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Quality measures for multisource statistics

Ton de Waala,b,∗, Arnout van Deldenb and Sander Scholtusb
aTilburg University, Tilburg, The Netherlands
bDepartment of Process Development and Methodology, Statistics Netherlands, 2490 HA The Hague, The
Netherlands

Abstract. The ESSnet on Quality of Multisource Statistics is part of the ESS.VIP Admin Project. The main objectives of that
latter project are (i) to improve the use of administrative data sources and (ii) to support the quality assurance of the output
produced using administrative sources. The ultimate aim of the ESSnet is to produce quality guidelines for National Statistics
Institutes (NSIs) that are specific enough to be used in statistical production at those NSIs. The guidelines aim to cover the
diversity of situations in which NSIs work as well as restrictions on data availability. The guidelines will list a variety of potential
measures, indicate for each of them their applicability and in what situation it is preferred or not, and provide an ample set of
examples of specific cases and decision-making processes. Work Package 3 (WP 3) of the ESSnet focuses on developing and
testing quantitative measures for measuring the quality of output based on multiple data sources and on methods to compute
such measures. In particular, WP 3 focuses on non-sampling errors. Well-known examples of such quality measures are bias
and variance of the estimated output. Methods for computing these and other quality measures often depend on the specific data
sources. Therefore, we have identified several basic data configurations for the use of administrative data sources in combination
with other sources, for which we propose, revise and test quantitative measures for the accuracy and coherence of the output. In
this article we discuss the identified basic data configurations, the approach taken in WP 3, and give some examples of quality
measures and methods to compute those measures. We also point out some topics for future work.

Keywords: Administrative data, multi-source statistics, quality measures, survey data

1. Introduction: A short fairy tale

Once upon a time, long ago, in a country far, far
away, there lived some good and honest people. These
good people were struggling to produce single-source
statistics, and did that to the best of their abilities.
Still, they were always hoping for more data. They
said to each other: “See, if only we had more data,
we could have produced more and better statistics.”
Their biggest wish in life was to produce multisource
statistics. One day a good fairy or wicked witch – the
story is not too specific about this – showed up and
told them that she saw how hard the good people had
to work in order to produce their single-source statis-
tics, and that she had decided to fulfill their biggest
wish and give them all the data they ever wanted and

∗Corresponding author: Corresponding author: Ton de Waal,
Statistics Netherlands, The Hague, The Netherlands. Tel.: +31
703374930; E-mail: t.dewaal@cbs.nl.

more than that. The good people were very excited and
said: “Thank you, dear fairy.” The people immediately
started to work on their multisource statistics and were
very happy at first. Soon they realized, however, that
now they had more problems and had to work harder
than ever before. Suddenly they could see measure-
ment errors in their data, and linkage errors, and cov-
erage errors, and new estimation problems, and so on
and so on. They were even starting to think that per-
haps it was a wicked witch after all who had given
them all these data. Nevertheless, they worked hard,
even harder and still even harder, and finally managed
to produce multisource statistics. Proudly, they went to
their king to show him their results. The king, a good
and wise man, was impressed by the work they had
done. However, after he had expressed his admiration
he then asked the question: “And what can you tell me
about the quality of your statistics?” That is where this
fairy tale ends for now, and the ESSnet on Quality of
Multisource Statistics starts.

1874-7655/19/$35.00 c© 2019 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License
(CC BY-NC 4.0).
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The ESSnet on Quality of Multisource Statistics
(also referred to as Komuso) is part of the ESS.VIP Ad-
min Project. The main objectives of the ESS.VIP Ad-
min Project are (i) to improve the use of administrative
data sources and (ii) to support the quality assurance of
the output produced using administrative sources.

Partners in Komuso are Statistics Denmark (overall
project leader of the ESSnet), Statistics Norway, IS-
TAT (the Italian national statistical institute), Statis-
tics Lithuania, Statistics Austria, the Hungarian Cen-
tral Statistical Office, the Central Statistical Office of
Ireland, and Statistics Netherlands.

The first Specific Grant Agreement (SGA) of the
ESSNet lasted from January 2016 until April 2017. At
the time of writing this article we are finalizing SGA
2. This second SGA started in May 2017 and lasts un-
til mid-October 2018. A potential SGA 3 might start at
the end of 2018. In the first and second SGAs of Ko-
muso, Work Package 3 (WP 3) focused on measuring
the quality of statistical output based on multiple data
sources. Measuring the quality of statistical output dif-
fers fundamentally from measuring the quality of in-
put data since one ideally wants to take into account
all processing and estimation steps that were taken to
achieve the output. Statistics Netherlands was project
leader of this work package in both SGA 1 and SGA 2.

The problem encountered in WP 3 is not so much
in defining the quality measures that one would like to
use. For instance, with respect to the quality dimension
“accuracy” most National Statistical Institutes (NSIs)
would like to use bias, variances and/or mean squared
errors of their estimates as quality measures. The main
problem is rather how these quality measures should be
computed for a given set of input data sets and a certain
procedure for combining these input data sets. In other
words, the main problem is describing a recipe for cal-
culating quality measures for a given multisource situ-
ation.

This problem is much more complicated for mul-
tisource statistics than for single source statistics. We
give two reasons for this. The first reason is that the
procedure for combining the various input data sets has
to be accounted for in the quality measure(s). Such pro-
cedures may involve many different processing steps
and can be very complicated.

The second reason is that, due to the abundance of
data, errors become much more visible. For example,
when one has two data sets with (supposedly) the same
variable, the values of this variable in the different data
sets may differ due to measurement errors. A correc-
tion procedure for measurement error is then highly de-

sired and should be accounted for in the quality mea-
sures for output based on these data sets. Another ex-
ample is when one has two data sets that are supposed
to cover the same target population. In such a case one
will often notice that they actually do not. That is, cov-
erage problems can become visible simply by compar-
ing units in different data sets. Also, linkage problems
often occur when trying to link units in different data
sets. Again, correcting for coverage and linkage errors
is highly desired and should be accounted for in the
quality measures for output based on the involved data
sets. In contrast, in single-source statistics, one often
focusses on sampling errors only, since due to the lack
of data other kinds of errors are hard or even impossi-
ble to detect and correct.

