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Abstract

Although Robust Optimization is a powerful technique in dealing with uncertainty in

optimization, its solutions can be too conservative. More specifically, it can lead to an

objective value much worse than the nominal solution or even to infeasibility of the robust

problem. In practice, this can lead to robust solutions being disregarded in favor of the

nominal solution. This conservatism is caused by both the constraint wise approach of

Robust Optimization and its core assumption that all constraints are hard for all scenarios

in the uncertainty set. This paper seeks to alleviate this conservatism by proposing an

alternative robust formulation that condenses all uncertainty into a single constraint, binding

the worst-case expected violation in the original constraints from above. Using recent results

in distributionally robust optimization, the proposed formulation is shown to be tractable

for both right- and left-hand side uncertainty. A computational study is performed with

problems from the NETLIB library. For some problems, the percentage of uncertainty is

magnified fourfold in terms of increase in objective value of the standard robust solution

compared to the nominal solution, whereas we find solutions that safeguard against over half

the violation at only a tenth of the cost in objective value. For problems with an infeasible

standard robust counterpart, the suggested approach is still applicable and finds both so-

lutions that safeguard against most of the uncertainty at a low price in terms of objective value.

Keywords: robust optimization, non-constraint wise uncertainty, ambiguity

1 Introduction

Most real-life optimization problems contain parameters that are not known precisely. Po-

tential sources of this uncertainty are measurement, estimation and implementation errors

in the underlying processes (Ben-Tal et al., 2009, p. xi). To deal with such uncertainty

two classes of techniques exist: stochastic optimization and robust optimization.
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Stochastic optimization is a class of techniques in which all uncertain parameters are

assumed to follow a known probability distribution. Instead of regular (in)equalities,

stochastic optimization problems contain chance or expectation constraints. For a more

detailed description we refer to the textbook by Shapiro et al. (2014). Unfortunately,

stochastic optimization has two major disadvantages. First of all, the exact distribution

of uncertain parameters is often not known and thus must be estimated using historical

data if available. This may lead to severe inaccuracy in the obtained solutions. Secondly,

stochastic optimization problems are generally hard to solve (Shapiro and Nemirovski,

2005).

Robust Optimization (RO), on the other hand, is a class of techniques that does not

need any information on the distribution of the uncertain parameters and was initiated

by Ben-Tal and Nemirovski (1998) and El Ghaoui and Lebret (1997), although earlier

papers on the topic exist, see, for example, Soyster (1973). Instead, it requires the def-

inition of an uncertainty set that contains all scenarios one wants to safeguard against.

Subsequently, RO forces every constraint to be feasible for all possible parameter values

in the uncertainty set. For an overview of RO and its applications we refer to Ben-Tal

et al. (2009). An advantage of this approach is that the resulting problems are gener-

ally not much more difficult to solve than the original problem. For instance, techniques

have been developed for nonlinear and even nonconvex RO by Mutapcic and Boyd (2009)

and Bertsimas et al. (2010) for example. From a more practical point of view, RO has

been applied successfully to problems such as facility location, see, e.g., (Baron et al.,

2011; Gabrel et al., 2014) and network design, see, e.g., (Mudchanatongsuk et al., 2008;

Alvarez-Miranda et al., 2015; Pessoa and Poss, 2015), among many others.

Ben-Tal and Nemirovski (2000) showed that RO can successfully safeguard against

potential constraint violation in multiple NETLIB problems. Out of 90 NETLIB problems

studied, they found that 27 have a nominal solution that severely violates at least one

constraint for a box uncertainty set that allows parameters to deviate by 1%. Some of

the robust solutions they find, have an objective value up to 10% higher than the nominal

objective value however, i.e., safeguarding against 1% of uncertainty is paid for tenfold in

terms of objective value. This ‘price’ one pays for robustness has been addressed before,

see, e.g., Bertsimas and Sim (2004). Moreover, in extreme cases, this conservatism can lead

to the standard robust counterpart being infeasible. In other words, robust optimization’s

conservative nature might result in no solution that safeguards against uncertainty at all.

Ben-Tal et al. (2017) mention this conservatism and discuss two approaches to deal with

an infeasible robust counterpart: a simple approach that minimizes slacks similar to light

robustness as introduced by Schöbel (2014), and an approach based on globalized robust

optimization.
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This trade-off between objective value and violation leads to the main disadvantage

of RO: it can lead to overly conservative solutions. This conservative nature of robust

solutions has two major causes. First of all, one of the core assumptions of RO is that all

constraints are ‘hard’ for all parameter values in the uncertainty set, which is often not the

case in practice. Note that this assumption is twofold in the sense that it assumes that (1)

no constraint can be violated for (2) any scenario in the uncertainty set. We remark that

this assumption is relaxed by ‘light robustness’ (Fischetti and Monaci, 2009), ‘globalized

robust optimization’ (Ben-Tal et al., 2006, 2017) and ‘soft robust optimization’ (Ben-Tal

et al., 2010). An overview of these (and other) methods is given by Goerigk and Schöbel

(2016). Here we discuss the differences between those existing methods and the method

we propose in this paper.

Light robustness addresses the conservatism of robust optimization by setting a limit

to the deterioration of the objective value compared to the nominal solution. From all

solutions that satisfy this limit, it then finds the solution that minimizes a weighted sum

of all constraint violations. It is important to note that these violations are modeled

using (non-adjustable) slack variables and thus this approach suffers from some of robust

optimization’s conservatism through its constraint wise nature. This last observation is

the main difference between light robustness and the approach we suggest.

Globalized robust optimization assumes that constraints are hard for all parameter val-

ues in a ‘normal range’ of scenarios and allows for violation in the constraints for scenarios

that fall outside this ‘normal range’. It additionally assumes that the allowed violation for

such a scenario is proportional to the distance from that scenario to the ‘normal range’.

Globalized robust optimization thus requires specification of two uncertainty sets and

treats them in a different way. Our approach, on the other hand, is limited to a single

uncertainty set and allows a maximum amount of constraint violation for any perturba-

tion in this set. Moreover, globalized robust optimization shares light robustness’ main

difference to our approach: it does not account for the constraint wise nature of applying

RO, which is the second cause of RO’s conservatism. Especially for uncertainty sets with

high dependence between parameters spread over multiple constraints, this may lead to

overly conservative solutions. The most obvious example is uncertainty on the right-hand

side modeled with a budget uncertainty set (Bertsimas and Sim, 2004). RO will treat

this uncertainty set exactly the same as box uncertainty for the right-hand side, that is,

it completely ignores the budget constraint.

A more recent technique that deals with uncertainty in optimization combines ideas

from stochastic and robust optimization and is referred to as Distributionally Robust

Optimization (DRO). In general, it considers chance and/or expectation constraints that

must hold for all probability distributions in some specified ambiguity set, that is, it
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considers not the worst-case but the worst-case expected behavior. Amongst others, the

papers by Wiesemann et al. (2014) and Postek et al. (2018) have shown that problems with

ambiguous expectation constraints are computationally tractable in specific situations.

Two existing approaches within the DRO framework that address the conservatism of

robust optimization are ‘soft robust optimization’ (Ben-Tal et al., 2010) and ambiguous

joint chance constraints, see e.g., Chen et al. (2010).

Soft robust optimization is an approach using ambiguous expectation constraints that

is similar to globalized robust optimization. Where globalized robust optimization con-

siders two distinct uncertainty sets, soft robust optimization considers an infinite nested

family of ambiguity sets. More specifically, it considers nested sets of which the size is

dependent on a parameter ε. Similar to globalized robust optimization, the allowed worst-

case expected violation for distributions in a set with parameter ε is proportional to ε. The

differences between our approach and soft robust optimization echo the differences with

globalized robust optimization: it requires a thorough definition of a family of ambiguity

sets and it does not account for the constraint wise nature of applying RO.

One can also use ambiguous joint or individual chance constraints to allow violation

in constraints. In such an approach, one bounds the probability that violation occurs in

any of the constraints from above by some prescribed number. By considering all original

constraints in a joint chance constraint, this approach circumvents the constraint wise

nature of applying RO, similar to our approach. Problems involving chance constraints

are, however, notoriously hard to solve, although substantial improvements have been

made recently (Hanasusanto et al., 2017; Xie and Ahmed, 2018). Moreover, different

from directly bounding the violation, the amount by which constraints are violated is

largely deemed irrelevant when using chance constraints, which can be a downside in

certain applications.

In this paper, we present a general approach that allows violation of constraints to a

certain extent and combines all constraints into one to find less conservative solutions.

More specifically, we consider the total violation over all constraints and require it to

be below a specified value. Choosing this parameter strictly positive then relaxes the

assumption that all constraints are ‘hard’. We show that under certain conditions the

problem is equivalent to introducing auxiliary variables that model the violation of indi-

vidual constraints. In general, however, it is not tractable for realistic problem sizes.

For that reason, we focus on a different formulation that considers the expected viola-

tion instead. This approach is motivated by the recent developments in DRO mentioned

above. Moreover, in problems that need to be solved more frequently, e.g., on a weekly

basis, robustness might better be represented by the worst-case expected violation. We

furthermore discuss an alternative formulation that bounds the worst-case probability
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of violation from above. We subsequently discuss techniques from the literature that

deal with such ambiguous (joint) chance constraints and conclude that they do not yield

computationally tractable formulations for the problems we are interested in.

