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The nucleolus and inheritance of
properties in communication situations

J. Schouten∗ ‡ B.J. Dietzenbacher§ P.E.M. Borm∗

19th March, 2019

Abstract

This paper studies the nucleolus of graph-restricted games as an alternative for the Shap-
ley value to evaluate communication situations. We focus on the inheritance of properties
of cooperative games related to the nucleolus: balancedness (the nucleolus is in the core),
compromise stability and strong compromise admissibility (these properties allow for a di-
rect, closed formula for the nucleolus). We characterize the families of graphs for which
the graph-restricted games inherit these properties from the underlying games. Moreover,
for each of these properties, we characterize the family of graphs for which the nucleolus is
invariant.

Keywords: nucleolus, communication situations, graph-restricted game, inheritance of pro-
perties, compromise stability, strong compromise admissibility, invariance
JEL classification: C71

1 Introduction

In a cooperative game with transferable utility, players can coordinate their actions and in
particular obtain a joint monetary profit as a group. One of the main issues in cooperative
game theory is the allocation of this joint profit among the players, taking into account the
economic possibilities of all coalitions. Two distinguished solutions that solve this issue are the
Shapley value (cf. Shapley, 1953) and the nucleolus (cf. Schmeidler, 1969).

Myerson (1977) extended cooperative games by introducing communication situations in which
the communication restrictions of the players are modeled by a communication graph. The
corresponding graph-restricted game is a modified cooperative game in which the communication
restrictions are taken into account.

The Myerson value (cf. Myerson, 1977) of a communication situation is defined as the Shapley
value of the corresponding graph-restricted game. This value is axiomatically characterized
by Myerson (1980) and studied in several other contexts as well: hypergraphs (cf. Van den
Nouweland, Borm, and Tijs, 1992), union stable structures (cf. Algaba, Bilbao, Borm, and
López, 2001) and antimatroids (cf. Algaba, Bilbao, Van den Brink, and Jiménez-Losada, 2004).
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Moreover, several studies are devoted to the inheritance of properties of cooperative games
that are related to the Shapley value. In particular, Owen (1986) studied the inheritance of
superadditivity, Van den Nouweland and Borm (1991) studied convexity and Slikker (2000)
studied, among others, average convexity.

Also the nucleolus is studied in the context of communication situations. Potters and Reijnierse
(1995) showed that the nucleolus is the unique element of the kernel if the communication graph
is a tree. Reijnierse and Potters (1998) and Katsev and Yanovskaya (2013) studied the collection
of coalitions that determine the nucleolus and prenucleolus, respectively. Khmelnitskaya and
Sudhölter (2013) provided an axiomatic characterization of the prenucleolus for games with
communication structures. Instead, we follow the lines initiated by Owen (1986) and focus
on the inheritance of several properties of cooperative games that are related to the nucleolus.
Moreover, we study the invariance of the nucleolus, that is, the feature that the nucleolus of the
graph-restricted game equals the nucleolus of the underlying game of a communication situation.

For the inheritance, we concentrate on properties of cooperative games that are related to the
nucleolus from a computational point of view. In particular, we characterize families of graphs
that guarantee the inheritance of balancedness, when the nucleolus is in the core, compromise
stability and strong compromise admissibility. The last two properties allow for a direct, closed
formula for the nucleolus. For every connected graph, the graph-restricted game satisfies ba-
lancedness for all communication situations with an underlying balanced game. To guarantee
that compromise stability is inherited, the graph needs to be complete. The family of complete
graphs is the largest family of graphs such that the graph-restricted game is compromise stable
for all communication situations with an underlying compromise stable game. Finally, the fa-
mily of biconnected graphs is the largest family of graphs to guarantee the inheritance of strong
compromise admissibility.

For the invariance of the nucleolus, we identify families of graphs for which it is guaranteed
that the nucleolus of the graph-restricted game equals the nucleolus of the underlying game
for several classes of communication situations. We reconsider the classes of communication
situations in which the underlying game satisfies balancedness, compromise stability and strong
compromise admissibility. For balancedness and compromise stability, the graph needs to be
complete in order to guarantee the invariance. For every connected graph that is not complete,
we construct a communication situation with an underlying compromise stable game such that
the nucleolus of the graph-restricted game is not equal to the nucleolus of the underlying game.
Moreover, we show that biconnectedness is the weakest condition on the graph for which in-
variance of the nucleolus is guaranteed for all communication situations with an underlying
strongly compromise admissible game. Interestingly, restricting to simple games, this result
can be strengthened. Biconnectedness is also the weakest condition on the graph for which
invariance of the nucleolus is guaranteed for all communication situations with an underlying
compromise stable and simple game.

This paper is structured in the following way. Section 2 provides all relevant preliminaries on
cooperative game theory and graph theory. Section 3 studies the inheritance of balancedness,
compromise stability and strong compromise admissibility. Section 4 studies the invariance of
the nucleolus.
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2 Preliminaries

A (transferable utility) cooperative game is a pair (N, v) where N is a non-empty, finite set of
players and v : 2N → R a characteristic function with v(∅) = 0. Here, 2N is the collection of all
subsets (called coalitions) of N and v(S) is the worth of coalition S ∈ 2N , representing the joint
monetary rewards this coalition can obtain on its own. The class of all cooperative games with
player set N is denoted by TUN , and a cooperative game (N, v) is also denoted by v ∈ TUN .

For a cooperative game v ∈ TUN , the imputation set is given by

I(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and xi ≥ v({i}) for all i ∈ N

}
,

the core is given by

C(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ∈ 2N

}
,

and the core cover (cf. Tijs and Lipperts, 1982) is given by

CC(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and m(v) ≤ x ≤M(v)

}
,

where M(v),m(v) ∈ RN are, for all i ∈ N , defined by

Mi(v) = v(N)− v(N \ {i}),

and

mi(v) = max
S∈2N :i∈S

v(S)−
∑

j∈S,j 6=i

Mj(v)

 .

