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     Abstract 

Large-scale surveys such as the Programme for International Student Assessment (PISA), 

the Teaching and Learning International Survey (TALIS), and the Programme for the 

International Assessment of Adult Competences (PIAAC) use advanced statistical models 

to estimate scores of latent traits from multiple observed responses. The comparison of 

such estimated scores across different groups of respondents is valid to the extent that the 

same set of estimated parameters holds in each group surveyed. This issue of invariance of 

parameter estimates is addressed in model fit indices which gauge the likelihood that one 

set of parameters can be used across all groups. Therefore, the problem of scale invariance 

across groups of respondents can typically be framed as the question of how well a single 

model fits the responses of all groups. However, the procedures used to evaluate the fit of 

these models pose a series of theoretical and practical problems. The most commonly 

applied procedures to establish invariance of cognitive and non-cognitive scales across 

countries in large-scale surveys are developed within the framework of confirmatory factor 

analysis and item response theory. The criteria that are commonly applied to evaluate the 

fit of such models, such as the decrement of the Comparative Fit Index in confirmatory 

factor analysis, work normally well in the comparison of a small number of countries or 

groups, but can perform poorly in large-scale surveys featuring a large number of countries. 

More specifically, the common criteria often result in the non-rejection of metric 

invariance; however, the step from metric invariance (i.e. identical factor loadings across 

countries) to scalar invariance (i.e. identical intercepts, in addition to identical factor 

loadings) appears to set overly restrictive standards for scalar invariance (i.e. identical 

intercepts). This report sets out to identify and apply novel procedures to evaluate model 

fit across a large number of groups, or novel scaling models that are more likely to pass 

common model fit criteria.  

Using both real and simulated data, the following procedures are described and applied: 

multigroup confirmatory factor analysis, followed by alignment analysis of the same data 

set; Bayesian approximate measurement invariance; Bayesian measurement invariance 

testing in Item-Response Theory (IRT) models; and multigroup and multilevel latent class 

analysis. These approaches have the potential to resolve recurrent fit problems in invariance 

testing. Though promising, more work with these new approaches is needed to establish 

their suitability in large-scale surveys. The last chapter reports the conclusions from a 

conference in which these approaches were discussed, along with traditional approaches, 

in order to provide recommendations for how to address invariance issues in OECD 

education surveys. 
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    Résumé  

Les enquêtes à grande échelle comme le Programme international pour le suivi des acquis 

des élèves (PISA), l’Enquête internationale sur les enseignants et l’apprentissage (TALIS) 

et le Programme d’évaluation internationale des compétences des adultes (PIAAC) utilisent 

des modèles statistiques avancés pour produire des estimations des scores des traits latents 

à partir de multiples réponses observées. Une partie importante de l’analyse consiste à 

examiner si le même ensemble de paramètres estimés s’applique à chaque groupe étudié. 

Cette question de l’invariance des estimations des paramètres est abordée par les indices 

d’ajustement du modèle qui évaluent la probabilité qu’un ensemble de paramètres puisse 

être utilisé dans tous les groupes. Par conséquent, le problème de l’invariance d’échelle 

entre les groupes de répondants peut généralement être formulé comme la question de 

savoir dans quelle mesure un modèle unique correspond aux réponses de tous les groupes. 

Toutefois, les procédures utilisées pour évaluer l’adéquation de ces modèles posent une 

série de problèmes théoriques et pratiques. Les procédures les plus couramment appliquées 

pour établir l’invariance des échelles cognitives et non cognitives entre les pays dans les 

enquêtes à grande échelle sont élaborées dans le cadre de l’analyse factorielle confirmatoire 

et de la théorie des réponses aux items. Les critères couramment appliqués pour évaluer 

l’adéquation de tels modèles, tels que la diminution de l’indice d’adéquation comparative 

dans l’analyse factorielle confirmatoire, qui fonctionnent bien dans la comparaison d’un 

petit nombre de pays ne fonctionnent pas bien en pratique dans les applications à grande 

échelle. Plus précisément, les critères communs aboutissent souvent au non-rejet de 

l’invariance métrique; cependant, le passage de l’invariance métrique (c.-à-d. des 

coefficients de saturation identiques d’un pays à l’autre) à l’invariance scalaire (c.-à-d. des 

constantes identiques, en plus des coefficients de saturation identiques) semble établir des 

normes trop restrictives pour l’invariance scalaire (c.-à-d. des constantes identiques). La 

présente étude a pour but d’identifier et d’appliquer de nouvelles procédures pour évaluer 

l’ajustement du modèle pour un grand nombre de groupes, ou de nouveaux modèles de 

mise à l’échelle qui sont plus susceptibles de satisfaire aux critères communs d’ajustement 

du modèle. 

En utilisant des données simulées et des données réelles, les procédures suivantes sont 

décrites et appliquées: analyse factorielle confirmatoire multigroupe, suivie d’une analyse 

d’alignement de la même base de données; analyse bayésienne d’invariance approximative 

des mesures; test bayésien d’invariance des mesures dans les modèles de réponse à l’item; 

et analyse de classe latente multigroupe et multiniveau. Ces approches ont le potentiel de 

résoudre les problèmes d’ajustement récurrents dans les tests d'invariance. Bien que 

prometteuses, ces nouvelles approches doivent faire l’objet d’un travail plus poussé pour 

établir leur pertinence dans le cadre d’enquêtes à grande échelle. Le dernier chapitre 

présente les conclusions d’une conférence de l’OCDE où ces approches ont été discutées 

en même temps que les approches traditionnelles, afin de fournir des recommandations sur 

la manière de traiter les questions d’invariance dans les enquêtes de l’OCDE sur 

l’éducation. 
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Chapter 1.  Introduction 

Fons J.R. van de Vijver 

Why This Report? 

Large-scale surveys are coming of age. In an era of globalisation, surveys that involve 

multiple countries have become available. A good example is the Programme for 

International Student Assessment (PISA). Since its first wave in 2000, PISA has grown in 

size from 28 countries to well over 70 countries. Information about educational systems in 

other countries and the comparisons of scores in “league tables” have become important 

benchmark information for policy makers in participating countries. However, such 

comparisons of scales across countries are beset with important methodological challenges. 

This report addresses what is often viewed as the major methodological challenge of large-

scale surveys: the assessment of comparability of constructs and data.  

If a mathematics test is administered in multiple countries and the aim is to compare 

performance across countries, it is incumbent on the team conducting the study to 

demonstrate that the instrument is adequate in all countries and that scores can be compared 

across countries. Similarly, in studies comparing the well-being or attitudes towards 

immigrants of respondents across multiple countries, some proof must be provided that the 

responses are comparable and that the models from which these scales are built apply in all 

countries. In the past various procedures have been proposed to test for the equivalence of 

instruments across countries. In particular, two types of procedures have become very 

common to assess equivalence (invariance) in large-scale assessment: procedures based on 

confirmatory factor analysis (often used for the background questionnaires assessing non-

cognitive variables such as attitudes, motivation and interests) and procedures based on 

item response theory (often used for educational achievement data). This report mainly 

addresses these two types of approaches. 

Both types of approaches share a common problem: There is no single, widely accepted 

procedure that can adequately analyse whether scores are comparable across all 

participating countries. Existing procedures often work well in comparisons of a few 

countries (in the sense that they provide estimates for all relevant parameters, such as factor 

loadings and item difficult estimates, combined with fit indices that provide useful 

information about the suitability of the model with invariant parameters), but fall short in 

large-scale applications. 

The statistical problem of testing a measurement invariance assumption for two groups (or 

a small number of groups) is different from testing this assumption for many groups. The 

common statistical tests for measurement invariance are meant to compare two groups, 

which leads to evaluating two competing models (i.e. two hypotheses). The tests are also 

used to compare multiple groups, but this leads to simultaneously testing multiple 

hypotheses, which is much more complicated than evaluating a single hypothesis. For 

multiple hypotheses, the Type-1 errors will be substantially higher, when following the 

same rejection rules as for a single hypothesis. Although a Bonferroni correction can be 

applied to control for the inflated Type-1 error rate, the stepwise procedure of testing 

multiple hypotheses will influence the results, and there is a high risk of errors due to 

chance capitalisation. Each measurement invariance hypothesis is composite, which leads 

to more complex dependencies between the multiple hypotheses. Furthermore, the test 

statistics of the multiple hypotheses are correlated, but are treated as independent, which 
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can lead to biased test results. Finally, while controlling the Type-1 error, the false negative 

rate (i.e. the proportion of false negatives) can still be unacceptable. In practice, to avoid 

evaluating the entire set of hypotheses, a null model is compared to a set of restricted 

alternative models (already excluding multiple hypotheses). However, this restricted set 

might not include the optimal model, and this can lead to inferior test results. 

Invariance analyses are based on assumptions about the design and data analysis that may 

not apply. Examples dealing with design features involve features of the instrument, such 

as the complete translatability and full linguistic comparability of all stimulus materials. 

Assumptions could also refer to the data, such as assumptions about data distributions. 

Given these restrictive assumptions, it should come as no surprise that fit indices often 

indicate a poor fit. A recurrent problem is that fit indices suggest that data cannot be 

compared, despite the tremendous effort that typically went in their development. 

Furthermore, the reasons for the poor fit are usually hard to understand: Is the poor fit a 

consequence of a model misspecification (and should the model that parameters are 

invariant across groups be rejected) or highly sensitive fit indices (that flag non-invariance 

while the differences in parameters across groups are very small)? This report explores 

novel approaches to invariance that have the potential to overcome at least some of the 

limitations of extant approaches. 

The report is meant for researchers and students working with the international data sets. 

The report describes issues of current approaches and highlights promising areas to advance 

the field of invariance testing. 

Terminology and Outline 

The seminal work by Jöreskog (1969[1]; 1971[2]) on structural equation models and by 

Rasch (1960[3]) on item response theory have provided a major impetus to the examination 

of identity of model parameters across populations. Statistically rigorous tests for whether 

item characteristics, such as their factor loadings or difficulties, were identical across 

populations, became available. Rather than describing the history since the original 

publications, the emphasis here is on the current state of affairs in statistical models used 

in large-scale surveys. 

In what could be called the first wave of invariance testing, the emphasis was on exact 

approaches. The statistical procedures tested the null hypothesis that some set of model 

parameters (factor loadings and intercepts as most important examples in structural 

equation models and item discrimination and item difficulties as their counterparts in item 

response theory) is identical across groups. These approaches are called exact because the 

hypothesis of interest is identity of parameters across groups (this characteristic of exact 

identity of parameters is released in approximate Bayesian approaches described below). 

Three (increasingly restrictive) types of identity are commonly assessed: configural, metric 

and scalar invariance. 

Using the terminology of structural equation modelling, configural invariance means that 

a set of items shows the same pattern of salient loadings on a construct (for the simplicity 

of presentation, we assume here that the underlying construct is unidimensional, as many 

large-scale surveys assess constructs using unidimensional scales). Metric invariance 

means that the factor loadings are identical across groups. We then do not only know that 

the latent construct is comparable across groups (implied by configural invariance), but we 

also know that the association between items and the underlying construct is identical 

across groups. Any given item is an equally adequate indicator of the construct in each 

country. The highest level of invariance, required to compare scores across groups, is 
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achieved when the regression line that links the latent construct to the item scores has both 

the same slope (i.e. the same factor loading as required for metric invariance) and the same 

intercept. If the latter is not the case, an item is said to be biased or showing differential 

item functioning (DIF) (Holland and Wainer, 1993[4]; Van de Vijver and Leung, 1997[5]).  

Since higher levels of invariance are more restrictive, these are more difficult to obtain. 

Ample experience with conducting tests of the three types of invariance in large-scale 

surveys has shown that scalar invariance is often rejected for scales in multigroup 

confirmatory factor analysis (described in more detail in Chapter 2). 

In the first part of Chapter 2, the approach is illustrated in a new, yet increasingly important 

context: to establish cross-wave stability of item parameters. There is an increasing number 

of large-scale surveys that have multiple waves (such as PISA and the European Social 

Survey). Many surveys have a core of instruments that is administered in each wave. The 

question then arises to what extent item parameters remain identical across waves: Do 

constructs start to change in meaning across time or do groups change their endorsement 

of the construct across time? As illustrated in Chapter 2, multigroup confirmatory factor 

analysis is suitable to address these questions. 

Historically, the first attempt to deal with the problem of poor fit in multigroup 

confirmatory factor analysis is due to Byrne, Shavelson and Muthén (1989[6]). Their partial 

measurement invariance approach releases the factor loadings and/or intercepts of 

designated items (based on conceptual grounds or fit statistics, either all at once or one by 

one) while the other parameters of the other items of the scale are kept invariant across 

groups. The approach may work well in small-scale applications but does not provide a 

viable approach in large-scale surveys where often most, if not all items have to be released.  

The other approaches to deal with measurement invariance in the case of unidimensional, 

continuous traits that are described in the present report abandon the idea of exact 

invariance and start from models that allow some wiggle room in parameters, which may 

make these more realistic than what is done in the exact invariance approach; exact 

invariance is replaced here by approximate invariance. The first, called alignment 

(described in the second part of Chapter 2), is a two-step procedure in which in the first 

step a configural model is identified that represents the best-fitting model among all 

multigroup factor analytic models. In the second step this configural model undergoes an 

optimisation process such that for every group factor mean and variance parameter, factor 

loadings and intercept parameters are estimated with the same likelihood as the configural 

model. The factor mean and factor variance are chosen in such a manner that the total 

amount of measurement invariance is maximised. This approach can be evaluated using 

both a frequentist (i.e. maximum likelihood: ML) and a Bayesian approach. Another 

closely related approach, Bayesian structural equation modelling (BSEM), allows 

parameters to vary somewhat across groups (a chosen prior distribution defines the extent 

to which variation is allowed). So, loadings and intercepts are approximately identical 

across countries. The procedure can be combined with alignment, as illustrated in 

Chapter 3. 

A novel Bayesian approach is described in Chapter 4. In contrast to the Bayesian random 

parameter approaches, which allow variation in parameters so that persons can be measured 

on a common latent scale in the presence of items that are not measurement invariant, this 

approach focuses on assessing measurement invariance, by quantifying the evidence in 

favour of non-invariance against the evidence in favour hypothesis of full measurement 

invariance. The procedure is presented in the context of the one-parameter Item-Response 

Theory (IRT) model and requires only estimating a marginal model (where all types of 
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invariance violations contribute to the covariance matrix of error terms). The Bayesian 

hypothesis testing approach does not rely on asymptotic results (i.e. asymptotic sampling 

distribution of the test statistic), and can take all sources of uncertainty into account 

(i.e. does not rely on parameter estimates). The Bayesian testing/marginal modelling 

approach is designed to identify which of the items (or sets of items) are measurement 

invariant and which are not. 

An approach to deal with the measurement of non-ordered, categorical traits is given in 

Chapter 5. This chapter shows, within the framework of exact invariance testing, how 

multilevel and multigroup latent class analysis can be used to establish the existence of 

common and unique classes of individuals across all groups (countries) that participate in 

a survey. Chapter 5 describes the procedures and illustrates them on a set of TALIS 

measures dealing with distributed leadership in schools. 

This report gives an overview of novel invariance approaches; yet, there is no attempt to 

provide a comprehensive overview. An approach that is not discussed here is exploratory 

structural equation modelling (Asparouhov and Muthén, 2009[7]). This procedure is suitable 

for multifactorial models by allowing some non-zero loadings of items on non-target 

factors. BSEM is an alternative to this procedure. Exploratory structural equation 

modelling is not discussed here as relatively few scales in large-scale surveys are 

multifactorial. 

Conclusion 

Examining invariance in large-scale studies continues to be problematic. Various 

procedures have been proposed and have shown problems. 

In the present report we have gone beyond the conventional multigroup confirmatory factor 

analysis (MGCFA) and IRT methods by describing and applying novel approaches to 

scaling response data and testing model invariance, notably alignment (used with maximum 

likelihood or Bayesian estimation), Bayesian approximate invariance testing, Bayesian 

marginal invariance testing, and latent class modelling. The following four chapters 

demonstrate the potential of each of the procedures. However, it should be emphasised that 

these demonstrations are mainly a “proof of concept” and do not yet provide a decisive 

answer as to whether their application would mitigate or eliminate extant problems with 

the conventional MGCFA and IRT approaches. More experience is needed before we can 

decide that these approaches can live up to the expectations. 

The overview of procedures in this report is not exhaustive. Thus, the report does not 

discuss the “old” approach of using exploratory factor analysis, followed by target rotations 

(Van de Vijver and Leung, 1997[5]), nor exploratory structural equation modelling (ESEM) 

(Asparouhov and Muthén, 2009[7]).  

The field of invariance testing has undergone a major metamorphosis in the last decades. 

It can be expected that the field will continue to develop. Important developments could be 

further technical refinements in new procedures that can increasingly deal with the 

intricacies of large-scale cross-cultural comparisons as well as more empirical 

demonstrations of procedures that (do not) work well. The riddle of how to compare data 

across cultures in huge studies is not yet resolved.  
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Chapter 2.  Measurement Invariance Analysis using Multiple Group 

Confirmatory Factor Analysis and Alignment Optimisation 

Eldad Davidov and Bart Meuleman 

Multiple Group Confirmatory Factor Analysis (MGCFA) 

In the relevant literature, various ways to test for measurement invariance have been 

proposed, differing in the assumed measurement level of indicators, conceptualisation of 

latent variables (continuous vs. categorical) and the link function between indicators and 

latent variables (Meredith, 1993[8]; Davidov et al., 2014[9]). One of the most often used 

techniques is multigroup confirmatory factor analysis (MGCFA) – recently also called the 

exact measurement invariance approach as opposed to the approximate (Bayesian) 

approach (see the Chapter 4 in this report). MGCFA assumes a linear function between the 

metric indicator variables and continuous latent variables. However, this approach has been 

used commonly with Likert scales (which are, strictly speaking, ordinal rather than metric) 

when sample sizes are rather large like in the Programme for International Student 

Assessment (PISA) or the European Social Survey (ESS). MGCFA assumes a population 

divided in subgroups g, and estimates a measurement model per group. Concretely, the 

response on indicator variable 𝑦𝑖 is modelled as a function of one or more latent variables 

𝜉𝑗. 𝜏𝑖 is the intercept of this function, and factor loading 𝜆𝑖𝑗 expresses the strength of the 

relationship between latent variable 𝜉𝑗 and indicator 𝑦𝑖. Note that the measurement 

parameters (intercepts and factor loadings) in this model can be different across groups: 

𝑦𝑖
𝑔

= 𝜏𝑖
𝑔

+ 𝜆𝑖𝑗
𝑔

𝜉𝑗
𝑔

+ 𝜀𝑖
𝑔

 Equation 2.1 

 

Figure 2.1 provides a graphical illustration of the MGCFA model with two groups and a 

single latent variable. 
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Figure 2.1. Graphical representation of a MGCFA model 

A latent concept (ξ) is measured by three indicators (Y1 – Y3) across two groups (A and B)

 

Legend: ξ=latent variable; λ=factor loading; τ=intercept; X=indicator; ε=measurement error 

In the MGCFA approach, measurement invariance is tested by assessing to what extent the 

measurement models are similar across groups. MGCFA differentiates between three levels 

of invariance: configural, metric and scalar. These levels are hierarchical: Higher levels 

impose more restrictions on the measurement parameters, but at the same time allow a 

higher degree of comparability. Configural invariance requires that factor structures are 

equal across groups, i.e. that the same items are used to measure the same latent variables. 

In other words, the different groups are expected to exhibit identical patterns of salient and 

non-salient factor loadings. Formally, this can be written as follows: 

 if 𝜆𝑖𝑗
𝑔

 is close to 0, then 𝜆𝑖𝑗
ℎ  is close to 0 for g,h = 1...G (where superscripts g and h 

refer to two different groups)   

 if 𝜆𝑖𝑗
𝑔

 is not close to 0, then 𝜆𝑖𝑗
ℎ  is not close to 0 for g,h = 1...G; g≠h 

Metric invariance requires in addition that the factor loadings are equal across groups: 

𝜆𝑖𝑗
𝑔

= 𝜆𝑖𝑗
ℎ  for 𝑔, ℎ =  1. . . 𝐺 Equation 2.2 

Scalar invariance furthermore requires that the items’ intercepts are equal:   

𝜏𝑗
𝑔

= 𝜏𝑗
ℎ  for 𝑔, ℎ =  1. . . 𝐺 Equation 2.3 

Whereas configural invariance does not allow any comparisons of scores across groups, 

metric invariance guarantees the comparability of parameters expressing the relationships 

between concepts (such as covariances or unstandardised regression effects). Scalar 

invariance is a necessary condition to make valid comparisons of latent means.  

MGCFA invariance testing typically begins with single group confirmatory factor analyses 

(CFAs) to examine whether the model fits well the data in each of the groups. If that is the 

case, one continues with a multigroup test of the configural invariance (i.e. equal factor 

structures but no equality constraints on the parameters). If the condition of configural 

invariance is fulfilled, one adds cross-group equality constraints on the factor loadings 
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(metric invariance) and subsequently on the intercepts (scalar invariance) (Steenkamp and 

Baumgartner, 1998[10]; Vandenberg and Lance, 2000[11]). 

In order to evaluate whether measurement invariance is given, one can rely on several 

global fit measures produced by the statistical software. One approach consists of 

performing chi-square difference tests to evaluate which level of equivalence fits the data 

best. A major limitation of this approach, however, is that chi-square tests are known to be 

overly sensitive: Even substantially irrelevant differences between groups can turn up as 

statistically significant, especially when sample sizes are large and when the data is not 

normally distributed (Saris, Satorra and van der Veld, 2009[12]). A related approach consists 

of inspecting modification indices. For each parameter constraint a modification index is 

estimated, indicating by how much the chi-square value of the model would improve if that 

particular constraint were removed. As such, modification indices are chi-square-test 

statistics (with one degree of freedom) for the constrained parameter. Significant 

modification indices are indicative of model misfit, and the parameter constraints they refer 

to represent misspecifications. However, also here minor misspecification can lead to 

highly significant modification indices, particularly when the sample size is large, thereby 

limiting the usefulness of this tool. 

To remediate the shortcomings of chi-square based tests, a series of alternative fit indices 

(with corresponding cut-off criteria) has been developed. West, Taylor and Wu (2012[13]), 

for example, suggest relying on the root mean square error of approximation (RMSEA) and 

the comparative fit index (CFI). Simulations suggest that well-fitting models should 

provide RMSEA values which are smaller than 0.06 and CFI values which are higher than 

0.95 (Hu and Bentler, 1999[14]). Yet, Chen (2007[15]) suggests that it is not sufficient that a 

model provides fit indices that fulfil these cut-off criteria. In addition, one needs to assess 

whether or not these global fit measures deteriorate to a large extent when moving from a 

configural to a metric invariant model and from a metric to a scalar invariant model. Since 

the chi-square difference test when moving from one level of invariance to the other may 

be too strict, especially when the sample size is large, Chen (2007[15]) suggests that the 

change in RMSEA should be smaller than 0.03, and the change in CFI should be smaller 

than 0.01 to be able to conclude that a higher level of measurement invariance is given.   

A disadvantage of the MGCFA approach is that it is very strict, in the sense that it requires 

exact equality of parameters across groups (Davidov et al., 2015[16]). In real data analysis, 

exact equality of measurement parameters is almost never the case. When sample sizes are 

as large as they often are in cross-national survey research, substantively irrelevant 

measurement differences between groups lead to the conclusion that invariance cannot be 

established (Meuleman, 2012[17]; Oberski, 2014[18]). As a result, researchers are often 

confronted with the finding that scalar invariance is not supported by the data, and do not 

know whether they can rely on the estimated latent means. Different approaches have been 

suggested for how to deal with the problem of MGCFA being overly strict (Davidov et al., 

2014[9]). For example, some researchers (Byrne, Shavelson and Muthén, 1989[6]; 

Steenkamp and Baumgartner, 1998[10]) suggest that measurement parameters do not need 

to be equal for all items, but that it is sufficient that only two items have equal parameters 

to be able to compare relationships and/or latent means. They call this situation “partial 

measurement invariance”. Another approach is the recently developed alignment procedure 

which we explain in the next section. 
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The Alignment Procedure 

The alignment procedure was developed by Asparouhov and Muthén (2014[19]). It allows 

estimating latent means even when exact equality of measurement parameters is not present 

in the data. Alignment begins at a similar starting point as the MGCFA approach: Observed 

indicators are seen as a linear function of a latent variable (with intercepts and factor 

loadings as measurement parameters; see Equation 2.1). The alignment procedure uses 

several steps. In a first step, the estimated model does not constrain factor loadings and 

intercepts to be equal across groups. As such, the alignment method relies on a configurally 

equivalent model where factor loadings and intercepts are allowed to differ across groups. 

Instead of constraining parameters across groups to be equal, however, a second step in the 

alignment procedure looks for a pattern of the parameter estimates in which differences 

between the measurement parameters are minimised [using a simplicity function; for more 

details see Asparouhov and Muthén (2014[19]). As a result, the procedure ends up with many 

minor differences between parameters and only a few large differences. Asparouhov and 

Muthén (2014[19]) indicate that this process is similar to a rotation in exploratory factor 

analysis. When the point is reached where the total amount of non-invariant parameters is 

minimised, the estimation stops and produces the measurement parameters including the 

latent means. These estimated latent means take the detected differences between factor 

loadings and intercepts across groups into account. Therefore, the estimated latent means 

provide the best possible comparability that can be achieved with the given data. The fit 

measures of the model are the same as in a configural invariance model. 

Of course, the best possible comparability might still be insufficient to make valid 

comparisons possible. At this point, researchers may correctly ask whether one may rely 

on these estimated means. After all, according to the exact approach comparability requires 

completely equal factor loadings and intercepts. Asparouhov and Muthén provide a 

response to this crucial question. They conducted simulation studies and showed that if the 

share of parameters which are different across groups is 25% or lower, the means are 

probably comparable (Muthén and Asparouhov, 2014[20]). However, further simulations are 

needed to test the robustness of this assumption. Since the alignment output lists all the 

parameters that are unequal (a parameter is considered to be non-invariant if it differs 

significantly from the average of that parameter in the set of invariant groups), it is easy to 

count whether this number is higher or lower than 25% of the total number of factor 

loadings and intercept parameters. 

The alignment procedure has further advantages besides estimating the most trustworthy 

means. First, it lists all the non-invariant parameters and researchers can easily identify 

them in the output. Indeed, some researchers may be interested to understand why they are 

not invariant. The fact that these parameters are clearly indicated by Mplus (they are 

indicated between parentheses in the output) makes this job easy. Second, the alignment 

output lists the means and also provides a difference test for these means across the groups. 

In other words, it ranks the group means in a descending order and informs which ones are 

significantly different at 5%. Thus, it allows researchers to find out very quickly which 

groups score highest and which ones score lowest. It is a very convenient approach 

particularly (but not only) when there are many groups in the analysis. 

Two further technical details are worth noting. First, alignment can be estimated in the 

frequentist approach using maximum likelihood or in the Bayesian approach. In the 

following example we will use maximum likelihood. The chapter about approximate 

invariance and Bayesian estimation (Chapter 4) will apply the Bayesian procedure for 

alignment. Second, the analysis with the alignment procedure allows using two estimation 
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options: Fixed and Free. In the free alignment all the latent means are freely estimated. In 

the fixed alignment the latent mean in one of the groups is fixed to zero. The free alignment 

may perform better (Asparouhov and Muthén, 2014[19]), but the authors admit that the 

model may not be identified. This was the case in our illustration. In this case, it is 

suggested to use the fixed option, as will be shown below. Muthén and Asparouhov 

(2018[21]), Cieciuch, Davidov and Schmidt (2018[22]) and Munck, Barber and Torney-Purta 

(2017[23]) provide further technical details and applications. 