In this article we discuss WP 3 of Komuso and some
of the results obtained. Section 2 describes the ap-
proach taken in WP 3. Section 3 gives some examples
of quality measures and methods to compute them. All
examples are based on work (partly) done by Statis-
tics Netherlands. Section 4 concludes the article with a
brief discussion.

2. Approach taken in WP 3

In WP 3 we have subdivided the work into three con-
secutive steps:

1. We carry out a literature review or suitability test.
In a literature review we study and describe ex-
isting quality measures and recipes to compute
them. In a suitability test we go a step further and
also test quality measures and recipes to compute
them, either already known ones or newly pro-
posed ones. In such a suitability test we examine
practical and theoretical aspects of a quality mea-
sure and the accompanying calculation recipe.

2. We produce so-called Quality Measures and
Computation Methods (QMCMs). Such a QMCM
is a short description of a quality measure and
the accompanying calculation recipe as well as a
description of the situation(s) in which the qual-
ity measure and accompanying recipe can be ap-
plied.

3. We provide hands-on examples to some of the
QMCMs.

In SGA 1 of Komuso, the focus in WP 3 was on
carrying out literature reviews and suitability tests for
the quality dimension “accuracy” (principle 12 in the
European Statistics Code of Practice, see [1]). In SGA
2 the focus is on producing QMCMs and a selected
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number of hands-on examples for the literature reviews
and suitability tests from SGA 1, and on carrying out
suitability tests for the quality dimension “coherence”
(principle 14 in the European Statistics Code of Prac-
tice, see [1]). In a potential SGA 3 we hope to produce
more examples and produce some QMCMs for “coher-
ence” and other quality dimensions, such as “reliabil-
ity”.

WP 3 is strongly related to WP 1 of Komuso in
SGA 2 (and probably also in a potential SGA 3). In
WP 1 quality guidelines for multisource statistics are
produced. The QMCMs and hand-on examples thereof
produced by WP 3 will form an Annex to these quality
guidelines for multisource statistics.

Many different situations can arise when multiple
data sets are used to produce statistical output, depend-
ing on the nature of the data sets and on the kind of
output produced. In order to structure the work within
WP 3 we use a breakdown into a number of Basic Data
Configurations (BDCs) that are most commonly en-
countered in practice at NSIs. The aim of the BDCs is
to provide a useful focus and direction for the work to
be carried out. In Komuso we have identified 6 BDCs:

– BDC 1: Multiple non-overlapping cross-sectional
microdata sets that together provide a complete
data set without any under-coverage problems;

– BDC 2: Same as BDC 1, but with overlapping
variables and units between different data sets;

– BDC 3: Same as BDC 2, but now with under-
coverage of the target population;

– BDC 4: Microdata and aggregated data that need
to be reconciled with each other;

– BDC 5: Only aggregated data that need to be rec-
onciled;

– BDC 6: Longitudinal data sets that need to be rec-
onciled over time.

BDC 1 can be subdivided into two cases: the split-
variable case where the data sets contain different vari-
ables for the same units and the split-population case
where the data sets contain the same variables for dif-
ferent units. For more information on BDCs and meth-
ods to produce multi-source statistics we refer to [2].

3. Examples of QMCMs

In total 23 QMCMs are planned to be produced for
WP 3 in SGA 2. The vast majority of the QMCMs re-
late to BDC 2 (“overlapping variables and units be-
tween different data sets”), which appears to be the
most common and most important situation with re-

spect to multisource statistics at NSIs. For some other
BDCs, such as BDCs 3 and 6 we will produce only a
few QMCMs; for instance in the case of BDC 3 we will
produce only one QMCM. Reasons for producing few
QMCMs for BDC 3 and BDC 6 are either that the sit-
uation for multisource statistics is similar to the situa-
tion for single-source statistics (BDC 3) or, conversely,
that NSIs have only very limited experience with the
estimation of output quality in a multisource context
(BDC6).

Since a complete description of the work done in
WP 3 is impossible given the limited length of this ar-
ticle, we limit ourselves to giving some examples of
QMCMs.

3.1. Mean squared error of level estimates affected by
classification errors – BDC 1 “multiple
non-overlapping cross-sectional microdata sets”

In this example we assume that we have several non-
overlapping data sets together covering the entire tar-
get population and that the only source of errors are
classification errors. In this section we will assume that
the data are on businesses, which are classified by in-
dustry code (main economic activity). The unobserved
true industry code of unit i is denoted by si; the ob-
served industry code that is prone to errors is denoted
by ŝi. The set of possible industry codes is denoted by
H.

Let θ = f(y1, . . . , yN , s1, . . . , sN ) denote a target
parameter and yi stand for the value of a target variable
for unit i. Based on the observed data, this parameter
is estimated by θ̂ = f(y1, . . . , yN , ŝ1, . . . , ŝN ). We are
interested to estimate the mean squared error of θ̂ as
affected by classification errors. We assume that the
values of the target variable, y1, . . . , yN , are error-free.

[3] assumes that a business i with a true industry
code g is classified as falling into class h with prob-
ability pghi due to classification error. They propose
the following method for computing the mean squared
error of θ̂. The first step is to estimate the probabil-
ities pghi. This requires an independent collection of
data on the classification variable, where observed and
cleaned versions of those data are needed. Options to
obtain such data are:

– draw a specific audit sample that is cleaned from
errors;

– use information from the editing step in the regu-
lar process of producing statistics where units are
verified on classification errors;
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– the classification variable may also be present in a
central business register or in a central population
register. A regular quality assessment procedure
of the register may then be used.

Together the estimated probabilities p̂ghi form a
transition matrix P̂i= (p̂ghi). The transition matrix, per
unit, can be modelled as a function of background vari-
ables. See [3] for an example.

