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On the Exploratory Road to Unraveling Factor
Loading Non-invariance: A New Multigroup Rotation

Approach

Kim De Roover and Jeroen K. Vermunt
Tilburg University

Multigroup exploratory factor analysis (EFA) has gained popularity to address measurement
invariance for two reasons. Firstly, repeatedly respecifying confirmatory factor analysis
(CFA) models strongly capitalizes on chance and using EFA as a precursor works better.
Secondly, the fixed zero loadings of CFA are often too restrictive. In multigroup EFA, factor
loading invariance is rejected if the fit decreases significantly when fixing the loadings to be
equal across groups. To locate the precise factor loading non-invariances by means of
hypothesis testing, the factors’ rotational freedom needs to be resolved per group. In the
literature, a solution exists for identifying optimal rotations for one group or invariant
loadings across groups. Building on this, we present multigroup factor rotation (MGFR)
for identifying loading non-invariances. Specifically, MGFR rotates group-specific loadings
both to simple structure and between-group agreement, while disentangling loading differ-
ences from differences in the structural model (i.e., factor (co)variances).

Keywords: measurement invariance, factor loading invariance, multigroup exploratory fac-
tor analysis, rotation identification

INTRODUCTION

In behavioral sciences, latent constructs, e.g., emotions or
personality traits, are ubiquitously measured by questionnaire
items. The measurement model (MM) indicates which item is
(assumed to be) measuring which construct and the leading
method to evaluate whether this MM holds is confirmatory
factor analysis (CFA; Lawley & Maxwell, 1962). The extent
to which an item relates to a construct or ‘factor’ is quantified

by a ‘factor loading’. CFA evaluates whether each item has
a non-zero loading on the targeted construct only. Many
research questions pertain to comparing constructs across
groups, e.g., comparing the Big Five personality traits across
countries (Schmitt, Allik, McCrae, & Benet-Martínez, 2007).
For such comparisons, invariance of the MM or ‘measurement
invariance’ (MI) across the groups is an essential prerequisite
(Meredith, 1993). MI can be tested by multigroup factor ana-
lysis (Jöreskog, 1971; Sörbom, 1974). Despite the predomi-
nance of CFA-based methods, multigroup exploratory factor
analysis (EFA) has gained popularity to address MI (Dolan,
Oort, Stoel, & Wicherts, 2009; Marsh, Morin, Parker, & Kaur,
2014). The reason for this is twofold. Firstly, respecifying CFA
models in an exploratory way capitalizes on chance (Browne,
2001; MacCallum, Roznowski, & Necowitz, 1992) and using
EFA as a precursor has proven to be a better strategy (Gerbing
& Hamilton, 1996). Secondly, fixed zero loadings are often too
restrictive and may cause bias (McCrae, Zonderman, Costa,
Bond, & Paunonen, 1996; Muthén & Asparouhov, 2012).

MI testing with multigroup EFA starts by evaluating
whether the fit significantly decreases when fixing the factor
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loadings to be equal (i.e., invariant) across groups, indicating
that factor loading (or ‘weak’) invariance does not hold.
Because EFA is used within the groups, the factors have
rotational freedom, i.e., ‘rotating’ them yields an alternative
set of factors which fit equally well to the data but may be
easier to interpret (Browne, 2001; Osborne, 2015). When
merely testing invariance for all loadings, the factor rotation
is irrelevant. The rotation becomes of interest, however, when
one wants to determine what the invariant MM is
(Asparouhov & Muthén, 2009; Dolan et al., 2009). To this
end, simple structure rotation (i.e., striving for one non-zero
loading per item; Thurstone, 1947) or target rotation towards
an assumed MM can be applied. To enable hypothesis testing
for rotated loadings, Jennrich (1973) showed how to obtain
a fully identified model with optimally rotated maximum
likelihood (ML) estimates.

Jennrich’s approach does the trick for single-group factor
models and multigroup factor models with invariant loadings,
but leaves much to be desired when loadings are non-invariant
across groups. In that case, pinpointing the precise loading
differences would allow to find sources of non-invariance and
interesting differences in the functioning of items (differential
item functioning or DIF; Holland & Wainer, 1993). To this
end, an optimal rotation needs to be obtained for each group.
Using Jennrich’s approach per group precludes pursuing opti-
mal between-group agreement of the loadings and thus
impedes a correct evaluation of differences and similarities.
Therefore, we present a multigroup extension to accommo-
date the search for loading differences. Specifically, each
group is rotated both to simple structure per group and agree-
ment across groups. At the same time, loading differences are
disentangled from differences irrelevant to the MI question
(i.e., factor (co)variances). The novel multigroup factor rota-
tion (MGFR) can be applied with several rotation criteria and
with a user-specified focus on agreement or simple structure.

The remainder of this paper is organized as follows:
Section 2 recaps MI testing by multigroup EFA, followed
by a discussion of optimal rotation identification including
the novel MGFR. Section 3 covers an extensive simulation
study to evaluate the performance of MGFR with regard to
the identification of loading differences and group-specific
MMs and derives recommendations for empirical practice.
Section 4 illustrates the added value of MGFR for an
empirical data set. Section 5 includes points of discussion
and directions for future research.

METHOD

Multigroup exploratory factor analysis

We denote the groups by g = 1, …, G and the subjects
within the groups by ng = 1, …, Ng. The J-dimensional
random vector of observed item scores for subject ng is

denoted by yng. The EFA model for the scores of subject ng
can be written as (Lawley & Maxwell, 1962):

yng ¼ τg þ Λgηng þ εng (1)

where τg indicates a J-dimensional group-specific intercept
vector, Λg denotes a J × Q matrix of group-specific factor
loadings, ηng is a Q-dimensional vector of scores on the

Q factors and εng is a J-dimensional vector of residuals. The
factor scores are assumed to be identically and indepen-
dently distributed (i.i.d.) as MVN αg;Ψg

� �
, independently of

εng , which are i.i.d. as MVN 0;Dg

� �
. The factor means of

group g are denoted by αg, whereas Ψg pertains to the
group-specific factor covariance matrix and Dg to
a diagonal matrix containing the group-specific unique
variances of the items. The model-implied covariance
matrix per group is Σg ¼ ΛgΨgΛg

0 þ Dg.
Estimating Equation 1 for each group corresponds to the

baseline model for MI testing. To partially identify the
model, the factor means αg are fixed to zero and the factor
covariance matrix Ψg to identity (i.e., orthonormal factors)
per group g. Note that, unlike multigroup EFA, multigroup
CFA imposes zero loadings on Λg according to an
assumed MM and it assumes this pattern of zero loadings
to be invariant across groups (configural invariance;
Meredith, 1993).

To test for MI, a series of progressively more restricted
models is fitted. Factor loading invariance is evaluated by
comparing the fit of the baseline model and the model with
invariant loadings, i.e., Λg ¼ Λ for g = 1, …, G. For the
latter model, orthonormality of the factors is no longer
imposed per group but, e.g., for the mean factor (co)var-
iances across groups. In the literature, several criteria and
guidelines are discussed to evaluate whether a drop in fit is
statistically significant (Hu & Bentler, 1999). When it is not
significant, factor loading (or weak) invariance is estab-
lished and the next level of MI – which is beyond the
scope of this paper – can be tested by restricting the inter-
cepts τg to be invariant across groups, while freely estimat-
ing factor means αg per group (Dolan et al., 2009;
Meredith, 1993). When the fit is significantly worse with
invariant factor loadings – i.e., factor loading invariance is
rejected – one can scrutinize the baseline model to locate
factor loading non-invariances.

Note that, in case of multigroup CFA, the baseline
model is already very restrictive due to the assumption of
configural invariance. Therefore, multigroup CFA exten-
sions for dealing with loading non-invariances – such as
multigroup Bayesian structural equation modeling (multi-
group BSEM; Muthén & Asparouhov, 2013) and multi-
group factor alignment (Asparouhov & Muthén, 2014) –
only capture differences in the size of primary loadings,
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whereas differences in crossloadings and the position of
primary loadings are disregarded.

Thus, multigroup EFA has the important advantage that
it leaves room to evaluate (the lack of) MI without having
to predefine the MM and to find all types and combinations
of loading differences. In the baseline model (Equation 1),
the rotational freedom of the factors per group is beneficial
to this aim. Specifically, striving for simple structure per
group (e.g., Clarkson & Jennrich, 1988) as well as between-
group agreement (e.g., Ten Berge, 1977) allows for the
group-specific MMs to be determined and loading differ-
ences to be pinpointed. Thus, sources of configural and
weak non-invariance can be traced simultaneously.

Multigroup EFA can be estimated by open-source soft-
ware such as lavaan (Rosseel, 2012) and Mx (Neale, Boker,
Xie, & Maes, 2003) as well as commercial software such as
Latent Gold (LG; Vermunt & Magidson, 2013) and Mplus
(Muthén & Muthén, 2005). LG-syntax for multigroup EFA
with (optimally rotated) group-specific loadings is given in
Appendix A.

Optimal rotation in multigroup EFA

In this section, we first discuss the case where loading
invariance holds and one loading matrix needs to be
rotated. Then, we build on this to propose MGFR for the
case where loading invariance fails and G loading matrices
need to be rotated.