Illustration 

Data and Measurements 

To illustrate these procedures, we use ESS data collected in France covering all currently 

available seven rounds (2002, 2004, 2006, 2008, 2010, 2012 and 2014). The number of 

respondents in rounds 1-7 is 1 503, 1 806, 1 986, 2 073, 1 728, 1 968 and 1 917, 

respectively. Thus, the illustration presents and uses longitudinal (repeated cross-sectional) 

data in the country [for a similar approach, see Poznyak et al. (2013[24])]. Indeed, 

measurement invariance is important not only for the comparison of cultural groups, but 

also for the comparison of data collected at different time points for the same cultural group. 

We used three items measuring the willingness of respondents to allow immigrants into the 

country (with a latent variable named ALLOW). The questions measuring this latent 

variable inquire whether respondents are willing to allow immigrants of the same race or 

ethnic group as the majority (imsmetn), of a different race or ethnic group than the majority 

(imdfetn), or from poorer countries outside Europe (impcntr) into the country. Responses 

ranged from 1 (allow many) to 4 (allow none). Thus, higher scores imply a stronger 

rejection of immigrants. Figure 2.2 presents the latent variable ALLOW and the three 

indicators measuring it. 
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Figure 2.2. A measurement model for the willingness to allow immigrants into the country 

 

Results of the MGCFA Analysis 

Table 2.1 presents the global fit indices for the MGCFA analysis and the three levels of 

exact measurement invariance that we tested: configural, metric and scalar. We used the 

software package Amos for the analysis. Looking at chi-square difference tests, moving 

from configural to metric and from metric to scalar invariance leads to a significant 

deterioration of model fit. As mentioned before, however, these chi-square based tests are 

very strict, and even substantively small deviations from invariance could lead to 

statistically significant misfit. According to the changes in alternative fit indices, such as 

CFI and RMSEA, moving from the configural to the metric invariance model, and from 

the metric to the scalar invariance model does not lead to a strong deterioration of model 

fit: the change in RMSEA is smaller than 0.03, and the change in CFI is smaller than 0.01 

(see Table 2.1). As a result, one can conclude that measurement invariance is given on all 

levels based on the cut-off criterion suggested by Chen (2007[15]). Yet it has to be 

acknowledged that the evidence is not completely conclusive, as the chi-square difference 

tests point in the opposite direction. 

Table 2.1. Model fit indices for the exact measurement invariance test using MGCFA 

  Chi2 df RMSEA CFI 

Configural 0 0 
 

1.000 

Metric 79.46 12 .021 [.017-.025] .997 

Scalar 232.59 24 .026 [.023-.029] .990 

Notes: Chi2 = chi-square; df = degrees of freedom; RMSEA = Root mean square error of approximation [with 

a 95% confidence interval]; CFI = Comparative fit index 

Results of the Alignment Procedure 

We begin the presentation with the syntax used to run the alignment procedure and explain 

each line of the syntax. For the analysis we used the software package Mplus 7.4 (Muthén 

and Muthén, 1998-2017[25]). Table 2.2 presents the syntax and its explanation. 
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Table 2.2. The commands for running the alignment estimation procedure in Mplus 

Command Explanation 

data: file is FRANCE.dat; Defining the raw data file 

VARIABLE: 

  names are essround imsmetn imdfetn impcntrb; 

  usevariable imsmetn imdfetn impcntrb; 

  missing = all (77 88 99); 

Lists the variables in the dataset and those used in the 
model. In addition, the missing values are defined. 

classes = c(7); 

  knownclass = c(essround = 1 2 3 4 5 6 7); 

The alignment procedure uses a mixture model with a 
known number of classes (i.e., groups). The groups are ESS 
rounds in the current example. 

ANALYSIS: 

  type = mixture; 

Defines a mixture analysis. 

Estimator = ML; Uses a maximum likelihood estimator. 

Alignment = fixed (6); Uses the fixed alignment. 

MODEL: 

  %overall% 

  ALLOW by imsmetn imdfetn impcntrb; 

Defines the model (a continuous latent variable measured by 
three indicators). 

OUTPUT: 

      stand; 

      tech1 tech8; 

      align; 

Output request. 

SAVE: 

  FILE IS align_FRANCE1_7.dat; 

 

Table 2.3 presents the non-invariant factor loadings and intercepts in the fixed alignment 

optimisation. These are listed in the Mplus output. The list with non-invariant parameters 

indicates which parameters show substantially relevant deviations across groups, and is 

conceptually similar to the modification indices when running an MGCFA (and an exact 

measurement invariance test). 

Table 2.3. Non-invariant parameters (factor loadings and intercepts) 

 Factor Loadings   Intercepts 

ESS round imsmetn imdfetn  impcntrb  imsmetn imdfetn  impcntrb 

1        

2   X     

3        

4        

5        

6 X    X X X 

7 X    X  X 

Number of non-invariant parameters 2 0 1  2 1 2 

percentage of non-invariant parameters 14%  24% 

Table 2.3 shows that 14% of the factor loading and 24% of the intercept parameters were 

non-invariant across groups. As a rule of thumb, Asparouhov and Muthén (2014[19]) put 

forward that meaningful comparisons could be made as long as the percentage of non-

invariant parameters is lower than 25%. According to this heuristic, we can thus rely on the 

estimated means of the alignment procedure. Readers should be warned, however, that this 

is simply a rule of thumb based on a limited number of simulation studies. The percentage 

is a very rough indicator that does not take into account the pattern of differences, and is 

not sensitive to the size of the deviations from the average pattern. When strong deviations 

of equivalence are located in a limited number of groups, comparisons can be problematic 
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while the percentage of non-invariant parameters is misleadingly low. Therefore, a closer 

inspection of measurement parameters per group is advisable. 

Next we present the means estimated in the alignment procedure. In Table 2.4 we present 

this part of the Mplus output, and below Table 2.4 we interpret this information. 

Table 2.4. Mplus output comparing means of the latent variable ALLOW 

Means of the latent variable ALLOW are presented in a descending order, along with statistically significant 

differences (at the 5% significance level) 

Ranking Group (ESS round) Factor mean Groups With Significantly Smaller Factor Mean 

1 2 0.165 5 4 6 7 

2 3 0.156 4 6 7 

3 1 0.144 4 6 7 

4 5 0.091 6 7 

5 4 0.067 6 7 

6 6 0   

7 7 -0.034   

An inspection of Table 2.4 reveals that groups 1, 2 and 3 (which correspond to ESS rounds 

1, 2 and 3, i.e. years of data collection 2002, 2004 and 2006) have the highest means (i.e. the 

strongest rejection of immigrants). Their means are not significantly different from each 

other. The mean in round 2 (round 2004) is highest and is significantly higher than in ESS 

rounds 4, 5, 6 and 7. The means in ESS rounds 1 and 3 are significantly higher than the 

means in rounds 4, 6 and 7. The means in rounds 4 and 5 are not significantly different 

from each other and are significantly higher than those in rounds 6 and 7. The means in 

rounds 6 and 7 are the lowest and are not significantly different from each other. In other 

words, in these two last ESS rounds 6 and 7, rejection of immigration is lowest and people 

are the most willing to allow immigrants into the country.  
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Chapter 3.  Bayesian Approximate Measurement Invariance 

Kimberley Lek and Rens van de Schoot 

Defaults versus Approximate Measurement Invariance 

When measurement invariance (MI) does not hold, subjects from different groups 

(typically countries) or the same subjects at different time points respond differently to the 

items of a questionnaire. As a consequence, factor means cannot reasonably be compared, 

either across these groups or over time (Millsap, 2011[26]). Testing for MI is therefore a 

requirement when one wants to compare countries or time points on factor means. When 

there are many countries or time points involved, testing for MI is often a frustrating and 

cumbersome enterprise. Full MI rarely holds in such large datasets, and one is often 

confronted with many large, non-negligible modification indices. Moreover, problems may 

arise from the fact that releasing invariance constraints on the basis of these modification 

indices is not guaranteed to lead to the correct or simplest model, due to chance 

capitalisation (Muthén and Asparouhov, 2013[27]). So, what to do in such a situation? 

Muthén and Asparouhov (2012[28]; 2013[29]) describe a novel method, labelled Bayesian 

structural equation modelling (BSEM), where exact zero constraints can be replaced with 

approximate zero constraints. BSEM is for instance used in the context of confirmatory 

factor analysis, where cross-loadings are traditionally constrained to be zero. By using the 

procedure of Muthén and Asparouhov (2012[28]), these cross-loadings can be estimated with 

some, as van de Schoot et al. (2013[30]) call it, ‘wiggle room’, implying that very small 

cross-loadings are allowed. Another area where approximate zeros might have an 

advantage is when full measurement invariance across groups does not hold, implying that 

exact zero differences between factor loadings and intercepts are too strict. Allowing small 

differences in factor loadings and/or intercepts can ensure a satisfactory model fit, termed 

Bayesian approximate MI. Bayesian approximate MI allows for some wiggle room for the 

intercept or factor loading differences between countries, where the wiggle room is 

determined by the degree of precision of the prior. The use of priors on the difference in 

parameters introduces a posterior distribution, which tries to find a compromise between 

the ideal situation (the difference between two parameters is zero) and the situation we find 

in the data (the difference is unrestricted). The willingness to compromise between model 

and reality has the following effect: the posterior difference in parameters across groups is 

close enough to its ideal zero to allow latent mean comparisons, yet close enough to the 

reality of the data to result in acceptable model fit. For more details we refer to 

Van de Schoot et al. (2013[30]) and Lek et al. (2018[31]). 

Bayesian approximate MI can be used in conjunction with the alignment method introduced 

in Chapter 2. The approximate MI solution is then rotated such that the number of non-

invariant items is minimised. The choice for alignment depends on the anticipated structure 

of non-invariance in the data: approximate MI without alignment is suitable when there is 

a large degree of minor non-invariance, where the differences in intercepts and factor 

loadings largely cancel each other out (Asparouhov and Muthén, 2014[19]). Approximate 

MI with alignment is applicable when the majority of the items is invariant while a minority 

is not (Muthén and Asparouhov, 2013[27]). BSEM is currently available for situations where 

the latent variable is of continuous nature and when indicator variables are either 

continuous or could be approximated as continuous (e.g. Likert scales). 
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Illustration 

Data and Measurements 

To illustrate Bayesian approximate MI, we used ESS data collected in 22 countries 

(i.e. Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, 

Hungary, Ireland, Israel, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, 

Slovenia, Sweden and Switzerland) from the 2002 round. The total number of respondents 

in the 22 countries is 42 359 in this round with an average per country of 1 925 (min = 

1 207; max = 2 919). 

In accordance with Davidov and Meuleman [see Chapter 2; see also Meuleman & Billiet 

(2012[32]); Davidov et al. (2015[16])], we used three items measuring the willingness of 

respondents to allow immigrants into the country (with a latent variable named ‘ALLOW’). 

The questions measuring this latent variable inquire whether respondents are willing to 

allow immigrants of the same race or ethnic group as the majority (imsmetn), from a 

different race or ethnic group than the majority (imdfetn), or from poorer countries outside 

Europe (impcntr) into the country. Responses ranged from 1 (allow many) to 4 (allow 

none). Thus, higher scores imply a stronger rejection of immigrants. Figure 2.2 in Chapter 2 

presents the latent variable ‘ALLOW’ and the three indicators measuring it. 

Analytic Strategy 

The current illustration has two major goals. The first goal is to compare the Bayesian 

approximate MI solution to that of the traditional multigroup confirmatory factor approach 

(MGCFA) and (ML) alignment (see also Chapter 2), based on their factor mean ranking of 

the 22 countries. The second goal is to determine whether Bayesian approximate MI is 

feasible1, with a prior on the difference in intercepts and slopes (e.g. factor loadings) across 

the 22 countries (for Mplus code see Annex 3.A). The mean of this prior equals zero, 

because on average we want no differences in intercepts and slopes across groups. The 

variance of the prior determines the ‘wiggle room’ we allow in the intercept and factor 

loading estimates across the 22 countries. We use a prior variance of .05, but other values 

are possible and are compared in a sensitivity analysis (i.e. .001, .005, .01, .05, .1). In the 

absence of strict guidelines, we developed a simple procedure to investigate the Bayesian 

approximate MI solution, using the software R (R Core Team, 2017[33]) and the R package 

“MplusAutomation” (Hallquist and Wiley, 2018[34]); see Annex 3.B for the annotated 

R code. 

Results 

MGCFA 

In Table 3.1 the results are displayed for the traditional configural, metric and scalar 

invariance models. Because of the large sample size, all Chi-square difference tests have 

p-values close to zero. Looking at the Chi-square values, the CFI and RMSEA [following 

the recommendation of Chen (2007[15])], the scalar invariance model seems problematic 

and full comparability of means is not achieved. According to the fit statistics, the scalar 

model is thus inappropriate to compare the latent means shown in the second column of 

                                                      
1 Note we only report on the results of Bayesian approximate MI with alignment because 

approximate MI without alignment resulted, even after 100 000 iterations, in a posterior covariance 

matrix not positive definite in one of the chains. 
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Table 3.2 across the 22 countries. Note that these fit statistics may be too strict when the 

amount of non-invariance in the data is non-substantial. 

Table 3.1. Model fit indices for the exact measurement invariance test using MGCFA 

  Chi2 df RMSEA CFI 

Configural n/a 0 0 1.000 

Metric 443.106 42 0.07  [0.065  0.076] 0.995 

Scalar 1703.733 84 0.10  [0.096  0.104] 0.979 

Note: Chi2 = chi-square; df = degrees of freedom; RMSEA = Root mean square error of approximation [with 

a 95% confidence interval]; CFI = Comparative fit index 

Table 3.2. Comparison of the latent mean ordering across countries for MGCFA, BSEM 

with alignment and alignment with ML 

 Factor mean (rank order) 

Country MGCFA traditional ML alignment BSEM with alignment 

Hungary 1.312 (1) 1.342 (1) 1.337 (1) 

Greece 1.104 (2) 1.111 (2) 1.108 (2)  

Luxembourg 1.005 (3) 1.028 (4) 1.024 (4) 

Portugal 0.990 (4) 1.036 (3) 1.033 (3)  

Spain 0.819 (5) 0.842 (7) 0.838 (7) 

Israel 0.768 (6) 0.930 (6) 0.917 (6) 

Austria 0.699 (7) 1.013 (5) 1.006 (5) 

Czech Republic 0.676 (8) 0.711 (8) 0.707 (8)  

Poland 0.554 (9) 0.565 (9) 0.563 (9)  

Denmark 0.511 (10) 0.525 (10) 0.521 (10) 

France 0.477 (11) 0.518 (11) 0.514 (11)  

Finland 0.476 (12) 0.485 (12) 0.482 (12) 

United Kingdom 0.366 (13) 0.384 (14) 0.382 (14) 

Slovenia 0.347 (14) 0.482 (13) 0.479 (13) 

Belgium 0.349 (15) 0.358 (15) 0.356 (15) 

Italy 0.296 (16) 0.312 (16) 0.310 (16) 

Netherlands 0.278 (17) 0.307 (17) 0.305 (17) 

Germany 0.180 (18) 0.182 (19) 0.182 (19) 

Ireland 0.177 (19) 0.184 (18) 0.179 (18) 

Switzerland 0.124 (20) 0.128 (20) 0.126 (20) 

Norway 0.000 (21) 0.000 (21) 0.000 (21) 

Sweden  -0.222 (22) -0.224 (22) -0.225 (22) 

Notes: MGCFA traditional wrongly assumes scalar measurement invariance. Norway is used as the reference 

group with factor mean 0 (and factor variance 1). 

Alignment (ML) 

The third column of Table 3.2 contains the estimated factor means and their ranking when 

using the ML alignment method (see previous chapter for more details). In order to compare 

these factor means, the model should have a satisfactory model fit and the majority of the 

items should be non-invariant. With regard to model fit, we have zero degrees of freedom 

to obtain model fit indices (due to the small number of items). We therefore simply 

assume – for this illustration – that our alignment ML model fits the data. With regard to 

the degree of (non)invariance, Muthén and Asparouhov (2014[20]) suggest 25% of the 

parameters to be non-invariant or less as a general rule of thumb. The Mplus output labelled 
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“Approximate measurement invariance (non-invariance) for groups” indicates that in our 

illustration, 21 intercepts and 16 factor loadings appear to be non-invariant over the 

22 countries, leading to an average of 28% non-invariance (31.82% factor loading non-

invariance; 24.24% intercept non-invariance). 

Bayesian Approximate MI with Alignment  

The fourth column of Table 3.2 shows the result of approximate MI with the alignment 

option. Again, before comparing the factor means, model fit should be satisfactory and the 

majority of the items should be invariant. To assess model fit, we relied on the posterior 

predictive p-value (PPP). PPP-values around 0.5 indicate a good predictive model fit. The 

PPP in our illustration is 0.503. It is tempting to evaluate small variance priors using readily 

available approaches like the posterior predictive p-value and the Deviance Information 

Criterion (DIC). However, as was shown by Hoijtink and Van de Schoot (2018[35]) both are 

not really suited for the evaluation of models based on small variance priors. An alternative 

is the prior-posterior predictive p-value, which is currently being implemented in software. 

Prior choice 

Ideally, the estimated differences in latent means over the 22 countries should not depend 

on the chosen prior variance. To investigate the influence of prior variance choice, we look 

at the latent mean difference estimates we would obtain with different reasonable prior 

variances. When the number of countries is large, as in our example, it can be infeasible to 

check this prior influence for every combination of countries. Therefore, we limit ourselves 

to three comparisons: Switzerland (SW) versus Austria (AU), Greece (GR) versus Portugal 

(PO) and Denmark (DM) versus France (FR). We choose these three comparisons based 

on Figure 3.1, which plots the Euclidean distance for the countries’ intercept*factor loading 

values for each of the three items at a prior variance .05 (the annotated R code in Annex 

3.B enables us to compute this Euclidean distance for each country indicating the level of 

non-invariance when compared to other countries.). 

In Figure 3.1, SW and AU respectively show the smallest Euclidean distance indicating 

these two countries have very similar intercepts and factor loadings and hence are rather 

similar in their level of non-invariance. PO and GR show a median Euclidean distance and 

DM and FR show the largest Euclidean distance indicating these two countries are least 

similar in the combination of the estimates for the intercepts and factor loadings. Checking 

this last combination with the largest distance is particularly important (see below). 
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Figure 3.1. Visual representation of the variability in model parameters in an approximate 

invariance model 

intercept * factor loading values are plotted for each of the three items as estimated with a prior variance of .05

 

Notes: See Annex 3.B for computational details. The green dots show the smallest Euclidian distance between 

countries (AU and SW), the red dots the median Euclidean distance (PO and GR) and the pink dots the largest 

Euclidean distance (FR and DM). 

For each of the three country combinations, Figure 3.2, Figure 3.3 and Figure 3.4 illustrate 

the influence of prior variance choice on the estimated latent mean difference. When factor 

loadings and intercept differences between countries are relatively small (SW versus AU; 

Figure 3.2) or average (GR versus PO; Figure 3.3), all estimated differences fall within a 

small range. This can be used as an indication that the difference in ALLOW estimates is 

reasonably robust against changes in prior variance for countries that do not differ too much 

in terms of factor loadings and intercepts. When factor loadings and intercepts differ 

considerably, as with Denmark and France (Figure 3.4), the estimates differ, particularly 

for relatively small prior variances. Based on this information, one would want to 

understand why France and Denmark have such a different interpretation of the items.  
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Figure 3.2. Differences in the means of “ALLOW” for Switzerland and Austria, by prior 

variance 

 

 

Notes: Estimates correspond to prior variances .001, .005, .01, .05 and .1. Estimates are connected by line 

segments to ease interpretation. The y-axis range is -0.5 to 0. 
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Figure 3.3. Differences in the means of “ALLOW” for Greece and Poland, by prior variance 

 

Notes: Estimates correspond to prior variances .001, .005, .01, .05 and .1. Estimates are connected by line 

segments to ease interpretation. The y-axis range is -0.5 to 0 in the right panel, and -0.05 to -0.03 in the left 

panel. 
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Figure 3.4. Differences in the means of “ALLOW” for France and Denmark, by prior 

variance 

 

Notes: Estimates correspond to prior variances .001, .005, .01, .05 and .1. Estimates are connected by line 

segments to ease interpretation. The y-axis range is -0.5 to 0 in the right panel, and -0.025 to -0.01 in the left 

panel. 

Discussion 

When comparing latent factor means across many countries, often the test for measurement 

invariance fails, as was the case in our illustration: the scalar model did not reach 

satisfactory model fit. As was argued in the previous chapter, a solution might be to use the 

alignment method. As we demonstrated, the results of the alignment method can still result 

in too many of the item-country combinations being non-invariant. A solution suggested in 

the literature is the method of approximate measurement invariance which reduces the level 

of non-invariance by using the Bayesian toolbox. Using strict priors on the parameter 

differences between countries, the non-invariance is “gently” pushed towards zero leaving 

some wiggle room and thereby avoiding exact invariance.  

Although the factor means between the three methods are quite comparable (with 

correlations between the factor means larger than .98), there are a few ranking differences 

(see Table 3.2). Most of the changes in rank order that occurred between the first model in 

comparison with the other two happened in only few countries: Austria, Israel and 

Slovenia. Apparently, the scores for these countries are most influenced by the choice of 

statistical model. However, the highest degree of non-invariance in parameters is found 

when comparing France and Denmark. Based on the results of the three different 



EDU/WKP(2019)9 │ 29 
 

INVARIANCE ANALYSES IN LARGE-SCALE STUDIES 
Unclassified 

approaches, only the factor means and rank order of the Bayesian approximate model with 

alignment should be used for interpretation and further analyses with the exception of the 

comparison of France and Denmark. The next step is to come up with explanations why 

the participants in France and Denmark interpreted the questions in a different way. Finding 

a good explanation would require further study. The different interpretations are unlikely 

to be due to translation problems, given the rigorous translation procedures used in the ESS 

project. 

Recommendations 

When there are many countries or time points in our data, full measurement invariance 

rarely holds. Bayesian approximate MI with alignment can be a viable alternative in these 

instances, balancing theory (no differences in factor loadings and intercepts across 

countries or time points) and reality (model fit). As the method of Bayesian approximate 

MI is relatively new, there are no strict guidelines yet to determine whether approximate 

MI holds or which prior settings to use. Therefore, we advise performing a sensitivity 

analysis for country combinations with the largest non-invariance as is estimated with the 

Euclidian Distance (see Annex 3.B). Model fit indices to assist making decisions on model 

fit with informative priors and which prior settings to use are currently being developed 

and slowly being integrated in software (Hoijtink and van de Schoot, 2018[35]). All in all, 

the method of approximate MI is promising, especially in the case with many small 

deviating items, but the application to empirical data should be carefully done. 
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Annex 3.A. Mplus Input File 

Annex Table 3.A.1. Input file Bayesian approximate MI with alignment 

Syntax Explanation 

DATA:  FILE = "ESSdata.dat" ; Defining the data file with 22 countries and 1 wave (2002).  

VARIABLE:    

NAMES ARE imsmetn imdfetn 
impcntr imbgeco imueclt imwbcnt 
newctry; 

Variable names in the dataset, 

 USEVARIABLES ARE imsmetn 
imdfetn impcntr;  

variables used for the MGCFA 

MISSING = all (77 88 99);  missing data specification 

classes = g(22); The 22 countries are defined as known classes, in a mixture analysis (newctry contains the numbers for 
the 22 countries) KNOWNCLASS IS g (newctry = 1 2 3 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 19 20 21 22); 

ANALYSIS: For the alignment procedure, a mixture model is specified. Here, we use fixed alignment, where the 
factor mean (and factor variance) of the 18th country (Norway) are constrained.    type is mixture; 

  alignment = fixed (18 BSEM); 

  estimator is bayes; For this illustration, Bayesian statistics is used together with the alignment statement. The Bconvergence, 
Biterations and chains options all aid convergence.   Bconvergence=0.05; 

  Biterations = 500000(100000); 

  processor = 2; 

  chains = 2; 

BSEED = 123;   

MODEL:  

     %OVERALL% overall model statement  

     Allow by imsmetn; 

     Allow by imdfetn; 

     Allow by impcntr; 

[imsmetn imdfetn impcntr]; 

%G#1% This part is repeated for every of the G countries (here illustrated for country 1 = Austria). Note the 
labeling of the factor loadings (first number is for the group, second number for the item) and the 
intercepts.  

     Allow by imsmetn (lam1_1); 

     Allow by imdfetn (lam1_2); 

     Allow by impcntr (lam1_3); 

     [imsmetn] (nu1_1); 

     [imdfetn] (nu1_2); 

     [impcntr] (nu1_3); 

[…]  

MODEL PRIORS: In this part, priors are placed on the differences in intercepts and factor loadings across the countries. 
DO(1,3) implies that the placement of the prior should be done for item 1,2 and 3. DIFF makes sure the 
prior is placed on the difference in factor loadings and intercepts, not on the factor loadings and 
intercepts themselves. # is being replaced by 1,2 and 3 in the DO loop. 

DO (1,3) DIFF(lam1_#-lam22_#) ~ 
N(0,0.05); 

DO (1,3) DIFF(nu1_#-nu22_#) ~ 
N(0,0.05); 

OUTPUT: Align;   
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Annex 3.B. R code  
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templateFile.txt 
 

[[init]] 

iterators = variances;  

variances = 0.001 0.005 0.01 0.05 0.1;  

filename = "[[variances]] - Approximate MI input.inp"; 

outputDirectory = "F:/MplusAutomationOutput"; 

[[/init]] 
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title: Application approximate MI 

 

 DATA:  FILE = "F:/MplusAutomationOutput/ESSdata.dat" ; 

 VARIABLE:  NAMES ARE imsmetn imdfetn impcntr imbgeco imueclt imwbcnt newctry; 

  usevariables are imsmetn imdfetn impcntr; 

  missing = all (77 88 99); 

  classes = g(22); 

  KNOWNCLASS IS g (newctry = 1 2 3 4 5 6 7 8 9 10 11 12 

                                                       13 14 15 16 17 18 19 20 21 22); 

 

    ANALYSIS: 

    !model is allfree; 

    alignment = fixed (bsem); 

    type is mixture; 

    estimator is bayes; 

    Bconvergence=0.01; 

    Biterations = 500000(100000); 

    processor = 2; 

    chains = 2; 

    bseed = 123; 

 

    MODEL: 

 

       %OVERALL% 

       Allow by imsmetn; 

       Allow by imdfetn; 

       Allow by impcntr; 

 

  [imsmetn imdfetn impcntr]; 

 

       %G#1% 

       Allow by imsmetn (lam1_1); 

       Allow by imdfetn (lam1_2); 

       Allow by impcntr (lam1_3); 

 

       [imsmetn] (nu1_1); 

       [imdfetn] (nu1_2); 

       [impcntr] (nu1_3); 

 

!!!!!!!!!!! repeated for %G#2% - %G#22% !!!!!!!!!!! 

 

 

    MODEL PRIORS: 

  DO (1,3) DIFF(lam1_#-lam22_#) ~ N(0,[[variances]]); 

  DO (1,3) DIFF(nu1_#-nu22_#) ~ N(0,[[variances]]); 

 

 

    PLOT: 

    type is plot2; 

 

  OUTPUT: ALIGN; 
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Chapter 4.  Cross-Cultural Comparability in Questionnaire Scales: Bayesian 

Marginal Measurement Invariance Testing 

Jean-Paul Fox 

Introduction 

When administering a test to different groups, it is important to be able to compare the test 

results across members of those groups. In order to make meaningful comparisons between 

groups, the latent variable 𝜃 (i.e. ability or propensity) must be measured on a common 

scale. To accomplish a common scale analysis, the possible violation of the assumption of 

measurement invariance should be taken into account (Thissen, Steinberg and Gerrard, 

1986[36]; Fox, 2010[37]; van de Vijver and Tanzer, 2004[38]). In item response theory (IRT), 

measurement invariance is present when the conditional probability of answering an item 

correctly does not depend on group information (Thissen, Steinberg and Gerrard, 1986[36]). 