The second step is to estimate bias and variance of
θ̂ by drawing bootstrap samples from P̂i. For each unit
we draw a new value for the industry code, given the
original observed industry code ŝi, according to P̂i.
Based on the results for this draw, denoted by ŝir, we
compute θ̂r = f(y1, . . . , yN , ŝ1r, . . . , ŝNr). We repeat
this procedure R times, thus r = 1, . . . , R, and use the
set of outcomes θ̂r to compute estimates of the bias and
variance of θ̂:

B̂R

(
θ̂
)

= mR

(
θ̂
)
− θ̂,

V̂arR
(
θ̂
)

=
1

R−1

R∑
r=1

{
θ̂r−mR

(
θ̂
)}2

.

with mR(θ̂) = 1
R

∑R
r=1 θ̂r.

When the target parameter θ concerns a vector of
stratum totals (level estimates), one can also estimate
the bias and variance-covariance matrix through ana-
lytical formulae, with R→∞: (cf. [3]):

B̂∗∞ (ŷ) =

N∑
i=1

(
P̂
t

i − I
)
âiyi,

V̂ar
∗
∞ (ŷ) =

N∑
i=1

{
diag

(
P̂
t

iâiy
2
i

)
(1)

−P̂
t

idiag
(
âiy

2
i

)
P̂i
}

where superscript t indicates taking the transpose, ‘*’
superscript indicates the analytical expression, I is an
identity matrix, ŷ =

∑N
i=1 âiyi stands for a vector of

estimated stratum totals and âi =
(
â1i, . . . , â|H|i

)t
is

a vector of dummy variables that describes in which
stratum unit i is observed (âhi = 1 if ŝi = h and âhi =
0 otherwise). In particular, it follows that the bias of
the estimated total in stratum h, Ŷh=

∑N
i=1 âhiyi, can

be estimated by

B̂∗∞

(
Ŷh

)
=

N∑
i=1(p̂hhi − 1) âhiyi +

∑
g∈H,
g 6=h

p̂ghiâgiyi



and its variance can be estimated by

V̂ar
∗
∞

(
Ŷh

)
=

N∑
i=1

∑
g∈H

p̂ghi(1− p̂ghi)âgiy2i

[4] developed a method to estimate quarterly
turnover by Dutch consumers on European webshops.
To that end, they use the tax file returns in the Nether-
lands, which includes selling of goods and services by
European webshops to Dutch customers. From the tax
data, quarterly turnover figures can be derived for com-
panies that exceed a certain turnover threshold. The
smaller companies are not considered. The challenge
of the methodology is to identify which of the records
in those tax data concern European webshops. These
records are identified using a binary classifier, based
on machine-learning, which separates the companies
into those that belong to European webshops and those
that do not. The predictions by the algorithms are not
error-free, they make classification errors. In this ex-
ample we explain how the uncertainty of the estimated
quarterly turnover due to those classification errors is
estimated.

[4] constructed a training data set of 180 companies
and a test set of 79 companies by manually classifying
them. Within the training data set, 76 webshops were
identified and within the test set of 79 companies 13
webshops were identified.

Using the training set, the parameters of the machine-
learning algorithms were estimated. These trained al-
gorithms were used to predict the scores ŝi for the units
in the test set and compare them with the true scores si.
For the final algorithm, the result is shown in the tran-
sition matrix below, with si given as the rows and ŝi as
the columns. The top row concerns having a webshop,
the bottom row having no webshop.

P̂ =

(
8/13 5/13
4/66 62/66

)
[4] assumed that this transition matrix is the same

for all units i in the population.
Next, the machine-learning model was used to pre-

dict ŝi for the units not in the training set. Denote ai for
the 2-vector [Ind (si = 1) , Ind (si = 0)]

t, where Ind
stands for an indicator variable. The authors of [4] were
interested in the aggregate turnover y =

∑
i∈C aiyi

where C stands for the population of companies. The
turnover in the first class, i.e. with Ind (si = 1), is the
target parameter. For the units in the training set, de-
noted by CM , the values of the vector ai are deter-
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Table 1
Final results in millions of euros

Year yM1 ŷA1 ŷ1 B̂∗∞(ŷA1) Ŝd(ŷ1)

2014 405 495 837 63 97
2015 565 586 1,132 21 101
2016 725 667 1,372 19 110

mined manually and considered to be error-free. For
the remaining units ai is predicted by the machine-
learning algorithm. The total aggregated turnover is es-
timated by

ŷ = yM + ŷA − B̂∗∞ (ŷA) = yM + (2I−P̂
t
)ŷA

=
∑
i∈CM

aiyi + (2I− P̂
t
)
∑

i∈C\CM

âiyi.

where yM stands for turnover of units in the training
set which are checked manually, yA stands for the true
turnover of units not in the training set but which are
classified by the algorithm, ŷA stands for the estimate
of yA, and B̂∗∞ (ŷA) is the estimated bias of ŷA [cf.
expression (1)]. The variance of the final turnover esti-
mate ŷ is estimated in [4] by (2I− P̂

t
)V̂ar

∗
∞(ŷA)(2I−

P̂
t
)t, with V̂ar

∗
∞(ŷA) given by Eq. (1). This variance

estimate ignores the additional uncertainty due to es-
timating P. Note that yM does not contribute to the
variance.

The final results on companies estimated to be Eu-
ropean retailers with a webshop can be found in Ta-
ble 1 (taken from [4]). The manually checked turnover
of European webshops, yM1, consists of about half the
value of the total estimated turnover, ŷ1. The estimated
bias of ŷA1 varied considerably over the years with the
largest values in 2014. The estimated standard devia-
tion of ŷ1 suggests that the margin around the final es-
timate is still rather large. If we assume a normal distri-
bution, the 95% confidence interval around ŷ1 in 2014
would be 837 ± 190. This corresponds to a relative
margin of 22%.

[5,6] propose an extension of the approach in this
section in order to quantify the effect of classifica-
tion errors on the accuracy of growth rates in business
statistics, rather than the effect on the accuracy of level
estimates.

3.2. Variance of estimates based on reconciled
microdata containing measurement errors –
BDC 2 “overlapping variables and units”

The situation in this example is that a categorical
target value is measured for each individual unit (with
measurement error) in several data sources. We assume

that a Latent Class (LC) model is used to estimate the
true values of this target variable. The quality of esti-
mates based on the reconciled microdata is then mea-
sured by the estimated variance of these estimates.