A cooperative game v ∈ TUN is called

− imputation admissible if I(v) 6= ∅;

− balanced if C(v) 6= ∅;

− compromise stable if CC(v) 6= ∅ and C(v) = CC(v), or equivalently if CC(v) 6= ∅ and

v(S) ≤ max
{∑

i∈Smi(v), v(N)−
∑

j∈N\SMj(v)
}

for all S ∈ 2N \ {∅} (cf. Quant, Borm,

Reijnierse, and Van Velzen, 2005);

− strongly compromise admissible if CC(v) 6= ∅ and v(S) ≤ v(N) −
∑

j∈N\SMj(v) for all

S ∈ 2N \ {∅} (cf. Driessen, 1988).

Note that strong compromise admissibility implies compromise stability, compromise stabi-
lity implies balancedness, and balancedness implies imputation admissibility. Moreover, for a
cooperative game with two players, all notions are equivalent. For a three player game, only
balancedness and compromise stability are equivalent, while all notions differ for games with
more than three players. Examples of compromise stable games are, among others, big boss
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games (cf. Muto, Nakayama, Potters, and Tijs, 1988), clan games (cf. Potters, Poos, Tijs, and
Muto, 1989) and bankruptcy games (cf. O’Neill, 1982 and Curiel, Maschler, and Tijs, 1987).

Let v ∈ TUN be an imputation admissible game. The excess of a coalition S ∈ 2N with respect
to an imputation x ∈ I(v) is defined as Exc(S, x, v) = v(S)−

∑
i∈S xi, while the excess vector

θ(x) ∈ R2|N| is defined as the vector consisting of the excesses in non-increasing order, i.e.
θ(x)k ≥ θ(x)k+1 for all k ∈ {1, . . . , 2N − 1}. The nucleolus (cf. Schmeidler, 1969) nuc(v) ∈ RN

is the unique imputation for which θ(nuc(v)) � θ(x) for all x ∈ I(v), where � denotes the
lexicographical order. It is known that nuc(v) ∈ C(v) for all balanced games v ∈ TUN .

A collection B ⊆ 2N \ {∅} is called balanced if there exists a function λ : B → R++ such that∑
S∈B:i∈S λ(S) = 1 for all i ∈ N . According to the Kohlberg criterion (cf. Kohlberg, 1971), for

a balanced game v ∈ TUN and an imputation x ∈ I(v), it holds that x = nuc(v) if and only if
the collection

⋃s
k=1Bk(x, v) is balanced for all s ∈ {1, . . . , t(x)}, where Bk(x, v) is recursively

defined by:

B1(x, v) =
{
S ∈ 2N \ {∅, N}

∣∣ Exc(S, x, v) ≥ Exc(T, x, v) for all T ∈ 2N \ {∅, N}
}
,

and for all k ∈ {2, . . . , t(x)}:

Bk(x, v) =

{
S ∈ 2N \ {∅, N}

∣∣∣∣ S /∈
k−1⋃
r=1

Br(x, v) and Exc(S, x, v) ≥ Exc(T, x, v)

for all T ∈ 2N \ {∅, N} with T /∈
k−1⋃
r=1

Br(x, v)

}
.

Here, t(x) ∈ N is the unique number such that Bk(x, v) 6= ∅ for all k ∈ {1, . . . , t(x)} and
Bt(x)+1(x, v) = ∅.

A bankruptcy problem (cf. O’Neill, 1982) is a triple (N,A, c) where N is a non-empty, finite set
of players, A ∈ R+ and c ∈ RN

+ consists of the claims of the players on A such that
∑

i∈N ci ≥
A. For a bankruptcy problem (N,A, c), the constrained equal awards rule (CEA) allocates
CEAi (N,A, c) = min {α, ci} for all i ∈ N , where α ∈ R is such that

∑
i∈N min {α, ci} = A,

while the Talmud rule (TAL) (cf. Aumann and Maschler, 1985) allocates

TAL (N,A, c) =

{
CEA

(
N,A, 12c

)
, if

∑
i∈N ci ≥ 2A;

c− CEA
(
N,
∑

i∈N ci −A, 12c
)
, if

∑
i∈N ci < 2A.

For compromise stable games and strongly compromise admissible games, the nucleolus can be
described by a direct, closed formula.

Proposition 2.1 [cf. Quant et al. (2005) and Driessen (1988)] Let v ∈ TUN .

i) If v is compromise stable, then, for all i ∈ N ,

nuci(v) = mi(v) + TALi

N, v(N)−
∑
j∈N

mj(v),M(v)−m(v)

 ;

ii) If v is strongly compromise admissible, then, for all i ∈ N ,

nuci(v) = Mi(v)− 1

|N |

∑
j∈N

Mj(v)− v(N)

 .
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A graph is a pair (N,E), where N is a non-empty, finite set of players, with |N | ≥ 3 and
E ⊆ {{i, j} | i, j ∈ N, i 6= j} a finite set of edges. For a graph (N,E) and a subset of play-
ers S ∈ 2N \ {∅}, the induced subgraph on S is defined as the graph (S,ES), where ES =
{{i, j} ∈ E | i, j ∈ S}. A path in a graph (N,E) is defined as a sequence of players (i0, . . . , im)
such that ik 6= i` for all k, ` ∈ {0, 1, . . . ,m}, k 6= ` and {ik−1, ik} ∈ E for all k ∈ {1, . . . ,m}.
A graph (N,E) is called

− connected if for all i, j ∈ N , there is a path (i, . . . , j);

− complete if {i, j} ∈ E for all i, j ∈ N ;

− biconnected if for all i ∈ N the induced subgraph (N \ {i}, EN\{i}) is connected;

− a star if there exists a player i ∈ N such that E = {{i, j} | j ∈ N \ {i}}.

