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Chapter 1

Introduction

Measuring attributes of people, objects, or systems is an important aspect of

scientific research. In the physical sciences, attributes are sometimes observable,

making measurement easy. An example is length, which can be simply measured

using a measuring tape. However, also in physics and other scientific areas as well,

attributes are often unobservable, or only observable through other phenomena

that are related to the attributes but do not coincide with them. One may think of

radioactivity, electrical current, and hardness of materials. For example, one may

feel a weak electrical current as tickling to the skin, but that feeling is not identical

to a measurement procedure and the attribute of electrical current itself remains

unobservable. Measurement in the social sciences is difficult for the same rea-

son, because the attributes of interest often are unobservable and the only things

noticeable are symptoms of attributes. Measurements of a person’s intelligence,

extraversion, or neuroticism cannot be obtained by simply reading off a scale that

is readily available, thereby introducing a challenge for measurement in the social

sciences.

Frequently used instruments to measure unobservable psychological attributes

are tests or questionnaires. The manifestations resulting from the attribute of in-

terest are recorded by means of different so-called items. Scores on various items

are combined to obtain a quantitative measurement of the attribute. It is of great

importance that the tests and questionnaires employed are of high quality, because

this will benefit the quality of the measurements.

The research area concerned with the theory and methods of measurement

in the social sciences is psychometrics. Psychometricians work on improving the

quality of the measurements obtained by means of tests and questionnaires by

improving the measurement instrument and the statistical methods used to ana-

lyze the obtained measurements. An important aspect of the quality of a test is

test-score reliability.
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1.1 Test-Score Reliability

The test-score reliability indicates the repeatability of the test score. This

means that when a test is administered to a person, and we would be able to

erase this person’s memory and let him or her retake the test, a reliable test would

result in the same score or almost the same score for this person. Researchers

commonly investigate the reliability of the test score, denoted ρXX′, which stands

for the product-moment correlation between two independent administrations of

the same test in the same group of people. Of course, researchers will not be able

to erase the memory of their subjects, and therefore psychometricians have devel-

oped methods to approximate test-score reliability, often based on just one admin-

istration of the test. The most commonly used test-score reliability method is coef-

ficient alpha (Cronbach, 1951), which is a lower bound to the test-score reliability.

Even though other lower bounds to the test-score reliability are available that bet-

ter approximate test-score reliability (Sijtsma, 2009), in practice coefficient alpha

is the most used method for test-score reliability. However, it is not very common

to investigate the reliability at the level of the item score. Even though psycho-

metric, psychological, marketing, management and human resource studies, and

other research areas have given attention to the reliability of individual items, a

thorough investigation of this subject has not been carried out before. This thesis

fills the gap and studies methods for approximating and estimating the reliability

of individual item scores, and discusses the practical need for such estimates.

1.2 Item-Score Reliability

Because the reliability of a test score is an important aspect of test quality,

assessing the reliability of the individual item scores could also be interesting and

is worthy of further investigation. Currently, various item indices assessing aspects

of item quality other than reliability are available. Researchers investigate aspects

of item quality by means of the corrected item-total correlation, the item-factor

loading, the item scalability, or the item discrimination. Even though these indices

all measure some aspect of item quality, none explicitly touch upon the repeata-

bility of an item score. However, there are some studies available that mention or

study item-score reliability or apply some method to estimate item-score reliability

in the analysis of real test data.
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1.3 Item-Score Reliability in the Literature

Several studies have touched upon the concept of item-score reliability, but a

thorough investigation of its use, applications and methods had not been executed

yet. In a literature review, we attempted to gather the research and information

available in the current literature about item reliability, so as to create a concise

overview of what has been known so far with respect to item-score reliability. This

literature review identified the gaps with respect to item-score reliability so that

these gaps can be further investigated. Even though we attempted to be thorough,

it might be the case that not all methods ever mentioned in the literature are part

of this review.

Guttman (1946) described a universe where indefinitely many trials of a per-

son responding to an item take place, which leads to the definition of the reliability

coefficient of the item. He argued that an item is unreliable for a person to the

extent to which his or her response varies across repeated experiments under the

same conditions. Because repeated experiments under the same conditions are

difficult, if not impossible to realize, this specific reliability coefficient of the item

cannot be computed in practice. In Guttman’s study, definitions appropriate for

test-retest reliability for items at both the level of an individual responding to an

item and the population responding to an item are described. The derivations

presented in his study can be used in practice to compute a lower and an upper

bound to the population reliability coefficient from a single trial of a large popu-

lation. However, it is not possible to compute a point estimate of the reliability of

an item using the derivations presented by Guttman, which is the reason we did

not consider his definitions in this study.

The purpose of the study by Knapp (1977) was to develop from first princi-

ples the concept of the reliability of a dichotomous one-item cognitive test, and to

suggest procedures for estimating reliability for such one-item tests. Knapp (1977)

investigated an approach without using correlations towards estimating the relia-

bility of a dichotomous item based on the proportion of individuals that know the

correct answer and answer correctly, and the proportion of individuals that do not

know the answer and answer incorrectly. These proportions are defined as reliable

scores. In practice, there is only one option available for estimating these propor-

tions and that is the “test-retest” technique, which involves the administration of

the item on two or more occasions to members of the population of interest. There

are two reasons we did not consider this method in our study. First, respondents

will remember what they answered during the first administration of the test, and

they might change over time. Second, because data often does not have a sec-

ond measurement at a different time point, which is necessary for the “test-retest”
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technique, this method cannot always be applied.

For the evaluation of item quality during test construction using nonpara-

metric item response theory methods (Mokken, 1971), Meijer, Sijtsma, and Mole-

naar (1995) studied the estimation of the reliability of a single dichotomous item

score. They discussed three methods for the estimation of item-score reliability for

dichotomous items, each based on the assumptions of nondecreasing and nonin-

tersecting item response functions (e.g., Embretson & Reise, 2000). By means of

analytical and Monte Carlo studies, Meijer et al. (1995) found one method to be

superior over the other two, because it had smaller bias and smaller sampling vari-

ance. The methods investigated in this study were studied only for dichotomous

items, and therefore needed some adjustments before they could also be used for

the estimation of item-score reliability for polytomous items. The adjusted method

was considered in this study.

Wanous and Reichers (1996) described how to estimate the reliability of a

single item score using an adapted version of the correction for attenuation (Lord

& Novick, 1968; Nunnally & Bernstein, 1994; Spearman, 1904), from now on

referred to as method CA. Their focus was on measuring the reliability of a single-

item measure for job satisfaction. In a follow-up study, Wanous, Reichers, and

Hudy (1997) conducted a meta-analysis of single-item measures of overall job sat-

isfaction, thereby investigating how good single-item measures are for measuring

an allegedly simple construct like job satisfaction. The reliability of the single-item

measure for job satisfaction was again investigated by means of method CA. These

authors concluded that, depending on the assumptions made, the item-score relia-

bility for the single-item measure for job satisfaction was between .45 and .69, and

it was therefore deemed acceptable to use this single-item measure. The second

method proposed by Wanous and Hudy (2001) to estimate the item-score relia-

bility of a single-item measure is based on the factor model, originally proposed

by Weiss (1976, pp. 351–352) and first used in a monograph by Arvey, Landon,

Nutting, and Maxwell (1992, p. 1000). Harman (1976, pp. 18–19) described how

the variance of a variable can be split into the communality, the specificity, and

the error or unreliability. The complement of the error variance can be seen as

the true-score variance, equal to the sum of the communality and specificity, and

relevant to the reliability of the variable. Communality can thus be regarded as

a conservative estimate of item true-score variance, and the estimate of commu-

nality can be obtained by means of a factor model. This factor analytic method

was not considered in this study, because we focused on the classical definition of

reliability, where the variance can be split in true score variance and error score

variance, whereas in the factorial analytic method the variance is split into three

components.

4
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Fuchs and Diamantopoulos (2009) provided researchers in the field of man-

agement studies with concrete guidelines for using single-item measures. With

regard to the reliability of a single-item measure, they concluded that one should

not reject single-item measures because of concerns about how to estimate their

reliability, because adequate methods to estimate item-score reliability do exist,

or reject the value of the resulting estimate, because these are often within ac-

ceptable levels. Next to method CA developed by Wanous and Reichers (1996),

Fuchs and Diamantopoulos (2009) proposed applying the Spearman-Brown for-

mula in reverse (see Nunnally & Bernstein, 1994, pp. 263–264, for the Spearman-

Brown formula), meaning that one solves the theoretical reliability of one item

from knowledge of the test-score reliability and the number of items. The authors

described that on the one hand Spector (1992, p. 4) argued that “yes” or “no”

single-item measures are notoriously unreliable, because the responses are not

consistent over time; thus respondents may answer differently the next day. Also,

Churchill (1979) described how the reliability tends to increase and measurement

error decreases as the number of items in a combination increases. On the other

hand, Drolet and Morrison (2001, p. 200) argued that adding more items to the

measure results in minimal extra information compared to the single-item mea-

sure, and is therefore perhaps not worth the effort. Because of the aforementioned

reasons, Fuchs and Diamantopoulos (2009) concluded that for ability tests a single

item cannot provide a reliable estimate of the individual’s ability (Rossiter, 2002,

p. 321), but for business-related constructs a good single-item measure instead

of a multi-item measure will not change theoretical tests and empirical findings

(Bergkvist & Rossiter, 2007).

In the literature, there are several examples of applied research where item-

score reliability is investigated. Russell, Weiss, and Mendelsohn (1989) introduced

a single-item scale, the Affect Grid, to quickly assess affect along the dimensions

of pleasure-displeasure and arousal-sleepiness. The authors used the fact that

reliability sets an upper bound on validity, and conversely claimed that and index

of convergent validity estimates a lower bound on reliability. By means of this

method they obtained an item-score reliability that ranged from .74 to .94 for the

pleasure dimension, and from .63 to .92 for the arousal dimension. They concluded

that the average subject therefore yielded scores sufficiently reliable to be useful.

Robins, Hendin, and Trzesniewski (2001) investigated the reliability of a single-

item self-esteem scale (SISE) measure. They used the approach by Heise (1969,

Equation 9), that provides an estimate of test-retest reliability. The method is

based on the pattern of autocorrelations of the single-item measure over three

points in time. They computed the Heise estimate three times using measurements

of the SISE from the beginning to the end of college. They found a mean reliability

5
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estimate for the SISE of .75.

Wanous and Hudy (2001) estimated the reliability of a College Teaching Ef-

fectiveness single-item measure using both the factor analytic method and method

CA. They found a higher item-score reliability value for the factor analytic method

(.88) than for method CA (.64). Ginns and Barrie (2004) continued this research,

by investigating single-item ratings of the quality of instructors or subjects, used

by higher education institutions. They also used both the factor analytic method

and method CA and found item-score reliability values of .94 and .96, respectively.

Shamir and Kark (2004) offered a single-item measure for identification with or-

ganizations and organizational units. Item-score reliability was assessed by means

of test-retest correlations over a period of two weeks, which resulted in values

of .73 and .80 in the different samples in their study. They assessed these values

to provide evidence for reliability of the single-item measure. Dolbier, Webster,

McCalister, Mallon, and Steinhardt (2005) investigated, following Wanous et al.

(1997), the reliability of a single-item measure measuring job satisfaction. They

used method CA and concluded that the item-score reliability was .73 when the

correlation between the single- and the multiple-item job satisfaction measures

was assumed to be perfect, and .90 when the correlation was assumed to be more

conservative. Zimmerman et al. (2006) developed single-item measures for three

domains that are important to consider when treating depressed patients. For two

of those measures, they used intraclass correlation coefficients for test-retest re-

liability to determine the item-score reliability. For the psychosocial functioning

measure they found a value of .76, and for the quality of life measure, they found

a value of .81. They concluded that both values were high. Postmes, Haslam, and

Jans (2012) introduced a single-item social identification measure assessing (SISI)

that assessed the respondent’s identification with his or her group or category, on

a 7-point scale. They investigated the reliability of this single-item measure by

means of method CA and test-retest reliability, and found values of .76, and .64,

respectively. Based on other studies that report the reliability of single-item mea-

sures, Postmes et al. (2012) conclude that the reliability of their SISI measure

exceeds most other reliabilities of single-item measures, which strengthens their

confidence in the robustness of this scale for use in psychological research. Melián-

González, Bulchand-Gidumal, and López-Valcárcel (2015) investigated the rela-

tionship between employee satisfaction and organizational performance, the for-

mer being assessed by a single-item measure. Using the factor analytical method,

they obtained a communality of 0.95, and classified this as the item-score relia-

bility of this measure. Williams, Thomas, and Smith (2017) used the Well-Being

Process Questionnaire (WPQ) to investigate stress levels and the well-being of uni-

versity staff. Reliability of this measure was assessed by means of method CA by
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Wanous et al. (1997), with a value of .90 as the assumed true correlation between

the single-item and the multi-item measure. They found an item-score reliabil-

ity value of .64 and therefore concluded that multi-item measures would be more

suitable for research purposes, because they provide more consistently high relia-

bility scores. Gignac and Wong (2018) investigated the item-score reliability of a

single-anagram version of the Anagram Persistence Task (APT) via its communal-

ity within the relevant factor analytic solution. The result of their analysis showed

an item-score reliability value of .42 for the single-anagram version of the APT,

which was assessed as unacceptably low for researcher purposes.

The applied research examples described above indicate that the method by

Wanous et al. (1997) is used frequently, as is test-retest reliability. Also, the stud-

ies by Wanous and Reichers (1996), Wanous et al. (1997), and Wanous and Hudy

(2001) are often cited (Google Scholar cited Wanous et al. (1997) 2400+ times

(November 16 2017)) to motivate that single-item measures are, given certain

conditions, reliable measurement instruments. Other applications of item-score

reliability, besides single-item measures, are not very common yet, which is a rea-

son to further explore its usability.

1.4 Usability

Currently, item-score reliability is mainly used for motivating that a single-

item measure, for example, measuring job satisfaction, is a reliable measure (Wanous

& Reichers, 1996; Wanous et al., 1997), but there are many more situations in

which item-score reliability can be a useful tool. Having information about the

reliability of a single item gives researchers the opportunity to identify unreliable

item scores and remove these items from the test in order to obtain a test of higher

quality. Other possibilities that arise are selecting the most reliable item from a

test to use as a single-item measure. Also, one could use the item-score reliability

in test construction as a selection tool to decide which items to add or omit from

a test to increase its quality and obtain better measurement instruments.

1.5 Item-Score Reliability Methods

Considering what has been investigated with respect to item-score reliability,

at the start of this research, we found two methods available to estimate item-

score reliability. The first method is the method proposed by Wanous and Reichers

(1996), which we called method CA. The second method is the method proposed

by Meijer et al. (1995), but this method is defined for dichotomous items only.

The availability of only two methods, of which the latter method cannot be used
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for polytomous items, shows a need for new, perhaps better, methods. Also, the

performance of method CA has not been investigated with regard to bias and

accuracy.

In this dissertation, the starting point for the development of methods for

determining item-score reliability has been considering the methods used for the

determination of test-score reliability. The latter methods were adjusted such that

they fit in a general framework for estimating item-score reliability, thereby mak-

ing the differences clear between how the different methods approximate item-

score reliability.

The first method that was adjusted for estimating the reliability of an item

score instead of a test score is the Molenaar-Sijtsma method, already employed

by Meijer et al. (1995) for estimating the reliability of single dichotomous items.

Molenaar and Sijtsma (1988; also Sijtsma & Molenaar, 1987; Van der Ark, 2010)

proposed method MS to estimate the reliability of a test-score using a single-

administration. The theoretical basis of this method was used to develop a new

method for estimating item-score reliability, called method MS. The second method

was based on coefficient λ6, developed by Guttman (1945), which led to method

λ6 for estimating item-score reliability. Finally, the latent class reliability coeffi-

cient (LCRC) proposed by Van der Ark, Van der Palm, and Sijtsma (2011) was

adjusted such that it estimates item-score reliability, and defined as method LCRC.

The existing method CA was also considered as an item-score reliability estimation

method.

1.6 Outline of the Dissertation

This dissertation deals with item-score reliability and the development, eval-

uation, and usability of item-score reliability methods. An existing method for

estimating item-score reliability was reviewed and compared to newly-developed

methods to assess their performance. Simulation studies and empirical data sets

were deployed, to investigate bias and precision of the different item-score reliabil-

ity methods and to identify values of item-score reliability that can be expected in

practice, respectively. The item-score reliability methods were compared to other

item indices assessing different features of item performance that are often used

in practice. Also, the usability of the item-score reliability methods was evaluated

by means of a simulation study focusing on item selection in test construction.

The chapters were written as separate journal articles and can be read in-

dependently from each other. This means that some technical details, especially

regarding the item-score reliability estimation methods, return in the different

chapters, creating some overlap.
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In Chapter 2, methods to estimate item-score reliability are explored, re-

sulting in the development of three new methods: method MS, method λ6, and

method LCRC. All three methods fit in the same framework, based on approxi-

mating the correlation between two independent replications of the same item.

The fourth method that was investigated in addition to developed methods was

method CA, which was readily available, and already introduced. By means of a

simulation study, the median bias, the variability (quantified as the inter-quartile

range), and the percentage of outliers of the four item-score reliability methods

were investigated and compared.

Chapter 3 contains an analysis of several empirical-data sets by means of the

most promising item-score reliability methods identified in Chapter 2. Four other

item indices assessing item features different from item-score reliability were also

applied to these empirical-data sets. By means of this research, the values that

can be expected in empirical data-sets were empirically identified, as well as the

relationship between the item-score reliability estimation methods and the four

other item indices.

For Chapter 4, the relationship between item-score reliability and the three

item-score reliability methods was further investigated by means of a simulation

study. In this study, the bias of the three item-score reliability methods was as-

sessed in several realistic research conditions for a range of item-score reliability

values. Also, for the same conditions and the same range, the relationship between

item-score reliability and four other item indices not assessing the item-score reli-

ability was investigated.

The usability of item-score reliability as an item selection method in test

construction was investigated in Chapter 5. The goals were to use item-score

reliability methods as a measure to decide which item to add to the test or to

omit from the test, based on a high item-score reliability, and a low item-score

reliability, respectively. The objective was to maximize the test-score reliability.

Because in practice the corrected item-total correlation is already being used for

item selection, this measure was also investigated in this study and used as a

benchmark method to compare to the novel item-score reliability methods.

In the Epilogue, the added value of this thesis in the field of psychometrics

was evaluated, and a direction for future research was discussed.
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Chapter 2

Methods for Estimating Item-Score Reliability

Abstract

Reliability is usually estimated for a test score, but it can also be estimated for item scores. Item-
score reliability can be useful to assess the item’s contribution to the test score’s reliability, for iden-
tifying unreliable scores in aberrant item-score patterns in person-fit analysis, and for selecting the
most reliable item from a test to use as a single-item measure. Four methods were discussed for es-
timating item-score reliability: the Molenaar-Sijtsma method (method MS), Guttman’s method λ6,
the latent class reliability coefficient (method LCRC), and the correction for attenuation (method
CA). A simulation study was used to compare the methods with respect to median bias, variability
(interquartile range [IQR]), and percentage of outliers. The simulation study consisted of six con-
ditions: standard, polytomous items, unequal α-parameters, two-dimensional data, long test, and
small sample size. Methods MS and CA were the most accurate. Method LCRC showed almost un-
biased results, but large variability. Method λ6 consistently underestimated item-score reliability,
but showed a smaller IQR than the other methods.

Keywords: correction for attenuation, Guttman’s method λ6, item-score reliability, latent class
reliability coefficient, method MS

Based on Zijlmans, E. A. O., Tijmstra, J., Van der Ark, L. A., and Sijtsma, K. (2018). Meth-

ods for Estimating Item-Score Reliability. Applied Psychological Measurement, 42, 553–570. doi:

10.1177/0146621618758290
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2.1 Introduction

Reliability of measurement is often considered for test scores, but some au-

thors have argued that it may be useful to also consider the reliability of individual

items (Ginns & Barrie, 2004; Meijer & Sijtsma, 1995; Meijer et al., 1995; Wanous

& Reichers, 1996; Wanous et al., 1997). Just as test-score reliability expresses the

repeatability of test scores in a group of people keeping administration conditions

equal (Lord & Novick, 1968, p. 65), item-score reliability expresses the repeatabil-

ity of an item score. Items having low reliability are candidates for removal from

the test. Item-score reliability may be useful in person-fit analysis to identify item

scores that contain too little reliable information to explain person fit (Meijer &

Sijtsma, 1995). Meijer, Molenaar, and Sijtsma (1994) showed that fewer items

are needed for identifying misfit when item-score reliability is higher. If items

are meant to be used as single-item measurement instruments, their suitability for

the job envisaged requires high item-score reliability. Single-item instruments are

used in work and organizational psychology for selection and assessing, for ex-

ample, job satisfaction (Gonzalez-Mulé, Carter, & Mount, 2017; Harter, Schmidt,

& Hayes, 2002; Nagy, 2002; Robertson & Kee, 2017; Saari & Judge, 2004; Zapf,

Vogt, Seifert, Mertini, & Isic, 1999) and level of burnout (Dolan et al., 2014). Item-

score reliability is also used in health research for measuring, for example, quality

of life (Stewart, Hays, & Ware, 1988; Yohannes, Willgoss, Dodd, Fatoye, & Webb,

2010) and psychosocial stress (Littman, White, Satia, Bowen, & Kristal, 2006),

and one-item measures have been assessed in marketing research for measuring

ad and brand attitude (Bergkvist & Rossiter, 2007).

Several authors have proposed methods for estimating item-score reliability.

Wanous and Reichers (1996) proposed the correction for attenuation (method CA)

for estimating item-score reliability. Method CA correlates an item score and a test

score both assumed to measure the same attribute. Google Scholar cited Wanous

et al. (1997) 2400+ times (November 16 2017), suggesting method CA is used

regularly to estimate item-score reliability. The authors proposed to use method

CA for estimating item-score reliability for single-item measures that are used, for

example, for measuring job satisfaction (Wanous et al., 1997). Meijer et al. (1995)

advocated using the Molenaar-Sijtsma method (method MS; Molenaar & Sijtsma,

1988), which at the time was available only for dichotomous items. In this study,

method MS was generalized to polytomous item scores. Two novel methods were

also proposed, one based on coefficient λ6 (Guttman, 1945) denoted as method

λ6, and the other based on the latent class reliability coefficient (Van der Ark et al.,

2011), denoted as method LCRC. This study discusses methods MS, λ6, LCRC, and

CA, each suitable for polytomous item scores, and compared the methods with

12



2

Methods for Estimating Item-Score Reliability

respect to median bias, variability expressed as interquartile range (IQR), and

percentage of outliers. This study also showed that the well-known coefficients

α (Cronbach, 1951) and λ2 (Guttman, 1945) are inappropriate for being used as

item-score reliability methods.