In case of factor loading invariance

To partially identify a single EFA solution, up to rota-
tion, Q Qþ 1ð Þ=2 restrictions are needed. Usually, the fac-
tor covariance matrix Ψ is restricted to be an identity
matrix, implying factor variances of one and covariances
of zero. In case of multigroup EFA with invariant loadings
Λ, the restrictions on Ψ are not imposed per group but, e.g.,
for the mean factor (co)variances across groups, or for one
‘reference’ group (Hessen, Dolan, & Wicherts, 2006). To
obtain a fully identified model, i.e., with an identified rota-
tion, a total of Q2 restrictions are necessary, yet not always
sufficient (Jöreskog, 1979). Jennrich (1973) derived the
necessary restrictions for obtaining the optimal rotation
according to a criterion of choice. This solution can be
readily applied to rotate invariant loadings in multigroup
EFA. In this paper, we focus on oblique rotation, which
implies that factor covariances are no longer fixed to zero
and thus that only Q restrictions are imposed directly on Ψ.
Therefore, Q Q� 1ð Þ additional restrictions are needed to
identify the rotation. Specifically, to obtain an optimal
oblique rotation according to rotation criterion R, the fol-
lowing matrix F is restricted to be diagonal:

F ¼ Λ0 dR
dΛ

Ψ�1 (2)

Imposing these restrictions is done by means of constrained
ML estimation (Asparouhov &Muthén, 2009) or the gradient
projection algorithm (Jennrich, 2001, 2002). Upon identifying
the rotation, and thus obtaining a fully identified model,
standard errors for the model parameters and hypothesis test-
ing to determine significant factor loadings, and thus the
invariant MM, are available (Jennrich, 1973).

Simple Structure Rotation Criteria. For the choice of
rotation criterion R in Equation 2, several simple structure
rotation criteria exist that minimize either the variable complex-
ity (i.e., the number of non-zero loadings per variable), factor
complexity (i.e., the number of non-zero loadings per factor), or
a combination of both (Schmitt & Sass, 2011). We focus on
oblique simple structure rotation to minimize the variable com-
plexity since this matches the concept of a MM, i.e., items as
pure measurements of one factor. Geomin (Yates, 1987) is
a popular criterion (e.g., it is default in Mplus; Asparouhov &
Muthén, 2009) but is sensitive to local minima (Asparouhov &
Muthén, 2009; Browne, 2001). (Direct) oblimin1 (Clarkson &
Jennrich, 1988) is a widely-used rotation offered in the statis-
tical packages SPSS (Nie, Bent, & Hull, 1970) and STATA
(Hamilton, 2012). Stepwise rotation procedures such as promax
(Hendrickson & White, 1964) and promin (Lorenzo-Seva,
1999) cannot be readily applied as the rotation criterion in
Equation 2. Simple structure rotation criteria often perform
suboptimal when the variable complexity is higher than one
for some items (Ferrando & Lorenzo-Seva, 2000, 1999;
Schmitt & Sass, 2011). To avoid this deficiency, weighted
oblimin (Lorenzo-Seva, 2000)was presented, but theweighting
procedure is known to fail in some cases (Kiers, 1994). Target
rotation (Browne, 2001) towards a zero loading pattern is
a better alternative to achieve simple structure, since cross-
loadings can be tolerated by leaving the corresponding element
of the target unspecified. Simplimax (Kiers, 1994) can be used
to determine the optimal target for a given loading matrix.
When one has prior beliefs about the MM, a target correspond-
ing to this MM can be applied. In this paper, the oblimin
criterion is applied for simple structure rotation RSS, where λjq
is the loading of item j on factor q:

RSS ¼
XQ
q¼1

XQ
q0¼qþ1

XJ
j¼1

λ2jqλ
2
jq0 : (3)

In case of factor loading non-invariance

If invariant factor loadings are untenable, the group-
specific loadings are scrutinized to identify sources of non-
invariance. To this end, the optimal rotation needs to be

1Oblimin performs best when the parameter γ is equal to zero
(Jennrich, 1979) and then it is in fact direct quartimin rotation (Jennrich
& Sampson, 1966), but we will refer to it as ‘oblimin’ throughout the rest
of the paper.

UNRAVELING FACTOR LOADING NON-INVARIANCE 3



identified for each group and one may choose to apply the
restrictions in Equation 2 to each group separately, imply-
ing G� Q Q� 1ð Þ restrictions, while the factor variances
remain fixed to one per group. This approach entails two
pitfalls. Firstly, the rotation for each group separately dis-
regards the resulting (dis)agreement of loadings across
groups, resulting in overestimated loading differences.
Secondly, when keeping the factor variances fixed to one
per group during rotation, differences in factor scale show
up in the loadings, while these differences are irrelevant to
the MI question. Specifically, factor variances (as well as
factor covariances) are part of the structural model rather
than the MM (Dolan et al., 2009; Meredith, 1993).

To strive for agreement and simple structure, MGFR
minimizes multigroup criterion RMG:

RMG Λ1; :::; Λg; :::;ΛG

� � ¼ wRA þ ð1� wÞ
XG
g¼1

RSS
g (4)

where RA refers to the agreement criterion across all groups and
RSS
g refers to a simple structure criterion within group g. For RA,

we consider two criteria discussed below. For RSS
g , oblimin,

geomin and target rotation are currently supported (see
Appendix A). The relative influence of the agreement and
simple structures on RMG is determined by the user-specified
weighting parameter w. Thus, the novelty of this criterion lies
not only in combining RA and RSS

g (g = 1,…, G) but also in the

weighting of this combination,2 resulting in a flexible frame-
work of rotations that includes every degree of focus on either
agreement or simple structure.

To partially identify the scales of the group-specific
factors, we restrict the across-group mean factor variances

to one: 1
G

PG
g¼1

diag Ψg

� � ¼ 1½ �Q. As such, we allow for factor

variances to differ between groups and avoid the arbitrari-
ness of choosing a reference group with fixed variances.
The group-specific factor variances will be further identi-
fied by the RA part (i.e., optimizing between-group agree-
ment), whereas the factor covariances are identified by both
parts of the rotation (i.e., maximizing simple structure per
group as well as between-group agreement).

Given the Q scaling restrictions, G� 1ð ÞQ2 þ Q Q� 1ð Þ
additional restrictions are needed to identify the optimal
multigroup rotation. To find the restrictions that minimize

RMG, we use its differential in the point corresponding to
the optimally rotated loadings Λg for g = 1, …, G:

dRMG Λ1; :::; Λg; :::;ΛG

� � ¼XG
g¼1

dRMG Λg

� �
(5)

The differential is derived in Appendix B and results in the
following restrictions for each group:

FMG
g ¼ Λ0

g
dRMG

dΛg
Ψ�1

g � diag
1

G

XG
g0¼1

Λ0
g0
dRMG

dΛg0
Ψ�1

g0

 !
¼ 0½ �Q�Q

(6)

Again, standard errors can be obtained for the optimally
rotated loadings (Jennrich, 1973) and hypothesis testing can
be performed. To look for factor loading non-invariances,
one can test per loading whether it is significantly different
across the groups using a Wald test. To evaluate group-
specific MMs (or causes of configural non-invariance), one
can also test which loadings are significantly different from
zero per group and evaluate how these results differ across
groups.

Agreement Rotation Criteria. A widely used criter-
ion for agreement rotation of multiple loading matrices is
generalized procrustes (GP; Ten Berge, 1977), which opti-
mizes agreement in the least squares sense:

RA ¼
XG
g¼1

XG
g0¼gþ1

XJ
j¼1

XQ
q¼1

λgjq � λg0jq
� �2

(7)

Due to the square, the loss due to a loading difference
smaller than one is attenuated, and more so for smaller
differences. The loss due to a difference larger than one is
amplified. Thus, GP aims to minimize large loading differ-
ences and tolerate small differences. This implies that, in
the attempt to minimize (true) large differences, (false)
small differences may be created. Note that GP is originally
an orthogonal rotation, but since it is combined with obli-
que simple structure rotations, MGFR does not impose
orthogonality on GP and thus disentangles loading differ-
ences from differences in factor variances as well as
correlations.

As an alternative, some aspects of the (confirmatory)
multigroup factor alignment (Asparouhov & Muthén,
2014) can be included in MGFR. Specifically, in multi-
group factor alignment, the factors are ‘aligned’ (i.e.,
rescaled and shifted in terms of their factor means) to
minimize the following function of loading and intercept
differences, separately per factor q:

2 Note that Lorenzo-Seva, Kiers, and Berge (2002) already presented
a set of oblique rotations of multiple loading matrices to a compromise of
simple structure and optimal agreement. These rotations are performed in
a stepwise manner, however, making them hard to implement as a single
rotation criterion in MGFR. Also, they either do not allow for differences
in factor correlations between the groups or do not maintain between-
group agreement in the final step, resulting in a suboptimal between-group
agreement of the rotated loadings.
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XG
g¼1

XG
g0¼gþ1

XJ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
NgNg0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λgjq � λg0jq
� �2 þ ε

qr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τgj � τg0j
� �2 þ ε

qr ! (8)

where ε is a small number included to facilitate the mini-
mization and

ffiffiffiffiffiffiffiffiffiffiffiffi
NgNg0

p
is a weight depending on the group

sizes. On the one hand, intercept (and factor mean) differ-
ences are beyond the scope of this paper and are thus omitted
from the criterion (i.e., they are fixed during rotation) for
MGFR. On the other hand, we are dealing with (the rotation
of) EFA rather than CFA and thus apply the criterion across
all factors simultaneously. Therefore, it becomes:

RA ¼
XG
g¼1

XG
g0¼gþ1

XJ
j¼1

XQ
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λgjq � λg0jq
� �2 þ ε

qr
(9)

where
ffiffiffiffiffiffiffiffiffiffiffiffi
NgNg0

p
is omitted since RSS

g does not include such
a weight. We will refer to this adjusted alignment criterion
as the ‘loading alignment’ (LA) criterion. The square root
attenuates the loss for loading differences larger than one,
whereas the loss is amplified for differences smaller than
one, and more so for small differences. Therefore, mini-
mizing the LA criterion eliminates small loading differ-
ences while large differences are tolerated. Thus, it strives
for loading differences to be either zero or large
(Asparouhov & Muthén, 2014), which fits our aim of
distinguishing invariant from non-invariant loadings irre-
spective of the size of the non-invariance.