Note that every complete graph is biconnected and that every biconnected graph is connected.
Also a star is connected. For a graph (N,E), a component C ∈ 2N \{∅} is defined as a maximal
(inclusion-wise) subset of players such that the induced subgraph (C,EC) is connected. For a
graph (N,E) and a subset of players S ∈ 2N \ {∅}, let S/E denote the set of all components in
the induced subgraph (S,ES).

For a graph (N,E) and a cooperative game v ∈ TUN , the graph-restricted game vE ∈ TUN is
(cf. Myerson, 1977), for all S ∈ 2N \ {∅}, defined by

vE(S) =
∑

C∈S/E

v(C).

A communication situation (cf. Myerson, 1977) is a triple (N, v,E) where |N | ≥ 3, v ∈ TUN

and (N,E) a connected graph such that, for all S ∈ 2N ,

vE(S) ≤ v(S).

Here, the graph is assumed to be connected. For, otherwise, one could deal with each con-
nected component separately. Moreover, we assume that there are at least three players. If we
would allow for only two players, any graph-restricted game would coincide with the underlying
cooperative game. We do not assume that the underlying game is zero-normalized; also indivi-
dual players could obtain a monetary value. Finally, to adequately reflect the communication
restrictions for cooperation among the players, we assume that the worth of a coalition in the
graph-restricted game is at most the worth of this coalition in the underlying cooperative game.
The following lemma shows that the latter assumption is satisfied if the underlying game is
superadditive. A cooperative game v ∈ TUN is called superadditive if v(S) + v(T ) ≤ v(S ∪ T )
for all S, T ∈ 2N for which S ∩ T = ∅.

Lemma 2.1 Let (N,E) be a graph and let v ∈ TUN be superadditive. Then, vE(S) ≤ v(S)
for all S ∈ 2N \ {∅}.

Proof: Let S ∈ 2N \{∅}. Since C ∩C ′ = ∅ for any two components C,C ′ ∈ S/E, it follows that

vE(S) =
∑

C∈S/E

v(C) ≤ v

 ⋃
C∈S/E

C

 = v(S),

where the inequality follows from (repeatedly) applying superadditivity. �
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Given a connected graph (N,E), we denote the class of all communication situations by TUN,E .
With a slight abuse of notation, a communication situation is denoted by v ∈ TUN,E . Furt-
hermore, we denote the subclass with an underlying balanced game by BALN,E , the subclass
with an underlying compromise stable game by CSN,E , and the subclass with an underlying
strongly compromise admissible game by SCAN,E .

3 Inheritance of properties

This section studies the inheritance of balancedness, compromise stability and strong compro-
mise admissibility. For each of these properties, we characterize the largest family of (connected)
graphs for which the graph-restricted game satisfies this property for all communication situ-
ations with an underlying game satisfying this property. First, we show that balancedness is
always inherited.1 This was also remarked by Van den Nouweland and Borm (1991).

Theorem 3.1 Let (N,E) be a connected graph. Then, vE is balanced for all v ∈ BALN,E.

Proof: Let v ∈ BALN,E and let x ∈ C(v). Then,
∑

i∈N xi = v(N) = vE(N) and
∑

i∈S xi ≥
v(S) ≥ vE(S) for all S ∈ 2N . Hence, x ∈ C(vE). �

Since balancedness and compromise stability are equivalent for a three player game, compromise
stability is always inherited for communication situations with three players. For more than
three players, compromise stability implies balancedness and therefore, the graph-restricted
game is balanced for all communication situations with an underlying compromise stable game.
However, to guarantee the inheritance of compromise stability itself, the graph needs to be
complete. We show that for every connected graph with more than three players that is not
complete, one can find a communication situation with an underlying compromise stable game
such that the graph-restricted game is not compromise stable. For this, we need the following
lemma.

Lemma 3.1 Let (N,E) be a connected graph. Then, M(vE) ≥ M(v) and m(vE) ≤ m(v) for
all v ∈ TUN,E. Consequently, CC(v) ⊆ CC(vE).

Proof: Let v ∈ TUN,E . Since vE(N) = v(N) and vE(S) ≤ v(S) for all S ∈ 2N , we have

Mi(v
E) = vE(N)− vE(N \ {i}) ≥ v(N)− v(N \ {i}) = Mi(v),

for all i ∈ N . Using this, we have that

mi(v
E) = max

S∈2N :i∈S

vE(S)−
∑

j∈S,j 6=i

Mj(v
E)

 ≤ max
S∈2N :i∈S

v(S)−
∑

j∈S,j 6=i

Mj(v)

 = mi(v),

for all i ∈ N . Finally, for x ∈ CC(v), we have∑
i∈N

xi = v(N) = vE(N),

and

m(vE) ≤ m(v) ≤ x ≤M(v) ≤M(vE).

Consequently, x ∈ CC(vE). �
1In fact, it can be shown that any prosperity property (cf. Gellekom, Potters, and Reijnierse, 1999) is always

inherited. Also additivity is always inherited.
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Theorem 3.2 Let (N,E) be a connected graph. Then, vE is compromise stable for all v ∈
CSN,E if and only if |N | = 3 or (N,E) is complete.

Proof: First consider the ‘if’ part: if |N | = 3, then compromise stability is equivalent to
balancedness and Theorem 3.1 implies that vE is compromise stable for all v ∈ CSN,E . If
(N,E) is complete, then vE = v and vE is compromise stable for all v ∈ CSN,E .