Because item-score reliability addresses the repeatability of item scores in a

group of people, it provides information different from other item indices. Ex-

amples are the corrected item-total correlation (Nunnally, 1978, p. 281), which

quantifies how well the item correlates with the sum score on the other items in

the test; the item-factor loading (Harman, 1976, p. 15), which quantifies how well

the item is associated with a factor score based on the items in the test, and thus

corrects for the multidimensionality of total scores; the item scalability (Mokken,

1971, pp. 151–152), which quantifies the relationship between the item and the

other items in the test, each item corrected for the influence of its marginal dis-

tribution on the relationship; and the item discrimination (e.g., see Baker & Kim,

2004, p. 4), which quantifies how well the item distinguishes people with low and

high scores on a latent variable the items have in common. None of these indices

addresses repeatability; hence, item-score reliability may be a useful addition to

the set of item indices. A study that addresses the formal relationship between the

item indices would more precisely inform us about their differences and similari-

ties, but such a theoretical study is absent in the psychometric literature.

Following this study, which focused on the theory of item-score reliability,

Zijlmans, Tijmstra, Van der Ark, and Sijtsma (2018b) estimated methods MS, λ6,

and CA from several empirical data sets to investigate the methods’ practical use-

fulness and values that are found in practice and may be expected in other data

sets. In addition, the authors estimated four item indices (corrected item total-

correlation, item-factor loading, item scalability, and item discrimination) from

the empirical data sets. The values of these four item indices were compared

with the values of the item-score reliability methods, to establish the relationship

between item-score reliability and the other four item indices.

This article is organized as follows. First, a framework for estimating item-

score reliability and three of the item-score reliability methods in the context of

this framework are discussed. Second, a simulation study, its results with respect

to the methods’ median bias, IQR, and percentage of outliers, and a real-data ex-

ample are discussed. Methods to use in practical data analysis are recommended.

2.2 A Framework for Item-Score Reliability

The following classical test theory (CTT) definitions (Lord & Novick, 1968,

p. 61) were used. Let X be the test score, which is defined as the sum of J item
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scores, indexed i (i = 1, ..., J); that is, X =
J∑
i=1

Xi . In the population, test score X

has variance σ2
X . True score T is the expectation of an individual’s test score across

independent repetitions, and represents the mean of the individual’s propensity

distribution (Lord & Novick, 1968, pp. 29-30). The deviation of test score X from

true score T is the random measurement error, E; that is, E = X − T . Because T

and E are unobservable, their variances are also unobservable. Using these defini-

tions, test-score reliability is defined as the proportion of observed-score variance

that is true-score variance or, equivalently, one minus the proportion of observed-

score variance that is error variance. Mathematically, reliability also equals the

product-moment correlation between parallel tests (Lord & Novick, 1968, p. 61),

denoted by ρXX′; that is,

ρXX′ =
σ2
T

σ2
X

= 1− σ2
E

σ2
X

. (2.1)

Next to notation i, we need j to index items. Notation x and y denote re-

alizations of item scores, and without loss of generality it is assumed that x, y =

0, 1, . . . ,m. Let πx(i) = P (Xi ≥ x) be the marginal cumulative probability of ob-

taining at least score x on item i. It may be noted that π0(i) = 1 by definition.

Likewise, let πx(i),y(j) = P (Xi ≥ x,Xj ≥ y) be the joint cumulative probability of

obtaining at least score x on item i and at least score y on item j.

In what follows, it is assumed that index i′ indicates an independent repeti-

tion of item i. Let πx(i),y(i′) denote the joint cumulative probability of obtaining at

least score x and at least score y on two independent repetitions, denoted by i and

i′, of the same item in the same group of people. Because independent repetitions

are unavailable in practice, the joint cumulative probabilities πx(i),y(i′) have to be

estimated from single-administration data.

Molenaar and Sijtsma (1988) showed that reliability (Equation 2.1) can be

written as

ρXX′ =

J∑
i=1

J∑
j=1

m∑
x=1

m∑
y=1

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

. (2.2)

Equation 2.2 can be decomposed into the sum of two ratios:

ρXX′ =

J∑∑
i 6=j

m∑
x=1

m∑
y=1

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+

J∑
i=1

m∑
x=1

m∑
y=1

[
πx(i),y(i′) − πx(i)πy(i)

]
σ2
X

.

(2.3)

Except for the joint cumulative probabilities pertaining to the same item πx(i),y(i′),

all other terms in Equation 2.3 are observable and can be estimated from the

sample. Van der Ark et al. (2011) showed that for test score X, the single-

administration reliability methods α, λ2, MS and LCRC only differ with respect
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to the estimation of πx(i),y(i′).

To define item-score reliability, Equation 2.3 can be adapted to accommodate

only one item; the first ratio and the first summation sign in the second ratio

disappear, and item-score reliability ρii′ is defined as

ρii′ =

m∑
x=1

m∑
y=1

[
πx(i),y(i′) − πx(i)πy(i)

]
σ2
Xi

=
σ2
Ti

σ2
Xi

. (2.4)

2.3 Methods for Approximating Item-Score

Reliability

Three of the four methods that were investigated, methods MS, λ6, and

LCRC, use different approximations to the unobservable joint cumulative prob-

ability πx(i),y(i′), and fit into the same reliability framework. Two other well-known

methods that fit into this framework, Cronbach’s α and Guttman’s λ2, cannot be

used to estimate item-score reliability (see Appendix A). The fourth method,

CA, uses a different approach to estimating item-score reliability and conceptu-

ally stands apart from the other three methods. All four methods estimate Equa-

tion 2.4, which contains two unknowns – in addition to ρii′ bivariate proportion

πx(i),y(i′) (middle) and variance σ2
Ti

(right) – and thus cannot be estimated directly

from the data.

Method MS

Method MS uses the available marginal cumulative probabilities to approx-

imate πx(i),y(i′). The method is based on the item response model known as the

double monotonicity model (Mokken, 1971, p. 118; Sijtsma & Molenaar, 2002, pp.

23-25). This model is based on the assumptions of a unidimensional latent vari-

able; independent item scores conditional on the latent variable, which is known

as local independence; response functions that are monotone nondecreasing in the

latent variable; and nonintersection of the response functions of different items.

The double monotonicity model implies that the observable bivariate proportions

πx(i),y(j) collected in the P(++) matrix are nondecreasing in the rows and the

columns (Sijtsma & Molenaar, 2002, pp. 104-105). The structure of the P(++)

matrix using an artificial example is illustrated.

For four items, each having three ordered item scores, Table 2.1 shows the

marginal cumulative probabilities. First, ignoring the uninformative π0i = 1, we

assume that probabilities can be strictly ordered, and order the eight remaining
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Table 2.1: Marginal Cumulative Probabilities for Four Artificial Items with Three
Ordered Item Scores

Item

1 2 3 4

π0(i) 1.00 1.00 1.00 1.00

π1(i) 0.97 0.94 0.93 0.86

π2(i) 0.53 0.32 0.85 0.72

marginal cumulative probabilities in this example from small to large:

π2(2) < π2(1) < π2(4) < π2(3) < π1(4) < π1(3) < π1(2) < π1(1). (2.5)

Van der Ark (2010) discussed the case in which Equation 2.5 contains ties. Sec-

ond, the P(++) matrix is defined, which has order Jm × Jm and contains the

joint cumulative probabilities. The rows and columns are ordered reflecting the

ordering of the marginal cumulative probabilities, which are arranged from small

to large along the matrix’ marginals; see Table 2.2. The ordering of the marginal

cumulative probabilities determines where each of the joint cumulative probabili-

ties is located in the matrix. For example, the entry in cell (4,7) is π2(3),1(2), which

equals .81. Mokken (1971, pp. 132-133) proved that the double monotonicity

model implies that the rows and the columns in the P(++) matrix are nonde-

creasing. This is the property on which method MS rests. In Table 2.2, entry NA

(i.e., not available) refers to the joint cumulative probabilities of the same item,

which are unobservable. For example, in cell (5,3) the proportion π1(4),2(4′) is NA

and hence cannot be estimated numerically.

Method MS uses the adjacent, observable joint cumulative probabilities of

different items to estimate the unobservable joint cumulative probabilities πx(i),y(i′)
by means of eight approximation methods (Molenaar & Sijtsma, 1988). For test

scores, Molenaar and Sijtsma (1988) explained that method MS attempts to ap-

proximate the item response functions of an item and for this purpose uses ad-

jacent items, because when item response functions do not intersect, adjacent

functions are more similar to the target item response function, thus approximat-

ing repetitions of the same item, than item response functions further away. When

an adjacent probability is unavailable, for example, in the first and last rows and

the first and last columns in Table 2.2, only the available estimators are used. For

example, π1(1),2(1′) in cell (8,2) does not have lower neighbors. Hence, only the

proportions .32, cell (8,1); .51, cell (7,2); and .70, cell (8,3) are available for ap-

proximating π1(1),2(1′). For further details, see Molenaar and Sijtsma (1988) and

Van der Ark (2010).
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Table 2.2: P(++) Matrix with Joint Cumulative Probabilities πx(i),y(j) and Marginal
Cumulative Probabilities πx(i)

π2(2) π2(1) π2(4) π2(3) π1(4) π1(3) π1(2) π1(1)

.32 .53 .72 .85 .86 .93 .94 .97

π2(2) .32 NA 0.20 0.27 0.29 0.30 0.31 NA 0.32

π2(1) .53 0.20 NA 0.41 0.47 0.48 0.50 0.51 NA

π2(4) .72 0.27 0.41 NA 0.64 NA 0.68 0.68 0.70

π2(3) .85 0.29 0.47 0.64 NA 0.76 NA 0.81 0.84

π1(4) .86 0.30 0.48 NA 0.76 NA 0.81 0.81 0.84

π1(3) .93 0.31 0.50 0.68 NA 0.81 NA 0.88 0.91

π1(2) .94 NA 0.51 0.68 0.81 0.81 0.88 NA 0.91

π1(1) .97 0.32 NA 0.70 0.84 0.84 0.91 0.91 NA

Note. NA = not available

Hence, following Molenaar and Sijtsma (1988), the joint cumulative proba-

bility πx(i),y(i′) is approximated by the mean of at most eight approximations result-

ing in π̃MS
x(i),y(i′). When the double monotonicity model does not hold, item response

functions adjacent to the target item response function may intersect and not ap-

proximate the target very well, so that π̃MS
x(i),y(i′) may be a poor approximation of

πx(i),y(i′). The approximation of πx(i),y(i′) by method MS is used in Equation 2.4 to

estimate the item-score reliability.

Method MS is equal to item-score reliability ρii′ when
∑
x

∑
y

πx(i)y(i′) =
∑
x

∑
y

π̃MS
x(i)y(i′).

A sufficient condition is that all the entries in the P(++) matrix are equal; equal-

ity of entries requires item response functions that coincide. Further study of this

topic is beyond the scope of this article but should be taken up in future research.

Method λ6

An item-score reliability method based on Guttman’s λ6 (Guttman, 1945) can

be derived as follows. Let ε2i denote the variance of the estimation or residual error

of the multiple regression of item score Xi on the remaining J−1 item scores, and

determine ε2i for each of the J items. Guttman’s λ6 is defined as

λ6 = 1−

J∑
i=1

ε2i

σ2
X

. (2.6)

It may be noted that Equation 2.6 resembles the right-hand side of Equation 2.1.

Let Σii denote the (J−1)×(J−1) inter-item variance-covariance matrix for (J−1)
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items except item i. Let σi be a (J − 1)× 1 vector containing the covariances of

item i with the other (J − 1) items. Jackson and Agunwamba (1977) showed that

the variance of the estimation error equals

ε2i = σ2
Xi
− σ′i(Σii)

−1σi. (2.7)

When estimating the reliability of an item score, Equation 2.6 can be adapted to

λ6i = 1−
σ2
Xi
− σ′i(Σii)

−1σi

σ2
Xi

=
σ′i(Σii)

−1σi
σ2
Xi

. (2.8)

It can be shown that method λ6 fits into the framework of Equation 2.4. Let

π̃λ6x(i),y(i′) be an approximation of πx(i),y(i′) based on observable proportions, such

that replacing πx(i),y(i′) in the right-hand side of Equation 2.4 by π̃λ6x(i),y(i′) results in

λ6i. Hence,

λ6i =

m∑
x=1

m∑
y=1

[
π̃λ6x(i),y(i′) − πx(i)πy(i)

]
σ2
Xi

. (2.9)

Equating Equation 2.8 and 2.9 shows that

σ′i(Σii)
−1σi

σ2
Xi

=

m∑
x=1

m∑
y=1

[
π̃λ6x(i),y(i′) − πx(i)πy(i)

]
σ2
Xi

⇐⇒

σ′i(Σii)
−1σi

m2
= π̃λ6x(i),y(i′) − πx(i)πy(i) ⇐⇒

π̃λ6x(i),y(i′) =
σ′i(Σii)

−1σi
m2

+ πx(i)πy(i)

(2.10)

Inserting π̃λ6x(i),y(i′) in Equation 2.4 yields method λ6 for item-score reliability. Re-

placing parameters by sample statistics produces an estimate.

Preliminary computations suggest that only highly contrived conditions pro-

duce the equality σ2
Ti

= σ′i(Σii)
−1σi in Equation 2.8, but conditions more repre-

sentative for what one may find with real data produce negative item true-score

variance, also known as Heywood cases. Because this work is premature, we

tentatively conjecture that in practice, method λ6 is a strict lower bound to the

item-score reliability, a result that is consistent with simulation results discussed

elsewhere (e.g., Oosterwijk, Van der Ark, & Sijtsma, 2017).

Method LCRC

Method LCRC is based on the unconstrained latent class model (LCM; Hagenaars

& McCutcheon, 2002; Lazarsfeld, 1950; McCutcheon, 1987). The LCM assumes

local independence, meaning that item scores are independent given class mem-
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bership. Two different probabilities are important, which are the latent class

probabilities that provide the probability to be in a particular latent class k(k =

1, . . . , K), and the latent response probabilities that provide the probability of a

particular item score given class membership. For local independence given a

discrete latent variable ξ with K classes, the unconstrained LCM is defined as

P (X1 = x1, ..., XJ = xJ) =
K∑
k=1

P (ξ = k)
J∏
j=1

P (Xi = xi | ξ = k). (2.11)

The LCM (Equation 2.11) decomposes the joint probability distribution of the J

item scores for the sum across K latent classes of the product of the probabil-

ity to be in class k and the conditional probability of a particular item score Xi.

Let π̃LCRCx(i),y(i′) be the approximation of πx(i),y(i′) using the parameters of the uncon-

strained LCM at the right-hand side of Equation 2.11, such that

π̃LCRCx(i),y(i′) =
m∑
u=x

m∑
v=y

K∑
k=1

P (ξ = k)P (Xi = u | ξ = k)P (Xi = v | ξ = k). (2.12)

Approximation π̃LCRCx(i),y(i′) can be inserted in Equation 2.4 to obtain method LCRC.

After insertion of sample statistics, an estimate of method LCRC is obtained.

Method LCRC equals ρii′ if πx(i),y(i′) (Equation 2.4) equals π̃LCRCx(i),y(i′) (Equation

2.12), hence πx(i),y(i′) =
m∑
u=x

m∑
v=y

K∑
k=1

P (ξ = k)P (Xi = u | ξ = k)P (Xi = v | ξ = k).

A sufficient condition for method LCRC to equal ρii′ is that K has been correctly

selected and all estimated parameters P (ξ = k) and P (Xi = x | ξ = k) equal

the population parameters. This condition is unlikely to be true in practice. In

samples, LCRC may either underestimate or overestimate ρii′.

Method CA

The CA (Lord & Novick, 1968, pp. 69-70; Nunnally & Bernstein, 1994, p.

257; Spearman, 1904) can be used for estimating item-score reliability (Wanous

& Reichers, 1996). Let Y be a random variable, which preferably measures the

same attribute as item score Xi but does not include Xi. Likely candidates for Y

are the rest score R(i) = X −Xi or the test score on another, independent test that

does not include item score Xi but measures the same attribute. Let ρ
TXi

TY
be the

correlation between true scores TXi and TY , let ρ
XiY

be the correlation between Xi

and Y , let ρii′ be the item-score reliability of Xi, and let ρ
Y Y ′ be the reliability of

Y . Then, method CA equals

ρ
TXi

TY
=

ρ
XiY√

ρii′ ·
√
ρ
Y Y ′

. (2.13)
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It follows from Equation 2.13 that the item-score reliability equals

ρii′ =
( ρ

XiY

ρ
TXi

TY

√
ρ
Y Y ′

)2
=

ρ2
XiY

ρ2
TXi

TY
ρ
Y Y ′

. (2.14)

Let ρ̃CAii′ denote the item-score reliability estimated by method CA. Method

CA is based on two assumptions. First, true scores TXi and TY correlate perfectly;

that is, ρ
TXi

TY
= 1, reflecting that TXi and TY measure the same attribute. Second,

ρY Y ′ equals the population reliability. Because many researchers use coefficient

alpha (alphaY ) to approximate ρY Y ′ in practice, it is assumed that alphaY = ρY Y ′.

Using these two assumptions, Equation 2.14 reduces to

ρ̃CAii′ =
ρ2
XiY

alphaY
. (2.15)

Comparing ρ̃CAii′ and ρii′, one may notice that ρ̃CAii′ = ρii′ if the denominators

in Equations 2.15 and 2.14 are equal; that is, if alphaY = ρ2TXiTY
ρY Y ′. When does

this happen? Assume that Y = R(i). Then, if the J − 1 items on which Y is

based are essentially τ -equivalent, meaning that TXi = TY + biY (Lord & Novick,

1968, p. 50), then alphaY = ρY Y ′. This results in ρY Y ′ = ρ2TXiTY
ρY Y ′, implying that

ρ2TXiTY
= 1, hence ρTXiTY = 1, and this is true if TXi and TY are linearly related:

TXi = aiY TY + biY . Because it is already assumed that items are essentially τ -

equivalent and because the linear relation has to be true for all J items, bi = 0 for

all i and ρ̃CAii′ = ρii′ if all items are essentially τ -equivalent. Further study of the

relation between ρ̃CAii′ and ρii′ is beyond the scope of this article, and is referred to

future research.

2.4 Simulation Study

A simulation study was performed to compare median bias, IQR, and per-

centage of outliers produced by item-score reliability methods MS, λ6, LCRC, and

CA. Joint cumulative probability πx(i),y(i′) was estimated using methods MS, λ6 and

LCRC. For these three methods, the estimates of the joint cumulative probabilities

πx(i),y(i′) were inserted in Equation 2.4 to estimate the item-score reliability. For

method CA, Equation 2.15 was used.

Method

Dichotomous or polytomous item scores were generated using the multidi-

mensional graded response model (Ayala, 1994). Let θ = (θ1, . . . , θQ) be the Q-

dimensional latent-variable vector, which has a Q-variate standard normal distri-

bution. Let αiq be the discrimination parameter of item i relative to latent variable

q, and let δix be the location parameter for category x (x = 1, 2, . . . ,m) of item i.

20



2

Methods for Estimating Item-Score Reliability

The multidimensional graded response model (Ayala, 1994) is defined as

P (Xi ≥ x | θ) =

exp

[
Q∑
q=1

αiq(θq − δix)
]

1 + exp

[
Q∑
q=1

αiq(θq − δix)
] . (2.16)

The design for the simulation study was based on the design used by Van der

Ark et al. (2011) for studying test-score reliability. A standard condition was de-

fined for six dichotomous items (J = 6,m + 1 = 2), one dimension (Q = 1),

equal discrimination parameters (αiq = 1 for all i and q) and equidistantly spaced

location parameters δix ranging from −1.5 to 1.5 (Table 2.3), and sample size

N = 1000. The other conditions differed from the standard condition with respect

to one design factor. Test length, sample size, and item-score format were con-

sidered extensions of the standard condition, and discrimination parameters and

dimensionality were considered deviations, possibly affecting methods the most.

Test length (J): The test consisted of 18 items (J = 18). For this condition, the six

items from the standard condition were copied twice.

Sample size (N): The sample size was small (N = 200).

Item-score format (m + 1): The J items were polytomous (m+ 1 = 5).

Discrimination parameters (α): Discrimination parameters differed across items

(α = 0.5 or 2). This constituted a violation of the assumption of nonintersecting

item response functions needed for method MS.

Dimensionality (Q): The items were two-dimensional (Q = 2) with latent variables

correlating .5. The location parameters alternated between the two dimensions.

This condition is more realistic than the condition chosen in Van der Ark et al.

(2011), representing two subscale scores that are combined into an overall mea-

sure, whereas Van der Ark et al. (2011) used orthogonal dimensions.

Van der Ark et al. (2011) found that item format and sample size did not affect

bias of test-score reliability, but these factors were included in this study to find

out whether results for individual items were similar to results for test scores.

Data sets were generated as follows. For every replication, N latent variable

vectors, θ1, . . . ,θN , were randomly drawn from the θ distribution. For each set of

latent variable scores, for each item, the m cumulative response probabilities were

computed using Equation 2.16. Using the m cumulative response probabilities,

item scores were drawn from the multinomial distribution. In each condition,

1000 data sets were drawn.

Population item-score reliability ρii′ was approximated by generating item

scores for 1 million simulees (i.e., sets of item scores). For each item, the variance

based on the θs of the 1 million simulees was divided by the variance of the item
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Table 2.3: Item Parameters of the Multidimensional Graded Response Model for
the Simulation Design

Design

Item Standard Polytomous Unequal α Two Dimensions

αj δj αj δj1 δj2 δj3 δj4 αj δj αj1 αj2 δj

1 1 -1.5 1 -3 -2 -1 0 0.5 -1.5 1 0 -1.5

2 1 -0.9 1 -2.4 -1.4 -0.4 0.6 2 -0.9 0 1 -0.9

3 1 -0.3 1 -1.8 -0.8 0.2 1.2 0.5 -0.3 1 0 -0.3

4 1 0.3 1 -1.2 -0.2 0.8 1.8 2 0.3 0 1 0.3

5 1 0.9 1 -0.6 0.4 1.4 2.4 0.5 0.9 1 0 0.9

6 1 1.5 1 0 1 2 3 2 1.5 0 1 1.5

Note. α = item discrimination, δ = item location

score Xi to obtain the population item-score reliability. It was found that .05 ≤
ρii′ ≤ .41.