In current Bayesian methods, random item effects are used to detect measurement non-

invariance. More specifically, deviations from the overall mean are specified for each 

group-specific item parameter (Fox, 2010, pp. 193-225[37]; Kelcey, McGinn and Hill, 

2014[39]). The variance between groups with respect to these deviations is evaluated in order 

to detect measurement non-invariance: The larger the variance between groups, the higher 

the degree of measurement variance. These current methods are based on a conditional IRT 

modelling approach, where inferences are made regarding the latent variable conditional 

on the estimates of the group-specific item parameters. Verhagen and Fox (2013[40]) 

showed that Bayesian methods can be used concurrently to test multiple invariance 

hypotheses for groups randomly sampled from a population. They found that a Bayes factor 

test had good power and low Type I error rates for different sample size conditions to detect 

measurement non-invariance. 

The random item effects approach is not suitable, when only a few groups are considered 

which are not sampled from a larger population. For a few groups, the between-group 

variance cannot be accurately estimated. Furthermore, this variance parameter has no 

correct interpretation when the selected groups define the entire population. In practice, in 

the sample design, groups are often considered to be fixed units (i.e. strata), and there is a 

specific interest in the selected groups, which constitute the entire population. A well-

known two-group setting is the comparison of a single focal group to a single reference 

group, where a grouping variable (e.g. gender or geographic location) is the subgroup-

classification or stratification variable. For non-randomly sampled groups (strata), 

Verhagen et al. (2016[41]) proposed another Bayes factor test, which was able to directly 

evaluate item difficulty parameter differences across the selected groups. 

The current Bayesian approaches have several limitations. First, the variance between 

group-specific item parameters is explicitly modelled even though the object of these 

methods is to test whether this variance is present, which would indicate that the 

measurement invariance assumption is violated. That is, the prior for the variance 

parameter reflects an assumption of measurement non-invariance. Second, the model 

representing measurement invariance is not nested within the model representing 

measurement non-invariance. Measurement invariance is represented by a variance of zero, 

which is a boundary value on the parameter space (Fox, Mulder and Sinharay, 
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2017[42]).This complicates statistical test procedures and requires approximate methods 

such as an encompassing prior approach (Klugkist and Hoijtink, 2007[43]). Third, the latent 

variable 𝜃 is estimated using potentially biased item difficulty and population parameter 

estimates. Fourth, the above-mentioned approaches are applicable either to a non-randomly 

selected number of groups (strata) or to randomly selected groups (clusters), but none of 

the approaches is applicable to both situations. 

Van de Schoot et al. (2013[30]) introduced a different Bayesian approach, where a prior 

distribution is specified for the ‘invariant’ item parameters, allowing them to vary across 

groups. The prior distribution for the item parameter provides support to variability in item 

parameter values across groups. When the prior variance is sufficiently small, approximate 

measurement invariance is considered. They also demonstrated that this prior for the item 

parameters can be used to evaluate approximate measurement invariance and to determine 

acceptable differences in item functioning between groups. 

This method also has several drawbacks. First, the variance of the prior distribution 

determines the level of possible variation in item functioning, which needs to be specified 

a priori. In general, the magnitude of non-invariance for each item is usually unknown. 

Second, the prior is cantered around zero, where the point zero represents measurement 

invariance. The shape of the prior distribution can easily favour the measurement 

invariance assumption over the non-invariance assumption. For instance, when the prior 

distribution is single-peaked and cantered around the mean value (e.g. a normal distribution 

with mean zero), the point zero, representing measurement invariance, is a priori favoured 

over any other point representing non-invariance. Third, models with different prior 

variances for the item parameters do not differ in their number of model parameters, which 

complicates the model selection procedure. For instance, the less restrictive model with 

larger prior variances, but an equal number of model parameters as the one with smaller 

prior variances, will always be favoured by the usual information criteria such as the Akaike 

Information Criterion (AIC) and the Bayes Information Criterion (BIC) (Kim et al., 

2017[44]; van de Schoot et al., 2013[30]). Fourth, the specified prior variance to represent 

approximate measurement invariance depends on the sample size. In Kim et al. (2017[44]) 

and van de Schoot et al. (2013[30]), a prior variance of .001 represents approximate 

measurement invariance. Davidov et al. (2015[16]) allowed a variance of .05 under the 

approximate measurement invariance assumption. Specifically, for smaller sample sizes, 

the approximate measurement invariance model is often selected over the true model with 

a prior variance of .05. As the sample size decreases, the prior variance of .001 will lead to 

more shrinkage of the posterior mean estimate towards the prior mean, representing 

approximate measurement invariance. Therefore, when sample sizes are small, the prior 

variance representing approximate measurement invariance, can easily represent 

overwhelming evidence in favour of the measurement invariance hypothesis. In the same 

way, it is not possible to identify a specific prior variance as the allowed magnitude of 

variation that is acceptable as approximate measurement invariance, since the influence of 

the prior variance is sample dependent.  

To overcome these limitations, a new method based on a marginal random item effects 

model is proposed. Instead of conditioning on group-specific item parameters, common 

item parameters (i.e. a measurement invariant item parameters) are modelled, which apply 

to all groups. As a result, the possible error with respect to these item parameters is included 

in the residuals for each group. It is proposed that in order to detect measurement non-

invariance, the correlation of within-group residuals should be evaluated. Hence, the 

additional correlation between observations caused by violations of measurement 

invariance is addressed in the marginal random item effects model. Additionally, since 
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residual correlations between response probabilities are evaluated, the complex 

identification assumptions associated with the random item effects model (De Jong, 

Steenkamp and Fox, 2007[45]; Verhagen and Fox, 2013[40]) can be avoided. A further benefit 

of the proposed method is that it can be applied to both randomly selected groups (clusters) 

and non-randomly selected groups (strata) to make inferences about measurement 

invariance in the population and for the groups in the sample, respectively. 

The current description of the marginal model is based on a random item difficulty 

parameter as described in Fox, Mulder and Sinharay (2017[42]). Before discussing in detail 

the marginal test approach, a comparison is made with traditional tests for measurement 

invariance and score purification methods. Then, the performance of the method is shown 

through simulation studies and an illustration of the method is given using a real data 

example. Finally, a discussion is given to show possible extensions of the method to more 

general situations. This includes a marginal model for the two-parameter IRT model to 

show that the measurement invariance test approach can be extended to more advanced 

IRT models. 

Differential Item Functioning Methods 

One class of methods for the detection of measurement non-invariance, or differential item 

functioning (DIF), can be considered as methods based directly on observable statistics. 

Within this class, the Mantel-Haenszel (MH) procedure is one of the most common 

procedures used to identify DIF (Holland and Wainer, 1993[4]). It can be computed to detect 

measurement non-invariance between two groups, where one group is called the reference 

group and the other group is called the focal group. The reference and the focal group are 

compared in terms of a matching variable (e.g. total test score or subscore) so that 

comparable groups are formed. Score equivalence between groups is established through a 

matching variable. 

Under right-scoring for an item, a contingency table can be created for each subgroup 

(Hambleton and Rogers, 1989[46]). 

Figure 4.1. Contingency table for a binary item, with groups matched on g 

 

The MH statistic evaluates whether the odds of getting the item correct at a given level of 

the matching variable is the same in the focal and reference groups. 

A violation of measurement invariance is represented by an item-by-subgroup interaction. 

When the item is measurement invariant, the distribution of the item responses does not 

depend on group membership for each level of the matching variable. As a consequence, 

conditional on each level of the total score, responses to the measurement invariant item 
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are assumed to be a simple random sample. Subsequently, a violation of measurement 

invariance corresponds to a violation of the basic assumption of independence of a simple 

random sample. The MH method evaluates whether there is an interaction between the 

group and the item responses, which corresponds to evaluating the independence 

assumption of a simple random sample. If this assumption is violated, a cluster (or 

stratified) sample is observed instead of a simple random sample, and measurement 

invariance does not hold. 

The MH statistic is computed as follows (Hambleton and Rogers, 1989[46]; Magis, Béland 

and Raiche, 2015[47]): 
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Equation 4.3 

The 𝜒𝑀𝐻
2  statistic is assumed to be chi-squared distributed under the assumption of 

measurement invariance (i.e. absence of DIF). A violation of measurement invariance is 

detected, when the test statistic is considered extreme under the chi-squared distribution. 

The MH test has several disadvantages. First, it is based on a two-group comparison, which 

makes it impossible to test simultaneously measurement invariance across multiple groups. 

In a multigroup situation, all subsets of two groups need to be compared. This will provide 

information about the violation of measurement invariance for each subset of two groups. 

The MH test results can contradict each other, where for instance a violation is detected for 

group 1 and 2, but not for group 1 and 3 and group 2 and 3. 

Second, the MH statistic cannot handle randomly selected groups from a larger population, 

and will only provide information about a violation of measurement invariance related to 

the two groups. For randomly selected groups, the object of interest is whether the item can 

be marked as measurement invariant for the considered population. For instance, assume 

an item shows a violation of measurement invariance for a sample of randomly selected 

countries from the European Union. Then, it would be of interest to know that the item can 

also be marked as a DIF item for the other countries in the European Union that were not 

selected in the sample. However, this is not possible with the MH test, since the MH test 

results cannot be generalised to a larger population from which the sample was taken. 
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Third, the extremeness of the MH statistic is based on a chi-squared sampling distribution, 

which is an asymptotic approximation. The approximation might be poor, when only a few 

levels of the matching variable are considered (i.e. a few test items) and/or when sample 

sizes are small. 

Fourth, the MH test investigates a violation of measurement invariance and summarises the 

result across all levels of the matching variable. Although measurement invariance results 

are not specific for each level of the matching variable, a matching variable is needed and 

its definition can influence the test results (Donoghue and Allen, 1993[48]). 

Fifth, the MH test is based on frequentist hypothesis testing. Therefore, it is only possible 

to test whether the null hypothesis should be rejected. The quantification of evidence in 

favour of the null hypothesis (measurement invariance) is not possible. Furthermore, 

testing multiple hypotheses simultaneously is not possible. With MH, items can only be 

tested one by one, where it is assumed that the measurement invariant hypotheses across 

items can be tested independently from each other. In practice, the violation of 

measurement invariance can be related over items. 

Sixth, the multigroup comparison is only possible under a common scale analysis. To test 

an item for a violation of measurement invariance at least one anchor or measurement 

invariant item is needed to identify the scale across groups. Otherwise, the MH test results 

cannot be interpreted in a meaningful way. It can be difficult to identify the anchors before 

starting the measurement invariance analysis. 

Dorans and Holland (1993[49]) discussed a standardisation of the MH test (STAND), which 

is based on the principle that the expected performance of an item for each level of the 

matching variable is equal for the focal and reference group. The test does not require an 

equal number of responses across groups (i.e. unbalanced design), which is a requirement 

of the MH test. However, the other disadvantages of the MH test also apply to the 

standardised version. 

Another class of methods for the detection of measurement non-invariance is based on a 

latent variable model (e.g. IRT model). A general procedure can be identified, where the 

fit of an IRT model in the focal group and reference group is compared. A measurement 

invariance test is focused on the significance of the difference between the item parameter 

estimates of both groups. An item is flagged as measurement variant, when the difference 

is significant. As an example, Thissen, Steinberg and Wainer (1993[50]) compared a 

compact model to an augmented model, which includes all parameters of the compact 

model as well as additional parameters that represent violations of measurement invariance. 

The significance of the additional model parameters is tested, where the compact model is 

hierarchically nested within the augmented model. The likelihood ratio test is used to 

evaluate whether the additional model parameters are significantly different from zero. The 

likelihood ratio test is assumed to be chi-squared distributed with the number of degrees of 

freedom equal to the number of item parameters differing between the reference and focal 

group. The null hypothesis is rejected for a large test statistic value. In a loglinear 

parameterisation of the model, the interaction parameter between group membership and 

item parameters is explicitly parameterised (Thissen, Steinberg and Wainer, 1993[50]). 

One of the main disadvantages of this class of methods is that the effects, representing the 

violation of measurement invariance, are estimated, and measurement invariance tests are 

based on the estimates. For instance, the DIF effects of an item (i.e. the differences between 

item characteristic effects across groups) are usually difficult to estimate and often have 

large standard errors. The likelihood ratio test to evaluate the significance of the additional 
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parameters in the augmented model takes into account the low precision of the estimates. 

As a result, the (likelihood ratio) test is expected to have a low power, since it is based on 

estimates with low precision. Furthermore, low power can be expected for relatively small 

sample sizes. In this situation, the asymptotic sampling distribution of the test statistic 

might also not be appropriate leading to inaccurate test results. For a large sample size, 

small model deviations are easily significant. In that case, significant DIF effects might be 

detected, while in fact another misspecification of the model led to a significant value of 

the test statistic. 

Multiple group confirmatory factor analysis (MGFCA) is a more advanced approach within 

this class of methods, since it also includes the specification of a population distribution. A 

chi-squared difference test can be too restrictive for large sample sizes and as an alternative, 

global model fit measures are used to evaluate the fit of the model under the measurement 

invariance assumption. Different fit indices are often used, since their sampling 

distributions are unknown and the exact behaviour of each index is not exactly known. The 

knowledge of the sampling distribution is critical to decide whether the estimated 

difference is indeed measurement non-invariance or sampling error. Another problem is 

that the sampling distribution is affected by the sample size, the characteristics of the model 

(e.g. number of items, factor structure) and the index that is used. Recommended cut-offs 

are not universally applicable and the same cut-off value can imply a different level of 

goodness of fit across different models (e.g. factor structures) and sample sizes. 

Testing additional model parameters that represent a violation of measurement invariance 

cannot be used to examine the evidence in favour of measurement invariance. It can only 

be used to quantify the evidence in favour of an alternative. This makes the method not 

useful for examining the data evidence in favour of measurement invariance. 

Finally, the additional model parameters in the augmented model need to be defined on a 

common scale and anchors (e.g. measurement invariant items) are needed to evaluate 

measurement invariance assumptions of the other items. Without knowing the anchors, a 

top-down or bottom-up procedure is needed, where (sets of) items are tested sequentially 

to identify possible violations of measurement invariance. However, the order of testing 

the items for partial or full measurement invariance influences the results and different 

procedures can lead to different results. There is a high probability of errors due to 

capitalisation on chance, when the significance levels are based on the assumption of 

independent hypotheses. 

Score Purification Methods 

In the MH procedure a matching variable (e.g. test score) is used to identify DIF across the 

levels of the matching variable. A common procedure in DIF detection is to purify the 

matching variable by excluding items that exhibit DIF. In an iterative purification method, 

the most significant item on a test according to the MH statistic is identified, and this item 

is omitted when computing the matching variable for the subsequent DIF analyses. The 

purification procedure can improve the power of the test but can also reduce the Type-1 

error (Lee and Geisinger, 2015[51]). 

Recently, different methods have been developed to purify latent variable scores in the 

presence of measurement variant items. These methods are aimed at producing comparable 

latent variable scores thereby accounting for the measurement variant items. In a Bayesian 

modelling framework approximate measurement invariance has been introduced, where the 

prior for the item parameters allows them to be different to some extent across groups. The 
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idea is that latent scores computed under the assumption of approximate measurement 

invariance are not contaminated by item bias. The items are allowed to function differently 

across groups. However, as mentioned earlier, the prior specification of the item parameters 

(e.g. intercepts and loadings) highly influences the results. The purification of the estimated 

scores depends on the specification of the priors, and usually the magnitude of the DIF for 

each item is unknown. The method is not very useful, when a priori no information is 

available about the size of the DIF. 

The alignment method is another procedure that can be used to purify latent variable scores 

in the presence of DIF items. In the alignment method a rotation of the estimated solution 

is given, where the number of measurement invariant items is minimised. The estimated 

factor scores can be interpreted based on a subset of items that appear as measurement 

invariant. 

The alignment method has some disadvantages, when the object is to identify the 

measurement invariant items. First, the method is not meant for testing the measurement 

invariance assumption of each item. Single items cannot be tested with this procedure, since 

the method is based on rescaling the solution of the estimated model. It can only provide a 

set of items that appear as measurement variant. Second, the identified items that show 

measurement non-invariance depend highly on the properties of the other items in the test. 

Items that exhibit a small to moderate level of measurement variance might not be detected, 

when other items exhibit a large level of measurement variance. Third, the method does 

not provide tools to formally test whether the identified discrepancies in the estimated item 

parameters are significant. It is not clear whether multiple hypothesis testing can be 

employed to identify (and/or the percentage of) the measurement variant and measurement 

invariant items. 

Fourth, the rotated solution is obtained using a loss function, which assumes that there are 

always a few large variant items and many approximately invariant items. This approach 

is certainly not universal and might not be realistic for large-scale assessment data. 

Furthermore, different loss functions will lead to different results, but it is not clear which 

one will be the most suitable. In general, the optimisation criterion contains a priori 

information, which influences the final result, and this is beyond the control of the 

practitioner. Note that this loss function is also used in exploratory factor analysis (EFA), 

where it is desired to obtain subsets of small or large factor loadings. However, this 

approach does not translate nicely to measurement invariance testing, where optimisation 

criteria are more likely to differ across studies. 

Fifth, the method breaks down when more items are measurement variant than 

measurement invariant. However, it is not possible to verify this, since usually it is not 

known which items exhibit measurement non-invariance. As stated by Asparouhov and 

Muthén (2014[19]), the alignment method returns the simplest model where most of the 

items are measurement invariant, this might however not be the optimal solution. They also 

showed that parameter biases increase with increasing levels of measurement non-

invariance, decreasing group sizes and increasing number of groups. 

Finally, the alignment method is restricted to multiple (fixed) groups (strata), and cannot 

be applied to the situation where the groups are also sampled from a larger population. The 

method can only be used to make inferences about differences across the groups in the 

sample. 
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Bayesian Hypothesis Testing of Measurement Invariance 

The marginal measurement invariance approach proposed in this chapter is based on the 

Bayesian hypothesis testing framework, which has several advantages, and avoids several 

limitations of frequentist hypothesis testing. The main focus is on the posterior probability 

of a hypothesis, which represents the relative plausibility of the hypothesis given data and 

prior information. This posterior probability comprehends the data and prior information 

about the hypothesis. Without a preference for a specific hypothesis, the considered 

hypotheses are a priori equally likely. 

The posterior probability of a null hypothesis 𝐻0 given the data y can be expressed as 

𝑝(𝐻0|𝒚). When an alternative hypothesis is considered, the posterior probability of 𝐻0 is 

given by 
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Equation 4.4 

 

where 𝑝(𝐻0) = 1 − 𝑝(𝐻1) represents the prior probability of the null hypothesis. The ratio 

of posterior probabilities of the two hypotheses can be expressed as: 
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Equation 4.5 

The left-hand side represents the posterior odds where the right-hand side contains the prior 

odds. The introduced Bayes factor (BF) represents the evidence from the data to update the 

prior beliefs. When more than two models are considered, each posterior probability of a 

model can be computed from the set of BFs for each pair of competing models. That is,  

  0

00

k
k k

ii

BF
p M

BF





y

 

Equation 4.6 

under the assumption of equal prior probabilities.  

Although the Bayes factor (BF) (Kass and Raftery, 1995[52]) has important advantages, it 

has not been applied by many for evaluating assumptions of measurement invariance. The 

BF, following the hypothesis testing point of view of Jeffreys (1961[53]), allows one to 

evaluate evidence in favour of the null hypothesis. This is not possible in traditional 

significance testing, where the null hypothesis is not rejected, when evidence is lacking to 

decide otherwise. Failing to reject the hypothesis is of course no justification for using the 

model. 

When using the BF, data can be used directly as evidence to give positive support to the 

null hypothesis. Besides data information, other external information can be used to 

evaluate the hypothesis. The BF makes it possible to directly assess the support in favour 

of the hypothesis. This is in contrast with the traditional way of testing, which is aimed at 

rejecting the null hypothesis. When different hypotheses are compared, the BF can be used 
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to identify the amount of support for each hypothesis given the data information (Kass and 

Raftery, 1995[52]). 

The BF allows the comparison of nested and non-nested models, each representing 

different hypotheses. It allows the inclusion of different types of evidence (data and non-

data information), since it is constructed from prior and posterior information. The 

interpretation of the BF is also straightforward. It represents a summary of evidence in 

favour of one of the models after observing all information, where each model represents 

a scientific theory or statistical hypothesis. 

In BF testing the prior specifications are important, since the BF is computed by integrating 

over the model parameters. To make this more concrete, consider the BF in Equation 4.5, 

and let 𝜽 denote the model parameters. Then, the BF can be represented as 
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Equation 4.7 

which represents the ratio of marginal likelihoods (marginal distribution of the data). The 

marginal distribution of the data is obtained by integrating over the parameter space, where 

each model has its own prior specification for parameter 𝜽. Hypotheses with order 

restrictions on the parameters of interest can be treated in the same way as hypotheses with 

equality constraints on the parameters of interest. 

The BF scale is directly interpretable: substantial evidence of the null hypothesis is found 

when 𝐵𝐹01 is between 3 and 10, and strong evidence between 10 and 30 (Jeffreys, 1961[53]; 

Kass and Raftery, 1995[52]). A Bayes factor outcome of greater than 3 indicates that there 

is substantial evidence in favour of the null hypothesis and that measurement invariance is 

plausible. When the Bayes factor is between 1/3 and 3, then there is no decisive evidence 

in favour of one of the hypothesis. The direct interpretation of the BF is appealing, and a 

sampling distribution of the BF is not needed to identify extreme BF outcomes. 

There are more advantages of the BF. First, the BF automatically adjusts for model 

complexity and avoids overfitting. It will select the model that provides the best description 

of the data, while taking the complexity of the model into account. The complexity of the 

model is integrated in the prior distribution. A more complex prior will describe a larger 

part of the parameter space where the likelihood is relatively small and this will decrease 

the marginal likelihood (Hoijtink, 2012[54]). 

Second, the BF can handle hypotheses that vary in complexity. For example, the BF can be 

used to compare a hypothesis of full measurement invariance to a hypothesis of partial 

measurement invariance, which will be represented by more model parameters. 

Fractional Bayes Factor Testing 

The integration over the prior probability in Equation 4.7 requires a proper prior 

distribution (i.e. a distribution that integrates to one). However, in evaluating measurement 

invariance hypotheses non-informative (improper) priors can be preferred to make data-

based decisions. The construction of non-informative priors can be improved, when the 

priors do not need to be proper. A common strategy is to define a prior with the same 

functional form as the likelihood to obey any numerical restrictions on the parameter space, 

but without preferring any parameter value above another. 
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The Bayes factor does not provide interpretable outcomes when improper priors are used, 

since the outcomes will depend on the unknown normalising constants. However, a 

fractional Bayes factor (FBF) can be computed, which normalises the outcome by using a 

fraction of the data (O’Hagan, 1995[55]). The Bayes factor is computed as the probability of 

the data given the null hypothesis divided by the probability of the data given the alternative 

hypothesis: 
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Equation 4.8 

The probabilities in the nominator and denominator are referred to as the marginal 

distribution of the data or marginal likelihood, given the model under the concerning 

hypothesis. The marginal likelihood given hypothesis Hi can be specified as follows 

(Raftery, 1995[56]): 
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Equation 4.9 

where 𝝉𝒌 stands for the parameters in the augmented model under hypothesis Hi. To make 

objective decisions about the level of measurement variance, an improper prior is specified 

for the parameter 𝝉𝒌, leading to an expression of the marginal distribution of the data up to 

an unknown constant. 

A minimal information sample is used with the purpose of normalising the prior under the 

hypothesis. In order to take into account the improper prior, the marginal distribution of 

the data given the hypothesis is divided by a term, which serves as a normalising constant. 

The unspecified normalising constant is determined by integrating the prior times a fraction 

s of the likelihood of the data over the parameter space. The fraction 𝑠 symbolises the 

minimal information needed to take into account the improper prior. The marginal 

distribution of the data under hypothesis 𝐻𝑖 given fraction s can be represented as  
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Equation 4.10 

where 𝝉𝒌 stands for the parameters in the model under hypothesis 𝐻𝑖. The denominator in 

Equation 4.10 represents a normalising constant to compensate for using an improper prior 

in the numerator. The interpretation of the resulting fractional Bayes factor remains the 

same as the interpretation of the Bayes factor. As a result, the advantages of BF testing also 

apply to the fractional Bayes factor testing. 

The (fractional) Bayes factor test supports investigating all items simultaneously on 

violations of measurement invariance. Simultaneously testing multiple hypotheses is rather 

straightforward, since it is also based on comparing the marginal distributions of the data. 

Traditional measurement invariance tests in IRT and factor analysis differ in this respect, 

where the significance level of each single hypothesis test need to be restricted to 

compensate for the number of comparisons that are made (i.e. a multiple testing correction). 
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Posterior Predictive Testing 

Up until now, a universal Bayesian method to evaluate competing models does not exist. 

Various methods have been proposed. One of the most popular Bayesian method is 

posterior predictive model assessment, where a discrepancy measure is defined to evaluate 

a model assumption (Gelman et al., 2003[57]). The method is straightforward, intuitive, and 

can be applied to assess the fit of different aspects of the model. Posterior predictive checks 

have been proposed to evaluate approximate measurement invariance. 

Although posterior predictive checks are easily implemented in various ways, the method 

has some drawbacks. First, the statistical significance of an event is based on a posterior 

predictive p-value, which might not be uniformly distributed under the posited model. This 

relates to fact that in the procedure the data are used twice, which leads to conservative 

behaviour of the posterior predictive p-value and can fail to detect model misfit. As a result, 

when using posterior predictive p-values to test a null hypothesis, the empirical Type I error 

rates are often below nominal values (Levy, Mislevy and Sinharay, 2009[58]). Therefore, 

posterior predictive model assessment is often viewed as a diagnostic measure to identify 

possible misfits, instead of a formal test for model misfit (Gelman et al., 2003[57]). This 

relates to the idea to evaluate model fit by collecting pieces of statistical evidence in 

combination with substantive theory. 

Second, a discrepancy measure is often not completely targeted for the specific model 

misfit. For example, the odds ratio (Levy, Mislevy and Sinharay, 2009[58]) has been 

proposed as a discrepancy measure to detect violations of local independence. However, 

the odds ratio is a measure of association for paired observations and does not represent 

directly the assumption of local independence. Without an accurate representation of the 

model misfit by the discrepancy measure, significant results might be caused by violating 

another model assumption, and incorrect inferences might be drawn. 

Third, the posterior predictive check is mainly used to evaluate the compatibility of the 

model with the data and no fully specified alternative model is available. However, when 

competing theories are investigated, and alternative hypotheses are present, the posterior 

predictive check is not suitable to evaluate the competing hypotheses. A problem arises 

when different models, apparently reasonable in comparison to the data, lead to different 

results. 

Marginal Random Item Effects Model 

The marginal measurement invariance test approach is based on detecting a correlation 

among responses to the same item within each group, without conditioning on group-

specific item effects. In the MH test, item bias (the interaction between the group and the 

item) is examined by investigating whether the odds of getting an item correct significantly 

differ between groups, given the level of the matching variable. For a measurement 

invariant item, the sample data are independently distributed (i.e. a simple random sample) 

for each level of the matching variable. For a measurement variant item, the sample data 

are a cluster sample or a stratified sample, since the odds differ across groups. The marginal 

measurement invariant test is also aimed at testing the correlation among responses within 

each group, where a significant positive correlation implies a violation of measurement 

invariance. However, the item bias is not estimated only by the within-group correlation. 

