an optimal test
jointly in both setups. We show that the popular Moon and Perron (2004)
and Bai and Ng (2010) tests only attain the power envelope in case there is
no heterogeneity in the long-run variance of the idiosyncratic components.
The new test is asymptotically uniformly most powerful irrespective of pos-
sible heterogeneity. Moreover, it turns out that for any test, satisfying a
mild regularity condition, the size and local asymptotic power are the same
under both data generating processes. Thus, applied researchers do not
need to decide on one of the two frameworks to conduct unit root tests.
Monte-Carlo simulations corroborate our asymptotic results and document
significant gains in finite-sample power if the variances of the idiosyncratic
shocks differ substantially among the cross sectional units.

JEL classification: C22; C23

Keywords: unit root, Local Asymptotic Normality, limit experiment,
asymptotic power envelope, factor model, local-to-unity asymptotics,
cross-sectional dependence
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Testing for unit roots is an important aspect of time series and panel data
analysis.1 The presence of unit roots not only determines how to proceed
for correct statistical inference but can also have serious policy implications.
A well-known problem with univariate unit roots tests is their low power.
In the last two decades, increased data availability led to the development
of panel unit root tests that increase the statistical power by exploiting the
cross-sectional data dimension.

The “first generation of panel unit root tests does not allow for cross-
sectional dependence, i.e., panel units are assumed to be independent of each
other.2 For many, if not most, empirical applications, however, the assump-
tion of cross-sectional independence is not only empirically hard to justify
but has also non-trivial implications for the properties of test statistics. In
fact, as shown in O’Connell (1998) and Gutierrez (2006), the dependence
between cross-section units can compromise the validity of “first generation
tests”. For this reason, a “second generation” of tests, which are also valid
in case of cross-sectional dependence, gained a foothold in the literature.3

This paper reconsiders the two leading second generation classes of data
generating processes, namely the PANIC framework proposed in Bai and Ng
(2004) and the framework proposed in Moon and Perron (2004), henceforth
MP. Both setups allow for cross-sectional dependence through common, un-
observed factors. MP uses an autoregressive structure with the factors ap-
pearing in the innovations (errors). For PANIC, the factors are part of the
“mean specification”. Consequently, the PANIC framework allows for non-
stationarity generated by the factors and for non-stationarity generated by
the idiosyncratic components. This is in contrast to the MP framework, for
which the factors and the idiosyncratic components have the same order of
integration. As Bai and Ng (2010), Pesaran et al. (2013) and Westerlund
(2015), this paper will focus on testing for unit roots in the idiosyncratic

Email addresses: O.wichert@uvt.nl (Oliver Wichert), I.G.Becheri@tudelft.nl (I.
Gaia Becheri), F.C.Drost@uvt.nl (Feike C. Drost), R.vdnAkker@uvt.nl (Ramon van
den Akker)

1See, for example, the textbook Choi (2015) for an overview.
2See, for example, the surveys Banerjee (1999), Baltagi and Kao (2000), Choi (2006),

Breitung and Pesaran (2008), and Westerlund and Breitung (2013). Local asymptotic
powers of first generation tests have been considered in, for example, Breitung (2000),
and Madsen (2010). A large scale Monte Carlo study to assess finite-sample powers was
conducted in Hlouskova and Wagner (2006).

3Popular second generation tests are proposed in, among others, Phillips and Sul
(2003), Bai and Ng (2004, 2010), Moon and Perron (2004), Breitung and Das (2005,
2008), Pesaran (2007) and Pesaran et al. (2013).
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components.
This paper offers four main contributions. Firstly, our results imply that

for all tests (satisfying a mild regularity condition) it suffices to determine
the asymptotic size and local power in one of the frameworks, since the same
behaviour automatically holds for the other one.4 Previous papers are based
on either MP or PANIC for the construction of test statistics. However,
using our first main result, the (same) local asymptotic power function is
automatically obtained for the other framework as well.5 These conclusions
are obtained by showing that the PANIC and MP experiments are both
Locally Asymptotically Normal (LAN) with the same central sequence and
Fisher information.6

Secondly, exploiting the general theory for LAN experiments we eas-
ily obtain the local asymptotic power envelope, which is, in view of the
first main result, the same for PANIC and MP. This result extends the
work by Moon et al. (2007), Becheri et al. (2014), Moon et al. (2014), and
Juodis and Westerlund (2018) on first generation frameworks, to the second
generation. It turns out that the level of the local asymptotic power enve-
lope only depends on the (local) deviation to the unit root. The level of
the power envelope is thus not affected by the nuisance parameters. 7 We
also provide a new derivation, using our LAN-result, of the local asymp-
totic power of the popular Moon and Perron (2004) and Bai and Ng (2010)
tests.8 A comparison of the power functions to the power envelope shows
that these original tests are only optimal in case there is no heterogeneity

4For unit-root testing, it thus is irrelevant to make a specific choice for the data gener-
ating process. This is good news for the practitioner, who no longer must decide between
two competing frameworks that are typically hard to distinguish based on finite samples.

5In particular, we use the first main result to show that the unit root tests proposed
in Moon and Perron (2004) are equivalent (in terms of asymptotic size and power) to the
tests proposed in Bai and Ng (2010). A first study on the comparison of the behavior of
these tests is present in Bai and Ng (2010), but, to our best knowledge, the equivalence
has not been observed before.

6This means that the limit experiment (in the Le Cam sense) is a Gaussian shift
experiment; see, for example, Van der Vaart (2000). For unit root problems in (univariate)
time series, limit experiment theory has been exploited by, amongst others, Jansson (2008)
and Becheri et al. (2014).

7Westerlund (2015) observed that the local asymptotic power of the tests considered
in that paper do depend on the presence of serial and cross-sectional dependence (see
Remark 2 in that paper). Consequently, these tests are not globally optimal.

8Westerlund (2015) derived, via “triangular array asymptotics”, the local asymptotic
power function of the tests proposed in Bai and Ng (2010). Using our LAN-result we
provide a short derivation at the expense of slightly less general conditions.
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in the long-run variances of the idiosyncratic components.
Thirdly, we propose a new test that is asymptotically uniformly most pow-

erful irrespective of possible heterogeneity in the long-run variance of the id-
iosyncratic components. Our test is motivated by our expansion of the likeli-
hoods, underlying the LAN results, and its optimality is easily proved by ex-
ploiting LAN-theory. Compared to the tests proposed in Moon and Perron
(2004) and Bai and Ng (2010), the size of the power gains depends on the
amount of heterogeneity in the long-run variances of the idiosyncratic com-
ponents. We report numerical asymptotic powers for commonly encountered
amounts of heterogeneity and use Monte-Carlo experiments to show that the
new test compares favorably also in finite samples.

Finally, to obtain the LAN result for the PANIC case, we first show
that the model in which we observe both the panel units and the common
factors is equivalent to that where the factors are unobserved. This in con-
trast to other data generating processes, used in the literature on panel
unit roots, where observing factors or correlated covariates does yield addi-
tional power; see, for example, Pesaran et al. (2013), Becheri et al. (2015),
and Juodis and Westerlund (2018). Moreover, for both the MP and PANIC
framework, our results imply that the local asymptotic power envelope for
the setting in which all nuisance parameters (this includes incidental inter-
cepts, factor loadings, and coefficients of the linear filters generating serial
dependence) are known, can be attained. In other words, we demonstrate
that we are in an adaptive setting.

To obtain the local and asymptotic equivalence of the MP and PANIC
frameworks, we need to impose some restrictions. First, we assume that
the driving innovations are Gaussian. Second, we impose the deviations to
the unit root, under the alternative hypothesis, to be the same for all panel
units. And third, we do not allow for (incidental) trends. The Gaussianity
facilitates a relatively easy proof of the LAN-result and it seems to be rather
difficult to generalize this assumption; even for first-generation frameworks
no results are available yet. Nevertheless, for the proposed asymptotically
uniformly most powerful test, we stress that Gaussianity is not required
to obtain asymptotic size, implying validity of the test in a non-Gaussian
environment. In view of Becheri et al. (2014) we do not expect that a gen-
eralization to random deviations from the unit root, under the alternative
hypothesis, would affect our main results. The Monte Carlo results seem
to confirm this conjecture for finite-samples. Allowing for incidental trends
leads to a different convergence rate (see Moon et al. (2007)) and thus re-
quires a new asymptotic expansion of the log-likelihood ratios, which is
beyond the scope of this paper.
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The paper is organized as follows. Section 1 presents the model and
assumptions. Section 2 derives the common approximation to the local like-
lihood ratios in the two experiments and derives its limiting distribution.
Section 3 introduces our new UMP test based on the limit experiment. Sec-
tion 4 computes the local asymptotic power functions of the tests proposed
in Moon and Perron (2004) and Bai and Ng (2010) and Section 5 compares
their asymptotic and finite-sample power to those of the new UMP test.
Section 6 concludes. All proofs are organized in several appendices.

1. Setup and Assumptions

1.1. Data-generating processes

We consider observations Zit, i = 1, . . . , n and t = 1, . . . , T , generated by
the components specification

Zit = mi + Yit, (1)

Yit =
K
∑

k=1

λkiFkt + Eit, (2)

Eit = ρEi,t−1 + ηit, (3)

Fkt = ρkFk,t−1 + fkt, (4)

with λki the loading of (unobserved) factor {Fkt} on panel unit i, and K ∈ N

being the fixed number of factors. The mi are fixed effects and we assume
zero starting values: Ei0 = 0 and Fk0 = 0.9 The assumptions on the
innovations ηit, fkt and factor loadings λki are discussed in Section 1.3 below.
This setup covers the most widely used setups for second-generation panel
unit root tests: for ρk = 1, k = 1, . . . ,K, we obtain the PANIC framework of
Bai and Ng (2004) (‘PANIC’) and with ρk = ρ, k = 1, . . . ,K, we obtain the
framework of Moon and Perron (2004) (‘MP’), in which we can also rewrite

9Bai and Ng (2004) assume that the initial values are bounded while Moon and Perron
(2004) assume zero starting values for the εit (see (5)). We refer to Section 6.2 in
Moon et al. (2007) for a discussion on why relaxing initial conditions can be problem-
atic in a panel context and do not pursue this issue further, except by noting that our
tests are invariant with respect to the mi.
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the DGP as

Zit = mi + Yit,

Yit = ρYi,t−1 + εit,

εit =

K
∑

k=1

λkifkt + ηit. (5)

In both frameworks, the hypotheses will be phrased in terms of ρ.

Remark 1.1: The PANIC framework does not require the factors to have
a unit root. Therefore, when considering the PANIC framework, we allow
the {fkt} to be over-differenced (see Assumption 1.4 below).

Remark 1.2: In both frameworks, we do not allow for ‘heterogeneous alter-
natives’, i.e., we impose that ρ does not differ across panel units. This helps
to unify the treatment of the two setups: A more general MP framework
where Yit = ρiYi,t−1 + εit, can no longer be rewritten in the PANIC form
of Equations (1) to (4). Becheri et al. (2014) prove, for the case without
factors, unobserved heterogeneity in the autoregressive parameters has no
impact on the power envelope or optimal tests. Therefore, in Section 5 we
also investigate the performance of our tests in the presence of heterogeneous
alternatives; those results seem to confirm their conclusion that there is no
impact on power also for the general factor case.

1.2. Matrix notation

To write the model in matrix form we need some additional notation. We
write In and IT for identity matrices of dimension n and T , respectively,
while ι denotes a T -vector of ones. Introduce the n-vectors λk = (λk1, . . . , λkn)

′,
k = 1, . . . ,K and the n × K matrix Λ = (λ1, . . . , λK). Collect the obser-
vations as Y = (Y11, Y12, . . . , Y1T , . . . , Yn1, . . . , YnT )

′. We also write Y−1 =
(Y10, Y11, . . . , Y1,T−1, . . . , Yn0, . . . , Yn,T−1)

′, ∆Y = Y − Y−1, and define ε, η,
E, E−1, ∆E, Z, Z−1, and ∆Z analogously. Write m = (m1, . . . ,mn)

′,
ηi = (ηi1, . . . , ηiT )

′, i = 1, . . . , n, fk = (fk1, . . . , fkT )
′, k = 1, . . . ,K, and

denote their corresponding covariance matrices by Σf,k = var fk ∈ R
T×T

and

Ση = diag(Ση,1, . . . ,Ση,n), with Ση,i = var ηi ∈ R
T×T .

The long-run variances of {fkt} and {ηit} are denoted by ω2
f,k and ω2

η,i,
respectively. In addition, we define the approximate long-run variances
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ω2
f,k,T = ι′Σfkι/T and ω2

η,i,T = ι′Ση,iι/T . For a given T , these ignore the
contribution of any autocovariances further than T apart. We will use the
approximate long-run variances to simplify notation and the structure of our
proofs. We add the subscript T to the approximate versions to emphasize
the difference and define

Ωη = diag(ω2
η,1,T , . . . , ω

2
η,n,T ) and ΩF = diag(ω2

f,1,T , . . . , ω
2
f,K,T ).

In addition to this ‘vectorized’ notation, it will also be useful to consider
the observations as T ×n matrices. Thus, let η̃ = (η1, . . . , ηn), and define ε̃,
Ỹ , Z̃, Ẽ, f̃ = (f1, . . . , fK), and F̃ analogously. With this notation, (5) can
be rewritten as

ε̃ = f̃Λ′ + η̃, (6)

while for the vectorized versions we have

ε =
K
∑

k=1

λk ⊗ fk + η.

Finally, we introduce the T × T matrix A by Ast := 1 if s > t and 0
otherwise and we put A := In ⊗A ∈ R

nT×nT , i.e.

A =











0 0 . . . 0
1 0 . . . 0
...

. . .
. . .

...
1 . . . 1 0











and A =











A 0T×T . . . 0T×T

0T×T A . . . 0T×T
...

. . .
. . . 0T×T

0T×T . . . 0T×T A











.

The matrix A can be considered a cumulative sum operator and premultiply-
ing the vectorized panel with A takes the cumulative sum in the time direc-
tion for each panel unit, i.e., we have Ỹ−1 = A∆Ỹ and Y−1 = A∆Y . It is also
related to ‘approximate one-sided long-run variances’, which we can define
by δη,i,T = tr[AΣη,i/T ] and δf,k,T = tr[AΣf,k/T ]. Note A+A′ = ιι′ − IT , so
that, analogous to the long-run variances, we have 2δη,i,T = ω2

η,i,T − γη,i(0).

1.3. Assumptions

Now we can formally state the full specifications of our DGPs Equations (1)
to (4). The distributional assumptions on the time series of the factors {fkt}
and idiosyncratic shocks {ηit} are given in Assumption 1.1 and we formulate
the assumptions on the (deterministic) factor loadings λki in Assumption 1.2.
Assumption 1.3 specifies the joint asymptotics we consider in this paper.
Finally, Assumption 1.4 differentiates between the two setups discussed in
Section 1.1.
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Assumption 1.1:

(a) Each factor innovation, indexed k = 1, . . . ,K, is a zero-mean ergodic
stationary time series {fkt} independent of the other factors and all
idiosyncratic parts. Its autocovariance function γf,k satisfies

∞
∑

m=−∞
(|m|+ 1)|γf,k(m)| <∞

and is such that the variance of each factor innovation {fkt} is strictly
positive.