Our approach is tested on the NETLIB library for different amounts of constraint

violation. For these problems, we are able to quantify and visualize the trade-off between

objective value and constraint violation. For some problems, allowing for a 1% deviation

in the parameters can lead to an increase in objective value of over 4% in the standard

robust solution. We, on the other hand, find solutions that safeguard against over half

this uncertainty while only increasing in objective value by 0.1%.

The approach presented in this paper has the following advantages:

• It obtains solutions that safeguard against most uncertainty with a lower price of

robustness than the standard robust solution.

• For problems with a non-unique optimal nominal solution, it is able to find an

optimal nominal solution that also minimizes the worst-case expected violation.

• When the standard robust counterpart is infeasible, it finds the solution that mini-

mizes the worst-case expected violation as well as solutions that safeguard against

part of the uncertainty relatively cheaply.

• It is computationally tractable.

Moreover, in our search for such an approach we uncover two theoretical results that are

more generally applicable:

• We develop a new tighter approximation to uncertain sum-of-max constraints.

• We develop a novel approach to reformulate ambiguous joint chance constraints

under mean-MAD ambiguity.

Section 2 outlines the possible approaches to reduce conservatism in RO and discusses

their (dis)advantages. Section 3 expands on the details of our preferred approach for

left-hand side uncertainty. Section 4 presents numerical results based on problems from

the NETLIB library and Section 5 concludes the paper.

2 Proposed Approaches

In Section 2.1, we first introduce the optimization problem and the standard Robust

Optimization approach. Afterwards, we discuss four ideas that reduce the conservatism

of this standard approach. In Section 2.2, we bound the worst-case sum of violations
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from above. In Section 2.3, on the other hand, we use a distributionally robust approach

to bound the worst-case expected sum of violations. Section 2.4 expands on the idea of

simply bounding the worst-case expected violation constraint wise. Last but not least,

Section 2.5 describes techniques to bound the worst-case violation probabilities.

In each subsection we start by reviewing the theoretical strengths and weaknesses

and subsequently investigate the computational tractability. We settle on the approach

we discuss in Section 2.3 as it has the most desirable properties, especially in terms of

computational tractability.

2.1 Problem Definition

We consider a general linear optimization problem given by

min
x

c>x
(P1)

s.t. Ax ≥ b,

where x ∈ Rn is the decision vector, c ∈ Rn and A ∈ Rm×n are given parameters and

b ∈ Rm are parameters that are uncertain. Throughout this paper we consider both un-

certainty in A and b, but for now, we assume that all uncertainty considered is in b, the

right-hand side of the constraints. The main reason for this assumption is that the con-

servatism mentioned in Section 1 is present in particular for right-hand side uncertainty.

Intuitively, this is explained by the observation that the uncertain parameters are to some

extent ’maximally’ spread over a multitude of constraints and thus the constraint wise

nature of RO is most detrimental. We emphasize that everything stated in this section is

also valid when A is considered to be the uncertain parameter. Moreover, we note that

we can also treat the case where both A and b are uncertain, for example by introducing

an extra variable xn+1 that is forced to equal 1 and models the right-hand side.

In RO, the uncertainty in b is modeled by letting it reside in a user-provided convex

and compact uncertainty set U . It is then required that the constraints Ax ≥ b hold for

all values b ∈ U , that is, the problem that we are interested in, also referred to as the

robust counterpart of (P1) is

min
x

c>x
(P2)

s.t. Ax ≥ b ∀b ∈ U.

2.2 Bounding the Worst-Case Sum of Violations

To alleviate the constraint wise approach of RO, we combine all constraints of (P2) into a

single constraint on the sum of all constraint violation. Moreover, we drop the assumption
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that all constraints are ‘hard’ and allow some constraint violation α. We also choose to

enforce that the solution is feasible for the nominal or expected scenario b̄ to avoid solutions

with excessive amounts of violation in a single constraint. The resulting formulation is

given by

min
x

c>x

s.t.
m∑
i=1

max
{

0, bi − a>i x
}
≤ α ∀b ∈ U (P3)

Ax ≥ b̄.

Observe that for α = 0, (P3) is equivalent to (P2). An important remark when consid-

ering (P3) is that by summing the violations, constraints whose coefficients are larger in

magnitude are automatically considered to be more important, as their effect on the total

violation is larger. In applying this technique, it is therefore desirable to consider the

relative importance of all constraints. Note that in many practical examples constraints

will already be scaled accordingly. In a facility location problem for example, where an

uncertain amount of demand should be satisfied, each unit of missed demand is generally

of equal importance. If one does not know the exact interpretation of constraints, for

example, the obvious approach would be to normalize each constraint such that |b̄i| = 1.

A disadvantage of this problem formulation is that the standard way to solve the robust

optimization problem (P3) is only known to be tractable for box and budget uncertainty

sets on right-hand side parameters (Ardestani-Jaafari and Delage, 2016). This tractability

issue stems from the fact that finding the worst case of the left-hand side of (P3) over the

uncertainty set involves the maximization of a convex function. Traditionally, (P3) could

be reformulated by introducing auxiliary variables to yield

min
x

c>x

s.t.
m∑
i=1

yi ≤ α

yi ≥ bi − a>i x i = 1, . . . ,m, ∀b ∈ U (P4)

yi ≥ 0 i = 1, . . . ,m

Ax ≥ b̄.

For robust optimization problems, however, this equivalence is in general not true (Goris-

sen and Den Hertog, 2013). It is true, however, when U is a box uncertainty set or when

variables yi are considered to be adjustable variables. In the latter case, Ardestani-Jaafari

and Delage (2016) show that for a budget uncertainty set, affine decision rules suffice, as

these yield a problem equivalent to their reformulation. Unfortunately, even though this
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reformulation is a linear optimization problem, its number of constraints and variables

grow quadratically in the number of uncertain parameters of the original problem. This

means that in practice it can lead to impractical problem sizes.

An alternative way to find high quality solutions to (P3) was recently introduced

by Roos et al. (2018). They provide a systematic way to construct approximations to

robust counterparts of constraints convex in both the decision variable and uncertain

parameters for polyhedral uncertainty. More specifically, using Theorem 1 of Roos et al.

(2018) one can show that if U = {b ∈ Rm | Db = d}, for some D ∈ Rq×m and d ∈ Rq,

(P3) is equivalent to

min
x

c>x

s.t. ∀w ∈ W, ∃λ ∈ Rq :


d>λ+

[
Ax

0

]>
w ≤ α

D>i λ ≥ wi i = 1, . . . ,m

(P5)

Ax ≥ b̄,

where W =
{
w ∈ R2m

+

∣∣ wi + wi+m = 1 i = 1, . . . ,m
}

. An important remark is that the

variables λ in (P5) are adjustable, and thus it is still a hard problem to solve. Roos

et al. (2018) focus on the safe approximations to (P5) that result from substituting linear

decision rules, i.e., using

λ = u+ Vw. (1)

We note that, for this specific problem, they observe that these approximations are fully

equivalent to those obtained by Ardestani-Jaafari and Delage (2016). For sums of maxima

of linear functions, however, tighter safe approximations can be obtained because of the

special structure of W : it is a Cartesian product of simplices. For the sake of brevity,

we shall simply state the result and briefly sketch the proof, and refer to Appendix A for

more details.

Theorem 1. If there exist u ∈ Rq, V ∈ Rq×2m, Rik ∈ S2 for i = 1, . . . ,m and k =

1, . . . , q, y ∈ Rm and z ∈ Rm×m for a given x ∈ Rn such that

d>u+
m∑
i=1

yi ≤ α (2a)

[
a>i x+ V >i d

V >m+id

]>
⊗ 1 +

q∑
k=1

dkRik − yiE ∈ DNN i = 1, . . . ,m (2b)

−D>j u+
m∑
i=1

zji ≤ 0 j = 1, . . . ,m (2c)

[
1 + V >i Dj

V >m+1Dj

]>
⊗ 1−

q∑
k=1

DkjRik − zjiE ∈ DNN
i = 1, . . . ,m

j = 1, . . . ,m
(2d)
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Ax ≥ b̄, (2e)

holds, then x is feasible for (P3). Moreover, (2) is a tighter safe approximation to the

feasible region of (P5) than the one obtained by using the linear decision rule (1).

In this theorem, DNN refers to the doubly nonnegative cone, the cone that contains

all matrices that are both nonnegative and positive semidefinite, E is the all-ones matrix,

and ⊗ denotes the Kronecker product.

The result of Theorem 1 is obtained by substituting the following decision rule into

(P5):

λ = u+ Vw +
m∑
i=1

[
ri1w

2
i + ri2wiwm+i + ri3w

2
m+i

]
.

We then apply an important result by Anstreicher and Burer (2010) that allows us to

use an equivalent formulation for the convex hull of the lifted uncertainty set including

θ, and arrive at (2a)-(2d), through duality theory. The complete proof of Theorem 1 can

be found in Appendix A.

It is important to note that the result in Theorem 1 can easily be generalized to any

uncertain constraint that involves the sum of maxima of linear terms, e.g., the formulation

that would appear for uncertainty in A. The dimension of the doubly nonnegative matri-

ces, however, scales with the number of terms per maximum, and the approximation thus

easily becomes computationally cumbersome. In fact, (2) is not a tractable optimization

problem for the sizes we will consider in Section 4. We therefore do not explore this

approach numerically.