In the remainder of this chapter, the marginal random item effects model is introduced, and 

it is explained how it can be used to test measurement invariance. The fractional Bayes 

factor is used to objectively compare competing hypotheses to accommodate an improper 
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prior for the implied degree of measurement variance. Results of a simulation study are 

given, where the functioning of the fractional Bayes factor was compared to that of the 

posterior predictive check based on the Mantel-Haenszel chi-square statistic 𝜒𝑀𝐻
2 , since the 

latter is a commonly used tool to detect measurement non-invariance (Holland and Wainer, 

1993[4]). Extensions of the method are discussed in order to make it applicable to randomly 

selected groups, for which parameter recovery is also evaluated in a simulation study. 

Finally, the method is applied to empirical data using data from the European Social Survey 

(ESS). 

To explain the marginal test approach, the conditional modelling approach where group-

specific item parameters are modelled serves as a reference. For instance, the random item 

effects model is a conditional model in which a normal distribution is assumed for the 

group-specific item parameters. This model has been used by Verhagen and Fox (2013[40]) 

and De Jong, Steenkamp and Fox (2007[45]) to detect violations of measurement invariance. 

In this chapter, it is shown that a marginal model can be derived from this random item 

effects model such that group-specific item parameters no longer need to be modelled. The 

marginal test approach avoids estimating the differential effect of item functioning and, 

subsequently, testing the significance of the effects, since this approach will lead to a loss 

in power. The one-parameter multilevel IRT model will be used for illustration, as 

described by Bock and Zimowski (1997[59]) and Azevedo, Andrade and Fox (2012[60]), and 

the probability of answering an item correctly is given by 

( 1| , ) ( ),ijk ij k ij kP Y b b   
 

Equation 4.11 

where 𝜃𝑖𝑗 is the underlying ability of person i in group j, and 𝑏𝑘 is the difficulty of item k 

and Φ(∙) the normal cumulative distribution function. Parameter 𝑏𝑘 reflects the required 

value of the underlying ability 𝜃 in order for the test taker to have an expected probability 

of .5 of answering the item correctly.  

The Random Item Effects Model 

To illustrate the method, the one-parameter multilevel IRT model is used and in the 

discussion the generalisation of the method to other IRT models is discussed. Before 

turning to the one-parameter multilevel IRT model, assume continuous responses to items, 

symbolised by 𝑍𝑖𝑗𝑘 In a random item effects model, this latent response variable is modeled 

as follows: 
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Equation 4.12 

where 
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Equation 4.13 

and  
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Equation 4.14 
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In Equation 4.12, the random item effects model is shown, where the latent response 

variable 𝑍𝑖𝑗𝑘 is independently and identically distributed given the group-specific item 

difficulty parameter 𝑏𝑗𝑘 and person parameter 𝜃𝑖𝑗. As illustrated in Equation 4.13, the 

random item effects parameter is assumed to be normally distributed with the mean equal 

to the invariant item difficulty parameter 𝑏𝑘 and variance 𝜏𝑘. The variance parameter 𝜏𝑘 

stands for the between-group variance with respect to the random item difficulty parameter, 

and it represents the degree of measurement variance. The person parameter is assumed to 

be normally distributed with a group-specific mean. 

The Marginal Modelling Approach 

The random item effects model can be marginalised by integrating out the group-specific 

item parameters. This can be done by plugging Equation 4.13 into Equation 4.12. It follows 

that 
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Equation 4.15 

where the errors for item k (𝑬𝑘) are assumed to have a multivariate normal distribution with 

a mean of zero and covariance matrix 𝚺k 

In this marginal model, the latent response variable no longer depends on the group-specific 

item parameter 𝑏𝑗𝑘 and one item difficulty parameter 𝑏𝑘 (i.e. the measurement invariant 

item difficulty) applies to all groups. As a result, the degree of measurement variance is 

included in the error term. Note that in this marginal model, conditional independence no 

longer applies due to the fact that group-specific item parameters are not specified. In the 

marginal random item effects model as described here, 𝑍𝑖𝑗𝑘 has a multivariate normal 

distribution. The presence of measurement non-invariance is absorbed into the covariance 

structure of the error term. 

To explain the covariance structure of the marginal model, in Equation 4.15, in more detail, 

let the measurement error be normally distributed 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝑠𝑘
2 ). Then, covariance matrix 

𝚺𝒌 can be specified. In the first case, i = i’, which automatically implies that j = j’. This 

reflects the covariance of two responses of person i in group j In the second case,  

i ≠ i’ but j = j’. That is, different persons i and i’ are in the same group j. The third case 

consists of the covariance of different persons i and i’ in different groups j and j’. It can be 

concluded that the (co)variances in these three different cases are equal to 𝜏𝑘 + 𝜎𝜀𝑘
2 , 𝜏𝑘, 

and 0, respectively:  
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Equation 4.16 
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In this marginal model, there is only one item difficulty parameter present, which applies 

to all the groups, instead of there being an item difficulty parameter for each group 

separately. The possible error due to measurement non-invariance is no longer explicitly 

modelled in 𝑏𝑘 but included in the covariance structure of the error distribution. In 𝚺𝒌 the 

presence of measurement non-invariance is captured by the covariance of different 

observations within a group, specified by the second case in Equation 4.16. It is proposed 

that in order to test whether measurement non-invariance is present (and to what degree), 

one should evaluate 𝜏𝑘. 

When the groups are randomly selected from a population, the covariance structure for the 

responses to item k in group j is given by 

2= ,jk k m k m Σ I J
 

Equation 4.17 

where 𝐈𝑚 is the identity matrix and 𝐉𝑚 a matrix of ones; m stands for the number of 

observations in each group, and equal group sizes (balanced design) are assumed. In the 

covariance structure of Equation 4.17, parameters 𝜏𝑘 on the off-diagonal positions 

represent the implied covariance between latent responses due to the clustering of responses 

in groups. Parameters 𝜏𝑘 on the diagonal positions contribute to the variance in item 

difficulty across groups. For randomly selected groups, the random item effect parameter 

is used to model the clustering of responses in groups as well as the variability in item 

functioning across groups. The groups are sampled from a population, and the random item 

effects variance represents the variance in item functioning in the population of groups. For 

all items k, when binary response data are observed, the variance parameter 𝜎𝜀𝑘
2  will be 

fixed to one to identify the scale. 

For a fixed number of groups, there is no population distribution defined for the groups. 

The considered groups are of specific interest, and the object is to evaluate the assumption 

of measurement invariance for the selected groups. In the parametrisation presented in 

Equation 4.17, the covariance parameters can modify the covariance between response 

observations as well as the total amount of variance in response observations. Therefore, a 

different parametrisation is considered to avoid the situation that the covariance parameter, 

𝜏𝑘, can also represent variability in item functioning across groups. For a fixed number of 

groups, the diagonal components in the covariance matrix 𝚺𝑗𝑘 should only represent 

measurement error variance and not also variation in item functioning in the population. 

Therefore, to restrict the additional contribution of the covariance components to the total 

variance, the variance parameter equals 𝜎𝜀𝑘
2 = 1 − 𝜏𝑘. In that case the total variance, 

represented by the diagonal terms, is always equal to one, and the covariance components 

are not allowed to increase the total variance. This leads to the following covariance matrix 

of the error terms for each group j and item k, 

 = 1jk k m k m  Σ I J
 

Equation 4.18 

It follows that the values on the diagonal are equal to 1 and the off-diagonal values are 

equal to 𝜏𝑘 . In this covariance structure 𝚺𝑗𝑘 the 𝜏𝑘 is a correlation parameter, since the 

diagonal consists of ones. 

The marginal random item effects model for binary response data is represented by a 

generalised multivariate probit model: 
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Equation 4.19 

where the latent response data is truncated multivariate normally distributed according to 

the set Ω𝑗𝑘 = {𝒛𝑗𝑘: 𝑧𝑖𝑗𝑘 ≤ 0 if 𝑦𝑖𝑗𝑘 = 0, 𝑧𝑖𝑗𝑘 ≥ 0 if 𝑦𝑖𝑗𝑘 = 1}. The person parameters are 

assumed to be normally distributed according to Equation 4.14, where a non-informative 

Jeffreys prior is specified for the hyperparameters (𝜇𝜃𝑖
, 𝜎𝜃

2), 𝑝(𝜇𝜃𝑖
, 𝜎𝜃

2) ∝ 𝜎𝜃
−2. A normal 

distribution is assumed for the invariant item parameters,  

𝑏𝑘~𝑁(𝜇𝑏 , 𝜎𝑏
2) Equation 4.20 

and a normal-inverse gamma prior is specified for the hyperparameters, 

2

0 0

2

~ ( , / ),

~ (

b b

b b b

N n
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Equation 4.21 

where the 𝑛0 ≥ 0 determines the weight of the prior specification of 𝜇𝑏. 

Prior and Posterior of the Covariance Parameter 

To make inferences about the dependency structure under the marginal random item effects 

model, interest is focused on the covariance parameter. A non-informative prior can be 

defined, which takes on the same functional form as the likelihood. This non-informative 

prior for 𝜏𝑘 is given by 

   
1

1/ ,k kp m 


 
 

Equation 4.22 

where m represents the number of response observations in each group. The covariance 

parameter 𝜏𝑘 is restricted to be greater than -1/m, which follows from the fact that the 

covariance matrix needs to be invertible (i.e. positive definite). The non-informative prior 

does not prefer any parameter value above any other. Furthermore, the parameter value 

𝜏𝑘 = 0 is not on the boundary of the parameter space. The value of zero for the covariance 

parameter means that the item is measurement invariant, since it does not induce an 

additional correlation between the responses within each group. With 𝜏𝑘 = 0, there is no 

support for a random item effect, and the responses to item k are independently distributed 

given the measurement invariant item difficulty and the person parameter.  

A positive covariance parameter represents a common covariance between the responses 

to item k within each group, while conditioning on the person parameter and the item 

difficulty parameter 𝑏𝑘. This clustering effect can be represented by a random item effects 

parameter, and it represents a violation of measurement invariance.  

When the covariance parameter is negative, there is even less variation in the average item 

scores of item k across groups than the variation in average item scores for a measurement 

invariant item k where 𝜏𝑘 = 0. This means that the sample heterogeneity among groups 

would be even lower than the one for 𝜏𝑘 = 0, when there is no heterogeneity across groups. 

The marginal random item effects model, after integrating out the random item effect, 
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represents a wider parameter space for the covariance parameter, including a negative 

support. This property proves to be beneficial for constructing conditionally conjugate 

priors for 𝜏𝑘. 

Another beneficial effect of the prior is that the posterior distribution for the covariance 

parameter can be obtained in closed form. This property is used to define a (fractional) BF 

test for evaluating the dependency structure. In Annex 4.A, the analytical distribution of 

the covariance parameter is given. 

In order to estimate the parameters of the marginal random item effects model, a Markov 

chain Monte Carlo (MCMC) algorithm can be used. The MCMC algorithm can be found 

in Fox et al. (2017[42]). 

Fractional Bayes Factor 

In Annex 4.B, analytical expressions of the fractional Bayes factors are given to evaluate 

measurement invariance hypotheses. For randomly selected groups and for fixed groups, 

fractional Bayes factors are computed to evaluate 𝐻0: 𝜏𝑘 = 0 and 𝐻𝑢: 𝜏𝑘 ≠ 0, which 

represents the null hypothesis that the item is measurement invariant and the alternative 

(unrestricted) hypothesis that the item is not measurement invariant, respectively. For an 

item that cannot be characterised as measurement invariant, it is possible that (a) the item 

is measurement variant and shows differential item function across groups (i.e. item 

responses are group-specific positively correlated), or (b) the item does not contribute to 

the measurement scale (item responses are group-specific negatively correlated). 

The fractional Bayes factor, denoted as 𝐹𝐵𝐹0𝑢 evaluates the evidence in favour of 

measurement invariance (𝐻0: 𝜏𝑘 = 0) against the hypothesis that there is no measurement 

invariance 𝐻𝑢: 𝜏𝑘 ≠ 0. Another fractional Bayes factor is considered and referred to as 

𝐹𝐵𝐹02, which evaluates the evidence in favour of measurement invariance 𝐻0: 𝜏𝑘 = 0 

against the alternative hypothesis that there is measurement non-invariance 𝐻2: 𝜏𝑘 > 0, 

such that a negative 𝜏𝑘 is not supported by either the null hypothesis or the alternative 

hypothesis. In this case, the data is used to evaluate the evidence in favour of measurement 

invariance or in favour of measurement non-invariance. 

Simulation Study for Stratified Groups 

In this simulation study, parameter recovery of the marginal random item effects model 

was evaluated for the situation of a fixed number of groups (strata). The first goal of this 

simulation study was to test whether the marginal model is able to accurately estimate the 

degree of measurement variance. The second goal of this simulation study was to evaluate 

the use of the fractional Bayes factor to decide whether or not the degree of measurement 

variance in an item is equal to zero. 

The fractional Bayes factor was used to accommodate for the improper prior for the 

measurement non-invariance parameter 𝜏𝑘. This improper prior assumes a uniform 

distribution for the possible degrees of measurement non-invariance, which makes it 

possible to objectively evaluate the measurement invariance assumption. The fractional 

Bayes factor approach has several important advantages. First, it is able to test for 

measurement non-invariance in all of the items simultaneously and does not require a 

sequential test procedure in which items are tested one by one. Second, anchor items are 

not needed, and full measurement invariance can also be tested using the same procedure. 

Third, it takes into account both the null hypothesis (H0), which states that measurement 



52 │ EDU/WKP(2019)9 
 

INVARIANCE ANALYSES IN LARGE-SCALE STUDIES 
Unclassified 

invariance holds, as well as the alternative hypothesis (Hu), which states that measurement 

invariance does not hold. 

The posterior predictive p-value based on the Mantel-Haenszel 𝜒𝑀𝐻
2  statistic (ppp 𝜒𝑀𝐻

2 ) 

does not have these advantages, but the functioning of the ppp 𝜒𝑀𝐻
2  is compared to the 

functioning of the fractional Bayes factor. The 𝜒𝑀𝐻 
2 statistic was used as a discrepancy 

measure in a posterior predictive check in order to evaluate the measurement invariance 

assumption. Assume the persons were divided over subgroups based on their total test 

score. In a test with 10 items, this entails that the total number of subgroups G = 11, since 

a total score from 0 to 10 is possible. Since the 𝜒𝑀𝐻 
2  statistic needs anchor items, all the 

other items of the test are chosen as anchor items. The object was to identify which items 

were measurement invariant. Here, a conservative approach was followed, where each item 

was tested by assuming the other items to be measurement invariant. In practice, it is 

usually not known which items are measurement invariant, and so an assumption needs to 

be made in order to test a single item. 

Further details of the simulation study can be found in Annex 4.C. Table 4.1 presents the 

results of the simulation study. In this simulation, measurement non-invariance increases 

across items. Parameter 𝜏 represents the simulated degree of measurement variance 

whereas 𝜏′ represents the estimated degree of measurement variance by the posterior mean. 

Column 𝜏 − 𝜏′ shows the difference between the simulated measurement non-invariance 

and the estimated measurement non-invariance by the posterior mean computed under the 

marginal model. Table 4.1 shows that the estimated degree of measurement variance 𝜏′ 
differs a maximum of .089 from the simulated degree of measurement variance 𝜏. The 

smallest absolute difference between the two values is equal to .001. It appears here that 

when the degree of measurement variance is smaller than .075, the posterior mean, as a 

point estimate, tends to overestimate the degree of measurement variance. When the degree 

of measurement variance is greater than .100, it tends to underestimate the degree of 

measurement variance. 

Table 4.1. Fixed groups: Results of the simulation study for estimating the degree of 

measurement variance 

Based on 50 replications 
 

  
  

Fractional Bayes Factor Posterior Predictive Check 

Item 𝜏 𝜏′ 𝜏 − 𝜏′ ln(FBF0u) FBF0u ln(FBF02)  FBF02 ppp 𝜒𝑀𝐻
2  Range ppp 𝜒𝑀𝐻

2  %ppp < 0.05 

1 −0.002 0.033 −0.035   −0.755   0.470   −0.158   0.853 0.282 [0.000, 0.908] 28 

2   0.000 0.038 −0.038   −1.208   0.299   −0.646   0.524 0.309 [0.000, 0.911] 36 

3   0.025 0.047 −0.022   −2.463   0.085   −2.009   0.134 0.251 [0.000, 0.984] 44 

4   0.050 0.077 −0.027   −7.980 <0.001   −7.686 <0.001 0.129 [0.000, 0.919] 60 

5   0.075 0.076 −0.001   −7.036   0.001   −6.803   0.001 0.094 [0.000, 0.717] 68 

6   0.100 0.097   0.003 −13.659 <0.001 −13.415 <0.001 0.111 [0.000, 0.776] 70 

7   0.125 0.095   0.030 −11.875 <0.001 −11.703 <0.001 0.070 [0.000, 0.908] 80 

8   0.150 0.099   0.051 −13.128 <0.001 −12.927 <0.001 0.100 [0.000, 0.869] 76 

9   0.175 0.114   0.061 −18.977 <0.001 −18.791 <0.001 0.075 [0.000, 0.833] 78 

10   0.200 0.111   0.089 −18.864 <0.001 −18.711 <0.001 0.068 [0.000, 0.890] 80 

Notes: FBF01: fractional Bayes factor, where H0:𝜏 =0 and Hu: 𝜏≠ 0; FBF02 = fractional Bayes factor, where H0: 

𝜏=0 and H2: 𝜏>0; ppp: posterior predictive p-value based on the Mantel-Haenszel 𝜒𝑀𝐻
2  statistic; ppp 𝜒𝑀𝐻

2 : mean 

of the posterior predictive p-values over the 50 replications; Range ppp 𝜒𝑀𝐻
2 : range of the found posterior 

predictive p-values over the 50 replications; %ppp < 0.05 shows the percentage of the 50 replications that 

resulted in a posterior predictive p-value based on ppp 𝜒𝑀𝐻
2 < .05. 
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The posterior mean estimate of the variance parameter differs from the mode, since the 

posterior distribution is skewed. For a small (large) variance parameter, the posterior is 

skewed to the right (left) and the mean is higher (lower) than the posterior mode and over- 

(under) estimates the true value. For this reason, evaluating the presence of measurement 

non-invariance using point estimates is not recommended. In order to test whether the 

estimated degree of measurement variance 𝜏′= 0 or not, a fractional Bayes factor is 

computed and compared to the functioning of the ppp 𝜒𝑀𝐻
2  for model selection. To compute 

the fractional Bayes factor, posterior samples are used, not point estimates, because 

posterior samples take the skewness of the posterior into account. 

Under the marginal random item effects model, the natural logarithm of the fractional 

Bayes factor is computed (see Table 4.1). These results can be found under columns 

labelled ln(FBF0u) and ln(FBF02), which show that the higher the degree of measurement 

variance, the more negative the natural logarithm of the fractional Bayes factor. Table 4.1 

also shows the fractional Bayes factors (columns FBF0u and FBF02). Though FBF02 

performs very well for all the items, it is greater than 1/3 for items 1 and 2. Therefore, it 

can be concluded that items 1 and 2 are measurement invariant. However, FBF0u shows 

support for the alternative hypothesis (Hu) for item 2, while this actually is a measurement 

invariant item. So, FBF02 performs better than FBF0u in deciding whether item 2 is 

measurement invariant. This can be explained as follows. FBF02 results for items 1 and 2 

show more support for the measurement invariance hypothesis (H0) than FBF0u, since the 

alternative hypothesis is restricted to the measurement non-variance hypothesis (H2). 

Therefore, support for small, negative values of 𝜏𝑘 do not contribute to evidence in favour 

of alternative hypothesis H2 (𝜏𝑘 > 0), whereas those values do contribute to alternative 

hypothesis Hu (𝜏𝑘 ≠ 0). So, more power was obtained in detecting measurement invariance 

by restricting the alternative hypothesis to measurement non-variance (H2).  

Hypotheses H0 and Hu were equally likely for items 1 and 2, but the fractional Bayes factors 

were not equal to one. The alternative hypothesis Hu also covers 𝜏 values, which are close 

to, but not exactly equal to, zero. The data give the most support to 𝜏 values equal to or 

close to zero, which makes Hu slightly more attractive than H0. 

For items 3-10, the fractional Bayes factors indicate that measurement non-invariance is 

present, and this was also simulated for these items. However, note that alternative 

hypothesis H2 represents measurement non-invariance, whereas the evidence in favour of 

alternative hypothesis Hu represents all values of 𝜏𝑘 ≠ 0. For instance, for item 3, it is 11.76 

times (1/0.85) more likely that 𝜏3 ≠ 0, but only 7.46 times (1/.134) more likely that 𝜏3 >
0, which represents measurement non-invariance. 

The results of the ppp 𝜒𝑀𝐻
2  can be found in the last three columns of Table 4.1. It is hard to 

draw conclusions based on these values, since there is no common (universal) cut-off score. 

A ppp 𝜒𝑀𝐻
2  close to zero shows discrepancies between the model that assumes 

measurement invariance and the observed data. Items 1-3 appear to have a smaller degree 

of discrepancy; items 4-10 appear to have a larger degree of discrepancy, since these values 

are closer to zero. This result is not exactly in line with that for the simulated data, since 

measurement non-variance was also present in item 3, which could not be clearly concluded 

from the results of the ppp 𝜒𝑀𝐻
2 . Column %ppp < 0.05 shows the percentage of the 

50 replications in which ppp 𝜒𝑀𝐻
2  values were extreme (i.e. close to zero). Here, ppp 𝜒𝑀𝐻

2  

values are interpreted as extreme when they are less than .05. This column is provided to 

offer more insight with respect to the distribution of the ppp 𝜒𝑀𝐻
2 . It is not meant as a 

threshold value for either accepting or rejecting the model. From this column, it can be 
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concluded that for items 1-3, ppp 𝜒𝑀𝐻
2  < .05 for less than half of the 50 replications, and 

for items 4-10, ppp 𝜒𝑀𝐻
2  < .05 for more than half of the replications. 

The fractional Bayes factor has considerable benefits compared to the ppp 𝜒𝑀𝐻
2  statistic. 

First, the fractional Bayes factor is able to test the degree of measurement variance for all 

the items at once, without the need to specify anchor items. Second, it compares the 

probability of the data given the null hypothesis to the probability of the data given the 

alternative hypothesis. This entails that both hypotheses are evaluated and the degree of 

support for each of them is compared. Consequently, the results are easy to interpret, since 

they either provide a preference for one of the two models or indicate that there is no 

preferable model. Finally, unlike the 𝜒𝑀𝐻
2  statistic, which is only applicable for the 

comparison of two groups, the fractional Bayes factor can be computed for two or more 

groups. As expected, the results of the fractional Bayes factor are more convincing 

compared to those of the 𝜒𝑀𝐻 
2 statistic. Together with the other benefits of the fractional 

Bayes factor, it appears that this is an improved tool for detecting the presence of 

measurement non-invariance. 

Simulation Study for Sampled Groups 

In a second simulation study, parameter recovery by the marginal random item effects 

model was evaluated in the situation where groups are randomly selected from a larger 

population. In that case, test results about measurement invariance can be generalised to 

the population of groups from which the sample was taken. The covariance structure 

defined in Equation 4.17 was assumed for the responses to item k. The corresponding 

marginal random item effects model was tested by estimating the degree of measurement 

variance 𝜏𝑘 for every item; 𝜎𝜀𝑘
2 = 1 to identify the scale. Furthermore, the fractional Bayes 

factor was used to quantify the evidence against the hypothesis that the degree of 

measurement variance was equal to zero. 

Table 4.2 presents the results of the simulation study. In this simulation, measurement non-

invariance increases across items as in the previous simulation. The same symbols are used, 

where 𝜏 represents the simulated degree of measurement variance and 𝜏′ represents the 

estimated measurement variance. Column 𝜏 − 𝜏′ shows the difference between the 

simulated degree of measurement variance and the estimated degree of measurement 

variance. The estimated degree of measurement variance 𝜏′ differs only a small amount 

from the simulated degree of measurement variance 𝜏. The smallest difference is 0.000; the 

greatest absolute difference is 0.032. There appears to be an overestimation of the degree 

of measurement variance when the difference is less than 0.075 and an underestimation of 

the degree of measurement variance when the difference is greater than 0.125. However, 

this underestimation and overestimation is present to a lesser extent compared to the 

estimates for the fixed number of groups (see section titled Simulation Study for Fixed 

Groups). In this case, the variance in item responses between groups is also used to estimate 

𝜏. Again, the posterior mean will overestimate the true value when the posterior distribution 

is right-skewed and underestimate the true value when it is left-skewed. 

In order to test whether 𝜏 = 0 (H0) or 𝜏 ≠ 0 (Hu), fractional Bayes factor FBF0u was 

computed. When looking at the natural logarithm of the fractional Bayes factor in column 

ln(FBF0u) in Table 4.2, it can be seen that the greater the simulated degree of measurement 

variance 𝜏 gets, the more negative the natural logarithm of the fractional Bayes factor 

becomes. The FBF0u results show correctly that for items 1 and 2, there is more support for 

the null hypothesis (H0), and for items 3 and 10 there is substantially more support for the 
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alternative hypothesis (Hu). When looking at the results of FBF02 in the last column of 

Table 4.2, where the alternative hypothesis is restricted to measurement non-invariance 

(H2: 𝜏 > 0), it can be seen that there is a large degree of support for the measurement 

invariance hypothesis for items 1 and 2. For item 3, it is approximately 5.13 times more 

likely that the item is measurement variant than that it is measurement invariant. The results 

show that items 4-10 are measurement variant. It can be concluded that the results are in 

line with the simulation parameters used to generate the data. 

Compared to the simulation study with stratified groups, the fractional Bayes factor results 

for items 1 and 2 show more support for the measurement invariance hypothesis. There is 

more information in the data about the exact value of the parameter, since both within- and 

between-group variation is used. For fixed (stratified) groups, only within-group 

information is used. As a result, estimates for the degree of measurement variance for 

randomly selected groups is more accurate compared to estimates for the degree of 

measurement variance for fixed groups. 

Furthermore, for items 1 and 2, there is more data evidence in favour of the null hypothesis 

(H0), which makes the alternative hypothesis (Hu) less attractive. Note that the data still 

provides some support for values near zero, which makes Hu slightly more attractive than 

H0, leading to a fractional Bayes factor FBF0u < 1 for item 2. However, when the alternative 

hypothesis (H2) is considered, then small negative values of 𝜏 do not contribute to the 

evidence against the null hypothesis. 

Table 4.2. Sampled groups: Results of the simulation study for estimating the degree of 

measurement variance 

Based on 50 replications 

Item 𝜏 𝜏′ 𝜏 − 𝜏′ ln(FBF0u) FBF0u ln(FBF02)  FBF02 

1 −0.020 0.002 −0.022 0.449 1.566 4.641 103.607 

2 0.000 0.013 −0.013 −0.471 0.625 2.971 19.506 

3 0.025 0.036 −0.011 −4.520 0.011 −1.636 0.195 

4 0.050 0.055 −0.005 −9.415 <0.001 −6.594 0.001 

5 0.075 0.075 0.000 −15.436 <0.001 −12.554 <0.001 

6 0.100 0.100 0.000 −22.808 <0.001 −19.975 <0.001 

7 0.125 0.125 0.000 −31.127 <0.001 −28.283 <0.001 

8 0.150 0.140 0.010 −36.227 <0.001 −33.376 <0.001 

9 0.175 0.143 0.032 −37.435 <0.001 −34.570 <0.001 

10 0.200 0.188 0.012 −53.049 <0.001 −50.185 <0.001 

Notes: FBF01: fractional Bayes factor, where H0:𝜏 =0 and Hu: 𝜏≠ 0; FBF02 = fractional Bayes factor, where H0: 

𝜏=0 and H2: 𝜏>0. 