Next, the ‘only if’ part: let vE be compromise stable for all v ∈ CSN,E . We prove that, if |N | > 3
and (N,E) is not complete, we can construct a communication situation with an underlying
compromise stable game for which the graph-restricted game is not compromise stable. Let
|N | > 3 and let (N,E) be not complete. Set N = {1, 2, 3, 4, . . . , n} and w.l.o.g. assume that
{1, 2} /∈ E, while {1, 3} ∈ E. Consider v ∈ CSN,E with, for all S ∈ 2N \ {∅},

v(S) =



7, if S = N ;

6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N,N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

Note thatM(v) = (1, 2, 4, 3, 4, . . . , 4) andm(v) = (1, 2, 2, 0, 0, . . . , 0), which means that CC(v) 6=
∅. Obviously, the inequality v(S) ≤ max

{∑
i∈Smi(v), v(N)−

∑
j∈N\SMj(v)

}
is satisfied for

S ∈ {N,N \ {1}, N \ {2}, N \ {4}} and for all S ∈ 2N with v(S) = 0. For S ∈ 2N , S /∈
{N,N \ {1}, N \ {2}, N \ {4}}, it holds that v(S) ≤ m1(v) + m2(v) if {1, 2} ⊆ S, and v(S) ≤
m1(v) +m3(v) if {1, 3} ⊆ S. Hence, v is compromise stable.

We show that vE is not compromise stable, by showing that

vE({1, 3}) > max

m1(v
E) +m3(v

E), vE(N)−
∑

j∈N,j 6=1,3

Mj(v
E)

 .

First, note that vE({1, 3}) = v({1, 3}) = 3. Secondly, with regard to m1(v), we have that
v(S) −

∑
j∈S,j 6=1Mj(v) ≤ 0 for all S ∈ 2N , S 6= {1, 2} and v({1, 2}) −M2(v) = 1. Using the

fact that vE(S) ≤ v(S) for all S ∈ 2N and M(vE) ≥M(v) (according to Lemma 3.1), it can be
seen that vE(S) −

∑
j∈S,j 6=1Mj(v

E) ≤ 0 for all S ∈ 2N , S 6= {1, 2}. Moreover, vE({1, 2}) = 0

(since {1, 2} /∈ E) and hence, vE({1, 2})−M2(v
E) ≤ 0. Consequently, m1(v

E) = 0. Lemma 3.1
also implies that m3(v

E) ≤ m3(v) = 2. Hence,

m1(v
E) +m3(v

E) ≤ 2.

Finally, vE(N) = v(N) = 7, M2(v
E) ≥ M2(v) = 2, M4(v

E) ≥ M4(v) = 3 and Mj(v
E) ≥

Mj(v) ≥ 0 for all j ∈ N , imply that

vE(N)−
∑
j∈N,
j 6=1,3

Mj(v
E) = vE(N)−M2(v

E)−M4(v
E)−

∑
j∈N,

j 6=1,2,3,4

Mj(v
E)

≤ 7− 2− 3 = 2.

Subsequently, vE is not compromise stable. �
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Theorem 3.2 characterizes the family of graphs for which the graph-restricted games inherit
compromise stability from the underlying games. Lemma 3.2 shows that it is not possible
to guarantee strong compromise admissibility for the graph-restricted games if the underlying
games satisfy compromise stability. Moreover, if there are at least four players, it is also not
possible to guarantee compromise stability for the graph-restricted games if the underlying
games are balanced.

Lemma 3.2 Let (N,E) be a connected graph. Then the following two statements hold:

i) If |N | ≥ 4, then there exists a v ∈ BALN,E such that vE is not compromise stable;

ii) There exists a v ∈ CSN,E such that vE is not strongly compromise admissible.

Proof: The first statement is a direct consequence of the proof of Theorem 3.2. For the second
statement, set N = {1, 2, . . . , n} and w.l.o.g. let {1, 2} ∈ E. Consider the communication
situation v ∈ CSN,E with, for all S ∈ 2N \ {∅},

v(S) =

{
1, if {1, 2} ⊆ S;

0, otherwise.

Note that M(v) = (1, 1, 0, . . . , 0) and m(v) = (0, 0, 0, . . . , 0), which means that CC(v) 6= ∅.
Moreover, v(S) ≤ v(N) −

∑
j∈N\SMj(v) for all S ∈ 2N for which {1, 2} ⊆ S and v(S) ≤∑

i∈Smi(v) for all other S ∈ 2N . Hence, v is compromise stable.

Furthermore, vE = v, which is not strongly compromise admissible, because

v({3}) = 0 > −1 = v(N)−
∑

j∈N\S

Mj(v). �

A specific subclass of compromise stable games is the class of strongly compromise admissible
games. The graph-restricted game corresponding to a communication situation with an under-
lying strongly compromise admissible game is balanced for any connected graph, since strong
compromise admissibility implies balancedness and balancedness is always inherited. We first
show that the graph-restricted game is strongly compromise admissible for any communication
situation with an underlying strongly compromise admissible game if the graph is biconnected.

Lemma 3.3 Let (N,E) be a connected graph. If (N,E) is biconnected, then vE is strongly
compromise admissible for all v ∈ SCAN,E.

Proof: Let (N,E) be biconnected and let v ∈ SCAN,E . First, CC(v) 6= ∅ implies CC(vE) 6= ∅
by using Lemma 3.1. Secondly, since (N,E) is biconnected, Mi(v

E) = Mi(v) for all i ∈ N and
hence, for all S ∈ 2N \ {∅},

vE(S) ≤ v(S) ≤ v(N)−
∑

j∈N\S

Mj(v) = vE(N)−
∑

j∈N\S

Mj(v
E).

Consequently, vE is strongly compromise admissible. �

Next, we characterize the family of graphs for which the graph-restricted game satisfies com-
promise stability for all communication situations with an underlying strongly compromise
admissible game. It turns out that this family of graphs consists of all biconnected graphs and
stars.

Theorem 3.3 Let (N,E) be a connected graph. Then, vE is compromise stable for all v ∈
SCAN,E if and only if (N,E) is biconnected or a star.