2.3 Bounding the Worst-Case Expected Sum of Violations

One of the causes of RO’s conservative solutions is that it only considers the worst case

over the uncertainty set, while in reality there is not always a high probability of this

worst case occurring. Recent papers in DRO therefore consider the uncertain parameters

to follow an unknown distribution that resides in some ambiguity set. One can then

consider the worst-case expected violation, that is, compute the expected violation with

respect to the distribution in this ambiguity set for which it is highest. Recent papers

in DRO show that this worst-case expectation can be computed efficiently for specific

ambiguity sets. We thus consider the problem

min
x

c>x

s.t. EP

[
m∑
i=1

max
{

0, bi − a>i x
}]
≤ α ∀P ∈ P (P6)

Ax ≥ b̄,
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where P is the ambiguity set that contains all distributions one considers for b. Although

(P6) may seem to be a more difficult problem to solve than (P3), this is not necessarily

true. In particular, when the support, mean and mean absolute deviation of the uncertain

parameters are known, and one assumes pairwise independence, the maximum expectation

over the ambiguity set has a closed-form solution. We discuss the resulting problem using

this ambiguity set and assuming uncertainty in only b below, while Section 3 discusses

this formulation in detail when A is the uncertain parameter. We also show that the

optimal value function of (P6) is convex in α.

Lemma 1. The optimal value function f : R+ → R of (P6) given by

f(α) = min
x

{
c>x | sup

P∈P
EP

[
m∑
i=1

max
{

0, bi − a>i x
}]
≤ α, Ax ≥ b̄

}
,

is convex.

Proof. We know the supremum as well as the sum of convex functions are convex functions

itself (Rockafellar, 1970). The result then follows by Corollary 2.7 in Fiacco and Kyparisis

(1986).

We note that given some objective value β, we can use all techniques described in

this section and Section 3 to find the solution that minimizes the worst-case expected

violation with this objective value. Mathematically, this means we solve

min
x

α

s.t. EP

[
m∑
i=1

max
{

0, bi − a>i x
}]
≤ α ∀P ∈ P

(P7)

c>x ≤ β

Ax ≥ b̄.

This formulation can, for example, be used to find a nominal solution that minimizes the

worst-case expected violation if the nominal solution is not unique. Moreover, if we omit

the nominal constraints (Ax ≥ b̄), we can find the solution that minimizes the worst-case

expected violation with at most objective value β.

The technique we consider to solve (P6) is the distributionally robust optimization

approach developed by Postek et al. (2018). This technique assumes the ambiguity set

to contain all probability distributions for b with a given support, mean and mean ab-

solute deviation from the mean (MAD), for which all bi are pairwise independent. We

remark that the function of interest, the sum of maxima, is separable in the uncertain

parameters, as for right-hand side uncertainty each constraint only contains a single un-

certain parameter. Therefore, we do not require an assumption regarding their pairwise
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independence. To see this, note that the expectation is a linear operator and we can

thus consider the maximum over the ambiguity set per individual maximum, i.e., only

the marginal distributions of bi, i = 1, . . . ,m, matter. Mathematically, this means that

we consider

P = {P : supp (bi) ⊆ [li, ui] , EP (bi) = µi, EP |bi − µi| = di, ∀i} .

The required support, mean and MAD can often be estimated from historical data, which

makes this approach suitable for practical applications. Moreover, if no information re-

garding the MAD is available, the approach we propose can still be applied. In this case,

all techniques in this section can be used with di = 2(ui − µi)(µi − li)/(ui − li), which

is the highest possible MAD any distribution with the specified support and mean can

have. This yields the expressions as first derived by Madansky (1959).

Given that the ambiguity set is defined as above, we use from Postek et al. (2018)

to reformulate (P6). In this derivation we use that the sum of maxima is a separable

function as described above:

max
P∈P

E

[
m∑
i=1

max
{

0, bi − a>i x
}]

= max
P∈P

m∑
i=1

E
[
max

{
0, bi − a>i x

}]
=

m∑
i=1

max
P∈P

E
[
max

{
0, bi − a>i x

}]
(3)

=
m∑
i=1

∑
y∈{1,2,3}

piy max
{

0, τ iy − a>i x
}
,

where τ i1 = li, τ
i
2 = µi and τ i3 = ui are the support of the worst-case distribution, and

their probabilities are given by

pi1 =
di

2 (µi − li)
, pi2 = 1− di

2 (µi − li)
− di

2 (ui − µi)
, pi3 =

di
2 (ui − µi)

,

for i = 1, . . . ,m. The derivation above states that the worst-case expected violation con-

straint can simply be replaced by the latter expression resulting in the following problem

min
x

c>x
(P8)

s.t.
m∑
i=1

 ∑
y∈{1,2,3}

piy max
{

0, τ iy − a>i x
} ≤ α.

In other words, the worst-case distribution is a three-point distribution on the support and

mean. (P8) can be easily transformed into a linear optimization problem with 3m extra

variables with linearization techniques for maxima. The resulting linear optimization

problem is then:

min
x,z

c>x
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s.t.
m∑
i=1

∑
y∈{1,2,3}

piyz
i
y ≤ α

(P9)

ziy ≥ 0 i = 1, . . . ,m, y ∈ {1, 2, 3}

ziy ≥ τ iy − a>i x i = 1, . . . ,m, y ∈ {1, 2, 3}

Ax ≥ b̄.

The most obvious parameter choice for the ambiguity set is such that µi = b̄i. Forcing

each constraint to be nominal feasible (Ax ≥ b̄) then means that τ iy − a>i x ≤ 0 for

i = 1, . . . ,m, y ∈ {1, 2}, as τ i1 ≤ τ i2 = b̄i. The problem thus reduces to containing only m

auxiliary variables modeling the violation of each original constraint for bi = τ i3. Although

this resembles a box uncertainty set, (P9) is only equivalent to (P4) for an appropriate

choice of di and ui. In particular, one needs to choose ui equal to the highest value bi can

take in the uncertainty set used in (P4) and di such that pi1 = pj1 for all i, j.

Postek et al. (2018) also describe how the best-case distribution can be found based

on the additional information βi = P (bi ≥ µi). This yields a two-point distribution with

which the best-case expected violation can be computed. Combined with the worst-case

distribution, this information can be used to find an upper bound on the cost of not

knowing the uncertain parameter’s actual distribution.

Clearly, (P9) is a computationally tractable approach to reduce conservatism in RO. It

alleviates the constraint wise nature of RO, by combining all original constraints into one

and considers not only the probability but also the magnitude of violation by considering

the worst-case expected violation. Section 4.2 discusses numerical results for (P9).

2.4 Bounding the Worst-Case Expected Constraint Wise Vio-

lations

Instead of merging all constraints and bounding their total worst-case expected violation,

the violation of individual constraints can also be bounded. Such a proposal also alleviates

any concerns regarding conservatism caused by RO’s assumption that all constraints are

‘hard’ for all scenarios in the uncertainty set, but does not address the constraint wise

nature of RO. In particular, we are interested in comparing (P6) to

min
x

c>x

s.t. EP
[
max

{
0, bi − a>i x

}]
≤ γi ∀P ∈ P , i = 1, . . . ,m (P10)

Ax ≥ b̄.

In (P10) the user-specified parameter γi denotes the allowed worst-case expected viola-

tion of constraint i. For the sake of comparison, we will only consider values γi such that

12
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∑m
i=1 γi = α, that is, we consider the case where the bound on the total worst-case ex-

pected violation is the same in both (P6) and (P10). It is easy to show that for such values

of γi, (P10) is at least as conservative, as any solution that has at most γi worst-case ex-

pected violation for any constraint i, surely has at most
∑m

i=1 γi total worst-case expected

violation. Additionally, this solution might in fact have a lower worst-case expected vio-

lation, as the worst case for the individual constraints is not necessarily attained by the

same distribution. We note that this is only true when no assumption is made regarding

the independence of uncertain parameters occurring in different constraints. Specifically,

this means that for the ambiguity set(s) we consider in this paper, the total worst-case

expected violation will be equal to
∑m

i=1 γi, as we do assume such pairwise independence.

Despite this last observation, the constraint wise nature of (P10) implies that surely

it is more conservative than (P6), as the allowed worst-case expected violation must be

spread out over all constraints according to the values of γi. It should be remarked that

this extra conservatism could be considered an advantage as well, as the violation is more

uniformly bounded across constraints, which can be desirable in certain applications where

robustness is of importance. The example in Figure 1 illustrates this conservatism, where

we set γi = α
m

for all i. In this figure we have plotted the optimal objective value of

both (P6) and (P10) for different values of α. Clearly, bounding the worst-case expected

violation of individual constraints is more conservative, as can be seen by comparing the

dashed with the solid line. We thus choose not to explore this approach numerically.
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Figure 1: Results for the NETLIB problem 80bau3b with right-hand side uncertainty.

The solutions to (P6) are shown as a blue solid line and the solutions to (P10) are shown

as an orange dashed line. The red cross indicates the standard robust solution and the

green square indicates the nominal solution.
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2.5 Bounding the Worst-Case Violation Probabilities

A different approach that can reduce conservatism in RO is not to bound the worst-case

(expected) violation of the constraints, but instead require the constraints to be satisfied

with a minimum probability. Such a requirement can be set for individual constraints

or a set of constraints, leading to single and joint chance constraints, respectively. In

particular, we consider ambiguous chance constraints, where we require constraints to be

satisfied with a minimum probability for the worst possible distribution. Mathematically,

we will consider the following two problems:

min
x

c>x

s.t. P
[
a>i x ≥ bi

]
≥ 1− ρi ∀P ∈ P , i = 1, . . . ,m (P11)

Ax ≥ b̄,

and

min
x

c>x

s.t. P
[
a>i x ≥ bi i = 1, . . . ,m

]
≥ 1− ρ ∀P ∈ P (P12)

Ax ≥ b̄.