Let sr be the estimate of ρii′ in replication r (r = 1, . . . , R) by means of meth-

ods MS, λ6, and CA. For each method, difference (sr−ρii′ ) is displayed in boxplots.

For each item-score reliability method, median bias, IQR, and percentage of out-

liers were recorded. An overall measure reflecting estimation quality based on the

three quantities was not available, and in cases where a qualification of a method’s

estimation quality was needed, we indicated how the median bias, IQR, and per-

centage of outliers were weighted. The computations were done using R (R Core

Team, 2016). The code is available via https://osf.io/e83tp/. For the computation

of method MS, the package mokken was used (Van der Ark, 2007, 2012). For the

computation of the LCM used for estimating method LCRC, the package poLCA

was used (Linzer & Lewis, 2011).

Results

For each condition, Figure 2.1 shows the boxplots for the difference (sr −
ρii). In general, differences across items in the same experimental condition were

negligible; hence, the results were aggregated not only across replications but also

across the items in a condition, so that each condition contained J×1000 estimated

item-score reliabilities. The bold horizontal line in each boxplot represents median

bias. The dots outside the whiskers are outliers, defined as values that lie beyond

1.5 times the IQR measured from the whiskers of the first and the third quartile.

For unequal αs and for Q = 2, results are presented separately for high and low

αs and for each θ, respectively.
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Figure 2.1: Difference (sr − ρii′), where sr represents an estimate of methods MS, λ6,
LCRC, and CA, for six different conditions (see Table 2.3 for the specifications of the
conditions).
Note. The bold horizontal line represents the median bias. The numbers in the boxplots represent the
percentage outliers in that condition. MS = Molenaar-Sijtsma method; λ6 = Guttman’s method λ6; LCRC
= latent class reliability coefficient; CA = correction for attenuation.
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Figure 2.1, continued: Difference (sr−ρii′), where sr represents an estimate of methods
MS, λ6, LCRC, and CA, for six different conditions (see Table 2.3 for the specifications
of the conditions).
Note. The bold horizontal line represents the median bias. The numbers in the boxplots represent the
percentage outliers in that condition. MS = Molenaar-Sijtsma method; λ6 = Guttman’s method λ6; LCRC
= latent class reliability coefficient; CA = correction for attenuation.

In the standard condition (Figure 2.1), median bias for methods MS, LCRC,

and CA was close to 0. For method LCRC, 6.4 % of the difference (sr−ρii′) qualified

as an outlier. Hence, compared with methods MS and CA, method LCRC had a

large IQR. Method λ6 consistently underestimated item-score reliability. In the

long-test condition (Figure 2.1), for all methods, the IQR was smaller than in

the standard condition. For the small-N condition (Figure 2.1), for all methods

IQR was a little greater than in the standard condition. In the polytomous item

condition (Figure 2.1), median bias and IQR results were comparable with results

in the standard condition, but method LCRC showed fewer outliers (i.e, 1.2 %).

Results for high-discrimination items and low-discrimination items can be

found in Figure 2.1, unequal α-parameters condition panel. Median bias was

smaller for low-discrimination items. For both high and low-discimination items,

method LCRC produced median bias close to 0. Compared to the standard condi-

tion, IQR was greater for high-discrimination items and the percentage of outliers

was higher for both high- and low-discrimination items. For high-discrimination

items, methods MS, λ6 and CA showed greater negative median bias than for

low-discrimination items. For low-discrimination items, method MS had a small

positive bias and for methods λ6 and CA, the results were similar to the standard

condition. For the two-dimensional data condition (Figure 2.1), methods MS and

CA produced larger median bias compared to the standard condition. Methods
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LCRC and CA also produced larger IQR than in the standard condition. Method λ6
showed smaller IQR than in the standard condition.

A simulation study performed for six items with equidistantly spaced location

parameters ranging from −2.5 to 2.5, showed that the number of outliers was

larger for all methods, ranging from 0 % to 9.6 % percent. This result was also

found when the items having the highest and lowest discrimination parameter

were omitted.

Depending on the starting values, the expectation maximization (EM) algo-

rithm estimating the parameters of the LCM may find a local optimum rather than

the global optimum of the loglikelihood. Therefore, for each item-score reliability

coefficient, the LCM was estimated 25 times using different starting values. The

best-fitting LCM was used to compute the item-score reliability coefficient. This

produced the same results, and left the former conclusion unchanged.

2.5 Real-Data Example

A real-data set illustrated the most promising item-score reliability meth-

ods. Because method LCRC had large IQR and a high percentages of outliers

and because results were better and similar for the other three methods, meth-

ods MS, λ6, and CA were selected as the three most promising methods. The

data set (N = 425) consisted of 0/1 scores on 12 dichotomous items measuring

transitive reasoning (Verweij, Sijtsma, & Koops, 1999). The corrected item-total

correlation, the item-factor loading based on a confirmatory factor model, the

item-scalability coefficient (denoted Hi; Mokken, 1971, pp. 151–152), and the

item-discrimination parameter (based on a two-parameter logistic model) were

also estimated. The latter four measures provide an indication of item quality

from different perspectives, and use different rules of thumb for interpretation.

De Groot and Van Naerssen (1969, p. 351) suggested .3 to .4 as minimally ac-

ceptable corrected item-total correlations for maximum-performance tests. For the

item-factor loading, values of .3 to .4 are most commonly recommended (Gorsuch,

1983, p. 210; Nunnally, 1978, pp. 422–423; Tabachnick & Fidell, 2007, p. 649).

Sijtsma and Molenaar (2002, p. 36) suggested to only accept items having Hi ≥ .3

in a scale. Finally, Baker (2001, p. 34) recommended a lower bound of 0.65 for

item discrimination.

Using these rules of thumb yielded the following results (Table 2.4). Only

item 3 met the rules of thumb value for the four item indices. Item 3 also had the

highest estimated item-score reliability, exceeding .3 for all three methods. Items

2, 4, 7, and 12 did not meet the rules of thumb of any of the item indices. These

items had the lowest item-score reliability not exceeding .3 for any method.
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Table 2.4: Estimated Item Indices for the Transitive Reasoning Data Set

Item-Score Reliability Item Indices

Item Item Mean Method Method Method Corrected Item- Item-Factor Item Item
MS λ6 CA Total Correlation Loading Scalability Discrimination

X1 0.97 0.36 0.28 0.21 0.26 0.85 0.28 2.69

X2 0.81 0.01 0.13 0.05 0.13 -0.04 0.08 -0.05

X3 0.97 0.47 0.30 0.35 0.33 0.88 0.40 3.16

X4 0.78 0.05 0.13 0.02 0.08 -0.10 0.05 -0.20

X5 0.84 0.18 0.23 0.31 0.29 0.73 0.18 1.94

X6 0.94 0.32 0.20 0.17 0.23 0.74 0.21 2.04

X7 0.64 0.03 0.05 0.00 -0.04 -0.06 -0.03 -0.01

X8 0.88 0.39 0.30 0.26 0.28 0.83 0.19 2.54

X9 0.80 0.05 0.06 0.07 0.15 0.34 0.09 0.64

X10 0.30 0.00 0.10 0.10 0.18 0.48 0.17 1.03

X11 0.52 0.00 0.17 0.14 0.21 0.61 0.14 1.36

X12 0.48 0.00 0.07 0.06 -0.17 -0.29 -0.14 -0.50

Note. Bold faced values are above the heuristic rule for that item index

2.6 Discussion

Methods MS, λ6 and LCRC were adjusted for estimating item-score relia-

bility. Method CA was an existing method. The simulation study showed that

methods MS and CA had the smallest median bias. Method λ6 estimated ρii′ with

the smallest variability, but this method underestimated item-score reliability in

all conditions, probably because it is a lower bound to the reliability, rendering

it highly conservative. The median bias of method LCRC across conditions was

almost 0, but the method showed large variability and produced many outliers

overestimating item-score reliability.

It was concluded that in the unequal α-parameters condition and in the two-

dimensional condition, the methods do not estimate item-score reliability very ac-

curately (based on median bias, IQR, and percentage of outliers). Compared with

the standard condition, for unequal α-parameters, for high-discrimination items,

median bias is large, variability is larger, and percentage of outliers is smaller. The

same conclusion holds for the multidimensional condition. In practice, unequal

α-parameters across items and multidimensionality are common, implying that

ρii′ is underestimated. In the other conditions, methods MS and CA produced the

smallest median bias and the smallest variability, while method λ6 produced small

variability but showed larger negative median bias which rendered it conservative.
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Table 2.5: Parameters of Latent Class Models Having Two and Three Classes

Two-class model Three-class model

Class weights Response probabilities Class weights Response probabilities

P (ξ̂ = 1) = .4 P (Xi = 1|ξ̂ = 1) = .5 P (ξ̂ = 1) = .4 P (Xi = 1|ξ̂ = 1) = .5

P (ξ̂ = 2) = .6 P (Xi = 1|ξ̂ = 2) = .8 P (ξ̂ = 2) = .3 P (Xi = 1|ξ̂ = 2) = .6

P (ξ̂ = 3) = .3 P (Xi = 1|ξ̂ = 3) = 1.0

Method LCRC showed small median bias, but large variability.

We conjecture that the way the fit of the LCM is established causes the large

variability, and provide some preliminary thoughts for dichotomous items. For

the population probabilities π1(i) and π1(i),1(i′) defined earlier, let π̂1(i) =
∑

k P (ξ̂ =

k)P (Xi = 1|ξ̂ = k) and π̂1(i),1(i′) =
∑

k P (ξ̂ = k)(P [Xi = 1|ξ̂ = k])2 be the their

latent class estimates based on sample data, and let p1(i) denote the sample pro-

portion of respondents that have score 1 on item i. For dichotomous items, the

item-score reliability (Equation 4) reduces to

ρii′ =
π1(i),1(i′) − π2

1(i)

π1(i)(1− π1(i))
. (2.17)

In samples, method LCRC estimates Equation 2.17 by means of

ρ̂ii′ =
π̂1(i),1(i′) − p21(i)
p1(i)(1− p1(i))

. (2.18)

The fit of a LCM is based on a distance measure between π̂1(i) and p1(i).

However, the fit of the LCM is not directly relevant for Equation 2.18, because

π̂1(i) does not play a role in this equation. A more relevant fit measure for Equa-

tion 2.18 would be based on a distance measure between π̂1(i),1(i′) and an observ-

able quantity, but such a fit measure is unavailable. The impact of π̂1(i),1(i′) not

being considered in the model fit is illustrated by means of the following exam-

ple. Table 2.5 shows the parameter estimates of LCMs with two and three classes

that both produce perfect fit; that is, one can derive from the parameter estimates

that for both models π̂1(i) = p1(i) = .68. In addition, one can also derive from the

parameter estimates that for the two-class model, π̂1(i),1(i′) = .484 and ρ̂ii′ = .099,

whereas for the three-class model, π̂1(i),1(i′) = .508 and ρ̂ii′ = .210. This example

shows that, although the two LCMs both show perfect fit, the resulting values of

ρ̂ii′ vary considerably. Hence, the variability of the LCRC estimate is larger than

the fit of the LCM, and this may explain the large variability of method LCRC in

the simulation study.

Values for item-score reliability ranging from .05 to .41 were used. These

values are small compared with values suggested in the literature. For example,
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Wanous and Reichers (1996) suggested a minimally acceptable item-score relia-

bility of .70 in the context of overall job satisfaction, and Ginns and Barrie (2004)

suggested values in excess of .90. It was believed that for most applications, such

high values may not be realistic. In the real-data example, item-score reliability

estimates ranged from < .01 to .47. Further research is required to determine real-

istic values of item-score reliability. In this study, the range of investigated values

for ρii′ was restricted. The item-score reliability methods’ behavior should be in-

vestigated under different conditions for a broader range of values for ρii′. This

research is now under way.
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Item-Score Reliability in Empirical-Data Sets and Its

Relationship With Other Item Indices

Abstract

Reliability is usually estimated for a total score, but it can also be estimated for item scores. Item-
score reliability can be useful to assess the repeatability of an individual item score in a group.
Three methods to estimate item-score reliability are discussed, known as method MS, method λ6,
and method CA. The item-score reliability methods are compared with four well-known and widely
accepted item indices, which are the corrected item-total correlation, the item-factor loading, the
item scalability, and the item discrimination. Realistic values for item-score reliability in empirical-
data sets are monitored to obtain an impression of the values to be expected in other empirical-data
sets. The relation between the three item-score reliability methods and the four well-known item
indices are investigated. Tentatively, a minimum value for the item-score reliability methods to be
used in item analysis is recommended.

Keywords: coefficient λ6, corrected item-total correlation, correction for attenuation, item
discrimination, item-factor loading, item scalability, item-score reliability

Based on Zijlmans, E. A. O., Van der Ark, L. A., Tijmstra, J., and Sijtsma, K. (2018). Item-score

reliability in empirical-data sets and its relationship with other item indices. Educational and Psy-

chological Measurement, 78, 998–1020. doi:10.1177/0013164417728358
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3.1 Introduction

This article discusses the practical usefulness of item-score reliability. Usu-

ally, reliability of test scores rather than item scores is considered, because test

scores and not individual item scores are used to assess an individual’s ability or

trait level. The test score is constructed of item scores, meaning that all the items

in a test contribute to the test-score reliability. Therefore, individual item-score

reliability may be relevant when constructing a test, because an item having low

reliability may not contribute much to the test-score reliability and may be a can-

didate for removal from the test.

Item-score reliability (Wanous et al., 1997, cited 2000 + times in Google

Scholar, retrieved on July 27, 2017) is used in applied psychology to assess one-

item measures for job satisfaction (Gonzalez-Mulé et al., 2017; Harter et al., 2002;

Nagy, 2002; Robertson & Kee, 2017; Saari & Judge, 2004; Zapf et al., 1999) and

burnout level (Dolan et al., 2014). Item-score reliability is also used in health

research for measuring, for example, quality of life (Stewart et al., 1988; Yohannes

et al., 2010) and psychosocial stress (Littman et al., 2006), and one-item measures

have been assessed in marketing research for measuring ad and brand attitude

(Bergkvist & Rossiter, 2007). However, the psychometric theory of item-score

reliability appears not to be well developed, and because of this and its rather

widespread practical use, we think item-score reliability deserves further study.

Currently, instead of item-score reliability researchers use several other item

indices to assess item quality, for example, the corrected item-total correlation

(Nunnally, 1978, p. 281), also known as the item-rest correlation, the item-factor

loading (Harman, 1976, p. 15), the item-scalability coefficient (Mokken, 1971,

pp. 151-152), and the item-discrimination parameter (Baker & Kim, 2004, p. 4).

Although useful, these indices are not specifically related to the item-score relia-

bility. Therefore, we also investigated the relation between these item indices and

item-score reliability in empirical-data sets.

Let Xi be an item score indexed i (i = 1, . . . , J), and let X be the test score,

which is defined as the sum of the J item scores; that is, X =
J∑
i=1

Xi.

The context of our work is classical test theory. The three methods we use

and briefly discuss are all based on the reliability definition proposed by Lord and

Novick (1968, p. 61). To estimate item-score reliability, method MS (Molenaar &

Sijtsma, 1988) uses data features related to nonparametric item response theory

(IRT; Mokken, 1971, pp. 142–147), and the other two methods use estimation

procedures based on multiple regression (method λ6; Guttman, 1945) and correc-

tion for attenuation (method CA; Wanous et al., 1997; Wanous & Reichers, 1996).

Consistent with classical test theory, item-score reliability for any item i, denoted
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by ρii′, is defined as the product-moment correlation between two independent

replications of the same item in the same group of people. Because indepen-

dent replications are unavailable in practice, ρii′ cannot be estimated directly by

means of a sample correlation rii′. Zijlmans, Van der Ark, Tijmstra, and Sijtsma

(2018) identified three promising methods for the estimation of item-score relia-

bility, which are method MS, method λ6, and method CA. Their simulation study

results suggested that method MS and method CA had little bias. Method λ6 pro-

duced precise estimates of ρii′, but systematically underestimated ρii′, suggesting

the method is conservative.

Little is known about the item-score reliability values one can expect to find

in empirical data and which values should be considered acceptable for an item

to be included in a test. We estimated MS, λ6, and CA values for the items in 16

empirical-data sets to gain insight into empirical-data values one may expect to

find when analyzing one’s data. We also estimated the corrected item-total corre-

lation, the item-factor loading, the item scalability, and the item discrimination in

these empirical-data sets, and compared their values with the values of the three

item-score reliability methods.

This article is organized as follows: First, we discuss item-score reliability

methods MS, λ6, and CA, and the corrected item-total correlation, the item-factor

loading, the item scalability, and the item discrimination. Second, the different

sets of empirical data for which the seven item indices were estimated are dis-

cussed. Third, we discuss the results and their implications for the practical use of

the three item-score reliability methods.

3.2 Method

Item-Score Reliability Methods

The following definitions (Lord & Novick, 1968, p. 61) were used. In the

population, test score X has variance σ2
X . True score T is the expectation of

an individual’s test score across independent replications of the same test, and

represents the mean of the individual’s distribution of test scores, known as his

or her propensity distribution (Lord & Novick, 1968, pp. 29-30). The deviation

of test score X from true score T is the random measurement error, E; that is,

E = X − T . Because T and E are unobservable, their group variances σ2
T and σ2

E

are also unobservable.

Furthermore, to define the test score’s reliability, classical test theory uses the

concept of parallel tests to formalize independent replications of the same test in

the same group. Two tests with test scores X and X ′ are parallel (Lord & Novick,
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1968, p. 61) if (a) for each person ν, true scores are equal, Tν = T ′ν , implying

at the group level that σ2
T = σ2

T ′, and (b) for both tests, test-score variances are

equal, σ2
X = σ2

X′. The definition implies that measurement-error variances are also

equal, σ2
E = σ2

E′.

Using the definition of parallel tests, test-score reliability is defined as the

product-moment correlation between test scores X and X ′, and denoted by ρXX′.

Correlation ρXX′ can be shown to equal the proportion of observed-score variance

that is true-score variance or, equivalently, one minus the proportion of observed-

score variance that is error variance. Because variances are equal for parallel tests,

the result holds for both tests. We provide the result for test score X, that is,

ρXX′ =
σ2
T

σ2
X

= 1− σ2
E

σ2
X

. (3.1)

Considering Equation 3.1 for an item score produces the item-score reliability,

defined as

ρii′ =
σ2
Ti

σ2
Xi

= 1−
σ2
Ei

σ2
Xi

. (3.2)

The two terms on the right-hand side of Equation 3.2 each contain an unknown.

We briefly discuss three methods to approximate item-score reliability based on

one test administration. Approximations to Equation 3.1 are all lower bounds,

meaning they have a negative discrepancy relative to reliability (Sijtsma & Van der

Ark, 2015). For Equation 3.2 the situation is less obvious. Method λ6 appears to be

a strict lower bound, but for methods MS and CA in some situations positive bias

cannot be ruled out and more research is needed (Zijlmans, Van der Ark, et al.,

2018) If the item response functions coincide, method MS equals the item-score

reliability (Zijlmans, Van der Ark, et al., 2018); and for method CA particular

choices, not to be outlined here, lead to the conclusion that items must be essen-

tially τ -equivalent (Lord & Novick, 1968, p. 51).

Method MS. Let πi be the marginal proportion of the population obtaining

a score of 1 on item i and πii′ the marginal proportion of the population scoring

a 1 on both item i and an independent replication of item i denoted by i′. For

dichotomous items, Mokken (1971, p. 143) rewrote item reliability in Equation

3.2 as (right-hand side)

ρii′ = 1− πi − πii′
πi(1− πi)

=
πii′ − π2

i

πi(1− πi)
. (3.3)

One estimates proportion πi from the data as the fraction of 1 scores, but for

estimating πii′ one needs an independent replication of the item next to the scores

on the first administration of the same item. Because independent replications

are unavailable in practice, Mokken (1971, pp. 142-147) proposed two methods
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for approximating πii′ by deriving information not only from item i but also from

the next more-difficult item i − 1 (which has the univariate proportion πi−1 < πi

closest to πi), the next easier item i + 1 (which has the univariate proportion

πi+1 > πi closest to πi), or both items. Mokken (1971, pp. 146–147) assumed

that items i − 1 and i + 1 were the two items from the test that were the most

similar to item i, and thus were the most likely candidates to serve as approximate

replications of item i. To gain more similarity, he also required that the items

in the test were consistent with the double monotonicity model, which assumes a

unidimensional latent variable θ, local independence of the item scores conditional

on θ, and monotone nondecreasing and nonintersecting item response functions.

Estimating πii′ uses the following principle (also see Sijtsma, 1998).

Let Pi(θ) denote the item response function of item i and let Pi′(θ) be the

item response function of a replication of item i, and notice that by definition

Pi(θ) = Pi′(θ). Furthermore let G(θ) denote the cumulative distribution of the

latent variable θ; then

πii′ =

∫
θ

Pi(θ)Pi′(θ)G(θ). (3.4)

Next, Pi′(θ) in the integrand is replaced by the linear combination

P̃i′(θ) = a+ bPi−1(θ) + cPi+1(θ), a, b and c are constants. (3.5)

We refer to Mokken (1971, pp. 142-147) for the choice of the constants a, b and

c. His Method 1 uses only one neighbor item to item i and his Method 2 uses

both neighbor items. Let π̃ii′ be an approximation to πii′ in Equation 3.3. Inserting

P̃i′(θ) from Equation 3.5 in the integrand of Equation 3.4 and then integrating

yields

π̃ii′ = a+ bπi−1,i + cπi,i+1. (3.6)

Equation 3.6 contains only observable quantities and can be used to approxi-

mate item-score reliability in Equation 3.3 for items that adhere to the double

monotonicity model. Sijtsma and Molenaar (1987) proposed method MS as an

alternative to Mokken’s methods 1 and 2 to obtain statistically better estimates of

test-score reliability, Molenaar and Sijtsma (1988) generalized all three methods

to polytomous items and Meijer et al. (1995) proposed the item-score reliability

version. The method for estimating item-score reliability of polytomous items is

similar to the method for dichotomous items and hence is not discussed here.

Item-score reliability based on method MS for both dichotomous and polytomous

items is denoted ρMS
ii′ and estimated following a procedure discussed by Zijlmans,

Van der Ark, et al. (2018).