8



Proof: First consider the ‘if’ part: if (N,E) is biconnected, then the statement follows from
Lemma 3.3, since strong compromise admissibility implies compromise stability. If the graph is
a star, then let k ∈ N such that E = {{i, k} | i ∈ N \ {k}}. Let v ∈ SCAN,E . Note that, by
Lemma 3.1, CC(vE) 6= ∅. Moreover, let S ∈ 2N \ {∅}. If k /∈ S, then

vE(S) =
∑
i∈S

v({i}) =
∑
i∈S

vE({i}) ≤
∑
i∈S

mi(v
E).

If k ∈ S, then Mj(v
E) = Mj(v) for all j ∈ N \ S and hence,

vE(S) ≤ v(S) ≤ v(N)−
∑

j∈N\S

Mj(v) = vE(N)−
∑

j∈N\S

Mj(v
E).

Consequently, vE is compromise stable.

Next, the ‘only if’ part: let vE be compromise stable for all v ∈ SCAN,E . We prove that, if
(N,E) is not biconnected and not a star, we can construct a communication situation with
an underlying strongly compromise admissible game for which the graph-restricted game is
not compromise stable. Let (N,E) be not biconnected and not a star. Then |N | ≥ 4. Set
N = {1, 2, 3, 4, . . . , n} and w.l.o.g. assume that {1, 2}, {2, 3}, {3, 4} ∈ E, the induced subgraph
on N \ {3} is not connected, and that players 1 and 2 are in one component of the induced
subgraph on N \ {3} and player 4 is in another (Figure 1 provides a schematic representation).
Consider v ∈ SCAN,E with, for all S ∈ 2N \ {∅},

v(S) =



8, if S = N ;

8, if S = N \ {j} for j ∈ N \ {1, 2, 3, 4};
6, if S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}};
3, if |S| ≤ n− 2 and {1, 2} ⊆ S;

0, otherwise.

1

3

2

4

Figure 1 – Schematic representation of the graph (N,E)

It can be readily checked that M(v) = m(v) = (2, 2, 2, 2, 0, . . . , 0). Hence, CC(v) 6= ∅. Ob-
viously, v(S) ≤ v(N) −

∑
j∈N\SMj(v) holds for S ∈ 2N for which |S| > n − 2. For S ∈ 2N

for which |S| ≤ n − 2 and {1, 2} ⊆ S, we have v(N) −
∑

j∈N\SMj(v) ≥ 8 − 4 ≥ 3 = v(S).

Finally, for S ∈ 2N for which v(S) = 0, v(N)−
∑

j∈N\SMj(v) ≥ 8−8 = 0. Hence, v is strongly
compromise admissible.

We show that vE is not compromise stable, by showing that

vE({1, 2}) > max

m1(v
E) +m2(v

E), vE(N)−
∑

j∈N,j 6=1,2

Mj(v
E)

 .

9



First, note that vE({1, 2}) = v({1, 2}) = 3. Secondly, since vE(N \ {3}) = v({1, 2}) = 3 (due
to the fact that the induced subgraph on N \ {3} is not connected, but consists of at least
one component with {1, 2} ∈ E), we have that M3(v

E) = 5. Using Lemma 3.1, we have that
M(vE) ≥M(v) ≥ 0 and in particular, M4(v

E) ≥M4(v) = 2, such that it follows that

vE(N)−
∑

j∈N,j 6=1,2

Mj(v
E) ≤ vE(N)−M3(v

E)−M4(v
E) ≤ 8− 5− 2 = 1.

Moreover, we claim that m1(v
E) = maxS∈2N :1∈S

{
vE(S)−

∑
j∈S,j 6=1Mj(v

E)
}
≤ 1: for S = N

and S = N \ {j} for j ∈ N \ {1, 2, 3}, we see that {2, 3} ⊆ S and vE(S) ≤ 8, and, consequently,

vE(S)−
∑

j∈S,j 6=1

Mj(v
E) ≤ vE(S)−M2(v

E)−M3(v
E) ≤ 8− 2− 5 = 1.

For S = N \ {3}, we have that vE(S) = 3 and M2(v
E) ≥ 2, and, consequently,

vE(S)−
∑

j∈S,j 6=1

Mj(v
E) ≤ vE(S)−M2(v

E) ≤ 3− 2 = 1.

For S = N \ {2}, we have that {3, 4} ⊆ S and vE(S) ≤ 6, and, consequently,

vE(S)−
∑

j∈S,j 6=1

Mj(v
E) ≤ vE(S)−M3(v

E)−M4(v
E) ≤ 6− 5− 2 = −1.

For all S ∈ 2N with |S| ≤ n − 2 and {1, 2} ⊆ S, we have that vE(S) ≤ v(S) = 3 and 2 ∈ S,
and, consequently,

vE(S)−
∑

j∈S,j 6=1

Mj(v
E) ≤ v(S)−M2(v

E) ≤ 3− 2 = 1.

Finally, for S ∈ 2N with v(S) = 0 it clearly holds that vE(S)−
∑

j∈S,j 6=1Mj(v
E) ≤ 0.

We may conclude that m1(v
E) ≤ 1. Similarly, one can show that m2(v

E) ≤ 1 and thus

m1(v
E) +m2(v

E) ≤ 2.

Consequently, vE is not compromise stable. �

Finally, the family of biconnected graphs is the largest family of (connected) graphs for which
the graph-restricted game is strongly compromise admissible for all communication situations
with an underlying strongly compromise admissible game, as the following theorem shows.

Theorem 3.4 Let (N,E) be a connected graph. Then, vE is strongly compromise admissible
for all v ∈ SCAN,E if and only if (N,E) is biconnected.

Proof: First consider the ‘if’ part: if (N,E) is biconnected, then vE is strongly compromise
admissible for all v ∈ SCAN,E according to Lemma 3.3.