Similar to the approach discussed in Section 2.4, (P11) does not address the constraint

wise nature of RO and is in general more conservative than (P12). It is however, com-

putationally tractable for a variety of ambiguity sets. If the mean and covariance matrix

of the uncertain parameters are known, for example, a tractable reformulation of (P11)

exists (Calafiore and Ghaoui, 2006), and when the support, mean and mean-absolute

deviation are known, several safe approximations to (P11) have been developed (Postek

et al., 2018). More general results for such constraints have also been obtained more

recently by Hanasusanto et al. (2017) and Xie and Ahmed (2018).

Methods for solving (P12) are more scarce on the other hand and often are approxima-

tions instead of exact reformulations. A common way to treat a joint chance constraint

is decomposing it into individual chance constraints and dividing the violation proba-

bilities over them. As the Bonferroni inequality, which guarantees that the above idea

leads to a safe approximation, is not necessarily tight, such a decomposition can be overly

conservative. Zymler et al. (2013) describe an approximation to ambiguous joint chance

constraints with first- and second-order information that does not rely on potentially loose

probabilistic inequalities.

The approaches of Zymler et al. (2013) and Chen et al. (2010) introduce a strictly

positive scaling parameter φ ∈ Rm and reformulate the ambiguous joint chance constraint

14
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in (P12) into

inf
P∈P

P
[

max
i=1,...,m

{
φi
(
bi − a>i x

)}
≤ 0

]
≥ 1− ρ, (4)

which they note is in fact an individual chance constraint and it can thus be conserva-

tively approximated by the following worst-case Conditional Variance at Risk (CVaR)

constraint:

sup
P∈P

CVaRρ

[
max

i=1,...,m

{
φi
(
bi − a>i x

)}]
≤ 0.

Inserting the definition for the conditional variance at risk, this constraint can equivalently

be written as

inf
β∈R

{
β +

1

ρ
sup
P∈P

EP

[
max

{
0, max

i=1,...,m

{
φi
(
bi − a>i x

)}
− β

}]}
≤ 0. (5)

Finding a tractable safe approximation to the original joint chance constraint thus comes

down to finding a tractable reformulation of

sup
P∈P

EP

[
max

{
0, max

i=1,...,m

{
φi
(
bi − a>i x

)}
− β

}]
,

for given values of β, φ and x. This expression is somewhat similar to the worst-case

expected violation we introduced in Section 2.3. Using the results of Postek et al. (2018)

outlined in Section 2.3, the inner maximization problem can be replaced to find the

equivalent formulation:

inf
β∈R

β +
1

ρ

∑
y∈{1,2,3}m

[
m∏
j=1

pjyj max

{
0, max

i=1,...,m

{
φi

(
τ iyj − a

>
i x
)}
− β

}] ≤ 0.

Requiring such a constraint to hold for the minimum β is equivalent to simply requiring

it holds for some β ∈ R. Introducing auxiliary variables to model the maxima, one arrives

at the following set of linear constraints:
β

(
1− 1

ρ

)
+

1

ρ

∑
y∈{1,2,3}m

[
m∏
i=1

piyizy1···ym

]
≤ 0

zy1···ym ≥ φi
(
τ iyi − a

>
i x
)

i = 1, . . . ,m, ∀y ∈ {1, 2, 3}m

zy1···ym ≥ β ∀y ∈ {1, 2, 3}m .

(6a)

(6b)

(6c)

First of all, we remark that even though (6) is a set of linear constraints, there are

both an exponential number of variables and constraints, n + 3m and 1 + (m+ 1) 3m,

respectively. Secondly, Zymler et al. (2013) remark that if φ is treated as a decision

variable, (5) is essentially an exact reformulation of (4). If one were to also optimize over

φ, the bilinear system (6) is thus an exact reformulation of (4). If m is sufficiently small,

therefore, one could adapt the sequential procedure suggested by Zymler et al. (2013) to

find high quality solutions to the original chance constrained problem (P12).
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Although (6) is an interesting novel way to reformulate ambiguous joint chance con-

straints under mean-MAD ambiguity, it does not offer the computational tractability that

we desire. The reason for this difference is that the quantity in question cannot be sep-

arated per constraint, which yields 3m terms instead of the 3m we have to consider in

Section 2.3. We thus do not explore this approach numerically.

In the remainder of the paper we will hence focus on the approach that bounds the

total worst-case expected violation as discussed in Section 2.3.

3 Left-Hand Side Uncertainty

3.1 General Approach

For left-hand side uncertainty, the standard approach using the technique described in

Section 2.3 would lead to an optimization problem involving an exponential number of

terms, m · 3n to be exact. To alleviate this computational burden, we use the adaptation

proposed in Postek et al. (2018) that deals with aggregate uncertainty. More specifically,

we consider aij = āij (1 + εζij), that is, to be a nominal value times some perturbation. A

more general dependence on ζij can be assumed by allowing ε to vary, that is, use some

εij. The effects of this alteration will be expanded upon at the end of this section. We

then define the ambiguity set by

P = {P : supp(ζij) ⊆ [−1, 1] , E (ζij) = 0, E |ζij| = dij for i = 1, . . . ,m, j = 1, . . . , n} .

Note that this definition does not require ζij to be pairwise independent. Moreover, this

definition of the ambiguity set implicitly assumes that the uncertainty is symmetric around

the nominal value. To reduce the dimensionality issues of n ·m uncertain parameters, we

combine the uncertainty from all ζij for a given i, such that we in fact consider the random

variables yi(x, ζ) = (ai ◦ x)> ζi, where ai◦x denotes the element-wise multiplication, also

called Hadamard product, of ai and x. We are thus interested in solving the following

problem, using the approach outlined in Section 2.3 applied to the uncertain factors yi(x):

min
x

c>x

s.t.
m∑
i=1

EP
[
max

{
bi − ā>i x+ yi(x, ζ), 0

}]
≤ α ∀P ∈ P (P13)

Āx ≥ b,

where Ā ∈ Rm×n is the matrix consisting of the elements āij. Since yi(x, ζ) depends

linearly on ζij, it is easy to find its support and mean, given by

supp(yi(x, ζ)) = [−‖ai ◦ x‖1, ‖ai ◦ x‖1] , E [yi(x, ζ)] = (ai ◦ x)> E [ζi] = 0.

16



Reducing conservatism in Robust Optimization Roos and Den Hertog

Its mean absolute deviation, however, cannot be found exactly. The following theorem

outlines how bounds on the mean absolute deviation can help bound the worst-case ex-

pected violation as well, analog to Propositions 3 and 7 in Postek et al. (2018).

Theorem 2. For any δi(x) such that E [|yi(x, ζ)|] ≤ δi(x), the worst-case expected viola-

tion in (P13) can be bounded from above by

m∑
i=1

[
δi(x)

2‖ai ◦ x‖1

max
{

0, 2
(
bi − a>i x

)
, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
. (7)

Proof. First of all, Postek et al. (2018) show that the worst-case expectation is a non-

decreasing function of the MAD. Therefore, using an upper bound δi(x) ≥ E [|yi(x, ζ)|]
instead of the MAD will give an upper bound for the expectation in (P13). We can thus

use this upper bound together with the worst-case three-point distribution introduced

by Postek et al. (2018) to find:

m∑
i=1

max
Pi∈Pi

E [max {bi − yi(x, ζ), 0}]

≤
m∑
i=1

[
δi(x)

2 (E [yi(x, ζ)]−−‖ai ◦ x‖1)
max

{
0, bi − a>i x− ε‖ai ◦ x‖1

}
+

δi(x)

2 (‖ai ◦ x‖1 − E [yi(x, ζ)])
max

{
0, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

2 (E [yi(x, ζ)]−−‖ai ◦ x‖1)

− δi(x)

2 (‖ai ◦ x‖1 − E [yi(x, ζ)])

)
max

{
0, bi − a>i x

}]
=

m∑
i=1

[
δi(x)

2‖ai ◦ x‖1

max
{

0, bi − a>i x− ε‖ai ◦ x‖1

}
+

δi(x)

2‖ai ◦ x‖1

max
{

0, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

2‖ai ◦ x‖1

− δi(x)

2‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
. (8)

Subsequently we use the fact that Eζi = 0 to simplify (8). Moreover, since ‖ai ◦x‖1 ≥ 0,

we find that

max{0, bi − a>i x+ ε‖ai ◦ x‖1} = 0 ⇒ max
{

0, bi − a>i x− ε‖ai ◦ x‖1

}
= 0.

Conversely it thus holds that

max
{

0, bi − a>i x− ε‖ai ◦ x‖1

}
= bi − a>i x− ε‖ai ◦ x‖1
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⇒ max
{

0, bi − a>i x+ ε‖ai ◦ x‖1

}
= bi − a>i x+ ε‖ai ◦ x‖1.

Therefore,

max
{

0, bi − a>i x+ ε‖ai ◦ x‖1

}
+ max

{
0, bi − a>i x− ε‖ai ◦ x‖1

}
= max

{
0, 2

(
bi − ā>i x

)
, bi − ā>i x+ ε‖āi ◦ x‖1

}
.