Method λ6. Guttman (1945) proposed test-score reliability method λ6, which

33



3

Chapter 3

Zijlmans, Van der Ark, et al. (2018) adapted to the item-score reliability method

denoted by ρλ6ii′ . For this adapted method, the residual error from the multiple

regression of item i on the remaining J − 1 item scores serves as an upper bound

for error variance in the item score; hence, the resulting item-score reliability is

a lower bound for true item reliability. Let σ2
εi

denote the residual error of the

multiple regression of item Xi on the remaining J − 1 item scores. Method λ6 is

defined as

ρλ6ii′ = 1−
σ2
εi

σ2
Xi

. (3.7)

Method CA. Method CA is based on the correction for attenuation (Lord &

Novick, 1968, pp. 69-70; Nunnally & Bernstein, 1994, p. 257; Spearman, 1904).

The method correlates an item score and a test score both allegedly measuring

the same attribute (Wanous & Reichers, 1996). The item score can be obtained

from the same test on which the test score was based, but the test score may also

refer to another test measuring the same attribute as the item. The idea is that

by correlating two variables that measure the same attribute or nearly the same

attribute, one approximates parallel measures; see Equation 3.2. Let ρCAii′ be the

item-score reliability estimate based on method CA. Let ρXiRi be the correlation

between the item score and the sum score based on the other items in the test,

also known as the rest score and defined as Ri = X −Xi. Let αRi be the reliability

of the rest score, estimated by reliability lower bound coefficient α (e.g. Cronbach,

1951). Method CA estimates the item-score reliability by means of

ρCAii′ =
ρ2XiRi
αRi

. (3.8)

Item Indices Currently Used in Test Construction

Well-known item-quality indices used in test construction are (a) the cor-

rected item-total correlation, (Lord & Novick, 1968, p. 330), (b) the loading of an

item on the factor which it co-defines (Harman, 1976, p. 15), in this study called

the item-factor loading; (c) the item scalability (Mokken, 1971, pp. 148–153); and

(d) the item discrimination (Baker & Kim, 2004, p. 4; Hambleton & Swaminathan,

1985, p. 36). For each of these four indices, rules of thumb are available in the

psychometric literature that the researcher may use to interpret the values found

in empirical data and make decisions about which items to maintain in the test.

Corrected item-total correlation. The corrected item-total correlation is de-

fined as the correlation between the item score Xi and the rest score Ri, and is

denoted ρXiRi. In test construction, the corrected item-total correlation is used

to define the association of the item with the total score on the other items.
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Higher corrected item-total correlations within a test result in a higher coefficient

α (Lord & Novick, 1968, p. 331). Rules of thumb for minimally required values

of corrected item-total correlations are .20, .30 or .40 for maximum-performance

tests (also known as cognitive tests) and higher values for typical-behavior tests

(also known as noncognitive tests; De Groot & Van Naerssen, 1969, pp. 252–253;

Van den Brink & Mellenbergh, 1998, p. 350). The literature does not distinguish

dichotomous and polytomous items for this rule of thumb and is indecisive about

the precise numerical rules of thumb for typical-behavior tests. The corrected

item-total correlation is also used for the estimation of item-score reliability by

means of method CA (see Equation 3.8).

Item-factor loading. To obtain the item-factor loading λi, a one-factor model

can be estimated. Because the data consist of ordered categorical scores (includ-

ing dichotomous scores), polychoric correlations are used to estimate the factor

loadings (Olsson, 1979). Let ξ∗i be a latent continuous variable measuring some

attribute, υi the intercept of item i, η the factor-score random variable, and Ei the

residual-error score for item i. The i-th observation is defined as

ξ∗i = υi + λiη + Ei. (3.9)

We assume a monotone relation between Xi and ξ∗i where thresholds are used

to define the relationship between Xi and ξ∗i . For simplicity, only integer values

are assigned to Xi, see Olsson (1979) for further details. Minimum item-factor

loadings of .3 to .4 are most commonly recommended (Gorsuch, 1983, p. 210;

Nunnally, 1978, pp. 422–423; Tabachnick & Fidell, 2007, p. 649). For this recom-

mendation, no distinction is made between dichotomous and polytomous items.

Item Scalability. The Hi item-scalability coefficient is defined as follows

(Mokken, 1971, p. 148; Sijtsma & Molenaar, 2002, p. 57; Sijtsma & Van der Ark,

2017). Let Covmax(Xi, Ri) be the maximum covariance and ρmax the maximum

correlation between item score Xi and rest score Ri, given the marginal frequen-

cies in the J−1 two-dimensional cross tables for item i and each of the other J−1

items in the test. The Hi coefficient is defined as

Hi =
Cov(Xi, Ri)

Covmax(Xi, Ri)
. (3.10)

Dividing both the numerator and denominator of the ratio in Equation 3.10 by

σRiσXi results in

Hi =
ρRiXi
ρmax
RiXi

. (3.11)

Hence, Hi can be viewed as a normed corrected item-total correlation. The Hi co-

efficient can attain negative and positive values. Its maximum value equals 1 and
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its minimum depends on the distributions of the item scores but is of little interest

in practical test and questionnaire construction. Moreover, in the context of non-

parametric IRT where Hi is used mostly, given the assumptions of nonparametric

IRT models, only nonnegative Hi values are allowed whereas negative values are

in conflict with the nonparametric IRT models. For all practical purposes, Mokken

(1971, p. 184) proposed that item-scalability coefficients should be greater than

some user-specified positive constant c. Items with Hi < c have relatively weak

discrimination and should be removed from the test. Sijtsma and Molenaar (2002,

p. 36) argue that in practice items with Hi values ranging from 0 to 0.3 are not

useful because they contribute little to a reliable person ordering for all types of

items. Henceforth, we call the Hi item-scalability coefficient the item scalability.

Item Discrimination. Many parametric IRT models define an item-discrimination

parameter. For example, the graded response model (Samejima, 1969, 1997) con-

tains discrimination parameter αi (not to be confused with Cronbach’s coefficient

α; see Equation 3.8). In addition, let δix be the location parameter for category

x (x = 1, 2, . . . ,m) of item i. The graded response model is defined as

P (Xi ≥ x | θ) =
exp [αi(θ − δix)]

1 + exp [αi(θ − δix)]
. (3.12)

Equation 3.12 represents the cumulative category response function, and an item

scored 0, . . . ,m has m such functions, for x = 1, . . .m. The discrimination param-

eter αi is related to the steepest slope of the item’s cumulative category response

function. Higher α values indicate that the item better distinguishes people with

respect to latent variable θ. For dichotomous items, Baker (2001, p. 34) proposed

the following heuristic guidelines for discrimination parameters: αi < .35, very

low; 0.35 ≤ αi < 0.65 low; 0.65 ≤ αi < 1.35, moderate; 1.35 ≤ αi < 1.70, high;

and αi ≥ 1.70, very high.

Several authors (e.g., Culpepper, 2013; Gustafsson, 1977; Nicewander, 2018)

proposed reliability in the context of an IRT framework. The relationship of item-

score reliability versions based on these proposals to discrimination parameters in

several IRT models may not be clear-cut or at least rather complex. Lord (1980)

argued that the relationship between item discrimination and IRT-based item-score

reliability is far from simple and differs for most IRT models.

Empirical-Data Sets

We selected 16 empirical-data sets collected by means of different tests and

questionnaires and representing a wide variety of attributes. In each data set,

for each item we estimated item-score reliability by means of each of the three

item-score reliability methods. The two goals were to compare the values of the
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different methods to find differences and similarities, and to derive guidelines

for reasonable values to be expected in the analysis of empirical data. We also

compared the values for the three item-score reliability methods with the corrected

item-total correlation, the item-factor loading, the item scalability, and the item

discrimination. The goal was to investigate whether the item-score reliability and

the other four item indices identified the same items as weak or strong relative to

the other items in a scale.

Five data sets came from tests measuring maximum performance and 11 data

sets came from questionnaires measuring typical behavior. A detailed overview of

the data sets can be found in Table 3.1. Table 3.2 provides a classification of

the tests and questionnaires by maximum performance and typical behavior, and

also by number of items and number of item scores. It was impossible for the

authors to get a hold on a typical data set for each cell in Table 3.2, basically

because several combinations of test properties are rare in practice. For exam-

ple, maximum performance is usually measured using tests containing more than

10 dichotomously scored items, but not by means of shorter tests and rarely by

means of tests containing polytomously scored items or the combination of both

properties. Hence, for the maximum-performance category we were unable to find

data sets with fewer than 10 items or containing polytomous item scores. For the

typical-behavior category, we were unable to obtain dichotomous-item data sets

with fewer than 20 items. Such data sets are expected to be rare in practice, and

because they are rare we did not consider their absence damaging to the conclu-

sions of this study. Tests and questionnaires for which we were able to obtain data

sets differed with respect to number of items, number of answer categories (and

number of item scores), and sample size. The adjective checklist (ACL; Gough

& Heilbrun Jr., 1980) and the HEXACO personality inventory (abbreviated HEX;

Ashton & Lee, 2001, 2007) contained scores from 22 and 24 subscales, respectively.

We considered the ACL and the HEX different data clusters and within each cluster

we analyzed the subscale data separately. The other 14 data sets all referred to a

single scale, and were considered a third data cluster, denoted the various-data

cluster.

Analysis

The three item-score reliability methods and the four accepted item indices

were estimated for each data set. Listwise deletion was used to accommodate

missing values. Within the three data clusters scatter plots were generated for

each combination of the seven item indices, showing the relationship between all

possible pairs of item indices.
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Table 3.2: Overview of the Empirical-Data Sets Arranged by Number of Items and
Number of Item Scores

Maximum performance Typical Behavior

No. of items No. of answer categories No. of answer categories

2 > 2 2 > 2

≤ 10 SAT SES ACL HEX

10 < J < 20 TRA COP SEN DS14 LON

≥ 20 VER BAL IND RAK CRY TMA WIL

Note. See Table 3.1 for the descriptions of the data sets.

The three item-score reliability methods use different approaches, but are

all intended to approximate true item-score reliability in Equation 3.2. Hence,

we were interested to know the degree to which the three methods produced the

same numerical values. Numerical identity was expressed by means of the coeffi-

cient of identity (Zegers & Ten Berge, 1985), which runs from −1 to 1, with higher

positive values meaning that the values of the two indices studied are more alike,

and the value 1 meaning that they are numerically identical. The product-moment

correlation provides identity up to a linear transformation, thus it does not pro-

vide the exact information we were interested in but it was also given because it

is well known and provides approximately, albeit not precisely, the information re-

quired. When assessing the relationship between an item-score reliability method

and each of the other four item indices or among the latter four indices, one needs

to realize that indices in each pair estimate a different parameter. Hence, in con-

sidering the degree to which two different indices suggest item quality is in the

same direction, an ordinal association measure is sufficient. We used Kendall’s

τ to express this association, and even though it was not quite optimal for our

purposes, we provided the product-moment correlation for completeness.

To investigate what values can be expected for the item-score reliability

methods at the cutoff values for the other item indices, we regressed each of the

three item-score reliability methods on each of the four item indices, thus, produc-

ing 12 bivariate regression equations. This enabled us to estimate the item-score

reliability at the cutoff value of the item index (.3 for corrected item-total correla-

tion, .3 for item-factor loading, .3 for item scalability, and .7 for item discrimina-

tion), for every combination of item-score reliability method and item index giving

an indication of what a good cutoff value would be for the values estimated by the

item-score reliability methods.

For estimating the item-score reliability methods, R code (R Core Team,

2016) was used, which was also employed by Zijlmans, Van der Ark, et al. (2018).
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The package lavaan (Rosseel, 2012) was used for estimating the item-factor load-

ings, the package mokken was used for estimating the Hi coefficient (Van der Ark,

2007, 2012), and the package ltm was used for estimating the discrimination pa-

rameters (Rizopoulos, 2006) using the two-parameter logistic model for dichoto-

mous data and the graded response model for polytomous data.

3.3 Results

For method MS, the values of the item-score reliability estimates ranged from

.00 to .70 (mean .29), for method λ6, values ranged from .03 to .81 (mean .34), and

for method CA, values ranged from .00 to .90 (mean .30). For the three data clus-

ters, Figure 3.1 shows the scatter plots for pairs of item-score reliability methods.

The identity coefficient for all pairs of item-score reliability methods exceeded

.9. The plots show more scatter for the various-data cluster. For the ACL and

HEX data clusters, the scatter shows stronger association. In all three data sets,

in many cases method λ6 had higher values than methods MS and CA. Product-

moment correlations between item-score reliability methods were higher than .70

for all combinations and all data clusters. In the HEX data cluster correlations

exceeded .80.

Figure 3.2 shows the scatterplots comparing corrected item-total correlation

with the three item-score reliability methods. Method CA produced positive values

when corrected item-total correlations were negative. The positive values resulted

from squaring the corrected item-total correlation, see Equation 3.8. Kendall’s τ

exceeded .87 for corrected item-total correlation and method CA in all three data

clusters, while the other two item-score reliability methods showed lower values

for Kendall’s τ , with a maximum of .75. Corrected item-total correlations corre-

lated highly with item-score reliability values in the ACL and HEX data clusters,

but lower in the various-data cluster.

Figure 3.3 shows the relationship between the item-factor loadings and the

three item-score reliability methods. Because most of the scatter lies above the

45-degree line, in many cases the item-factor loading was higher than the three

item-score reliability estimates. In the ACL and HEX data clusters, Kendall’s τ was

highest between item-factor loading and method λ6 (> 0.78). In the various-data

cluster, Kendall’s τ was highest, equaling .63, between the item-factor loading and

method CA. In the HEX data cluster, the correlation between item-factor loading

and item-score reliability methods was highest, followed by the ACL data clus-

ter. The various-data cluster showed the lowest correlations between item-factor

loading and item-score reliability methods.

Figure 3.4 shows the relationship between item scalability Hi and the three
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Various Data Sets ACL HEX

Figure 3.1: Scatter plots for the three data clusters, comparing the item-score reliability
estimates for methods MS, λ6, and CA.
Note: id. coeff. = identity coefficient, cor = correlation between two method estimates. See Table 3.1 for a
description of the data sets.
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Various Data Sets ACL HEX

Figure 3.2: Scatter plots for the three data clusters comparing the item-score reliability
methods with the corrected item-total correlation (IR-corr.).
Note: cor = correlation between two method estimates. See Table 3.1 for a description of the data sets.
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Item-Score Reliability in Empirical-Data Sets and Its Relationship With Other Item Indices
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Various Data Sets ACL HEX

Figure 3.3: Scatter plots for the three data clusters comparing the item-score reliability
methods with the item-factor loading (FL).
Note: cor = correlation between two method estimates. See Table 3.1 for a description of the data sets.
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Various Data Sets ACL HEX

Figure 3.4: Scatter plots for the three data clusters comparing the item-score reliability
methods with the Hi-coefficient (Hi-coeff.).
Note: cor = correlation between two method estimates. See Table 3.1 for a description of the data sets.

item-score reliability methods. Negative Hi values corresponded with positive

CA values, resulting in scatter similar to Figure 3.2. In the various-data cluster,

Kendall’s τ was lower and the scatter showed more spread than in the ACL and

HEX data clusters, where Kendall’s τ showed higher values in excess of 0.63. In

the various-data cluster, correlations between Hi values and the three reliability

methods were relatively low, ranging from .46 to .66. In the ACL and HEX data

clusters correlations were higher, ranging from .78 to .94.
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Item-Score Reliability in Empirical-Data Sets and Its Relationship With Other Item Indices

Table 3.3: Estimates of the Three Item-Score Reliability Methods by the Four Other
Item Indices using a Bivariate Regression Analysis

Method MS Method λ6 Method CA

Corrected item-total correlation 0.20 0.24 0.17

Item-factor loading 0.18 0.20 0.15

Hi-coefficient 0.28 0.33 0.28

Item discrimination 0.22 0.25 0.20

Figure 3.5 shows the relationship between item discrimination and the three

item-score reliability methods. A discrimination value equal to 10.77 in data set

RAK was assessed to be an outlier and was removed from the scatter plot. The

next largest discrimination value in this data cluster was 5.7 and the mean esti-

mated discrimination was 1.5. Kendall’s τ between discrimination and CA values

was highest for the ACL and HEX data clusters. Kendall’s τ between item dis-

crimination and MS values was lowest, with values of .53, .51 and .59 for the

various-data cluster, the ACL data cluster, and the HEX data cluster, respectively.

The correlation between item discrimination and item-score reliability was lower

in the various-data cluster than in the ACL and HEX data clusters. In the various-

data cluster, correlations ranged from .49 to .60, and in the ACL and HEX data

clusters correlations ranged from .67 to .90.

Figure 3.6 shows the relationship between corrected item-total correlation,

item-factor loading, item scalability, and item discrimination. Kendall’s τ was high-

est between item discrimination and item-factor loading in the ACL and HEX data

clusters. In these data clusters, correlations were high for the four accepted item

indices. Corrected item-total correlation and item-factor loading correlated higher

than .9 in all three clusters. In the ACL and HEX data clusters, corrected item-total

correlation and item scalability also correlated higher than .9.

Table 3.3 provides the results for the bivariate regression estimating the three

item-score reliability coefficients by the cutoff values of four other item indices.

The item-factor loading estimated the lowest item-score reliability values: .18 for

method MS, .20 for method λ6, and .15 for method CA. TheHi coefficient estimated

the highest item-score reliability values: .28 for method MS, .33 for method λ6, and

.28 for method CA.

3.4 Discussion

We estimated item-score reliability methods MS, λ6, and CA in various empirical-

data sets, and investigated which values the researcher may expect to find in his
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Figure 3.5: Scatter plots for the three data clusters comparing the item-score reliability
methods with the discrimination parameter (DiscrPar).
Note: cor = correlation between two method estimates. See Table 3.1 for a description of the data sets.

46



3

Item-Score Reliability in Empirical-Data Sets and Its Relationship With Other Item Indices

●●●

●
●

●●●
●

●
●

●
●●

●
●

●●
●

●
●

●

●

●

●
●

●●

●
●

●●

●●●●●

●

●

●

●

●

●
●

●

●
●

●
●●●●

●●

●

●●

●
●●

●●
●●●

●
●

●
●●
●

●
●●●

●●
●●●

●

●

●

●●●●●
●

●
● ●●

●●

●

●

●

●

●●●
●

●

●

●●●

●
●

●

●●●

●

●
●
●

●

●●●

●●
●●●
●

●
●●
●●

●●●

●

●● ●●
●●●●●●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●●

●●

●
●

●

●●●

●

●●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●●

●●

●

●

●
●●

●●
●

●

●

●

●●
●

●
●

●

●●

●
●

●

●
●

●

●

●
●●

●●

●
●
●●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●

●●●

●

●
●

●●
●● ●

●
●●
●
●●●
●

●●

●●●

●

●●●

●
●

●●

●

●●

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

IR − corr.

F
L

IR−corr.−FL: Kendall's τ = 0.64
(cor. = 0.89)

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●●
●●

●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●●

●●●

●

●

●

●

●

●●

●

●
●●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●●

●

●
●●

●
●

●

●●

●

●

●●

●

●
●

●●

●●
●
●

●●●●
●

●

●
●
●

●●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●
●

● ●●

●●

●

●
●

●

●●

●
●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●●

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

IR − corr.

F
L

IR−corr.−FL: Kendall's τ = 0.72
(cor. = 0.88)

●
●●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●
●●●

●
●

●
●

●

●
●●

●
●●

●
●

●

●●

●
●

●
●

●

●

●
●●

●●

●

●

●● ●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●
● ●●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●
●●●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●●●●

●●

●

●●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●
●

●
●●

●●

●

●
●

●●

●●●

● ●
●●

●

●●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

IR − corr.

F
L

IR−corr.−FL: Kendall's τ = 0.80
(cor. = 0.94)

●
●● ● ●●●●●

●●

●
●●

●
●

●●●●
●

●

●

●

●
●

●●

●●●
● ●●●●●

●
●

●●

●

●
●

●

●●

●●●●●

●●

●
●●

● ●●
●●

●●●
● ●

●

●

●
●

●
●●●

●
●

●●●

●

●

●
●●●●●

●
●

●
●●

●
●

●

●
●

●

●●●
●

●
●●●●●●

●

●
●●

●
●

●
● ●

●●●●

●

●
●
●

●

●
●●
●● ●●
●

●

●●
●●
●
●

●●●●
●

●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●●

●
●

●

●
●●

●

●
●

●

●●
●

●●●●

●

●

●

●

●●

●

●

●
●
●

●

●
●●●●●●●●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●●●

●

●

●
●

●
●

●
●

●
●●

●
●

●

●
●

●
●

●

●

●●●
●●

●●
●

●

●
●

●
●

●

●
●
●

● ●

●

●

●●

●

●
●●

●●

●●●●
●●

●

●

●
●

●

●●
●

●

●●

●●
●

●
●●

●

●●●
●

●●

●
●●●●●

●●●●●

●●
●

●

●●●

●
●

●●

●

●●

−0.5 0.0 0.5 1.0

−
0.

2
0.

2
0.

6
1.

0

IR − corr.

H
i−

co
ef

f.

IR−corr.−Hi−coeff.: Kendall's τ = 0.61
(cor. = 0.77)

●
●●

●

●

●
●

●●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●●

●●
●

●●
●●

●
●●

●
●●●

●

●

●

●●

●
●

●●●●

●

●

●
●

●●
●

●●●
●●

●●

●
●

●

●●●

●●●

●●
●

●
●

●

●●

●●●

●

●●
●

●
●●●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●●●

●
●

●●●

●

●
●

●●
●

●

●
●

●

●

●●

●

●
●

●
●●

●●●
●●●●●

●

●●●
●●●

●
●

●●

●●
●●

●●●●

● ●
●

●●
●

●●●●

●

●
●

●

●●●●●

●

●●●

●●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●●●
●

●●●

−0.5 0.0 0.5 1.0

−
0.

2
0.

2
0.

6
1.

0

IR − corr.

H
i−

co
ef

f.

IR−corr.−Hi−coeff.: Kendall's τ = 0.85
(cor. = 0.97)

●
●●●

●

●

●
●

●

●

●

●●

●

●
●

●●

●●

●
●

●●
●

●

●
●●

●
●●●●

●

●

●●●●

●
●

●
●

●
●

●
●

●
●

●
●●

●

●●

●
●

●
●

●

●
●

●●

●●

●

●

●●
●●

●●
●●●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●●●

●

●
●

●●
●

●●
●

●
●●

●

●

●

●

●●

●
●●

●

●
●

●

●
●

●●●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●●●●

●●

●

●●●
●●

●

● ●

●●
●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
● ●●●

●
●●

●●●

●
●

●●

●●●

●
●

●●
●

●●

●●

●
●●

●
●

●
●

●
●

●●
●

●
●●

●●

●

●

●
●●●

●
●

●
●

●
●

●●
●

●
●

●

−0.5 0.0 0.5 1.0

−
0.