Evaluating Measurement Invariance Assumptions of the European Social Survey 

Items 

There are many areas where methods for the detection of measurement non-invariance can 

be useful. International surveys, in which the answers of respondents across countries are 

compared, are one such example. To demonstrate the application of the fractional Bayes 

factor under a marginal random item effect model for detecting measurement non-

invariance, data from the European Social Survey (ESS) round 7 (year 2014) was used.  

Currently, the developed software for marginal measurement invariance testing is limited 

to equal group sizes (balanced design) and binary response data. However, the marginal 
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test procedure can be generalised to the more general situation of unbalanced groups and 

mixed (e.g. continuous, dichotomous, polytomous) response data, which is explained in the 

discussion. To illustrate the method, a balanced random sample was drawn from the 

countries included in this empirical example, where 1 750 response observations were 

sampled from each country. In the unbalanced data set the number of observations ranged 

from 1 769 to 2 390. The response data were also dichotomised. The possible answers to 

each of the included questions are on a scale from 0 to 10, as illustrated in Table 4.3. In 

items 1-3 and item 6-8, 0 stands for a negative attitude towards immigrants and 10 stands 

for a positive attitude towards immigrants. The five most negative categories towards 

immigrants (categories 0-4) were coded as 1 and the other six categories (5-10) which 

reflect (relatively) positive attitudes about immigrants were coded as 0. For items 4 and 5, 

0 stands for a positive attitude towards immigrants and 10 stands for a negative attitude 

towards immigrants. The five most negative categories with respect to attitude towards 

immigrants (categories 6-10) were coded as 1 and the other six categories (categories 0-5) 

which reflect (relatively) positive attitudes towards immigrants were coded as 0. Note that 

the dichotomisation can influence the test results, when for instance an item exhibits 

measurement non-invariance for one of the response categories but not homogenously 

across response categories. 

When measurement non-invariance is present, people who have the same attitude towards 

immigrants have a different probability of giving the same answer depending on their 

country. Otherwise stated, for a measurement variant item, respondents who have the same 

attitudes but are from different countries have unequal probabilities of scoring positively 

towards immigrants. In order to show the application of the model to empirical data, eight 

items were selected from the ESS survey. The eight items selected (Table 4.3) concerned 

the topic of immigration, since it was likely that measurement non-invariance is present in 

items such as these. The items contributed to the same scale, which measures attitude 

towards immigrants. Measurement invariance was tested for two different situations: a 

fixed number of groups (stratified groups) and randomly selected groups. In the situation 

of fixed groups, the goal was to make inferences about the degree of measurement variance 

between two selected countries, in this case Belgium and Sweden. The number of 

observations included was 1 750 for each country. So, the total number of observations was 

3 500. 

Table 4.3. European Social Survey items selected for the application study 

Item Statement Response Scale 

1 Immigrants generally take jobs away or help to create new jobs 0 Take jobs away – 10 Create new jobs 

2 Immigrants take out more than they put in regarding taxes and welfare or 
not 

0 Generally take out more – 10 Generally put in more 

3 Immigrants make country’s crime problems worse or better 0 Crime problems made worse – 10 Crime problems made 
better 

4 Mind if immigrant of different race or ethnic group was your boss 0 Not mind at all – 10 Mind a lot 

5 Mind if immigrant of different race or ethnic group would marry close 
relative 

0 Not mind at all – 10 Mind a lot 

6 The country’s cultural life is undermined or enriched by immigrants 0 Cultural life undermined – 10 Cultural life enriched 

7 Immigration is bad or good for country’s economy 0 Bad for the economy – 10 Good for the economy 

8 Immigrants make the country a worse or better place to live 0 Worse place to live – 10 Better place to live 

Source: European Social Survey (2015), ESS-7 2014 documentation report. Edition 1.0. Bergen, European 

Social Survey Data Archive, Norwegian Social Science Data Services for ESS ERIC. 
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In the situation of randomly selected groups, six countries were selected and included in 

the study, and the goal was to investigate measurement invariance assumptions for items 

across the countries included in the ESS. It was assumed that the six countries (i.e. Austria, 

Belgium, Czech Republic, Denmark, Germany and Switzerland) well represented the ESS 

countries. The number of observations included was 1 500 for each country, for a total 

number of observations of 9 000. In the current model, additional sampling weights were 

not taken into account. Therefore, it is possible that the empirical results were affected by 

exclusion of the weights. In the discussion section, different options for dealing with survey 

weights are discussed. 

In order to decide whether or not measurement non-invariance was present in an item, 

fractional Bayes factors were computed. As in the simulation study, the FBF0u represents 

the fractional Bayes factor to evaluate the evidence in favour of measurement invariance 

(H0: 𝜏 = 0) compared to no measurement invariance (Hu: 𝜏 ≠ 0). The FBF02 represents the 

evidence in favour of measurement invariance compared to measurement non-invariance 

(H2: 𝜏 > 0). 

Table 4.4 shows the results for the situation where the degree of measurement variance is 

estimated for both fixed and randomly selected groups. First, the results for the degree of 

measurement variance for a fixed number of groups (i.e. Belgium and Sweden) are 

discussed. Results for the fractional Bayes factors FBF0u and FBF02 are presented in this 

table as well as the results for the ppp 𝜒𝑀𝐻 
2 . 

From the results it can be concluded that, according to the fractional Bayes factors, none of 

the eight items appear to be measurement invariant. The support in favour of measurement 

non-invariance is lowest for item 6, where the FBF02 estimate shows just around 3.94 times 

(1/.254) more support for H2 compared to H0. Item 6, which concerns the question of 

whether the country’s cultural life is undermined or enriched by immigrants, shows the 

strongest support for measurement invariance. The item with the highest degree of 

measurement variance appears to be item 3, where 𝜏 is estimated to be 0.149. For this item, 

respondents were asked their opinion with respect to the country’s crime problems. For the 

other six items, a large degree of support was found in favour of measurement non-

invariance, with 𝜏′ ranging from .036 to 0.080. 

A discrepancy can be observed between the results for the fractional Bayes factors FBF0u 

and FBF02 and the results for the ppp 𝜒𝑀𝐻 
2 . The latter appears to indicate that for all items 

there is a substantial discrepancy between the model (in which measurement invariance is 

assumed) and the observed data. The most noticeable difference between the result for the 

fractional Bayes factor and the result for the ppp 𝜒𝑀𝐻 
2  is present for item 2. The FBF02 

indicates that it is approximately 30 times more likely that item 2 is measurement variant 

than not: the ppp 𝜒𝑀𝐻 
2  is just higher than .05, providing some evidence that the item might 

not be measurement invariant. With a strict cut-off value of .05, the conclusion would be 

that there is no evidence that the measurement invariance hypothesis (H0) should be 

rejected, which is in contrast with the conclusion based on the results for the fractional 

Bayes factors. 

For randomly selected groups, measurement non-invariance was assessed by using data 

from the countries Austria, Belgium, Czech Republic, Denmark, Germany and 

Switzerland. Although the estimated degree of measurement variance differed strongly 

between items, it was remarkable that each of the eight items showed a large degree of 

support for the measurement non-invariance hypothesis over the measurement invariance 

hypothesis. The item with the highest degree of measurement variance was again item 3, 
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with an estimated 𝜏′ of .184. The other seven items were considered moderately 

measurement variant, with estimated 𝜏′ values ranging from 0.031 to 0.080.  

Table 4.4. Results for estimating the degree of measurement variance for items from the ESS 

 Fixed Groups  Random Groups 

Item 𝜏′ ln(FBF0u) FBF0u ln(FBF02)  FBF02 ppp 𝜒𝑀𝐻
2   𝜏′ ln(FBF0u) FBF0u ln(FBF02)  FBF02 

1 0.080 −18.870 <0.001 −18.870 <0.001 0.000  0.075 −123.900 <0.001 −119.325 <0.001 

2 0.036   −3.569   0.028   −3.509   0.030 0.053  0.047   −79.322 <0.001   −74.747 <0.001 

3 0.149 −74.763 <0.001 −74.763 <0.001 0.000  0.184 −323.815 <0.001 −319.239 <0.001 

4 0.055   −6.244   0.002   −6.231   0.002 0.000  0.031   −49.707 <0.001   −45.132 <0.001 

5 0.069   −8.791 <0.001   −8.791 <0.001 0.000  0.040   −63.955 <0.001   −59.379 <0.001 

6 0.022   −1.772   0.170   −1.369   0.254 0.022  0.049   −82.171 <0.001   −77.596 <0.001 

7 0.058 −12.931 <0.001 −12.934 <0.001 0.000  0.080 −140.381 <0.001 −135.806 <0.001 

8 0.073 −20.636 <0.001 −20.636 <0.001 0.002  0.042   −67.232 <0.001   −62.656 <0.001 

             

Notes: FBF01: fractional Bayes factor, where H0:𝜏 =0 and Hu: 𝜏≠ 0; FBF02 = fractional Bayes factor, where H0: 

𝜏=0 and H2: 𝜏>0; ppp 𝜒𝑀𝐻
2 : posterior predictive p-value based on the Mantel-Haenszel 𝜒𝑀𝐻

2  statistic. 

Conclusion and Discussion 

A marginal measurement invariance test has been discussed for detecting measurement 

non-invariance using a marginal random item effects model. This method uses the 

additional correlation between observations in order to detect the presence of measurement 

non-invariance without conditioning on group-specific item parameters. That is, one 

common (measurement invariant) item parameter that applies to all groups is modelled. As 

a result, any group-specific deviations are included in the errors. Subsequently, 

measurement non-invariance can be detected by evaluating the correlation between 

residuals within a group. The functioning of this method for the detection of measurement 

non-invariance was evaluated with simulation studies and applied to empirical data. 

The simulation studies showed that this new method is able to estimate the degree of 

measurement variance for both randomly selected and fixed (stratified) groups. The 

fractional Bayes factor was able to accurately determine whether the estimated degree of 

measurement variance was equal to or greater than zero, and it outperformed the posterior 

predictive test based on the MH statistic. The results for the randomly selected groups were 

more convincing compared to the results for the fixed groups, because both within-group 

and between-group information was used in evaluating the level of measurement variance 

in the randomly selected groups. 

For fixed groups when measurement invariance was assumed, the data showed support for 

parameter values around zero for the specified simulated conditions, which led to slightly 

more support for the alternative hypothesis of no measurement invariance (Hu). The 

fractional Bayes factor was less than one but did not show significant support for Hu. When 

the alternative hypothesis was specified to be measurement non-invariance (H2), a large 

degree of support in favour of the measurement invariance hypothesis (H0) was found under 

simulated conditions. 

The posterior mean is used as a point estimator of the covariance parameter, which has a 

skewed posterior distribution. When measurement variance is relatively low and the 

distribution is right-skewed, the posterior mean tends to overestimate the degree of 

measurement variance. When the degree of measurement variance is relatively high and 
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the distribution is left-skewed, the posterior mean tends to underestimate the degree of 

measurement variance. This is a property of the posterior mean as a point estimator and 

does not relate to the properties of the proposed fractional Bayes factors, whose 

computations are based on sampled values from the posterior, taking into account any 

skewness of the posterior. 

The marginal test approach has great potential and improves current methods in different 

ways. An overview of the advantages can be given: 

 All scale items can be tested simultaneously (i.e. a sequential procedure is not 

needed, also dependent hypotheses can be tested simultaneously). That is: full, 

partial or single measurement invariance hypotheses can be tested simultaneously 

to avoid the risk of capitalisation on chance. The simultaneous evaluation of 

multiple measurement invariance hypotheses works in a similar way as testing a 

single measurement invariance hypothesis. 

 The data evidence can be quantified in favour of partial or full measurement 

invariance, which is usually considered to be the null hypotheses. This is in contrast 

to frequentist hypothesis testing, where the null hypothesis is rejected, when 

significant evidence is found in favour of an alternative hypothesis. 

 Uninformative and informative priors can be specified in testing measurement 

invariance assumptions, where the amount of prior information can be fully 

controlled. This makes it possible to use additional information, beside the sample 

data, to make inferences about measurement invariance. 

 In the BF test both measurement invariance hypotheses do not need to be true to 

make valid inferences. The BF test only provides information about which 

hypothesis is more likely, and in the decision both hypotheses are taken into 

account. This is in contrast to frequentist hypothesis testing, where inferences are 

made by assuming that the null hypothesis is true. 

 The marginal modelling approach makes it possible to interpret results on a 

common scale and they are statistically comparable without needing anchor items. 

Factor scores can be compared across groups even when all items are identified as 

measurement variant. 

 The marginal test approach can be used for non-random groups, to make inferences 

about differences between specific groups in the sample. It can also be used for 

groups sampled from a population, to make inferences about the measurement 

invariance assumptions in the population. The complexity of the method does not 

increase when increasing the number of groups. 

 The marginal test produces exact results and does not rely on asymptotic theory. 

The validity of the test results does not depend on the sample size, which makes the 

method also usable for small data sets. 

Although the shown examples were limited to binary scored items, a balanced design, and 

the one-parameter IRT model, the methodology can be extended to included different data 

types, explanatory information, different modelling levels, multidimensionality, and so 

forth. 

The extension to polytomous data can be established by using the marginal random item 

effects model with random threshold parameters as discussed by Fox (2010, pp. 193-

225[37]), also referred to as the random item effects model for polytomous data. 
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Subsequently, the covariance structure of augmented responses to each response category 

needs to be examined to evaluate the measurement invariance assumptions of the threshold 

parameters of the items. 

The marginal test approach for unbalanced data requires a numerical integration method to 

compute the marginal distribution of the data under each hypothesis. The integration over 

the covariance parameters cannot be done analytically due to the unbalanced design. 

However, a simulation technique, such as importance sampling, can be used to numerically 

evaluate the integrals required to compute the BF. 

The extension to evaluate metric invariance requires a different construction of the BF. In 

that case, the covariance structure implied by the random item effects model contains the 

variation in discrimination across groups. Consider the random item effects model with 

random difficulty and discrimination parameters for continuous responses 

𝑍𝑖𝑗𝑘 = 𝑎𝑗𝑘𝜃 − 𝑏𝑗𝑘 + 𝜀𝑖𝑗𝑘 

𝑎𝑗𝑘~𝑁(𝑎𝑘 , 𝜎𝑎
2) 

𝑏𝑗𝑘~𝑁(𝑏𝑘, 𝜎𝑏
2) 

Equation 4.23 

The marginal model, after integrating out the random item parameters, is a multivariate 

normal model for the responses to item k in group j with covariance matrix 

t

jk a j j b m m   Σ θ θ J I
 

Equation 4.24 

It can be seen that the first term, 𝜎𝑎𝜽𝑗𝜽𝑗
𝑡, represents the dependency caused by a random 

discrimination effect, and the second term 𝜎𝑏𝑱𝒎 by a random difficulty effect. For a 

measurement invariant item, the variances 𝜎𝑎 and 𝜎𝑏 are zero and the responses are 

independently distributed. A positive correlation implies additional dependencies between 

the responses, which represents a violation of measurement invariance. Bayes factor tests 

can be defined to test hypotheses about the variance parameters 𝜎𝑎 and 𝜎𝑏. When 𝜎𝑎 = 0 

the discussed BFs can be used to evaluate measurement invariance hypotheses about the 

difficulty parameter. 

There are two ways to include survey weights into the analysis. The most straightforward 

approach is to weight the likelihood, where the weights function as frequency weights 

(Rabe-Hesketh and Skrondal, 2006[61]). A pseudo-likelihood can be constructed, which is 

used to construct the posterior distributions. A disadvantage is that the weights should be 

partitioned to identify the level-specific weights. Most often the general inclusion 

probabilities are given and not the level-specific inclusion probabilities. The construction 

of a pseudo-likelihood also leads to a computational complexity, since samples cannot be 

directly drawn from the posterior distribution. A Metropolis-Hastings algorithm could be 

used to draw samples from the posterior distribution to facilitate estimation of the model 

parameters and to compute the fractional Bayes factor. However, more research is needed 

to evaluate the strengths of a pseudo-likelihood approach. 

Another approach is to weigh the (underlying) latent response data to reflect the unequal 

sampling probabilities. In that case, the weights can address additional correlations in the 

data that are not explicitly modelled. The advantage of weighing the latent responses is that 
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the computational approach remains the same as well as the construction of the Bayes 

factors. Future research is focused on the modelling of weighted latent responses to deal 

with complex relationships in the data, while making use of the computational algorithms 

for the non-weighted responses. 

This chapter shows that the model can be applied to empirical data. Data regarding the 

attitude towards immigration questions in the ESS was used to illustrate the method. The 

results show that measurement non-invariance appears to be present in all items included 

in this empirical example. The marginal modelling approach accommodates the 

measurement non-invariance in the difficulty parameters by modelling the implied 

correlations between the responses. Therefore, computed factor scores under the marginal 

model are comparable across groups. This makes the marginal model also suitable for 

computing comparable factor scores, when all items exhibit measurement non-invariance. 



62 │ EDU/WKP(2019)9 
 

INVARIANCE ANALYSES IN LARGE-SCALE STUDIES 
Unclassified 

Annex 4.A. Specification of Priors and Posterior Distributions 

An orthogonal matrix is used to transform the latent response data in two components, 

where one component represents the information concerning, 𝜏𝑘, and the other component 

the information concerning the measurement error variance. A Helmert matrix H 

(Lancaster, 1965[62]) of dimension m by m is used to transform the latent responses. The 

first row has elements 1/√𝑚, and the remaining rows below are  

   
1

1
, ,

1 1

t

s
m s

s s s s
 

 
 
   

1
0

 for 𝑠 = 2, … , 𝑚. Consider the transformation jk jkz Hz
. 

When assuming the covariance structure in Equation 4.17, it can be shown that the first 

component is normally distributed with mean and variance equal to  
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1 1 1 / 1 ,
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Var z m m m m m



  

  

          

Equation 4.25 

respectively, and the remaining components are normally distributed with mean zero and 

variance one. Note that the transformed variables are independently distributed, since it is 

an orthogonal transformation. 

To make inferences about the covariance parameter, consider the distribution of the first 

transformed variable. It follows that 
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Equation 4.26 

where  

     
2 2

1 1

1 1

J J

B jk j k jk j k

j j

mS z m b m z b 
 

      
 

Equation 4.27 

A non-informative reference prior is defined for k , which is given by 

   
1

1/k kp m 


 
 

Equation 4.28 

Then, the posterior distribution of the covariance parameter is given by  
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Equation 

4.29 

which can be recognised as a shifted-inverse gamma distribution, with shape parameter J/2, 

rate parameter / 2BS , and shift parameter 1/ m [see also Fox, Mulder, and Sinharay, 

(2017[42])]. The parameter k  is sampled from the posterior distribution by sampling 

1/k km    from the inverse-gamma distribution with shape parameter J/2 and scale 

parameter / 2BS , to obtain a draw 1/k k m   . 

A similar procedure is applied for the fixed group situation, where the covariance matrix 

of the latent response data is given in Equation 4.18. For this covariance structure, the 

transformed latent response data are normally distributed with the mean and variance of 

the first transformed component equal to 

     

   

1

1 1 1

jk j k

k

E z E mz m b

Var z m





  

  
 

Equation 4.30 

and the remaining components are normally distributed with mean zero and variance 

1 k
 . Then, the distribution of the first transformed component is given by 

    
  

/2
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, , 1 / 1 exp
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J
B
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z θ

 

Equation 

4.31 

It follows that 1/ ( 1)k m    , and a non-informative prior for k  is specified, 

   
1

1/ ( 1)k kp m 


  
, which leads to a shifted-inverse gamma posterior distribution 

for k  given the first transformed component:  

    
 

/2

/2 1

1

2 / 2
, , , 1 / 1 exp

1/ 1

2

J

B

J
B

k k k k k

k

S

S
p b m

J m
  





 

 
 

  
          

 

θ z

 

Equation 

4.32 

where 
/ ( 1)B BS mS m 

.  

However, in this case the remaining transformed components also contain information 

about 
.k . The distribution of the remaining transformed components is given by 
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Equation 4.33 

where 
2 1k k    and 

 
2

1 2

J m

w ijk

j i

S z
 


. Through a variable transformation, the              

non-informative prior for 
2

k equals 
 2 2

k kp    
. This leads to an inverse-gamma 

posterior distribution for the 
2 1k k    given the transformed variables , 2, ,ik i mz , 

with shape parameter J(m-1) and rate parameter / ( 1)BmS m :  
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Equation 

4.34 

To sample values for k , the k  is sampled from the shifted-inverse gamma distribution 

and 
2 1k k   from the inverse-gamma distribution (see the MCMC algorithm) (Fox, 

Mulder and Sinharay, 2017[42]). Then, the intra-class correlation, 
2

k
k

k k




 



, is 

constructed from the sampled values of k and 
2

k to obtain a final draw for the covariance 

parameter k . When sampling the 
2 1k k  

 and k  in different steps, we found that the 

statistical inferences on the sampled values are complicated, since the sum of both 

components is restricted to one. A more efficient inference about k  can be made when 

the posterior information about 
2 1k k  

 is included. Therefore, the intraclass-

correlation coefficient is considered, which is given by 
2/ ( )k k k  

. For the covariance 

structure defined in Equation 4.18, it is equal to the correlation coefficient k . The 

intraclass-correlation is not scale dependent, which makes it possible to sequentially sample 

a value for k  and 
2 ,k  without the restriction that the sampled values sum to one. As a 

result, each computed intraclass-correlation given the sampled parameter values is a 

sampled value of parameter k , and given the sampled values, posterior inferences can be 

made about 
.k . 
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Annex 4.B. Fractional Bayes Factor 

The object is to define the fractional Bayes factor for the hypotheses 0 : 0kH   , 

2 : 0kH    and : 0u kH    for random and fixed group situation. First consider the 

covariance structure defined in Equation 4.17, which represents the random group situation. 

Assume a total of N responses to item k, and a balanced design for J groups with each 

m group members. The marginal distribution of the data under 0H  is given by 
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Equation 4.35 

where 
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.  

The marginal distribution of the data under uH  requires integration over the parameter 

space of the covariance parameter. It follows that 
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Equation 

4.36 

where the integration over k  is performed using the fact that 
1

k m 
 has an inverse-

gamma distribution. In the same way, the marginal distribution of the data under 2H is 

derived as 
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Equation 

4.37 

where 
 , ,F   

 denotes the cumulative shifted-inverse gamma distribution with shape 

parameter  , rate parameter   and shift parameter 


. The ratio of the defined marginal 

distributions can be used to construct a fractional Bayes factor, and to test hypothesis 

concerning the covariance parameter. 

Each fractional Bayes factor is computed in each MCMC iteration, given the person and 

item parameters, and the latent response data kz
. The mean estimate across MCMC 

iterations is an estimate of the final fractional Bayes factor. The marginal distribution of 

the data also depends on the item difficulty and person parameters, but they are only 

involved in the between-group, BS , and within-group sum of squares, wS , of the latent 

response data. The integration over the item and person parameters is facilitated through 

the MCMC algorithm. 

Next, consider the covariance structure defined in Equation 4.18, which represents the fixed 

group situation. For this covariance structure, improper priors are used for parameters k  

and 
2

k . A minimum informative sample is used in the fractional Bayes factor, where 
1

1 1 1/ ( ( 1))s N J m  
 and 2 1/s J

, to deal with the improper priors. Under the null 

hypothesis, representing measurement invariance for item 
,k
 k =0 and 

2

k =1. Then, the 

marginal distribution of the data under the null hypothesis equals 
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Equation 

4.38 

where 1
b b

m
S S

m


 . For the unrestricted hypothesis, the marginal distribution of the 

latent response data to item k is obtained by integrating out the covariance parameters in 

the expressions for the Helmert-transformed data. Under the unrestricted hypothesis, 

parameter 
2

k  is defined on the interval 
 0,1 ,

 referred to as 
;uH

  parameter k  is 

defined on 
 1/ 1 ,  1 ,m   

 referred to as 
.uH

 . It follows that 
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Equation 4.39 

where the last two terms follow from the truncation of the parameters to the intervals uH
  

and 
.uH

 . For hypothesis 2; 0,kH  
 the marginal distribution of the data in Equation 

4.39 is slightly modified, since the integration of k  is restricted to (0,1). This leads to a 

small modification of the cumulative inverse-gamma probability concerning parameter 
,k  

and the last term on the right-hand side of Equation 4.39 becomes  
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Annex 4.C. Simulation Study 

A simulation study was conducted using our own programme developed in R (R Core 

Team, 2014[63]). In this first simulation study, binary response data were simulated for 

10 items, with 1 000 persons assigned to one of two groups. The degree of measurement 

variance k  was increased across items. The lower bound of 
1/k m  

, where 500m   

represents the number of persons per group. For item 1, the level of measurement variance 

equaled this lower bound. The simulation study consisted of 50 data replications, which 

provided stable results; the mean results across replications are reported. 

The MCMC algorithm was used to estimate the degree of measurement variance in each 

item. The number of MCMC iterations was set to 5 000 with a burn-in of 1 000. The 

convergence and autocorrelation plots, created using the R package (Plummer et al., 

2006[64]) showed no irregularities. The functioning of the fractional Bayes factor was 

compared to the functioning of the ppp
2

MH
 statistic for the detection of measurement non-

invariance.  

Sinharay, Johnson and Stern (2006[65]) showed that the 
2

MH
 statistic is useful in assessing 

model fit in posterior predictive model checking. They used the 
2

MH
 statistic in order to 

test for local independence, where responses to items are assumed to be independently 

distributed given the person parameter. The association among item pairs was investigated 

to detect possible violations of the local independence assumption. This relates to the 

assumption of measurement invariance, where responses to item k are assumed to be 

independently distributed given a common item difficulty parameter for the reference and 

focal groups. Therefore, it is to be expected that the statistic can also be used to test 

measurement invariance assumptions. When responses to item k are independently 

distributed given the item parameter and group membership of the respondents 

(i.e. reference or focal group), it is concluded that measurement invariance does not hold. 

Data are replicated under the model, where it is assumed that the degree of measurement 

variance   = 0. The posterior predictive p-value (ppp
2

MH
) is estimated by the proportion 

of MCMC iterations in which the value of the 
2

MH
 statistic for the replicated data is greater 

than the one for the observed data: 

    2 2

MH rep MH |obs obsP


 y y y
 

Equation 4.41 

This simulation study involved 50 data replications, and the mean of the ppp
2

MH
 over 

50 replications was computed. The estimated ppp
2

MH
 represents the extremeness of the 

statistic for the observed data using replicated data generated under the assumption of 

measurement invariance. When the observed statistic value was extreme under the 

assumption of measurement invariance, a violation of this assumption was detected. A ppp
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2

MH
 of .5 indicates that the measurement invariance assumption is not violated, whereas 

a value close to 0 indicates that it is (Sinharay, Johnson and Stern, 2006[65]). However, as 

Gelman, Meng and Stern (1996[66]) pointed out, the ppp
2

MH
 shows the degree to which 

there are discrepancies between the model and the observed data. They emphasise that it is 

more of a tool to assess the usefulness of a model than a test to determine whether or not 

the model is true. 

In the second simulation study, a dataset was generated with 1 000 persons, equally divided 

over 20 randomly selected groups. The responses (either incorrect or correct) of these 

1 000 persons were simulated over 10 items. The degree of measurement variance   

increased across items, as it did in the first simulation study. The lower bound was 1/ .m  

Here, the lowest possible value for measurement non-invariance would be 1/ 50. . The 

fractional Bayes factors were computed to detect evidence in favour of the measurement 

invariance hypothesis H0, when the alternative hypotheses are no measurement invariance 

Hu and measurement non-invariance H2. 