Hence, (8) is equal to

m∑
i=1

[
δi(x)

2‖ai ◦ x‖1

max
{

0, bi − a>i x− ε‖ai ◦ x‖1

}
+

δi(x)

2‖ai ◦ x‖1

max
{

0, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
=

m∑
i=1

[
δi(x)

2‖ai ◦ x‖1

max
{

0, 2
(
bi − a>i x

)
, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
.

In other words, the worst-case distribution for yi(x, ζ) is a three point distribution on

its mean and extremes of its support, where the probability density on the extremes is

proportional to the mean absolute deviation, which is bounded from above.

The results in this section would hardly change if one assumes aij = āij (1 + εijζij),

that is, one assumes ε to vary. More specifically, one would then define aggregate random

variables yi(x, ζ) = (āi ◦ εi ◦ x)> ζi, where εi ∈ Rn is the vector consisting of all εij for

some i. This implies that the support of yi(x, ζ) is given by

supp (yi(x, ζ)) = [−‖āi ◦ εi ◦ x‖1, ‖āi ◦ εi ◦ x‖1] ,

and the expression in Theorem 2 changes accordingly.

3.2 Bounds for the MAD

The simplest way to find an upper bound as suggested by Postek et al. (2018) is the

following:

E |yi(x, ζ)− 0| = E
∣∣∣(ai ◦ x)> ζi

∣∣∣ = E

∣∣∣∣∣
n∑
j=1

aijxjζij

∣∣∣∣∣
≤ E

n∑
j=1

|aijxjζij| =
n∑
j=1

E |aijxjζij| =
n∑
j=1

E |aijxj| |ζij|
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=
n∑
j=1

|aijxj|E |ζij| =
n∑
j=1

|aijxj| dij ≤ ‖ai ◦ x‖1 ·max
j
dij. (9)

The quality of this bound and the resulting formulation will be discussed at the end of

this section.

This bound is particularly useful as it greatly simplifies (7). More specifically, we can

show the following simplification analog to Proposition 7 in Postek et al. (2018).

Theorem 3. For δi(x) = ‖ai ◦x‖1 ·maxj dij, the optimal value of (P13) is bounded from

above by the optimal value of the following linear optimization problem:

min
w,x,y,z

c>x

s.t.
m∑
i=1

1

2
max
j
dijwi + (1−max

j
dij)yi ≤ α

wi ≥ 2
(
bi − a>i x

)
i = 1, . . . ,m

wi ≥ bi − a>i x+ ε
n∑
j=1

zij i = 1, . . . ,m

zij ≥ aijxj i = 1, . . . ,m, j = 1, . . . , n (P14)

zij ≥ −aijxj i = 1, . . . ,m, j = 1, . . . , n

yi ≥ bi − a>i x i = 1, . . . ,m

yi, wi ≥ 0 i = 1, . . . ,m

Āx ≥ b.

Proof. Using δi(x) = ‖ai ◦ x‖1 ·maxj dij we find

m∑
i=1

max
Pi∈Pi

E
[
max

{
bi − a>i x− yi(x, ζ), 0

}]
≤

m∑
i=1

[
δi(x)

2‖ai ◦ x‖1

max
{

0, 2
(
bi − a>i x

)
, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− δi(x)

‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
=

m∑
i=1

[
‖ai ◦ x‖1 ·maxj dij

2‖ai ◦ x‖1

max
{

0, 2
(
bi − a>i x

)
, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1− ‖ai ◦ x‖1 ·maxj dij

‖ai ◦ x‖1

)
max

{
0, bi − a>i x

}]
=

m∑
i=1

[
1

2
max
j
dij ·max

{
0, 2

(
bi − a>i x

)
, bi − a>i x+ ε‖ai ◦ x‖1

}
+

(
1−max

j
dij

)
·max

{
0, bi − a>i x

}]
. (10)
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Introducing auxiliary variables, the optimal value of (P13) can then be bounded from

above by the optimal value of (P14).

Much like for right-hand side uncertainty, the inclusion of the constraint Āx ≥ b

means that for the appropriate choices for dij, (P14) is equivalent to the ordinary slack

problem (P4) with a unit box uncertainty set on ζij. This equivalence holds when dij = d

for all i, j to be precise.

Furthermore, if all uncertain parameters in the same constraint have equal mean

absolute deviation, we can show that (P13) is equivalent to the derived upper bound

(P14).

Theorem 4. Given the ambiguity set

P = {P : supp(ζij) ⊆ [−1, 1] , E (ζij) = 0, E |ζij| = di for i = 1, . . . ,m, j = 1, . . . , n} ,
(11)

(P13) is equivalent to (P14).

Proof. Consider the probability distribution P ∈ P such that

P (ζi = 0) = 1− di, P (ζi = sign (ai ◦ x)) = P (ζi = −sign (ai ◦ x)) =
di
2
∀i,

such that we find EP [yi(x, ζ)] = 0 and

EP [|yi(x, ζ)|] = di‖ai ◦ x‖1.

This shows there exists a distribution that attains the bound for the mean absolute

deviation found in (9). Therefore, this distribution is the worst-case distribution in this

ambiguity set and thus (P13) is equivalent to (P14).

Theorem 4 shows that the bound on the MAD of yi(x, ζ) given in (9) is tight when

no assumption on the (in)dependence of ζij is made and dij = di for all j. The idea of the

proof of Theorem 4 can be extended to show that the first inequality in deriving (9) is

tight, that is, the looseness of the bound is highly dependent on how maxj dij compares

to other dij for a given i. If, for example, di1 = 1 and dij = 1
10

for all j 6= 1, the MAD of

yi(x, ζ) is overestimated by a factor close to 10.

We note that the results from this section can also be used when the MAD is unknown.

Similar to the approach for right-hand side uncertainty we then instead use the maximum

possible MAD: dij = 1 for all i, j. In particular this also means that the bound we obtain

is exact, since all uncertain parameters have equal mean absolute deviation.

Besides the simple bound given above, Postek et al. (2018) suggest three other bounds.

Unfortunately, all these bounds are either not applicable to the problem we discuss or do

not offer advantages over the bound discussed above in terms of tractability or quality.

More specifically, they cannot be used to obtain a convex constraint or their convex

reformulation is a worse bound than the one discussed above.
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Figure 2: A graphical illustration of the IOV and IECV. The red cross indicates the

standard robust solution and the green square indicates the nominal solution, while the

blue line indicates the solutions found by our approach.

4 Numerical Results: NETLIB Problems

4.1 NETLIB Problems

To analyze the practical applicability of all the approaches considered here, we consider

problems from the NETLIB library, similar to Ben-Tal and Nemirovski (2000). In total,

80 problems from this library were considered to exhibit uncertainty. Once again, we

consider uncertainty in the right-hand side of the inequality constraints first in Section 4.2.

Uncertainty in the left-hand side is discussed in Section 4.3.

To measure the performance of our method, we attempt to quantify the trade-off

between objective value and constraint violation that is represented by the solutions it

finds. More specifically, we report the potential improvement in violation compared to

the nominal solution when a (slightly) higher objective value is allowed. Similarly, we

report the potential improvement in objective value compared to the robust solution when

some constraint violation is allowed. These measures will be denoted by Improvement

Objective Value (IOV) and Improvement Expected Constraint Violation (IECV), followed

by a percentage that indicates the allowed room in the constraint violation and objective

value, respectively. Figure 2 illustrates these concepts graphically. In this figure x% is

with respect to the nominal worst-case violation, while y% is calculated with respect to

the nominal objective value. The IOV and IECV are also always reported in percentages

with respect to the nominal solution.

21



Reducing conservatism in Robust Optimization Roos and Den Hertog

It is important to note that the curve presented in Figure 2 is a Pareto curve in the

sense that there exist no solutions that are nominal feasible with both a lower objective

value and worst-case expected violation than any solution on the line. Moreover, we

remark that this Pareto optimality of our solutions does not correspond to the Pareto

robustly optimal solutions as defined by Iancu and Trichakis (2014). Their notion of

Pareto robustly optimal solutions can be applied to solutions to the reformulated problem

we consider, however.

Throughout this paper we assume parameters to deviate 1% from their nominal value,

while Ben-Tal and Nemirovski (2000) also consider 0.1% and 0.01%. After running a

representative selection of problems for other levels of uncertainty, we found there to be

a simple effect on the results: multiplying the uncertainty by 10 yields the same tenfold

increase in IOV-x% for any x. The IECV also adjusts accordingly, but since our chosen

percentages by which to increase the objective value are suited to 1%, it is not particularly

informative for other levels of uncertainty.

All numerical results have been obtained using MATLAB and Gurobi on a Lenovo

Y700 with an i7-6700HQ and 16GB RAM.

4.2 Right-Hand Side Uncertainty

For right-hand side uncertainty, we only consider a parameter to be uncertain if it is

different from zero, as a right-hand side of zero is often known with certainty. After

selecting problems that do in fact have at least a single uncertain parameter by these

standards, 64 problems remain. Of these 64 problems, there are 3 problems for which

the nominal solution attains no violation whatsoever for all levels of uncertainty, due to

the inequalities concerning the uncertain parameters not being binding in the nominal

solution. These problems are therefore excluded from this analysis. This means we are

left with 61 problems on which we have tested the technique discussed in Section 2.3.

As noted in Section 2.1, it is important to make sure all constraints are in the same

order of magnitude such that their violation is comparable. Since we have no informa-

tion on any constraints that are more important than others, we choose to normalize all

constraints such that |bi| = 1.