Implementation of optimal rotation

MGFR is implemented in LG 6.0 and applied by syntax
(Appendix A). In the future, it can be readily implemented
in other software (e.g., implementation in lavaan is under
development). The performed steps are:

1. ML estimation: The model is estimated without the
optimal rotation restrictions, i.e., maximizing the log-
likelihood (LL), with factor variances fixed to one per
group.

2. Gradient projection per group: Using the estimates
from Step 1 as initial values and keeping the factor
variances fixed, the gradient project algorithm
(Jennrich, 2001, 2002) is applied for each group
g = 1, …, G to minimize RSS

g by imposing diagonality
on Equation 2.

3. Reflection and permutation: The factors of group 1
are ordered according to their explained variance and
reflected such that (most) strong loadings have
a positive sign. Then, the factors of groups
g = 2, …, G are permuted and reflected to minimize

the applied agreement criterion with the factor load-
ings of group 1 (i.e., RA

gg0 with g’ = 1).
4. ConstrainedML estimation: The factor loadings and (co)

variances are updated by maximizing the objective func-
tion LL + l × vec(FMG), where l is a vector of Lagrange
multipliers and FMG contains all group-specific restric-
tions FMG

g (Equation 6) and is transformed into a vector

by the ‘vec’ operator. Fisher scoring (Lee & Jennrich,
1979) is used, with possible step size adjustments to
prevent inadmissible factor covariance matrices, until
the updates converge to a solution with both l and FMG

equal to zero, i.e., the (optimally rotated) ML solution.

Note that, apart from the occasional non-convergence in the
standard multigroup EFA estimation (Step 1), convergence
of the multigroup rotation (Step 4) is not guaranteed and
may fail when initial values are far from the optimal rota-
tion. The initial values correspond to the unrotated factor
loadings resulting from Step 1, which are partially opti-
mized by rotation to simple structure per group (Step 2) and
reflection and permutation to between-group agreement
(Step 3), in order to facilitate the convergence of Step 4.
If Step 4 fails to converge, repeating the procedure from
Step 1 and onwards yields a new set of initial values and
may solve the non-convergence. Note that especially the
loading alignment criterion is a difficult one to optimize.

SIMULATION STUDY

Problem

The goal of the simulation study is to evaluate the perfor-
mance of MGFR with respect to: (1) the convergence of the
optimal rotation, (2) the recovery of the factor loadings by
the optimal rotation, and (3) the false positives (FP) and false
negatives (FN) of hypothesis testing – based on the optimal
rotation – for loading differences and non-zero loadings. For
the rotation, we use generalized procrustes (GP; Equation 7)
and loading alignment (LA; Equation 9) as RA and oblimin
(O; Equation 3) as RSS

g for g = 1, …, G, with a variety of
weights w. For the hypothesis testing, we focus on Wald tests
because they are part of the default output of LG. We
manipulated six factors that were expected to affect MGFR
and/or the hypothesis testing: (1) the number of groups, (2)
the group sizes, (3) the number of factors, (4) the type and
size of the loading differences, and (5) the number of loading
differences.

In terms of their effect on the performance of MGFR, we
hypothesize the following: It will be more difficult to recover
the optimal multigroup rotation when the rotation pertains to
more groups and thus more loading matrices (1), when the
sampling fluctuations of the group-specific factor loadings
and factor covariance matrices are higher due to smaller
groups (2), when the rotation pertains to more factors (3),
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and when the degree of the simple structure violations and
disagreement between the groups is higher (4, 5). Non-
convergence of MGFR becomes more likely as one or
more of these aspects adds to the complexity of the rotation.
TheWald tests for loading differences and non-zero loadings
depend on the MGFR and their performance is thus indir-
ectly affected by the above-mentioned aspects. On top of
those indirect effects, we hypothesize (Hogarty, Hines,
Kromrey, Ferron, & Mumford, 2005; Pennell, 1968) that
the power of the Wald tests will be lower when the sample
size is lower (1, 2), the sampling fluctuations of factor load-
ings are higher (2), the number of factors is higher for the
same number of variables (3), the loading differences are
larger (4) and the simple structure violations are more severe
(4) and/or more numerous (5).

Design and procedure

These factors were systematically varied in a complete
factorial design:

1. the number of groups G at 3 levels: 2, 4, 6;
2. the group sizes Ng (i.e., number of observations per

group) at 3 levels: 200, 600, 1000;
3. the number of factors Q at 2 levels: 2, 4;
4. the type and size of loading differences at 5 levels:

primary loading shift, crossloading of .40, crossload-
ing of .20, primary loading decrease of .40, primary
loading decrease of .20;

5. the number of loading differences at 2 levels: 4, 16;

The group-specific factor loadings are all based on the same
simple structure. In this ‘base loadingmatrix’, the fixed number
of variables (i.e., 20) are equally distributed over the factors,
i.e., each factor gets 10 non-zero loadings whenQ = 2 (Table 1)
and five non-zero loadings whenQ = 4 (Table 2). Given that the
unique variances vary around .40 (see below), the non-zero
loadings are equal to

ffiffiffiffiffiffi
:60

p
to obtain total variances of around

one. From the common base, two different group-specific
loading matrices are derived, each of which will pertain to
half of the groups. Specifically, depending on the type and
number of loading differences, for each of these two loading
matrices, loadings were altered for a different set of variables
(Table 1, 2), referred to as ‘DIF items’. In case of a primary
loading shift, two differences are induced per DIF item and thus
one DIF item is selected per group-specific loading matrix to
obtain a total of four loading differences across groups, or four
DIF items (equally distributed across factors) are selected per
loading matrix to obtain a total of 16 loading differences.3 In

particular, when Q = 2, the loadings
ffiffiffiffi
:6

p
0

� �
of the base

matrix are replaced by 0
ffiffiffiffi
:6

p� �
(Table 1). When Q = 4,

primary loadings are shifted similarly between factors 1 and 2
on the one hand, and between factors 3 and 4 on the other hand;
e.g.,

ffiffiffiffi
:6

p
0 0 0

� �
becomes 0

ffiffiffiffi
:6

p
0 0

� �
. For the

crossloading differences and primary loading decreases, one
loading was altered per DIF item and thus two DIF items are
selected per loading matrix to obtain four differences across
groups, or 8 to obtain 16 differences (Table 2). In case of
crossloadings, the loadings

ffiffiffiffi
:6

p
0 0ð Þ 0ð Þ

� �
becomeffiffiffiffi

:6
p

:4 0ð Þ 0ð Þ
� �

or
ffiffiffiffi
:6

p
:2 0ð Þ 0ð Þ

� �
depending

on the size of the crossloadings. Note that a crossloading of .20
may be considered ‘ignorable’, whereas one of .40 is not
(Stevens, 1992). To manipulate a primary loading decrease,
the loadings

ffiffiffiffi
:6

p
0 0ð Þ 0ð Þ

� �
are replaced byffiffiffiffi

:6
p � :4 0 0ð Þ 0ð Þ
� �

or
ffiffiffiffi
:6

p � :2 0 0ð Þ 0ð Þ
� �

depending on the size of the decrease (see online supplements).
Note that a primary loading decrease of .40 is considered
a large non-invariance (Stark, Chernyshenko, & Drasgow,
2006) that can lead to incorrect statistical inference and biased
parameter estimates (Hancock, Lawrence, & Nevitt, 2000).
When G > 2, each of the two generated loading matrices was
assigned to a random half of the groups. A number of remarks
are in order: Firstly, in the case of four loading differences, only
factors 1 and 2 are affected, even when Q = 4. Secondly,
a primary loading shift maintains the item’s communality
whereas a crossloading increases it and a primary loading
decrease lowers it. Thirdly, and most importantly, primary
loading shifts and crossloadings are violations of configural
invariance and thus differences that are very hard to trace by
CFA-based methods such as multigroup BSEM or multigroup
factor alignment.