(b) For each panel unit i ∈ N, the idiosyncratic part {ηit} is a Gaussian
zero-mean stationary time series independent of the other idiosyncratic
parts and all factors. The autocovariance function γη,i satisfies

sup
i∈N

∞
∑

m=−∞
(|m|+ 1)|γη,i(m)| <∞ (7)

and is such that the eigenvalues of the T × T covariance matrices are
uniformly bounded away from zero, i.e., infi,T λmin (Ση,i) > 0.

Remark 1.3: The imposed restrictions on serial correlation are sometimes
phrased in terms of spectral densities. Note that our assumption on the
boundedness of the eigenvalues is implied by the spectral density being uni-
formly bounded away from zero (see, for example, Proposition 4.5.3 in Brockwell and Davis
(1991)). Similarly, they are sometimes phrased in terms of linear processes
on which analogous assumptions are imposed; see, for example, Assumption
C in Bai and Ng (2004) and Assumption 2 in Moon and Perron (2004).
Finally, note that a collection of causal ARMA processes satisfies Assump-
tion 1.1 if the roots are uniformly bounded away from the unit-circle.

Remark 1.4: Note that, under Assumption 1.1 (b), the long-run variances
of the {ηit}, ω2

η,i, are also uniformly bounded and uniformly bounded away

from zero.10 Moreover, the one-sided long-run variances

δη,i =

∞
∑

m=1

γη,i(m) =
1

2

(

ω2
η,i − γη,i(0)

)

, i ∈ N,

are also well-defined.

10The former directly follows from (7) whereas the latter follows from ω2
η,i =

limT→∞
1
T
ι′Ση,iι ≥ limT→∞

1
T
λmin (Ση,i) ι

′ι ≥ infi,T λmin (Ση,i) > 0.
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As already announced, we also need to impose some stability on the factor
loadings λki, which we assume to be fixed. Assumption 1.2 is standard in
the literature, c.f. Assumption A in Bai and Ng (2004) or Assumption 6 in
Moon and Perron (2004). It is commonly referred to as the factors being
‘strong’.

Assumption 1.2: There exists a positive definite K ×K matrix ΨΛ such
that limn→∞

1
nΛ

′Λ = ΨΛ. Moreover, maxk=1,...,K supi∈N |λki| <∞.

Assumption 1.3 below specifies the asymptotic framework we consider
throughout this paper. We follow Moon and Perron (2004), Bai and Ng
(2010), and Westerlund (2015) in considering large ‘macro panels’, where
both n and T go to infinity, but T will be the larger dimension. We derive
all our results using joint asymptotics, which yields more robust results than
taking sequential limits where first T → ∞ and subsequently n→ ∞.

Assumption 1.3: We consider joint asymptotics (in the Phillips and Moon
(1999) sense) with n/T → 0.

Finally, Assumption 1.4 below specifies that we either operate in the PANIC
(case (a)) or in the MP (case (b)) framework. In the PANIC framework,
we allow the long-run variance of the factor innovations to be zero, so that
we consider both integrated and and stationary factors. This is ruled out in
the MP case to enforce that the factors have the same order of integration
as the idiosyncratic parts.

Assumption 1.4: One of the below holds:

(a) For each factor Fk, k = 1, . . . ,K, we have ρk = 1, or,

(b) For each factor k = 1, . . . ,K, we have ρk = ρ. Moreover, {fkt} is
Gaussian and its long-run variance exists and is strictly positive.

2. Limit Experiment and Power Envelope

In this section we show that the likelihood ratios related to the unit root hy-
pothesis, for the MP and for the PANIC framework, exhibit the same local
asymptotic expansion. Both experiments are proved to be Locally Asymp-
totically Normal (LAN) with the same central sequence and (asymptotic)
Fisher information. This result allows us to treat the two setups jointly
and to obtain three main results. Firstly, we derive the asymptotic power
envelopes. Secondly, in Section 3 we obtain asymptotically optimal, feasible
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tests. Thirdly, the LAN result allows us to show that any test, satisfying a
mild regularity condition, has the same, perhaps nonoptimal, local asymp-
totic power function under both data generating processes.

We phrase our hypotheses about ρ in Equations (1) to (4) using the local
parameterization

ρ = ρ(n,T ) = 1 +
h√
nT

.

As shown below, these rates lead to contiguous alternatives, which allow us
to obtain the (local) power of our tests. The unit root hypothesis can be
reformulated in terms of the “local parameter” h:

H0 : h = 0 versus Ha : h < 0.

In both setups, we start by considering the likelihood ratio for observing
Zit in case ρ is the only unknown parameter. Hence, the number of factorsK,
the factor loadings λki, the autocovariance functions, and the fixed effects
mi are considered as known in this section. We will first show, for each
model separately, that its likelihood ratio satisfies an expansion, under the
null hypothesis, of the form log dPh,n,T/dP0,n,T = h∆n,T − h2J/2 + oP (1)
with Fisher-information J = 1/2. In Section 2.3, we consider the limiting
distribution of their common central sequence ∆n,T and will conclude that
both experiments enjoy the LAN-property. In Section 3 we demonstrate
that the conclusions of this section also hold for the model of interest, where
all the parameters are unknown, i.e., that the nuisance parameters can be
adaptively estimated.

2.1. Expanding the likelihood in the PANIC setup

For the PANIC case, for now, consider the factors as known. Just as for
the other parameters, we show in Section 3 that the resulting likelihood
ratio can still be approximated by an observable version (up to a negligible
term).11 Denote the joint law of F and Z under Assumptions 1.1 to 1.3
and Assumption 1.4 (a) by PPANIC

h,n,T . Using η ∼ N(0,Ση) and η = ∆E −

11 The result implies that observing the factors in the PANIC framework will not
lead to an increase in power. This contrasts with the situation in the MP set-
ting, for which Becheri et al. (2015) report higher powers with observed factors and
Juodis and Westerlund (2018) show power gains when observing covariates correlated to
the innovations.

10



hE−1/(
√
nT ), we obtain the log-likelihood ratio

log
dPPANIC

h,n,T

dPPANIC
0,n,T

=
h√
nT

∆E′A′Σ−1
η ∆E − h2

2nT 2
∆E′A′Σ−1

η A∆E

=: h∆PANIC
n,T − 1

2
h2JPANIC

n,T .

Note, from (6), ∆Ẽ = ∆Ỹ −∆F̃Λ′ , implying ∆E is indeed observable in this
PANIC framework (with observed factors as considered here). Moreover,
under PPANIC

0,n,T , ∆E = η. We now show that we can replace variances by
long-run variances, to obtain simpler versions of the central sequence and
empirical Fisher information.

Lemma 2.1: Suppose that Assumptions 1.1 to 1.3 and Assumption 1.4 (a)
hold. Then we have, under PPANIC

0,n,T , (∆PANIC
n,T , JPANIC

n,T ) = (∆n,T ,
1
2) + oP (1),

where

∆n,T =
1√
nT

∆E′A′Ψ−1
η ∆E − 1√

n

n
∑

i=1

δη,i,T
ω2
η,i,T

, with Ψ−1
η = Ω−1

η ⊗ IT .

Remark 2.1: The simplified central sequence ∆n,T is the result of substi-
tuting Σ−1

η by Ψ−1
η . It is, however, not the case that Ψ−1

η is a “good” ap-
proximation to Σ−1

η . As evident in ∆n,T , the replacement necessitates a
correction term for the central sequence to be centered. This term arises due

to the fact that, contrary to Σ
−1/2
η ∆E, Ψ

−1/2
η ∆E does exhibit serial corre-

lation. What we can show is that A′Ψη approximates A′Ση well. This is
thanks to ω2

η,i,T being roughly equal to the column sums of Ση,i. Lemma A.1
phrases this phenomenon in a general context.

In the following subsections we show that ∆n,T also approximates the
central sequence in the Moon and Perron (2004) setup.

2.2. Expanding the likelihood in the Moon and Perron (2004) setup

Let us denote the law of Z under Assumptions 1.1 to 1.3 and Assumption 1.4 (b)
by PMP

h,n,T . Then the log-likelihood ratio of PMP
h,n,T with respect to PMP

0,n,T is

given by, using ε ∼ N(0,Σε) and ε = ∆Y − hY−1/(
√
nT ),

log
dPMP

h,n,T

dPMP
0,n,T

=
h√
nT

∆Y ′A′Σ−1
ε ∆Y − h2

2nT 2
∆Y ′A′Σ−1

ε A∆Y

=: h∆MP
n,T − 1

2
h2JMP

n,T .
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In this more complicated model, we simplify the central sequence and
also the Fisher information in two steps. The first is analogous to the approx-
imation in the PANIC setup, i.e., we replace variances by long-run variances.
Note that thanks to our independence assumptions, the nT ×nT covariance
matrix of the ε can be written as

Σε = var ε =
K
∑

k=1

(

λkλ
′
k ⊗ Σf,k

)

+Ση. (8)

Replacing Σf,k by ω2
f,k,TIT and Ση,i by ω

2
η,i,T IT in (8) we obtain the simpli-

fied versions of central sequence

∆̃MP
n,T :=

1√
nT

∆Y ′A′Ψ−1
ε ∆Y − 1√

n

n
∑

i=1

δη,i,T
ω2
η,i,T

,

where the nT × nT matrix Ψε is defined by

Ψε := ψε ⊗ IT :=
(

ΛΩFΛ
′ +Ωη

)

⊗ IT , (9)

with Ωη = diag(ω2
η,1,T , . . . , ω

2
η,n,T ) and ΩF = diag(ω2

f,1,T , . . . , ω
2
f,K,T ). The

following lemma demonstrates that applying these replacements to the cen-
tral sequence and Fisher information do not affect their asymptotic behavior.

Lemma 2.2: Suppose that Assumptions 1.1 to 1.3 and Assumption 1.4 (b)
hold. Then we have, under PMP

0,n,T , (∆
MP
n,T , J

MP
n,T ) = (∆̃MP

n,T ,
1
2) + oP (1).

Exploiting the Sherman-Morrison-Woodbury formula we obtain

Ψ−1
ε = ψ−1

ε ⊗ IT =
(

Ω−1
η − Ω−1

η Λ
(

Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

)

⊗ IT . (10)

Note that removing Ω−1
F from (10) yields a projection matrix correspond-

ing to ‘projecting out the factors’. Thus, basing a central sequence on such
a projection matrix would simplify approximating it based on observables
by removing the need to estimate Ω−1

F and, more importantly, by ensuring
that the factors are projected out. The next lemma shows that using such a
projection version ψ∗

ε
−1 of ψ−1

ε in the central sequence does not change its
asymptotic behaviour.
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Lemma 2.3: Suppose that Assumptions 1.1 to 1.3 and Assumption 1.4 (b)
hold. Then we have, under PMP

0,n,T , ∆̃
MP
n,T = ∆∗

n,T + oP (1), where

∆∗
n,T =

1√
nT

∆Y ′A′(ψ∗
ε
−1 ⊗ IT )∆Y − 1√

n

n
∑

i=1

δη,i,T
ω2
η,i,T

, with

ψ∗
ε
−1 =Ω−1

η − Ω−1
η Λ

(

Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η . (11)

2.3. Asymptotic normality

Having simplified each framework’s central sequence and Fisher information
separately, we are now ready to show that they are asymptotically equivalent
and the central sequences converge to a normal distribution. We begin
this section by showing that the central sequence in the MP framework is
asymptotically equivalent to the one in the PANIC framework.

Lemma 2.4: Suppose that Assumptions 1.1 to 1.4 hold. Then we have,
under PPANIC

0,n,T and PMP
0,n,T , ∆

∗
n,T = ∆n,T + oP (1).

Finally, we consider the weak limit of the central sequence ∆n,T (and there-
fore also of ∆∗

n,T ), showing that both experiments are locally asymptotically
normal.

Proposition 2.1: Suppose that Assumptions 1.1 to 1.4 hold. Then we

have, under PPANIC
0,n,T and PMP

0,n,T , ∆n,T
d−→ N(0, J) with J = 1

2 .

Remark 2.2: Under the null hypothesis, the model equations of both mod-
els coincide. Hence, the additional distributional Assumption 1.4 (b) implies
that under the null, the MP framework is a special case of the PANIC frame-
work. Therefore, it is sufficient to show the desired convergence for PPANIC

0,n,T .
This principle applies to all calculations under the hypothesis. As the cen-
tral sequences are equal as well and thanks to the LAN result below, it even
extends to many calculations under alternatives, through Le Cam’s Third
Lemma.

Proposition 2.1 is an important result as it establishes that the unit root
testing problem in both models is locally asymptotically normal, i.e., it is
asymptotically equivalent to testing h = 0 against h < 0 based on one obser-
vation X ∼ N(Jh, J). This equivalence prescribes how to perform asymp-
totically optimal inference and yields the asymptotic local power envelope
and the power functions of various test statistics: The asymptotic represen-
tation theorem (see, for example Van der Vaart, 2000, Ch. 9) implies that
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in our framework no unit root test can have higher power than the optimal
test in the limit experiment. This best test is clearly rejecting for small
values of X, leading to a power (for a level-α test) of Φ(Φ−1(α) − J1/2h).
Thus, with J = 1/2, this constitutes the power envelope for our unit root
testing problems:12

Corollary 2.1: Suppose that Assumptions 1.1 to 1.3 and Assumption 1.4 (a)
hold. Let φn,T = φn,T (Z11, . . . , ZnT ) be a sequence of tests and denote their
powers, under PPANIC

h,n,T , by πn,T (h). If the sequence φn,T is asymptotically of
level α ∈ (0, 1), i.e. lim supn,T→∞ πn,T (0) ≤ α, we have, for all h ≤ 0,

lim sup
n,T→∞

πn,T (h) ≤ Φ

(

Φ−1(α)− h√
2

)

.

Replacing Assumption 1.4 (a) by Assumption 1.4 (b), the same bound ap-
plies to powers under PMP

h,n,T .

The above power envelope would be reached by any of our previously intro-
duced central sequences.13 In the next section we show that we can approx-
imate these central sequences based on observables, yielding a feasible test
that attains the asymptotic power envelope.

3. An Asymptotically UMP Test

In the previous section we derived a testing procedure that reaches the power
envelope for the unit root testing problem. This test, however, is not feasible
when the nuisance parameters are unknown. In this section, we demonstrate
how to estimate the nuisance parameters to obtain a feasible version that
also attains the power envelope. We provide a feasible version of ∆∗

n,T , which
is motivated by the likelihood ratio in the MP experiment. As (11) projects
out the factors, basing our feasible version on ∆∗

n,T instead of ∆n,T spares
us the approximation of the idiosyncratic parts.

Recalling our LAN results in Section 2 and that the central sequences
are asymptotically equivalent across the two setups (see Lemma 2.4) it is
clear that a feasible version of ∆∗

n,T would be optimal. Therefore, we show

12As this section assumes the nuisance parameters to be known, for now we can only
present an upper bound on the attainable power. In Section 3 we show that the power
envelope of Corollary 2.1 can be attained.