2
0.

2
0.

6
1.

0

IR − corr.

H
i−

co
ef

f.

IR−corr.−Hi−coeff.: Kendall's τ = 0.83
(cor. = 0.95)

●●●
●

●●●●●
●●

●
●●

●
●

●●●●
●

●

●

●
●

●

●●

●●
●●

●●
●
●●

●●
●●

●

●

●

●

●●

●

●

●●
●

●●
●

●●

●
●
●

●●
●●●●

●

●
●

●
●

●

●●●

●
●

●
●●

●

●
● ●●●●●

●
●● ●●●●

●

●
●

●

●●●●
●

●
●●●

●
●

●

●●●
●

● ●●
●

●●●

●●

●
●●

●

●
●●●●

●●
●

●

●●
●●
●
●

●●●●
●

●

●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●
●

●

●
●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●
●

●
●●

●
●●

●●

●
●

●

●

●●
●

●

●
●

●

●●
●●

●

●

●
●●●
●

●
●

●●
● ●

●

●●
●

●
● ●●

●●
●●●●

●●

●

●

●
●

●

●●
●

●

●●
●●

●
●●●

●

●
●

●
●

●● ●
●●●●●●
●
●

●● ●
●

●

●
●●
●

●
●

●●

●

●
●

−0.5 0.0 0.5 1.0

−
2

0
2

4
6

IR − corr.

D
is

cr
P

ar

IR−corr.−DiscrPar: Kendall's τ = 0.58
(cor. = 0.72)

●
●

●
●

●

●
●

●

●

●

●
● ●●

●

●●
●

●
●

●

●

●
●

●
●

●●

●●

●●
●

●●
●●

●
●●

●●

●
●

●

●

●
●●

●

●
●●●●

●
●

●
●

●

●

●

●
●
●

●
● ●

●

●
●

●

●
●

●

●

●●

●●
● ●

●● ●
●

●

●

●
●●●

●
●

●●●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●●

●
●

●

●
●

●●●

●

●●●●
●

●
●●

●

●

●
●

●
●●

●●●
●●●

●●●
●●

●

●
●●

●●●

●
●

●
●

●●

●
●●

●
●

●

●
●

●●●
●

●
●

●●

●

●
●

●

●●
●●●

●

●
●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●
●

●●●

−0.5 0.0 0.5 1.0

−
2

0
2

4
6

IR − corr.

D
is

cr
P

ar

IR−corr.−DiscrPar: Kendall's τ = 0.76
(cor. = 0.85)

●
●●

●

●

●

●
●●

●

●

●●

●

●●

●
●

●●
●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●
●●

●
●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●●

●

●

●
●●

●●

●

●

●●
●●

●●
●●●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●
●

●
●

●

●

●

●
●●●

●
●

●

●
●

●

●

●

●

●

●●
●●●

●

●
●

●

●

●

●●●●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●●●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●
● ●

●●●●

●

● ●●●

●
●
●

● ●●●

●

●●

●●

●

●●

● ●●
●

●

●

●
●

●

●

●●

●●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

−0.5 0.0 0.5 1.0

−
2

0
2

4
6

IR − corr.

D
is

cr
P

ar

IR−corr.−DiscrPar: Kendall's τ = 0.77
(cor. = 0.86)

Various Data Sets ACL HEX

Figure 3.6: Scatter plots for three data clusters comparing corrected item-total correla-
tion, item-factor loading, the Hi coefficient, and the discrimination parameter. See Table
3.1 for description of data sets.
Note: cor = correlation between two method estimates.
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Various Data Sets ACL HEX

Figure 3.6, continued: Scatter plots for three data clusters comparing corrected item-
total correlation, item-factor loading, theHi coefficient, and the discrimination parameter.
See Table 3.1 for description of data sets.
Note: cor = correlation between two method estimates.
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empirical-data set. The identity-coefficient values between the three item-score

reliability methods were all higher than .9. The product-moment correlations

between the three item-score reliability methods yielded values in excess of .7.

Identity values in excess of .9 suggest that the uniformed versions of the three

item-score reliability methods yielded nearly identical values, suggesting a high

degree of interchangeability of methods for item selection. We conclude that in

practice the three item-score reliability methods can be used interchangeably. The

three item-score reliability methods have the same computing time, but methods

λ6 and CA are much simpler to program.

The relationships between the three item-score reliability methods and the

four accepted item indices showed there is a strong association between the cor-

rected item-total correlation and the item-score reliability methods, especially

method CA. This result can be explained by the relation between method CA and

the corrected item-total correlation (Equation 3.8). The other associations be-

tween the item-score reliability methods and the other item indices are weaker.

For the other four item indices, the researcher can use available rules of thumb

to decide when an item is a candidate for revision or for elimination from a test.

Based on investigating a polytomous single-item measure with five response cate-

gories, Wanous et al. (1997) suggested using a lower bound of .7 for the item-score

reliability. Given the values that were obtained for the items in the empirical-data

sets we selected, and given the results from the bivariate linear regression, we

conjecture that this requirement may be too stringent in practice: Instead, a value

of .3 would be a realistic lower bound for item-score reliability.

We found that λ6 values often exceeded MS and CA values. In a simula-

tion study, Zijlmans, Van der Ark, et al. (2018) found that for many conditions in

the experimental design, method λ6 underestimated the true item-score reliability

whereas methods MS and CA were almost unbiased, which seems to contradict

the results of the present study. An explanation may be that our data sets do not

fit in any of the experimental conditions Zijlmans, Van der Ark, et al. (2018) in-

vestigated, making a comparison between the two studies awkward. Our data sets

were multidimensional, with relatively large numbers of items that had a consid-

erable variation in discrimination. Zijlmans, Van der Ark, et al. (2018) studied the

factors dimensionality, variation in discrimination within a test, and test length

separately, and found that for the multidimensional data, for unequal discrimina-

tion, and for many items, the differences between methods MS, λ6, and CA were

either absent or less clear than in other experimental conditions. Hence, a combi-

nation of these factors may have caused the relatively high λ6 values in the present

study. In future research, these conditions, which are realistic for most data sets,

should be studied further in a fully crossed simulation design.
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Chapter 3

Values we found for accepted item indices in empirical data could serve as a

starting point for a simulation study that further investigates the relationship be-

tween item-score reliability and accepted item indices. Furthermore, little knowl-

edge about the relation between item-score reliability and test-score reliability is

available, rendering the investigation of this relationship urgent. Also, the effect of

omitting items with low item-score reliability on the total-score reliability should

be investigated.
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Chapter 4

Investigating the Relationship between Item-Score

Reliability, its Estimation Methods, and Other Item

Indices

Abstract

Reliability is usually estimated for a test score, but it can also be estimated for item scores.
A higher item-score reliability (denoted ρii′) indicates a higher degree of repeatability of the item
score and is therefore important when evaluating the quality of an item. Based on earlier research,
in the current study three methods were further investigated for estimating item-score reliability:
method MS, Guttman’s method λ6, and the correction for attenuation (method CA). The goal of
the research was to further investigate, under various conditions (1) the relationship between
ρii′ and the three item-score reliability methods, (2) the relationship between ρii′ and four other
item indices, and (3) the feasability of a lower bound for item-score reliability estimates of .3. This
was done by means of a simulation study where the item’s difficulty parameter, variance of the
other items’ location parameters, and number of items in the test are varied. All methods showed
increasing bias for higher values of ρii′ . Method CA showed good results for items with a non-
deviant location parameter. There seems to be a one-to-one relationship between the item-factor
loading and ρii′ . A lower bound of .3 seems to be too stringent in practice.

Keywords: coefficient λ6, corrected item total-correlation, correction for attenuation, item
discrimination, item-factor loading, item scalability, item-score reliability

This chapter has been submitted for publication as Zijlmans, E. A. O., Tijmstra, J., Van der Ark,

L. A., and Sijtsma, K. (2018). Investigating the Relationship between Item-Score Reliability, its

Estimation Methods, and Other Item Indices.
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Chapter 4

4.1 Introduction

This article investigates the relationship between item-score reliability, meth-

ods to approximate item-score reliability, and four other item-level indices. Item-

score reliability expresses the repeatability of an individual item score. A higher

item-score reliability indicates a higher degree of repeatability of the item score

and is therefore important when evaluating the quality of an item. Just as test-

score reliability is important for evaluating the quality of a test, item-score relia-

bilty is important for evaluating the quality of an item. Reliability for individual

item scores is used in applied psychology to assess one-item measures for job sat-

isfaction (Gonzalez-Mulé et al., 2017; Harter et al., 2002; Nagy, 2002; Robertson

& Kee, 2017; Saari & Judge, 2004; Zapf et al., 1999) and burnout level (Dolan

et al., 2014). Item-score reliability is also used in health research for measuring,

for example, quality of life (Stewart et al., 1988; Yohannes et al., 2010) and psy-

chosocial stress (Littman et al., 2006), and one-item measures have been assessed

in marketing research for measuring ad and brand attitude (Bergkvist & Rossiter,

2007).

Items with a low item-score reliability might not contribute much to the test-

score reliability, and could therefore be candidates for revision or for elimination

from the test. Item-score reliability is denoted ρii′ and defined similarly to the

test-score reliability as the correlation between two independent replications of

the same item in the same group of people (Lord & Novick, 1968, pp. 47–50, 61).

These replications are unavailable in practice, because respondents answering the

same item a second time will remember what they answered the first time, and

this will influence their answer on the second occasion. Therefore, item-score

reliability has to be estimated from the data collected in one test administration.

Zijlmans, Van der Ark, et al. (2018) identified three promising methods to

estimate item-score reliability: method MS, method λ6, and method CA. Each

of these three methods attempts to approximate the item-score reliability based

on data from a single test-administration. As will be elaborated in the method

section, these different methods make use of different assumptions and thus can

result in different estimates of the item-score reliability ρii′. Zijlmans, Van der Ark,

et al. (2018) investigated the three methods under realistic simulation conditions,

and found that generally all three methods underestimated item-score reliability.

However, in these conditions, parameter ρii′ was not manipulated, meaning that

the relationship between item-score reliability and the item-score reliability meth-

ods was not systematically investigated for a wide range of values for ρii′.

In a second study, Zijlmans, Tijmstra, et al. (2018b) investigated which es-

timates can be expected of the three item-score reliability methods in empirical-

52



4

Investigating the Relationship between Item-Score Reliability, its Estimation Methods, and Other Item Indices

data sets, and what the observed relationship is between the three methods and

four more commonly used item indices: corrected item total-correlation, item-

factor loading, item scalability, and item discrimination. The relationship between

ρii′ and the four other item indices was not investigated, because ρii′ was unknown

for the empirical-data sets. Based on the reliability estimates based on methods

MS, λ6, and CA found in empirical-data sets and cutoff scores for the four other

item indices described in the literature, Zijlmans, Tijmstra, et al. (2018b) tenta-

tively proposed a lower bound of .3 for the three item-score reliability methods.

However, the authors did not investigate the values of ρii′ one may expect when

a cutoff score of .3 is used for the item-score reliability methods. Also, it was not

investigated which values the item-score reliability methods estimate at ρii′ = .3.

Therefore, we investigated whether the cutoff score of .3 for the three methods

indicates a sufficiently high item-score reliability for practical use of the item.

In this study, three research questions were investigated: (1) What is the

relationship between ρii′ and the three item-score reliability methods MS, λ6, and

CA under various testing conditions and for a range of ρii′ values? (2) What is the

relationship between ρii′ and the four item indices under various testing conditions

and for a range of ρii′ values? (3) When following the suggested lower bound of .3

for methods MS, λ6, and CA, what are corresponding ρii′ values? Also, if ρii′ = .3,

what are the values of the methods MS, λ6, and CA?

This article is organized as follows. First, we discuss item-score reliability,

methods MS, λ6, and CA to estimate item-score reliability, and corrected item total-

correlation, item-factor loading, item scalability, and item discrimination. Second,

we discuss the various testing conditions for which the data were generated, and

we explain the data-generating process. Third, we discuss the results and their

implications for estimating item-score reliability.

4.2 Method

Reliability and Item-Score Reliability Methods

The following definitions (Lord & Novick, 1968, p. 61) were used. Let Xi be

the item score indexed i (i = 1 . . . , J), and let X be the test score, defined as the

sum of the J item scores; that is, X =
J∑
i=1

Xi. Item-score reliability ρii′ is defined

as the correlation between two replications of item score Xi, and can be shown to

equal the proportion of observed-score variance (σ2
Xi

) that is true-score variance

(σ2
Ti

) or, equivalently, one minus the proportion of observed item-score variance

that is error variance (σ2
Ei

); that is,
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ρii′ =
σ2
Ti

σ2
Xi

= 1−
σ2
Ei

σ2
Xi

. (4.1)

Three methods to approximate item-score reliability were investigated: method

MS, method λ6, and method CA. These methods are briefly discussed here; see

Zijlmans, Van der Ark, et al. (2018) for details. Next to the three item-score re-

liability methods, four item indices are briefly discussed: corrected item total-

correlation, item-factor loading, item scalability, and item discrimination.

Method MS is based on the Molenaar-Sijtsma reliability method (Sijtsma &

Molenaar, 1987) which estimates test-score reliability. The method relies on the

double monotonicity model for dichotomous items (Mokken, 1971), which as-

sumes a unidimensional latent variable θ, local independence of the item scores

conditional on θ, and monotone nondecreasing and nonintersecting item-response

functions. Because independent replications of item scores are unavailable in prac-

tical research, Mokken (1971, pp. 142-147) proposed two methods for approxi-

mating independent replications by deriving information not only from item i but

also from the next more-difficult item i − 1, the next-easier item i + 1, or both

items. He assumed that, because they were adjacent to item i, items i−1 and i+1

were the two items from the test that were the most similar to item i, and thus

were the most likely candidates to serve as approximate replications of item i. In

this study, we denote the item-score reliability based on method MS by ρMS
ii′ , and

estimate ρMS
ii′ using the method outlined in Van der Ark (2010).

Zijlmans, Van der Ark, et al. (2018) adapted test-score reliability method

λ6 from Guttman (1945) to the item-score reliability method ρλ6ii′ . This adapted

method estimates item-score reliability by subtracting the ratio of the residual

error from the multiple regression of item i on the remaining J − 1 item scores,

denoted σ2
εi

, and the item variance from unity. Method λ6 estimates item-score

reliability by means of

ρλ6ii′ = 1−
σ2
εi

σ2
Xi

. (4.2)

Method CA is based on the correction for attenuation (Lord & Novick, 1968,

pp. 69-70; Nunnally & Bernstein, 1994, p. 257; Spearman, 1904). The method

correlates an item score and a test score both assumed to measure the same at-

tribute (Wanous & Reichers, 1996). The item score can be obtained from the same

test on which the test score was based, but the test score may also refer to another

test allegedly measuring the same attribute as the item. Let ρCAii′ be the item-score

reliability estimate based on method CA. Let ρXiR(i)
be the correlation between the

item score and the sum score based on the other J−1 items in the test, also known

as the rest score and defined as R(i) = X−Xi. Let αR(i)
be the reliability of the rest

score, estimated by reliability lower bound coefficient α (e.g., Cronbach, 1951).
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Method CA is defined as

ρCAii′ =
ρ2XiR(i)

αR(i)

. (4.3)

Other Item Indices

Well-known item-functioning indices used in test construction are (1) the

corrected item total-correlation (Lord & Novick, 1968, p. 330), (2) the loading

of an item on the factor which it co-defines (Harman, 1976, p. 15), in this study

called the item-factor loading; (3) the item scalability (Mokken, 1971, pp. 148-

153); and (4) the item discrimination (Baker & Kim, 2004, p. 4; Hambleton &

Swaminathan, 1985, p. 36). The four item indices are discussed briefly.

The corrected item total-correlation is defined as the correlation between

item score Xi and rest score R(i), and is denoted ρXiR(i)
. In test construction, the

corrected item total-correlation is used to capture the association of the item with

the other items. Higher corrected item total-correlations in a test result in a higher

value of coefficient α (Lord & Novick, 1968, p. 331).

To obtain the item-factor loading λi, a one-factor model can be estimated.

Let υi be the intercept of item i, η the factor-score random variable, and Ei the

residual-error score for item i. The i-th item score is defined as

Xi = υi + λiη + Ei. (4.4)

When the data consist of ordered categorical scores, polychoric correlations are

used to estimate the item-factor loading; see Olsson (1979) for further details.

TheHi item-scalability coefficient is defined as follows (Mokken, 1971; Sijtsma

& Molenaar, 2002, p. 57; Sijtsma & Van der Ark, 2017). Let Covmax(Xi, Ri) be

the maximum possible covariance between item score Xi and rest score Ri, given

the marginal frequencies in the J − 1 cross tables for item i and each of the other

J − 1 items in the test. The Hi coefficient is defined as

Hi =
Cov(Xi, Ri)

Covmax(Xi, Ri)
. (4.5)

The Hi coefficient can attain negative and positive values with a maximum equal

to 1. The minimum Hi value is negative and depends on the distributions of

the item scores, but is of little interest in practical test and questionnaire con-

struction. Moreover, in the context of nonparametric IRT where Hi is used, given

the assumptions of nonparametric IRT models only nonnegative Hi values are al-

lowed whereas negative values are in conflict with the nonparametric IRT models.

Henceforth, we call the Hi item-scalability coefficient the item scalability.
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Many parametric IRT models define an item-discrimination parameter. For

example, the two-parameter logistic model (Birnbaum, 1968) contains discrimi-

nation parameter ai. In addition, let bi be the location parameter of item i. The

two-parameter logistic model is defined as

P (Xi = 1 | θ) =
exp [ai(θ − bi)]

1 + exp [ai(θ − bi)]
. (4.6)

The discrimination parameter ai is associated with the steepest slope of the item

response function, located at bi. Higher ai values indicate that the item better

distinguishes people with respect to latent variable θ relative to bi.

Simulation Study

We investigated whether the following three item and test characteristics

influence the relationship between ρii′ on the one hand, and the three item-score

reliability methods and the four item indices on the other hand: (1) the difficulty

of item i, (2) the variance of the discrimination parameters of the J − 1 items in

the test other than the item of interest, and (3) the test length. Item difficulty was

considered, because the bias of the item-score reliability methods with respect to

ρii′ may be influenced by the location of the item, dependent on its location with

respect to the other items in the test. Because all methods use the other items

in the test to approximate ρii′, the item’s location relevant to the other items’

locations may influence the estimation. Variance of the discrimination parameters

of the items in the test other than the item of interest may play a role for method

MS, because in logistic models that we use for generating item scores non-zero

variance violates the assumption of nonintersecting item response functions. We

expect this violation to influence the estimation of the independent replication

method MS tries to approximate. Test length can be expected to influence the

relationship between methods λ6 and CA on the one hand and ρii′ on the other

hand, because methods λ6 and CA use all J − 1 items other than the item of

interest to estimate ρλ6ii′ and ρCAii′ , respectively.

For each of the three design factors two levels were considered: item diffi-

culty of either 0 or 1.5 for the item of interest; equal or unequal discrimination

parameters for the items in the test; 5 or 25 items other than the item of interest.

This resulted in a 2× 2× 2 full-factorial design.

For each condition, for a specific value of ρii′, we investigated the estimated

values of methods MS, λ6, and CA, and corrected item total-correlation, item-

factor loading, item scalability, and item discrimination. To cover the full range

of realistic ρii′ values, 41 different values of ρii′ were used to generate data (ρii′ =

0, 0.02, . . . , 0.80), while keeping all other item and test characteristics fixed. This
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way, the relationship between ρii′ , the three item-score reliability methods and the

four item-functioning indices could be investigated for each of the eight conditions

separately. We used the two-parameter logistic model (Equation 4.6) to generate

for all J items data.

For the items in the test other than the item of interest, the following pa-

rameter values were used: bi = −1,−0.5, 0, 0.5, 1 and ai = 1 for the equal-

discrimination condition and ai = 1.5, .5, 1.5, .5, 1.5 for the unequal-discrimination

condition. For the long-test condition (J = 25), five copies of the item sets includ-

ing these parameters were used.

We generated data based on a specific value of ρii′ for the item of interest.

Because generating item scores based on ρii′ is infeasible, we had to find values

for the parameters in Equation 4.6 that would result in the desired value of ρii′.

We chose a standard normal distribution for θ and a starting value for ai. For

ρii′ = 0, we used ai = 0 and after trying different values, we chose ai = .18 as a

starting value for the next item-score reliability value, ρii′ = .02. The value for bi
was either 0 or 1.5, depending on the simulation condition. Using these parameter

values, the following procedure was followed: Step (1) We generated two sets of

data, each having a sample size of one million data records, and calculated the

population item-score reliability as the correlation between the scores for item i

in the two datasets, denoted rii′. Step (2) The value of rii′ resulting from Step

1 was compared to the desired value for ρii′. If the desired value was too low,

we increased ai with .05 and repeated Step 1. If the rii′ value was equal to the

desired value of ρii′ up to the third decimal place, the procedure continued to Step

3. Step (3) The value of ai resulting in the desired value of ρii′ was saved and

the procedure re-started at Step 1 for the next value of ρii′. This way, the relevant

values for ai were determined for each value of ρii′ in both the condition where

bi = 0 and where bi = 1.5. Using the saved values for ai in Step 3, the item scores

for the item of interest were generated.

For each of the eight conditions and for each of the 41 values of ρii′, once they

were determined, 1000 datasets of size N = 1000 each were generated by drawing

θs from a standard normal distribution. For each design cell, the mean value of

each of the seven item indices was determined across 1000 replicated datasets.

4.3 Results

For the eight different conditions, for each ρii′ value, Figure 4.1 shows the

mean of 1000 replications for the item-score reliability methods MS, λ6, and CA.

The 45-degree solid line indicates unbiased estimation, and deviation from the 45-

degree solid line indicates bias of the item-score reliability method with respect to
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ρii′. Next, we discuss the results for each of the seven methods separately.