The group-specific factor correlations are randomly
sampled from a uniform distribution between −.50 and
.50, i.e., U �:50; :50ð Þ, and factor variances from
U :50; 1:50ð Þ. Whenever a resulting Ψg is not positive
definite, the sampling is repeated. Group-specific unique
variances (i.e., diagonal of Dg) are sampled from
U :20; :60ð Þ. Factor scores are sampled from
MVN 0;Ψg

� �
and residuals from MVN 0;Dg

� �
, according

to the specified group sizes. The group size of 200
corresponds to the recommended minimal sample size
for obtaining accurate factor loading estimates when
item communalities are moderate (Fabrigar, Wegener,
MacCallum, & Strahan, 1999; MacCallum, Widaman,
Zhang, & Hong, 1999), whereas 1000 delimits a range
of group sizes that largely corresponds to previous MI
studies (Asparouhov & Muthén, 2014; Meade &
Lautenschlager, 2004). Finally, the simulated data are
created according to Equation 1. Note that the intercepts
τg are zero, since the focus is on loading differences.

According to this procedure, 50 data sets were gen-
erated per cell of the design, using Matlab R2017a.

3 Note that when inducing >16 loading differences, the differences
could be partially cancelled out by permuting factors (in case of primary
loading shifts), increasing factor correlations (in case of crossloadings) or
rescaling factors (in case of primary loading decreases).
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Thus, 3 (number of groups) × 3 (group sizes) × 2
(number of factors) × 5 (type/size of loading differ-
ences) × 2 (number of loading differences) × 50 (repli-
cations) = 9 000 data sets were generated. The data
were analyzed by LG 6.0, using syntaxes (Appendix
A). Since MGFR was applied with several RMG criteria,
one set of unrotated ML estimates (Step 1) was obtained
and used as starting values for the optimal rotation
(Steps 2–4) per criterion. The average CPU time for
multigroup EFA without rotation was 12s on an i7
processor with 8GB RAM. For three data sets, this
estimation was repeated because it failed to converge
the first time. Then, the following rotation criteria were
applied – where ‘GP’ refers to generalized procrustes,
‘LA’ to loading alignment and ‘O’ to oblimin:
.01GP + .99O, .10GP + .90O, .30GP + .70O,
.50GP + .50O, .70GP + .30O, .01LA + .99O. For the
latter, LA was applied with an ε-value of 1 × 10−12. The
average CPU time of the rotation was 12s per criterion.
Note that rotations with a higher weight of the LA
criterion are omitted from the reported results, because
they had markedly lower convergence rates, i.e.,
between 77% and 40% (increasing the ε-value did not
help). Also, since LA is based on square roots rather

than squares of loading differences, it has a larger
impact on RMG than GP. Therefore, a small weight is
sufficient to properly identify the group-specific factor
(co)variances while maintaining simple structure per
group. Note that the goal of the simulation study was
to prove that MGFR makes it possible to correctly
identify a wide range of factor loading non-invariances
in multigroup EFA and not so much to determine the
best rotation criterion.

Results

In this section, we first discuss the convergence of the
optimal rotation per criterion. Next, the recovery of the
rotated loadings and corresponding factor (co)variances
is discussed. Then, we present Wald test results based on
the rotated loadings: for significant loading differences
and non-zero loadings. We end with conclusions and
recommendations for empirical practice.

Convergence of optimal rotation identification

Initially, the percentage of data sets for which the
rotation converged, %conv, was 92.4%, 96.6%, 96.1%,
91.9%, and 82.4% when RA = GP and w = .01, .10,
.30, .50 and .70, respectively. When RA = LA with
a weight w of .01, the %conv-value was 90.9%. After re-
running the non-converged rotations once, starting from
a different random rotation of the loadings, the %conv-
values increased between 2 and 5%. In Table 3, these
%conv are given for the six rotations, in function of the
simulated conditions. Clearly, %conv is affected most by
Q, with %conv equal to or near 100% when Q = 2. The
‘.70GP + .30O’ rotation has a markedly lower %conv for
Q = 4 than the other criteria. Thus, for comparability
reasons, this criterion is also omitted from the results
discussed below. The following results are based on the
converged rotations only.

Goodness-of-recovery of optimally rotated
loadings

The recovery of the optimally rotated loadings is
quantified by a goodness-of-loading-recovery statistic
(GOLR), i.e., by computing congruence coefficients φ
(Tucker, 1951) between the true (λgq) and estimated

(bλgq) loadings per factor and averaging across factors
q and groups g:

GOLR ¼

PG
g¼1

PQ
q¼1

φ λgq;bλgq� �
GQ

: (10)

TABLE 1
Base Loading Matrix and the Derived Group-Specific Loading
Matrices, in case of Two Factors and Primary Loading Shifts.

Differences are Indicated in Bold Face and Differences between
Brackets are Only Induced in the Case of 16 Loading Differences

Base loading
matrix

Group-specific loading
matrix 1

Group-specific loading
matrix 2

F1 F2 F1 F2 F1 F2

V1
ffiffiffiffi
:6

p
0 0

ffiffiffiffi
:6

p ffiffiffiffi
:6

p
0

V2
ffiffiffiffi
:6

p
0 (0) (

ffiffiffiffi
:6

p
)

ffiffiffiffi
:6

p
0

V3
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0 0

ffiffiffiffi
:6

p
V4

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0 (0) (

ffiffiffiffi
:6

p
)

V5
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V6
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V7
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V8
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V9
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V10
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

V11 0
ffiffiffiffi
:6

p
(
ffiffiffiffi
:6

p
) (0) 0

ffiffiffiffi
:6

p
V12 0

ffiffiffiffi
:6

p
(
ffiffiffiffi
:6

p
) (0) 0

ffiffiffiffi
:6

p
V13 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
(
ffiffiffiffi
:6

p
) (0)

V14 0
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
(
ffiffiffiffi
:6

p
) (0)

V15 0
ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
V16 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
V17 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
V18 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
V19 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
V20 0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
0

ffiffiffiffi
:6

p
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The GOLR evaluates the proportional equivalence of
loadings (i.e., insensitive to factor rescaling) and varies
between 0 (no agreement) and 1 (perfect agreement).
Per criterion, the average GOLR is .99 (SD = .01). This
excellent recovery is hardly affected by the conditions.

Goodness-of-recovery of factor variances and
covariances

To quantify the recovery of the factor (co)variances, the
mean absolute difference (MAD) between the true (ψgqq0)

TABLE 2
Base Loading Matrix and the Derived Group-Specific Loading Matrices, in Case of Four Factors and Crossloading Differences. The

Crossloadings (CL) are either Equal to .40 Or .20. Differences are Indicated in Bold Face and Differences between Brackets are Only Induced
in the Case of 16 Loading Differences

Base loading matrix Group-specific loading matrix 1 Group-specific loading matrix 2

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

V1
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
CL 0 0

ffiffiffiffi
:6

p
0 0 0

V2
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL) 0 0

ffiffiffiffi
:6

p
0 0 0

V3
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
CL 0 0

V4
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL) 0 0

V5
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

V6 0
ffiffiffiffi
:6

p
0 0 CL

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0

V7 0
ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0

V8 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 CL

ffiffiffiffi
:6

p
0 0

V9 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
0 0

V10 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0

V11 0 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL) 0 0

ffiffiffiffi
:6

p
0

V12 0 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL) 0 0

ffiffiffiffi
:6

p
0

V13 0 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL)

V14 0 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
(CL)

V15 0 0
ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0

V16 0 0 0
ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
V17 0 0 0

ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
V18 0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
V19 0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 (CL)

ffiffiffiffi
:6

p
V20 0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p
0 0 0

ffiffiffiffi
:6

p

TABLE 3
Convergence Frequencies (%) of the Optimal Rotation Procedure for Six Rotation Criteria, in Function of the Simulated Conditions.
‘GP’ = Generalized Procrustes, ‘LA’ = Loading Alignment, ‘O’ = Oblimin, ‘PLS’ = Primary Loading Shifts, ‘CL’ = Crossloadings, and

‘PLD’ = Primary Loading Decreases

.01GP + .99O .10GP + .90O .30GP + .70O .50GP + .50O .70GP + .30O .01LA + .99O

G = 2 96.0 98.4 98.7 98.4 96.7 96.8
G = 4 94.3 97.2 96.8 94.6 87.7 92.7
G = 6 94.3 96.1 95.7 90.5 76.8 87.3
Ng = 200 96.7 97.4 97.3 96.1 91.9 96.4
Ng = 600 95.4 97.4 97.5 94.9 86.0 92.7
Ng = 1000 92.6 96.9 96.5 92.4 83.4 87.7
Q = 2 100 100 100 100 99.9 94.7
Q = 4 89.8 94.5 94.2 89.0 74.2 89.8
PLS 95.1 97.8 97.5 95.5 83.4 89.8
CL .40 95.7 96.8 97.0 93.4 86.1 94.9
CL .20 95.9 97.5 96.9 94.8 89.1 96.1
PLD .40 94.1 96.9 97.1 95.6 90.1 89.4
PLD .20 93.8 97.2 96.9 93.2 86.7 91.1
4 diff. 94.4 96.9 96.9 94.2 84.9 89.9
16 diff. 95.4 97.6 97.2 94.7 89.3 94.6
Total 94.9 97.2 97.1 94.5 87.1 92.3
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and estimated (bψgqq0) factor (co)variances is calculated as
follows:

MADΨ ¼

PG
g¼1

PQ
q¼1

PQ
q0¼q

ψgqq0 � bψgqq0

			 			
GQ Qþ 1ð Þ=2 : (11)

The average MADΨ -values in function of the criteria and
conditions are given in Table 4. They vary around .07 or .08,
indicating an overall good recovery of the Ψg-matrices by
each criterion. For primary loading shifts, which cause severe
disagreement between groups, a stronger enforcement of
agreement by (a higher weight of) generalized procrustes
leads to a worse recovery of the group-specific factor (co)
variances. For the crossloading differences of .40, using
a higher weight for oblimin to impose simple structure
degrades the recovery of the factor (co)variances.