13This always holds in LAN experiments and follows from Le Cam’s Third Lemma (see,
for example, Van der Vaart, 2000, Ch. 6).
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that replacing all nuisance parameters with estimates does not change the
limiting behavior of ∆∗

n,T . Specifically, we need estimates Λ̂ of the factor

loadings, as well as estimates δ̂η,i and ω̂
2
η,i of the (one-sided) long-run vari-

ances of each idiosyncratic part. The feasible test statistic is then

∆̂n,T =
1√
nT

T
∑

t=2

t−1
∑

s=2

∆Z ′
·,sψ̂

−1
ε ∆Z·,t −

1√
n

n
∑

i=1

δ̂η,i
ω̂2
η,i

, where (12)

ψ̂−1
ε :=Ω̂−1

η − Ω̂−1
η Λ̂(Λ̂′Ω̂−1

η Λ̂)−1Λ̂′Ω̂−1
η . (13)

Assumption 3.1: Let δ̂η,i, ω̂
2
η,i and Λ̂ be estimators of δη,i, ω

2
η,i and Λ

satisfying, under PMP
0,n,T and PPANIC

0,n,T ,

1. supi∈N |δ̂η,i − δη,i|2 = oP (1/n),

2. supi∈N |ω̂2
η,i − ω2

η,i|2 = oP (1/n), and

3. for a K × K matrix HK satisfying ‖HK‖F = OP (1) and
∥

∥H−1
K

∥

∥

F
=

OP (1), we have
∥

∥

∥ΛHK − Λ̂
∥

∥

∥

F
= oP (1).

Under suitable restrictions on the bandwidth and the kernel, Items 1 and 2
hold for kernel spectral density estimates; see Remark 2.9 in Moon et al.
(2014). Item 3 is stronger that the results in Moon and Perron (2004), so
we show in Lemma 3.1 that it indeed holds under our assumptions.

Lemma 3.1: Let Λ̄ be
√
n times the n × K matrix containing the K or-

thonormal eigenvectors corresponding to the K largest eigenvalues of ∆Z̃′∆Z̃
nT .

Take Λ̂ = ∆Z̃′∆Z̃
nT Λ̄. There exists a K × K matrix HK such that, under

PMP
0,n,T and PPANIC

0,n,T ,
∥

∥

∥
ΛHK − Λ̂

∥

∥

∥

F
= op(1) and both ‖HK‖F and

∥

∥H−1
K

∥

∥

F

are OP (1).

Remark 3.1: These factor estimates are the same as those used in Moon and Perron
(2004) and correspond to factor estimates based on classical principal com-
ponent analysis.

Remark 3.2: The factors are only identified up to a ‘rotation’ HK . Note
that ∆∗

n,T is (indeed) invariant under such rotations, as ψ∗
ε
−1 also equals

Ω−1
η − Ω−1

η ΛHK

(

H ′
KΛ′Ω−1

η ΛHK

)−1
H ′

KΛ′Ω−1
η .
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Lemma 3.2: Under Assumptions 1.1 to 1.4 and 3.1 we have, under PMP
0,n,T

and PPANIC
0,n,T , ∆̂n,T = ∆∗

n,T + oP (1).

Although Lemma 3.2 only concerns adaptivity under the null hypothesis H0,
we can use Le Cam’s First Lemma to obtain that, thanks to contiguity, also
under PMP

h,n,T or PPANIC
h,n,T , ∆̂n,T has the same limiting distribution as ∆∗

n,T , so

that tests based on ∆̂n,T will be uniformly most powerful. Formally, the size
and power properties of our optimal test follow from the following theorem.

Theorem 3.1: Let tUMP =
√
2∆̂n,T . Under Assumptions 1.1 to 1.4 and 3.1

we have, under PMP
h,n,T and PPANIC

h,n,T ,

tUMP
d−→ N

(

1√
2
h, 1

)

.

Rejecting H0 for tUMP ≤ Φ−1(α), α ∈ (0, 1), and tUMP an asymptotic power

of leads to an asymptotic power of Φ
(

Φ−1(α) − h√
2

)

, implying that tUMP is

asymptotically uniformly most powerful.

Remark 3.3: The asymptotic size of our test can also be obtained un-
der much weaker assumptions not exploiting Gaussianity, see Footnote 21
and Remark A.1. In such a situation, our test is still valid although perhaps
nonoptimal. For optimal inference with non-Gaussian innovations a new
analysis of the likelihood ratio would be needed, but this is not feasible here.

Remark 3.4: Note that the limiting distribution of tUMP does not depend
on the autocorrelations or the heterogeneity of the long-run variances. This
shows that the decrease in asymptotic power attributed to these features, for
example in Remark 2 of Westerlund (2015) was due to the specific tests un-
der consideration rather than being a feature of the unit root testing problem.

Remark 3.5: Note that ∆̂n,T only involves differenced data, so that our
test is invariant with respect to the incidental intercepts mi.

Here is one way to obtain the UMP test in practice:

1. Compute an estimator K̂ of the number of common factors on the
basis of the observations ∆Z·t, t = 2, . . . , T using information criteria
from Bai and Ng (2002).14

14As (n, T → ∞), these criteria select the correct number of factors with probability
one. Therefore, we can treat the number of factors as known in our asymptotic analyses.
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2. Use the observations ∆Z·t, t = 2, . . . , T , and K̂ to determine the factor
loadings Λ̂ and the factor residuals η̂·t, t = 2, . . . , T , using principal
components.

3. Determine estimates ω̂2
η,i of ω

2
η,i and estimates δ̂η,i of δη,i from η̂·t, t =

2, . . . , T , using kernel spectral density estimates. Let Ω̂ = diag(ω̂2
η,1, . . . , ω̂

2
η,n).

4. Calculate the estimated central sequence ∆̂n,T as in (12) and reject

when tUMP =
√
2∆̂n,T ≤ Φ−1(α). Alternatively, based on small sample

considerations, also estimate the empirical Fisher information

Ĵn,T :=
1

nT 2

T
∑

t=2

t−1
∑

s=2

∆Z ′
·,sψ̂

−1
ε

t−1
∑

u=2

∆Z·,u,

and reject the null hypothesis when temp
UMP := ∆̂n,T/

√

Ĵn,T ≤ Φ−1(α).

Remark 3.6: Although the uniformly most powerful test tUMP does not re-
quire a complicated estimate of the known J = 1/2, it can be undersized
in small samples, whereas the empirical version temp

UMP behaves very well in
most DGPs, both in terms of size and power. Thus we recommend to use
the temp

UMP in small samples. See Section 5 for details.

4. Comparing Powers Across Tests and Frameworks

This section derives the asymptotic powers of commonly used tests in both
the Moon and Perron (2004) and the Bai and Ng (2004) frameworks. We
start by formalizing our observation that local powers are equal across the
two frameworks.

Corollary 4.1: Let tn,T be a test statistic that, under PPANIC
0,n,T , converges in

distribution jointly with ∆n,T . Then, for all x ∈ R, and all h,

lim
(n,T→∞)

PMP
h,n,T [tn,T ≤ x] = lim

(n,T→∞)
PPANIC
h,n,T [tn,T ≤ x].

If, more specifically, tn,T
PPANIC

0,n,T→ N(µ, σ2) and if tn,T and ∆n,T are jointly
asymptotically normal under PPANIC

0,n,T with asymptotic covariance σ∆,t, its
limiting distribution under local alternatives is given by

tn,T
PPANIC

h,n,T→ N(µ + hσ∆,t, σ
2), and tn,T

PMP

h,n,T→ N(µ+ hσ∆,t, σ
2).

Thus, rejecting for small values of tn,T leads to an asymptotic power for a
level-α test of Φ(Φ−1(α)− hσ∆,t/σ) in both frameworks.
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Once again, our result on the asymptotic equivalence of the two experi-
ments allows us to obtain results for both frameworks at the same time. By
demonstrating the joint normality under the null as in Corollary 4.1 we ob-
tain simple proofs of the powers of commonly used tests in these frameworks,
without ever relying on triangular array calculations.

To show the elegance of this approach, we include here the full proof
of the first part of this lemma. The second part follows immediately from
a more specific version of Le Cam’s third lemma, which directly prescribes
the desired normal distribution under alternatives. We can use this simple
way to obtain powers under local alternatives thanks to our LAN results of
Section 2.

Proof: Denote the weak limit of (tn,T ,∆n,T ) under P
MP
0,n,T by (t,∆). Thanks

to our results in Section 2, both (tn,T ,
dPPANIC

h,n,T

dPPANIC
0,n,T

) and (tn,T ,
dPMP

h,n,T

dPMP
0,n,T

) converge

in distribution to (t, exp(h∆− h2/4)). By a general form of Le Cam’s third
lemma, the distribution of tn.T under local alternatives only depends on this
joint limiting law and is thus equal across the two frameworks.15 �

Before we apply Corollary 4.1 to derive asymptotic powers, we first de-
scribe the relevant test statistics in some detail. We focus on the tests
proposed in Bai and Ng (2010) (‘BN tests’) and Moon and Perron (2004)
(‘MP tests’). Following these papers, we denote

ω2 = lim
n→∞

1

n

n
∑

i=1

ω2
η,i, φ

4 = lim
n→∞

1

n

n
∑

i=1

(

ω2
η,i

)2
, δ = lim

n→∞
1

n

n
∑

i=1

δη,i,

all assumed to be positive, and their estimated counterparts

ω̂2 =
1

n

n
∑

i=1

ω̂2
η,i, φ̂

4 =
1

n

n
∑

i=1

(

ω̂2
η,i

)2
, and δ̂ =

1

n

n
∑

i=1

δ̂η,i.

Finally, we define ω4 = (ω2)2 and ω̂4 = (ω̂2)2.
Both the MP and BN tests rely on a two stage procedure. In the first

stage, the unobserved idiosyncratic innovations E are estimated. Subse-
quently, a pooled regression procedure is used to estimate the (pooled) au-
toregression parameter. This pooled estimator is then used to construct a
t-test. The main difference between the MP and the BN procedures lies in
the way the idiosyncratic innovations are estimated.

15See Theorem 6.6 in Van der Vaart (2000).
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Bai and Ng (2010) propose to estimate the idiosyncratic errors E by the
PANIC approach introduced in Bai and Ng (2004), which in turn relies on
principal component analysis applied to the differences ∆Yit. Denoting this
estimator of Ei by Êi, the BN tests are

Pa =

√
nT (ρ̂+ − 1)
√

2φ̂4/ω̂4

and

Pb =
√
nT (ρ̂+ − 1)

√

√

√

√

1

nT 2

n
∑

i=1

Ê′
−1,iÊ−1,i

ω̂2

φ̂4
, where

ρ̂+ =

∑n
i=1 Ê

′
−1,iÊi − nT δ̂

∑n
i=1 Ê

′
−1,iÊ−1,i

is a bias-corrected pooled estimator for the autoregressive coefficients.

Remark 4.1: Recall that temp
UMP is a modification of tUMP that replaces the

asymptotic Fisher Information J = 1/2, with its finite sample equivalent in
the MP setup, J̃MP

n,T . The resulting statistics can be considered a version of
Pb: In the case of homogeneous long-run variances, inserting the true long-
run variances into temp

UMP yields Pb. Conversely, temp
UMP is a version of Pb that

takes into account the heterogeneity in the long-run variances.

The MP tests are based on a different estimator of ρ. The idiosyncratic
components Ei are estimated by projecting the data on the space orthogonal
to the common factors. Let Λ̂ be a consistent estimators for Λ as defined
in (Moon and Perron, 2004, p. 89-90), and Y·,t = (Y1t, . . . , Ynt)

′. Then the
MP test statistics are given by

ta =

√
nT (ρ+pool − 1)
√

2φ̂4/ω̂4

, and

tb =
√
nT (ρ+pool − 1)

√

√

√

√

1

nT 2

T
∑

t=1

Y ′
·,t−1Qγ̂Y·,t−1

ω̂2

φ̂4
, where

ρ+pool =

∑T
t=1 Y

′
·,tQγ̂Y·,t−1 − nT δ̂

∑T
t=1 Y

′
·,t−1Qγ̂Y·,t−1

, and Qγ̂ = I − Λ̂(Λ̂′Λ̂)−1Λ̂′.

We are now ready to compute the asymptotic behaviour of the MP
and BN tests under local alternatives by an application of Corollary 4.1.
The power of the MP tests in the MP framework has been derived in
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Moon and Perron (2004) and that of the BN tests in the PANIC frame-
work has been derived in Westerlund (2015). Given our LAN result, we
can provide simple independent proofs of these results. These rely on the
second part of Corollary 4.1; we demonstrate the required joint asymptotic
normality in a supplementary appendix. More importantly, our approach
also leads to new results, namely the asymptotic powers of the MP test in
the PANIC framework and the asymptotic powers of the BN tests in the
MP framework. In fact, those results can be considered an immediate con-
sequence of the first part of Corollary 4.1 and the existing power results in
the literature.

Proposition 4.1: Suppose that Assumptions 1.1 to 1.4 and 3.1 hold. Then,
under PPANIC

h,n,T or PMP
h,n,T , as (n, T → ∞), the test statistics Pa, Pb, ta, and

tb all converge in distribution to a normal distribution with mean h
√

ω4

2φ4

and variance one. Rejecting for small values of any of these statistics leads

to an asymptotic power for a level-α test of Φ(Φ−1(α) − h
√

ω4

2φ4 ) in both

frameworks.

Remark 4.2: It turns out that the powers are equal, no matter which test
statistic and which framework is considered. We have discussed in some
detail that, for a given test, the equality of powers across frameworks is a
general phenomenon. The fact that in each framework, the power of the MP
tests is equal to that of the BN tests, on the other hand, is a ‘coincidence’.
Originally, the MP tests have been developed for the MP experiment, whereas
the BN tests are designed for the PANIC experiment. It has been noted in
Bai and Ng (2010) that the MP tests are valid in term of size in the PANIC
setup for testing the idiosyncratic component of the innovation for a unit root
but their (local and asymptotic) power in the PANIC framework has not been
considered. More discussion on the use of the MP tests in the PANIC setup
can be found in Bai and Ng (2010) and Gengenbach et al. (2010). Similarly,
to the best of our knowledge there are no studies on the power of the BN
tests in the MP framework.

The Cauchy-Schwarz inequality implies ω4

φ4 ≤ 1, thus Proposition 4.1 shows
that, in general, the local asymptotic power of the MP and BN tests lies
below the power envelope. In fact, they are all asymptotically UMP only
when ω4

φ4 = 1. This condition is satisfied when the long-run variances of the
idiosyncratic shocks ηit are homogeneous across i. The proposed test tUMP

is asymptotically UMP irrespective of possible heterogeneity. In Section 5
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we assess whether the asymptotic power gains, compared to the MP and BN
tests, are also reflected in finite samples for realistic parametric settings.

5. Simulation results

This section reports the results of a Monte-Carlo study with three main
goals: firstly, to assess the finite sample performance of our proposed test
tUMP, secondly, to see how the asymptotic equivalence between the Moon and Perron
(2004) and PANIC setups is reflected in finite samples, and, finally, to check
the robustness of our results to deviations from our assumptions.

5.1. The DGPs

We generate the data from Equations (1) to (4) withmi = 0.16 Using sample
sizes n = 25, 50, 100 and T = n, 2n, 4n, we simulate both the MP and the
PANIC setups. Recall that, for a local alternative h, we take ρ = 1+ h√

nT
in

both setups. In the MP case we also set ρk = ρ, whereas in the PANIC case
we set ρk = 1 under the null and all alternatives. The factor loadings Λ are
drawn from a normal distribution with mean K−1/2 and covariance matrix
K−1IK .17 Most of the simulations are run with K = 1 but we also explore
what happens with more factors. Throughout this section we assume the
number of factors to be known.18 For the innovation processes fkt and ηit
we examine Gaussian i.i.d., MA(1), and AR(1) processes. We fix the MA or
AR parameter at 0.4 and set the variance such that the long-run variances
of the fkt equal one, and the long-run variance of the ηit is ω

2
i . The ω

2
i are

drawn i.i.d. from a lognormal distribution whose parameters are chosen to
match different values of ω4/φ4 and a mean of one.19

16Recall that our tests are invariant with respect to mi.
17As done in Moon and Perron (2004), we scale by

√
K to ensure the contribution of

the factors is comparable across specifications.
18This number can be estimated consistently, so this makes no difference for the asymp-

totic analysis. See, for example, Section 2.3 in Moon and Perron (2004) and Section 5 in
Bai and Ng (2010) for a discussion of this issue.

