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Maximum likelihood estimation of a finite mixture of

logistic regression models in a continuous data stream

Prof. dr. M.C. Kaptein Dr. P. Ketelaar

Abstract

In marketing we are often confronted with a continuous stream of responses to market-
ing messages. Such streaming data provide invaluable information regarding message
effectiveness and segmentation. However, streaming data are hard to analyze using
conventional methods: their high volume and the fact that they are continuously aug-
mented means that it takes considerable time to analyze them. We propose a method for
estimating a finite mixture of logistic regression models which can be used to cluster cus-
tomers based on a continuous stream of responses. This method, which we coin oFMLR,
allows segments to be identified in data streams or extremely large static datasets. Con-
trary toblack box algorithms, oFMLR provides model estimates that are directly inter-
pretable. We first introduce oFMLR, explaining in passing general topics such as online
estimation and the EM algorithm, making this paper a high level overview of possible
methods of dealing with large data streams in marketing practice. Next, we discuss
model convergence, identifiability, and relations to alternative, Bayesian, methods; we
also identify more general issues that arise from dealing with continuously augmented
data sets. Finally, we introduce the oFMLR [R] package and evaluate the method by
numerical simulation and by analyzing a large customer clickstream dataset.

Keywords: Clustering, Finite mixture models, Logistic regression, Online estimation,
Expectation-Maximization.

1 Introduction

In marketing we are often confronted with continuous data streams of customer behavior
(Su and Chen, 2015; Chatterjee et al., 2003; Moe and Fader, 2004; Bucklin and Sismeiro,
2009). Consider online advertising which has become a major advertising medium,
with over 110 billion USD invested in 2014 in search engines, social media, and general
websites (Yeu et al., 2013). Online advertising is an extremely competitive medium, and
customers attention is not easily won: Numerous studies have shown that customers
deliberately avoid internet ads (Yaveroglu and Donthu, 2008; Cho and Cheon, 2004;
Rojas-Méndez et al., 2009; Baek and Morimoto, 2012; Seyedghorban et al., 2015). As
such, getting ads noticed and processed by users is of particular importance (Huang and
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Lin, 2006; Yeu et al., 2013; Yaveroglu and Donthu, 2008). This is not easy, and marketing
and advertising scholars have spent considerable effort studying online customer behavior
in the last decades (see, e.g., Ranaweera, 2005; Huang and Lin, 2006; Micheaux, 2011;
Bleier and Eisenbeiss, 2015; Vakratsas et al., 2004). In these studies, scholars have
stressed the difficult challenge of understanding online customer behavior (Yeu et al.,
2013).

On a positive note, online customer behavior can potentially make it possible to mea-
sure the effectiveness of marketing messages, experiment with novel types of messages,
and understand customer responses better (Huang and Lin, 2006). Since online behav-
ioral responses of customers can often be measured directly on scale hitherto unknown,
online advertising and retailing opens up a treasure throve of information: we can now
obtain direct, near real-time, data on customers. This information should allow us to
develop and test new marketing theories (Laczniak, 2015).

However, to use these emerging opportunities for research and marketing practice, we
need to have sound analysis methods capable of dealing with novel data sources. For ex-
ample, while it is potentially extremely useful, analyzing click stream data is challenging
for several reasons. First, click stream data sets grow very large: databases contain-
ing responses (clicks) to online advertisements quickly exceed millions of records, often
calledrows. Since we often also have access to a large number of customer background
characteristics (e.g., their search queries, their IP address, their geo-location, and their
purchase behavior), the database often also contains a large number of columns. The
sheer volume of data poses problems. But not only does the volume poses problems:
click stream data are often continuously augmented. New data points arrive continu-
ously, and often at high velocity. Hence, to truly utilize the data-sources at our disposal,
we need analysis methods that can deal with both high volume and high velocity data
(Boyd and Crawford, 2012).