Wald tests for significant factor loading differences

To be conservative, we use .01 as the significance level4 α
and the Bonferroni correction for multiple testing (Bonferroni,
1936), i.e., we divided α by J × Q and consider a loading to
differ significantly when, for the corresponding Wald test,
p < .00025 for Q = 2 and p < .000125 for Q = 4. Table 5
presents percentages of data sets for which theWald tests were
perfectly correct (% correct; i.e., no false positives or false
negatives), without false positives (0 FP) and without false
negatives (0 FN). For the % correct, we conclude that: (1)
Overall, the ‘.50GP + .50O’ rotation gives the best results. (2)

As an exception, for primary loading shifts, ‘.01LA + .99O’
performs better. (3) For primary loading decreases of .40 and
.20, ‘.10GP + .90O’ and ‘.30GP + .70O’ perform very similar
to ‘.50GP + .50O’. (4) The lowest % correct are, not surpris-
ingly, observed for small differences, i.e., crossloadings and
primary loading decreases of .20. (5) The performance is
better in case of more groups, more observations per group,
less factors and less differences.

When inspecting the ‘0 FP’ and ‘0 FN’ percentages, it is
clear that: (1) For crossloadings and primary loading
decreases of .20, the lower % correct is mainly due to
false negatives. (2) With an increasing G and Ng, we
observe the well-known trade-off between false positives
and false negatives in function of sample size. (3) In case of
more factors and more loading differences, the ‘0 FN’ and
‘0 FP’ percentages both decrease, which is due to the
rotation being more intricate in these cases. Specifically,
when Q = 4 more factor variances and covariances need to
be optimized and 16 differences make it challenging to
pursue agreement and/or simple structure per group – the
latter is true for 16 crossloading differences in particular.
(4) Focusing on the best criterion per type/size of loading
differences, the occurrence of false positives is notably
higher for crossloadings of .40. This confirms the subopti-
mal performance of oblimin – and most simple structure
criteria – in case of item complexities larger than one
(Lorenzo-Seva, 1999).

Earlier, we pointed out that using generalized procrustes
as RA could result in (false) small differences in an attempt
to minimize (true) large differences, whereas loading align-
ment eliminates small differences while tolerating large
ones. This explains why ‘.01LA + .99O’ performs best in
case of primary loading shifts (i.e., the largest differences,
of size

ffiffiffiffi
:6

p
) and why ‘.50GP + .50O’ performs better for

TABLE 4
Mean Absolute Difference between True and Estimated Factor Variances and Covariances, in Function of Five Rotation Criteria

and the Simulated Conditions. See Table 3 Caption for Abbreviations

.01GP + .99O .10GP + .90O .30GP + .70O .50GP + .50O .01LA + .99O

G = 2 .08 .06 .07 .07 .07
G = 4 .08 .07 .07 .08 .07
G = 6 .08 .07 .08 .09 .07
Ng = 200 .10 .08 .09 .10 .09
Ng = 600 .08 .06 .07 .07 .06
Ng = 1000 .07 .06 .06 .07 .06
Q = 2 .08 .07 .08 .08 .07
Q = 4 .08 .07 .07 .08 .07
PLS .06 .07 .11 .15 .05
CL .40 .13 .10 .08 .08 .11
CL .20 .09 .07 .07 .07 .08
PLD .40 .06 .05 .05 .06 .06
PLD .20 .06 .05 .05 .05 .06
4 diff. .07 .05 .06 .07 .06
16 diff. .09 .08 .09 .09 .08
Total .08 .07 .07 .08 .07

4 The results for a (Bonferroni-corrected) significance level of .05 may
be requested from the first author.
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the other differences (of size .40 or .20). This is supported
by the fact that ‘.50GP + .50O’ often results in false
positives for primary loading shifts (Table 5).

Focusing on the best performing rotation for each type/
size of loading differences (specified above), we inspected
how many false positives (FP) and false negatives (FN)
occurred for each affected data set. Out of the 614 data sets
with FP, only one FP was found for 401 (65%) and two FP
for 97 data sets (16%). Out of the 1799 data sets with FN,
only one FN was found for 465 (26%) and two FN for 308
data sets (17%). FN are mainly found for differences of .20.

To evaluate how MGFR performs in case of no differ-
ences, we performed an additional simulation study accord-
ing to the procedure described above, without manipulating
loading differences (i.e., retaining manipulated factors 1–3).
Out of these 900 data sets, 97% of the converged
‘.50GP + .50O’ rotations resulted in zero FP, whereas for
89 data sets this rotation did not converge. Note that
‘.01LA + .99O’ failed to converge for 99% of these data sets.

Wald tests for significant factor loadings

For evaluating the MM(s) of the groups, we look at
Wald tests for significance of factor loadings across
groups.5 Again, we focus on α = .01 and the
Bonferroni correction divides α by J × Q. The percen-
tage of data sets without false negatives (FN) does not
differ across rotation criteria and is affected most by the
type of loading differences. For ‘.50GP + .50O’ and
‘.01LA + .99O’, no FN occurred for 99 to 100% of
the data sets with primary loading shifts or primary
loading decreases. For crossloadings of .40, 92 to 93%
of the data sets are without FN and, for crossloadings of
.20, 60 to 61%. The results for the false positives (FP)
are more intricate and are detailed in Table 6. The most
important conclusion is that both the percentage of data
sets without FP and the best performing rotation in this
respect depend strongly on the type of loading differ-
ences. In case of primary loading shifts, generalized
procrustes with a higher weight appears to create more
small crossloadings that are detected as FP, whereas the
loading alignment criterion ‘.01LA + .99O’ – also the
preferred criterion for detecting differences in case of
primary loading shifts – performs very well with 96%

of the data sets being free from FP. In case of cross-
loadings of .40 and .20, the best criterion for detecting
the differences – i.e., ‘.50GP + .50O’ – is also the best
one for avoiding FP in terms of non-zero loadings. The
percentage of data sets without FP is still quite low –
i.e., 42% and 56% for the crossloadings of .40 and .20,
respectively – again confirming that achieving simple
structure is challenged by the crossloadings. In case of
PL decreases of .40 and .20, ‘.50GP + .50O’ is clearly
suboptimal for detecting significant non-zero loadings
whereas it is the best one for detecting the differences.
Luckily, in Section 3.3.4., we found that
‘.10GP + .90O’ performed nearly the same in terms of
revealing differences while it is the best one to avoid
false positive loadings in case of PL decreases.
Selecting the mentioned best criterion for each type of
loading differences, out of the 2085 data sets with FP,
one FP was found for 751 (36%) and two for 384 (18%)
data sets.

Conclusions and recommendations for empirical
practice

MGFR showed a good performance, especially given that
the simulation study included small loading differences of
.20. By means of the best rotation criterion for each con-
figuration of loading differences, the loadings were recov-
ered and rotated very well. Wald tests for detecting the
differences were flawless for roughly 70% of the data sets
(i.e., for 70% of the data sets, no false positives or false
negatives were found). When false positives (FP) or false
negatives (FN) did occur (i.e., for 30% of the data sets),
they often pertained to just one or two loadings. The simu-
lation confirmed how the number of groups and group sizes
make out the FN-FP trade-off. Furthermore, the perfor-
mance drops somewhat in case of more factors and more
differences, which make the rotation more challenging. It
proved to be possible to evaluate the MM(s) at the same
time, but, in case of crossloadings, one should be aware of
FP and, in case of primary loading decreases, a lower
weight for generalized procrustes is advised.

Since the best rotation criterion for detecting loading
differences, as well as non-zero loadings, depends on the
type and size of loading differences for a given data set, the
following recommendations are in order (Figure 1):
Because the type and size of loading differences are
unknown beforehand and empirical data often contain
a mix of differences, it is wise to first use the overall best
criterion for distinguishing factor loading non-invariances;
i.e., ‘.50GP + .50O’. Interestingly, this is equivalent to an
unweighted combination of the generalized procrustes (GP)
and oblimin (O) criterion. Then, one could scrutinize the
between-group differences of the obtained loadings and
adjust the criterion as follows: (1) When the rotated

5 The output of LG 6.0 also contains z tests per group. In this case, the
Bonferroni correction divides α by J × Q × G, which implies a loss in
power. For these tests, the results on FP are highly similar as described in
the text. The percentage of data sets without FN is lower, however, and
this is especially the case for crossloadings of .40 and .20 and primary
loading decreases of .40. Specifically, with ‘.50GP +.50O’ rotation, it is
80% for crossloadings of .40, 26% for crossloadings of .20, and 80% for
primary loading decreases of .40. In practice, the results of the Wald tests
for significant loadings across groups can be used to selectively test for
significant loadings per group (i.e., to determine for which groups they
apply), thus warranting a less rigorous correction for multiple testing.
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solution reveals a few larger differences and many very
small differences, it is advisable to see whether the loading
alignment (LA) criterion ‘.01LA + .99O’ eliminates the
small ones. (2) When differences pertain to primary loading
decreases and one also wants to identify non-zero loadings,
lowering w to .10 improves results for the latter while
hardly affecting the detection of differences. (3) When
differences pertain to crossloadings, using LA or lowering
w is not advisable. In this case, one may try whether an
informed semi-specified target rotation (see Appendix A)

improves the simple structure. (4) When a mix of differ-
ences occurs, the optimal choice is less clear-cut. Then, the
advice is to resort to ‘.50GP + .50O’, but comparing to
other criteria may still be informative.