Let Y = (Y1, Y2, . . . , Ys)
t denote a vector of ob-

served categorical variables that measure the same
conceptual variable of interest (for instance, in s dif-
ferent data sources). The true value with respect to
the variable of interest is represented by a latent class
variable X . We assume for convenience that all vari-
ables Yj and X have the same set of categories,
say {1, . . . , L}. The marginal probability Pr(Y =
y) of observing a particular vector of values y =
(y1, y2, . . . , ys)

t can be expressed as the sum of the
joint probabilities

Pr (X = x,Y = y) = Pr (X = x)

Pr (Y = y|X = x)

over all possible latent classes:

Pr (Y = y) =

L∑
x=1

Pr (X = x)

(2)
Pr (Y = y|X = x)

A common assumption in LC analysis is that the
classification errors in different observed variables are
conditionally independent, given the true value (local
independence), i.e.

Pr (Y = y|X = x) = Pr (Y1 = y1|X = x)

Pr (Y2 = y2|X = x) . . .

Pr (Ys = ys|X = x) .

In combination with Eq. (2), this leads to the basic
LC model

Pr (Y = y) =

L∑
x=1

Pr (X = x)

s∏
j=1

Pr (Yj = yj |X = x)

Estimating the LC model amounts to estimating the
probabilities in this expression. Probabilities of the
form Pr(Yj = yj |X = x) provide information about
classification errors in the observed data. For example,
units that in reality belong to the first category of the
target variable (X = 1) are misclassified on observed
variable Yj with probability Pr(Yj 6= 1|X = 1) = 1−
Pr(Yj = 1|X = 1). This can be seen as a quality mea-
sure for the quality of the j-th observed variable.

The model can also be used to estimate, for each unit
in the data, the probability of belonging to a particular
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latent class, given its vector of observed values. Using
Bayes’ rule, it follows that:

Pr (X = x|Y = y) =

Pr (X = x)
s∏
j=1

Pr (Yj = yj |X = x)

L∑
x′=1

Pr (X = x′)
s∏
j=1

Pr (Yj = yj |X = x′)

(3)

Edit restrictions, for instance the edit restriction that
someone who receives rent benefit cannot be a home
owner, can be imposed by setting certain conditional
probabilities equal to zero; for instance:

Pr (X = owner|Y = rent benefit) = 0

The so-called MILC method (see [7]) takes mea-
surement errors into account by combining Multiple
Imputation (MI) and LC analysis. The method starts
with linking all data sets on the unit level, and then
proceeds with 5 steps.

1. Select m bootstrap samples from the original
combined data set.

2. Create an LC model for every bootstrap sample.
3. Multiply impute latent “true” variableX for each

bootstrap sample. That is, create m empty vari-
ables (W1, . . . ,Wm) and impute them by draw-
ing one of the categories using the estimated pos-
terior membership probabilities Eq. (3) from the
LC model.

4. Obtain estimates of interest from each data set
with imputed variables.

5. Pool the estimates using Rubin’s pooling rules
for multiple imputation (see [8]). An essential as-
pect of these pooling rules is that an estimated
variance of the pooled estimate is obtained. This
estimated variance is a quality measure for the
reconciled data.

[7] applied the MILC method on a combined data
set to measure home ownership. This combined data
set consisted of data from the LISS (Longitudinal In-
ternet Studies for the Social sciences) panel from 2013
and a register from Statistics Netherlands from 2013.
From this combined data set, they used two variables
indicating whether a person is a home-owner or rents
a home as indicators for the imputed “true” latent vari-
able home-owner/renter (or other). The combined data
set also contained a variable measuring whether some-
one receives rent benefit from the government. A per-
son can only receive rent benefit if this person rents a
house. Moreover, a variable indicating whether a per-
son is married or not was included in the latent class
model as a covariate. The three data sets used to com-
bine the data are:

– BAG: A register containing data on addresses and
buildings originating from municipalities from
2013. From the BAG, [7] used a variable indicat-
ing whether a person “owns”/ “rents (or other)”
the house he or she lives in.

– LISS background study: A web survey on gen-
eral background variables from January 2013.
[7] used the variable marital status. They also
used a variable indicating whether someone is a
“(co-)owner” and “(sub-)tenant or other”.

– LISS housing study: A web survey on housing
from June 2013. From this survey [7] used the
variable rent benefit, indicating whether someone
“receives rent benefit”, “does not receive rent ben-
efit”, or “prefers not to say”.

These data sets were linked on a unit level, and
matching was done on person identification numbers.
Not every individual is observed in every data set. This
causes that some missing values are introduced when
the different data sets are linked on a unit level. Full
Information Maximum Likelihood (see, e.g. [9]) was
used to handle the missing values when estimating the
LC model. The MILC method was applied to impute
the latent variable home owner/renter (or other) by us-
ing two indicator variables and two covariates.

As already explained, the MILC method can be used
to assess the quality of the input sources. In Table 2
classification probabilities of the models, estimated by
means of the MILC method, are given. The higher
these probabilities, the higher the quality of the input
data.

To give an example of how to measure the qual-
ity of – even quite complicated – aspects of the com-
bined data set, [7] used a logit model to predict home
ownership by means of marriage. By using Rubin’s
pooling rules on the imputations produced by the
MILC method they obtained the following estimates
for the intercept and regression coefficient: 2.7712 and
−1.3817. This means that the estimated odds of own-
ing a home when not married are e−1.3817 = 0.25
times the odds when married. The 95% confidence in-
terval of the estimated intercept is given by [2.5036;
3.0389], and the 95% confidence interval of the esti-
mated regression coefficient by [−1.6493; −1.1140].
These 95% confidence intervals provide quality mea-
sures for this aspect of the combined data set. The
smaller these confidence intervals, the more accurate
the estimates based on the combined data set.