19Recall from Section 4 that the asymptotic relative efficiency of the existing tests
compared to our UMP test depends on the heterogeneity of the long-run variances and
more specifically on the ratio ω4/φ4. Therefore, the sample size at which it becomes
worthwhile to estimate the heterogeneous long-run variances (i.e., use the asymptotically
UMP tests suggested here) mainly depends on this ratio. We present simulation results
for

√

ω4/φ4 between 0.6 and 1, where lower values indicate more heterogeneity. A cursory
look at a few typical applications reveals that these ratios are mostly between 0.6 and 0.8
and match the skewed nature of the lognormal distribution.
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Figure 1: Difference between powers in the MP vs the PANIC framework as a function of
−h with i.i.d. factor innovations and i.i.d. idiosyncratic parts and

√

ω4/φ4 = 0.8. Based
on 1 000 000 replications.

5.1.1. The test statistics

In addition to the tests proposed in Section 3, tUMP and temp
UMP, we consider

the MP tests of Moon and Perron (2004) and the BN tests of Bai and Ng
(2010). However, the powers and sizes of the (MP) tb and (BN) Pb tests
were very similar also in finite samples, so we only report results for Pb. We
omit the comparison with Pa and ta since they tend to show large biases in
terms of size (see, for example, the Monte Carlo studies in Gengenbach et al.
(2010) and Bai and Ng (2010)).

The sizes of all considered tests are highly sensitive to estimation of the
(one-sided) long-run variances. We have considered a variety of methods, for
example, using a Bartlett or quadratic spectral kernel and selection of the
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bandwidth according to the Newey and West (1994) or the Andrews (1991)
rule with/without various forms of prewhitening. Whereas the differences
from using different kernels are small, the selection of both the bandwidth
and the prewhitening are essential. Our preferred method employs a Bartlett
kernel with prewhitening.20 There is a size-power tradeoff between using the
Andrews (1991) and the Newey and West (1994) bandwidth selection: The
Andrews (1991) bandwidth leads to higher powers for the smallest sample
sizes, but an oversized test when the innovations have a strong MA compo-
nent. The decision which bandwidth to use thus depends on the preferences
of the researcher. In this section, all results are based on the Andrews (1991)
bandwidth. However, the sizes and powers based on the Newey and West
(1994) bandwidth can be found in a supplementary appendix.

5.2. Sizes

Table 1 reports the sizes of our tests for the baseline DGP based on the
Andrews bandwidth. Many other specifications can be found in the sup-
plemental appendix. Recall that the sizes depend considerably on how the
long-run variances are estimated. Using the method described above, the
sizes of temp

UMP reasonable across most DGPs and generally comparable to
those of Pb. tUMP, on the other hand, is undersized in many specifications,
so that we focus on its empirical version temp

UMP in the remainder. Only in
the MA(1) example, both temp

UMP and Pb are oversized (temp
UMP is more over-

sized for the smallest sample sizes and marginally less oversized in the larger
ones). Thus, when a strong MA component is suspected, we recommend to
use tests based on the Newey and West (1994) bandwidth. Generally, the
Newey and West (1994) bandwidth provides better sizes, especially in the
MA case. However, small sample powers are slightly lower. Both sizes and
powers based on the Newey and West (1994) bandwidth can be found in a
supplementary appendix.

5.3. Powers

We start this subsection by investigating the finite-sample differences be-
tween the MP and the PANIC setups. Recall that we have shown that
the asymptotic, local power functions are the same and that (under some
regularity conditions) all tests have the same asymptotic power in the MP
framework as they do in the PANIC framework. Figure 1 compares the

20As in Moon et al. (2014), the prewhitening model is selected based on the BIC between
four simple ARMA models.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.6 2.8 3.1 1.8 4.5 4.2 2.2 7.0 5.6
25 50 0.6 1.4 4.7 4.0 1.7 4.9 3.6 3.1 8.9 6.2
25 100 0.6 1.8 5.5 4.6 2.3 6.1 4.1 3.9 10.1 6.7
50 50 0.6 2.0 4.3 3.7 2.5 4.5 3.5 5.3 9.9 6.6
50 100 0.6 2.6 5.1 4.2 2.9 5.2 3.7 6.1 11.0 7.0
50 200 0.6 2.9 5.5 4.6 3.4 5.9 4.1 5.3 9.2 6.1
100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.1 8.2
100 200 0.6 3.6 5.3 4.5 3.7 5.3 4.1 7.0 10.0 6.6
100 400 0.6 3.6 5.3 4.5 4.3 6.1 4.5 4.9 7.1 5.1
25 25 0.8 0.9 3.1 3.5 1.8 4.3 4.7 2.4 6.7 6.4
25 50 0.8 1.8 5.1 4.6 1.7 4.4 4.0 3.1 8.3 7.2
25 100 0.8 2.3 5.8 5.2 2.2 5.3 4.6 3.9 9.3 7.8
50 50 0.8 2.4 4.6 4.2 2.4 4.2 4.2 5.1 9.3 8.3
50 100 0.8 3.0 5.4 4.8 2.6 4.6 4.3 5.9 10.1 8.5
50 200 0.8 3.3 5.7 5.2 3.1 5.2 4.7 5.0 8.4 7.1
100 100 0.8 3.5 5.1 4.6 3.1 4.4 4.4 8.7 12.3 10.4
100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.2 7.9
100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.6 5.9
25 25 1.0 1.0 3.3 3.9 1.9 4.3 5.4 2.4 6.5 7.2
25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.2 8.1 8.2
25 100 1.0 2.6 6.0 5.8 2.1 5.0 5.1 3.9 8.9 8.8
50 50 1.0 2.5 4.7 4.6 2.4 4.0 5.0 5.2 9.2 10.1
50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.8 10.0
50 200 1.0 3.4 5.7 5.6 3.0 5.0 5.1 4.9 8.2 8.1
100 100 1.0 3.6 5.2 4.9 3.0 4.2 4.9 8.6 12.1 12.6
100 200 1.0 3.9 5.5 5.3 3.2 4.6 4.9 6.5 9.0 9.1
100 400 1.0 4.0 5.6 5.5 3.8 5.3 5.5 4.6 6.4 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.3 0.5 0.6 1.4 4.1 2.7

Table 1: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-
tives. Based on 1 000 000 replications. Andrews Bandwidth.
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Figure 2: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Based on 100 000 replications.

powers of temp
UMP and Pb across the two frameworks. Indeed, also in small

samples the powers are very similar. Moreover, both a larger n and a larger
T contribute to reduce the difference. When the factor is stationary under
the hypothesis, the difference is considerably smaller still. Noting the small
scale on the y axis in these plots, in the remainder we will only present
results for the PANIC framework, as the lines would otherwise be mostly
indistinguishable.

We now turn to comparing the performance of the UMP tests to existing
ones. As discussed in Section 3, we need to estimate the individual long-run
variance of each idiosyncratic part in order to attain the power envelope. Of
course, this becomes easier with a larger time series dimension and is more
beneficial when the long-run variances differ substantially between series.
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Figure 3: (Size-corrected) power gains from using temp
UMP over Pb for varying values of

√

ω4/φ4 and sample sizes in the PANIC framework with i.i.d. factor innovations and i.i.d.
idiosyncratic parts. Based on 100 000 replications.

Figure 2 presents the baseline power results for a medium amount of
heterogeneity (

√

ω4/φ4 = 0.8). It is evident that even for relatively small
samples using the optimal test pays off: except for n = T = 25, the power
of temp

UMP is uniformly higher than that of Pb.
Next, Figure 3 presents the power difference between the optimal test and

Pb for varying degrees of heterogeneity. As expected, the higher the amount
of heterogeneity, the more beneficial it is to use the optimal test, also in
finite samples. In the case of perfect homogeneity, the losses from estimating
individual long-run variances are minor, except for the n = T = 25 case.

In the supplemental appendix we investigate the effects of serial correla-
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tion and multiple factors. Qualitatively, the power results are not affected by
these variations in the DGP. We also consider the robustness of our results to
deviations of our assumptions: we consider the power against heterogeneous
alternatives and investigate the effects of non-Gaussian innovations.

6. Conclusion and Discussion

This paper shows that the MP and PANIC frameworks are equivalent, for
unit root testing, from a local and asymptotic point of view. Using the
underlying LAN-result, the local asymptotic power envelope for the MP
and PANIC frameworks readily follows. We show that the tests proposed in
Moon and Perron (2004) and Bai and Ng (2010) only attain this bound in
case the long-run variances of the idiosyncratic component are sufficiently
homogeneous. We develop an asymptotically uniformly most powerful test;
a Monte Carlo study demonstrates that this test also improves on existing
tests for finite-samples.

To obtain the local and asymptotic equivalence of the MP and PANIC
frameworks, we need to impose some restrictions. First, we assume that
the driving innovations are Gaussian. Second, we impose the deviations to
the unit root, under the alternative hypothesis, to be the same for all panel
units. And third, we do not allow for (incidental) trends. The Gaussianity
facilitates a relatively easy proof of the LAN-result and it seems to be rather
difficult to generalize this assumption; even for first-generation frameworks
no results are available yet. For the proposed asymptotically uniformly most
powerful test, we stress that Gaussianity is not required for its validity.
In view of Becheri et al. (2014) we do not expect that imposing constant
deviations to the unit root, under the alternative hypothesis, affects our
main results. The Monte Carlo results seem to confirm this conjecture for
finite-samples. To allow for incidental trends the proper strategy seems to
be to first determine the maximal invariant (i.e. determine which part of
the observations is invariant with respect to the incidental trends), and to
analyze if the resulting maximal invariant satisfies a LAN-result (yielding
the power envelope). On basis of Moon et al. (2007) we expect that the
reduction of the data to the maximal invariant will result in a different
localizing rate compared to the situation in which there are no incidental
trends. This indicates that the generalization to incidental trends really
requires a separate analysis.
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A. Proof of Main Results

A.1. Preliminaries

This section present some preliminary results that are heavily exploited in
the proofs of our main results.

First, we recall some elementary results from linear algebra (throughout
we only consider real matrices); see, e.g., Lütkepohl (1996) andMagnus and Neudecker
(1999). Let tr[C] denote the trace of a square, real matrix C and let λmin (C)
(and λmax (C)) denote the minimal (maximal) eigenvalue of a symmetric,
real matrix C. For any real matrix C, let ‖C‖F =

√

tr [C ′C] = ‖C ′‖F de-
note its Frobenius norm, while ‖C‖spec =

√

λmax (C ′C) = ‖C ′‖spec denotes
its spectral norm. Recall ‖C‖spec ≤ ‖C‖F .

The inequality ‖CD‖F ≤ ‖C‖spec ‖D‖F is immediate from Raleigh’s
quotient. It follows that the Frobenius is submultiplicative, ‖CD‖F ≤
‖C‖F ‖D‖F . Moreover, the identity ‖C ⊗D‖F = ‖C‖F ‖D‖F easily fol-
lows from the alternative interpretation of the Frobenius norm being the
square-root of the sum of all squared individual matrix entries. Finally, we
note that for square matrices 〈C,D〉F = tr[C ′D] defines an inner product,
so we have the Cauchy-Schwarz inequality | tr[C ′D]| ≤ ‖C‖F ‖D‖F .

Next, we present a general lemma on approximating variances with long-
run variances. The results we present in this appendix are the main keys to
many proofs in Section 2. Moreover, they may be of general interest.

Lemma A.1: Consider an indexed collection of stationary time series {X(h)
t },

h ∈ H. Denote the T×T covariance matrix of (X
(h)
1 , . . . ,X

(h)
T ) by Σh, the m-

th autocovariance of {X(h)
t } by γh(m), and its long run variance by ω2

h <∞.
Also write ω2

h,T = ι′Σhι/T . If suph∈H
∑∞

m=−∞(|m|+ 1)|γh(m)| <∞, then

1. suph∈H |ω2
h,T − ω2

h| = O(T−1),

2. suph∈H
∥

∥A′(Σh − ω2
hIT )

∥

∥

F
+ suph∈H

∥

∥A(Σh − ω2
hIT )

∥

∥

F
= O(

√
T ),

3. suph∈H

∥

∥

∥
A′(Σh − ω2

h,TIT )
∥

∥

∥

F
+ suph∈H

∥

∥

∥
A(Σh − ω2

h,T IT )
∥

∥

∥

F
= O(

√
T ),

4. suph∈H ‖A′Σh‖F + suph∈H ‖AΣh‖F = O(T ).

Proof: Item 1 follows from ω2
h,T = 1

T

∑

m<T (T − |m|)γh(m) and ω2
h =

∑∞
m=−∞ γh(m), so

|ω2
h,T − ω2

h| =
∣

∣

∣

∣

∣

1

T

∞
∑

m=−∞
(min(|m|, T )γh(m)

∣

∣

∣

∣

∣

,
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which is indeed O(T−1) uniformly in h.
For Item 2, tedious but elementary calculations yield

∥

∥A(Σh − ω2
hIT )

∥

∥

2

F
=
∥

∥A′(Σh − ω2
hIT )

∥

∥

2

F

=

T
∑

s=1

T
∑

t=1

(

T−t
∑

m=s−t+1

γh(m)− ω2
h1s<t

)2

=

T−1
∑

s=1

(

s
∑

t=1

(

T
∑

m=s+1

γh(m− t)

)2

+
T
∑

t=s+1

(

s
∑

m=−∞
γh(m− t) +

∞
∑

m=T+1

γh(m− t)

)2)

=
T−1
∑

s=1

T−s
∑

t=1





(

T−t
∑

m=s

γh(m)

)2

+

( ∞
∑

m=s

γh(m) +
∞
∑

m=t

γh(m)

)2




≤ 5T
T
∑

s=1

( ∞
∑

m=s

|γh(m)|
)2

≤ 5T

( ∞
∑

m=−∞
|γh(m)|

) ∞
∑

m=1

min(m,T )|γh(m)|.

Taking suprema, Item 2 follows immediately from this bound. Item 3 follows

by combining the first two parts and ‖A‖F =

√

T (T−1)
2 = O(T ). The order

on ‖A‖F also yields

sup
h∈H

∥

∥A′Σh

∥

∥

F
≤ sup

h∈H

∥

∥A′(Σh − ω2
hIT )

∥

∥

F
+ sup

h∈H
ω2
h

∥

∥A′∥
∥

F

=O(
√
T ) +O(1)O(T ).

Again, the second part of Item 4 is analogous. �

Recall the covariance matrices Ση and Σε and their rough approximations
Ψη and Ψε defined in Lemma 2.1 and (9), respectively. The following three
lemmas use Lemma A.1 to show that these approximations do work well
when considering partial sums.

Lemma A.2: Under Assumption 1.1 (b),
∥

∥Σ−1
η

∥

∥

spec
,
∥

∥Ψ−1
η

∥

∥

spec
,
∥

∥Σ−1
ε

∥

∥

spec
,

and
∥

∥Ψ−1
ε

∥

∥

spec
are all O(1) as n, T → ∞.
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Proof: Note that Σε − Ση and Ψε − Ψη are positive semidefinite. Hence
λmin (Σε) ≥ λmin (Ση) ≥ inf i,T λmin (Ση,i) > 0 and, using Remark 1.4 (Foot-
note 10) and Item 1 of Lemma A.1,

λmin (Ψε) ≥λmin (Ψη) = λmin (Ωη ⊗ IT ) = min
i=1,...,n

ω2
η,i,T

≥ inf
i∈N

ω2
η,i − sup

i∈N
|ω2

η,i,T − ω2
η,i| → inf

i∈N
ω2
η,i > 0.