Next, the ‘only if’ part: let vE is strongly compromise admissible for all v ∈ SCAN,E . We
prove that, if (N,E) is not biconnected, we can construct a communication situation with
an underlying strongly compromise admissible game for which the graph-restricted game is
not strongly compromise admissible. Let (N,E) be not biconnected. Set N = {1, 2, . . . , n} and
w.l.o.g. we can assume that {1, 2}, {2, 3} ∈ E, the induced subgraph on N \{2} is not connected
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and that players 1 and 3 are in two different components in the induced subgraph on N \ {2}.
Consider v ∈ SCAN,E with, for all S ∈ 2N \ {∅},

v(S) =

{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

Note that CC(v) 6= ∅, since it can be readily checked that M(v) = m(v) = (1, 0, 0, . . . , 0).
Moreover, for S ∈ 2N for which 1 ∈ S, v(S) ≤ 1 = v(N) −

∑
j∈N\SMj(v). For S ∈ 2N for

which 1 /∈ S, v(S) = 0 = v(N)−
∑

j∈N\SMj(v). Hence, v is strongly compromise admissible.

We show that vE is not strongly compromise admissible, by showing that

vE({3}) > vE(N)−
∑

j∈N,j 6=3

Mj(v
E).

First, note that vE({3}) = v({3}) = 0. Secondly, since vE(N \ {2}) = 0 (due to the fact that
players 1 and 3 are in two different components of the induced subgraph on N \ {2}), we have
that M2(v

E) = 1. Using Lemma 3.1, M(vE) ≥ M(v) ≥ 0 and in particular, M1(v
E) ≥ 1.

Hence,

vE(N)−
∑

j∈N,j 6=3

Mj(v
E) ≤ vE(N)−M1(v

E)−M2(v
E) ≤ −1.

Consequently, vE is not strongly compromise admissible. �

To conclude this section, Table 1 provides a summary of the main results regarding the inheri-
tance of properties. For each of the three properties, it identifies the largest family of graphs for
which the graph-restricted game satisfies this property for all communication situations with
an underlying game satisfying this property. In Table 1, the rows indicate communication si-
tuations with an arbitrary number of players and an underlying game satisfying a particular
property, while the columns indicate the corresponding graph-restricted games.

Graph-restricted games

Balancedness Compromise
stability

Strong compromise
admissibility

U
n

d
er

ly
in

g
ga

m
es Balancedness all graphs no graphs no graphs

Compromise stability all graphs complete graphs no graphs

Strong compromise
admissibility

all graphs biconnected
graphs and
stars

biconnected graphs

Table 1 – Survey of inheritance of properties

4 Invariance of the nucleolus

In this section, we study the invariance of the nucleolus. That is, we characterize families of
graphs for which the nucleolus of the graph-restricted game equals the nucleolus of the under-
lying game for several classes of communication situations. In particular, we reconsider the
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classes of communication situations with respectively an underlying strongly compromise ad-
missible game, an underlying compromise stable game and an underlying balanced game. Note
that the graph-restricted game is imputation admissible if the underlying game is imputation
admissible.

We start out with the class of communication situations in which the underlying games satisfy
strong compromise admissibility.

Theorem 4.1 Let (N,E) be a connected graph. Then, nuc(vE) = nuc(v) for all v ∈ SCAN,E

if and only if (N,E) is biconnected.

Proof: First consider the ‘if’ part: if (N,E) is biconnected, then vE is strongly compromise
admissible for all v ∈ SCAN,E , according to Theorem 3.4. Then, using Proposition 2.1, for
v ∈ SCAN,E and i ∈ N ,

nuci(v
E) = Mi(v

E)− 1

|N |

∑
j∈N

Mj(v
E)− vE(N)


= Mi(v)− 1

|N |

∑
j∈N

Mj(v)− v(N)


= nuci(v),

since M(vE) = M(v) for any biconnected graph (N,E).

Next, the ‘only if’ part: let nuc(vE) = nuc(v) for all v ∈ SCAN,E . We prove that, if (N,E) is
not biconnected, we can construct a communication situation v ∈ SCAN,E such that nuc(vE) 6=
nuc(v). Let (N,E) be not biconnected. Set N = {1, 2, . . . , n} and w.l.o.g. we can assume that
{1, 2}, {2, 3} ∈ E, the induced subgraph on N \ {2} is not connected and that players 1 and 3
are in two different components in the induced subgraph on N \ {2}. Reconsider v ∈ SCAN,E

with, for all S ∈ 2N \ {∅},

v(S) =

{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

Since M(v) = (1, 0, 0, . . . , 0), we have that, using Proposition 2.1,

nuc(v) = (1, 0, 0, . . . , 0).

Moreover, for all S ∈ 2N \ {∅},

vE(S) =

{
1, if {1, 2} ⊆ S;

0, otherwise,

and consequently,

nuc(vE) = (
1

2
,
1

2
, 0, . . . , 0).

Hence, nuc(vE) 6= nuc(v). �

Next, we reconsider the class of communication situations with an underlying compromise stable
game. For this larger class, biconnected graphs are not sufficient to guarantee the invariance of
the nucleolus. In fact, the weakest condition on the graph for which invariance of the nucleolus
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is guaranteed for all communication situations with an underlying compromise stable game
is completeness. The proof involves an intricate construction of a communication situation
for every connected graph that is not complete, for which it holds that the nucleolus of the
graph-restricted game is not equal to the nucleolus of the underlying game.

Theorem 4.2 Let (N,E) be a connected graph. Then, nuc(vE) = nuc(v) for all v ∈ CSN,E

if and only if (N,E) is complete.

Proof: First consider the ‘if’ part: if (N,E) is complete, then vE = v and nuc(vE) = nuc(v)
for all v ∈ SCN,E .