APPLICATION

To illustrate the empirical value of MGFR, we applied it to
data on the Open Sex Role Inventory (OSRI) downloaded

TABLE 6
Percentages (%) of Data Sets for Which the Wald Test Results (α = .01, Bonferroni Corrected) for Significant Loadings across

Groups are without False Positives (0 FP). See Table 3 Caption for Other Abbreviations

.01GP + .99O .10GP + .90O .30GP + .70O .50GP + .50O .01LA + .99O

G = 2 76 71 64 62 76
G = 4 68 56 50 49 69
G = 6 63 47 41 40 63
Ng = 200 78 73 67 64 80
Ng = 600 67 54 48 48 67
Ng = 1000 63 47 40 39 61
Q = 2 74 63 59 62 73
Q = 4 64 54 45 38 67
PLS 95 38 09 03 96
CL .40 17 19 30 42 18
CL .20 48 50 52 56 50
PLD .40 94 92 84 73 94
PLD .20 93 92 85 79 95
4 diff. 78 70 61 57 78
16 diff. 61 46 43 44 61
Total 69 58 52 51 70

FIGURE 1 Decision tree on how to decide on the rotation criterion for an empirical data set.
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from https://openpsychometrics.org/_rawdata/. The OSRI is
a modernized measure of masculinity and femininity based
on the Bem Sex Role Inventory (BSRI; Bem, 1974). Bem
postulated that masculinity and femininity are two separate
dimensions, allowing to characterize someone as mascu-
line, feminine, androgynous or undifferentiated. The
assumed MM of the BSRI has been widely contested,
however (Choi & Fuqua, 2003). The OSRI contains 22
items (supposedly) measuring masculine characteristics
alternated by 22 items measuring femininity (Appendix
C). To the best of our knowledge, no studies on the MM
of the OSRI have been published. Therefore, an EFA-based
approach is preferred over CFA.

Note that the data is collected through the website and is
thus not a random sample. For the purpose of our illustra-
tion, this is not a problem. Information is available on
education, race, religion, gender and sexual orientation, as
well as the country respondents are located in and whether
English is their native language. We excluded non-native
English speaking respondents to avoid differences due to
misunderstanding items. Mainly respondents in the USA
(2240), Great-Britain (357), Canada (180) and Australia
(118) were left. Multigroup EFA confirmed factor loading
invariance across gender, but revealed differences across
sexual orientations and these results are reported below.
Respondents with missing data on the items or grouping
variable were excluded. For the reported analyses, 2767
respondents were included: 1539 hetero-, 568 bi-, 230
homo-, and 172 asexuals, and 258 who specified their
sexuality as ‘other’.

The inadequacy of the masculine-feminine MM is con-
firmed by the fit of the corresponding baseline multigroup
CFA model: CFI = .82 and RMSEA = .064. The CFI of
multigroup EFA with two factors is .90 (RMSEA = .049)
and dropped to .87 (RMSEA = .054) when imposing loading
non-invariance. To identify the loading differences, MGFR
was first applied with the generalized procrusted (GP) based
criterion ‘.50GP + .50O’ as recommended in Figure 1. A mix
of differences is found, corresponding to crossloadings
appearing and primary loadings increasing or decreasing in
one or more groups, but differences are never as sizeable as
the primary loading shifts in the simulation study (i.e., loading
alignment is not recommended). ‘.50GP + .50O’ rotation
resulted in 14 loading differences and 71 non-zero loadings
(out of 88), whereas ‘.10GP + .90O’ rotation resulted in 16
differences and 68 non-zero loadings, even though the rotated
loadings look very similar. ‘.30GP + .70O’ rotation seemed to
be a good middle ground with 14 differences and 69 non-zero
loadings and these rotated loadings are given in Table 7, with
Wald test p-values. Using simplimax-based group-specific
targets did not improve the rotation.

Even though the factors can more or less be labelled ‘M’
(masculinity) and ‘F’ (femininity), hardly any of the items are
pure measures of either M or F, which is supported by the

p-values for the non-zero loadings (Table 7). Most of the
significant loading differences seem to exist between hetero-
sexuals on the one hand and (some of) the other groups on the
other hand. This is confirmed by pairwise Wald tests that are
obtained by the ‘knownclass’ option in LG (i.e., clustering the
groups into five latent classes and enforcing a perfect predic-
tion of class by group; Vermunt & Magidson, 2013). For
example, for heterosexuals, Q4 (‘I give people handmade
gifts’) has a negative crossloading on M and a decreased
primary loading for F. The factor covariance is non-
significant for all groups: −.05 for heterosexuals, .05 for
bisexuals, −.03 for homosexuals, −.08 for asexuals and −.04
for ‘other’. The factor variances differ quite a bit across
groups: the variances of M are 1.33, .98, .90, .89, .90, and
the variances of F are .99, .89, 1.00, .88, 1.25 for that same
order of groups, respectively. Therefore, oblimin rotation per
group with fixed factor variances, using the Jennrich (1973)
restrictions, overestimates the loading differences, i.e., 26
differences are found to be significant. In any case, before
using the OSRI for comparing masculinity and femininity
across sexual orientations, it needs to be revised to a large
extent.

DISCUSSION

Testing for MI is essential before comparing latent con-
structs across groups. When factor loading invariance fails,
further MI tests are ruled out and one can either ignore the
non-invariance and risk invalid conclusions, refrain from
further analyses, or take action by scrutinizing loading
differences. The latter may give clues on how non-
invariances can be avoided in future research (e.g., exclud-
ing or rephrasing items). When looking for all kinds of
differences (i.e., including primary loading shifts and cross-
loadings), multigroup EFA is the way to go. To properly
identify these non-invariances, MGFR pursues both agree-
ment and simple structure, disentangles loading differences
from differences in the structural model, and enables
hypothesis tests for the loadings.

When using the loading alignment criterion for agree-
ment, MGFR may be conceived as an EFA extension of
multigroup factor alignment (MGFA; Asparouhov &
Muthén, 2014) in that it both aligns and rotates, albeit
that – for now – it focuses on factor loadings only. Unlike
MGFA, MGFR deals with all factors at once and allows for
group-specific MMs to be investigated rather than assumed.
Of course, before making latent construct comparisons,
intercept invariance should be addressed as well, but like
in MI testing, we prefer to tackle the levels of MI in
a stepwise manner. While MGFA only assesses primary
loadings and assumes differences to be small and pertaining
to a minority of the loadings or groups (i.e., partial and/or
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approximate MI), we are not even assuming an invariant
zero loading pattern. Therefore, it makes no sense to align
the intercepts for enabling factor mean comparisons while
rotating the factors toward one another to assess whether
they are somewhat comparable in the first place. In future
research, it would be interesting to study how MGFR can
be combined with intercept alignment and whether it
indeed needs to be a stepwise approach. To this end, the

principles of MGFA need to be extended to the multi-factor
EFA case, whereas currently it cannot even align CFA
models with a crossloading. Clearly, the latter warrants
a separate study in itself.

Since MGFR proved to be very promising, it would be
worthwhile to devote more research to refining and
extending it in a number of respects. Firstly, it would
be interesting to determine invariant sets (Asparouhov &

TABLE 7
Rotated Loadings per Sexual Orientation for the OSRI Data and Wald Test P-Values. ‘M’ Refers to Masculinity, ‘F’ to Femininity, ‘Wald(=)’ to

Tests for Loading Differences and ‘Wald(0)’ to Tests for Non-Zero Loadings. P-Values that are Significant at a Bonferroni-Corrected 1%
Significance Level (i.e., P < .00014) are in Bold Face, as Well as Loadings that Differ Significantly across Groups

Hetero-sexual Bisexual Homo-sexual Asexual Other Wald(=) p-values Wald(0) p-values