In a similar way, by using Rubin’s pooling rules on
the imputations produced by the MILC method, vari-
ances and confidence intervals for other estimands can
be estimated.
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Table 2
Classification probabilities for LISS and BAG

Pr (observed = rent|true = rent) Pr (observed = own|true = own)
LISS 0.9344 0.9992
BAG 0.9496 0.9525

3.3. Validity and measurement bias of observed
numerical variables – BDC 2 “overlapping
variables and units”

In this example we again have several indicators
(with measurement error) for target variables that we
use to estimate the true values of these target vari-
ables. In particular, the true distribution of one or
more numerical target variables, which are measured
(with measurement error) for individual units in sev-
eral linked data sets, is estimated, as well as the re-
lation between each target variable and its associated
observed variables. From this, it can be assessed to
what extent each observed variable is a valid indicator
of its target variable, and to what extent measurement
bias occurs. The quality measure and related calcula-
tion method can be seen as equivalents for numerical
data of the quality measure and calculation method for
categorical data based on latent class analysis given in
the previous example.

The validity coefficient of an observed variable is de-
fined as the absolute value of its correlation with the
associated target variable. In the context of the model
used here, this coefficient captures the effect of random
measurement errors in the observed data. The validity
coefficient lies between 0 and 1, with values closer to 1
indicating better measurement quality (absence of ran-
dom measurement error).

Measurement bias indicates to what extent values
of an observed variable are systematically larger or
smaller than the true values of the associated target
variable. Under the assumption that the relation be-
tween the target and observed variable is linear, the
measurement bias is summarized in terms of intercept
bias and slope bias. Intercept bias indicates a constant
shift that occurs for all values; for instance, observed
values are on average e1,000 too large. Slope bias in-
dicates a shift that is proportional to the true value;
for instance, observed values are inflated by on aver-
age 5%. Ideally, the intercept and slope bias are both
zero. In the case of administrative data, measurement
bias can occur in particular due to conceptual differ-
ences between the variable that is used for administra-
tive purposes and the target variable that is needed for
statistical production (see, e.g. [10]).

Suppose that one has a linked micro data set with ob-
served variables y1, . . . , yp from different sources. The
underlying “true” target variables are not observed di-
rectly and denoted by latent variables η1, . . . , ηm. For
simplicity, it is assumed that each observed variable yk
is an indicator of exactly one target variable ηj(k). By
contrast, it is assumed that the same target variable is
measured by multiple (at least two) observed variables
(so p > m).

A linear structural equation model (SEM) for these
data consists of two sets of regression equations.
Firstly, there are measurement equations that relate the
observed variables to the latent variables:

yk = τk + λkηj(k) + εk, (k = 1, . . . , p) (4)

Here, τk denotes a measurement intercept, λk de-
notes a slope parameter (also known as a factor loading
in this context), and εk denotes a zero-mean random
measurement error that affects yk. It is often assumed
that the random errors εk and εl are uncorrelated for
k 6= l.

Second, the SEM may contain structural equations
that relate different latent variables to each other:

ηj = αj +

m∑
g=1
(g 6=j)

βjgηg + ζj , (j = 1, . . . ,m)

Here, αj denotes a structural intercept and ζj de-
notes a zero-mean disturbance term. The coefficient
βjg represents a direct effect of variable ηg on variable
ηj (with g 6= j). In practice, some of these coefficients
are usually set equal to zero when the model is speci-
fied, based on substantive considerations.

Once the SEM has been estimated, the validity and
measurement bias of the observed variables can be as-
sessed from the model parameters. The validity coef-
ficient VC of yk as an indicator for the target variable
ηj(k) is defined as the absolute value of the correlation
between yk and ηj(k). It can be shown that this corre-
lation is equal to the standardized version of λk, say
λ
(s)
k , so that:

VC(yk) = |λ(s)k | = |λk|
sd(ηj(k))

sd(yk)

=

√
1− var(εk)

var(yk)
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In addition, the parameters τk and λk provide infor-
mation about measurement bias in yk with respect to
ηj(k). If no bias occurs, then it holds that τk = 0 and
λk = 1; cf. (4). Intercept bias is indicated by a devia-
tion of τk from 0; slope bias is indicated by a deviation
of λk from 1.

For any SEM, it has to be checked whether all model
parameters can be identified from the available data.
Here, a distinction occurs between applications where
only the validity is estimated and applications where
also the intercept and slope bias are estimated. In the
first case, the model can be identified with m > 2 cor-
related latent variables and at least two indicators for
each latent variable, or with m = 1 latent variable that
has at least three indicators (see [11]). Identification of
the model may also be improved by including covari-
ates that are considered to be measured (essentially)
without error.

To assess the “true” measurement bias, an additional
assumption is needed to fix the “true” scale of each la-
tent variable. (Note that this scale is not relevant for the
validity coefficient, since it is defined as a correlation.)
Following [12,13], [14] suggests to identify the model
in this case by collecting additional “gold standard”
data for a small random subsample of the original data
set (an audit sample).

Figure 1 shows an example of an SEM that is iden-
tified by means of an audit sample. The model con-
tains three latent variables, each of which is measured
by two ordinary, error-prone observed variables. For
the units that are selected in the audit sample, addi-
tionally observed variables y7, y8 and y9 are obtained
that are supposed to measure the latent variables with-
out error. Thus, the measurement equations for these
observed variables are simply: y7 = η1, y8 = η2 and
y9 = η3. The model is divided into two groups: group
1 represents the audit sample and group 2 the remain-
ing units without additional “gold standard” variables.
In group 1, the model is identified by means of the
error-free audit data. In group 2, the model is identi-
fied by restricting all model parameters in this group to
be equal to the corresponding parameters in group 1.
This restriction is meaningful, because the audit sam-
ple has been selected by random subsampling from the
original data set.

In practice, the “gold standard” audit data may be
obtained by letting subject-matter experts re-edit a ran-
dom subset of the original observations. Results on
simulated data in [15] suggest that only a small audit
sample (say, 50 units) is needed.

An alternative way to identify the model, without the
need to collect additional audit data, is to assume that

Fig. 1. Example of a two-group SEM identified by an audit sample.

one of the observed variables for each latent variable
does not contain systematic measurement errors (while
still allowing for random errors). Then the model may
be identified by restricting τk = 0 and λk = 1 for
these variables. In some cases, this assumption may be
reasonable, e.g., for survey variables. However, the as-
sumption cannot be tested with the data at hand (the
same holds for the assumption that audit data are error-
free).