Recently, many technologies and statistical methods have been proposed to deal with
Big Data or high velocity data. On the one hand, a large number of technical advances
have been made: infrastructures such as Hadoop, Apache Spark, and the Map/Reduce
framework allow us to store and process larges volumes of data (Chu et al., 2007; Alpcan
and Bauckhage, 2009). These software packages are, however, geared towards computer
scientists, not marketing scholars. On the other hand, scholars in statistics and machine
learning are actively working on novel estimation methods to deal with high volume
and high velocity data. Examples include methods for fitting generalized linear models
in data streams using gradient descent methods (Zinkevich et al., 2010), as well as
computationally efficient bootstrap methods (Owen and Eckles, 2012).

This paper proposes another estimation method that is well suited for the analysis
of click-stream responses to marketing messages: we present an online (or streaming)
method for estimating Finite Mixtures of Logistic Regression models which we coin
oFMLR. Our method will appeal to marketing scholars for a number of reasons: first,
it is well suited for analyzing the dichotomous response data that are often observed
in online advertising and retailing. Furthermore, the model is capable of dealing with
extremely high volume and high velocity data, thus making it a perfect candidate for
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analyzing click stream data. Finally, it builds on the well-known logistic regression model
that is frequently used in marketing research (see, e.g., Yeu et al., 2013; Bonfrer and
Drèze, 2009; Kireyev et al., 2015, for examples of the use of logistic regression). This
has the advantage that marketing scholars can readily interpret the estimated model
parameters unlike the “black box” models often used in machine learning.

The proposed oFMLR is related to recent attempts to cluster customers in large
datasets: for example, Su and Chen (2015) proposed a specific method of deriving cus-
tomer interest segments from behavioral observations in online commerce. Our method
is, however, more general in the sense that it does not rely on particularities of internet
usage such as the frequency of customer visits: our method can be used to uncover
segments in data streams, as long as the primary outcome measure is dichotomous.
OFMLR is a specific implementation of the online expectation-maximization (EM) al-
gorithm more generally described by Cappé and Moulines (2009) and allows clustering
(or segmentation) of customers during a data-stream: the model allows one to identify
homogenous groups of customers without using ad-hoc analysis.

Mixture models, more specifically mixtures of logistic regression models, have been
used frequently and effectively in the marketing literature for decades. Already two
decades ago, Wedel et al. (1993) discussed latent class Poisson regression models and
more general mixture models (Wedel and DeSarbo, 1995), in work that remains influ-
ential in marketing practice today. Applications of finite mixtures of regression models
date even further back, with Kamakura and Russell (1989) applying mixture models
for customer segmentation. Research into the use of mixture models for applied market
segmentation is still thriving (Wedel and Kamakura, 2012), and, despite having been
known for decades, their use is still increasing. Mixture models are an invaluable tool
for analyzing marketing data and identifying consumer segments. Unfortunately, many
estimation methods of mixture models are computationally demanding for extremely
large or continuously augmented datasets. Our aim is to solve this problem for a specific
class of models. While presenting our solution, we also emphasize the issues that arise
when analyzing high velocity data streams more generally, and discuss several possible
approaches.

The next section of this paper presents some of the conceptual building blocks of
our proposed method. First, we introduce the notation that is used. Second, we discuss
possible methods of dealing with high volume or high velocity data, focussing explicitly
on online estimation as a preferred approach. Third, we discuss estimation of a simple
logistic regression model in a data stream using stochastic gradient descent (SGD). Next,
we detail oFMLR: we present an algorithm for estimating a finite mixture of logistic
regression models in a data stream. After formalizing the model and discussing the
Expectation-Maximization (EM) algorithm as a general method for estimating latent
variable models, we present oFMLR and discuss how the estimated parameters can
be interpreted. In order to explain the issue to a broader audience, we introduce the
methods for dealing with high velocity data, SGD, and EM quite broadly. Next, we
further discuss convergence, identifiability, and model selection, and we evaluate oFMLR
using a simulation study and by analyzing an actual dataset. Finally, we show the
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practical use of oFMLR and discuss possibilities for future work.