This shows the boundedness of all four norms. �

Lemma A.3: Under Assumption 1.1 (b) we have, as n, T → ∞,

∥

∥A′ (Ση −Ψη)
∥

∥

F
+ ‖A (Ση −Ψη)‖F = O(

√
nT ) = o(

√
nT ).

Proof: Using block diagonality and Lemma A.1, we obtain the bound

∥

∥A′ (Ση −Ψη)
∥

∥

2

F
=

n
∑

i=1

∥

∥A′(Ση,i − ω2
η,i,T IT )

∥

∥

2

F

≤ n sup
i∈N

∥

∥A′(Ση,i − ω2
η,i,T IT )

∥

∥

2

F
= O(nT ).

The other part is analogous; every A′ and A′ are replaced by A and A,
respectively. �

Lemma A.4: Under Assumptions 1.1 to 1.3 we have, as n, T → ∞,

∥

∥A′ (Σε −Ψε)
∥

∥

F
+ ‖A (Σε −Ψε)‖F = O(n

√
T ) = o(

√
nT ).

Proof: From the definitions of Σε and Ψε we obtain

A′ (Σε −Ψε) =

K
∑

k=1

A′ (λkλ
′
k ⊗

(

Σf,k − ω2
f,k,T IT

))

+A′ (Ση − Ωη ⊗ IT ) ,

which yields the bound ‖A′ (Σε −Ψε)‖F ≤ I + II with

I =
K
∑

k=1

∥

∥

(

λkλ
′
k ⊗A′ (Σf,k − ω2

f,k,T IT
))∥

∥

F
and II =

∥

∥A′ (Ση − Ωη ⊗ IT )
∥

∥

F
.
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Part II is already treated in Lemma A.3. For part I, again using
Lemma A.1, we get a slightly weaker bound since for the factor part there
is no block diagonality:

I =

K
∑

k=1

∥

∥λkλ
′
k

∥

∥

F

∥

∥A′ (Σf,k − ω2
f,k,T IT

)∥

∥

F

≤
K
∑

k=1

λ′kλk
∥

∥A′ (Σf,k − ω2
f,k,T IT

)∥

∥

F
= O(n

√
T ) = o(

√
nT ).

The proof for ‖A (Σε −Ψε)‖F is analogous. �

We now present a general weak convergence result for partial sums using
joint asymptotics. Proposition 2.1 is a special case of Lemma A.5 with
ai,n,T = 1. We provide Lemma A.5 in general terms here as it might be of
independent interest and we also use it in the proof of Proposition 4.1 to
demonstrate the joint convergence of Pa and the local likelihood ratio.

Lemma A.5: Let ai,n,T be a bounded sequence of non-random numbers and
1
n

∑n
i=1 a

2
i,n,T → α. Then, under PMP

0,n,T or PPANIC
0,n,T , as (n, T → ∞),

1√
n

n
∑

i=1

ai,n,T
ω2
η,i,T

(

1

T

T
∑

t=1

t−1
∑

s=1

ηisηit − δη,i

)

d−→ N(0, α/2).

Proof: First consider the case of ai,n,T being identically equal to one and
observe that this implies convergence of ∆n,T . Recall A+A′ = ιι′ − IT and
2δη,i,T = ω2

η,i,T − γη,i(0), hence, with ω
2
η,i,T = 1

T ι
′Ση,iι,

∆n,T =
1√
nT

n
∑

i=1

1

ω2
η,i,T

η′i
A+A′

2
ηi −

1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

=
1

2
√
n

n
∑

i=1





(

ι′ηi√
Tωη,i,T

)2

− 1



− 1

2
√
n

n
∑

i=1

1

ω2
η,i,T

(

1

T
η′iηi − γη,i(0)

)

.

Observe that Xi,T := ι′ηi
√

Tω2
η,i,T

∼ N(0, 1) and are independent across i ∈

N. Thus, for each T , 1√
2n

∑n
i=1(X

2
i,T − 1) has the same distribution as

1√
2n

∑n
i=1(X

2
i − 1), where X2

i
iid∼ χ2(1). Therefore, as the latter converges
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to a standard normal distribution as n → ∞ (CLT), so does the former
under joint limits. Thus, the first, leading term converges in distribution to
N(0, 1/2).

Asymptotic negligibility of the second, mean-zero term follows from

sup
i

var(
1

T
η′iηi) =

2

T 2
sup
i

tr[Σ2
η,i] =

2

T 2
sup
i

‖Ση,i‖2F

=
2

T
sup
i

∣

∣

∣

∣

∣

∣

T−1
∑

m=−(T−1)

(1− |m|
T

)γ2η,i(m)

∣

∣

∣

∣

∣

∣

= O(T−1).

For general ai,n,T we can apply a double array CLT, see 1.9.3 in Serfling
(1980), to the first (slightly adapted) term in the expansion. The Lindeberg
condition is readily verified since we have a weighted sum of i.i.d. centered
χ2 variables. Asymptotic negligibility of the second remainder term follows
from the boundedness condition on the ai,n,T . �

Remark A.1: We can obtain the same conclusion without requiring Gaus-
sian innovations: as long as the Lindeberg condition holds, for example
thanks to higher moment conditions, the same Theorem 1.9.3 of Serfling
(1980) applies.

We conclude this subsection by taking care of important terms that
appear repeatedly in the remainder.

Lemma A.6: Suppose that Assumptions 1.1-1.3 hold. Then, under PMP
0,n,T

or PPANIC
0,n,T and as n, T → ∞, we have

1.
∥

∥

∥

(

1
nΛ

′Ω−1
η Λ

)−1
∥

∥

∥

F
= O(1),

2.
∥

∥

∥

∑T
t=2 η·,t

∥

∥

∥

F
= OP (

√
nT ),

3.
∥

∥

∥

∑T
t=2 f·,t

∥

∥

∥

F
= OP (

√
T ),

4.
∥

∥ι′η̃Ω−1
η Λ

∥

∥

F
= OP (

√
nT ), and

5.
∥

∥η̃Ω−1
η Λ

∥

∥

F
= OP (

√
nT ).
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Proof: For Item 1, recall that K is fixed, so that the norm we consider is
irrelevant. As

Λ′Ω−1
η Λ =

n
∑

i=1

1

ω2
η,i,T

λiλ
′
i ≥

1

supi∈N ω
2
η,i,T

n
∑

i=1

λiλ
′
i,

the smallest eigenvalue of Λ′Ω−1
η Λ is larger than that of Λ′Λ. Thus,

∥

∥

∥

∥

∥

(

1

n
Λ′Ω−1

η Λ

)−1
∥

∥

∥

∥

∥

spec

≤ sup
i∈N

ω2
η,i,T

∥

∥

∥

∥

∥

(

1

n
Λ′Λ

)−1
∥

∥

∥

∥

∥

spec

→ sup
i∈N

ω2
i

∥

∥Ψ−1
Λ

∥

∥

spec
<∞,

thanks to Assumptions 1.1 and 1.2.
Item 2 follows from

E

∥

∥

∥

∥

∥

T
∑

t=1

η·,t

∥

∥

∥

∥

∥

2

F

= E
∥

∥η̃′ι
∥

∥

2

F
= ι′Eη̃η̃′ι = ι′

n
∑

i=1

Eηiη
′
iι = T

n
∑

i=1

ω2
η,i,T = O(nT ).

Note that the expectation of
∥

∥

∥

∑T
t=2 η·,t

∥

∥

∥

2

F
is given by (T − 1)

∑n
i=1 ω

2
η,i,T−1

and is thus of the same order.
Item 3 can be obtained along a similar line of proof.
For Item 4, note Eη̃′ιιη̃ = TΩη, so that

E
∥

∥ι′η̃Ω−1
η Λ

∥

∥

2

F
= trE[η̃′ιιη̃]Ω−1

η ΛΛ′Ω−1
η

= T tr ΛΛ′Ω−1
η ≤ T ‖Λ‖2F

∥

∥Ω−1
η

∥

∥

spec
= O(nT ).

Item 5 follows similarly from Eη·,tη′·,t = diag(γη,1(0), . . . , γη,n(0)) =: D,
so

E
∥

∥η̃Ω−1
η Λ

∥

∥

2

F
= tr(Λ′Ω−1

η

T
∑

t=1

E[η·,tη
′
·,t]Ω

−1
η Λ) ≤ T ‖Λ‖2F

∥

∥Ω−1
η

∥

∥

2

spec
‖D‖spec ,

which is indeed O(nT ) thanks to Assumptions 1.1 and 1.2. �

A.2. Proofs of Section 2

Proof of Lemma 2.1: In the following all probabilities and expectations are
evaluated under PPANIC

0,n,T . To obtain the desired result, we consider the dif-

ference between the two central sequences ∆n,T −∆PANIC
n,T and the difference
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between the two Fisher informations JPANIC
n,T − 1

2 . We show that expectations
and variances of both differences converge to zero, implying L2 convergence.

Part A: Under the null, ∆E = η and hence

∆n,T −∆PANIC
n,T =

1√
nT

η′A′(Ψ−1
η − Σ−1

η )η − 1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

.

We first show that the difference has mean zero. We have, using tr(A) = 0
and block diagonality of Ση,

E[∆n,T −∆PANIC
n,T ] =

1√
nT

tr(A′(Ψ−1
η − Σ−1

η )Ση)−
1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr(A′Ψ−1
η Ση)−

1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr((Ωη
−1 ⊗A′)Ση)−

1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

=
1√
n

1

T

n
∑

i=1

1

ω2
η,i,T

tr
[

A′Ση,i

]

− 1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

= 0,

as tr [A′Ση,i] = Tδη,i,T .
To show that the variance of ∆PANIC

n,T −∆n,T goes to zero, observe

nT 2 var(∆PANIC
n,T −∆n,T ) = var(η′Cηη) = tr[CηΣηCηΣη] + tr[CηΣηC

′
ηΣη](14)

≤‖CηΣη‖2F + ‖CηΣη‖F ‖ΣηCη‖F ,
with Cη = A′(Ψ−1

η − Σ−1
η ). Hence, it suffices to show ‖CηΣη‖F = o(

√
nT )

and ‖ΣηCη‖F = o(
√
nT ). Since Ψ−1

η and A′ commute, we obtain

‖CηΣη‖F =
∥

∥A′Ψ−1
η (Ση −Ψη)

∥

∥

F
≤

∥

∥Ψ−1
η

∥

∥

spec

∥

∥A′(Ση −Ψη)
∥

∥

F
,

which is indeed o(
√
nT ) by Lemmas A.2 and A.3. For ‖ΣηCη‖F , we first

have to approximate AΣη with AΨη before we can use the commutativity
as above:

‖ΣηCη‖F ≤ ‖ΨηCη‖F +
∥

∥C ′
η(Ση −Ψη)

∥

∥

F

=
∥

∥A′(Ση −Ψη)Σ
−1
η

∥

∥

F
+
∥

∥

(

Ψ−1
η − Σ−1

η

)

A(Ση −Ψη)
∥

∥

F

≤
∥

∥Σ−1
η

∥

∥

spec

∥

∥A′(Ψη − Ση)
∥

∥

F

+
(

∥

∥Ψ−1
η

∥

∥

spec
+
∥

∥Σ−1
η

∥

∥

spec

)

‖A(Ση −Ψη)‖F = o(
√
nT ).
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Part B: First, we show that the expectation of JPANIC
n,T converges to 1

2 .
We have

nT 2EJPANIC
n,T = tr

[

A′Σ−1
η AΣη

]

= tr
[

A′Ψ−1
η AΣη

]

− tr
[

A′C ′
ηΣη

]

= tr[A′A] + tr[A′Ψ−1
η A(Ση −Ψη)]− tr[ΣηCηA].

This implies that the leading term is 1
2nT

2, since the final two terms are
o(nT 2): use the arguments already presented in Part A together with the
relation between the trace and the Frobenius norm and

1

nT 2
‖A‖2F =

1

nT 2
tr
[

A′A
]

=
1

T 2
tr
[

A′A
]

=
T (T − 1)

2T 2
→ 1

2
.

Next, we show that the variance converges to zero. By the arguments in
(14), with Dη = A′Σ−1

η A,

n2T 4 var(JPANIC
n,T ) ≤ 2 ‖ΣηDη‖2F .

The required order is now easily verified, since

‖ΣηDη‖F ≤
∥

∥A′Ψ−1
η AΣη

∥

∥

F
+ ‖ΣηCηA‖F

≤
∥

∥A′A
∥

∥

F
+
∥

∥A′Ψ−1
η A(Ση −Ψη)

∥

∥

F
+ ‖ΣηCηA‖F

and ‖A′A‖F =
√
n ‖A′A‖F ≤ √

n ‖A‖2F =
√
nT (T − 1)/2. �

Proof of Lemma 2.2: In the following all probabilities and expectations are
evaluated under PMP

0,n,T . The proof of this lemma follows the idea of the
proof of Lemma 2.1 by considering means and variances. The proof that
JMP
n,T converges to 1

2 in L2 is almost identical to its counterpart in the proof
of Lemma 2.1: just replace η by ε, Ση by Σε, Cη by Cε etc. The same
replacements yield that the variance of ∆̃MP

n,T − ∆MP
n,T converges to zero, by

applying them to the arguments starting at (14). We are left to show that the
expectation of ∆̃MP

n,T −∆MP
n,T converges to zero. This remaining expectation

is more complicated since the variance matrices Σε and Ψε have additional
terms due to the presence of unobservable factors.

Recall, under PMP
0,n,T , ∆Y = ε and note

∆̃MP
n,T −∆MP

n,T =
1√
n

(

1

T
ε′A′ (Ψ−1

ε − Σ−1
ε

)

ε−
n
∑

i=1

δη,i,T
ω2
η,i,T

)

.
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Thus, we have

E[∆̃MP
n,T −∆MP

n,T ] =
1√
nT

tr[A′Ψ−1
ε Σε]−

1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

=
1√
nT

tr[A′Ψ−1
η Ση]−

1√
n

n
∑

i=1

δη,i,T
ω2
η,i,T

+
1√
nT

K
∑

k=1

tr
[

ψ−1
ε λkλ

′
k ⊗A′Σf,k

]

+
1√
nT

tr
[(

(ψ−1
ε − Ω−1

η )⊗A′)Ση

]

=: I + II + III.

In the proof of Lemma 2.1 we have established that the first term equals
zero. Therefore, the current proof is complete once we show the final two
terms converge to zero.

Convergence to zero of II follows from 1
T tr(A′Σf,k) = δf,k,T = O(1) in

combination with

K
∑

k=1

tr
[

ψ−1
ε λkλ

′
k

]

=tr[Λ′ψ−1
ε Λ] = tr

[

Ω−1
F − Ω−1

F

(

Ω−1
F + Λ′Ω−1

η Λ
)−1

Ω−1
F

]

≤ tr
[

Ω−1
F

]

=

K
∑

k=1

1

ω2
f,k,T

→
K
∑

k=1

1

ω2
f,k

<∞.