We consider the ambiguity set discussed in Section 2.3 where each uncertain param-

eter can deviate a fraction ε from its nominal value and has a mean absolute deviation

proportional to this maximal deviation:

P =
{
P : supp (bi) =

[
bi − ε

∣∣bi∣∣ , bi + ε
∣∣bi∣∣] , EP (bi) = bi, EP

∣∣bi − bi∣∣ = δε|b̄i|
}
,

where we specifically consider ε = 0.01 and δ = 0.5. The results of this approach are

reported in Table 3 in the Appendix. As there is hardly any computational burden for
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this method, all solutions presented were obtained within seconds.

For five problems (boeing, boeing2, degen2, degen3 and fffff800), the standard

robust counterpart is infeasible for ε = 0.01. For such a problem, the IOV cannot be

computed. The ICV, however, is presented along with all other problems’ characteristics

in Table 3. First of all, note that the difference between the nominal and robust solution

in terms of objective value is indicated in the table by IOV-100%. In other words, this

number is the factor by which the uncertainty (here 1%) is magnified in the objective

value for the standard robust solution.

A first observation of the table shows that for many problems, the IOV-50% and the

IOV-100% are remarkably close. This means that, reasoning from the nominal solution,

the first half of the worst-case constraint violation is usually very cheap to prevent, while

the second half comes at a much higher price in terms of objective value. Moreover, the

last column shows that, except for degen2, degen3 and wood1p, accepting an increase of

1% in objective value safeguards one against over half the worst-case constraint violation

for all problems with 1% uncertainty. If regarded more closely, in fact a staggering 47 out

of 61 problems have an IECV-1% higher than 90%, that is, for 47 problems over 90% of

the worst-case expected constraint violation can be avoided by accepting an increase of

1% in objective value.

Another important remark is the fact that although any IECV that equals 100%

indicates one can fully safeguard against the considered uncertainty, this is not necessarily

the merit of our approach. More specifically, a 100% improvement in worst-case constraint

violation simply indicates that the standard robust solution’s objective value is within the
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Figure 3: The solutions found by our approach with right-hand side uncertainty for

80bau3b and perold, shown in blue. The red cross indicates the standard robust solution

and the green square indicates the nominal solution.
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set percentage from the nominal solution. The primary merit of our approach is found

at problems such as 80bau3b and perold, whose solutions are plotted in Figure 3. For

perold, for example, we find that by safeguarding against only 90%, instead of all, of the

possible worst-case violation, one can gain over 1% in objective value compared to the

standard robust solution.

Figure 4 shows the solutions found for boeing2 and fffff800, for which the standard

robust counterpart is infeasible. The figure shows that, while we cannot find any solutions

with a worst-case expected constraint violation equal to 0, the trade-off between violation

and objective value can still be visualized for violation higher than that. Moreover, this

approach allows one to find the solution with the least amount of worst-case expected

constraint violation possible under this ambiguity set. An intuitive way of dealing with

an infeasible standard robust counterpart might be shrinking the uncertainty set (here by

lowering ε) until it is feasible and using the solution found. The solution that is obtained

in this way is shown as an orange circle in Figure 4. Clearly, this is not the best approach

in dealing with an infeasible standard robust counterpart.

Another approach that can be used to deal with an infeasible standard robust coun-

terpart is to introduce slack variables like in (P4) in all constraints, minimizing their sum

and subsequently minimizing the objective value. The solution found by this approach is

shown as a purple diamond in Figure 4. Note that, since we choose the mean absolute

deviation such that it is proportional to the maximal deviation of a parameter and we
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Figure 4: The solutions found by our approach with right-hand side uncertainty outlined

for boeing2 and fffff800 shown in blue. The green square indicates the nominal solution

while the orange circle represents the solution found by shrinking the uncertainty set until

we obtain feasibility for the standard robust counterpart. The purple diamond shows the

solution found by minimizing the sum of slacks.
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assume nominal feasibility, this slack approach is equivalent to our approach and thus this

solution lies on the end of the curve of solutions we find.

It is important to mention that the choice for δ has no effect whatsoever on the results,

besides scale. This is due to the fact that δ only influences the probabilities of the three

scenarios occurring and, since we enforce nominal feasibility here, thus simply scales the

worst-case expected violation. Section 4.4 discusses relaxing the assumption that solutions

should be nominal feasible.

4.3 Left-Hand Side Uncertainty

Similarly to Ben-Tal and Nemirovski (2000), we consider all entries of A that are specified

to more than two decimals to be uncertain. By these standards, 49 of the 80 considered

problems exhibit uncertainty. For three of these problems, the nominal solution has a

worst-case expected violation of 0, which leaves 46 problems to analyze. Table 4 in the

Appendix summarizes the results. We use (11) as the ambiguity set and thus assume

equal MAD, i.e., dij = di ∀j. As discussed in Section 3.2 this means the IECV can be

computed exactly.

Figure 5 shows the characteristics of the solutions found for e226 and greenbea, for

which the approach yields exceptionally good solutions. Both problems allow one to

immunize against over 80% of the uncertainty at a mere 0.1% increase of the objective

value. The standard robust solution, on the other hand, has an objective value 2.9% and
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Figure 5: The solutions found by our approach with left-hand side uncertainty for e226

and greenbea, shown in blue. The red cross indicates the standard robust solution and

the filled green square indicates the nominal solution. For greenbea, the open green

square indicates the most robust nominal solution.
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Figure 6: The solutions found by our approach with left-hand side uncertainty for bnl1

and perold, shown in blue. The green square indicates the nominal solution while the

orange circle represents the solution found by shrinking the uncertainty set until we obtain

feasibility for the standard robust counterpart. The purple diamond shows the solution

found by minimizing the sum of slacks.

5.1% higher than the nominal solution, respectively.

For greenbea, the nominal solution is non-unique. In Figure 5 we have also indicated

an optimal nominal solution that minimizes the worst-case expected violation. We note

that this solution’s worst-case expected violation is approximately half that of the initial

nominal solution found. In practice, the proposed method can thus also be used to simply

select the most robust nominal solution out of a set of possible optimal nominal solutions.

For left-hand side uncertainty, the standard robust counterparts of five of the consid-

ered problems are infeasible. Similar to how we treat such problems in Section 4.5, we

include the IECV for these problems in Table 4. Figure 6 shows the characteristics of

the solutions we found for bnl1 and perold. For bnl1 in particular, decreasing the first

half of constraint violation hardly increases the optimal objective value, while there is a

steep increase in optimal objective value close to the lowest possible worst-case expected

violation.

When we do assume pairwise independence for ζij, the exact value of the worst-case

expected violation can be computed with the methodology outlined in Section 2.3. The

main reason to use a bound instead stems from the computational intractability of this

method, as this requires m · 3n evaluations in general. Therefore, an exact analysis for

the ambiguity set with independence is only possible for very small problems. We can,

however, estimate the worst-case expected violation for the pairwise independence ambi-

guity set as we know the worst-case distribution. Sampling from this distribution is easy,
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Allowed violation for (11) 10% 25% 50%

blend 9.7 25.7 52.6

brandy 1.9 23.6 29.4

e226 7.6 21.3 50.0

greenbea 8.8 24.3 46.5

scfxm1 5.4 9.6 22.4

Table 1: Estimates of the actual allowed worst-case expected constraint violation in per-

centages when assuming pairwise independence for the solutions that allow for 10%, 25%

and 50% of the nominal solution’s worst-case expected violation without this assumption.

as we assume all ζij to be independent and Section 2.3 tells us the worst-case distribu-

tion is a discrete distribution on only three possible values. In general, we sample 10,000

observations (violations) and estimate the worst-case expected violation by their average.

We estimate the worst-case expected constraint violation for this ambiguity set for

the nominal solution and the solutions corresponding to the IOV in Table 4. Table 1

illustrates the results for a representative set of problems. For these problems we observe

that the worst-case expected violation for the ambiguity set with pairwise independence is

only occasionally higher, and if so never by much, than without assuming independence.

This is true for every NETLIB problem, indicating that even if one is truly interested in

an ambiguity set including pairwise independence, omitting this assumption does little

to no harm in terms of solution quality, while it does yield a computationally tractable

problem.

4.4 Removing Nominal Feasibility

For some problems, violation is truly interchangeable between constraints. For a facility

location problem, for example, where constraints require demand in different locations

to be met, a decision maker might not care about which demand is unmet. When we

drop the requirement of solutions being nominal feasible, we find that we can significantly

improve the nominal solution in objective value or worst-case expected violation. In this

section, we assume right-hand side uncertainty identical to the uncertainty assumed in

Section 4.2. Figure 7 shows the characteristics of the solutions found by our approach

as well as the solutions to (P4) with the nominal feasibility constraint omitted. First of

all, it is clear that the equivalence of (P4) and (P9) truly depends on the assumption

of nominal feasibility, as the solutions to (P4) clearly perform worse on objective value
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and worst-case expected violation. The two different problems in Figure 7 show that the

magnitude of differences between solutions to both problems is problem dependent.

Moreover, especially for israel, there exist solutions with a much lower objective

value than the nominal objective value but with the same worst-case expected violation.