The number of MCMC iterations was 5 000 with a burn-in of 1 000. The convergence and 

autocorrelation plots, created using the R package coda (Plummer et al., 2006[64]) did not 

show any irregularities. As in the previous study, this study consisted of 50 data 

replications, which led to stable results. 
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Chapter 5.  Multigroup and Multilevel Latent Class Analysis 

Michael Eid 

Introduction 

Latent class analysis (LCA) is a statistical model for explaining the associations between 

observed categorical variables by the existence of latent categorical variables (Clogg, 

1995[67]; Collins and Lanza, 2010[68]; Hagenaars and McCutcheon, 2002[69]; Lazarsfeld and 

Henry, 1968[70]). The starting point of an LCA are observed categorical variables that are 

measured on a nominal or an ordinal scale. Bartholomew, Knott and Moustaki (2011[71]) 

distinguish four types of latent variable models depending on the nature of the observed 

and the latent variables: 

1. factor analytic models are models for continuous observed and continuous latent 

variables 

2. latent trait models are models for observed categorical and continuous latent 

variables 

3. latent class models are models for categorical observed and categorical latent 

variables 

4. latent profile models are models for continuous observed and categorical latent 

variables.  

Hence, latent class models are applied if items have been assessed by a categorical response 

format and a researcher does not assume that the items can be ordered on one or more latent 

continuous variables (such as in a latent trait model). Instead, it is assumed that there are 

latent typological differences represented by latent classes. The latent classes are the values 

of a nominal-scaled latent variable. The categories of a nominal scale represent qualitative 

differences. However, the latent classes can be ordered as a result of the analysis (Heinen, 

1996[72]). This makes it possible to use LCA to prove whether different items can be ordered 

on latent dimensions and whether a dimensional model is reasonable in an application. 

Hence, LCA is a much more general approach compared to other models with latent 

variables such as unidimensional models of item response theory. 

LCA is a very general approach for considering measurement error and for reducing the 

number of observed response patterns to a smaller number of latent classes. Measurement 

error is considered by the fact that the membership of a latent class does not determine the 

observed response perfectly but only with a certain probability. Hence, the link between an 

observed and a latent categorical variable is given by the conditional response probabilities 

for the categories of the observed variables given a category of the latent class variable. 

Latent class models can also be considered as multinomial logit models with multiple 

categorical dependent variables and a latent categorical independent variable. 

Multigroup LCA allows to compare different groups (e.g. countries, genders) with respect 

to a latent class model. For example, it can be analysed whether the same latent classes can 

be found in different groups and whether the classes have the same sizes. If the groups are 

randomly selected from a population of groups (e.g. schools in a country) multilevel LCA 

can be applied, for example, to compare the variation of class sizes across groups. 
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Latent class models have been applied in quite different areas of research (Hagenaars and 

McCutcheon, 2002[69]) and have become popular in recent studies in the context of 

educational research and large-scale assessment. Drossel and Eickelmann (2017[73]), for 

example, used LCA to cluster German and Czech teachers into subgroups differing in types 

of activities that are related to technology-related professional development. Zhang, 

Watermann and Daniel (2016[74]) found different latent achievement goals classes and 

analysed their associations with achievement test scores. Based on LCA, Oliveri et al. 

(2014[75]) analysed differential item functioning of items of the Progress in International 

Reading Literacy Study (PIRLS) that were administered in Hong Kong, Chinese Taipei, 

Kuwait and Qatar. Fagginger Auer et al. (2016[76]) applied multilevel LCA to scrutinise the 

relationship between the curriculum and different mathematical strategies used by students. 

Yalcin (2017[77]) used data from the Turkish PISA study to analyse the determinants of 

different achievement classes by multilevel LCA. Using the PISA data for Chinese Taipei, 

Lin and Tai (2015[78]) analysed in which way different latent classes of mathematics 

learning strategies are related to the mathematical literacy of students. Boyce and Bowers 

(2016[79]) detected different latent classes of principals who quit their schools. These few 

examples show that LCA can be fruitfully applied in educational and large-scale studies.  

Description of LCA and its Extensions to Multigroup and Multilevel Models 

Basic Assumptions  

Latent Class Analysis 

In classical LCA it is assumed that the population consists of a finite set of sub-populations 

(so-called latent classes) that are disjoint and exhaustive. Disjoint means that the latent 

classes do not overlap and a member of the total population belongs only to one latent class. 

Exhaustive means that each member of the total population has to belong to a latent class. 

It is not known in advance to which latent class a member of the population belongs. After 

an LCA has been conducted the probabilities to belong to the different classes can be 

estimated for each member of the population based on his or her response pattern 

(assignment probabilities). Based on the assignment probabilities an individual can be 

assigned to the latent class for which his or her assignment probability is maximal. The 

latent classes can differ in their sizes. The probability that a randomly selected member 

belongs to a latent class (latent class probabilities) can be estimated. 

Each latent class is characterised by the response probabilities for the categories of the 

observed variables. These conditional response probabilities are the same for all members 

of a latent class, the different latent classes differ at least in the response probabilities of 

one item (observed variable). The latent classes are defined by these response probabilities 

and their substantive meaning can be delineated by interpreting the patterns of the class-

specific (conditional) response probabilities. Finally, it is assumed that all observed items 

are stochastically independent given the latent classes (so-called local independence). 

Local independence means that within a single latent class the observed variables are 

independent. The latent classes explain the unconditional associations of the observed 

variables. 

Multigroup Latent Class Analysis 

Multigroup LCA is an extension of LCA by considering multiple groups (Clogg and 

Goodman, 1985[80]; Eid, Langeheine and Diener, 2003[81]; Kankaraš, Moors and Vermunt, 

2018[82]). The different groups have to be independent from each other and the membership 
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to the different groups has to be known. In OECD data sets the different groups are, for 

example, different countries. Multigroup LCA allows testing specific hypotheses about the 

latent class structure in different countries. For example, a researcher conducting a multi-

country study might be interested in different research questions: 

 Do the countries differ in the number of latent classes? 

 Do the latent classes have the same meaning in the different countries? 

 Do the latent classes have the same sizes in the different countries? 

We illustrate how multigroup LCA can give answers to these research questions by 

referring to the distributed leadership scale of the TALIS 2013 database measuring 

participation in school decisions assessed by the principal of the school (OECD, 2014[83]). 

This scale consists of the following five statements (TC2G22A to TC2G22E) that have to 

be answered on a rating scale with four categories (1-strongly disagree, 2-disagree, 3-agree, 

4-strongly agree): 

a This school provides staff with opportunities to actively participate in school 

decisions. 

b This school provides parents or guardians with opportunities to actively participate 

in school decisions. 

c This school provides students with opportunities to actively participate in school 

decisions. 

d I make the important decisions on my own. 

e There is a collaborative school culture which is characterised by mutual support. 

Applying LCA to these items the countries can be compared with respect to the number of 

latent classes (participation types), the response probabilities and the class sizes. If the 

countries do not differ in the number of classes and the response probabilities, measurement 

invariance across countries would be given (Eid, Langeheine and Diener, 2003[81]; 

Kankaraš, Moors and Vermunt, 2018[82]). However, the countries are allowed to differ in 

their class sizes. In the context of latent class analysis, measurement invariance of a latent 

class is defined by showing the same conditional response probabilities across countries. If 

there is a latent class with the same conditional response probabilities in all countries, the 

meaning of this class with respect to the participation culture is the same and the sizes of 

this class can be compared across countries. For example, if there is a latent class in all 

countries showing (a) a response probability of .85 for the category strongly agree of the 

fourth item and 0.05 for the other categories of this item and (b) a response probability of 

.85 for the category strongly disagree of all other items and .05 for the other categories of 

all other items, this class would characterise schools in which only the principal decides 

and no other groups are allowed to participate in decisions. The sizes of this class in 

different countries can be compared to figure out whether countries differ in this type of 

participation culture. Full measurement invariance is given, if the countries do not differ in 

the number of classes and if the conditional response probabilities do not differ between 

countries. It is important to note that the number of classes can differ between countries 

even in the case of measurement invariance. For example, in Country A there can be two 

classes and in Country B three classes. This situation can be modelled by assuming a model 

with three classes and measurement invariance in both countries and fixing the size of one 

class in Country to 0. 
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Multilevel Latent Class Analysis 

Multilevel LCA is an extension of LCA for analysing data from a nested sampling design, 

in which random samples were drawn on different levels (Vermunt, 2003[84]; 2008[85]). With 

respect to OECD data a two-level design is given, for example, when within each country 

schools and within schools teachers or students were randomly drawn. Although countries 

in international studies are usually not randomly chosen but selected for theoretical 

reasons – and the country factor is typically a fixed factor and not a random factor – it has 

some advantages to treat the countries as a random factor. According to Vermunt (2003[84]) 

a multilevel analysis with countries as a level-2 variable has the advantages that (a) the 

number of parameters to be estimated is reduced and (b) the estimates are usually more 

stable. Moreover, it makes it possible to include level-2 predictor variables to predict class 

membership. 

Computer programmes for multilevel latent class analysis, such as Mplus (Muthén and 

Muthén, 1998-2017[25]), Latent GOLD (Vermunt and Magidson, 2016[86]) and mdltm (von 

Davier, 2005[87]; von Davier, 2010[88]; von Davier and Rost, 2016[89]), can be used to analyse 

two-level LCA models. Vermunt and Magidson (2016[86]) describe how it is possible to 

define a three-level model making use of some options for longitudinal data analysis. 

However, this is a bit tricky and not standard input language. Therefore, we will focus on 

two-level LCA to avoid misspecifications of models. In the case that teachers within 

different schools within different countries will be considered, teachers are level-1 units, 

schools are level-2 units and countries are units of a fixed factor. 

Conducting a Latent Class Analysis 

Latent Class Analysis 

There are in general two approaches for conducting an LCA, a confirmatory and an 

exploratory approach.  

Confirmatory Approach 

According to the confirmatory approach, specific hypotheses about the latent class structure 

can be tested. For example, a researcher can have the hypothesis that there are three latent 

classes explaining the associations between the observed variables. In order to test this 

hypothesis, the researcher can run an LCA using a computer programme and ask for a three-

class solution. The computer programme will estimate the conditional response 

probabilities for the three classes and the class sizes. Based on the estimated parameters the 

expected frequencies for the different response vectors can be estimated. These expected 

frequencies can be compared with the observed frequencies with a statistical test such as 

the Pearson test or the likelihood ratio test (Eid, Langeheine and Diener, 2003[81]). If the 

test statistics show that the observed and expected frequencies do not differ significantly, 

the researcher keeps this model as an appropriate model for explaining the associations of 

the observed variables. Many more specific hypotheses about response probabilities and 

class sizes can be tested in a confirmatory way (Langeheine, 1988[90]). The application of 

the Pearson test and the likelihood ratio test, however, require large sample sizes. The 

expected frequency of each possible response pattern should be at least 1 or even 5 to make 

sure that both statistics follow a χ2-distribution and that p values can be used for a valid 

decision about the model fit. If the values of the Pearson test and the likelihood ratio test 

differ strongly this is a sign that both do not follow a χ2-distribution. In the case of sparse 
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tables bootstrapping goodness of fit measures can be applied (Langeheine, Pannekoek and 

Van De Pol, 1996[91]). 

Exploratory Approach 

However, often researchers do not have specific hypotheses, but they want to know how 

many classes are necessary, how large the classes are and what the meaning of the classes 

is. In this case, the researcher can use the LCA in an exploratory way. In an exploratory 

analysis one has to figure out how many classes are necessary to explain the associations 

of the observed variables. In order to decide about the number of classes, several latent 

class models with an increasing number of latent classes have to be computed. The best 

fitting model has to be selected. One way to compare the fit of the model is to use the 

likelihood ratio test and to test whether including a further latent class results in a 

significantly better fit. The best fitting model according to this criterion is the model for 

which increasing the number of latent classes would not result in a model that fits the data 

significantly better. However, the traditional likelihood ratio test cannot be applied because 

regularity conditions are violated and the bootstrap likelihood ratio test has to be used 

(Tekle, Gudicha and Vermunt, 2016[92]). The fit of two models can also be compared by 

information criteria like the Akaike Information Criterion (AIC), the Bayes Information 

Criterion (BIC) or the Consistent Akaike Information Criterion (CAIC). These information 

criteria are calculated based on the fit of the model and the number of parameters to be 

estimated (Yang and Yang, 2007[93]). The best fitting model is the model showing the 

lowest value of an information criterion. After having decided about the number of classes 

the conditional response probabilities and the class sizes can be interpreted. Kankaraš et al. 

(2018[82]) recommend the BIC and CAIC for large sample sizes, and the AIC for smaller to 

medium-sized sample sizes. According to simulation studies, the AIC-3 seems to perform 

better than the AIC (Andrews and Currim, 2003[94]; Dias, 2006[95]; Fonseca and Cardoso, 

2007[96]). 

Multigroup Latent Class Analysis  

If there are clear hypotheses about the number and structure of the latent classes in the 

different groups, a confirmatory LCA can be conducted to test whether the hypothesised 

structure can be confirmed. However, the more typical case is that there are no clear 

hypotheses about the number and meaning of the latent classes. Therefore, a more 

exploratory analysis has to be pursued. How can this be done? There are at least two general 

strategies for an exploratory multigroup LCA.  

Strategy I 

In the first strategy, an LCA is conducted in several steps: 

1. An LCA is conducted in each group (country) separately according to the 

exploratory approach described above to figure out how many classes have to be 

considered and what the conditional response probabilities tell about the meaning 

of the latent classes.  

2. If the number of the classes is the same in all groups (countries), the assumption of 

full measurement invariance is tested by comparing the fit of the model without 

measurement invariance and the model with measurement invariance by a 

likelihood ratio test or – in the case of sparse tables – by a bootstrap likelihood ratio 

test [called “conditional bootstrap” in the computer programme Latent Gold 

(Vermunt and Magidson, 2005[97])] and/or by information criteria. If the assumption 
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of full measurement invariance has to be rejected, then different forms of partial 

measurement invariance can be tested. For example, it can be scrutinised whether 

some latent classes are measurement invariant or not and/or whether some items 

are measurement invariant or not. That means that the assumption of measurement 

invariance can be relaxed for some classes and/or items. This can be done 

successively until one finds such a less restrictive model that does not fit the data 

worse than the totally unrestricted model. 

3. If the number of the classes differ between groups, then it can be tested whether the 

classes that are present in all groups (countries) are measurement invariant or not. 

For example, if there are two classes in Group A, three classes in Group B, and four 

classes in Group C, it can be tested whether two classes are measurement invariant 

across all three groups, and whether there is an additional invariant class for 

Group B and Group C. This model would be equivalent to a multigroup model with 

four latent classes in all groups and full measurement invariance. The sizes of two 

classes in Group A, and one class in Group B, would be 0. If this model has to be 

rejected, different forms of partial measurement invariance (described in the last 

paragraph) can be tested. 

Strategy I is explained and illustrated in detail, for example, by Eid and Diener (2001[98]), 

Eid, Langeheine and Diener (2003[81]) as well as Kankaraš, Moors and Vermunt (2018[82]). 

Therefore, we will not illustrate this strategy. Strategy I can easily be applied if there is a 

small number of groups and items. However, this strategy has its limits if there are many 

countries like in the OECD studies. If there are many countries and full measurement 

invariance is not given across countries, it is cumbersome to find countries that consist of 

classes that are (partially) measurement invariant, because there a no specific fit indices to 

find items or classes that do not follow the measurement invariance assumption. Hence one 

has to compare each single parameter estimate between the restricted and the non-restricted 

model in all groups. Moreover, if one finds a misfitting item (or class) one has to free the 

restriction on the parameters of this item (or class) and to rerun the analysis to consider the 

new parameter estimates and the new model fit indices, and then to look for the next 

nonfitting item or class, etc. This is not feasible for a large number of countries and items. 

For a large number of countries a second strategy is more easily realizable. 

Strategy II 

In the second strategy, a multigroup LCA is conducted in which it is assumed that there is 

full measurement invariance across countries and the number of classes does not differ 

across countries. That means that a model with full measurement invariance is enforced. 

However, as we explain below the result of such an analysis could be a model with 

non-invariance or with partial invariance. The best fitting model is selected according to an 

exploratory strategy (e.g. applying information criteria). Using this strategy leads to more 

classes than one would usually find in a single group (country) but less classes than one 

would obtain in an analysis with only country-specific classes. This strategy also has the 

advantage that there is a higher power to detect small classes that exist in several countries 

but that would not be detected in country-specific analyses because their size within a 

country might be too small. Moreover, it could happen that some classes in some countries 

have a size of 0, which means that these classes do not exist in these countries. The basic 

idea of this strategy can be explained with respect to the case of two countries with three 

classes within each country. If the assumption of full measurement invariance holds, a 

solution with three measurement invariant classes will be expected. If there is no 

measurement invariance at all, a solution with six “measurement-invariant” classes will be 
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expected, whereas three classes have a size of 0 in the first country, and the remaining three 

classes have a size of 0 in the other country. That means that all three classes are not 

measurement invariant but specific to a country (leading to six classes using Strategy II). 

If two classes are measurement invariant, for example, a solution with four classes will be 

expected with one class having a size of 0 in one country and another class having a size 

of 0 in the other country. We illustrate this strategy with respect to the TALIS 2013 data. 

Multilevel Latent Class Analysis 

In multilevel latent class it is assumed that the groups (level-2 units) are randomly selected 

from a population. In the most general model, the parameters of a latent class model can 

differ between the level-2 units resulting in a model that is equivalent to a non-restricted 

multigroup latent class model (Vermunt, 2003[84]). However, with many level-2 units and 

small sizes of level-2 units the analysis of such a model would lead to many parameters to 

be estimated and unstable parameter estimates (Vermunt, 2003[84]). Therefore, in multilevel 

LCA restrictions are put on the parameters to avoid these estimation problems. In 

particular, it is assumed that the parameters stem from a certain distribution. When formally 

defining the model (see Annex 5.A), we describe this idea in more detail. 

In order to determine the appropriate number of classes, information criteria can be 

computed. Lukočienė, Varriale and Vermunt (2010[99]) scrutinised the behaviour of several 

information criteria in the context of multilevel LCA. They came to the conclusion that 

when one wants to determine the number of latent classes at the higher level, the most 

appropriate sample size for the BIC and the CAIC is the higher level sample size (number 

of higher level units). They found that the BIC, CAIC and Information Complexity 

(ICOMP) behave well when the number of individuals per group is large (nj ≥ 15), whereas 

AIC3 performs better when the number of individuals per group is small (nj = 5). Given the 

large sample sizes in the TALIS study we decided to consider the BIC as selection criterion 

for the number of classes in the application presented. For multilevel LCA bootstrap 

measures of goodness of fit are not available. 

Model Evaluation and Fit Statistics for Measurement Invariance Testing 

There are two ways to compare an unrestricted latent class model with a latent class model 

with full or partial measurement invariance: the likelihood ratio difference test and 

information criteria. 

Likelihood ratio difference test 

The likelihood ratio test can be applied to compare an unrestricted latent class model with 

a latent class model with full or partial measurement invariance because the latter is nested 

within the former. However, the likelihood ratio difference test requires large samples and 

is not valid in the situation of sparse tables. In the case of sparse tables, the bootstrap 

likelihood ratio test (BLRT) can be applied. The BLRT, however, is time consuming and 

is not applicable when the estimation of a model is very time consuming. In the case of 

many countries and no restrictions (many parameters to be estimated) the analysis of a 

model can take many hours depending on the computers available. In such a case a 

resampling procedure is not feasible, in particular, if one wants to compare several models. 

Moreover, bootstrap model fit criteria are not available for multilevel models. 
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Information criteria 

The information criteria can be easily estimated for different models differing in the 

restrictions on the parameters (no restrictions, partial measurement invariance, full 

measurement invariance) and the number of classes. The best fitting model is the model 

with the lowest value of an information criterion. Whereas the AIC-3 seems to be 

appropriate for small sample sizes, the BIC seems to be appropriate for large sample sizes 

and multilevel models. Given the large sample sizes of large-scale assessment studies, the 

use of the BIC is recommended. 

Empirical Example, Practical Advice and Recommendations 

In the following we will present an empirical application and discuss some practical issues 

and recommendations. 

Application of LCA to the TALIS Data Set: School Participation 

We illustrate the application of multigroup and multilevel LCA using the five items of the 

school participation scale presented above. The data stem from the TALIS 2013 data set. 

The subdata set consists of ratings of n = 7 436 principals from J = 38 countries. The 

countries differ in the sample sizes, from a minimum of 98 principals to a maximum of 

1 070 principals (with most samples including between 150 and 200 principals). We will 

illustrate Strategy II presented on p. 75 because there are many countries. The analyses 

were done in the following way. 

We used the computer programme Latent GOLD Version 5.1 (Vermunt and Magidson, 

2016[86]). We created the basic syntax using the syntax generator. A critical issue of LCA 

is the number of starting values. The syntax generator generates 16 sets of starting values. 

We reran the same analysis several times using the default value of 16 sets of starting values 

and found that we got slightly different solutions with respect to the maximum of the 

likelihood. We increased the number of sets of starting values to 40 and found that this 

worked fine. As a practical guideline, it is important to check whether the number of 

starting values is sufficient. In complex data structures such as in the OECD data sets, it is 

advisable to increase the number of starting values and not to use the default value. 

Different numbers of starting values can be checked and it can be analysed what the 

minimum value starting values is by trying different numbers. Moreover, we added 

“identification iteration details” to get an identification check. This should always be done, 

because a model with few items and many classes might not be identified.  

We conducted a multigroup LCA with measurement invariance across countries (invariant 

conditional response probabilities across countries, but non-invariant class sizes). We 

increased the number of classes until the BIC coefficient indicated the best fitting model, 

which was a model with six latent classes. The BIC coefficients for the first seven classes 

are depicted in Table 5.1. The part of the Latent GOLD syntax defining the model is given 

in Table 5.2. This model allows interpreting the classes and considering their distribution 

across the different countries. One obtains for each country a frequency distribution of the 

latent classes. To avoid redundancy we will not present the results of this model, but the 

results of the extension of this model to a two-level model. 
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Table 5.1. BIC coefficients for a multigroup latent class analysis about stakeholder 

participation in decision-making with measurement invariance across countries 

 Number of latent level-1 classes 

 1 2 3 4 5 6 7 

BIC coefficient 63 912.61 58 902.68 57 464.65 56 535.28 56 506.61 56 492.47 56 652.33 

Note: The lowest BIC value is in bold. 

Table 5.2. Latent GOLD syntax for a multigroup latent class model with six classes being 

measurement invariant across countries 

Syntax Explanation 

variables  

independent IDCNTRY nominal; country code, country is a nominal scale 

dependent TC2G22A nominal, TC2G22B nominal, TC2G22C nominal, TC2G22D 
nominal, TC2G22E nominal; 

five participation items defined as nominally scaled 
items 

latent  

Cluster nominal 6;  

equations  

Cluster <- 1 +  IDCNTRY; class sizes depend on the country 

TC2G22A <- 1  + Cluster; response probabilities depend on the classes but not 
on the country 

TC2G22B <- 1  + Cluster ;  

TC2G22C <- 1  + Cluster ;  

TC2G22D <- 1  + Cluster ;  

TC2G22E <- 1  + Cluster ;  

In a next step, we analysed whether taking the items as ordinal variables and applying the 

restrictions of an ordinal measurement model (see Annex 5A) would result in a lower BIC 

value. Because this was not the case (BIC = 56 510.17), we considered the restrictions of 

the ordinal model as too restrictive, and treated the items as nominally scaled for the rest 

of the analyses. 

Based on the results of the multigroup analysis with six latent classes we conducted a two-

level LCA (principals nested within countries) and analysed models with six classes on 

level 1 and an increasing number of level-2 classes. We increased the number of starting 

values to 600. Now we considered the BIC based on the number of groups as selection 

criterion. The BIC values are presented in Table 5.3. The fit improved until six classes. 

Because the results became unstable for more than six latent classes and were affected by 

identification problems, we took the model with six classes on level 2 as the best fitting 

model. The syntax for this model is shown in Table 5.4. 

Table 5.3. BIC coefficients for a multilevel latent class analysis about stakeholder 

participation in decision-making with measurement invariance across countries 

 Number of latent level-2 classes 

 1 2 3 4 5 6 

BIC coefficient 57 317.82 56 023.21 55 596.97 55 381.76 55 240.92 55 151.94 

Note: The lowest BIC value is in bold. 
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Table 5.4. Latent GOLD syntax for a multigroup latent class model with six classes on both 

levels 

Syntax Explanation 

variables  

independent IDCNTRY nominal; country code, country is a nominal scale 

dependent TC2G22A nominal, TC2G22B nominal, TC2G22C nominal, TC2G22D 
nominal, TC2G22E nominal; 

five participation items defined as nominally scaled items 

latent  

GClass group nominal 6, six latent classes on level 2 are considered 

Cluster nominal 6; six latent classes on level 1are considered 

equations  

GClass <- 1; sizes of the classes are estimated 

Cluster <- 1 +  GClass; classes on level 1 depend on the level-2 classes 

TC2G22A <- 1  + Cluster; response probabilities depend on the level-1 classes but not 
on the level-2 classes 

TC2G22B <- 1  + Cluster ;  

TC2G22C <- 1  + Cluster ;  

TC2G22D <- 1  + Cluster ;  

TC2G22E <- 1  + Cluster ;  

The conditional response probabilities for the level-1 classes are presented in Table 5.5. 

The conditional probabilities for belonging to a level-1 class given a level-2 class are 

presented in Table 5.6. 

In order to consider the distribution of the level-2 classes across countries, countries were 

assigned to level-2 classes using the assignment probabilities for the different classes. The 

modal assignment probability is 1, showing that the countries are very distinct and that the 

latent-2 classes represent national differences very well. Table 5.7 presents the cross-

classifications of the 38 countries and the level-2 classes to which they were assigned. 
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Table 5.5. Latent GOLD output presenting the class-specific conditional response 

probabilities for the level-1 classes in the two-level model 

 Level-1 Classes (Clusters) 

 1 2 3 4 5 6 Overall 

Size 0.3066 0.1603 0.0895 0.2385 0.1002 0.1048  

TC2G22A Staff 

Strongly disagree 0.0006 0.0154 0.0010 0.0002 0.0017 0.0000 0.0030 

Disagree 0.0009 0.0768 0.0026 0.0000 0.0497 0.0000 0.0178 

Agree 0.8663 0.8140 0.0396 0.6548 0.8248 0.1203 0.6511 

Strongly agree 0.1322 0.0938 0.9568 0.3450 0.1237 0.8796 0.3282 

TC2G22B Parents or guardians 

Strongly disagree 0.0000 0.0394 0.0000 0.0000 0.0209 0.0037 0.0088 

Disagree 0.0109 0.6444 0.0000 0.0235 0.3993 0.0210 0.1545 

Agree 0.9730 0.3108 0.1191 0.9328 0.5723 0.4181 0.6825 

Strongly agree 0.0161 0.0054 0.8809 0.0437 0.0075 0.5572 0.1543 

TC2G22C Students 

Strongly disagree 0.0000 0.0442 0.0046 0.0007 0.0579 0.0000 0.0135 

Disagree 0.0935 0.5833 0.0130 0.1136 0.5764 0.0201 0.2103 

Agree 0.8839 0.3654 0.3500 0.8581 0.3549 0.5402 0.6577 

Strongly agree 0.0227 0.0072 0.6324 0.0276 0.0108 0.4397 0.1185 

TC2G22D Principal makes important decisions on her/his own 

Strongly disagree 0.0003 0.1743 0.6838 0.4811 0.0077 0.0021 0.2050 

Disagree 0.5806 0.5799 0.2529 0.5130 0.0877 0.4226 0.4691 

Agree 0.3698 0.2246 0.0435 0.0059 0.6624 0.4069 0.2637 

Strongly agree 0.0493 0.0211 0.0199 0.0000 0.2421 0.1684 0.0622 

TC2G22E Collaborative school structure / mutual support 

Strongly disagree 0.0016 0.0243 0.0112 0.0051 0.0000 0.0000 0.0066 

Disagree 0.0301 0.1239 0.0260 0.0523 0.0421 0.0098 0.0491 

Agree 0.8034 0.6815 0.3766 0.6408 0.6829 0.3146 0.6435 

Strongly agree 0.1649 0.1703 0.5863 0.3018 0.2750 0.6756 0.3007 

Note: Conditional probabilities larger than .30 are in bold.  