M F M F M F M F M F M F M F

Q1 .17 .03 .14 .10 −.06 .15 .07 .11 −.16 .18 .0007 .3100 .0000 .0020
Q2 −.44 .38 −.23 .54 .00 .56 −.13 .53 .00 .50 .0000 .1100 .0000 .0000
Q3 .66 −.19 .76 .00 .52 −.09 .48 −.05 .37 −.02 .0000 .0850 .0000 .0094
Q4 −.42 .60 −.04 .94 −.09 1.09 −.08 1.06 −.04 1.06 .0000 .0000 .0000 .0000
Q5 .47 −.01 .61 .22 .48 .17 .64 .15 .58 .03 .1000 .0130 .0000 .0001
Q6 −.14 .52 .02 .65 .05 .83 .12 .61 .03 .73 .0160 .0011 .0320 .0000
Q7 .21 .06 .07 .06 .11 .08 .12 −.03 .20 .15 .4100 .3200 .0000 .0620
Q8 −.27 .36 −.18 .50 −.16 .49 −.16 .47 −.14 .56 .4900 .1500 .0000 .0000
Q9 .43 −.21 .32 −.26 .61 −.24 .50 −.27 .44 −.34 .0150 .5400 .0000 .0000
Q10 −.34 .56 −.37 .77 −.13 .72 −.16 .81 −.18 .72 .0057 .0110 .0000 .0000
Q11 .32 −.01 .11 .05 −.08 .03 .19 .00 .15 .10 .0000 .6200 .0000 .5500
Q12 −.16 .19 −.22 .29 −.26 .35 −.29 .17 −.13 .37 .4300 .0810 .0000 .0000
Q13 .55 −.27 .61 −.20 .67 −.28 .72 −.25 .74 −.26 .0950 .9100 .0000 .0000
Q14 −.51 .11 −.31 .13 −.40 .17 −.42 .20 −.15 .17 .0019 .8800 .0000 .0000
Q15 .63 −.09 .79 .14 .80 .04 .78 .06 .72 .13 .0970 .0092 .0000 .0042
Q16 −.06 .69 .10 .83 .10 .87 .13 .90 .00 .87 .0420 .0360 .0270 .0000
Q17 .64 −.17 .70 −.02 .79 −.10 .74 −.06 .72 −.13 .3900 .4200 .0000 .0020
Q18 −.27 .59 −.12 .70 −.04 .81 −.03 .82 .04 .75 .0025 .0340 .0000 .0000
Q19 .27 .05 .32 .18 .17 .08 .23 .08 .25 .24 .5700 .1200 .0000 .0001
Q20 −.35 .44 −.33 .50 −.37 .45 −.39 .32 −.39 .44 .9600 .4400 .0000 .0000
Q21 .74 −.21 .58 −.20 .49 −.27 .49 −.18 .52 −.05 .0003 .0290 .0000 .0000
Q22 −.31 .28 −.24 .29 −.52 .38 −.42 .36 −.33 .51 .0065 .0210 .0000 .0000
Q23 .49 −.24 .47 −.05 .61 −.09 .42 −.07 .54 −.06 .1600 .0410 .0000 .0000
Q24 −.08 .34 .06 .29 .03 .30 .01 .23 −.08 .38 .2400 .3800 .3000 .0000
Q25 .40 −.22 .33 −.26 .14 −.16 .32 −.11 .36 −.05 .0270 .0970 .0000 .0000
Q26 −.29 .40 −.25 .51 −.12 .45 −.24 .33 −.02 .34 .0041 .1100 .0000 .0000
Q27 .45 −.02 .63 .06 .63 −.03 .72 .12 .64 .04 .0051 .3000 .0000 .2900
Q28 .20 1.45 .09 .87 −.17 .76 .02 1.05 −.18 .86 .0000 .0000 .0000 .0000
Q29 .41 −.05 .47 −.06 .38 .13 .54 .03 .57 .21 .1900 .0033 .0000 .0021
Q30 −.22 .51 −.11 .98 −.05 .83 −.11 .80 −.09 .83 .2700 .0000 .0001 .0000
Q31 .50 −.06 .58 −.05 .51 −.03 .57 −.06 .34 −.07 .1300 .9900 .0000 .4700
Q32 −.34 .35 −.27 .27 −.49 .41 −.30 .27 −.49 .54 .0330 .0065 .0000 .0000
Q33 .57 −.02 .62 −.11 .39 −.09 .34 −.07 .44 −.12 .0280 .8000 .0000 .2600
Q34 −.34 .38 −.27 .27 −.32 .29 −.44 .20 −.49 .33 .0750 .2000 .0000 .0000
Q35 .51 −.14 .58 −.13 .63 −.13 .47 −.11 .68 .00 .1500 .3500 .0000 .0055
Q36 −.38 .52 −.18 .82 −.10 .83 −.21 .80 −.08 .89 .0004 .0000 .0000 .0000
Q37 .23 −.11 .46 −.05 .50 .03 .57 −.02 .64 −.19 .0000 .0910 .0000 .0058
Q38 −.44 .31 −.48 .53 −.24 .52 −.25 .47 −.26 .43 .0086 .0360 .0000 .0000
Q39 .51 −.19 .68 .00 .69 .10 .72 −.10 .69 −.07 .0110 .0008 .0000 .0001
Q40 −.36 .70 −.04 1.13 −.03 1.04 −.30 1.03 −.01 .99 .0000 .0000 .0000 .0000
Q41 .55 −.15 .80 −.06 .79 −.06 .73 −.13 .80 .03 .0012 .1100 .0000 .0074
Q42 −.28 .34 −.22 .48 −.09 .54 −.06 .41 −.08 .60 .0200 .0087 .0000 .0000
Q43 .47 −.06 .49 .05 .61 .20 .66 −.03 .59 .05 .1100 .0270 .0000 .0330
Q44 .19 1.51 .08 .92 −.20 .79 .00 1.10 −.16 .86 .0000 .0000 .0000 .0000
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Muthén, 2014) of groups per factor loading, building on
the pairwise Wald tests mentioned in the Application
section. Secondly, the unrotated solution that is fed to
the rotation procedure corresponds to a single set of
random ‘starting values’ for the rotation and the latter
may fail to converge or end up in a local optimum
depending on these values. Future research will include
an evaluation of the sensitivity to local optima and the
possibility of a multistart MGFR procedure or
a multigroup extension of the gradient projection algo-
rithm, compatible with free factor variances. For now, the
user is advised to repeat the analysis a few times to see
whether this affects results. Thirdly, the rotation depends
on the weight of the agreement versus the simple struc-
ture criterion. The best weight to use depends on the
loading differences. It would be interesting to evaluate
whether it can be automatically optimized for the load-
ings of a given data set. For now, the user is advised to
compare a few rotations (Figure 1).

Finally, an interesting question is to what extent MGFR
can serve as a precursor to multigroup EFA or CFA with
partial loading invariance according to the identified load-
ing differences and MM(s). Needless to say, this requires
a crossvalidation approach (Gerbing & Hamilton, 1996),
e.g., where each group is split in random halves, and thus
larger sample sizes. When group sizes are too small or the
number of groups is large, MGFR can team up with
a mixture approach such as proposed by De Roover,
Vermunt, Timmerman, and Ceulemans (2017), where
groups are clustered according to the similarity of their
loadings and the rotation would be applied per cluster.
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APPENDIX A

An example syntax for a twenty-item four-factor multigroup EFA with
optimal rotation is:

options

algorithm

tolerance = 1e-008 emtolerance = 0.01 emitera-

tions = 2500 nriterations = 500;

startvalues

seed = 0 sets = 5 tolerance = 1e-005 iterations = 100

PCA;

missing includeall;

rotation oblimin procrustes = .50;

output

iterationdetail classification parameters = effect

standarderrors rotation writeparameters = ’result-
s_parameters.csv’ write = ’results.csv’ writeload-

ings = ’results_loadings.txt’;
variables

dependentV1continuous,V2continuous,V3continuous,

V4 continuous, V5 continuous, V6 continuous, V7 contin-

uous, V8 continuous, V9 continuous, V10 continuous, V11

continuous, V12 continuous, V13 continuous, V14 contin-

uous, V15 continuous, V16 continuous, V17 continuous,

V18 continuous, V19 continuous, V20 continuous;

independent G nominal;

latent

F1 continuous,

F2 continuous,

F3 continuous,

F4 continuous;

equations

//factor variances and covariances

F1 | G;

F2 | G;

F3 | G;

F4 | G;

F1 <-> F2 | G;

F1 <-> F3 | G;

F1 <-> F4 | G;

F2 <-> F3 | G;

F2 <-> F4 | G;

F3 <-> F4 | G;

//regression models for items

V1 - V20 <- 1 | G + F1 | G + F2 | G + F3 | G + F4 | G;

//unique variances

V1 - V20 | G;

The categorical variable ‘G’ indicates the group memberships of the
observations and ‘V1ʹ to ‘V20ʹ refer to the twenty items – they are to be
replaced by the variable labels in the data set at hand. Details about the
technical settings can be found in the Latent Gold manual (Vermunt &
Magidson, 2013). ‘PCA’ refers to randomized PCA-based starting values
that are described in De Roover, Vermunt, Timmerman, and Ceulemans
(2017). Note that both the factor variances and covariances are free to vary
across groups and that the optimal rotation is requested by ‘rotation
oblimin procrustes = .50ʹ. In general, the latter has the following structure:

rotation <simple structure criterion> <agreement criterion><w>

The simple structure criterion can be ‘oblimin’, ‘geomin’ or ‘varimax’ –
where the latter is orthogonal and should be used with factor covar-
iances equal to zero (i.e., deleting the ‘Fx <-> Fx | G’ lines in the
syntax). The agreement criterion can be either ‘procrustes’ for

generalized procrustes or ‘alignment’ for loading alignment. When
one wants to use alignment with a user-specified value for ε (the
default is 1 × 10−12), the command becomes, e.g., ‘rotation oblimin
alignment = .01 epsilon = 1e−6ʹ.