2 Big Data Analysis in Online Marketing

This section presents several conceptual solutions for dealing with extremely high volume
or high velocity data streams, and introduces an estimation method for logistic regression
models1 that is well-suited for dealing with high volume and velocity data.

Before discussing the possible methods of dealing with large datasets, we first intro-
duce our notation. We assume that the data of interest consists of clicks on marketing
messages (e.g., advertisements or product displays) that arrive sequentially over time.
We further assume the dataset is continuously augmented. We will denote yt ∈ {0, 1}
for a click on a message at a specific point in time t = 1, . . . , t = T (where the hori-
zon T might not be known). We will assume that clicks on messages originate from
different customers, and hence by analogy the subscript t, would often, in the analysis
of static datasets be referred to using i = 1, . . . , i = n where n is the total number of
responses; we will use yi explicitly when discussing static analysis methods. Next to our
dependent variable of interest y, we often know a number of properties of the message
displayed (e.g., the content of the advertisement), and we know a number of customer
characteristics as well. We will denote this information using the feature vector xt.

When considering the analysis of a static dataset we will sometimes refer to vector
y = (y1, . . . , yn), and the (n× p) matrix X as the data. Here, p is the total number of
features (often including a column of 1’s for the intercept of a model). The full dataset
D, is thus composed of rows d1 = (y1,x1), . . . ,dT = (yT ,xT ). Finally, we will use θ
quite generally to denote the quantities of interest to a researcher (e.g., the parameters
of some model), and θ̂t for the estimated state of the parameters at time t.

2.1 Methods of Dealing with “Big Data”

Analyzing the click-stream data resulting from online marketing is frequently a Big Data
problem for a variety of reasons: first, the number of observations T is large. This might
be cumbersome since analysis using standard statistical software may take too long.
Second, the data are often continuously augmented; thus, T grows continuously. This
is cumbersome not just when T is large, but also when the data arrive at large speeds:
It is not feasible to re-analyze the newly resulting dataset every time the old dataset is
augmented.2 There are, however, several methods available to deal with large, or quickly
augmented datasets. Broadly, the following four approaches can be identified:

• Subsampling: A simple method of dealing with a dataset that is too large is sub-
sampling from the collected data. Here we randomly select m < T rows from the

1Note that the same method is more broadly applicable for maximum likelihood estimation—our
example however focusses on logistic regression.

2The dimensionality of the feature vector xt might also pose problems in the analysis. Many feature
selection and dimensionality reduction methods have been developed to deal with such problems (see,
e.g., Yue et al., 2012; Gaber et al., 2005). These are outside the scope of this paper.
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dataset D, without replacement. Clearly, if m is chosen such that the resulting
dataset can be dealt with using conventional software, the problem is solved; it is,
however, solved at the cost of losing the information from data points not included
in the sample. Subsampling can also be done in data streams: in this case, one
randomly ignores a proportion of the incoming datapoints.

• Moving Window: : A second approach for dealing with large datasets is to subsam-
ple only the last m elements of the data and use those for analysis. Thus, at each
time point, the analyzed data are composed of rows dT−m, . . . ,dT . If m is chosen
such that the analysis can be carried out faster then the dataset is augmented, the
problem is solved; once again, however, it is solved at the cost of ignoring available,
historical, information.

• Parallelize: A method that has become popular over the last decade is paralleliza-
tion. Effectively, if one computing machine (often referred to as core) cannot deal
with all the data, then we split the data over c cores. Each core receives its own
batch of T/c rows, performs the analysis on its batch, and the results are com-
bined. This primarily solves the problem of analysis becoming too lengthy; the
computation time is effectively used in parallel as opposed to in sequence, and
is thus often greatly reduced. Note, however, that not all analysis methods can
be easily parallelized: some methods that are relatively standard in advertising,
such as mixture models (Cheong et al., 2011), are not easily expressed in separate,
independent batches (for more on this topic see Poggio et al., 2011)

• Online learning (or streaming): A fourth possible approach is called “online learn-
ing”, which is a somewhat confusing name in situations where the data is collected
online (the latter referring to on the Web, the former referring to the estimation
method). The basic idea behind online learning is to identify the parameters θ
of interest up front, and subsequently to make use of an update function of the
parameters each time a datapoint enters: θt = f(θt−1,dt).