To estimate the parameters of an SEM, a standard
approach is to apply maximum likelihood estimation
under the assumption that the data consist of indepen-
dent, identically distributed observations from a multi-
variate normal distribution (see [11]). A so-called Ro-
bust Maximum Likelihood or Pseudo Maximum Like-
lihood estimation procedure is available which can
handle non-normality of the data as well as complex
sampling designs for finite populations (see [16]). De-
tails on how an audit sample can be formally incor-
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porated into this estimation procedure can be found
in [14]. Standard fit measures are available to evaluate
whether a fitted SEM gives an adequate description of
the observed data, and to compare the fit of different
SEMs (see [11]).

The validity coefficients VC and the parameters τk
and λk provide information about the quality of the in-
put data yk. They can also be used as input to a fur-
ther procedure to assess the accuracy of output based
on these data. As a very simple example, suppose that
we are interested in the population mean of the true
variable η: θ = (1/N)

∑N
i=1 ηi. Suppose that we have

two available estimators:

– The direct estimator based on a simple random
sample without replacement of n units, S, where
the target variable is measured by y1: θ̂1 =

(1/n)
∑
i∈S y1i.

– An estimator based on a register that covers the
entire population, where the target variable is
measured by y2: θ̂2 = (1/N)

∑N
i=1 y2i.

The measurement model for the observed variables
y1 and y2 is given by Eq. (4). Under this model, with
the true values ηi treated as fixed, the following expres-
sions can be derived for the mean squared error of the
two estimators:

MSE(θ̂1) = {τ1 + (λ1 − 1)θ}2 +

1

n

{
1− n

N
VC2 (y1)

}
σ2
y1;

MSE
(
θ̂2

)
= {τ2 + (λ2 − 1)θ}2 +

1

N

{
1− VC2 (y2)

}
σ2
y2

Here, σ2
y1 and σ2

y2 denote the expected population
variances of the observed variables under the model.
The first terms in the above expression for the mean
squared errors are the squares of the corresponding bi-
ases, the second terms are the variances.

Thus, in this example the validity coefficients and
intercept and slope bias can be used directly to quantify
and compare the accuracy of different estimators for
the same target parameter. In other situations, it may be
too complicated to derive an analytical expression for
the mean squared error of a proposed estimator. In that
case, the results of the structural equation model could
still be used as input for a resampling method (such
as the bootstrap) to simulate the effect of measurement
errors on the output accuracy.

3.4. Variance-covariance matrix for a vector
reconciled by means of macro-integration –
BDCs 4 and 5 “microdata and aggregated data”

Many statistical figures, for instance in the context
of national economic and social accounting systems,
are connected by known constraints. We refer to the
equations which satisfy such constraints as accounting
equations. Insofar as the initial input estimates need to
be based on a variety of sources, they usually do not
automatically satisfy the set of accounting equations
due to the errors of estimates. An adjustment or recon-
ciliation step is required, by which the input estimates
are modified to conform to the constraints. Statistical
figures sometimes also have to satisfy inequality con-
straints besides accounting constraints, and input data
may need to be adjusted to satisfy these inequality con-
straints as well. Macro-integration is a technique used
for reconciling statistical figures so they satisfy the
known constraints.

Consider, for example, an economic model with five
macro-economic quantities: national income y, con-
sumption c, investments i, export x, and import m,
which are stacked in a vector β. Suppose that there is
one known national accounts identity y = c+i+x−m
and one known inequality x > m. Given is an initial
vector of estimates β0 = (ŷ0, ĉ0, î0, x̂0, m̂0), where
ŷ0 = 600, ĉ0 = 445, î0 = 100, x̂0 = 515 and m̂0 =
475. These input data do not satisfy the accounting
equations, since 600 6= 445 + 100 + 515 − 475. By
means of macro-integration the initial estimates can be
reconciled so the constraints are satisfied.

Macro-integration can be used to reconcile aggre-
gated data as in the above example. It can also be
used to reconcile microdata with aggregated data by
first transforming the microdata into estimates on an
appropriate aggregated level, for instance by means
of weighting these microdata. This approach is, for
instance used for the Dutch Population Census (see,
e.g. [17,18]).

[19] considers the following general macro-integr-
ation problem

minβ
1

2
(β − β̂0)

t
V −1(β − β̂0)

(5)
subject to Tβ = g and Rβ > h

where β̂0 is an unbiased initial vector of estimates
for the (numerical) quantities of interest obtained from
several data sources with a known (or estimated)
variance-covariance matrix V . T and R are matri-
ces and g and h are vectors defining the constraints
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that have to be satisfied by the quantities of interest.
Problem Eq. (5) is a so-called Quadratic Programming
problem.

Our aim is to calculate the variance of the vector of
estimates β after reconciliation. The calculation for-
mula for this variance depends on the type of restric-
tions that have to be obeyed. Four different cases are
distinguished. These cases are discussed below.

3.4.1. Only equality restrictions
If there are only equality restrictions in Eq. (5), i.e.

Tβ = g, the solution to Eq. (5) is given by

β̂QP = β̂0 + VTt(TVTt)−1
(
g − T β̂0

)
and

Var
(
β̂QP

)
=
(
Ik − VTt(TVTt)−1T

)
V

where Ik is the k × k identity matrix.

3.4.2. Only one inequality restriction and no equality
restrictions

When there is only one inequality restriction, the
vector h reduces to a scalar h and the solution to
Eq. (5) is given by

β̂QP =

{
β̂0 if Rβ̂0 > h

β̂0 +K
(
h−Rβ̂0

)
if Rβ̂0 < h

β̂QP can be re-written as

β̂QP = β +K (sh+ −Rβ) + u (6)

where sh+ = max(Rβ̂0, h), u = β̂0 − E
(
β̂0|s

)
=

(Ik − KR)
(
β̂0 − β

)
, and K = VRt(RVRt)−1. sh+

follows a censored normal distribution CN(Rβ,RVRt,
h,∞) and is independent of u. Hence,

Var
(
β̂QP

)
= KVar(sh+)Kt + Var(u)

(7)
=
(
Ik − (1− d22)KR

)
V

The parameter d22 follows from the variance formula
for a censored normal distribution (see [19,20]).