Convergence to zero of III follows from

|III| ≤ 1√
nT

n
∑

i=1

(

Ω−1
η Λ

(

Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η

)

i,i
| tr
[

A′Ση,i

]

|

≤ 1√
nT

tr(Ω−1
η Λ

(

Ω−1
F + Λ′Ω−1

η Λ
)−1

Λ′Ω−1
η ) sup

i
| tr
[

A′Ση,i

]

|.

≤ 1√
nT

‖Λ‖2F
∥

∥Ω−1
η

∥

∥

2

spec

∥

∥

∥

(

Ω−1
F + Λ′Ω−1

η Λ
)−1
∥

∥

∥

spec
sup
i

| tr
[

A′Ση,i

]

|.

Observe supi tr [A
′Ση,i] = O(T ) by Item 4 of Lemma A.1. From Assump-
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tion 1.2 we get ‖Λ‖F = O(
√
n) and

n
∥

∥

∥

(

Ω−1
F + Λ′Ω−1

η Λ
)−1
∥

∥

∥

spec
=

∥

∥

∥

∥

∥

(

1

n
Ω−1
F +

1

n
Λ′Ω−1

η Λ

)−1
∥

∥

∥

∥

∥

spec

= λ−1
min(

1

n
Ω−1
F +

1

n
Λ′Ω−1

η Λ) ≤ λ−1
min(

1

n
Λ′Ω−1

η Λ)

≤ λ−1
min(

1

n
Λ′Λ) sup

i∈N
ω2
η,i,T → λ−1

min(ΨΛ) sup
i∈N

ω2
η,i <∞.

A combination of these observations with the penultimate display yields
III = o(1). �

Proof of Lemma 2.3: We have

|∆∗
n,T − ∆̃MP

n,T | =
1√
nT

| tr(Aε̃(ψ∗
ε
−1 − ψε

−1)ε̃′)|

≤ 1√
nT

∥

∥

∥ψ∗
ε
−1 − ψε

−1
∥

∥

∥

F

∥

∥ε̃′Aε̃
∥

∥

F
.

We consider each norm separately. We have
∥

∥

∥ψ∗
ε
−1 − ψε

−1
∥

∥

∥

F
≤
∥

∥(Λ′Ω−1
η Λ+ ΩF )

−1 − (Λ′Ω−1
η Λ)−1

∥

∥

spec

∥

∥Ω−1
η

∥

∥

2

spec
‖Λ‖2F

= O(n−2)O(1)O(n) = O(n−1),

as ‖Λ‖F = O(
√
n) by Assumption 1.2,

∥

∥Ω−1
η

∥

∥

spec
= O(1) by Assumption 1.1,

and

n
∥

∥(Λ′Ω−1
η Λ +ΩF )

−1 − (Λ′Ω−1
η Λ)−1

∥

∥

spec

=

∥

∥

∥

∥

∥

∥

(

Λ′Ω−1
η Λ

n
+

ΩF

n

)−1

−
(

Λ′Ω−1
η Λ

n

)−1
∥

∥

∥

∥

∥

∥

spec

=

∥

∥

∥

∥

∥

∥

−
(

Λ′Ω−1
η Λ

n
+

ΩF

n

)−1
ΩF

n

(

Λ′Ω−1
η Λ

n

)−1
∥

∥

∥

∥

∥

∥

spec

≤
∥

∥

∥

∥

ΩF

n

∥

∥

∥

∥

spec

∥

∥

∥

∥

∥

∥

(

Λ′Ω−1
η Λ

n
+

ΩF

n

)−1
∥

∥

∥

∥

∥

∥

spec

∥

∥

∥

∥

∥

∥

(

Λ′Ω−1
η Λ

n

)−1
∥

∥

∥

∥

∥

∥

spec

,

which is O(n−1): the second norm converges to the third, which is O(1) by

Item 1 of Lemma A.6. For ‖ε̃′Aε̃‖F , we note that ‖ε̃′Aε̃‖F =
∥

∥

∥ε̃′A+A′

2 ε̃
∥

∥

∥

F
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and recall that A+A′ = ιι′ − IT , so that

2
∥

∥ε̃′Aε̃
∥

∥

F
=
∥

∥ε̃′(ιι′ − IT )ε̃
∥

∥

F
≤
∥

∥ι′ε̃
∥

∥

2

F
+ ‖ε̃‖2F = OP (nT ), (15)

as ‖ε̃‖F ≤ ‖Λ‖F
∥

∥

∥
f̃
∥

∥

∥

F
+ ‖η̃‖F = O(

√
n)OP (

√
T ) + OP (

√
nT ) and, using

Items 2 and 3 of Lemma A.6, a similar bound holds for ‖ι′ε̃‖F . Conclude
that the central sequence difference is Op(n

−1/2). �

Proof of Lemma 2.4: As ψ∗
ε
−1 projects out the factors, we have

∆∗
n,T −∆n,T =

1√
nT

tr(Aε̃ψ∗
ε
−1ε̃′)− 1√

nT
tr(Aη̃Ωη

−1η̃′)

=
1√
nT

tr(Aη̃(ψ∗
ε
−1 − Ωη

−1)η̃′).

Note that for a symmetric matrix B,

tr(Aη̃Bη̃′) = tr(η̃Bη̃′A′) = tr(A′η̃Bη̃′) = tr

(

A+A′

2
η̃Bη̃′

)

,

so, as ψ∗
ε
−1 and Ωη are symmetric and A+A′ = ιι′ − IT , we have

| tr(Aη̃(ψ∗
ε
−1 − Ωη

−1)η̃′)| = 1

2
| tr((ιι′ − IT )η̃(ψ

∗
ε
−1 − Ωη

−1)η̃′)|

≤ | tr(ι′η̃(ψ∗
ε
−1 − Ωη

−1)η̃′ι)|+ | tr(η̃(ψ∗
ε
−1 − Ωη

−1)η̃′)|

≤
∥

∥

∥

(

Λ′Ω−1
η Λ

)−1
∥

∥

∥

F

(

∥

∥ι′η̃Ω−1
η Λ

∥

∥

2

F
+
∥

∥η̃Ω−1
η Λ

∥

∥

2

F

)

= O(n−1)(OP (nT ) +OP (nT )) = OP (T ),

using Items 1, 4 and 5 of Lemma A.6. �

B. Additional Derivations

Proof of Lemma 3.1: As Moon and Perron (2004), we take HK = f̃ ′f̃
T

Λ′Λ̄
n .

First note that from the definitions of HK and Λ̂ and using ε̃ = f̃Λ′ + η̃ we
have

Λ̂− ΛHK =
1

nT
(ε̃′ε̃− Λf̃ ′f̃Λ′)Λ̄ =

1

nT
(η̃′f̃Λ′ + Λf̃ ′η̃ + η̃′η̃)Λ̄,
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so that

∥

∥

∥ΛHK − Λ̂
∥

∥

∥

F
≤

∥

∥

∥
η̃′f̃Λ′Λ̄

∥

∥

∥

F

nT
+

∥

∥

∥
Λf̃ ′η̃Λ̄

∥

∥

∥

F

nT
+

1

nT

∥

∥η̃′η̃Λ̄
∥

∥

F

≤2

√

n

T

∥

∥

∥η̃′f̃
∥

∥

∥

F√
nT

‖Λ‖F√
n

∥

∥Λ̄
∥

∥

F√
n

+
1

nT

∥

∥η̃′η̃
∥

∥

spec

∥

∥Λ̄
∥

∥

F
. (16)

By the definition of Λ̄,
∥

∥Λ̄
∥

∥

F
=

√
nK = O(

√
n). We have

E
∥

∥

∥
η̃′f̃
∥

∥

∥

2

F
=E

K
∑

k=1

n
∑

i=1

(

T
∑

t=1

fktηit

)2

=

K
∑

k=1

n
∑

i=1

T
∑

t=1

T
∑

s=1

γη,i(t− s)γf,k(t− s)

≤Mn
K
∑

k=1

T
∑

t=1

T
∑

s=1

|γf,k(t− s)|

=Mn

K
∑

k=1

T−1
∑

m=−(T−1)

(T − |m|)|γf,k(m)| = O(nT ),

for some finite constant M , using that, thanks to Assumption 1.1, γη,i(t−s)
is bounded uniformly in i and t− s. Thus, each term of the first summand
in (16) is Op(1).

Finally, we consider the second summand, which is treated differently

from Moon and Perron (2004). We obtain
∥

∥

∥ΛHK − Λ̂
∥

∥

∥

F
= op(1) if we can

indeed show that ‖η̃′η̃‖spec = op(
√
nT ) (Moon and Perron (2004) only use

‖η̃′η̃‖F = Op(
√
nT )). For this, note that 1

T η̃
′η̃ = 1

T

∑T
t=1 η̃·,tη̃

′
·,t, which

can be considered an approximation to Γη := diag(γη,1(0), . . . , γη,n(0)), the
n × n cross-sectional covariance matrix of the η. From Assumption 1.1,
‖Γη‖spec < ∞. We now show that indeed the approximation works. Using
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Isserlis’ Theorem to write E[η2i,tη
2
i,s] = 2γη,i(t− s)2 + E[η2i,t]E[η

2
i,s], we have

E

∥

∥

∥

∥

∥

1

T

T
∑

t=1

η̃·,tη̃
′
·,t − Γη

∥

∥

∥

∥

∥

2

F

=

n
∑

i=1

n
∑

j=1

E

(

1

T

T
∑

t=1

ηi,tηj,t − E[ηi,tηj,t]

)2

=

n
∑

i=1

n
∑

j=1

1

T 2

T
∑

t=1

T
∑

s=1

E[ηi,tηj,tηi,sηj,s]− E[ηi,tηj,t]E[ηi,sηj,s]

=
n
∑

i=1

1

T 2

T
∑

t=1

T
∑

s=1

2γη,i(t− s)2

+

n
∑

i 6=j

1

T 2

T
∑

t=1

T
∑

s=1

γη,i(t− s)γη,j(t− s)

= O(n/T ) +O(n2/T ).

Conclude that the difference in Frobenius norm is Op(n/
√
T ).21 Thus,

∥

∥η̃′η̃
∥

∥

spec
≤
∥

∥

∥

∥

∥

T
∑

t=1

η̃·,tη̃
′
·,t − TΓη

∥

∥

∥

∥

∥

F

+ ‖TΓη‖spec

=Op(n
√
T ) +O(T ) = op(

√
nT ).

Finally, we show the boundedness properties of HK . First note that

‖HK‖F ≤

∥

∥

∥
f̃ ′f̃
∥

∥

∥

F

T

‖Λ‖F√
n

∥

∥Λ̄
∥

∥

F√
n

= OP (1).

To show boundedness of the inverse, we will show that the limiting eigen-
values of HK are positive. Introduce Γf := diag(γf,1(0), . . . , γf,K(0)), the
K ×K covariance matrix of the f , and write

∥

∥

∥

∥

HK − Γf
Λ′Λ̄

n

∥

∥

∥

∥

spec

≤
∥

∥

∥

∥

Λ′Λ̄

n

∥

∥

∥

∥

F

∥

∥

∥

∥

∥

f̃ ′f̃

T
− ΓF

∥

∥

∥

∥

∥

F

= OP (1)oP (1),

where the latter follows from Assumption 1.1. As ΓF has full rank, it is
sufficient to show that the eigenvalues of Λ′Λ̄

n are bounded away from zero.
Λ̄ is defined through the eigenvectors of ε̃′ε̃/(nT ). As the eigenvalues of ε̃′ε̃

21Note that, even without Gaussianity, this conclusion holds as long as the long-run
variances of the {η2

i,t} are uniformly bounded.
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are closely related to those of Λf̃ ′f̃Λ′, we can use this relation to learn about
the rank of Λ′Λ̄. Formally, define D to be the K × K matrix with the K
largest eigenvalues of ε̃′ε̃/(nT ). Then, from the definition of Λ̄,

D =
Λ̄′
√
n

ε̃′ε̃

nT

Λ̄√
n
.

Recalling some of the above results we obtain

∥

∥

∥

∥

∥

ε̃′ε̃

nT
− Λf̃ ′f̃Λ′

nT

∥

∥

∥

∥

∥

spec

= oP (n
−1/2), (17)

so that

D =
Λ̄′
√
n

Λf̃ ′f̃Λ′

nT

Λ̄√
n
+ oP (n

−1/2) =
Λ̄′Λ

n
Γf

Λ′Λ̄

n
+ oP (1).

As the Kth largest eigenvalue of ε̃′ε̃/(nT ) is bounded away from zero (using
(17) the nonzero limiting eigenvalues are given by those of ΨΛΓF , a product

of two rank K matrices), so must the limit of Λ′Λ̄
n and thus HK . �
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Proof of Lemma 3.2: We split the difference in three parts: one for replacing
ψ∗
ε with ψ̂ε, one to take care of the initial value, and one for estimating the

correction term. Thus ∆̂n,T −∆∗
n,T = I − II − III, with

I =
1√
nT

tr(A′ε̃
(

ψ̂−1
ε − ψ∗

ε
−1
)

ε̃′)

II =
1√
nT

T
∑

t=2

ε′·,1ψ̂
−1
ε ε·,t

III =
1√
n

n
∑

i=1

(

δ̂η,i
ω̂2
η,i

− δη,i
ω2
η,i

)

.

For part I, insert Equations (11) and (13) to find

|I| = 1√
nT

| tr(ε̃′A′ε̃(ψ̂−1
ε − ψ∗

ε
−1))|

≤ 1√
nT

| tr(ε̃′A′ε̃(Ω̂−1
η − Ω−1

η )|

+
1√
nT

∣

∣

∣

∣

tr

(

Λ̂′Ω̂−1
η ε̃′A′ε̃Ω̂−1

η Λ̂
(

Λ̂′Ω̂−1
η Λ̂

)−1
− Λ′Ω−1

η ε̃′A′ε̃Ω−1
η Λ

(

Λ′Ω−1
η Λ

)−1
)∣

∣

∣

∣

≤ 1√
nT

tr(|ε̃′A′ε̃|) sup
i

|ω̂2
η,i − ω2

η,i|

+
1√
nT

∥

∥

∥

∥

Ω̂−1
η Λ̂

(

Λ̂′Ω̂−1
η Λ̂

)−1
Λ̂′Ω̂−1

η − Ω−1
η Λ

(

Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η

∥

∥

∥

∥

F

∥

∥ε̃′A′ε̃
∥

∥

F
.

The first summand is oP (1) thanks to Assumption 3.1 and, similar to the
arguments in (15),

2 tr(|ε̃′A′ε̃|) = tr(|ε̃′(ιι′ − IT )ε̃|) ≤
∥

∥ι′ε̃
∥

∥

2

F
+ ‖ε̃‖2F = OP (nT ),

as ‖ε̃‖F ≤ ‖Λ‖F
∥

∥

∥
f̃
∥

∥

∥

F
+ ‖η̃‖F = O(

√
n)OP (

√
T ) + OP (

√
nT ) and, using

Items 2 and 3 of Lemma A.6, a similar bound holds for ‖ι′ε̃‖F . The second
part is oP (1) thanks to (15) and Item 2 of Lemma B.1.