Next, the ‘only if’ part: let nuc(vE) = nuc(v) for all v ∈ CSN,E . We prove that, if (N,E) is not
complete, we can construct a communication situation v ∈ CSN,E such that nuc(vE) 6= nuc(v).
Let (N,E) be not complete. We distinguish between two cases: either |N | = 3 or |N | ≥ 4.
First, suppose that |N | = 3 and set N = {1, 2, 3}. Assume w.l.o.g. that {1, 3} /∈ E. Then,
{1, 2}, {2, 3} ∈ E, since (N,E) is connected. Reconsider v ∈ CSN,E with, for all S ∈ 2N \ {∅},

v(S) =

{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

For all S ∈ 2N \ {∅},

vE(S) =

{
1, if {1, 2} ⊆ S;

0, otherwise.

Consequently, nuc(vE) = (12 ,
1
2 , 0) 6= (1, 0, 0) = nuc(v).

Secondly, suppose that |N | ≥ 4. Set N = {1, 2, 3, 4, . . . , n} and assume w.l.o.g. that {1, 2} /∈ E
and {1, 3} ∈ E. Reconsider v ∈ CSN,E with, for all S ∈ 2N \ {∅},

v(S) =



7, if S = N ;

6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N,N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

Then, M(v) = (1, 2, 4, 3, 4, . . . , 4) and m(v) = (1, 2, 2, 0, 0, . . . , 0), and using Proposition 2.1,

nuci(v) =


1, if i = 1;

2, if i = 2;

2 + 2
n−2 , if i = 3;

2
n−2 , otherwise.

To show that nuc(vE) 6= nuc(v), we use the Kohlberg criterion and show that B1(nuc(v), vE) is
not balanced. For this, we need to identify the coalitions with the highest excess. Since

vE(S) =


0, if S = {j} for j ∈ N ;

0, if S = {1, 2};
3, if S = {1, 3};
0, if S = {2, 3},
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one readily checks that

Exc(S,nuc(v), vE) =



−1, if S = {1};
−2, if S = {2};
−2
n−2 − 2, if S = {3};
−2
n−2 , if S = {j} for j ∈ N \ {1, 2, 3};
−3, if S = {1, 2};
−2
n−2 , if S = {1, 3};
−2
n−2 − 4, if S = {2, 3}.

For S ∈ 2N \ {∅, N} for which S = {1, 2, j} for j ∈ N \ {1, 2, 3}, it holds that

vE(S) =

{
3, if the induced subgraph on S is connected;

0, otherwise,

and hence,

Exc(S,nuc(v), vE) =

{
−2
n−2 , if the induced subgraph on S is connected;
−2
n−2 − 3, otherwise.

Note that the induced subgraph on S is connected if and only if {1, j}, {2, j} ∈ E.

Furthermore, for S ∈ 2N \ {∅, N} for which 3 < |S| < n − 1, {1, 2, j} ⊆ S for j ∈ N \ {1, 2, 3}
and 3 /∈ S, it holds that

vE(S) ≤ 3,

and hence,

Exc(S,nuc(v), vE) < vE(S)− nuc1(v)− nuc2(v)− nucj(v) ≤ 3− 1− 2− 2

n− 2
=
−2

n− 2
,

since nuci(v) > 0 for all i ∈ N . Subsequently, these coalitions can not be coalitions with the
highest excess.

In addition, for S ∈ 2N \ {∅, N} for which 2 < |S| < n − 1 and {1, 3} ⊆ S, it holds that
vE(S) = 3 and hence,

Exc(S,nuc(v), vE) < vE(S)− nuc1(v)− nuc3(v) = 3− 1− 2− 2

n− 2
=
−2

n− 2
.

For S ∈ 2N \ {∅, N} for which 1 < |S| < n − 1, {1, 2} 6⊆ S, {1, 3} 6⊆ S and j ∈ S for
j ∈ N \ {1, 2, 3}, it holds that vE(S) = 0 and hence,

Exc(S,nuc(v), vE) < vE(S)− nucj(v) = 0− 2

n− 2
=
−2

n− 2
.

For S ∈ 2N \ {∅, N} for which S = N \ {j} for j ∈ N \ {1, 2, 3, 4}, it holds that vE(S) = 3, since
{1, 3} ⊆ S and hence,

Exc(S,nuc(v), vE) < vE(S)− nuc1(v)− nuc3(v) = 3− 1− 2− 2

n− 2
=
−2

n− 2
.
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Finally, for the coalitions N \ {4}, N \ {3}, N \ {2} and N \ {1}, the worth of the coalition in
the graph-restricted game depends on whether the induced subgraph is connected or not:

vE(N \ {4}) =

{
4, if the induced subgraph on N \ {4} is connected;

3, otherwise,

vE(N \ {3}) =

{
3, if the induced subgraph on N \ {3} is connected;

0, otherwise,

vE(N \ {2}) =

{
5, if the induced subgraph on N \ {2} is connected;

3, otherwise,

vE(N \ {1}) =

{
6, if the induced subgraph on N \ {1} is connected;

0, otherwise.

Consequently,

Exc(N \ {4}, nuc(v), vE) =

{
2

n−2 − 3, if the induced subgraph on N \ {4} is connected;
2

n−2 − 4, otherwise,

Exc(N \ {3},nuc(v), vE) =

{
2

n−2 − 2, if the induced subgraph on N \ {3} is connected;
2

n−2 − 5, otherwise,

Exc(N \ {2},nuc(v), vE) =

{
0, if the induced subgraph on N \ {2} is connected;

−2, otherwise,

Exc(N \ {1},nuc(v), vE) =

{
0, if the induced subgraph on N \ {1} is connected;

−6, otherwise.

Note that, if n ≥ 4,

Exc(N \ {4}, nuc(v), vE) ≤ 2

n− 2
− 3 ≤ −2 <

−2

n− 2
,

and, if n > 4,

Exc(N \ {3},nuc(v), vE) ≤ 2

n− 2
− 2 < −1 <

−2

n− 2
.