3.4.3. Multiple inequality restrictions and no equality
restrictions

When there are r > 2 inequality restrictions and
no equality restrictions, [19] proposes to use Eq. (6)
as an approximation for β̂QP in order to evaluate
the variance-covariance matrix. Furthermore, [19] as-
sumes that the correlation coefficients between the el-
ements of sh+ differ not too much, say less than 0.05,

from those between the elements of Rβ̂0. Var
(
β̂QP

)
can then be approximated by

Var
(
β̂QP

)
≈ Var(Ksh+) + (Ik − KR)V

≈ KD2RVRtD2K
t + (Ik − KR)V

where D2 = diag(d21, . . . , d2r) and the parameters
d21, . . . , d2r again follow from the variance formula of
a censored normal distribution.

3.4.4. Multiple equality and inequality restrictions
When we have a set of t equality restrictions Tβ =

g and a set of r inequality restrictions Rβ > h two
steps have to be carried out in order to estimate the
variance-covariance matrix of the final reconciled vec-
tor β̂QP2 In the first step, we calculate

K1 = VTt
(
TVTt

)−1
β̂QP1 = β̂0 +K1

(
g − T β̂0

)
(8)

V1 ≡ Var
(
β̂QP1

)
= (Ik −K1T )V

In the second step we find the final solution β̂QP2 by
solving

minβ
1

2
(β − β̂QP1)

t
V −11 (β − β̂QP1)

subject to Rβ > h

The variance-covariance matrix Var(β̂QP2) can now
be estimated in the same way as for the case where
we have only inequality restrictions, with β̂0 and V in
Eq. (5) replaced by β̂QP1 and V1.

We return to our example with the five macro-
economic quantities, y, c, i, x and m. We assume that
the standard errors of the initial estimates are given by
se(ŷ0) = 30.0, se(ĉ0) = 22.0, se(̂i0) = 7.1, se(x̂0) =
28.3 and se(m̂0) = 28.3. We also assume that the co-
variances are zero. Applying Eq. (8) to this example,
we first obtain the following QP1 solution: ŷQP1 =
595.55, ĉQP1 = 447.39, îQP1 = 100.25, x̂QP1 = 518.96
and m̂QP1 = 471.04.

This QP1 solution obeys the equality y = c+i+x−
m. According to Eq. (8), the standard errors of β̂QP1
are given by: se(ŷQP1) = 24.74, se(ĉQP1) = 20.02,
se(̂iQP1) = 7.01, se(x̂QP1) = 24.00 and se(m̂QP1) =
24.00.

This solution satisfies the inequality x > m. So,
the solution β̂QP2 to the second step mentioned below
Eq. (8) equals β̂QP1. We still need to take the effect
of the inequality on the variances and standard errors
into account, though. In order to do so, the variances
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and the standard errors have to be adjusted according
to Eq. (7) withR = (0, 0, 0, 1,−1)t and V = V1 where
V1 is defined by Eq. (8). This yields the standard errors
of the estimates: se(ŷQP2) = 24.15, se(ĉQP2) = 19.81,
se(̂iQP2) = 7.00, se(x̂QP2) = 23.61 and se(m̂QP2) =
23.61.

As could be expected, these standard errors are
smaller than the standard errors of β̂QP1 mentioned
above, because the inequality restricts the region of the
allowed values. Since there is only one inequality re-
striction in this example, these standard errors are ex-
act under the assumptions of [19].

3.5. Scalar measures of uncertainty in (economic)
accounts – BDC 5 “aggregated data”

We again consider accounting systems connected
by known constraints. The uncertainty in such an ac-
counting system is, in principle, given by a variance-
covariance matrix of all variables involved in the ac-
counting system. However, [21] considers such a sys-
tem of accounting equations as a single entity and aims
to define uncertainty measures that capture the adjust-
ment effect as well as the relative contribution of the
various input estimates to the final estimated account in
a single scalar. [21] discussed two approaches: the co-
variance approach and the deviation approach. Below
we sketch the covariance approach.

Consider the additive account A = [Y1 + . . .+Yi +
. . .+Yp = Z]. Let ΣX̃ be the variance-covariance ma-
trix of the adjusted estimates X̃ = (Ỹ1, . . . , ỸpZ̃).
This matrix can be partitioned as follows: ΣX̃ =(

ΣỸ ΣỸ Z̃
ΣZ̃Ỹ ΣZ̃

)
.

One scalar measure, denoted here by γ (A), pro-
posed in [21] is defined as the sum of the variances of
the components of X̃ , that is

γ (A) = Trace (ΣX̃) = Trace (ΣỸ ) + 1tΣỸ
(9)

1 =

p∑
i=1

Var
(
Ỹi

)
+ Var

(
Z̃
)

To illustrate the covariance approach let us sup-
pose that we have normally distributed input estimates
Ŷ =

(
Ŷ1, . . . , Ŷp

)
∼ Np (µ,ΣY ), where µ =

(µ1, . . . , µp) and ΣY is a diagonal matrix with diago-
nal values σ2

k = Var (Yk) = σ2µk for k = 1, . . . , p.
Suppose we have an additive accounting equation of

the form

Y1 + . . .+ Yp = Z

where Z̃ = z is treated as fixed. The original values
Ŷ1, . . . , Ŷp do not necessarily satisfy this accounting
equation. Consider a common benchmarking method,
which yields the adjusted estimates

Ỹk = Ŷk +

z − p∑
j=1

Ŷj

 υk

where the υk are adjustment weights that sum up to 1
for k = 1, . . . , p. By this benchmarking method the
total difference is simply apportioned to each compo-
nent estimator. Suppose one would like to compare two
choices: υk = 1/p and υk = µk/

∑p
j=1 µj , which

yield, respectively, the adjusted estimates

Ỹ1k = Ŷk +
1

p

z − p∑
j=1

Ŷj

 (10)

and

Ỹ2k = Ŷk +
µk
p∑
j=1

µj

z − p∑
j=1

Ŷj

 (11)

We are interested in which of the two choices,
Eq. (10) or Eq. (11), yields statistical data of higher
quality. Denote the reconciled estimated account based
on Eq. (11) by A1 and the one based on Eq. (11) by
A2.