In this paper we will focus solely on online learning since a) it is based on all the
datapoints (as opposed to subsampling or moving window approaches), and b) it is
extremely well-suited for dealing with high velocity data streams: as long as the update
of θ can be computed quickly, online learning can provide accurate estimates at each
point in time. Note that we will sometimes use the shorthand notation θ := f(θ,d) to
denote the parameter update as a function of the old parameter and a single datapoint.

To illustrate the computational advantage of online estimation, consider the compu-
tation of a simple sum: we merely want to know the number of views of an advertisement.
Hence, we maintain a counter θcount denoting the number of views. Conventional anal-
ysis would compute this as follows: θcountT =

∑T
t=1 1. Each time a new datapoint enters,

this count would have to be computed again: θcountT+1 =
∑T+1

t=1 1. It is easily seen that this
requires 1 + 2 + · · ·+ T − 1 + T = 1

2T (T + 1) computations. Using online learning one
would specify: θcountT+1 = θcountT + 1 (or simply θ := θ + 1); a very simple update function,
using just one computation for each new datapoint and thus T computations in total
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(1 + 1 + . . . ). This tremendous difference in the computational complexity of comput-
ing a count offline vs. online clearly highlights the appeal of online methods for fitting
statistical models in high volume or high velocity data streams. Luckily, more than
just sums can be computed exactly online: means, variances, covariances, linear models,
and a number of other interesting quantities can be computed using an update function
rather than by revisiting all historical data (Ippel et al., 2017). However, exact online
estimation methods are not available for more complex models—such as the mixture
model we discuss below. The next section discusses possible approximation methods
to fit more complex models. Note that we focus on frequentist estimation; alternative
Bayesian methods will be discussed in Section 3.7.

2.2 Online Learning of Logistic Regression

This section discusses how a logistic regression model can be estimated using online
learning. We aim to model the observations yi which are a Binomial random variable
whose proportion parameter p depends on xi. Hence, yi ∼ bin(ni, p(xi)) using a logit
link:

p(xi) =
1

1 + e−xiβ
(1)

where xiβ is called the linear part of the model and the parameter vector β of the
model is easy to interpret (for more details see Huang and Lin, 2006; Micheaux, 2011;
Yaveroglu and Donthu, 2008).

In a conventional frequentist offline analysis, the parameters are generally estimated
using maximum likelihood. The likelihood of the data as a function of the parameters
is given by

L(β|D) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi

=
n∏
i=1

(
1

1 + e−xiβ

)yi (
1− 1

1 + e−xiβ

)1−yi
(2)

For computational convenience, one often takes the log of the likelihood (which simplifies
the the computation by effectively replacing the product term by a sum), and subse-
quently finds the maximum of the log-likelihood l(β|D) as a function of β by setting its
derivative to 0. As usual, we will denote the resulting estimate β̂. However, in the case
of logistic regression, this procedure results in a system of nonlinear equations that is
not easily solved; the solution cannot be derived algebraically and must be numerically
approximated.

However, other methods are available, a particularly simple one being Gradient De-
scent (GD), or Ascent (GA) in the case of maximization: with GD we compute the
gradient—the vector of first order derivatives—of the log-likelihood, ∇l(β|D), and eval-

uate it at some initial value of the parameters β̂
(0)

. Next, we apply the following iterative
scheme:

β̂
(i+1)

= β̂
(i)

+ λ∇l(β̂(i)|D). (3)
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Hence, we make a step at each iteration (the size of which is determined by λ) in the
direction of the gradient.