Method MS. When ρii′ = 0, method MS also equaled 0, but when 0 < ρii′ <

.2, method MS exceeded ρii′. As of ρii′ ≈ .15 (lower bundle of 5 curves: 4 items

having equal as, 1 unequal as; call “equal as” or ae) and ρii′ ≈ .25 (upper bundle:

3 items having unequal as; call “unequal” as or au) until ρii′ = .8, method MS

values leveled off quickly until .32 (equal as) and .42 (unequal as). Thus, between

roughly ρii′ = .2 and ρii′ = .8, underestimation by method MS increased from 0

to approximately .4. This result renders method MS a weak estimator of ρii′ , but

most important, the user can have confidence that MS values above the desired

threshold for ρii′ indicate sufficient reliability, even if they are underestimates. If

sufficient reliability is arbitrarily chosen to be ρii′ = .3, then for items having

equal as, the results showed that in the conditions in this study MS values should

be at least .23, and for items having unequal as, MS values should be at least

.28. These MS values are approximations. The result that for somewhat higher

ρii′ values, MS values soon begin to grossly underestimate reliability, and do this

at an increasing rate dependent on the discrimination pattern of the items, ren-

ders the use of method MS problematic but not unfeasible. Because of the gross

ρii′ underestimation together with people’s tendency to focus on high reliability

values, if one wants to avoid the risk of deleting items that have sufficiently high

reliability insufficiently shown by their MS values, an MS cutoff value equal to,

say, .25, may be adequate for practical use. Thus, ρMS
ii′ ≥ .25 indicates sufficiently

high item-score reliability.

Method λ6. The graph for method λ6 shows three bundles of curves, and

upon closer inspection, the middle bundle consists of two bundles each containing

a pair of curves where one bundle crosses the other. The two middle bundles are

characterized by “unequal as” (gradually sloped curves) and “average bi & short

test” (steeply sloped curves), and together they constitute a picture comparable

albeit not identical to the graph for method MS. The lower bundle is characterized

by “high bi & short test” (relatively flat curves) and the upper bundle by “average

bi & long test” (steeper curves). The latter two lower and upper bundles are

different from the method MS graph, and together the constellation of bundles

renders the results difficult to interpret. Unlike the results for method MS, the

results for method λ6 provide underestimates for almost all ρii′ values including

the lowest ρii′ values, and similarly to method MS, method λ6 estimates level

off as ρii′ increases but variation of negative bias is much greater across design

conditions than with method MS. An additional simulation study, not reported

here in detail, showed that the overestimation by method λ6 for lower values

of ρii′ in the long-test conditions disappears when the data consist of continuous

instead of discrete item scores. Given item and test properties, a useful cutoff value

58



4

Investigating the Relationship between Item-Score Reliability, its Estimation Methods, and Other Item Indices

for method λ6 could be .2. However, this does not hold for items in a short test that

have a bi parameter that is an outlier with respect to the other bi values in the test.

In these conditions, method λ6 did not differentiate sufficiently between different

levels of ρii′ and showed low values along the entire range of ρii′ values. For items

where the difficulty is close to the mean of the other items’ difficulties and that are

in a long test, the results showed that method λ6 approximates ρii′ quite well.

Method CA. Considering the bundles of the curves, results for method CA look

like results for method λ6 with the middle bundles left out. The lower bundle con-

sists of the four “high bi” conditions, where the item’s location parameter is located

1.5 standard deviation from the middle of the θ distribution. Because method CA

has the squared corrected item-total correlation in the numerator, and because for

the “high bi” conditions the item scores are skew relative to the rest-score distri-

bution, corrected item-total correlations are suppressed (Nunnally, 1978, p. 145),

which also suppresses method CA values. Hence, the gross underestimation of

ρii′ for “high bi”. The upper bundle consists of the four “average bi” conditions,

and given the item’s location relative to the θ distribution, correlations are not

suppressed, and method CA gives good estimates. The results for method CA

showed that a cutoff value of .3 can be used for “average bi” conditions, but for

“high bi” conditions, method CA provides results that are hardly useful.

To summarize, all three item-score reliability methods showed increasing

negative bias as ρii′ increased. This indicates that in many cases, methods MS, λ6,

and CA understimate the population item-score reliability. At ρii′ = .3, method

MS estimated values between .25 and .30. The highest MS values for ρii′ = .8

were approximately .4. Method λ6 values at ρii′ = .3 ranged from .10 to .28. For

ρii′ = .8, the highest values were approximately .58. Method CA values at ρii′ = .3

ranged from .2 to .3, but for items with “high bi”, a CA value as high as .3 was never

estimated. For items with “average bi”, the highest CA values equaled .65. These

results suggest that for values from ρii′ = .3 onwards all methods underestimate

ρii′ which means that the lower bound of .3 suggested by Zijlmans, Tijmstra, et al.

(2018b) might be too stringent in practice.

For the eight different conditions and for a range of ρii′ values, Figure 4.2

shows the mean of 1000 replications for each of the four item-functioning indices.

The horizontal line shows the cut-off value for each index, suggested in the liter-

ature, and indicating a sufficient level for that item-functioning index in terms of

item quality.

Corrected item total-correlation. The relationship between ρii′ and the cor-

rected item total-correlation was characterized by two different patterns. One

pattern consisted of conditions referring to “average bi” and the other pattern con-

sisted of conditions referring to “high bi”. As ρii′ increased, the corrected item
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Figure 4.1: Mean bias of the three item-score reliability methods in the eight different
conditions. The 45-degree solid line indicates no bias.
Note: b0 = bi = 0, b1.5 = bi = 1.5, ae = equal discrimination parameters, au = unequal discrimination
parameters, J5 = 5 other items in the test, J25 = 25 other items in the test. A combination of these codes
corresponds to a design cell.
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total-correlation increased, but from ρii′ = .2 onwards, for “high bi” the esti-

mated corrected item total-correlations stabilized at approximately .33. For “av-

erage bi”, the corrected item total-correlation further increased for higher values

of ρii′. Compared to shorter tests, for the longer tests with “average bi”, higher

values were estimated for the corrected item total-correlation. The same result

was found for the conditions referring to ”average bi”. Varying a parameters of

the other items in the test did not seem to influence the relationship between the

corrected item total-correlation and ρii′. The cut-off value of .3 for the corrected

item total-correlation was estimated between .1 < ρii′ < .25.

Item-factor loading. Estimating the item-factor loading resulted in non-converged

solutions for 577 and 546 replications of the whole range of ρii′ values in the “high

bi” and “long test” conditions for equal and unequal as respectively. The number of

non-converged models increased as ρii′ increased. This resulted in non available

values for at most 8.8 per cent per value of ρii′. The relationship between ρii′ and

the item-factor loading was characterized by one bundle containing all curves,

meaning that the design factors do not differentially influence the relationship.

The small and non-linear difference between the “average bi” and “high bi” curves

is negligible. As ρii′ increased, the value for the item-factor loading increased. The

relationship between ρii′ and the item-factor loading may be transformed to be-

come linear, but this was not a goal we pursued. The cutoff value of .3 was located

at ρii′ = .05.

Item scalability. The relationship between ρii′ and item scalability was char-

acterized by two different bundles, one for conditions with “average bi” and one

for conditions with “high bi”. For larger values of ρii′, both bundles showed in-

creasing values for item scalability. Compared to corrected item total-correlation,

for item scalability the bundles were reversed. An explanation could be that item

scalability is a normed item-rest covariance that corrects for the maximum possi-

ble covariance between two variables. Because the maximum possible covariance

between an item having an “high bi” and the rest score can become very small as

the distribution of the dichotomous variable is skewer (Nunnally, 1978, p. 145),

and because the item scalability corrects for this effect, the results are reversed

between the corrected item total-correlation and the item scalability. The cutoff

value of .3 for item scalability was found at ρii′ = .2 for bi = 1.5 and at ρii′ = .4

for bi = 0.

Item discrimination. The relationship between ρii′ and item discrimination

did not show a clear structure or pattern. The eight conditions showed little dif-

ference, which was to be expected since for all conditions with the same bi the

same item discrimination was used. This resulted in two bundles characterized by

the same pattern, determined by the value for bi. The curves increased slowly for
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Figure 4.2: Relationship between ρii′ and the four item indices in the eight different
conditions. The cutoff values described in the literature are shown by a horizontal line.
Note: b0 = bi = 0, b1.5 = bi = 1.5, ae = equal discrimination parameters, au = unequal discrimination
parameters, J5 = 5 other items in the test, J25 = 25 other items in the test. A combination of these codes
corresponds to a design cell.

lower values of ρii′, but showed a steeper increase from ρii′ = .6 onwards. The

cut-off value of 1.35 was at ρii′ = .2.

We investigated the estimates of the four other item-functioning indices for

different values of ρii′ and compared them to their cutoff values. For long tests,

the cut-off score for the corrected item total-correlation was at ρii′ = .2, and for

short tests the cutoff score was at ρii′ = .2. The cutoff score for item scalability

for items with bi = 1.5 was just below ρii′ = .2, and for items with bi = 0, the

cut-off score was at ρii′ = .4. The cut-off score of the item-factor loading was

located at ρii′ = .05. The cutoff-value for item discrimination was estimated at

ρii′ = .2 for all conditions. The lower bound of ρii′ = .3 Zijlmans, Tijmstra, et

al. (2018b) proposed seems to be too high, given that the cutoff scores for other

item-functioning indices are located at a lower level of ρii′.

4.4 Discussion

This study discusses the relationship between item-score reliability ρii′ and

three methods to estimate ρii′, which are methods MS, λ6, and CA. Also, the rela-
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tionship between ρii′ and four item-functioning indices was investigated. Finally,

the proposed lower bound for item-score reliability of .3 was investigated to eval-

uate whether this lower bound matches cutoff values for other item-functioning

indices.

All methods showed increasing bias for increasing values of ρii′. Method MS

showed small bias until ρii′ = .2, but for higher values for ρii′ the bias increased

rapidly. Method λ6 showed small bias in conditions with a longer test and person-

centered location parameter (bi = 0). Method CA shows almost unbiased values

for conditions with a person-centered location parameter, but larger bias for con-

ditions with a high location parameter (bi = 1.5). The increasing negative bias

all methods showed for increasing values of ρii′ may be caused by the increas-

ing contrast between the item of interest, for which the item-score reliability was

computed, and the other items in the test. Because methods MS, λ6, and CA use

the other items in the test to approximate ρii′, the more the item differs from the

other items in the test, the harder it seems for the methods to give a good ap-

proximation of ρii′. While the characteristics for the J − 1 items are kept constant,

the item of interest starts to differ more from those items for increasing values of

ρii′. Because the discrimination parameter was used to manipulate the level of ρii′,

for higher levels of ρii′ the item of interest has a higher discrimination parameter.

For ρii′ = .8, the discrimination parameter was 7.787 for a person-centered lo-

cation parameter and 10.281 for a high location parameter. These values differ so

much from the discrimination parameters of the other items in the test that ranged

from −1 to 1, that this discrepancy might have produced great underestimation of

ρii′ for the item of interest. The reason for this underestimation is that all three

methods use the other items in the test to approximate an independent replication

of the item score. If the other items in the test deviate much from the item of

interest, this approximation seems to get worse.

Methods MS, λ6, and CA underestimated ρii′ in some conditions at the ρii′ =

.3 level. Hence, the conclusion Zijlmans, Tijmstra, et al. (2018b) drew to use a

lower bound of .3 for sufficient item-score reliability might be too strict in prac-

tice. Also, because methods MS, λ6, and CA grossly underestimated ρii′ for higher

values of ρii′, the estimated values are inconsistent with true population item-score

reliability. The analysis of several empirical-data sets in Zijlmans, Tijmstra, et al.

(2018b) showed maximum values of .70, .81, and .90 for respectively methods

MS, λ6, and CA. However, these values are located at the end of the distribution,

with values of .38, .45, and .34 for the third quartile for methods MS, λ6, and CA,

respectively. This suggests that in practice high values are rare.

Except for the item scalability in the bi = 0 condition, the cutoff values for

the four other item-functioning indices were between .05 < ρii′ ≤ .2. We conclude
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that sufficient item-functioning is within this range. Especially for the item-factor

loading, the cutoff value of .3 was at a very low value of ρii′, that is ρii′ = .05.

This indicates that the item-factor loading selects items at a level where ρii′ is

low. The item-score reliability showed a near one-to-one relationship with the

item-factor loading. These results suggest that the item-factor loading might be

a good predictor for item-score reliability, but the relationship might also be a

consequence of the data-generating model, which is unidimensional, resulting in

good model fit for the one-factor model.

We conclude that the proposed lower bound of .3 for the item-score relia-

bility methods may be too stringent in practice, because methods MS, λ6, and CA

underestimate ρii′, especially for higher values of ρii′. Also, there is a relationship

between the four other item-functioning indices and ρii′, but the corrected item

total-correlation, item scalability and item discrimination seem to measure differ-

ent aspects of item functioning. The item-factor loading could be an interesting

measure to approximate item-score reliability and deserves further investigation

to determine its usability in the context of item-score reliability.
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Abstract

This study investigates the usefulness of item-score reliability as a criterion for item selec-
tion in test construction. Methods MS, λ6, and CA were investigated as item-assessment methods
in item selection and compared to the corrected item-total correlation, which was used as a bench-
mark. An ideal ordering to add items to the test (bottom-up procedure) or omit items from the
test (top-down procedure) was defined based on the population test-score reliability. The order-
ings the four item-assessment methods produced in samples were compared to the ideal ordering,
and the degree of resemblance was expressed by means of Kendall’s τ . To investigate the con-
cordance of the orderings across 1000 replicated samples, Kendall’s W was computed for each
item-assessment method. The results showed that for both the bottom-up and the top-down proce-
dure, item-assessment method CA and the corrected item-total correlation most closely resembled
the ideal ordering. Generally, all item assessment methods resembled the ideal ordering better,
and concordance of the orderings was greater, for larger sample sizes and greater variance of the
item discrimination parameters.

Keywords: corrected item-total correlation, correction for attenuation, item-score reliability,
item selection in test construction, method CA, method λ6, method MS

Based on Zijlmans, E. A. O., Tijmstra, J., Van der Ark, L. A., and Sijtsma, K. (2019). Item-Score Re-

liability as a Selection Tool in Test Construction. Frontiers in Psychology, 9, 2298. doi: 10.3389/fp-

syg.2018.02298
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5.1 Introduction

When adapting an existing test, the test constructor may wish to increase or

decrease the number of items for various reasons. On the one hand, the existing

test may be too short, resulting in test-score reliability that is too low. In this case,

adding items to the test may increase test-score reliability. On the other hand,

the existing test may be too long to complete in due time. A solution could be

to decrease the number of items, but after removal of a number of items, the test

score based on the remaining items must be sufficiently reliable. Test constructors

could use the reliability of individual items to make decisions about the items to

add to the test or to remove from the test. This article investigates the usefulness

of item-score reliability methods for making informed decisions about items to add

or remove when adapting a test.

Several approaches to item selection in test construction have been investi-

gated. Raubenheimer (2004) investigated an item selection procedure that max-

imizes coefficient alpha of each subscale within a multi-dimensional test, and si-

multaneously maximizes both the convergent and discriminant validity using ex-

ploratory factor analysis. Raykov (2007, 2008) discussed the use of procedure

“alpha if item deleted” to omit items from a test and concluded that maximizing

coefficient alpha results in loss of criterion validity. Erhart et al. (2010) stud-

ied item reduction by either maximizing coefficient alpha or the item fit of the

partial credit model (Masters, 1982). They concluded that both item reduction

approaches should be accompanied by additional analyses. Because the quality

of a test depends on more than only the reliability of its test score, taking addi-

tional information in consideration obviously is a wise strategy. However, in this

study we preferred to focus on optimizing test-score reliability in the process of

adding items to the test or omitting items from the test. This enabled us to assess

the value of particular item selection procedures and item-assessment methods, in

particular, item-score reliability methods. The usability of item-score reliability in

item selection procedures was investigated in detail.

Zijlmans, Van der Ark, et al. (2018) investigated four methods to estimate

item-score reliability. The three most promising methods from this study were

methods MS, λ6, and CA. Zijlmans, Tijmstra, et al. (2018b) applied these meth-

ods to empirical-data sets and investigated which values of item-score reliability

can be expected in practice and how these values relate to four other item indices

that did not assess the item-score reliability in particular, item discrimination, item

loadings, item scalability, and corrected item-total correlations. In a third study

(Zijlmans, Tijmstra, Van der Ark, & Sijtsma, 2018a), the relationship between the

item-score reliability methods and the four other item indices was further investi-
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gated by means of a simulation study. The use of the three item-score reliability

methods for maximizing test-score reliability has not been investigated yet. There-

fore, in this study the usefulness of item-score reliability methods MS, λ6, and CA

for constructing reliable tests was investigated.

The three research questions we addressed are the following. First, are item-

score reliability methods useful for adding items to a test or omitting from a test,

when the goal is to maximize test-score reliability of the resulting test? Second, to

what extent do the orderings in which the three item-score reliability methods se-

lect items resemble the theoretically optimal ordering in which items are selected

or removed when maximizing population test-score reliability? Third, do the or-

derings produced by each of the three item-score reliability methods bear more

resemblance to the theoretically optimal ordering than the ordering the corrected

item-total correlation produced? These questions were addressed by means of a

simulation study.

This article is organized as follows. First, we discuss bottom-up and top-

down procedures for constructing a test. Second, we discuss the item-assessment

methods we used, which are item-score reliability methods MS, λ6, and CA, and

the corrected item-total correlation. Third, we discuss the design for the simula-

tion study and the data-generating process. Finally, the results and their implica-

tions for test construction are discussed.

5.2 Item Selection in Test Construction

In this study, we focus on two procedures for test construction. For both pro-

cedures, the test constructor has to make an informed decision about the balance

between the desired length of the test and the desired minimum test-score relia-

bility. Hence, we focus entirely on selection or omission of items based on formal

assessment methods. The first procedure selects items from the pool of available

items, and adds the selected items one by one to the preliminary test. We refer to

this procedure as the bottom-up procedure. The second procedure uses the com-

plete pool of available items as the initial test, and selects items one by one for

elimination from this test. We refer to this procedure as the top-down procedure.

Bottom-Up Procedure

The bottom-up procedure starts by defining an initial test consisting of two

items from the pool of available items. In general, and apart from the present

study, different criteria to select the initial two-item test can be used. For example,

the test constructor may consider the two items he or she starts with the substan-

tive kernel of the test, or he or she may choose the two items that have proven to
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be of excellent quality in the past. In both examples, the researcher includes the

item in the test. In our study, the item pair having the highest test-score reliability

was selected. The selected item pair constituted the initial test and both items

were removed from the pool of available items. In the next step, the third item

was added to the two-item test that maximizes the test-score reliability ρXX′ for a

three-item test, based on all available choices; then, the fourth item was added to

the three-item test following the same logic, and so on. In practice, it is impossible

to estimate ρXX′, because parallel test scores X and X ′ are usually unavailable

(Lord & Novick, 1968, p. 106). In this study, four item-assessment methods were

investigated that can be used to add the items to the test. The test constructor

may use one of these four item-assessment methods to continue the bottom-up

procedure until the test has the desired length or a sufficiently high test-score re-

liability, or both. Because in practice, different test constructors may entertain

different requirements for test length and minimum reliability, adding items to the

preliminary test may stop at different stages of the procedure. Hence, for the sake

of completeness, we described the complete ordering based on adding each of the

available items to the test until all items were selected.

Computational Example Bottom-Up Procedure

We discuss a computational example. We started with 20 equally difficult

items for which the item discrimination parameters were ordered from smallest to

largest. To select the initial 2-item test, we considered the theoretical ρXX′ values

for all possible 2-item tests. Test-score reliability was defined theoretically based

on available item parameters of the 2-parameter logistic model (2PLM), assuming

a standard normal distribution of the latent variable (see Appendix B). Items 19

and 20 had the highest test-score reliability, so this pair constituted the initial test;

see Table 5.1. In Step 1, a pool of 18 items was available from which to add an

item to the preliminary test version. Consider the columns in Table 5.1 headed by

Step 1. The ρXX′ column shows the ρXX′ values for each 3-item test including one

of the available items, so that one can evaluate the test-score reliability of each

3-item test. Item 18 resulted in the highest test-score reliability and was added in

Step 2. The procedure continued until the pool of available items was empty. In

the penultimate step, which is Step 18, item 2 was added to the preliminary test.

Item 1 was added in the last step. From this procedure, we derived the ordering

in which the items were added to the preliminary test versions, when the goal was

to maximize the test-score reliability in each step.
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Table 5.1: Example Item-Selection Procedure Following the Bottom-Up Method
Based on the Test-Score Reliability ρXX′.

Step 1 Step 2 · · · Step 17 Step 18
Items in Items in ρXX′ if Items in Items in ρXX′ if Items in Items in ρXX′ if Items in Items in ρXX′ if

Test Pool item added Test Pool item added · · · Test Pool item added Test Pool item added

20 1 0.462 20 1 0.556 · · · 20 1 0.807 20 1 0.809

19 2 0.467 19 2 0.560 · · · 19 2 0.808 19 2 0.810

3 0.473 18 3 0.564 · · · 18 3 0.808 18

4 0.479 4 0.568 · · · 17 17

5 0.484 5 0.573 · · · 16 16

6 0.491 6 0.577 · · · 15 15

7 0.497 7 0.582 · · · 14 14

8 0.503 8 0.586 · · · 13 13

9 0.510 9 0.591 · · · 12 12

10 0.516 10 0.595 · · · 11 11

11 0.523 11 0.600 · · · 10 10

12 0.530 12 0.605 · · · 9 9

13 0.536 13 0.610 · · · 8 8

14 0.543 14 0.615 · · · 7 7

15 0.550 15 0.620 · · · 6 6

16 0.557 16 0.625 · · · 5 5

17 0.564 17 0.630 · · · 4 4

18 0.571 · · · 3

Note. The example is based on the condition with small variance of discrimination parameters.

The ρXX′ column indicates the possible test-score reliability, if in the next step, that item would be

added to the test. For each step the selected item is indicated in boldface.

Top-Down Procedure

For the top-down procedure, the complete pool of available items constitutes

the initial test, and the items are deleted one by one until two items remain. Ide-

ally, the test-score reliability of all twenty 19-item tests is computed, determining

which item should be omitted, so that the test consisting of the remaining 19 items

had the highest test-score reliability of all 19-item tests. The first item that is omit-

ted either increases the test-score reliability the most or decreases the test-score

reliability the least. This procedure is repeated until the test consisted of only two

items. Two items constitute the minimum, because an item-assessment method

cannot be applied to a single item. This procedure results in an ordering in which

items were omitted from the test. A test constructor usually does not continue

until the test consists of only two items but rather stops when the resulting test

has the desired length or the desired test-score reliability, or both. In our study, for

the sake of completeness, we continued the item selection until the test consisted

of only two items so that the results for the complete top-down procedure were

visible.
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Table 5.2: Example Item-Selection Procedure Following the Top-Down Method
Based on the Test-Score Reliability ρXX′.