As an alternative simple structure criterion, target rotation can be
applied by using ‘target = ’filename.txt’’, where the file should contain
group-specific targets (i.e., one for each group) or one target to be used for
all groups. Note that ‘−99ʹ or ‘.’ is used to indicate non-specified parts of
the targets. For instance, two semi-specified group-specific targets for
eight items and two factors would be communicated as follows:

‘0 −99
0 −99
0 −99
0 −99
−99 0
−99 0
−99 0
−99 −99

−99 −99
0 −99
0 −99
0 −99
0 −99
−99 0
−99 0
−99 0ʹ

To start from user-specified parameter values and only perform the rota-
tion (e.g., to try different rotation criteria without repeating the model estima-
tion), the ‘algorithm’ and ‘startvalues’ options can be modified as follows:

algorithm

tolerance = 1e-008 emtolerance = 0.01 emitera-

tions = 0 nriterations = 0;

startvalues

seed = 0 sets = 1 tolerance = 1e-005 iterations = 0;

The user-specified parameter values are communicated through a text file
containing the parameter values in the internal order of the parameters
(Vermunt & Magidson, 2013), which is specified at the end of the syntax as
‘startingvalues.txt’.

APPENDIX B

When the unrotated factors of group g are orthonormal, the true (i.e.,
population-level) optimally rotated factor loadings Λg and factor covar-
iance matrix Ψg can be expressed as functions of the unrotated orthonor-
mal true loadings Ag as follows:

Λg ¼ AgTg

Ψg ¼ T0
gTg

� ��1 (12)

where Tg indicates the group-specific Q × Q rotation matrix. As opposed
to Jennrich (1973), no restrictions are imposed on the diagonal of (any of)
the group-specific factor covariance matrices Ψg. Instead, the following
restriction is imposed across all groups, where the ‘diag’ operator extracts
the diagonal elements of Ψg:

1

G

XG
g¼1

diag Ψg

� � ¼ 1½ �Q or
XG
g¼1

diag Ψg

� � ¼ G 1½ �Q

(13)
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The differentials of the relations in Equations 12 and 13 are as follows:

dΛg ¼ dAgTg þ AgdTg (14)

dΨg ¼ �ΨgðT0
gdTg þ dT0

gTgÞΨg (15)

XG
g¼1

diag dΨg

� � ¼ 0½ �Q (16)

Let Kg be defined as:

Kg ¼ T�1
g dTgΨg so dTg ¼ TgKgΨ

�1
g (17)

Equations 14 through 16 then become:

dΛg ¼ dAgTg þ ΛgKgΨ
�1
g (18)

dΨg ¼ �ðKg þK0
gÞ (19)

XG
g¼1

diag dΨg

� � ¼ �
XG
g¼1

diagðKg þK0
gÞ

¼ �
XG
g¼1

diagð2KgÞ ¼ 0½ �Q (20)

It follows that
PG

g¼1 diagðKgÞ ¼ 0½ �Q. Due to these restrictions, the
diagonal elements of Kg may be decomposed as follows:

diag Kg

� � ¼ diag ~Kg

� �� 1

G

XG
g0¼1

diag ~Kg0
� �

¼ diag ~Kg

� �� diag �Kð Þ (21)

When Λg are the optimally rotated loadings for groups g = 1, …, G, the
differential in Equation 5 is equal to zero, thus6:

XG
g¼1

dRMG Λg

� � ¼XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
dλgjq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
dΛg

� �
jq ¼ 0 (22)

where dΛg
� �

jq refers to the element in row j and column q of the
differential in Equation 18. Since the optimal rotation restrictions affect
the rotated loadings through the rotation matrix Tg only, the differential
becomes:

XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
ΛgKgΨ

�1
g

� �
jq
¼ 0 (23)

Since restrictions are imposed (across groups) on the diagonal ele-
ments of Kg, but not on the offdiagonal elements, we will elaborate
Equation 23 for its diagonal and offdiagonal elements separately. To
this end, we introduce the matrix K�

g u; uð Þ which consists of zeros

except for the element in row u and column u, which is equal to the
corresponding element of Kg, i.e., kguu. Similarly, �kuu refers to the

element in row u and column u of the matrix �K introduced in
Equation 21. Then Equation 23 is equivalent to requiring:

XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
ΛgK

�
g u; uð ÞΨ�1

g

� �
jq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgjukguuψ�1

guq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju ~kguu � �kuu
� �

ψ�1
guq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ�1

guq �
@RMG

@λgjq
λgju�kuuψ�1

guq


 �

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ

�1
guq

�
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju�kuuψ�1

guq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ

�1
guq

�
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju

1

G

XG
g0¼1

~kg0uu

 !
ψ�1
guq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ�1

guq

� 1

G

XG
g¼1

XJ
j¼1

XQ
q¼1

XG
g0¼1

@RMG

@λgjq
λgju~kg0uuψ�1

guq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ�1

guq

� 1

G

XG
g¼1

XG
g0¼1

XJ
j¼1

XQ
q¼1

@RMG

@λg0jq
λg0ju~kguuψ

�1
g0uq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgju~kguuψ�1

guq

 

� 1

G

XG
g0¼1

XJ
j¼1

XQ
q¼1

@RMG

@λg0jq
λg0ju~kguuψ

�1
g0uq

!
¼ 0

(24)

Without loss of generality, assume that ~kguu ¼ 1, so that Equation 24 is
equivalent to:6 The total differential is the sum of the partial derivatives multiplied

by the corresponding differential/infinitisemal change.
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XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgjuψ

�1
guq �

1
G

XG
g0¼1

XJ
j¼1

XQ
q¼1

@RMG

@λg0 jq
λg0juψ

�1
g0uq

 !

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

λgju
@RMG

@λgjq
ψ�1
gqu �

1

G

XG
g0¼1

XJ
j¼1

XQ
q¼1

λg0ju
@RMG

@λg0jq
ψ�1
g0qu

 !
¼ 0

(25)

Similarly, by using the matrix K�
g u; vð Þ where u�v and assuming that

kguv ¼ 1, we derive the following for the offdiagonal elements:

XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
ΛgK

�
g u; vð ÞΨ�1

g

� �
jq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgjukguvψ

�1
gvq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

@RMG

@λgjq
λgjuψ�1

gvq

¼
XG
g¼1

XJ
j¼1

XQ
q¼1

λgju
@RMG

@λgjq
ψ�1
gqv ¼ 0

(26)

Therefore, the optimal rotation restrictions for each group can be
expressed in matrix form as follows:

FMG ¼ Λ0
g
dRMG

dΛg
Ψ�1

g � diag
1

G

XG
g0¼1

Λ0
g0
dRMG

dΛg0
Ψ�1

g0

 !
¼ 0½ �Q�Q

(27)

where – in this case – the ‘diag’ operator indicates that the offdiagonal elements
are set to zero. Note that, when one prefers to use a reference group with factor
variances fixed to one instead of restricting the across-group mean of the factor
variances, one can use the restrictions Λ0

g
dRMG

dΛg
Ψ�1

g ¼ 0½ �Q�Q for the non-

reference groups and the restrictions in Equation 2 (Jennrich, 1973) for the
reference group. In that case, the agreement part of the criterionRMG is essential
to prevent the factor variances of the non-reference groups to become very large
in order to minimize the oblimin criterion.

APPENDIX C

List of items for the Open Sex Role Inventory and what they intend to
measure between brackets; ‘M’ refers to masculinity and ‘F’ to femininity:

Q1. I have studied how to win at gambling (M).
Q2. I have thought about dying my hair (F).
Q3. I have thrown knives, axes or other sharp things (M).
Q4. I give people handmade gifts (F).
Q5. I have day dreamed about saving someone from a burning build-
ing (M).
Q6. I get embarrassed when people read things I have written (F).
Q7. I have been very interested in historical wars (M).
Q8. I know the birthdays of my friends (F).
Q9. I like guns (M).
Q10. I am happiest when I am in my bed (F).
Q11. I did not work very hard in school (M).
Q12. I use lotion on my hands (F).
Q13. I would prefer a class in mathematics to a class in pottery (M).
Q14. I dance when I am alone (F).
Q15. I have thought it would be exciting to be an outlaw (M).
Q16.When I was a child, I put on fake concerts and plays withmy friends (F).
Q17. I have considered joining the military (M).
Q18. I get dizzy when I stand up sharply (F).
Q19. I do not think it is normal to get emotionally upset upon hearing

about the deaths of people you did not know (M).
Q20. I sometimes feel like crying when I get angry (F).
Q21. I do not remember birthdays (M).
Q22. I save the letters I get (F).
Q23. I playfully insult my friends (M).
Q24. I oppose medical experimentation with animals (F).
Q25. I could do an impressive amount of push ups (M).
Q26. I jump up and down in excitement sometimes (F).
Q27. I think a natural disaster would be kind of exciting (M).
Q28. I wear a blanket around the house (F).
Q29. I have burned things up with a magnifying glass (M).
Q30. I think horoscopes are fun (F).
Q31. I don’t pack much luggage when I travel (M).
Q32. I have thought about becoming a vegetarian (F).
Q33. I hate shopping (M).
Q34. I have kept a personal journal (F).
Q35. I have taken apart machines just to see how they work (M).
Q36. I take lots of pictures of my activities (F).
Q37. I have played a lot of video games (M).
Q38. I leave nice notes for people now and then (F).
Q39. I have set fuels, aerosols or other chemicals on fire, just for fun (M).
Q40. I really like dancing (F).
Q41. I take stairs two at a time (M).
Q42. I bake sweets just for myself sometimes (F).
Q43. I think a natural disaster would be kind of exciting (M).
Q44. I decorate my things (e.g. stickers on laptop) (F).
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