This procedure is intuitive: consider finding the maximum of a parabola, f(x) =
−(x − a)2 where a is some constant (and the sought-for value of x that maximizes
f(x)). If, f ′(x) > 0, (the derivative evaluated at x being positive) the curve is going
up, and thus the maximum a must be to the right of x. Thus, one has to make a step
towards higher values of x. Similarly, if f ′(x) < 0, the curve is sloping down, and lower
values of x would approach the maximum. Gradient Ascent formalizes this intuition,
and generalizes it for multidimensional cases. Given an appropriate step size λ, GA will
converge to the maximum likelihood estimate (Poggio et al., 2011).

It is relatively simple to transform parameter estimation using GD into an online
learning method called Stochastic Gradient Descent (SGD); we merely change from
updating our parameter estimates β using multiple iterations through entire dataset D
to updating our estimates for each new data point Dt:

β̂t+1 = β̂t + λ∇l(β̂t|dt), (4)

or equivalently,

β̂ := β̂ + λ∇l(β̂|d) (5)

For specific models and specific learn rates, one can show that SGD converges to the max-
imum likelihood estimate (Poggio et al., 2011). ). Logistic regression is especially well
behaved in this case, but for an extensive discussion of SGD learning—and convergence—
rates we refer the reader to Toulis et al. (2014). Note that SGD is a useful online es-
timation method for any model for which the derivative of the log-likelihood is easy to
evaluate: hence, SGD provides a general method for fitting statistical models in data
streams (Zinkevich et al., 2010). However, if the gradient of the log-likelihood is not
easy to evaluate, then SGD might be cumbersome.

3 Mixed Logistic Regression Models in Data streams

Logistic regression models are frequently used to analyze click-stream data. In the previ-
ous section, we have illustrated how this model can be estimated in a high volume, high
velocity data stream using SGD. However, marketing click-stream data are often gener-
ated by diverse groups of customers. While the logistic regression model is well-suited to
deal with such heterogeneity if these clusters (or segments) of customers are known, this
is not always the case: though customers can often be meaningfully grouped into rela-
tively homogenous clusters, the cluster memberships are not known a priori. Rather, the
latent, unobserved, cluster memberships can only be derived ad hoc from the collected
data. Such clustering is quite often undertaken in advertising and marketing research
(e.g., Bakshy et al., 2012; McFarland et al., 2006; Su and Chen, 2015; Jedidi et al.,
1997; Kireyev et al., 2015) and is meaningful for marketing theory: identifying clusters
of consumers and interpreting model estimates can greatly improve our understanding
of the effects of marketing messages.
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3.1 A Finite Mixture of Logistic Regression Models

The finite mixture of logistic regression models offers a suitable clustering method for
online advertising (Gortmaker et al., 1994; Wang and Puterman, 1998). This model
extends the logistic regression model by assuming that the observed data originate from
a number of unobservable clusters K that are characterized by different regression mod-
els. Effectively, one assumes that there are k = 1, . . . , k = K homogenous clusters of
customers, each with its own relationship between the feature vector x and the observed
clicks y. For example, one could imagine two groups of customers differing in their re-
sponses to product pricing: One group of customers (k = 1) might be seeking exclusivity,
and thus attracted by high prices, while another group k = 2 is looking for bargains.
This means that a positive slope of price would be expected for the first group, all else
being equal, while a negative slope would be expected for the second group.

An intuitive way of thinking about mixture models is to simply extend the logistic
regression model presented in Equation 2. We can denote the likelihood of the finite
mixture model by:

L(θ|D) =

n∏
i=1

K∑
k=1

αk

(
1

1 + e−xiβk

)yi (
1− 1

1 + e−xiβk

)1−yi
(6)

where the proportion parameter p(xi) of the observed yi’s is modeled by a separate vector
of coefficients βk within each unobserved cluster. The cluster membership probabilities
αk (

∑K
k=1 αk = 1) are considered “mixing probabilities” which relate to the size of the

clusters.
One could interpret the model as originating from the following sampling scheme:

first, a cluster k is drawn from a multinomial distribution with probabilities α1, . . . , αk.
Second, given the cluster, the observation yi is generated from the corresponding model
with parameters βk. Note that we will often use θ to refer to both the mixture proba-
bilities (α) as well as the regression coefficients within each cluster (β1, . . . ,βk).