Step 1 Step 2 · · · Step 17 Step 18
Items Items in ρXX′ if Items Items in ρXX′ Items Items in ρXX′ Items Items in ρXX′

Omitted Test item omitted Omitted Test item omitted · · · Omitted Test item omitted Omitted Test item omitted

1 0.810 1 2 0.808 · · · 1 17 0.571 1 18 0.481

2 0.809 3 0.807 · · · 2 18 0.564 2 19 0.47

3 0.809 4 0.807 · · · 3 19 0.557 3 20 0.46

4 0.808 5 0.806 · · · 4 20 0.550 4

5 0.808 6 0.806 · · · 5 5

6 0.807 7 0.805 · · · 6 6

7 0.806 8 0.804 · · · 7 7

8 0.806 9 0.804 · · · 8 8

9 0.805 10 0.803 · · · 9 9

10 0.804 11 0.802 · · · 10 10

11 0.804 12 0.801 · · · 11 11

12 0.803 13 0.800 · · · 12 12

13 0.802 14 0.799 · · · 13 13

14 0.801 15 0.799 · · · 14 14

15 0.800 16 0.798 · · · 15 15

16 0.800 17 0.797 · · · 16 16

17 0.799 18 0.796 · · · 17

18 0.798 19 0.795 · · ·
19 0.797 20 0.794 · · ·
20 0.796 · · ·

Note. The example is based on the condition with small variance of discrimination parameters.

The ρXX′ column indicates the possible test-score reliability, if that item would be omitted from

the test in the next step. For each step the selected item is indicated in boldface.

Computational Example Top-Down Procedure

We employed the same 20 items we used in the computational example for

the bottom-up procedure, and included all items in the initial test. In Step 1,

ρXX′ was computed when a particular item was omitted from the test (using the

procedure outlined in Appendix B; see Table 5.2, column ρXX′ if item omitted

for the ρXX′ values). In the example, omitting item 1 from the test produced the

highest ρXX′ value. Thus, item 1 was omitted and we continued with the 19-item

test. In Step 2, omitting item 2 resulted in the highest test-score reliability for the

remaining 18 items. This procedure was repeated until the test consisted of only

items 19 and 20.

Item-Assessment Methods

We used the three item-score reliability methods MS, λ6, and CA, and the

corrected item-total correlation to add items to the preliminary test or to omit

items from the preliminary test. The corrected item-total correlation was included
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to compare the item-score reliability methods to a method that has been used

for a long time in test construction research. Both the bottom-up and the top-

down procedures were applied using the four item-assessment methods instead

of test-score reliability ρXX′. The eight orderings that resulted from combining

the two item selection procedures with the four item-assessment methods were

compared to the ordering based on the theoretical test-score reliability, to infer

which item-assessment method resembled the ordering that maximizes the test-

score reliability best.

Item-score reliability methods

The following definitions were used (Lord & Novick, 1968, p. 61). Test score

X is defined as the sum of the J item scores. Let Xi be the item score, indexed

i (i = 1, . . . , J); X =
J∑
i=1

Xi. Item-score reliability is defined as the ratio of the

true-score variance, denoted σ2
Ti

, and the observed-score variance, denoted σ2
Xi

.

The observed-score variance can be split in true-score variance and error variance

denoted σ2
Ei

, which means item-score reliability can also be defined as 1 minus the

proportion of observed-score variance that is error variance; that is,

ρii′ =
σ2
Ti

σ2
Xi

= 1−
σ2
Ei

σ2
Xi

. (5.1)

Three methods to approximate item-score reliability were used to decide which

item will be added to the test or omitted from the test: method MS, method λ6,

and method CA. These methods are briefly discussed here; see Zijlmans, Van der

Ark, et al. (2018) for details.

Method MS

Method MS is based on the Molenaar-Sijtsma test-score reliability method

(Molenaar & Sijtsma, 1988; Sijtsma & Molenaar, 1987). This method uses the

double monotonicity model for dichotomous items proposed by Mokken (1971)

which assumes a unidimensional latent variable θ, locally independent item scores,

and monotone, nondecreasing, and nonintersecting item-response functions. The

items are ordered from most difficult to easiest and this ordering is used to obtain

an approximation of an independent replication of the item of interest, denoted i.

Mokken (1971, pp. 142-147) proposed to approximate independent replications

of the item scores by using information from the item of interest, the next-easier

item i + 1, the next more-difficult item i − 1, or both neighbor items. The idea

is that items that are close to the item of interest in terms of location provide a

good approximation of an independent replication of the target item. We denote

method MS for estimating item-score reliability ρMS
ii′ and estimate the independent
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replication approximated in ρMS
ii′ using the procedure as explained by Van der Ark

(2010).

Method λ6

Test-score reliability method λ6 (Guttman, 1945) was adjusted by Zijlmans,

Van der Ark, et al. (2018), such that it approximates the reliability of an item score.

Let ε2i be the residual error variance from the multiple regression of the score on

item i on the remaining J − 1 item scores. The ratio of ε2i and the observed item

variance σ2
Xi

is subtracted from unity to obtain the item-score reliability estimate

by means of method λ6, denoted ρλ6ii′ ; that is,

ρλ6ii′ = 1− ε2i
σ2
Xi

. (5.2)

Method CA

Method CA is based on the correction for attenuation (Lord & Novick, 1968,

pp. 69-70; Nunnally & Bernstein, 1994, p. 257; Spearman, 1904) and correlates

the item score with a test score, which is assumed to measure the same attribute

as the item score (Wanous & Reichers, 1996). This test score can be obtained

from the remaining J − 1 items in the test or the items in a different test, which

is assumed to measure the same attribute as the target item. We denote item-

score reliability approximated by method CA as ρCAii′ . The corrected item-total

correlation is defined as ρXiR(i)
, and correlates the item score with the rest score,

defined as R(i) = X − Xi. Coefficient αR(i)
is a lower bound to the reliability of

the rest score, estimated by reliability lower bound coefficient α (e.g., Cronbach,

1951). Method CA is defined as

ρCAii′ =
ρ2XiR(i)

αR(i)

. (5.3)

Earlier research (Zijlmans, Van der Ark, et al., 2018) showed that methods

MS and CA had little bias. Method λ6 produced precise results, but underestimated

ρii′, suggesting it is a conservative method. These results showed that the three

methods are promising for estimating ρii′.

Corrected Item-Total Correlation

The corrected item-total correlation ρXiR(i)
was defined earlier. Higher cor-

rected item-total correlations in a test result in a higher value of coefficient α (Lord

& Novick, 1968, p. 331). In test construction, the corrected item-total correlation

is used to define the association of the item with the total score on the other items.

The corrected item-total correlation is also used by method CA (see Equation 5.3).

72



5

Item-Score Reliability as a Selection Tool in Test Construction

5.3 Simulation Study

By means of a simulation study it was investigated whether the four item-

assessment methods added items to a test (bottom-up procedure) or omitted items

from a test (top-down procedure) in the same ordering that would result from

adding items or omitting items, such that the theoretical ρXX′ was maximized in

each item selection step.

Method

For the bottom-up procedure, for each item-assessment method, we investi-

gated the ordering in which items were added. In each selection step, the item

was selected that had the greatest estimated item-score reliability or the greatest

corrected item-total correlation based on its inclusion in the preliminary test. For

the top-down procedure, for each item-assessment method, we investigated the

ordering in which items were omitted, this time in each step omitting the item

that had the smallest item-score reliability or the smallest corrected item-total cor-

relation. The ordering in which items were added or omitted was compared to the

ideal ordering if theoretical test-score reliability was used. The degree to which

the orderings produced by an item-assessment method resembled the ideal order-

ing, was expressed by Kendall’s τ . The concordance of orderings produced by

each item-assessment method over samples was expressed by means of Kendall’s

W . Next, we discuss the details of the simulation study.

Dichotomous scores for 20 items were generated using the two-parameter lo-

gistic model (Birnbaum, 1968). Let θ be the latent variable representing a person’s

attribute, αi the discrimination parameter of item i, and βi the location parameter

of item i. The two-parameter logistic model is defined as

P (Xi = 1 | θ) =
exp [αi(θ − βi)]

1 + exp [αi(θ − βi)]
. (5.4)

The variance of the discrimination parameters was varied. The discrimination pa-

rameter of an item conceptually resembles its item-score reliability (Tucker, 1946).

All sets of discrimination parameters had the same median value. We used sets of

values that had the same mean on the log scale, which guaranteed that all dis-

crimination parameters were positive and that for each condition the median dis-

crimination parameter was 1, and considered values equidistantly spaced ranging

from −0.5 to 0.5, −1 to 1, or −2 to 2 on the log scale. The variance of the discrim-

ination parameters is referred to as either small, ranging from 0.61 to 1.65 on the

original scale, average, ranging from 0.37 to 2.72, or large, ranging from 0.14 to

7.39. For all items, the location parameter βi had a value of 0. We did not vary βi,
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Table 5.3: Item Parameters used to Generate the Item Scores

Item No. Small Variance of α Average Variance of α Large Variance of α β

Item 1 0.61 0.37 0.14 0

Item 2 0.64 0.41 0.17 0

Item 3 0.67 0.45 0.21 0

Item 4 0.71 0.50 0.25 0

Item 5 0.75 0.56 0.31 0

Item 6 0.79 0.62 0.39 0

Item 7 0.83 0.69 0.48 0

Item 8 0.88 0.77 0.59 0

Item 9 0.92 0.85 0.73 0

Item 10 0.97 0.95 0.90 0

Item 11 1.03 1.05 1.11 0

Item 12 1.08 1.17 1.37 0

Item 13 1.14 1.30 1.69 0

Item 14 1.20 1.45 2.09 0

Item 15 1.27 1.61 2.58 0

Item 16 1.34 1.78 3.18 0

Item 17 1.41 1.98 3.93 0

Item 18 1.48 2.20 4.85 0

Item 19 1.56 2.45 5.99 0

Item 20 1.65 2.72 7.39 0

Note: α = discrimination parameter, β = location parameter

The sets of discrimination parameters had the same mean, and contain values equidistantly

spaced, ranging from −0.5 to 0.5, −1 to 1, and −2 to 2 on the log scale, respectively.

because this would complicate the simulation design, rendering the effect of item

discrimination, approximating item-score reliability, on the item selection process

harder to interpret. Table 5.3 shows the item parameters that were used to gen-

erate the item scores. Next to the bottom-up and top-down procedures, we varied

the sample size N . We generated item scores for either a small sample (N = 200)

or a large sample (N = 1000). These choices resulted in 2 (sample sizes) × 3

(variances of discrimination parameters) = 6 design cells. In each design cell,

1000 data sets were generated. The 1000 data sets in each cell were analyzed by

the two item selection procedures, each using the four item-assessment methods.

From the parameters of the data generating model, the ideal ordering for

both the bottom-up procedure and the top-down procedure was determined using
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test-score reliability ρXX′ (see Appendix B for the procedure). The goal was to

maximize ρXX′ in each step of the two procedures. For the bottom-up and the

top-down procedures, we determined the ideal order to add items to the test or

omit items from the test, based on maximizing the theoretical ρXX′ in every step.

The two item selection procedures and the three sets of discrimination parame-

ters resulted in six ideal orderings. Because discrimination parameters increased

going from item 1 to item 20, and the item ordering did not differ over the sets of

discrimination parameters, only two ideal item orderings were different. Conse-

quently, for the item selection we have two ideal orderings, one for the bottom-up

procedure (consecutively adding items 18, 17, . . . , 1) and one for the top-down

procedure (consecutively omitting items 1, 2, . . . , 18).

The agreement between the ordering determined by each of the item-assessment

methods and the ideal ordering determined by ρXX′ was expressed in each data

set by means of Kendall’s τ . Kendall’s τ ranges from −1 to 1, a large negative value

indicating that the orderings are dissimilar and a large positive value indicating

that the orderings are similar. The item ranks produced by the item-assessment

methods can be displayed as a vector, and so can the ideal rank defined at the

population level. When the ranks for both elements in a pair agreed this was de-

fined as a concordant pair (C), otherwise the pair was discordant (D). The total

number of pairs equals n(n− 1)/2, where n is the length of the vectors. Kendall’s

τ is defined as

τ =
C− D

n(n− 1)/2
. (5.5)

In our study, n = 18, based on 18 item selection steps for both item selection

methods. We computed the mean for the 1000 Kendall’s τ values obtained in each

simulation condition, for every combination of item selection procedure and item-

assessment method. The mean quantified the resemblance between the ordering

each of the item-assessment methods produced and the ideal ordering.

To investigate how much the orderings the item-assessment methods pro-

duced differ over 1000 data sets, we computed Kendall’s coefficient of concor-

dance, W . Kendall’s W expresses the level of agreement between multiple order-

ings, and W ranges from 0 to 1, a higher value indicating that the orderings an

item-assessment method produced are more consistent, resulting in smaller varia-

tion. Suppose that item i is given rank rij in data set j, where there are in total n

ranks and m data sets. Then the total rank of object i is Ri =
m∑
j=1

rij and the mean

value of these ranks is R̄ = 1
n

n∑
i=1

Ri. The sum of squared deviations, S, is defined

as S =
n∑
i=1

(Ri − R̄)2. Kendall’s W is defined as
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W =
12S

m2(n3 − n)
. (5.6)

The number of objects n in our study was the number of item selection steps,

which was 18. The number of data sets J equaled 1000. For every simulation

condition and every item selection method, Kendall’s W expressed the agreement

among orderings produced by each of the item-assessment methods.

Results

For the bottom-up procedure (upper part of Table 5.4) and the top-down

procedure (lower part of Table 5.4), for the six design conditions of sample size

and variance of discrimination parameters, Table 5.4 shows the mean Kendall’s τ

between the ideal ordering and the ordering produced by each of the four item-

assessment methods. In the condition with a small sample size and small variance

of the discrimination parameters, mean Kendall’s τ ranged from .44 for method

MS to .59 for method CA and the corrected item-total correlation. For both pro-

cedures, a larger sample size resulted in a higher mean τ value. Mean Kendall’s

τ increased as variance of discrimination parameters increased for both item se-

lection procedures. For a large sample size and large variance of discrimination

parameters, mean τ values ranged from .80 for method MS to .96 for method CA

and the corrected item-total correlation. For both procedures, method CA and the

corrected item-total correlation showed the highest mean τ values, meaning that

these item-assessment methods resembled the ordering based on ρXX′ best. These

two item assessment-methods showed numerically equal mean τ values, which re-

sulted from the nearly identical orderings method CA and the corrected item-total

correlation produced. For the bottom-up procedure, four out of six conditions

showed exactly the same ordering for each replication using either method CA or

the corrected item-total correlation. For the top-down procedure, this result was

found in two out of six conditions. Overall, method MS performed worst of all

item-assessment methods, where the difference in τ values with the other item-

assessment methods was smaller for a larger sample size and increasing variance

of the discrimination parameters.

For the bottom-up item selection method (upper part) and the top-down

item selection method (lower part), for each of the four item-assessment methods

in the six different conditions, Table 5.5 shows Kendall’s W values. For both item

selection methods, larger sample size showed an increase of W , indicating that the

ordering was more alike across replications as sample size increased. This result

was also found for increasing variance of discrimination parameters.

For both procedures, method CA and the corrected item-total correlation
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Table 5.4: Mean Kendall’s τ for 1000 Replications Between the Ordering Based
on the Population Test-Score Reliability and the Ordering Produced by the Three
Item-Score Reliablility Methods and the Corrected Item-Total Correlation (CITC),
for the Bottom-Up and the Top-Down Procedure in the Six Different Conditions.

Bottom-Up Procedure

N = 200 N = 1000

Small Variance Average Variance Large Variance Small Variance Average Variance Large Variance
of α of α of α of α of α of α

Method MS 0.44 0.67 0.80 0.69 0.83 0.89

Method λ6 0.55 0.75 0.83 0.80 0.91 0.94

Method CA 0.58 0.78 0.87 0.81 0.92 0.96

CITC 0.58 0.78 0.87 0.81 0.92 0.96

Top-Down Procedure

N = 200 N = 1000

Small Variance Average Variance Large Variance Small Variance Average Variance Large Variance
of α of α of α of α of α of α

Method MS 0.46 0.64 0.75 0.61 0.73 0.80

Method λ6 0.55 0.75 0.83 0.81 0.91 0.94

Method CA 0.59 0.78 0.87 0.81 0.92 0.96

CITC 0.59 0.78 0.87 0.81 0.92 0.96

showed the highest W values, suggesting the smallest variance of the orderings

over data sets for these item-assessment methods. For the average and large vari-

ance of discrimination parameters, W values were all greater than .96, meaning

that methods λ6, CA, and the corrected item-total correlation showed almost no

variation over replications. For a large sample size, methods λ6, CA, and the cor-

rected item-total correlation showed similar Kendall’s W values.

For each combination of item selection procedure and item-assessment method,

the orderings produced by the item-assessment method were used to compute the

ρXX′ values in every step of this ordering. This meant that for the items selected

at a particular step, we used the item parameters and the distribution of θ to com-

pute ρXX′, and we repeated the computation at each selection step in each of the

1000 samples. For the top-down item selection procedure and item-assessment

method CA, Figure 5.1 shows for each step the range of ρXX′ values between the

2.5 and 97.5 percentiles of 1000 values. This combination of item selection pro-

cedure and item-assessment method produced the intervals that were narrowest.

Intervals became wider as the test grew shorter. For the top-down procedure and

item-assessment method MS, Figure 5.2 shows the widest intervals. In both Figure

5.1 and Figure 5.2, intervals grew wider as the test grew shorter.
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Figure 5.1: Range of ρXX′ values between the 2.5 and 97.5 percentiles of 1000 values
produced by method CA in the six conditions for the top-down procedure. The black line
indicates the ρXX′ value for the ideal ordering.
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Figure 5.2: Range of ρXX′ values between the 2.5 and 97.5 percentiles of 1000 values
produced by method MS in the six conditions for the top-down procedure. The black line
indicates the ρXX′ value for the ideal ordering.
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Table 5.5: Kendall’s W for 1000 Replications Between the Ordering Based on the
Population Test-Score Reliability and the Ordering Produced by the Three Item-
Score Reliablility Methods and the Corrected Item-Total Correlation (CITC), for
the Bottom-Up and the Top-Down Procedure in the Six Different Conditions.

Bottom-Up Procedure

N = 200 N = 1000

Small Variance Average Variance Large Variance Small Variance Average Variance Large Variance
of α of α of α of α of α of α

Method MS 0.53 0.79 0.90 0.80 0.92 0.96

Method λ6 0.65 0.87 0.92 0.91 0.97 0.98

Method CA 0.69 0.89 0.95 0.91 0.97 0.99

CITC 0.69 0.89 0.95 0.91 0.97 0.99

Top-Down Procedure

N = 200 N = 1000

Small Variance Average Variance Large Variance Small Variance Average Variance Large Variance
of α of α of α of α of α of α

Method MS 0.37 0.65 0.80 0.61 0.77 0.85

Method λ6 0.53 0.82 0.89 0.88 0.96 0.98

Method CA 0.59 0.85 0.93 0.88 0.96 0.98

CITC 0.59 0.85 0.93 0.88 0.96 0.98

5.4 Discussion

This study investigated the usefulness of item-score reliability methods to se-

lect items with the aim to produce either a longer or a shorter test. In practice,

a test constructor may aim at a particular minimally acceptable test-score relia-

bility or a maximally acceptable number of items. The results showed that the

benchmark corrected item-total correlation was the best item-assessment method

in both the bottom-up and top-down item selection procedure. This means that

the frequently employed and simpler corrected item-total correlation is, next to

method CA, one of the best item-assessment methods when constructing tests.

Because method CA computes the item-score reliability using the corrected

item-total correlation (Equation 5.3), it is not surprising that these two item-

assessment methods showed nearly identical results. Given these identical results,

using the corrected item-total correlation seems more obvious in practice than us-

ing method CA, because the corrected item-total correlation is readily available

in most statistical programs and using method CA would merely introduce a more

elaborate method. However, this does not mean that item-score reliability does not

contribute to the test construction process. Method CA is an estimation method to

approximate item-score reliability, while the corrected item-total correlation mea-

sures the correlation between an item and the other items in the test. Method

CA was developed to estimate item-score reliability, and to this means uses the

80



5

Item-Score Reliability as a Selection Tool in Test Construction

corrected item-total correlation. The corrected item-total correlation is used to

measure the coherence between an item and the other items in a test. This means

that these two measures were developed and are used with a different purpose in

mind.

In our study, once an item was selected for addition to the test or removal

from the test, the selection result was irreversible. An alternative stepwise proce-

dure might facilitate adding items to the test with the possibility of removing them

again later in the procedure or removing items from the test with the possibility of

adding them again later in the procedure. An alternative stepwise item selection

procedure in combination with the item-assessment methods may produce an or-

dering closer to the ideal order than the bottom-up or top-down procedures. Such

procedures are the topic of future research. Also, the frequently used assessment

method “coefficient alpha if item deleted” was not considered in this study. This

assessment method would be easily applicable in the top-down item selection pro-

cedure, but for the bottom-up item selection procedure we would have to come up

with something like “coefficient alpha if item added”. However, because the scope

of this study was to investigate the construction of tests using assessment methods

at the item level, and because coefficient alpha is on the test-level, we did not

consider this assessment method. Also, we only studied one-dimensional data, be-

cause a test is assumed to measure one attribute. Deviations from one-dimensional

data, which are unavoidable in practice because measurement in psychology is

prone to systematic error, are the topic of future research.

Even though item-score reliability did not turn out to be a better item assess-

ment method than the frequently employed corrected item-total correlation, it still

has many useful applications. For example, when selecting a single item from a

pool of items for constructing a single-item measure, item-score reliability can be

used to ensure that the selected item has high item-score reliability. Single-item

measures are often used in work and organizational psychology to asses job sat-

isfaction (Gonzalez-Mulé et al., 2017; Harter et al., 2002; Nagy, 2002; Robertson

& Kee, 2017; Saari & Judge, 2004; Zapf et al., 1999) or level of burnout (Dolan

et al., 2014). Single-item measures have also been assessed in marketing research

for measuring ad and brand attitude (Bergkvist & Rossiter, 2007) and in health re-

search for measuring, for example, quality of life (Stewart et al., 1988; Yohannes

et al., 2010) and psychosocial stress (Littman et al., 2006). Also, in person-fit

analysis item-score reliability can be applied to identify items that contain too lit-

tle reliable information to explain person fit (Meijer et al., 1995). This leaves

many useful applications for item-score reliability.
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Epilogue

Main findings, consequences, and future research

This dissertation dealt with several aspects of item-score reliability. The lit-

erature was reviewed in Chapter 1 to create an overview of what had been in-

vestigated with regard to item-score reliability before. The review showed that

in the past some attention was given to item-score reliability, but no thorough in-

vestigation addressing different methods and their statistical properties had been

executed. Also, the main part of the literature concentrated on using the meth-

ods from the much cited studies by Wanous and Reichers (1996), Wanous et al.