For II, we have

√
nTII ≤

∥

∥

∥
ψ̂−1
ε

∥

∥

∥

spec
‖ε·,1‖F (

∥

∥ι′ε̃
∥

∥

F
+ ‖ε·,1‖F )

= Op(1)OP (
√
n)(OP (

√
nT ) +OP (

√
n) = OP (n

√
T ),
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where ‖ε·,1‖F ≤ ‖Λ‖F
∥

∥

∥
f̃·,1
∥

∥

∥

F
+ ‖η̃·, 1‖F = OP (

√
n) and

∥

∥

∥
ψ̂−1
ε

∥

∥

∥

spec
= OP (1)

follows from Assumption 3.1 and Item 2 of Lemma B.1 implying
∥

∥

∥ψ̂−1
ε − ψ∗

ε
−1
∥

∥

∥

spec
= OP (n

−1/2) and
∥

∥

∥ψ∗
ε
−1
∥

∥

∥

spec
≤
∥

∥Ω−1
η

∥

∥

spec
+
∥

∥Ω−1
η

∥

∥

2

spec
‖Λ‖2F

∥

∥

∥

(

Λ′Ω−1
η Λ

)−1
∥

∥

∥

F

= O(1) +O(1)O(n)O(n−1) = O(1),

using Assumptions 1.1 and 1.2 and Item 1 of Lemma A.6. We conclude that

II = OP

(√
n√
T

)

= oP (1).

Finally, to show III = oP (1) we first note that Assumption 1.1 together
with Assumption 3.1 imply

0 < inf
i∈N

ω̂2
η,i ≤ sup

i∈N
ω̂2
η,i <∞ and sup

i∈N
δ̂η,i <∞.

Then, we rewrite III as

III =
1√
n

n
∑

i=1

1

ω2
η,i

(δ̂η,i − δη,i) +
1√
n

n
∑

i=1

δ̂η,i
ω̂2
η,iω

2
η,i

(ω2
η,i − ω̂2

η,i)

to see that both parts converge to zero in probability. �

B.1. Auxiliary Lemmas

Lemma B.1: Consider the factor estimates and the HK from Lemma 3.1.
Then, under Assumptions 1.1 to 1.4 and 3.1, under PMP

0,n,T or PPANIC
0,n,T and

as n, T → ∞, we have

1.

∥

∥

∥

∥

(

Λ̂′Ω̂−1
η Λ̂

)−1
−
(

H ′
KΛ′Ω−1

η ΛHK

)−1
∥

∥

∥

∥

F

= oP (n
−3/2), and

2.

∥

∥

∥

∥

Ω̂−1
η Λ̂

(

Λ̂′Ω̂−1
η Λ̂

)−1
Λ̂′Ω̂−1

η −Ω−1
η Λ

(

Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η

∥

∥

∥

∥

F

= oP (n
−1/2).

Proof: We start by noting that
∥

∥

∥H ′
KΛ′Ω−1

η ΛHK − Λ̂′Ω̂−1
η Λ̂

∥

∥

∥

F
= oP (

√
n):

This follows from
∥

∥

∥
ΛHK − Λ̂

∥

∥

∥

F
= oP (1) (Lemma 3.1) and

∥

∥

∥
Ω−1
η − Ω̂−1

η

∥

∥

∥

spec
=

oP (n
−1/2) (Assumption 3.1) in combination with HK being bounded and

‖Λ‖F = O(
√
n). Next, we have that

∥

∥

∥

∥

1

n
H ′

KΛ′Ω−1
η ΛHK

∥

∥

∥

∥

F

≤ ‖HK‖2F
‖Λ‖2F
n

∥

∥Ω−1
η

∥

∥

spec
= O(1),
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and

λmin

(

1

n
H ′

KΛ′Ω−1
η ΛHK

)

=

∥

∥

∥

∥

∥

H−1
K

(

1

n
Λ′Ω−1

η Λ

)−1

(H ′
K)−1

∥

∥

∥

∥

∥

−1

spec

≥
∥

∥H−1
K

∥

∥

−2

F

∥

∥

∥

∥

∥

(

1

n
Λ′Ω−1

η Λ

)−1
∥

∥

∥

∥

∥

−1

spec

,

which is bounded away from zero thanks to
∥

∥H−1
K

∥

∥

F
being bounded and

Item 1 of Lemma A.6. Thus, we can restrict attention to a compact subset
of the invertible matrices on R

K , on which the matrix inverse is uniformly

continuous. Therefore,
∥

∥

∥

1
nH

′
KΛ′Ω−1

η ΛHK − 1
n Λ̂

′Ω̂−1
η Λ̂

∥

∥

∥

F
= oP (n

−1/2) im-

plies the same for

∥

∥

∥

∥

(

1
nH

′
KΛ′Ω−1

η ΛHK

)−1 −
(

1
n Λ̂

′Ω̂−1
η Λ̂

)−1
∥

∥

∥

∥

F

.

For Item 2, let a = Ω−1
η ΛHK and b =

(

H ′
KΛ′Ω−1

η ΛHK

)−1
and define

â = Ω̂η
−1

Λ̂ and b̂ =
(

Λ̂′Ω̂η
−1

Λ̂
)−1

analogously. Thus

∥

∥

∥

∥

Ω̂−1
η Λ̂

(

Λ̂′Ω̂−1
η Λ̂

)−1
Λ̂′Ω̂−1

η − Ω−1
η Λ

(

Λ′Ω−1
η Λ

)−1
Λ′Ω−1

η

∥

∥

∥

∥

F

=
∥

∥

∥
âb̂â′ − aba′

∥

∥

∥

F

≤ ‖â− a‖F
∥

∥

∥
b̂
∥

∥

∥

F
‖â‖F + ‖a‖F

∥

∥

∥
b̂− b

∥

∥

∥

F
‖â‖F + ‖a‖F ‖b‖F ‖â− a‖F .

From Assumption 1.2 andHK being bounded it follows that ‖b‖F = OP (n
−1)

and in combination with Assumption 1.1 we obtain

‖a‖F ≤
∥

∥Ω−1
η

∥

∥

spec
‖Λ‖F ‖HK‖F = OP (

√
n).

From Item 1,
∥

∥

∥
b̂− b

∥

∥

∥

F
= oP (n

−3/2) so that also
∥

∥

∥
b̂
∥

∥

∥

F
= OP (n

−1). Finally,

we have

‖â− a‖F ≤
∥

∥

∥Ω̂−1
η − Ω−1

η

∥

∥

∥

spec

∥

∥

∥Λ̂
∥

∥

∥

F
‖HK‖F +

∥

∥Ω−1
η

∥

∥

spec

∥

∥

∥Λ̂− ΛHK

∥

∥

∥

F

=oP (n
−1/2)OP (

√
n)OP (1) +O(1)oP (1) = oP (1),

where
∥

∥

∥Ω̂−1
η − Ω−1

η

∥

∥

∥

spec
= oP (n

−1/2) by Assumption 3.1 and
∥

∥

∥Λ̂− ΛHK

∥

∥

∥

F
=

oP (1) by Lemma 3.1. Combining all these results indeed yields the correct
rate. �
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Independent proof of Proposition 4.1: Here we demonstrate the joint asymp-
totic normality required to apply the second part of Corollary 4.1. We divide
the proof into two parts. In Part A, we prove the theorem for Pa while in
Part B we discuss ta. We omit the proofs concerning Pb and tb as they follow
along the same lines.

Part A: First, we establish the joint convergence, under PMP
0,n,T and

PPANIC
0,n,T , of Pa and the local likelihood ratio. As already hinted at in Re-

mark 2.2, the results in Sections 2.1 and 2.2 imply that we only have to show
this convergence once to get the powers in both experiments, as both like-
lihood ratios are asymptotically equivalent and the models coincide under
the hypothesis. Having established this joint convergence, an application of
Le Cam’s third lemma will lead to the asymptotic distribution of Pa under
PMP
h,n,T and PPANIC

h,n,T .
Specifically, Lemmas 2.1 and 2.4 imply that the limiting distributions of

(

Pa, log
dPPANIC

h,n,T

dPPANIC
0,n,T

)

and

(

Pa, log
dPMP

h,n,T

dPMP
0,n,T

)

are equal to that of
(

Pa, h∆n,T − 1
4h

2
)

,

under PMP
0,n,T and PPANIC

0,n,T . From Lemma 1 and Lemma 2 in Bai and Ng
(2010) we see that Pa is adaptive with respect to the estimation of nui-
sance parameters while Lemma A.2 in Moon and Perron (2004) shows that
1

nT 2

∑n
i=1E

′
i,−1Ei,−1 converges in probability to 1

2ω
2. Therefore, Pa is asymp-

totically equivalent to P̃a =
1√
nT

∑n
i=1 E

′
i,−1∆Ei− 1√

n

∑n
i=1 δη,i√

φ4/2
.

Under PMP
0,n,T or PPANIC

0,n,T , we can compute the asymptotic distribution

of all possible linear combinations of P̃a and ∆n,T by an application of

Lemma A.5. For all α, β in R, we find, using ai,n,T = α
ω2
η,i,T√
φ4/2

+ β in

Lemma A.5,

αP̃a + β∆n,T
d−→ N

(

0,

(

α2 + αβ

√

2ω4

φ4
+
β2

2

))

.

Thus, the Cramér-Wold theorem and the asymptotic equivalence of Pa

and P̃a, yield, still under P
MP
0,n,T or PPANIC

0,n,T ,

(Pa,∆n,T )
d−→ N





(

0
0

)

,





1
√

ω4

2φ4
√

ω4

2φ4 1/2







 .
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Equivalently,

(

Pa, log
dPh,n,T

dP0,n,T

)

d−→ N





(

0
−1

4h
2

)

,





1 h
√

ω4

2φ4

h
√

ω4

2φ4 1/2h2







 .

Applying Le Cam’s third lemma, we obtain Pa
d−→ N

(

h
√

ω4

2φ4 , 1
)

under

PMP
h,n,T or PPANIC

h,n,T .
Part B: As far as ta is concerned, we recall that ta is adaptive with

respect to the estimation of nuisance parameters (see proofs of Theorem
2a) and b) in Moon and Perron (2004)) and that 1

nT 2

∑T
t=1 Y

′
·,t−1QγY·,t−1

converges in probability to 1
2ω

2 under PMP
0,n,T . Thus, ta is asymptotically

equivalent to

t̃a =

1√
nT

∑n
i=1 Y

′
·,t−1QΛ∆Y·,t−1 −

√
n
∑n

i=1 δη,i
√

φ4/2
.

Moreover, we have

1√
nT

T
∑

t=1

Y ′
·,tQΛ∆Y·,t−1 =

1√
nT

T
∑

t=1

E′
·,tQΛ∆E·,t−1

=
1√
nT

T
∑

t=1

E′
·,t∆E·,t−1 −

1√
nT

T
∑

t=1

E′
·,tΛ(Λ

′Λ)−1Λ∆E·,t−1

=
1√
nT

n
∑

i=1

E′
−1,i∆Ei + oP (1),

where the last equality follows from the proof of Lemma 2 c) in Moon and Perron
(2004). Therefore, ta is asymptotically equivalent to P̃a. Thus, following

the same steps as in Part A, we find ta
d−→ N

(

h
√

ω4

2φ4 , 1
)

under PMP
h,n,T or

PPANIC
h,n,T . �
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Additional Monte-Carlo Results

In this appendix we present sizes and powers for additional DGPs and ad-
ditional long-run variance estimates. The first subsection provides sizes and
powers for additional DGPs. In the second subsection, we consider the same
DGPs as in Sections B.1 and 5, but with long-run variances estimated using
the Newey and West (1994) bandwidth. Tables 4 to 6 are analogous to Ta-
bles 1 to 3. Figures 10 to 18 are analogous to Figures 1 to 9. In general, the
sizes for the MA case are slightly better controlled with the Newey and West
(1994) bandwidth, at the expense of slightly lower power for small sample
sizes.

Sizes and Powers in Additional DGPs

First, Figures 4 and 5 consider the powers in the presence of MA and AR
serial correlation, respectively. The results are similar to those for i.i.d inno-
vations. Figure 6 shows the results when the factor innovations are overdif-
ferenced, i.e., the factor is stationary under the hypothesis. The powers
appear to be unaffected. Figure 7 considers the case of the dependence
being generated by three factors, with the corresponding sizes reported in
Table 2. For very small sample sizes, powers of both tests are affected, but
generally the results are similar also here.

We now consider deviations from our assumptions. Figure 8 reports the
size-corrected powers of our tests against heterogeneous alternatives of the
form

ρi = 1 +
hUi√
nT

,

where the Ui are i.i.d. random variables with mean one. We draw the Ui from
a Uniform(0.2,1.8) distribution. Once again, the finite-sample behaviour
does not appear to be affected significantly, for both small and large samples.

Finally, we consider non-Gaussian innovations. Figure 9 reports size
corrected powers with the innovations drawn from a t distribution with five
degrees of freedom. The corresponding sizes are reported in Table 3. Also
here, the conclusions remain the same.
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Figure 4: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with MA factor innovations and MA idiosyncratic parts
and

√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 5: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with AR factor innovations and AR idiosyncratic parts and
√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 6: Size-corrected power of unit-root tests as a function of −h for varying sam-
ple sizes in the PANIC framework with overdifferenced i.i.d. factor innovations and i.i.d.
idiosyncratic parts and

√

ω4/φ4 = 0.8. The factor is stationary. Based on 100 000 repli-
cations.
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Figure 7: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Dependence based on three factors. Based on 100 000 replications.
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Figure 8: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Alternatives drawn from a Uniform(0.2,1.8) distribution. Based on
100 000 replications.
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Figure 9: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Innovations drawn from a t5 distribution. Note that the power
envelopes refer to the Gaussian experiment. Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.8 3.9 5.9 4.6 10.5 9.5 3.9 10.8 9.6
25 50 0.6 1.4 5.7 6.6 3.1 8.2 6.4 4.2 12.0 9.4
25 100 0.6 1.8 6.5 7.1 3.5 9.3 6.5 5.1 13.7 9.9
50 50 0.6 1.7 4.4 4.7 4.8 8.2 5.6 6.8 12.9 8.4
50 100 0.6 2.1 5.1 5.1 4.3 8.0 4.8 7.4 14.0 8.4
50 200 0.6 2.4 5.5 5.4 4.6 8.5 5.0 6.4 11.9 7.3
100 100 0.6 2.9 5.0 4.6 5.4 7.8 4.7 11.3 16.6 9.3
100 200 0.6 3.1 5.2 4.8 5.0 7.4 4.5 8.5 12.5 7.4
100 400 0.6 3.3 5.3 5.0 5.7 8.3 4.9 6.0 8.9 5.7
25 25 0.8 1.0 3.7 5.2 4.9 9.8 9.6 4.1 10.0 9.5
25 50 0.8 1.9 5.7 6.0 2.8 6.7 6.0 4.0 10.1 9.0
25 100 0.8 2.5 6.6 6.6 2.9 7.0 6.0 4.7 11.1 9.5
50 50 0.8 2.4 5.0 5.0 4.5 7.1 6.5 6.7 11.4 9.9
50 100 0.8 3.0 5.6 5.5 3.6 6.2 5.3 6.8 11.7 9.6
50 200 0.8 3.3 6.0 5.8 3.7 6.3 5.3 5.7 9.7 8.1
100 100 0.8 3.6 5.4 5.0 4.6 6.3 5.7 10.2 14.2 11.6
100 200 0.8 3.8 5.6 5.3 4.0 5.6 5.0 7.4 10.4 8.6
100 400 0.8 3.9 5.6 5.4 4.4 6.2 5.4 5.2 7.3 6.4
25 25 1.0 1.2 4.0 5.2 5.1 9.6 10.2 4.4 9.8 10.1
25 50 1.0 2.4 6.0 6.1 2.8 6.2 6.3 4.1 9.6 9.5
25 100 1.0 3.1 7.0 6.8 2.8 6.2 6.1 4.8 10.4 10.1
50 50 1.0 2.9 5.3 5.4 4.5 6.8 7.7 6.6 10.9 11.5
50 100 1.0 3.4 5.9 5.7 3.4 5.6 5.8 6.7 10.9 10.9
50 200 1.0 3.8 6.2 6.1 3.4 5.5 5.6 5.6 9.0 8.9
100 100 1.0 3.9 5.6 5.3 4.4 5.9 6.6 9.9 13.6 13.9
100 200 1.0 4.1 5.7 5.5 3.7 5.1 5.4 7.2 9.9 9.9
100 400 1.0 4.2 5.8 5.7 4.1 5.6 5.7 5.0 6.8 6.8