3.2 Estimating Mixture models: The EM algorithm

Estimating the finite mixture model is more involved than estimating simple regression
models since the log-likelihood of the data is not merely a summation over datapoints,
but rather a summation over data points and often unknown clusters (Wang and Put-
erman, 1998). This complicates estimation as the gradient of the (log-)likelihood is not
easily evaluated. This complicates estimation, as the gradient of the (log-)likelihood is
not easily evaluated. However, if the cluster membership of each customer were known,
then the estimation is simple: if we know in advance to which cluster a customer belongs,
then we can simply estimate separate logistic regression models. This occurs frequently:
for many latent variable or latent class models, estimation is greatly simplified if the
class memberships would have been known. The EM algorithm is frequently used to
estimate parameters in such situations.

To give an idea to how the EM algorithm tackles the unobserved data problem, we
consider a relatively simple example (inspired by the explanation in Do and Batzoglou,
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2008). Consider observing a total of 50 coin tosses originating from the tossing of two
coins, A and B, in batches of ten. Hence, the data could be fully described using two
vectors, each with five elements, where the vector y = (y1, y2, . . . , y5) denotes the number
of heads in each of the five batches (thus yi ∈ {0, . . . , 10}), and z = (z1, z2, . . . , z5)
denotes the coin that was tossed zi ∈ {A,B}. Our objective is to estimate the probability
that each coin will land heads, which we will denote θ = (θA, θB). A complete observed
dataset could be: y = (3, 8, 2, 9, 7) and z = (A,B,A,B,B) which intuitively raises the
idea that θB > θA.

Given the full dataset, maximum likelihood estimation is simple:

θ̂A = # of heads using coin A
# of tosses using coin A =

3 + 2

10 + 10
= .25 (7)

and similarly for θ̂B = 24
30 = .8. This is analogues to knowing the cluster k for our

finite mixture model, and merely using a conventional ML approach within each cluster.
However, what can we do if we only observe the vector y, and not z?

Formally, we are seeking a method to maximize the log-likelihood of the observed
data l(y;θ). The problem is easy when we observe all the data and we are looking for
the complete data solution, l(y, z;θ), as demonstrated above. The EM algorithm allows
us to solve the incomplete data case, where z is not observed. The iterative algorithm
starts with a “guess” of the parameters. For example we can set θ̂A = .4 and θ̂B = .5.
Next, we iterate the following steps:

1. Expectation (E) step: In the expectation step, a probability distribution over the
missing data is “guessed” given the current model parameters. In the coin tossing
example, for each batch we compute the probability of that batch originating from
coin A or coin B. For example, for batch 1 (3/10), and θ̂ as specified above, the
probability of the data originating from coin A is .65, while it is .35 for B. This
is intuitive: given that our initial estimate of θ̂A is closer to 3/10 = .3 then our
initial estimate θ̂B the data in batch one is more probable for coin A then for coin
B.3

2. Maximization (M) step: In the maximization step, the model parameters are up-
dated using the guessed probability distribution over the missing data. Here, we
compute the maximum likelihood estimate as if we observed z, but, we weight the
data according to the probability that it originates from one of the coins. Hence,
we are not certain which cluster it belongs to (either A or B as denoted in vector
z) but rather assign it probabilistically. This gives us the new estimates θ̂A and
θ̂B which are used in the next expectation step.4

3These probabilities are computed by evaluating the binomial density f(y1;n = 10, θ) = Pr(Y =
y1) =

(
10
y1

)
θ̂y1 (1 − θ̂)10−y for both θ̂A and θ̂B and normalizing. This results in vectors pa =

(0.65, 0.19, 0.73, 0.14, 0.27) and pb = (0.35, 0.81, 0.27, 0.86, 0.73) respectively for the probability that coin
A or coin B generated the data in the respective batch.