It can be shown (see [21]) that the random vari-
ables Ỹk−Mk (k= 1, . . . ,p) where Mk= E(Ỹk) =

µk+(z−
∑p
j=1 µj)υk, are negatively correlated with

each other and have normal distributions N
(
0, σ̃2

k

)
with

σ̃2
k = υ2k

p∑
j=1

Var (Yj)+Var (Yk) (1− 2υk)

= υ2kσ
2

p∑
j=1

µj + σ2µk − 2vkσ
2µk

Since Var(Z̃) = 0 because Z̃ = z is fixed, measure
γ (A) (see Eq. (9)) is by given by

γ (A) =

p∑
k=1

Var
(
Ỹk

)
=

p∑
k=1

σ̃2
k

We examine the difference between γ (A1) and
γ (A2). This difference is given by
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γ (A1)− γ (A2) =

p∑
k=1

σ2

 1

p2

p∑
j=1

µj −
2

p
µk −

 µk
p∑
j=1

µj


2

p∑
j=1

µj +
2µk
p∑
j=1

µj

µk



=

p∑
k=1

σ2

 1

p2

p∑
j=1

µj −
2

p
µk +

µ2
k

p∑
j=1

µj



=

p∑
k=1

σ2


√

p∑
j=1

µj

p
− µk√

p∑
j=1

µj


2

> 0

This implies that γ (A1) > γ (A2) with strict in-
equality unless all µk are equal. So, we conclude that
adjustment method Eq. (10) always leads to more un-
certainty than method Eq. (11) according to quality
measure γ – unless all µk are equal in which case both
adjustment methods are equivalent – and that reconcil-
iation method Eq. (11) should therefore be preferred.

3.6. Other BDCs

With respect to BDC 3 (“under-coverage”) we have
studied extensions of the well-known Petersen capture-
recapture estimator (also referred to as the Petersen-
Lincoln estimator). This estimator can be used to esti-
mate the size of a population. In the simplest case of
this estimator two random samples A and B from the
same target population are linked. By n11 we denote
the number of units that are observed in both samples
A and B, by n10 the number of units that are observed
in sample A only, by n01 the number of units that
are observed in sample B only, and by n00 the num-
ber of population units that are not observed in either
of the samples. The unknown population size equals
n11 +n10 +n01 +n00. This quantity is unknown since
the value of n00 is not observed and unknown. The Pe-
tersen estimator for n00 is given by

n̂00 =
n10n01
n11

Its variance (see, e.g., [22]), and hence the variance
of the estimator for the population size n11 + n10 +
n01 + n̂00, is given by

Var (n̂00) =

(n10 + 1)(n01 + 1)(n10 − n11)(n10 − n11)

(n11 + 1)
2

(n11 + 2)

This variance estimate provides a quality measure
for the population size estimation. In the literature re-
view we carried out for WP 3, we studied how the Pe-
tersen estimator can be applied when the samples A
and B are not obtained by survey sampling, but are in-
stead based on administrative data (see, e.g. [23,24]).

With respect to BDC 6 (“longitudinal data”), we
have, for instance, carried out a literature review
of [25]. [25] presents an approach to estimate (and pos-
sibly correct for) the amount of classification error in
longitudinal microdata of categorical variables by esti-
mating a so-called Hidden Markov Model for the un-
derlying “true” distribution. A Hidden Markov Model
is a special type of latent class model suitable for lon-
gitudinal data. Besides assumptions on the latent class
model for each time point also assumptions on the lon-
gitudinal structure of the data are needed. In the ap-
proach proposed in [25], the true distribution of a cat-
egorical target variable, which is measured (with mea-
surement error) for individual units in several linked
data sets at several time points, is estimated at each
time point. The observed variables are seen as error-
prone indicators of a latent true variable, with some
assumptions about the distribution of measurement er-
rors. From this, the misclassification rate in each ob-
served variable at each time point can be estimated.
The accuracy of observed higher-order properties, such
as observed transition rates between categories over
time, can be estimated. The approach proposed in [25]
can be seen as a longitudinal variation on the approach
proposed in [7], which was described in Section 3.2.
We refer to [25] for more information about their ap-
proach.

4. Discussion

We hope that we have succeeded in giving a flavor
of the work that has been and is being done in WP 3 of
the ESSnet on Quality of Multisource Statistics and the
results that have been achieved with respect to quality
measures for output based on multiple data sources.

Future work could focus on improving the devel-
oped quality measures, and make them easier to apply
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in practical situations as well as extend the range of
situations in which they can be applied. Future work
could also focus on developing quality measures and
related computation methods that have not yet been
considered in WP 3 of the ESSnet on Quality of Mul-
tisource Statistics.

Another important topic for future work is the fur-
ther development of a systematic framework for situ-
ations, methods and quality measures that can arise in
a multisource context. For instance, for single-source
statistics where the focus is generally on sampling er-
ror, survey sampling theory offers the basics (and usu-
ally a lot more than just the basics) for computing sur-
vey estimates (by means of weighting) and variance
estimates thereof. We feel that NSIs should aim for
similar generally applicable theories that can be used
for measurement errors, coverage errors, linkage er-
rors etc. in a multisource context. In our opinion, NSIs
should also aim for a general framework enabling one
to combine all these separate aspects in an overall qual-
ity measure for output based on multiple data sets.

5. Back to the fairy tale

We do not know how the fairy tale from the begin-
ning of our article will end, but we hope that it will end
along the following lines.

The good and wise king looked at the work that
had been done in the ESSnet, and told his people
that he was once again impressed by the work they
had done. He said: “I know this is not the final an-
swer. Only the future may provide us the final an-
swer. However, what you have done in this project
is really useful and an important step forward. It
will help not only us but also others in their efforts
to determine the quality of multisource statistics.”
The king and his people lived happily ever after,
constantly improving the quality measurement of
their statistics.
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