Mean abs. dev. from 5% 2.3 0.8 0.6 1.0 2.2 1.2 1.7 6.1 4.2

Table 2: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-
tives. Based on 1 000 000 replications. Andrews Bandwidth, three factors.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.7 2.9 3.3 2.0 4.9 4.6 2.3 7.2 5.9
25 50 0.6 1.4 4.7 4.2 1.8 5.0 3.7 3.2 9.1 6.4
25 100 0.6 1.8 5.5 4.7 2.3 6.1 4.2 3.9 10.1 6.8
50 50 0.6 2.0 4.3 3.7 2.6 4.6 3.6 5.3 10.0 6.8
50 100 0.6 2.6 5.1 4.3 2.9 5.3 3.8 6.1 10.9 7.0
50 200 0.6 2.9 5.4 4.5 3.4 5.9 4.1 5.3 9.2 6.1
100 100 0.6 3.2 5.0 4.2 3.3 4.9 3.8 9.1 13.2 8.2
100 200 0.6 3.6 5.3 4.4 3.6 5.3 4.0 6.9 9.9 6.7
100 400 0.6 3.7 5.4 4.6 4.4 6.2 4.5 4.9 7.1 5.2
25 25 0.8 0.9 3.1 3.5 2.0 4.5 4.9 2.4 6.8 6.5
25 50 0.8 1.8 5.0 4.6 1.7 4.5 4.1 3.1 8.3 7.2
25 100 0.8 2.3 5.9 5.2 2.2 5.3 4.6 3.9 9.3 7.7
50 50 0.8 2.3 4.6 4.2 2.4 4.2 4.3 5.2 9.4 8.3
50 100 0.8 3.0 5.4 4.8 2.6 4.7 4.3 5.9 10.1 8.5
50 200 0.8 3.3 5.7 5.2 3.0 5.2 4.7 5.0 8.4 7.2
100 100 0.8 3.5 5.2 4.7 3.1 4.4 4.4 8.7 12.4 10.4
100 200 0.8 3.8 5.5 5.0 3.3 4.7 4.5 6.6 9.3 7.9
100 400 0.8 3.9 5.5 5.1 3.9 5.5 5.0 4.7 6.5 5.9
25 25 1.0 1.0 3.3 3.8 2.0 4.4 5.6 2.5 6.7 7.3
25 50 1.0 2.0 5.2 5.1 1.7 4.2 4.5 3.3 8.1 8.2
25 100 1.0 2.6 6.0 5.8 2.2 5.1 5.1 3.9 9.0 8.9
50 50 1.0 2.5 4.7 4.6 2.4 4.1 5.0 5.1 9.1 10.0
50 100 1.0 3.1 5.4 5.2 2.6 4.4 4.8 5.8 9.9 10.0
50 200 1.0 3.5 5.8 5.6 3.0 5.0 5.2 4.9 8.1 8.1
100 100 1.0 3.6 5.3 4.9 3.0 4.3 5.0 8.6 12.1 12.6
100 200 1.0 3.9 5.5 5.2 3.2 4.6 4.9 6.4 9.0 9.0
100 400 1.0 4.1 5.6 5.5 3.8 5.3 5.4 4.6 6.3 6.4

Mean abs. dev. from 5% 2.3 0.6 0.6 2.2 0.5 0.6 1.4 4.1 2.8

Table 3: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alter-
natives. Based on 1 000 000 replications. Andrews Bandwidth, t-distribution with five
degrees of freedom.
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Finite-Sample Results with the Newey and West (1994) Bandwidth
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Figure 10: Difference between powers in the MP vs the PANIC framework as a function of
−h with i.i.d. factor innovations and i.i.d. idiosyncratic parts and

√

ω4/φ4 = 0.8. Based
on 1 000 000 replications.
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Figure 11: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 12: (Size-corrected) power gains from using temp
UMP over Pb for varying values of

√

ω4/φ4 and sample sizes in the PANIC framework with i.i.d. factor innovations and i.i.d.
idiosyncratic parts. Based on 0 replications.
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Figure 13: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with MA factor innovations and MA idiosyncratic parts
and

√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 14: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with AR factor innovations and AR idiosyncratic parts and
√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 15: Size-corrected power of unit-root tests as a function of −h for varying sam-
ple sizes in the PANIC framework with overdifferenced i.i.d. factor innovations and i.i.d.
idiosyncratic parts and

√

ω4/φ4 = 0.8. Based on 100 000 replications.
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Figure 16: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Dependence based on three factors. Based on 100 000 replications.

16



0 2 4 6 8 10
0

.2

.4

.6

.8

1
n = 25, T = 25

0 2 4 6 8 10

n = 25, T = 50

0 2 4 6 8 10

n = 25, T = 100

0 2 4 6 8 10
0

.2

.4

.6

.8

1
n = 50, T = 50

0 2 4 6 8 10

n = 50, T = 100

0 2 4 6 8 10

n = 50, T = 200

0 2 4 6 8 10
0

.2

.4

.6

.8

1
n = 100, T = 100

0 2 4 6 8 10

n = 100, T = 200

0 2 4 6 8 10

n = 100, T = 400

temp
UMP

Pb Asympt. Power Envelope Asympt. Power MP/BN

Figure 17: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Alternatives drawn from a Uniform(0.2,1.8) distribution. Based on
100 000 replications.
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Figure 18: Size-corrected power of unit-root tests as a function of −h for varying sample
sizes in the PANIC framework with i.i.d. factor innovations and i.i.d. idiosyncratic parts
and

√

ω4/φ4 = 0.8. Based on 100 000 replications.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.3 1.2 1.5 1.3 3.4 3.6 1.0 3.3 3.6
25 50 0.6 0.6 2.5 2.3 1.4 4.2 3.1 1.3 4.1 3.3
25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.2 6.3 4.4
50 50 0.6 0.9 2.1 1.9 2.1 3.9 3.0 1.9 3.8 3.1
50 100 0.6 1.9 3.8 3.1 2.9 5.3 3.6 3.1 6.0 4.2
50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.1 3.6
100 100 0.6 2.3 3.7 2.8 3.4 5.1 3.6 4.1 6.1 4.3
100 200 0.6 2.9 4.4 3.5 3.8 5.5 3.8 3.2 4.7 3.4
100 400 0.6 3.2 4.8 3.9 4.2 6.0 4.1 3.1 4.6 3.5
25 25 0.8 0.4 1.3 1.7 1.4 3.2 4.1 1.1 3.2 4.1
25 50 0.8 0.9 2.8 2.6 1.4 3.7 3.4 1.4 3.9 3.7
25 100 0.8 1.7 4.6 4.0 2.1 5.3 4.4 2.3 5.9 5.0
50 50 0.8 1.2 2.4 2.1 2.0 3.6 3.6 1.9 3.7 3.7
50 100 0.8 2.2 4.2 3.4 2.6 4.7 4.1 3.1 5.6 4.8
50 200 0.8 2.8 4.9 4.2 3.1 5.3 4.4 2.7 4.7 4.0
100 100 0.8 2.6 3.9 3.0 3.2 4.6 4.2 4.0 5.8 5.1
100 200 0.8 3.2 4.6 3.8 3.5 4.9 4.2 3.0 4.4 3.7
100 400 0.8 3.5 5.0 4.3 3.9 5.4 4.6 3.0 4.3 3.8
25 25 1.0 0.5 1.5 1.9 1.4 3.3 4.8 1.1 3.2 4.5
25 50 1.0 1.1 3.0 2.9 1.4 3.6 3.9 1.4 3.9 4.2
25 100 1.0 2.0 4.8 4.5 2.1 5.0 4.9 2.4 5.7 5.6
50 50 1.0 1.3 2.5 2.2 2.0 3.5 4.2 2.0 3.6 4.4
50 100 1.0 2.4 4.2 3.7 2.6 4.5 4.6 3.1 5.5 5.4
50 200 1.0 2.9 5.0 4.4 3.0 5.0 4.8 2.8 4.7 4.4
100 100 1.0 2.7 4.0 3.1 3.1 4.4 4.7 3.9 5.7 5.7
100 200 1.0 3.3 4.8 3.9 3.4 4.8 4.5 3.0 4.3 3.9
100 400 1.0 3.7 5.1 4.5 3.8 5.3 4.9 3.0 4.2 3.9

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.9 2.5 0.9 0.9

Table 4: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-
tives. Based on 1 000 000 replications. Newey Bandwidth.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.5 1.5 3.3 3.0 7.2 7.9 1.6 5.0 6.3
25 50 0.6 0.6 2.6 4.2 2.4 6.7 5.6 1.6 5.6 5.5
25 100 0.6 1.1 4.7 5.7 3.4 9.1 6.2 2.9 8.7 6.9
50 50 0.6 0.6 1.7 2.6 3.9 6.8 4.8 2.4 5.0 4.3
50 100 0.6 1.3 3.5 3.8 4.2 7.9 4.6 3.7 7.6 5.1
50 200 0.6 1.8 4.4 4.4 4.6 8.6 4.7 3.3 6.6 4.4
100 100 0.6 1.9 3.4 3.2 5.5 7.9 4.5 5.0 7.8 4.9
100 200 0.6 2.4 4.1 3.8 5.2 7.7 4.2 3.7 5.8 3.8
100 400 0.6 2.8 4.6 4.2 5.7 8.3 4.5 3.7 5.7 3.8
25 25 0.8 0.5 1.5 2.8 3.2 6.9 8.1 1.8 4.6 6.2
25 50 0.8 0.8 2.8 3.6 2.2 5.5 5.2 1.6 4.7 5.0
25 100 0.8 1.8 5.1 5.2 2.8 6.9 5.8 2.8 7.0 6.3
50 50 0.8 1.0 2.3 2.6 3.7 5.9 5.6 2.5 4.7 4.9
50 100 0.8 2.1 4.2 4.0 3.6 6.2 5.1 3.6 6.4 5.6
50 200 0.8 2.7 5.0 4.7 3.7 6.4 5.0 3.1 5.5 4.6
100 100 0.8 2.5 3.9 3.3 4.7 6.5 5.4 4.7 6.9 5.8
100 200 0.8 3.1 4.7 4.0 4.1 5.9 4.7 3.3 4.9 4.0
100 400 0.8 3.5 5.0 4.5 4.3 6.1 4.9 3.3 4.7 4.0
25 25 1.0 0.7 1.7 2.7 3.4 6.8 8.7 1.9 4.7 6.6
25 50 1.0 1.1 3.2 3.6 2.2 5.1 5.4 1.8 4.6 5.2
25 100 1.0 2.3 5.5 5.3 2.7 6.2 5.9 2.9 6.7 6.6
50 50 1.0 1.3 2.7 2.7 3.7 5.7 6.6 2.6 4.6 5.6
50 100 1.0 2.6 4.5 4.0 3.4 5.6 5.6 3.5 6.1 6.1
50 200 1.0 3.2 5.4 4.8 3.4 5.6 5.3 3.1 5.1 4.8
100 100 1.0 2.9 4.2 3.4 4.5 6.1 6.3 4.7 6.6 6.6
100 200 1.0 3.4 4.9 4.1 3.8 5.3 5.0 3.3 4.7 4.3
100 400 1.0 3.8 5.3 4.7 4.0 5.5 5.2 3.2 4.4 4.1

Mean abs. dev. from 5% 3.1 1.3 1.2 1.3 1.6 0.8 2.0 1.0 0.8

Table 5: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-
tives. Based on 1 000 000 replications. Newey Bandwidth, three factors.
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i.i.d. AR(1) MA(1)

n T
√

ω4/φ4 tUMP temp
UMP Pb tUMP temp

UMP Pb tUMP temp
UMP Pb

25 25 0.6 0.3 1.2 1.7 1.5 3.7 4.0 1.1 3.4 3.8
25 50 0.6 0.7 2.5 2.4 1.5 4.3 3.2 1.3 4.2 3.5
25 100 0.6 1.3 4.2 3.6 2.3 6.0 4.0 2.3 6.4 4.5
50 50 0.6 0.9 2.1 1.9 2.2 4.0 3.0 1.9 3.9 3.2
50 100 0.6 1.9 3.9 3.1 2.9 5.3 3.6 3.1 6.0 4.2
50 200 0.6 2.4 4.6 3.7 3.4 6.0 3.9 2.8 5.2 3.6
100 100 0.6 2.3 3.7 2.9 3.5 5.1 3.6 4.1 6.1 4.3
100 200 0.6 2.9 4.4 3.4 3.8 5.5 3.8 3.2 4.7 3.4
100 400 0.6 3.3 4.9 3.9 4.3 6.1 4.1 3.2 4.6 3.5
25 25 0.8 0.4 1.3 1.7 1.5 3.5 4.3 1.1 3.3 4.1
25 50 0.8 0.9 2.8 2.6 1.4 3.8 3.5 1.4 3.9 3.7
25 100 0.8 1.7 4.6 4.0 2.1 5.2 4.4 2.3 5.9 5.0
50 50 0.8 1.1 2.4 2.0 2.1 3.6 3.6 2.0 3.7 3.8
50 100 0.8 2.2 4.2 3.4 2.7 4.7 4.2 3.1 5.6 4.9
50 200 0.8 2.8 4.9 4.1 3.0 5.3 4.4 2.7 4.8 4.1
100 100 0.8 2.6 4.0 3.0 3.2 4.6 4.2 4.0 5.8 5.1
100 200 0.8 3.2 4.7 3.8 3.5 4.9 4.2 3.0 4.4 3.7
100 400 0.8 3.5 5.0 4.3 3.9 5.5 4.6 3.0 4.3 3.7
25 25 1.0 0.5 1.4 1.8 1.5 3.4 4.9 1.2 3.2 4.6
25 50 1.0 1.0 3.0 2.9 1.4 3.6 3.8 1.5 3.9 4.2
25 100 1.0 2.0 4.9 4.4 2.1 5.0 4.9 2.4 5.8 5.6
50 50 1.0 1.3 2.5 2.2 2.1 3.6 4.3 2.0 3.6 4.3
50 100 1.0 2.4 4.3 3.6 2.6 4.5 4.6 3.1 5.5 5.5
50 200 1.0 3.0 5.0 4.5 3.0 5.0 4.8 2.7 4.7 4.4
100 100 1.0 2.7 4.0 3.1 3.1 4.5 4.7 3.9 5.7 5.7
100 200 1.0 3.3 4.7 3.9 3.4 4.8 4.5 2.9 4.2 3.9
100 400 1.0 3.7 5.2 4.6 3.7 5.2 4.9 2.9 4.1 3.8

Mean abs. dev. from 5% 3.0 1.3 1.8 2.4 0.7 0.8 2.5 0.9 0.9

Table 6: Sizes (in percent) of nominal 5% level tests with no heterogeneity in the alterna-
tives. Based on 1 000 000 replications. Newey Bandwidth, t-distribution with five degrees
of freedom.
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