Similarly, there exist solutions with the same objective value but a much lower worst-case

expected violation than the nominal solution. Table 2 lists the potential improvement

in both objective value and worst-case expected violation for the five problems for which

they are the largest. All numbers are reported as differences to the nominal solution in

percentages. Note that this potential improvement comes at the price of the corresponding

solutions no longer being nominally feasible. The potential improvement is quite signifi-

cant for these problems. Apparently, if one is willing to accept violation for the nominal

scenario in some constraints, the total worst-case expected violation can be decreased

by up to 90% without any cost or alternatively the objective value could potentially be

improved 10% or more.

4.5 Worst-Case Violation

In considering the worst-case violation we consider a budget uncertainty set given by

U =

{
b ∈ Rm :

∣∣∣∣bi − b̄ib̄i

∣∣∣∣ ≤ ε, i = 1, . . . ,m,
m∑
i=1

∣∣∣∣bi − b̄ib̄i

∣∣∣∣ ≤ Γmε

}
,
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Figure 7: Solutions for adlittle and israel with right-hand side uncertainty, when

nominal feasibility is not enforced. The solutions found by our approach are shown as the

blue solid line and the solutions to (P4) as the orange dashed line. The red cross indicates

the standard robust solution and the green square indicates the nominal solution.
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Improvement Improvement

Problem Objective value Worst-case expected violation

agg 17.4 91.9

agg2 17.4 91.9

agg3 33.2 88.9

perold 4.8 91.9

pilot 8.6 96.0

Table 2: Potential improvement compared to the nominal solution in percentage when

nominal feasibiilty is not enforced and right-hand side uncertainty is consdered, ε = 0.01

and δ = 0.5.

where we consider ε = 0.01 and Γ = 0.5. Out of the 61 problems we considered, the re-

formulation suggested by Ardestani-Jaafari and Delage (2016) could not be solved within

30 minutes for 14 problems. It is important to note that many of the problems in the

NETLIB library have numerous non-binding constraints included. For a high enough bud-

get parameter Γ, this means that even though a budget constraint is present, all uncertain

parameters in binding constraints can deviate from their nominal value maximally. There-

fore, the uncertainty set is effectively a box uncertainty set on the binding constraints and

thus (P4) is an equivalent problem that can be solved efficiently. In practice, however, the

budget parameter should be chosen such that the budget constraint limits the effect that

considering the worst-case scenario has on the solution, i.e., low enough that not every

uncertain parameter in binding constraints can deviate from their nominal value.
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5 Conclusion

In this paper we consider a new approach to find robust solutions to linear optimization

problems with uncertain parameters. In particular, we attempt to alleviate the conser-

vative nature of traditional robust optimization, which results in solutions that can be

much worse in terms of objective value than the nominal solution. We find a wide array

of solutions by allowing constraint violation up to a predefined maximum. The solutions

found by our approach, together with the nominal and standard robust solution result

in a good understanding of the trade-off between the objective value and the constraint

violation for a problem.

In the resulting approach, we consider an ambiguity set based on the support, mean

and mean absolute deviation of uncertain parameters. This allows us to calculate the

worst-case expected violation and bound it from above and leads to a tractable problem for

both right- and left-hand side uncertainty. The approach is applied to all relevant NETLIB

problems for both left- and right-hand side uncertainty. For many of these problems the

array of solutions found gives great insight into the trade-off between objective value

and worst-case expected violation. A selection of these solutions can also be found for

problems for which the standard robust counterpart is infeasible. This allows decision

makers to safeguard against at least part of the uncertainty for such problems and make

better informed decisions with regard to this trade-off.

When one does not require the solution to be feasible for the nominal scenario, the

potential improvements compared to the nominal solution can be enormous. For one

problem, for example, a solution was found with the same objective value as the nominal

solution of which the worst-case expected violation was only 5% of the nominal solution’s

worst-case expected violation.

Interesting avenues for further research follow from our ideas on uncertain sum-of-max

constraints in Section 2.2 and on ambiguous chance constraints in Section 2.5. Both of

the techniques we discuss in these sections generalize beyond the scope of this paper.

Although they are not the ideas we choose to pursue further in this paper, they may be

more suitable to other applications.
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A Proof of Theorem 1

Proof. To obtain a safe approximation of (P5), we substitute the decision rule

λ = u+ Vw +

m∑
i=1

ri1w
2
i + ri2wiwm+i + ri3w

2
m+i, (12)

that is, we consider all squares w2
i and all products of wi’s such that they correspond to the

same maximum in the original function f .

To ensure a tractable reformulation of the resulting static robust optimization problem we

need to introduce auxiliary uncertain parameters θ and move the non-linearity of the uncertain

parameters to the uncertainty set.

We introduce θ(i) ∈ S2 such that θ(i) =

[
w2
i wiwm+i

wiwm+i w2
m+i

]
for i = 1, . . . ,m, where we use

Sn to denote the set of symmetric matrices of size n × n. To ensure this value for θ we define

an auxiliary uncertainty set Θ by Θ = Θ1 × · · · ×Θm with

Θi =

{
θ(i) ∈ S2

∣∣∣∣∣ θ(i) =

[
w2
i wiwm+i

wiwm+i w2
m+i

]}
.

We note that W × Θ is not necessarily a convex set. Since the ARO problem in question is

linear in the uncertain parameters, it is equivalent to consider the convex hull of W ×Θ. Here,

we can use the result by Anstreicher and Burer (2010) that states that

Conv


(

1

x

)(
1

x

)>
: x ∈ S

 ⊆
{(

1 1>X

X1 X

)
: X ∈ DNN, tr (EX) = 1

}
, (13)

where S is a simplex, 1 is the vector of all ones, E = 11> and DNN is the set of all doubly

nonnegative matrices, that is, all matrices X such that X � 0 and X ≥ 0. Moreover, equality

holds in (13) whenever the dimension of x is less than or equal to 4.

In translating this result to our application, we use that W is the Cartesian product of

simplices to find that we can choose

Ψ =
m⋂
i=1

Ψi, Ψi :=
{

(w, θ) ∈ R2 × S2
∣∣ θ ∈ DNN, tr (Eθ) = 1, w = θ1

}
, (14)

such that Conv (W ×Θ) = Ψ, since the dimension of w is equal to 2. To end up with a safe

approximation based on Ψ we first find its support function. We use the definition of Ψi and

the support function to find

δ∗ ((v, V ) |Ψi) = max
(w,θ)∈Ψi

{
v>w + tr (V θ)

}
= max
θ∈DNN

{
v>θ1 + tr (V θ)

∣∣∣ tr (Eθ) = 1
}

= max
θ∈DNN

{
tr
((
v> ⊗ 1

)
θ
)

+ tr (V θ)
∣∣∣ tr (Eθ) = 1

}
= max
θ∈DNN

{
tr
((
v> ⊗ 1 + V

)
θ
) ∣∣∣ tr (Eθ) = 1

}
,
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where ⊗ denotes the Kronecker product. We use duality for the doubly nonnegative cone as

introduced by Yoshise and Matsukawa (2010) to transform this maximization problem into a

minimization problem. Note that X = 1
2I, with I the identity matrix is a strictly feasible

solution for this problem and thus strong duality applies. This yields

δ∗ ((v, V ) |Ψi ) = max
X∈DNN

{
tr
((
v> ⊗ 1 + V

)
X
) ∣∣∣ tr (EX) = 1

}
= min

y∈R

{
y
∣∣∣v> ⊗ 1 + V − yE ∈ DNN

}
. (15)

Recall that we substitute the decision rule

λ = u+ Vw +
m∑
i=1

ri1w
2
i + ri2wiwm+i + ri3w

2
m+i,

or equivalently the decision rule

λ = u+ Vw +

m∑
i=1

q∑
l=1

el tr (Rilθ(i)) , (16)

for u ∈ Rq, V ∈ Rq×2m and Ril ∈ S2 for i = 1, . . . ,m and l = 1, . . . , q. Here, we use tr (AB) to

denote the trace inner product between A and B and el ∈ Rm to denote the unit vector with

all zeros except for a one at index l. Inserting (16) in the first constraint of (P5) we find:[
Ax

0

]>
w + d>

[
u+ Vw +

m∑
i=1

q∑
l=1

el tr (Rilθ(i))

]
≤ 0 ∀ (w, θ) ∈ Ψ

⇐⇒ d>u+

([
Ax

0

]
+ V >d

)>
w +

m∑
i=1

q∑
l=1

d>el tr (Rilθ(i)) ≤ 0 ∀ (w, θ) ∈ Ψ

⇐⇒ d>u+ max
(w,θ)∈Ψ


([

Ax

0

]
+ V >d

)>
w +

m∑
i=1

q∑
l=1

d>el tr (Rilθ(i))

 ≤ 0

⇐⇒ d>u+
m∑
i=1

max
(w,θ)∈Ψi


[
a>i x+ V >i d

V >m+id

]> [
wi

wm+i

]
+

q∑
l=1

dl tr (Rilθ(i))

 ≤ 0

⇐⇒ d>u+

m∑
i=1

δ∗

([
a>i x+ V >i d

V >m+id

]
,

q∑
l=1

dlRil

∣∣∣∣∣ Ψi

)
≤ 0

⇐⇒


d>u+

∑m
i=1 yi ≤ 0[

a>i x+ V >i d

V >m+id

]>
⊗ 1 +

∑q
l=1 dlRil − yiE ∈ DNN i = 1, . . . ,m,

where the last equivalence holds by substituting (15) for the support function and subsequently

realizing that if a constraint must hold for the minimum over y, requiring it to hold for at least

one y is sufficient. Note that V >i denotes the i-th row of the matrix V , and as throughout the

rest of the paper a>i is the i-th row of A.