Table 5.6. Latent GOLD output presenting the class-specific conditional probabilities for the 

level-1 classes (cluster) given the level-2 classes in the two-level model 

 Level-2 Classes (GClasses) 

Level-1 Classes 1 2 3 4 5 6 

1 – SAP+ 0.5879 0.1935 0.0753 0.4618 0.2361 0.0115 

2 – MStP- 0.0168 0.4449 0.0729 0.1200 0.2283 0.0012 

3 – VSAP- 0.0627 0.0226 0.2697 0.0348 0.1097 0.0001 

4 – SAP- 0.0616 0.1964 0.5808 0.0963 0.3724 0.0001 

5 - MStWPaP+ 0.0244 0.0868 0.0001 0.1376 0.0004 0.8651 

6 – VSAP+ 0.2465 0.0558 0.0012 0.1495 0.0530 0.1220 

Note: Response probabilities larger than .30 are in bold. 
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Table 5.7. Classification of the 38 countries in the Level-2 classes 

 Level-2 Classes (GClasses) 

 1 2 3 4 5 6 

Australia 0 0 0 0 123 0 

Brazil 0 0 1070 0 0 0 

Bulgaria 0 0 0 197 0 0 

Chile 0 0 0 178 0 0 

Croatia 0 0 0 199 0 0 

Cyprus* 0 0 0 98 0 0 

Czech Republic 0 0 0 220 0 0 

Denmark 0 0 0 148 0 0 

Estonia 0 0 197 0 0 0 

Finland 0 146 0 0 0 0 

France 0 0 0 0 204 0 

Georgia 194 0 0 0 0 0 

Iceland 0 0 0 129 0 0 

Israel 0 195 0 0 0 0 

Italy 0 194 0 0 0 0 

Japan 0 0 0 0 0 192 

Korea 177 0 0 0 0 0 

Latvia 116 0 0 0 0 0 

Malaysia 0 0 0 0 0 150 

Mexico 0 0 0 0 187 0 

Netherlands 0 0 0 127 0 0 

New Zealand 0 0 0 0 163 0 

Norway 0 0 0 0 145 0 

Poland 195 0 0 0 0 0 

Portugal 0 0 185 0 0 0 

Romania 0 0 197 0 0 0 

Russia 198 0 0 0 0 0 

Serbia 191 0 0 0 0 0 

Singapore 0 159 0 0 0 0 

Slovak Republic 0 0 0 193 0 0 

Spain 0 0 192 0 0 0 

Sweden 0 186 0 0 0 0 

United States 0 0 0 0 122 0 

Sub-national entities       

Abu Dhabi (United Arab Emirates) 0 0 0 0 166 0 

Alberta (Canada) 0 0 0 0 182 0 

England (United Kingdom) 0 0 0 0 154 0 

Flemish Community (Belgium) 0 0 0 168 0 0 

Shanghai-China 0 0 199 0 0 0 

Sum 1071 880 2040 1657 1446 342 

Notes: Numbers refer to the number of principals (schools), countries are assigned to classes based on the modal 

assignment probability. Response probabilities larger than .30 are in bold. 

* Note by Turkey: 

The information in this document with reference to ‘Cyprus’ relates to the southern part of the Island. There is 

no single authority representing both Turkish and Greek Cypriot people on the Island. Turkey recognises the 

Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context 

of the United Nations, Turkey will maintain its position concerning the ‘Cyprus issue’. 

Note by all the European Union Member States of the OECD and the European Union: 

The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The 

information in this document relates to the area under the effective control of the Government of the Republic 

of Cyprus. 
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The level-1 classes (called “clusters” in the output) can be interpreted based on the 

conditional response probabilities. All schools are characterised by a collaborative school 

culture and mutual support (Item TC2G22E), but the classes differ with respect to the 

participation of the different groups and can be characterised as in Table 5.8. 

Table 5.8. School-level classes for types of distributed leadership (Level-1 classes) 

Based on principal reports 

 Size 
(%) 

Description 

Class 1: SAP+ 30.66 Strong participation of all groups, but it is not unlikely that the principal makes decisions alone. 

Class 2: MStP- 16.03 Mainly staff members participate in decisions, and it is rather unlikely that the principal makes decisions alone.  

Class 3: VSAP- 8.95 Very strong participation of all different groups, rather unlikely that a principal makes decisions alone.  

Class 4: SAP- 23.85 Strong participation of all groups, unlikely that the principal makes decisions alone. 

Class 5: 
MStWPaP+ 

10.02 Mainly staff members participate in decisions, parents to a certain degree and the probability that students can 
participate is rather low, it is likely that principal makes decisions alone 

Class 6: VSAP+ 10.48 Very strong participation of all groups, but it is rather likely that the principal makes important decisions alone.  

Note: Please refer to the text for an explanation of class names (abbreviations). 

The classes can be ranked according to the participation structure in the following way 

 Very strong participation: Classes 3 and 6. The classes 3 and 6 are classes with very 

strong participation of all groups, but they differ in the role of the principal, in 

class 6 it is likely that she/he will make also important decisions alone, but this is 

unlikely in class 3. We will use the abbreviations VSAP- (very strong participation 

of all groups, P-: principal does not make decisions alone) for Class 3 and VSAP+ 

for Class 6. Together, 19.43% of all schools belong to very strong participation 

schools. 

 Strong participation: Classes 1 and 4. The classes 1 and 4 are classes with strong 

participation of all groups, but they differ in the role of the principal, in class 1 it is 

not unlikely that she/he will make also important decisions alone, but this is very 

unlikely in class 3. We will use the abbreviations SAP+ (strong participation of all 

groups, P-: principal does not make decisions alone) for class 1 and SAP1- for 

class 4. Together, 54.51% of all schools belong to strong participation groups. 

 Strong participation of staff, weak participation of other groups, mainly parents: 

Class 5. We abbreviate this class as MStWPaP+ (mainly staff, weaker parents, P+: 

principal makes decisions alone). 10.02% of all schools belong to this class. 

  Strong participation of staff, but much weaker participation of parents (and 

students): Class 2. We abbreviate this class as MStP- (mainly staff, P-: principal 

does not make decisions alone). In contrast to Class 5, the probability that parents 

have the opportunity to participate is smaller, and the principal does not make 

decision on her or his own. 16.03% of all schools belong to this class of lowest 

participation opportunities.  

Based on the meaning of the level-1 classes, the level-2 classes can be interpreted. In 

Table 5.6 the conditional probabilities for belong to a level-1 class (cluster) for members 

of a level-2 class (GClass) are presented. Table 5.9 shows the meaning and countries 

assigned to level-2 classes (also see Table 5.7). 
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Table 5.9. Country-level classes for types of distributed leadership (Level-2 classes) 

 Description Countries 

Class 1 Members of this class have a high probability to belong a level-1 class characterised by 
strong participation of all and a comparatively high probability for a principal making important 
decisions on her or his own. 

Georgia, Korea, Latvia, Poland, 
Russia, Serbia 

Class 2 About 44.49% of schools in this class belong to a level-1 class characterised by low 
participation opportunities for parents/guardians, but strong participation opportunities for 
staff, and principals not deciding alone. About 39% of all schools a characterised by strong 
participation opportunities for all, half of them with principals showing a comparatively high 
probability of making decisions alone, half of them not. 

Finland, Israel, Italy, Singapore, 
Sweden 

Class 3 Members of this class belong predominantly to latent-1 classes with (very) strong participation 
opportunities for all, and principals not deciding alone. 

Brazil, Estonia, Portugal, Romania, 
Shanghai (China), Spain 

Class 4 Mainly schools with strong participation opportunities for all and principals showing a 
comparatively high probability of making decisions on their own (46.18%). Other schools 
almost equally distributed over other types with the exception of schools with very strong 
opportunities for all and principals not deciding alone. 

Bulgaria, Chile, Croatia, Cyprus2, 

Czech Republic, Denmark, Flemish 
Community (Belgium), Iceland, 
Netherlands, Slovak Republic. 

Class 5 Heterogeneous class with many types. 37.24% of schools belong to strong participation of all 
and principals not deciding alone. Low probabilities for MStWPaP+ and VSAP+.  

Abu Dhabi, Alberta (Canada), 
Australia, England (United Kingdom), 
France, Mexico, New Zealand, 
Norway, United States 

Class 6 Members of this class belong primarily to level-1 class 5, characterised by strong participation 
possibilities for staff, weaker possibilities for parents (and low for students) and principals 
making decisions on their own. 

Japan, Malaysia  

Practical Advice and Recommendations 

The application of multigroup and multilevel LCA was illustrated with an example from 

the TALIS study comprising different principals (schools) in different countries. In the 

application presented, multigroup LCA allows to consider the distribution of the different 

classes in the different countries in detail, which is a more fine-grained rendering of the 

data. Multilevel analyses group countries into different clusters showing the same 

distribution of level-1 classes. This is less fine-grained but facilitates the interpretation of 

the data a lot, as only six level-2 classes (instead of 38 country-specific distributions) have 

to be considered. 

Two-level LCA can also be applied to teacher and student data. In this case, 

teacher/students (level 1) would be nested in schools (level 2). The different countries can 

be represented by dummy variables and included as predictor variables for the latent class 

variables. Based on this example we will discuss some general issues and give some 

practical advice. 

                                                      
2 Note by Turkey: 

The information in this document with reference to ‘Cyprus’ relates to the southern part of the Island. 

There is no single authority representing both Turkish and Greek Cypriot people on the Island. 

Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable 

solution is found within the context of the United Nations, Turkey will maintain its position 

concerning the ‘Cyprus issue’. 

Note by all the European Union Member States of the OECD and the European Union: 

The Republic of Cyprus is recognised by all members of the United Nations with the exception of 

Turkey. The information in this document relates to the area under the effective control of the 

Government of the Republic of Cyprus. 
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Strategy I versus Strategy II 

We illustrated Strategy II because of the many countries and because this strategy has to 

our knowledge not been illustrated in detail in the literature before. Using Strategy I has 

some limitations in the current application. First, analyses in 38 countries would have been 

done separately to figure out how many latent classes are required in the different countries. 

If the assumption of full measurement invariance has to be rejected for all 38 countries – 

which is usually the case – all 38 countries will have to be compared to each other with 

respect to the latent classes and items to check whether a model with partial measurement 

invariance would fit the data. That means that one has to do 38*37/2 = 703 comparisons 

(country by country) to figure out whether there are countries being more similar and less 

similar in the class-specific response patterns. This is very cumbersome if not impossible. 

Using Strategy II countries can be clustered with respect to their class structures in a data-

analytic way. We found six clusters of countries, a small number that simplifies the 

interpretation of similarities and differences between the countries a lot. 

If there are only very few countries that should be compared, we strongly recommend 

Strategy I that is well explained and illustrated in Eid and Diener (2001[98]), Eid, 

Langeheine and Diener (2003[81]) and Kankaraš, Moors and Vermunt (2018[82]). 

How to Deal with Violations of Measurement Invariance 

In multinational studies measurement invariance seldom holds. How to deal with violations 

of measurement invariance? LCA offers several ways to model partial measurement 

invariance that have been presented. For example, it can be analysed whether there are 

groups of countries that are measurement invariant and groups of countries that differ. If 

the measurement in-equivalence is due to single items or countries one can think about 

eliminating these items or countries. However, this should only be done if there are strong 

reasons, for example, if the translation of an item was ambiguous or participants in a 

country did not follow the instructions. This cannot be decided on a statistical analysis 

alone and needs further information. In general, items and countries do not have to be 

excluded, because LCA is flexible enough to consider aberrant items and countries by 

relaxing the assumption of full measurement invariance. 

Critical Issues  

In order to apply LCA, the items should be correlated because the latent class structure 

explains the correlations of the observed items. If the different items were not correlated, 

it would not make sense to apply LCA to the data set. LCA has its limits when there are 

many items having many response categories and being very weakly correlated. In this 

case, many classes would have to be considered, and the comparison of many countries 

would be bothersome. 

An important critical issue is the selection of the number of classes. In the application 

presented we decided for six latent classes and a model for nominal observed variables. 

However, the BIC value for five classes was only slightly higher, also the model with 

ordinal restrictions had only a slightly higher BIC value. Hence, a model with five classes 

might also fit the data well. In order to decide about the number of classes, several class 

solutions can be considered and the choice of the model can also depend on theoretical 

considerations. For example, in the current application the solutions with five and six 

classes can be compared. If the sixth class does not strongly differ from other classes, is 

not informative at all or very small, one can prefer a five-class solution. The smallest class 
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in our solution (Class 3 in Table 5.5 and Table 5.8) shows a very interesting response 

pattern differing from the other response pattern. Therefore, a six class solution was chosen. 

One might also prefer a model with ordering restrictions on the categories for theoretical 

reasons. Then, one would opt for the model with order restrictions. However, interpreting 

the response probabilities for the different categories in Table 5.5 is the more basic 

approach and does not require ordering restrictions. 

Software 

Multigroup analyses can be done with the computer programmes Latent Gold (Vermunt 

and Magidson, 2016[86]), LCCA (Schafer and Kang, 2013[100]), LEM (Vermunt, 1997[101]), 

Mplus (Muthén and Muthén, 1998-2017[25]) and mdltm (von Davier, 2005[87]; von Davier, 

2010[88]; von Davier and Rost, 2016[89]). Multilevel LCA models can be analysed with 

Latent Gold and Mplus. The programmes LCCA and LEM are non-commercial 

programmes (open access). However, both programmes do not have bootstrap facilities. 

Latent Gold and Mplus are the more general programmes. Mplus only provides a bootstrap 

likelihood ratio difference test for comparing models differing in the number of classes. 

Latent Gold offers more bootstrap model fit facilities, for example, a bootstrap likelihood 

ratio test for testing a LCA model confirmatorily, and a bootstrap likelihood ratio difference 

test for comparing an unrestricted model with a model with full or partial measurement 

invariance. 

Comparative Overview 

LCA is a model for categorical observed variables measuring categorical latent variables. 

In this regard, LCA is unique and differs from all other approaches presented in the other 

chapters. The choice of a model should be based on theoretical considerations. Whenever 

it is assumed that a construct is typological and not dimensional in nature, LCA is the 

approach of choice. LCA requires that the observed variables are categorical. In the case 

of metrical observed variables other approaches have to be applied. LCA can also be 

applied when assumptions of other models for categorical observed variables such as latent 

trait models are violated. For example, in contrast to latent trait models LCA does not 

require that items are ordered on one or more latent dimensions (although a model with 

ordered latent classes can also be applied) (Heinen, 1996[72]; Kankaraš, Moors and 

Vermunt, 2018[82]). In contrast to other approaches, LCA does not assume that a country is 

homogeneous with respect to the parameters of a model, but that there can be subgroups within 

countries that are not equivalent with respect to the parameters of a model. These subgroups 

can be compared across countries. Hence, LCA is a very flexible approach for international 

studies. 
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Annex 5.A. Formal Definition of the Models 

In order to define the LCA in a formal way we follow the notation of Vermunt (2003[84]).  

Latent Class Model 

The classical latent class model is defined by the following equation (Vermunt, 2003, 

p. 216[84]): 

𝑃(𝒀𝑖 = 𝒔) = ∑ 𝑃(𝑋𝑖 = 𝑡)

𝑇

𝑡=1

∙ 𝑃(𝒀𝑖 = 𝒔|𝑋𝑖 = 𝑡) 

= ∑ 𝑃(𝑋𝑖 = 𝑡)

𝑇

𝑡=1

∏ 𝑃(𝑌𝑖𝑘 = 𝑠𝑘|𝑋𝑖 = 𝑡)

𝐾

𝑘=1

 

Equation 5.1 

with 

 Yik: observed response variable 

o i: individual, i = 1, …, n 

o k: item; k = 1, …, K 

o sk: category of item k; sk = 1, …, Sk 

 Yi: full vector of responses of individual i  

 s: possible response pattern 

 Xi: latent class variable 

o t: latent class, t = 1, …, T 

 𝑃(𝒀𝑖 = 𝒔): Probability of an observed response pattern s 

 𝑃(𝑋𝑖 = 𝑡): Probability of a latent class t (class size) 

 𝑃(𝒀𝑖 = 𝒔|𝑋𝑖 = 𝑡): Class-specific (conditional) probability of an observed response 

pattern s 

 𝑃(𝑌𝑖𝑘 = 𝑠𝑘|𝑋𝑖 = 𝑡): Class-specific (conditional) probability of an observed 

response sk 

The equation 𝑃(𝒀𝑖 = 𝒔|𝑋𝑖 = 𝑡) = ∏ 𝑃(𝑌𝑖𝑘 = 𝑠𝑘|𝑋𝑖 = 𝑡)𝐾
𝑘=1  defines the conditional 

independence of the observed responses (local independence). 

The class probabilities and the conditional response probabilities can also be written in 

form of the logit parameterisation that is used for extending the standard model to a 

multigroup and multilevel model: 

𝑃(𝑋𝑖 = 𝑡) =
exp (𝛾𝑡)

∑ exp (𝛾𝑟)𝑇
𝑟=1

 Equation 5.2 
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𝑃(𝑌𝑖𝑘 = 𝑠𝑘|𝑋𝑖 = 𝑡) =
exp (𝛽𝑠𝑘𝑡

𝑘 )

∑ exp (𝛽𝑟𝑡
𝑘 )

𝑆𝑘
𝑟=1

 Equation 5.3 

For identification reasons a constraint has to be imposed on each equation, e.g., 𝛾1 = 0 and 

𝛽1𝑡
𝑘 = 0. 

Definition of the latent class model for ordinal variables 

So far, we have assumed that the observed variables are measured on a nominal scale. 

Often, however, the categories of a response scale are ordered like the rating scale in the 

TALIS example presented in Table 5.5. The LCA model can be extended to ordinal 

response scales by putting restrictions on the response categories. The advantage is that this 

saves parameters to be estimated and the estimated class-specific (conditional) mean values 

can be interpreted. This could simplify the presentation of the results because the 

conditional probability distribution of the response categories might not have to be 

presented. In the case of ordinal response variables the parameters 𝛽𝑠𝑘𝑡
𝑘  in Equation 5.3 are 

restricted in the following way (Vermunt and Magidson, 2016, p. 23[86]): 

𝛽𝑠𝑘𝑡
𝑘 = 𝛽𝑠𝑘0

𝑘 + 𝛽0𝑡
𝑘 ∙ 𝑦𝑠𝑘

𝑘∗ Equation 5.4 

 

where 𝑦𝑠𝑘
𝑘∗ are the category scores, resulting in an adjacent-category ordinal logit 

measurement model. The meaning of the parameters depends on how the category scores 

𝑦𝑠𝑘
𝑘∗are chosen. If the first category, for example, is assigned a score of 0, one gets a so-

called baseline-category logit. Another possibility would be to choose an effect coding of 

the categories of the observed variables (Vermunt and Magidson, 2016, p. 16[86]). 

Multigroup Latent Class Analysis  

A multigroup latent class model is defined by adding an index j for the group (Vermunt, 

2003, p. 216[84]): 

𝑃(𝒀𝑖𝑗 = 𝒔) = ∑ 𝑃(𝑋𝑖𝑗 = 𝑡)

𝑇

𝑡=1

∙ 𝑃(𝒀𝑖𝑗 = 𝒔|𝑋𝑖𝑗 = 𝑡) 

= ∑ 𝑃(𝑋𝑖𝑗 = 𝑡)

𝑇

𝑡=1

∏ 𝑃(𝑌𝑖𝑗𝑘 = 𝑠𝑘|𝑋𝑖𝑗 = 𝑡)

𝐾

𝑘=1

 

Equation 5.5 

with 

 Yijk: observed response variable 

o i: individual within group j; i = 1, …, nj 

o j: group; j = 1, …, J 

o k: item; k = 1, …, K 
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o sk: category of item k; sk = 1, …, Sk 

 Yij: full vector of responses of individual i in group j 

 s: possible response pattern 

 Xij: latent class variable 

o T: latent class, t = 1, …, T 

 𝑃(𝒀𝑖𝑗 = 𝒔): Probability of an observed response pattern s 

 𝑃(𝑋𝑖𝑗 = 𝑡): Probability of a latent class t (class size) 

 𝑃(𝒀𝑖𝑗 = 𝒔|𝑋𝑖𝑗 = 𝑡): Class-specific (conditional) probability of an observed 

response pattern s 

 𝑃(𝑌𝑖𝑗𝑘 = 𝑠𝑘|𝑋𝑖𝑗 = 𝑡): Class-specific (conditional) probability of an observed 

response sk 

The equation 𝑃(𝒀𝑖𝑗 = 𝒔|𝑋𝑖𝑗 = 𝑡) = ∏ 𝑃(𝑌𝑖𝑗𝑘 = 𝑠𝑘|𝑋𝑖𝑗 = 𝑡)𝐾
𝑘=1  defines the conditional 

independence of the observed response (local independence). 

In form of the logit parameterisation, the class probabilities and the conditional response 

probabilities are defined in the following way: 

𝑃𝑃(𝑋𝑖𝑗 = 𝑡) =
exp (𝛾𝑡𝑗)

∑ exp (𝛾𝑟𝑗)𝑇
𝑟=1

 Equation 5.6 

𝑃𝑃(𝑌𝑖𝑗𝑘 = 𝑠𝑘|𝑋𝑖𝑗 = 𝑡) =
exp (𝛽𝑠𝑘𝑡𝑗

𝑘 )

∑ exp (𝛽𝑟𝑡𝑗
𝑘 )

𝑆𝑘
𝑟=1

 Equation 5.7 

According to Equation 5.6 the size of the latent classes can differ between groups, and 

according to Equation 5.7 the conditional response probabilities can be group-specific. Full 

measurement invariance means that the conditional response probabilities 

𝑃(𝑌𝑖𝑗𝑘 = 𝑠𝑘|𝑋𝑖𝑗 = 𝑡) do not differ between groups. Consequently, also the parameters 

𝛽𝑠𝑘𝑡𝑗
𝑘  do not differ between groups and have to be set equal across groups.  

Kankaraš et al. (2018[82]) decompose a parameter 𝛽𝑠𝑘𝑡𝑗
𝑘  according to a logistic regression 

into two parameters that we will notate with 𝛼𝑠𝑘𝑗
𝑘  and 𝛼𝑠𝑘𝑡𝑗

𝑘 : 𝛽𝑠𝑘𝑡𝑗
𝑘 =  𝛼𝑠𝑘𝑗

𝑘  + 𝛼𝑠𝑘𝑡𝑗
𝑘 . The first 

parameter (“intercept”) does not depend on the class (but on the group) and characterises 

the difficulty of an item. The second parameter (“slope”) depends on the class and the group 

and represents the strength of relationship between the latent and the observed variable. In 

the case of full measurement both parameters do not depend on the group. If the assumption 

of full measurement invariance has to be rejected, the decomposition into the two 

parameters allows testing specific hypotheses about the reason of the violation. If, for 

example, only the parameters 𝛼𝑠𝑘𝑗
𝑘  differ between groups but not the parameters 𝛼𝑠𝑘𝑡𝑗

𝑘 , then 

the groups differ only in the difficulties (“intercepts”) but not the associations with the 

classes (“slopes”). According to Kankaraš et al. (2018[82]) such a model is similar to the 

concept of metric equivalence in models for continuous variables such as multigroup 

confirmatory factor analysis. Kankaraš et al. (2018[82]) discuss and illustrate with empirical 
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examples how different hypotheses about group differences can be tested based on this 

decomposition. 

Definition of the multigroup latent class model for ordinal variables 

In a multigroup LCA for ordinal response variables one obtains an equation analogous to 

Equation 5.4 by adding the index j for the group: 

𝛽𝑠𝑘𝑡𝑗
𝑘 = 𝛽𝑠𝑘0𝑗

𝑘 +  𝛽0𝑡𝑗
𝑘 ∙ 𝑦𝑠𝑘

𝑘∗  Equation 5.8 

 

Multilevel Latent Class Analysis 

The general formula of the model (both for nominal and ordinal observed variables) is the 

same as for the multigroup case. In Equation 5.5 individuals i are now considered level-1 

units and groups j are considered level-2 units. Vermunt (2003[84]) distinguishes between 

two different approaches of multilevel LCA, a parametric and a nonparametric approach. 

Parametric multilevel latent class analysis 

In the parametric multilevel LCA model it is assumed that the group-specific effects 

(effects of level-2 units) stem from a parametric distribution. If one assumes, for example, 

that the conditional response probabilities are invariant across level-2 units (measurement 

invariance) but the class sizes differ between level-2 units, the group-specific parameters 

in Equation 5.6 can be restricted in the following way (Vermunt, 2003, p. 218[84]): 

𝛾𝑡𝑗 = 𝛾𝑡 + 𝜏𝑡 ∙ 𝑢𝑗 Equation 5.9 

with the assumption that the level-2-specific effects stem from a standard normal 

distribution [uj ~ N(0,1)], and with one identifying constraint on each of the two parameters 

𝛾𝑡 and 𝜏𝑡 such as 𝛾1 = 0 and 𝜏1 = 0. If one makes this identifying constraint, a parameter 

contrasts the size of class t with the first class (t = 1) that is taken as reference class. In 

Equation 5.9it is assumed that the random effects for the different latent classes are 

unidimensional, an assumption that might be too strong and could be relaxed to a 

multidimensional structure (Vermunt, 2003[84]). Based on Equation 5.9 for each non-

reference class an intraclass-correlation can be computed: 

𝑟𝐼𝑡 =
𝜏𝑡

2

𝜏𝑡
2 + 𝜋2/3

   Equation 5.10 

with 𝜋 = 3.14. 

Nonparametric multilevel latent class analysis 

The parametric multilevel LCA assumes that the random level-2 effects stem from a normal 

distribution which is rather restrictive. Vermunt (2003[84]) has developed a nonparametric 

multilevel LCA approach that defines latent classes on level 2. This approach allows 

clustering level-2 units, for example, countries according to the sizes of the level-1 classes 

(that are invariant across countries). The level-2 latent class variable is denoted by W, and 
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Wj is a value of group j on the latent class variable. If m stands for a specific latent class (m 

= 1, …, M) with size 𝜋𝑚, the probability that a member of level-2 class m belongs to level-1 

class t is: 

𝑃(𝑋𝑖𝑗 = 𝑡|𝑊𝑗 = 𝑚) =
exp (𝛾𝑡𝑚)

∑ exp (𝛾𝑟𝑚)𝑇
𝑟=1

 Equation 5.11 

It is possible to decompose 𝛾𝑡𝑚 in 𝛾𝑡𝑚 = 𝛾𝑡 + 𝑢𝑡𝑚, but 𝑢𝑡𝑚 does not come from a specified 

distribution as the random effects in the parametric approach do. In illustrating the use of 

multilevel LCA for OECD data we refer to the nonparametric approach because we do not 

want to make the assumption that the countries can be ordered on a latent dimension. 