(1997), and Wanous and Hudy (2001) for the construction of single-item mea-

sures, because their method was developed for estimating the reliability of a

single-item measure. Their methods and studies are used primarily to investigate

whether single-item measures have sufficiently high item-score reliability.

In Chapter 2 of this dissertation, available methods in the literature to es-

timate item-score reliability were reviewed. One useful method resulting from

this review was a method based on the correction for attenuation formula (Lord

& Novick, 1968; Nunnally & Bernstein, 1994; Spearman, 1904), first employed

by Wanous and Reichers (1996). We called it method CA. Three new methods

were developed in Chapter 2, based on existing methods to estimate test-score

reliability: method MS, method λ6, and method LCRC. A simulation study showed

that method MS and method CA had the smallest bias and the greatest precision.

Method λ6 showed negative bias, but great precision. Finally, method LCRC also

showed small bias, but estimates were not very precise, rendering it an unreli-

able method. From this study, we concluded that methods MS, λ6, and CA were

promising for future research. Questions that arose from this research were what

values could be expected of item-score reliability estimations in practice, as well as

what a realistic cutoff value would be for an item having sufficient reliability. An-

other question was what the relationship between item-score reliability and other
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available item indices not assessing the item-score reliability is, in particular, the

corrected item-total correlation, the item-factor loading, the item scalability, and

the item discrimination. This led to the study in Chapter 3.

The study in Chapter 3 used several empirical-data sets to investigate val-

ues that could be expected in practice for three item-score reliability estimation

methods, which were methods MS, λ6, and CA. Next to the item-score reliabil-

ity, four other item indices addressing item features other than reliability were

estimated: the corrected item-total correlation, the item-factor loading, the item

scalability, and the item discrimination. Scatterplots of all possible combinations

of item-score reliability methods and item indices showed a strong association be-

tween the corrected-item total correlation and the item-score reliability methods,

especially method CA. The latter is not suprising, because method CA uses the

corrected item-total correlation to estimate item-score reliability. Based on the

cutoff values for the other item indices described in the literature, a cutoff value

for item-score reliability estimates could be determined. We concluded that an

estimated item-score reliability of .3 indicated that an item score was sufficiently

reliable. But, because in this study empirical-data sets are used, we did not know

the true value of population item-score reliability ρii′. This raised questions about

what value of ρii′ could be expected for an estimated item-score reliability of .3

by means of the approximation methods MS, λ6, and CA. Another question was

what exactly the relationship is between ρii′ and the four item indices. To answer

these questions an additional simulation study was needed. The study in Chap-

ter 4 of this dissertation further investigated the relationship between ρii′ and the

three item-score reliability methods MS, λ6, and CA. Also, the relationship be-

tween ρii′ and the corrected item-total correlation, the item-factor loading, the

item scalability, and the item discrimination was investigated. Finally, the feasi-

bility of a cutoff value of .3 indicating sufficient reliability for an item score was

further examined. For a range of ρii′ values and for various conditions, estimates

of the three item-score reliability approximation methods were investigated to see

what values for ρii′ one can expect for the previously determined cutoff value of .3.

All item-score reliability estimation methods showed increasing bias for increas-

ing values of ρii′. Also, the results showed a one-to-one relationship between the

item factor-loading and ρii′. The lower bound of .3 seemed to be too stringent in

practice.

The relationship between test-score reliability and item-score reliability was

further investigated in the study in Chapter 5. The scope of the research was

item selection in test construction based on item-score reliability. The goal was to

construct a test that was as reliable as possible, based on including or excluding

items that are reliable or unreliable, respectively. The items were selected based
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on their item-score reliability, and the order in which they were selected was com-

pared to the ordering that would ideally be followed if the test-score reliability was

known. Next to the estimates based on the three item-score reliability approxima-

tion methods, the corrected item-total correlation was used as an item assessment

method. The corrected item-total correlation was added as a benchmark method,

because it is often employed in practice. The results showed that the ideal order

was closer approximated by the item assessment methods when the sample size

was larger and when variance of the item discrimination parameters was greater.

Method CA and the corrected item-total correlation turned out to be the best item

assessment methods for constructing reliable tests; they showed the closest resem-

blance to the ideal ordering.

From this thesis several lessons can be learned about item-score reliability.

Several studies have touched upon the subject of item-score reliability, but its es-

timation methods and their statistical properties, such as bias and precision, had

never been investigated before. One important aspect of estimating item-score re-

liability is that it is impossible to estimate the reliability of a single-item measure

using data from only the target item. All methods discussed in this dissertation

use the other items in the test to estimate item-score reliability. As was shown

in the literature review in Chapter 1, until now, item-score reliability has mainly

been discussed in the context of single-item measures. Even though most authors

mention problems that could arise when using a single-item measure, a frequently

used counter argument is that short scales may sometimes just be as reliable as

long instruments (Burisch, 1984). Especially when the attribute the single-item

measure taps into is clearly defined, homogeneous, and theoretically deduced,

Loo and Kelts (1998) argue that it is an appropriate measure. Therefore, using a

single-item measure for a broad and heterogeneous attribute is not advised by Loo

(2002). Gardner, Cummings, Dunham, and Pierce (1998) compared multi-item

measures of psychological constructs with single-item measures of the same psy-

chological constructs and concluded that neither type of measure came out of the

comparison as the clearly better option. They recommend that researchers use the

type of measure that is suitable for the research question at hand. We neverthe-

less wish to argue that single-item measures are inferior to multi-item measures,

and even though researchers often use single-item measures, this does not seem

an uncontroversial idea in practice. As noted before, (Spector, 1992, p. 4) calls

“yes” or “no” single-item measures notoriously unreliable, because responses are

not consistent over time. Next to that, when adding more (parallel) items in a test,

the true-score variance will increase quadratically, while the error-score variance

will increase linearly (Lord & Novick, 1968, p. 86). This means that the ratio of

error-score variance and true-score variance will decrease, and thereby the test-
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score reliability will increase. We therefore argue that important decisions should

not be made based on just a single measurement, because making decisions based

on one item score seems to be too much prone to error. We conclude that item-

score reliability is interesting, but should always be interpreted in a context of

multi-item measures.

The literature review in Chapter 1 showed that method CA was used in sev-

eral studies. The results in Chapter 2 and 4 showed that method CA performed

well with respect to bias and precision. This result means that method CA is a

viable method for estimating item-score reliability. We noticed that the item-score

reliability values found by studies using the method developed by Wanous and

Reichers (1996) and Wanous et al. (1997), were remarkably higher than the val-

ues we found with simulated data. For example, Ginns and Barrie (2004) found

item-score reliability values for their single-item scale measuring College Teach-

ing Effectiveness of .96, and Postmes et al. (2012) found an item-score reliability

value of .76. Based on the studies carried out in chapters 2, 3, and 4, we deem a

value indicating sufficient item-score reliability of .3 realistic. Explanations for this

difference could be that the other items in the test, used to estimate the reliability

of a single item score, correlate highly with the item of interest, resulting in a high

estimate of item-score reliability by method CA. This would mean that this con-

dition was not explicitly defined as such in our simulation design, and therefore

the high values found in empirical data by other studies is an interesting topic for

future research.

During the execution of the research in this dissertation, an interesting ques-

tion was how item-score reliability methods related to other, frequently used item

indices that address item features other than reliability, albeit related to reliability.

The research in chapters 3 and 4 addressed the relationship between item-score re-

liability and the item indices corrected item-total correlation, item factor-loading,

item scalability, and item discrimination. Relationships between item-score reli-

ability and the item indices were observed, specifically between method CA and

the corrected item-total correlation, and between ρii′ and the item-factor load-

ing. The first relationship can be explained by the fact that method CA uses the

corrected item-total correlation to approximate item-score reliability (see Equa-

tion 4.3). The second relationship, shown in Figure 4.2, was explained by the

unidimensional data-generating model, which resulted in good model fit for the

one-factor model. In future studies, more elaborate simulation studies investi-

gating different research conditions, such as multidimensional data, might reveal

more about the relationship between ρii′ and the item-factor loading.

Another direction for future research suggested by this dissertation is the

usability of item-score reliability. From the comparison between item-score reli-
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ability and other item indices addressing item features other than reliability (see

chapters 3, 4, and 5) several relationships emerged. For example, in Chapter 5, the

results showed that when selecting items to construct a test that is as reliable as

possible, using the corrected item-total correlation gave the same results as using

method CA. One can argue that item-score reliability therefore does not contribute

much in addition to existing item indices. However, we argue that there actually

are differences and there is a future for item-score reliability. The main difference

between item-score reliability and the item indices addressing item features other

than reliability is the goal with which they were developed. Item-score reliability

methods approximate the repeatability of an item score, while for example the

corrected item-total correlation measures the association between an item score

and the sum score of the other items in the test. This means that other item quan-

tities are assessed by the different item indices, and depending on the interest of

the researcher, one does not make the other superfluous.

The results in this dissertation showed that we cannot expect the same values

for item-score reliability as for test-score reliability. In Chapter 3 a lower bound of

.3 was established, and in Chapter 4 this lower bound turned out to be maybe even

too high. Because an item score contains much less information than a test score, it

seems logical that its reliability is lower. Future research might investigate values

to be expected for item-score reliability by means of investigating tests that have

proven to be reliable in the past. What item-score reliability values are found for

the items in such a test that has been proven to be reliable? This kind of research

would shed a new light on values that are acceptable for item-score reliability.

Even though item-score reliability seems to be mainly used in the context

of single-item measures, we believe there are more situations in which item-score

reliability could be useful. Item-score reliability assesses the repeatability of an

item score, which is an important quality feature of an item. Using individually

reliable items in a test will increase the quality of the measurement of the compre-

hensive test performance as a whole. When the goal is to measure an attribute to

make decisions about the respondent, it is of greatest importance that these mea-

sures are reliable. Investigating the item-score reliability of the different items in

a test in addition to other item and test properties, is therefore interesting when

a researcher wants to assess the quality of the measurements obtained by using

a certain item. Based on the estimated item-score reliability values, researchers

can assess how to value their obtained measurements. This might lead to omitting

item scores, gathering more data, or caution when interpreting the results.

Finally, validity is also an important aspect of measurement. Reliability is a

necessary condition for obtaining validity. However, when an item has high relia-

bility, this does not necessarily mean it is also valid. Both construct and predictive
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validity are important aspects when making decisions based on measurements,

and it is questionable whether the validity of a single-item measure is sufficient

for basing decisions on a single measurement. Covering an entire attribute by

means of a single-item measure seems impossible. To ensure the entire attribute is

covered when measuring or predicting this attribute, multi-item measures are the

better option.
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Appendix A

Item-Score Reliability Methods Based on Cronbach’s

α and Guttman’s λ2

In this Appendix it is shown what coefficient α and coefficient λ2 would look like

in the context of a single item score.

Coefficient α

An item-score reliability coefficient based on coefficient α can be constructed

as follows. Let π̃αx(i),y(i′) be an approximation of πx(i),y(i′) based on observable proba-

bilities, such that replacing πx(i),y(i′) in the right-hand side of Equation 3 by π̃αx(i),y(i′)
results in coefficient α; that is,

α =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+

∑
i

∑
x

∑
y

[
π̃αx(i),y(i′) − πx(i)πy(i)

]
σ2
X

. (A.1)

Van der Ark et. al (2011) showed that the numerator of the ratio on the right-hand

side equals ∑
i

∑
x

∑
y

[
π̃αx(i),y(i′) − πx(i)πy(i)

]
= Jm2π̄, (A.2)

where π̄ is the mean of the J(J − 1)m2 observable terms in the numerator of the

first ratio in Equation 3,

π̄ =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
J(J − 1)m2

. (A.3)

Hence, coefficient α equals

α =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+
Jm2π̄

σ2
X

. (A.4)
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Let wi be an arbitrary weight with wi ≥ 0 and
∑

iwi = 1. Coefficient α in Equa-

tion A.4 can also be written as

α =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+

∑
i

wiJm
2π̄

σ2
X

. (A.5)

The aim of including wi in the definition of α is to demonstrate identifiability

problems in α for item scores. Consistent with Equation 4, for an item score i,

Equation A.5 may be reduced to

αi =
wiπ̄

σ2
Xi

. (A.6)

Because wi is arbitrary, coefficient α for item scores is unidentifiable, which

makes this item-score reliability coefficient unsuited for estimating item-score re-

liability. Note that a natural choice would be to have wi = 1 for all i. In that case,

the numerator of Equation A.6 is a constant and coefficient α for item scores is

completely determined by the variance of the item.

Coefficient λ2

A line of reasoning similar to that for coefficient α can be applied to coeffi-

cient λ2. Let π̃λ2x(i),y(i′) be an approximation of πx(i),y(i′) based on observable proba-

bilities, such that replacing πx(i),y(i′) in Equation 3 by π̃λ2x(i),y(i′) results in coefficient

λ2; that is,

λ2 =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+

∑
i

∑
x

∑
y

[
π̃λ2x(i),y(i′) − πx(i)πy(i)

]
σ2
X

. (A.7)

Van der Ark et. al (2011) showed that

∑
i

∑
x

∑
y

[
π̃λ2x(i),y(i′) − πx(i)πy(i)

]
=

√√√√ J

J − 1

∑∑
i 6=j

{∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]}2

= γ.

(A.8)

Hence, coefficient λ2 equals

λ2 =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+
γ

σ2
X

. (A.9)
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Item-Score Reliability Methods Based on Cronbach’s α and Guttman’s λ2

Let wixy be an arbitrary weight with wixy ≥ 0 and
∑
i

∑
x

∑
y

wixy = m2J . Using

weights wi, coefficient λ2 in Equation A.9 can also be written as

λ2 =

∑∑
i 6=j

∑
x

∑
y

[
πx(i),y(j) − πx(i)πy(j)

]
σ2
X

+

∑
i

wiγ

σ2
X

, (A.10)

Consistent with Equation 4, for an item score i, based on Equation A.10 we

can consider

λ2i =
wiγ

σ2
Xi

. (A.11)

Similar to the item version of coefficient α, the item version of coefficient λ2 is

unidentifiable because wi can have multiple values, which renders this version of

coefficient λ2 not a candidate to estimate ρii′. Setting wi to 1 results in a coefficient

that depends on the item variance, making it unsuited as a coefficient for item-

score reliability.
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Appendix B

Deriving the Item-Score Reliability and Test-Score

Reliability from the Two-Parameter Logistic Model

Let a test consist of J items each with m + 1 categories 0, 1, . . . ,m; and let Xi

(i = 1, . . . , J) denote the score on item i. Let θ denote a latent trait with known

distribution G(θ) with mean µθ and variance σ2
θ . The two-parameter logistic model

(2PLM) models dichotomous items; hence m = 1. Let αi denote the discrimination

parameter and let βi denote the location parameter. In the 2PLM, P (Xi = 1|θ) ≡
Piθ is modeled as

Piθ =
exp [αi(θ − βi)]

1 + exp [αi(θ − βi)]
. (B.1)

The first partial derivative of Piθ with respect to θ equals

P ′iθ =
∂Piθ
∂θ

= αiPiθ(1− Piθ) (B.2)

(e.g., Baker, 1992, p. 81). Latent trait θ and true score T are related. Let Tiθ
denote the item true score given a latent trait value. Under the classical test theory

model, by definition, Tiθ = E(Xi|θ) (Lord & Novick, 1968, p. 34). Furthermore,

from straightforward algebra, it follows that E(Xi|θ) =
m∑
x=1

P (Xi ≥ x|θ), which

reduces to E(Xi|θ) = Piθ for m = 1. Hence, in the 2PLM, Tiθ = Piθ (Lord, 1980, p.

46). Let σ2
Ti

denote the variance of Ti. Following the delta method (e.g., Agresti,

2002, pp. 577–581),

σ2
Ti
≈ (P ′iµθ)

2σ2
θ . (B.3)

Inserting the right-hand side of Equation B.1, in which θ has been replaced by µθ,

into Equation B.2; and subsequently, inserting the right-hand side of Equation B.2

into Equation B.3 yields

σ2
Ti
≈ α2

(
exp(αi(µθ − βi))

1 + exp(αi(µθ − βi))

)2(
1− exp(αi(µθ − βi))

1 + exp(αi(µθ − βi))

)2

σ2
θ . (B.4)
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Let Pi ≡ P (Xi = 1) =
∫
θ
PiθdG(θ). Let σ2

Xi
denote the variance of Xi. Because Xi

is dichotomous,

σ2
Xi

= Pi(1− Pi) =

∫
θ

PiθdG(θ)

(
1−

∫
θ

PiθdG(θ)

)
. (B.5)

Let Pij ≡ P (Xi = 1, Xj = 1). Due to the local independence assumption in the

2PLM, Pij =
∫
θ
PiθPjθdG(θ). Let σXi,Xj denote the covariance between Xi and Xj.

In the classical test theory σXi,Xj = σTi,Tj for i 6= j. Because Xi is dichotomous,

σXi,Xj = σTi,Tj = Pij − PiPj =

∫
θ

PiθPjθdG(θ)−
∫
θ

PiθdG(θ)

∫
θ

PjθdG(θ). (B.6)

Let

σ2
T =

J∑
i=1

σ2
Ti

+
J∑
i=1

J∑
j=1

i 6=j

σTi,Tj (B.7)

and

σ2
X =

J∑
i=1

σ2
Xi

+
J∑
i=1

J∑
j=1

i 6=j

σXi,Xj (B.8)

denote the true-score variance and test-score variance, respectively; where the

item variances and covariances can be derived from the 2PLM using Equations B.4,

B.5, and B.6.

Item-score reliability ρii′ =
σ2
Ti

σ2
Xi

can be obtained from Equation B.4 and Equa-

tion B.5. Test-score reliability ρXX′ =
σ2
T

σ2
X

can be obtained from Equation B.7 and

Equation B.8.
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Summary

This dissertation deals with item-score reliability. The goal was to create an

overview of studies that had touched upon this subject so far, to develop and

investigate the performance of methods to approximate item-score reliability, and

to evaluate the usefulness of item-score reliability in practice.

A literature review was performed, where the current status of methods to

estimate item-score reliability and the use of these methods was assessed. The

main part of the literature used item-score reliability as a quantity to justify the

use of single-item measures. The method that was used most frequently was the

one developed by Wanous and Reichers (1996), based on the correction for at-

tenuation (Nunnally & Bernstein, 1994, p. 257), which we refer to as method

CA.

The available method CA was considered in the next study, as well as three

test-score reliability estimation methods that were adjusted such that they could be

used for approximating the reliability of an item score instead of the reliability of

a test score. This led to four methods for estimating item-score reliability: method

MS, Guttman’s method λ6, the latent-class reliability coefficient (method LCRC),

and method CA. A simulation study was performed to compare the methods with

respect to median bias, variability (inter-quartile range; IQR) and percentage of

outliers. The simulation study consisted of six conditions: standard, polytomous

items, unequal α-parameters, two-dimensional data, long test, and small sample

size. Methods MS and CA showed to be the most accurate. Method LCRC showed

almost unbiased results, but large variability. Method λ6 consistently underesti-

mated item-score reliability, but showed smaller IQR than the other methods.

In the next study, the three most promising item-score reliability methods

(methods MS, λ6, and CA) were compared to four well-known and widely ac-

cepted item indices, assessing item quantities other than reliability. These item

indices were the corrected item total-correlation, the item factor-loading, the item

scalability, and the item discrimination. Values that can be expected for item-score

reliability in real-data sets were investigated, and the relation between the three

item-score reliability methods and the four item indices were investigated. Based

on the cutoff values of these item indices, a lower bound of .3 for item-score reli-
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ability was proposed.

A fourth study further investigated the relationship between item-score reli-

ability, its estimation methods, and the four item indices assessing other quantities

than reliability. Also, the feasibility of a lower bound for item-score reliability es-

timates of .3 was further investigated. In a simulation study, the item’s difficulty

parameter, variance of the other items’ location parameters, and number of items

in the test were varied. All methods showed increasing bias for higher item-score

reliability values. Method CA showed good results for items with a non-deviant lo-

cation parameter. The results showed a one-to-one relationship between the item

factor-loading and item-score reliability. It was concluded that a lower bound of

.3 seemed to be too high in practice.

In a final study, the usability of item-score reliability as a criterion for item

selection in test construction was investigated. Item-score reliability methods MS,

λ6, and CA were taken into account and compared to the corrected item-total cor-

relation, which was added as a benchmark method. An ideal ordering to add items

to the test (bottom-up procedure) or omit items from the test (top-down proce-

dure) was defined based on the population test-score reliability. The orderings the

four item-assessment methods produced in samples were compared to the ideal

ordering, and the degree of resemblance was expressed by means of Kendall’s τ .

To investigate the concordance of the orderings across 1000 replicated samples,

Kendall’s W was computed for each item-assessment method. The results showed

that for both the bottom-up and the top-down procedure, item-assessment method

CA and the corrected item-total correlation most closely resembled the ideal order-

ing. Generally, all item assessment methods resembled the ideal ordering better,

and concordance of the orderings was greater, for larger sample sizes and greater

variance of the item discrimination parameters.

It can be learned from the studies in this dissertation that it is impossible to

estimate the item-score reliability of a test containing a single item; One always

needs other items in the test to estimate item-score reliability of a particular item,

or another test allegedly measuring the same attribute as the target item. Even

though until now item-score reliability is mainly used for estimating the reliability

of single-item measures, it was argued that multi-item measures are the better

option, because making important decisions based on single-item measures seems

to be too much prone to error. Therefore, item-score reliability is a useful tool for

assessing the repeatability of an item score, and thereby the quality of the item.
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Michèle, Ylva, Paul, Paulette, Pieter, Robert, Soogeun en Zhengguo bedankt voor

alle gezelligheid!

Aan de tijd gedurende mijn master in Utrecht heb ik erg leuke herinneringen.

Het was voor mij een moeilijke tijd en ik denk dat mijn studiegenoten niet door

hebben gehad hoe zij mij door een lastige periode gesleept hebben. Samen dagen-

lang studeren op de Uithof en samen ervoor zorgen dat we uiteindelijk allemaal

verder kwamen; ik ben blij dat we nog steeds contact hebben. Bente, Danielle,

Jolien, Kees, Kirsten, Laura, Mariëlle, Rob, Sanne en Timo, bedankt!
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