Using the same reasoning we find that a safe approximation for the second constraint of (P5)
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is given by: 
−D>j u+

m∑
i=1

zji ≤ 0 j = 1, . . . ,m

[
1 + V >i Dj

V >m+iDj

]>
⊗ 1−

q∑
k=1

DkjRik − zjiE ∈ DNN
i = 1 . . . ,m

j = 1, . . . ,m,

where Dj denotes the j-th column of and D, Dlj is the element of D on row l and in column j,

and zji ∈ R.

The resulting safe approximation is clearly tighter than the one obtained by substituting

λ = u + Vw in (P5). This can be seen by observing that the decision rule used in this proof,

(12), is a generalization of (1), as it reduces to (1) when ri1 = ri2 = ri3 = 0 for all i.

36



Reducing conservatism in Robust Optimization Roos and Den Hertog

B Numerical Results for NETLIB Problems

IOV IECV

10.0% 25.0% 50.0% 100.0% 0.1% 0.5% 1.0%

25fv47 1.1 1.7 2.1 2.2 52.9 74.7 83.2

80bau3b 0.6 0.9 1.1 1.2 59.6 88.4 98.8

adlittle 0.2 0.3 0.5 0.6 58.5 95.1 100.0

afiro 0.2 0.5 1.0 1.0 52.2 73.4 100.0

agg 2.9 3.7 3.9 3.8 55.4 58.6 82.6

agg2 2.9 3.7 3.9 3.8 55.4 58.6 82.6

agg3 5.6 7.4 8.2 9.1 20.4 44.0 50.3

beaconfd 0.0 0.0 0.0 0.0 100.0 100.0 100.0

blend 0.2 0.5 0.8 1.0 24.3 74.9 100.0

bnl2 0.5 0.6 0.6 0.6 85.5 92.3 99.0

boeing 41.5 68.1 80.0

boeing2 32.0 71.3 72.5

brandy 0.0 0.0 0.1 0.1 100.0 100.0 100.0

capri 1.0 1.2 1.3 1.4 44.5 95.1 97.8

czprob 0.2 0.4 0.6 0.7 29.5 47.4 59.7

d2q06c 0.1 0.2 0.2 0.2 92.1 100.0 100.0

degen2 23.5 23.5 23.5

degen3 32.3 32.3 32.3

e226 0.9 1.2 1.4 1.5 50.9 86.4 97.1

etamacro 0.0 0.1 0.1 0.1 100.0 100.0 100.0

fffff800 74.6 84.2 86.0

finnis 1.5 2.7 3.3 3.4 56.9 67.9 76.5

ganges 0.1 0.3 0.4 0.5 40.1 96.4 100.0

gfrd-pnc 0.0 0.0 0.0 0.1 100.0 100.0 100.0

israel 1.1 1.3 1.3 1.3 85.0 91.6 91.3

lotfi 0.1 0.2 0.4 0.5 56.5 100.0 100.0

maros 0.2 0.3 0.4 0.4 79.6 80.1 90.9

nesm 0.0 0.0 0.0 0.0 100.0 100.0 100.0

perold 1.0 1.0 1.0 1.1 85.5 96.8 97.8

pilot 1.8 1.9 1.9 1.9 88.6 98.1 96.4

pilot4 0.1 0.1 0.1 0.1 91.3 100.0 100.0

pilot87 1.4 1.8 1.9 2.0 70.3 88.2 95.2

pilot ja 0.7 0.7 0.8 0.8 95.4 99.2 100.0

pilot we 0.3 0.5 0.7 0.7 60.0 78.4 92.0

sc105 0.4 0.7 0.9 1.0 46.4 85.5 100.0

sc205 0.7 0.9 1.0 1.0 75.1 92.7 97.9

sc50a 0.2 0.4 0.7 1.0 28.8 68.5 100.0

sc50b 0.2 0.4 0.7 1.0 19.0 65.3 100.0

scagr25 0.1 0.1 0.1 0.1 94.8 100.0 100.0

scagr7 0.0 0.0 0.1 0.1 64.1 100.0 100.0

scfxm1 0.1 0.2 0.2 0.2 87.2 98.2 100.0

scfxm2 0.1 0.2 0.2 0.2 62.7 95.2 100.0

scfxm3 0.1 0.2 0.2 0.2 60.8 94.1 100.0

scorpion 0.5 0.8 1.0 1.1 53.3 88.0 99.0

scrs8 0.5 0.9 1.0 1.0 70.5 90.8 99.9

sctap1 0.6 1.2 1.7 2.1 27.2 57.6 77.9

sctap2 0.4 0.7 0.9 1.2 30.3 76.4 96.8

sctap3 0.5 0.7 0.9 1.1 36.0 85.8 98.7

seba 0.1 0.2 0.3 0.4 61.5 100.0 100.0

share2b 0.5 0.8 1.0 1.0 57.7 89.9 99.7

ship04l 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ship04s 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ship08l 0.0 0.0 0.1 0.1 99.6 100.0 100.0

ship08s 0.0 0.0 0.1 0.1 93.3 100.0 100.0

ship12l 0.1 0.2 0.3 0.3 62.2 100.0 100.0

ship12s 0.1 0.2 0.3 0.4 61.2 100.0 100.0

sierra 0.0 0.0 0.0 0.0 83.6 100.0 100.0

stair 0.1 0.1 0.2 0.2 81.1 100.0 100.0

vtb base 0.1 0.2 0.4 0.7 17.4 73.8 100.0

wood1p 0.3 0.7 1.3 2.7 3.7 18.3 36.6

woodw 0.2 0.6 1.0 1.3 33.9 68.0 88.9

Table 3: Characteristics of solutions found for right-hand side uncertainty, ε = 0.01 and

δ = 0.5. All numbers are percentages relative to the nominal solution.
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IOV IECV

10.0% 25.0% 50.0% 100.0% 0.1% 0.5% 1.0%

25fv47 0.3 0.3 0.4 0.4 93.7 100.0 100.0

80bau3b 0.8 1.5 2.1 2.3 23.0 69.0 79.7

adlittle 0.5 0.9 1.4 1.6 46.2 63.9 85.7

afiro 0.0 0.0 0.1 0.1 85.8 100.0 100.0

agg 0.1 0.1 0.1 0.1 98.6 99.8 100.0

agg2 0.1 0.1 0.1 0.1 98.6 99.8 100.0

agg3 0.2 0.2 0.2 0.2 39.3 100.0 100.0

blend 0.0 0.0 0.1 0.1 89.3 100.0 100.0

bnl1 64.4 92.7 92.9

bnl2 0.3 0.3 0.3 0.3 94.9 98.6 99.9

boeing2 0.0 0.0 0.0 0.1 100.0 100.0 100.0

brandy 0.0 0.0 0.0 0.0 100.0 100.0 100.0

capri 4.0 4.1 4.2 4.2 86.9 92.6 95.4

cycle 0.0 0.0 0.0 0.0 100.0 100.0 100.0

czprob 0.2 0.4 0.5 0.7 32.5 85.1 100.0

d2q06c 61.9 88.4 93.8

e226 2.7 2.8 2.8 2.9 88.9 91.7 93.9

etamacro 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ffffff800 0.2 0.5 0.5 0.5 77.7 98.9 100.0

finnis 1.1 2.0 2.9 3.4 34.7 51.6 66.3

greenbea 4.9 5.1 5.1 5.1 83.6 94.0 95.0

greenbeb 0.1 0.2 0.2 0.2 97.9 100.0 100.0

israel 0.4 0.4 0.4 0.5 69.8 99.3 100.0

kb2 0.2 0.2 0.2 0.2 98.6 100.0 100.0

maros 0.5 1.0 1.5 1.8 29.1 60.9 81.1

nesm 0.1 0.4 0.7 0.9 40.9 73.5 100.0

perold 3.9 14.9 27.8

pilot 30.5 54.6 69.9

pilot4 1.1 1.8 2.7 3.6 21.2 37.5 53.1

pilot87 81.8 90.1 94.4

pilot ja 1.3 1.8 2.7 3.6 13.6 33.6 51.5

pilot we 1.4 2.0 2.5 2.7 29.6 67.6 84.2

pilotnov 2.0 2.0 2.0 2.0 99.9 99.9 99.9

scfxm1 0.1 0.2 0.2 0.3 47.0 100.0 100.0

scfxm2 0.1 0.2 0.2 0.3 51.2 100.0 100.0

scfxm3 0.1 0.2 0.2 0.3 51.8 100.0 100.0

scorpion 0.0 0.0 0.0 0.0 100.0 100.0 100.0

scrs8 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ship04l 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ship04s 0.0 0.0 0.0 0.0 100.0 100.0 100.0

ship08l 0.0 0.0 0.1 0.1 100.0 100.0 100.0

ship08s 0.0 0.0 0.1 0.1 91.4 100.0 100.0

ship12l 0.1 0.1 0.2 0.3 58.9 100.0 100.0

ship12s 0.1 0.2 0.2 0.3 58.9 100.0 100.0

stair 0.5 0.9 1.2 1.6 20.1 59.3 86.1

vtb base 0.0 0.0 0.0 0.0 100.0 100.0 100.0

Table 4: Characteristics of solutions for left-hand side uncertainty, ε = 0.01 and δ = 0.5.

All numbers are percentages relative to the nominal solution.
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