If one applies multilevel LCA to the situation that, for example, teachers (level-1 units) are 

nested within schools (level-2 units) belonging to different countries, countries can be 

considered as a level-2 covariate. The different countries have to be represented by dummy 

variables. For one level-2 predictor Z1j (e.g. one dummy variable), Equation 5.11 can be 

extended in the following way: 

𝑃(𝑋𝑖𝑗 = 𝑡|𝑍1𝑗, 𝑊𝑗 = 𝑚)

=
exp (𝛾0𝑡𝑚 + 𝛾1𝑡𝑍1𝑗)

∑ exp (𝛾0𝑟𝑚 ∗ +𝛾1𝑟𝑍1𝑗)𝑇
𝑟=1

   
Equation 5.12 

The extension to more than one level-2 predictor is straightforward. It is also possible to 

include level-1predictor variables (Vermunt, 2003, p. 220[84]). 
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Chapter 6.  Conclusion: An OECD conference on the Cross-cultural 

Comparability of Questionnaire Measures in Large-scale Assessments 

Francesco Avvisati, Noémie Le Donné, Marco Paccagnella 

The Organisation for Economic Co-operation and Development (OECD) is well known 

among education researchers for its role in promoting cross-country comparisons based on 

large-scale survey projects. The three largest OECD education surveys include the 

Programme for International Student Assessment (PISA), the Survey of Adult Skills 

(Programme for the International Assessment of Adult Competencies, or PIAAC), and a 

survey of teachers, also known as Teaching and Learning International Survey (TALIS); 

several other survey projects are currently in development. This report summarises the 

discussions from a methodological conference held in Paris on 8-9 November 2018, and 

which aimed at developing a common understanding and approach to the challenge of 

comparability of questionnaire responses and scales. We believe these issues to be relevant 

to survey programmes in other fields too, and to many researchers and practitioners using 

international survey data.3 

Overview 

The value of cross-country comparisons is at the heart of large-scale international surveys. 

But as household surveys expand from tools to measure objective attributes (age, household 

size) and behaviours (e.g. unemployment or job-seeking behaviours) to instruments to 

assess subjective attitudes (e.g. attitudes towards migrants, or subjective well-being), and 

as skills assessments aim no longer to measure only knowledge of mathematics, but also 

psychological traits such as perseverance, new challenges for the validity and comparability 

of survey results emerge, and old issues acquire renewed salience. Reflective latent 

constructs measured through self-reports, for example, are particularly affected by subtle 

linguistic differences in the translated questionnaires and by broader cultural differences. 

These may introduce variation in participants’ understanding of survey questions, and 

therefore in the relationship between their responses and the target latent construct. 

Similarly, when confronted with Likert items, with generic frequency scales (“often”, 

“sometimes”, “never or almost never”, …), or with subjective rating scales (“on a scale 

from 1 to 10”), cultural norms may mediate the response process of participants. As a result, 

international surveys may fall short of their objective to facilitate comparisons across 

countries. 

Questions around cross-cultural comparability were recently the focus of a methodological 

conference at the OECD headquarters: How can different levels of comparability be 

defined? How can they be identified in the data? How should violations of comparability 

be addressed when analysing and reporting these data, to prevent misuse of the data in 

policy discussions? How can instruments be designed in order to maximise comparability?  

The conference brought together leading experts in questionnaire design and in the 

statistical modelling of survey responses with representatives from the industry involved 

in the development of questionnaires, data products and reports. It aimed at identifying 

                                                      
3 The authors take full responsibility for the information provided. This summary is not a consensus 

document approved by all conference participants 
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areas where current practices for designing and analysing questionnaires in cross-national 

large-scale surveys can improve, while keeping in mind the practical constraints, the 

timelines, and the reporting goals of such surveys.  

The problem 

Much effort in large-scale cross-national surveys is devoted to ensuring that the choice of 

particular item types, the questionnaire translations or their administration procedures do 

not introduce unintended bias in comparisons. Yet even the most rigorous application of 

preventive measures cannot guarantee the full comparability of measurement instruments 

(Davidov et al., 2014[9]). As an illustration, Lommen, van de Schoot and Engelhard 

(2014[102]) show how a particular questionnaire measure for post-traumatic stress symptoms 

in soldiers cannot be compared before and after their deployment in a war zone, despite the 

use of a within-subject design and the repeated administration of the same instruments 

under the same procedures. 

Measurement invariance can be defined as a conditional independence property of the 

measurement model with respect to a set of sub-populations within the parent population 

(e.g. language groups, or gender, or time) (Mellenbergh, 1989[103]; Horn and Mcardle, 

1992[104]; Meredith, 1993[8]). 

With multiple indicators and known sub-populations, three classes of measurement models 

are often used. Multigroup confirmatory factor analysis (MGCFA) is the most popular 

approach when both the (latent) variable of interest and the manifest indicators 

(e.g. questionnaire responses) are continuous (or are treated as such, e.g. in the case of 

Likert scales). When the manifest indicators are ordinal (or categorical), Categorical 

MGCFA or item-response-theory (IRT) models can be used. When the latent variable is 

categorical, latent class analysis (LCA) models are appropriate. 

Once combined with a particular measurement model, the assumption of measurement 

invariance can be formalised as a set of restrictions on model parameters. This allows to 

assess whether the assumption of measurement invariance holds, by either testing these 

restrictions in a frequentist hypothesis testing framework, or by comparing goodness of fit 

across models with or without these restrictions (e.g. in a Bayesian framework). For 

example, in a multigroup item-response theory (IRT) framework, the conditional 

independence assumption implies the lack of differential item functioning (DIF). In a 

MGCFA framework, conditional independence implies that a model with common factor 

loadings and intercepts for all groups fits the data as well as a model with group-specific 

parameters, once the estimation properly accounts for the random component in the data-

generating process. 

A standard of the past 

The procedures for assessing measurement invariance within the framework of MGCFA 

are probably the best known and the closest to a current standard. Typically, three (nested) 

models are estimated. A “configural” model imposes the same configuration of zero and 

non-zero loadings for all groups, but allows all model parameters to vary across groups. A 

“metric” invariant model restricts item loadings to be common across groups, but allows 

item intercepts to vary freely. A “scalar” invariant model, in line with the above definition 

of measurement invariance, restricts all model parameters (i.e. loadings and intercepts) to 

be common across groups (van de Schoot, Lugtig and Hox, 2012[105]; Davidov et al., 
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2014[9]).4 Model-fit indices are then compared across these nested models, and conclusions 

are drawn about whether the data conform to the stronger “scalar invariance” hypothesis, 

or to the weaker “metric” or “configural” invariance hypotheses. 

There are multiple problems with the application of this procedure to large-scale 

international studies, as was repeatedly stated in meeting presentations. When the number 

of observations per group is small, likelihood ratio tests have limited power; while with 

large groups, violations of invariance detected in such tests may be inconsequential for the 

substantive inferences. More generally, the statistical tests involved have been developed 

in the case of two groups, i.e. when testing only one (set of) restriction(s) at a time: in this 

case, substantiated cut-off criteria exist. With a large number of groups, multiple 

hypotheses are tested simultaneously, and blind application of standard cut-off values can 

lead to systematic rejection of invariance, due to chance capitalisation. The problem is 

compounded by the fact that in realistic settings (when violations of measurement 

invariance may be due to cultural or language specificities), the hypotheses are not 

independent, neither across items, nor across groups. This has led to somewhat ad-hoc fixes 

such as using, instead of likelihood ratio tests, global model-fit measures whose sampling 

distributions are unknown, and determining the test cut-off values based on simulation 

studies. The use of these cut-offs in situations that differ, in meaningful ways (number of 

factors, groups, observations, etc.), from the simulation conditions under which they were 

derived is, however, not warranted (Rutkowski and Svetina, 2013[106]; Rutkowski and 

Svetina, 2016[107]). Moreover, the binary nature of the test still leaves practitioners with no 

idea about the extent to which misspecifications in the measurement model affect the 

secondary analyses of the latent trait, and the global nature of the test provides little 

information about the specific restrictions (groups and item parameters) that are responsible 

for the rejection. 

In this situation, survey organisations may be tempted to increase the chances of 

instruments passing the tests by limiting participation to groups that are more similar or by 

including redundant items and limiting the variation in question types. The former strategy 

may severely limit the number of meaningful comparisons for many participants, as in 

reality, countries and cultures do not fall into clearly distinct groups; the latter strategy 

would result in sacrificing the validity gains that result from triangulating multiple 

perspectives and measures. 

Perhaps more concerning is the fact that the most frequent practice is, in fact, to simply 

ignore the possible non-equivalence of measurement in cross-cultural research: many 

secondary users of the data compare respondents’ answers and scale values derived from 

statistical models without acknowledging, and discussing, the potential threats to 

comparability (Boer, Hanke and He, 2018[108]). Other scholars resort to generalisations 

based on the analysis of single items – a situation in which comparability of measurements 

cannot be formally assessed based on the properties of a measurement model. Finally, when 

measurement invariance across countries has been rejected, many scholars move on to 

within-country analyses, without further assessing the measurement-invariance hypothesis 

with respect to subnational groups (in part, due to sample size limitations).  

                                                      
4 A “strict” level of invariance can be defined when residual variance parameters are also restricted 

to be equal among groups. 
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Excitement around new developments 

In recent years, many alternative paradigms in measurement-equivalence research have 

emerged. To what extent will these lead to the establishments of new standards in 

international large-scale surveys and support robust conclusions about cross-country 

differences? 

Dealing with imperfect comparability of measurements when scaling and reporting 

continuous traits 

The first sessions of the conference dealt with statistical approaches to analyse and report 

on data potentially affected by non-equivalence issues, in situations where the latent trait 

of interest is modelled as a continuous trait. The presenters and discussants in these sessions 

debated the merits of different models with application and simulation studies. This report 

does not provide a comprehensive textbook introduction to each of the statistical methods 

(though it includes some references for interested readers), but focuses, instead, on the 

contingencies and practicalities that emerged from these discussions. 

Partial invariance  

Model-building approaches are very common in the IRT framework, and have often been 

used by MGCFA practitioners in response to the failure to establish full scalar invariance. 

Starting from a fully invariant (scalar invariant) model, these approaches estimate item-

level fit indices for every group; identify the items for which certain groups exhibit high 

level of misfit (usually referred to as differential item functioning, or DIF, in IRT), then 

deal with misfit by sequentially releasing constraints, until adequate fit is reached. This 

results in so-called “partial invariance” models, whereby the conditional independence 

holds for some measurements (often referred to as “anchor items”), but not all (Byrne, 

Shavelson and Muthén, 1989[6]; Steenkamp and Baumgartner, 1998[10]). This approach is 

currently in use in the PISA assessment, both in the scaling of the cognitive component 

(von Davier et al., 2018[109]) and in the analysis of questionnaire scales (Buchholz and 

Hartig, 2017[110]). 

While several tools to detect problematic items are commonly used, participants were 

reminded of some caveats: statistical tests have limited power with small sample sizes 

(number of observations per item and group) and short scales; and item-level fit statistics 

are contingent on other items and on the distribution of the latent trait among respondents. 

The latter means, on the one hand, a certain path-dependency (dependence on prior 

decisions) in situations where multiple items are affected by misfit, and, on the other hand, 

that outlier-detection procedures may not work well for items whose locations do not 

overlap with the latent trait distribution.  

Participants were also reminded that there is little guidance in the existing research 

literature regarding the more substantive question of whether meaningful comparisons of 

latent means can be conducted, in situations where only partial invariance holds. How many 

non-invariant items are required to build a “comparable” scale? What other criteria should 

be taken into account? 

In this respect, a simulation study presented by Artur Pokropek contained some comforting 

results, showing that when the non-invariant items are correctly identified, a MGCFA 

model with just one invariant item out of five across 75% of the groups did recover latent 

group means reasonably well (Pokropek, Davidov and Schmidt, 2019[111]).  
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Alignment optimisation 

In recent years, an alternative response to the failure to establish full scalar invariance in 

MGCFA has gained popularity, the so-called alignment optimisation approach (see 

Chapter 2). This approach tolerates small differences, even if there are many of them. The 

popularity of the approach is due to its simplicity and to its availability in the popular 

software package Mplus (Muthén and Muthén, 1998-2017[25]). It requires only two steps: 

1) estimation of a model with group-specific parameters (“configural model”); 

2) minimisation of a loss function which depends on differences between parameters across 

groups, leading to a “rotated” solution which forces the group means and variances from 

the configural model on a same scale. The procedure is similar to factor rotation in 

exploratory factor analysis (EFA) (Asparouhov and Muthén, 2014[19]) and can equally be 

applied in the IRT context (Muthén and Asparouhov, 2014[20]). Matthias von Davier, in 

particular, also highlighted how the alignment optimisation method is very similar to the 

simultaneous test-linking approach proposed by Haberman (2009[112]). 

While alignment optimisation has an intuitive practical appeal, including a simple 

explanation (“minimise differences between measurement-model parameters”) and limited 

computational demand, participants at the conference were reminded of several drawbacks 

of the alignment method. To start, the method promises to make group means from 

configural models “most comparable”, but there are no clear established criteria to 

determine if this solution is “comparable enough” to lead to meaningful comparisons of 

group means. In the simulation study presented by Artur Pokropek, latent means were 

recovered well enough (correlations above .98 between original and estimated means) only 

when at most one item out of five was affected by relatively large bias (and in no more than 

50% of the groups) while the remaining items were affected by only tiny deviations from 

average item parameters (Pokropek, Davidov and Schmidt, 2019[111]). Furthermore, the 

alignment method will not lead to the estimation of the correct theoretical model: the 

estimated model is almost guaranteed to be “the wrong model” (it is likely to be over-

parametrised in most situations). The alignment method encourages comparisons of item 

parameters across groups, when in many cases, the number of respondents per item and 

group (particularly when items are administered according to an incomplete design) is not 

sufficient to support precise estimates at the group level. Finally, the typical quadratic loss 

function used in the second optimisation step is sensitive to outliers; and the basic idea can 

be applied to a multiplicity of loss functions, each leading to a different solution (e.g. in a 

MGCFA model, should deviations in intercepts be penalised differently from deviations in 

slope parameters, given that they are not on the same scale?). While most users rely on a 

“black-box” implementation of the alignment method in the Mplus software, there is still 

need for research on the decision rules and the properties of the invariance index in a variety 

of situations (sample size, number of items, number of response categories, number of 

groups, link functions, etc.). 

Bayesian Approximate Invariance Methods 

In situations in which perfect equivalence of measurements is understood to be an 

unrealistic ideal, a more elegant solution is to introduce greater realism in the models, 

e.g. by allowing all parameters to vary within a certain wiggle room. In such “approximate 

invariance” models, measurement parameters can vary across groups, according to a certain 

distribution (e.g. a normal distribution with a common mean and variance for the 

measurement parameter). Bayesian estimation is needed in such situations to make the 

problem computationally tractable. 
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The application of Bayesian random parameter models to measurement invariance 

situations was first proposed in the IRT framework (De Jong, Steenkamp and Fox, 2007[45]), 

then extended to MGCFA (Bayesian Structural Equation Modelling) (van de Schoot et al., 

2013[30]; Muthén and Asparouhov, 2018[21]). Bayesian estimation of Approximate 

Measurement Invariance (AMI) models usually starts with informative priors, such as 

knowledge that differences in model parameters across groups are usually “small”, and 

updates these priors with the information contained in the data.  

In typical applications of Bayesian-AMI, priors loom quite large on the final solution. 

Indeed, the typical sample sizes per group and item imply significant uncertainty for the 

estimates of group-specific random deviations; and the number of groups is rarely large 

enough to provide significant information on the distribution of these random deviations 

from common parameters. On the other hand, in situations with many parameters and large 

samples, convergence in these models is hard to achieve, with a single model often running 

for several days before converging to a solution. 

Rens van de Schoot suggested that because of the dependence on priors, practitioners 

should conduct a sensitivity analysis before drawing substantive conclusions; i.e. estimate 

models with different priors and verify the robustness of the resulting claims (see 

Chapter 3). In general, there was no consensus on how to rank models based on different 

priors (and thus, select the “best” priors and models): Jean-Paul Fox highlighted that criteria 

such as posterior predictive p-values (PPP) or deviance information criteria (DIC) should 

not be used to compare models with the same number of parameters. On the other hand, 

using the same priors for all parameters may be just as unrealistic as assuming that there is 

no variation in measurement parameters, but tailored priors may invite an abuse of 

“researcher degrees of freedom” (Simmons, Nelson and Simonsohn, 2011[113]), especially 

if they influence the conclusions strongly. 

All presenters and discussants also highlighted the risk presented by “outlier” groups, 

which may “pull” the estimates of the parameter means and introduce bias in comparisons 

of latent means. This risk was well-illustrated in the simulation study presented by Arthur 

Pokropek: fitting an “approximate invariance model” to situations where a few groups and 

items are affected by large bias (partial invariance) leads to bias in the estimation of latent 

means (Pokropek, Davidov and Schmidt, 2019[111]). Another undesirable property of these 

methods is that the “ideal” situation in which there is no variation in measurement 

parameters is, now, a limit case, and a “corner solution” for the estimation procedure. 

In response to some of these shortcomings, Jean-Paul Fox presented an alternative 

approach to assess whether the data support full invariance or only approximate invariance 

of measurements, which he illustrated in the IRT case (see Chapter 4). The approach, which 

was recently presented in Fox, Mulder and Sinharay (2017[42]), is based on the intuition that 

the marginal model obtained by integrating out the random parameters from a one-

parameter IRT model is simply a fixed-effect model with a particular structure for the 

covariance of residuals. Therefore it is possible to conduct an analysis of residuals from the 

simpler model to identify (using Bayes Factor tests) whether a complex covariance 

structure (indicating AMI) fits the data better than a simple covariance structure (indicating 

full invariance), without the need to specify proper priors. Several discussants highlighted 

merits with this approach – including its simplicity, and the limited computational 

resources required. The approach is being further developed to a more general class of 

models. 

A common problem with current Bayesian approaches for measurement invariance is that 

they still cannot handle complex survey design (weights, stratification, clustering) easily. 
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Complex random parameter models also have identification issues, which lead to 

convergence issues. When interest lies in identifying the sources of measurement non-

invariance (such as the most problematic groups and items), some post-estimation 

diagnostic methods have been proposed, but their validity and reliability remains to be 

confirmed in simulation studies. On the other hand, when certain known features (such as 

writing system, level of development, climate zone …) are expected to interfere with 

measurements in some predictable ways, this information can be incorporated in the priors 

used to estimate Bayesian random parameter models. 

General discussion 

Throughout the discussion, several participants observed how the distinction between 

(MG)CFA and (MG)IRT worlds is largely artificial. Many recent developments in the field 

of measurement invariance seem to come from “rediscovering” some of the tools of IRT in 

the CFA framework, and vice-versa; and much more can still be gained from more 

opportunities for the two communities of scholars and practitioners to meet and work 

together. For example, in situations where the objective is to compare scale means across 

groups, it may seem preferable to summarise the uncertainty affecting such comparisons in 

a “scale uncertainty” parameter, instead of presenting several comparisons derived under 

different assumptions, and risk confusion and scepticism among readers. The similarity 

between “measurement invariance” and “test linking” problems, would suggest the use of 

“link errors” in comparisons of scales across groups (OECD, 2017, pp. 176-179[114]; 

Robitzsch and Lüdtke, 2018[115]). 

The recent developments in the field of measurement invariance research originated from 

the availability of greater computing power to deal with complex models, large sample 

sizes and the global reach of large-scale surveys. The application and simulation studies 

presented at the conference also repeatedly highlighted the importance of avoiding short 

scales (made of only 3 or 4 items) in situations of imperfect equivalence (and particularly, 

when large biases could affect some item/group pairs). 

The discussion also highlighted a consensus among all participants that any procedure to 

address the possible violation of (full) measurement invariance must consider the non-

comparability of scales as a possibility. A procedure that is blind to serious violations of 

measurement equivalence, and promises to turn any measurement into a comparable one, 

is just as useless as one that is overly sensitive to small, inconsequential violations of an 

ideal model of invariance. 

Dealing with imperfect comparability of measurements when scaling and reporting 

categorical latent variables 

In the second day of the conference, a short session was devoted to how latent class analysis 

(LCA) could deal with issues of non-invariance of measurements, as they arise in large-

scale international surveys. The generic definition of invariance as a conditional 

independence property of the measurement model does also apply to latent class models; it 

implies that, conditional on (latent) class membership, response probabilities for the 

observed categories do not depend on group (e.g. country) membership. In generic latent 

class models where the classes are treated as nominal the different levels of invariance 

(configural, metric, scalar, …) do not have a clear equivalent; in contrast, different levels 

of invariance can be defined for latent class models in which classes are ordered (Kankaraš, 

Vermunt and Moors, 2011[116]). 
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The two presenters in this session – Michael Eid and Jeroen Vermunt – shared their 

experience and advice about conducting LCA on large-scale, international surveys with the 

audience. 

A simple strategy to conduct LCA on international data sets is described by Eid and Diener 

(2001[98]) and by Kankaraš, Moors and Vermunt (2018[82]). It starts by fitting country-

specific latent class models in exploratory mode to find the number of classes that are 

supported in each country; results are reviewed to check if all or some of the classes reflect 

similar patterns in responses across multiple countries. 

In a second step, samples are pooled. If the number of classes found in the first step does 

not differ across countries, the assumption of full measurement invariance is tested by 

comparing the fit of the model without measurement invariance (i.e. allowing observed 

responses to reflect both class and country membership) and the model with measurement 

invariance. If the model with full measurement invariance does not fit the data, different 

forms of partial measurement invariance can be tested (e.g. only some classes or some 

items are measurement invariant). If the number of the classes differ between countries, it 

can be tested whether the classes that are present in all countries are measurement invariant 

or not. Models can be compared with likelihood ratio tests or on information criteria. This 

strategy however is very cumbersome to apply for more than a handful of countries and 

items (the number of classes tends to increase with the number of items), because of the 

large number of models to estimate and of country/class combinations to review. 

A second strategy is better suited for international surveys with dozens of countries (see 

Chapter 5). In this strategy, the exploratory step to determine the optimal number of classes 

is conducted directly on the pooled dataset, assuming, in a first step, that only class 

membership (and not country membership) determines the response patterns, while group 

membership only influences the size of classes. An inspection of the results can provide 

useful information about whether the latent classes are present in all countries. 

Measurement non-equivalence can manifest itself, for example, by some classes that are 

only present in some countries (size equal to 0). If this or other reasons (such as translation 

issues, differential social desirability contexts,…) lead practitioners to suspect 

measurement non-equivalence, a model that allows responses to reflect not only class but 

also group membership would have to be specified; the more general model, however, 

would have a very large number of parameters and, if group size is small, result in unstable 

parameter estimates. A possible solution to both issues is to specify a multilevel latent class 

model, where countries themselves are conceptualised as the expression of some latent set. 

While it may appear artificial to apply multilevel modelling to countries (which are not 

randomly selected groups from some overarching population, in direct violation of one of 

the model’s assumption), treating countries as a random factor can reveal interesting sets 

of countries which share a common culture or institutional setting, which manifests itself 

in survey responses. 

There is still little methodological research about this second strategy. It was illustrated in 

practice by Michael Eid with an application on the TALIS dataset, which revealed several 

issues that practitioners may encounter: 

 Conducting LCA in exploratory mode on large data sets can be very time 

consuming; 

 Proper identification of latent classes and conditional response probabilities 

requires large samples (both overall, and at the group level in multigroup LCA); 
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 Relying only on statistical criteria, such as fit indices, does not always provide 

conclusive guidance regarding model selection, which must also be informed by 

priors and by qualitative judgements informed by the solution;  

 Convergence issues are quite frequent with complex LCA models; default starting 

values may not be sufficient, and in this application, the search for the optimal 

number of level-2 classes (country sets) was interrupted because of convergence 

issues when more than 6 classes (for 38 countries) were specified for the solution. 

As Jeroen Vermunt made clear in his presentation, the application of LCA to surveys 

potentially affected by in-equivalence can benefit from recent methodological 

developments, such as local fit indices for multilevel LCA (Nagelkerke, Oberski and 

Vermunt, 2016[117]), or the extension of tools for quantifying the substantive impact of 

violations of invariance assumptions to categorical latent variables (Oberski, Vermunt and 

Moors, 2015[118]). Multilevel LCA also falls within a more general class of multilevel 

mixture models, which are a way of dealing with heterogeneity by modelling the responses 

as reflecting different measurement models, with each model specific to a latent class of 

individuals or groups (e.g. countries). 

Improving the design of questionnaires for greater comparability of responses 

The conference concluded with a discussion and demonstration of several innovative item 

types intended to reduce the incidence of measurement non-equivalence in cross-cultural 

research. Jonas Bertling presented how anchoring vignettes and situational judgement tests 

(SJT) were used in PISA 2012 to complement more traditional frequency and agreement 

(Likert) scales (Kyllonen and Bertling, 2013[119]). Pauline Slot and Trude Nilsen showed 

how situational judgement tests are being used in the TALIS Starting Strong Survey 

(TALIS-3S), aimed at pre-school educators. These illustrations highlighted the rationale 

for using these item types, and the practical choices that need to be made when analysing 

the responses and reporting them on a scale. Jia He and Patrick Kyllonen then introduced 

a more general discussion on these approaches. 

The discussion highlighted some strong reservations about the use of anchoring vignettes, 

a method proposed by King et al. (2004[120]), whereby the subjective nature of response 

scale is overcome by asking respondents to report not only a self-assessment on the scale, 

but also, on the same scale, how they would assess several hypothetical individuals, 

presented in short vignettes. In practice, the ratings observed for the hypothetical 

individuals often violate the expected ratings, particularly in low-ability groups (perhaps 

due to respondent disengagement, or to the high cognitive load that this procedure imposes 

to participants). And some of the purported “improvements” in reliability and validity may 

be artificial, simply due to mathematical properties of the method, rather than to the 

substantive information gained about the response style of individuals (von Davier et al., 

2018[121]). Furthermore, the choice of the vignettes appears not to be neutral with respect to 

the substantive conclusions (Stankov, Lee and von Davier, 2018[122]). 

More optimism was expressed about the potential of SJTs (Lievens, Peeters and Schollaert, 

2008[123]; McDaniel et al., 2007[124]). Situational judgement items present respondents with 

hypothetical situations, and ask them to report “how likely” they are to act in certain ways; 

answers may be provided as “behavioural tendencies (“very likely”, etc.) or as forced 

choice (e.g. by selecting the “most likely” and “least likely” option). The hypothetical 

nature of the situation seems to reduce some social desirability biases, which often affect 

behavioural self-reports. 
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Questionnaire developers should nevertheless keep in mind that SJTs may not lend 

themselves to all sorts of constructs, are relatively long to administer, and may be more 

appropriate for high-ability populations, such as teachers, due to the high cognitive load of 

thinking through hypothetical scenarios, particularly when administered in written form. 

Situational judgement test items should only be administered to populations for which 

familiarity with the described situation can be assumed. 

In the end, it appeared clear that significant gains in comparability of survey responses 

across groups of respondents can also be made by following simple and universal design 

principles, which are not always met in practice: write items that are clearer, more concrete, 

behavioural, simple, less abstract. Short scales (of only 3-4 items) should not be used in 

situations where non-equivalence at the item-level is a possibility. This may well mean 

that, rather than including many constructs, future surveys should include fewer, but better 

and longer scales. 

Despite the limitations in these innovative item types, and the reservations expressed about 

anchoring vignettes, all discussants and participants agreed that greater variety in response 

formats may be desirable to triangulate findings and ensure they are not driven by surface 

features of the instruments. For example, it may be desirable to measure a certain construct 

through both forced choice items and Likert items. 
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