We may conclude that, if the induced subgraph on N \ {1} or the induced subgraph on N \ {2}
is connected, the highest excess equals 0 and

B1(nuc(v), vE) = {N \ {1}, N \ {2}},
B1(nuc(v), vE) = {N \ {1}}, or

B1(nuc(v), vE) = {N \ {2}}.

Clearly, for these cases, B1(nuc(v), vE) is not a balanced collection and nuc(vE) 6= nuc(v). Note
that, if n = 4, it holds that the induced subgraph on N \{1} or the induced subgraph on N \{2}
is connected, due to the connectedness of the graph and the fact that {1, 2} /∈ E.

For the remaining case, we can assume that n > 4 and that both induced subgraphs on N \ {1}
and N \ {2} are not connected. Then, the highest excess equals −2

n−2 (> −1) and

B1(nuc(v), vE) = {{j} | j ∈ N \ {1, 2, 3}}
∪ {{1, 3}}
∪ {{1, 2, j} | j ∈ N \ {1, 2, 3} and both {1, j} ∈ E and {2, j} ∈ E} .
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Note that if B1(nuc(v), vE) = {{j} | j ∈ N \ {1, 2, 3}} ∪ {{1, 3}}, then B1(nuc(v), vE) is not
balanced, since 2 /∈ S for all S ∈ B1(nuc(v), vE). So let j ∈ N \ {1, 2, 3} be such that {1, 2, j} ∈
B1(nuc(v), vE). Suppose λ : B1(nuc(v), vE) → R++ is such that

∑
S∈B1(nuc(v),vE):i∈S λ(S) = 1

for all i ∈ N . For i = 3, this condition boils down to λ({1, 3}) = 1. Then, however,∑
S∈B1(nuc(v),vE):1∈S

λ(S) ≥ λ({1, 3}) + λ({1, 2, j}) > 1.

Hence, also in this case, nuc(vE) 6= nuc(v). �

Table 2 summarizes the invariance results of this section. For each of the three properties, it
identifies the weakest condition on the graph for which invariance of the nucleolus is guaranteed
for all communication situations with an underlying game satisfying this property.

Property satisfied by underlying
games

Condition on the graph to guaran-
tee invariance of the nucleolus

Strong compromise admissibility biconnected

Compromise stability complete

Balancedness complete

Table 2 – Survey of invariance of the nucleolus

Interestingly, Theorem 4.2 can be modified if we restrict attention to communication situations
with an underlying simple game.

A cooperative game v ∈ TUN is called simple if v(S) ∈ {0, 1} for all S ∈ 2N , v(N) = 1 and
v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊆ T . Moreover, for a simple game v ∈ TUN , the set of
veto-players is given by

veto(v) =
⋂{

S ∈ 2N
∣∣ v(S) = 1

}
.

These veto-players play an important role in the computation of the nucleolus. The following
proposition relates the set of veto-players to the properties of balancedness, compromise stability
and strong compromise admissibility. In addition, it provides a direct, closed formula for the
nucleolus for balanced, simple games.

Proposition 4.1 Let v ∈ TUN be a simple game. Then the following three statements are
equivalent:

i) veto(v) 6= ∅;

ii) v is balanced;

iii) v is compromise stable.

Moreover, |veto(v)| = 1 if and only if v is strongly compromise admissible. Finally, veto(v) 6= ∅
implies that, for all i ∈ N ,

nuci(v) =

{
1

|veto(v)| , if i ∈ veto(v);

0, otherwise.
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With regard to the graph-restricted game, note that, if the game underlying a communication
situation is simple, then the graph-restricted game is simple too.

We see that the proof of Theorem 4.2 uses a simple game to show that only a complete graph
guarantees the invariance of the nucleolus. Interestingly, for the class of communication situati-
ons with an underlying balanced and simple game, invariance of the nucleolus can be extended
to biconnected graphs.

Theorem 4.3 Let (N,E) be a connected graph. Then, nuc(vE) = nuc(v) for all v ∈ CSN,E

with an underlying simple game if and only if (N,E) is biconnected.

Proof: First consider the ‘if’ part: let (N,E) be biconnected and let v ∈ CSN,E be a communi-
cation situation with an underlying simple game. Using Proposition 4.1 it suffices to show that
veto(v) = veto(vE). Since vE(S) = 1 implies that v(S) = 1, it holds that veto(v) ⊆ veto(vE).
Suppose there exists i ∈ veto(vE) with i /∈ veto(v). Clearly, using monotonicity of a simple
game and the fact that veto(v) 6= ∅, it holds that v(N \ {i}) = 1. Then, since the induced
subgraph on N \ {i} is connected, it holds that vE(N \ {i}) = v(N \ {i}) = 1. This contradicts
the fact that i ∈ veto(vE).

Next, the ‘only if’ part: let nuc(vE) = nuc(v) for all v ∈ CSN,E with an underlying simple
game. We prove that, if (N,E) is not biconnected, we can construct a communication situation
v ∈ CSN,E with an underlying simple game such that nuc(vE) 6= nuc(v). Let (N,E) be not
biconnected. Set N = {1, 2, . . . , n} and assume w.l.o.g. that {1, 2}, {2, 3} ∈ E, the induced
subgraph on N \ {2} is not connected and that players 1 and 3 are in two different components
in the induced subgraph on N \ {2}. Reconsider v ∈ CSN,E with, for all S ∈ 2N \ {∅},

v(S) =

{
1, if {1, 2} ⊆ S or {1, 3} ⊆ S;

0, otherwise.

Note that v is a simple game. Recall that, for all S ∈ 2N \ {∅},

vE(S) =

{
1, if {1, 2} ⊆ S;

0, otherwise,

and hence, nuc(vE) = (12 ,
1
2 , 0, . . . , 0) 6= (1, 0, 0, . . . , 0) = nuc(v). �
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