4The updated θ̂A is computed by multiplying pa by y to obtain the “weighted” number of successes,
which gives (1.9, 1.6, 1.5, 1.2, 1.9). The same is done for the failures, and based on these weighted obser-
vations the guesses of the parameters are updated; this leads to θ̂A = .408 and θ̂B = .693 after the first
iteration.
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The numerical values of the estimate θ̂A in subsequent iterations are .40, .41, .30, .26,
and .25 respectively; hence, the algorithm seems to have converged in as few as five
iterations.

The EM algorithm is very flexible, and can be used for a large number of problems
that can be formulated as a missing data problem. We refer the interested reader to Do
and Batzoglou (2008) for a general introduction, and to Moon (1996) or Dempster et al.
(1977) for a thorough mathematical overview. The algorithm is well-known, and the
EM-solution for the offline estimation of a mixture of logistic regression models is also
well-known (Wang and Puterman, 1998). The EM algorithm for a mixture of logistic
regression models can be understood as follows:

1. Expectation (E) step: Given initial values of α̂ (the mixture probabilities) and
β̂k (the regression coefficients in each cluster), we compute the expected cluster
membership probability of each observation, zik (thus, we compute a “probabilistic
assignment” to k for each observed unit i).

2. Maximization (M) step: Given the conditional cluster membership assignments as
computed in the E step, we fit a weighted logistic regression (using conventional
ML estimation) for each cluster k to obtain an update of β̂k. The update of
α̂ is obtained by averaging over the expected membership probabilities: α̂k =∑n

i=1 zik/n

This iterative scheme, when combined with SGD, is surprisingly easy to implement
online, as will be demonstrated in the next section.

3.3 Online Finite Mixture of Logistic Regressions

Here we present our method for fitting the oFMLR model in full. The algorithm starts
with a choice of K (fixed—see Section 3.6 for a discussion), and starting values for α̂
and each β̂1, . . . , β̂K (which we jointly refer to as θ̂). Next, for each arriving datapoint
dt we compute the following:

1. Expectation (E) step: In the expectation step the conditional probability of the
datapoint dt beloning to a cluster k is computed given the current state of α̂ and
β̂k. Thus, we compute

ztk =
α̂kp(xt)

yt(1− p(xt))1−yt∑K
k=1 α̂kp(xt)

yt(1− p(xt))1−yt
(8)

where p(xt) = 1

1+e−xtβ̂k
for each k. Note that ztk = f(θ̂,dt) and is thus an online

update.

2. Maximization (M) step: In the M step we update our estimates of β̂k and α̂:5

5Note that we use α̂k below, where the k refers to the different elements of α̂, as opposed to β̂k where
each k denotes a different vector β̂ for the respective model.
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• We first update each β̂k online using SGD weighted by ztk:

β̂k := β̂k + γ∇l(β̂k|dt, ztk) (9)

:= β̂k + γzik(yt − p(xt))xt (10)

where again p(xt) = 1

1+e−xtβ̂k
.

• We then update α̂ by computing an online average of ztk:

α̂k := α̂k +
ztk − α̂k

t
(11)

We thus maintain in memory a counter t, a k-dimensional vector α̂ denoting the mixing
probabilities, and k p dimensional vectors β̂k, each of which is updated fully online.
An efficient [R] S4 package to fit the above model can be downloaded and installed
from https://github.com/MKaptein/ofmlr (the package is discussed in more detail in
Section 4.2).

3.4 Identifiability of Model Parameters

Mixture models are appealing for their ease of interpretation and intuitive represen-
tation as a latent variable model. However, mixture models also provide challenges;
we have already mentioned the difficulty of estimating the parameters of the mixture
model. This section discusses another challenge: identifiability. A given mixture model
is said to be identifiable if it is uniquely characterized, so that no two distinct sets of
parameters defining the mixture yield the same distribution. Identifiability of distinct
mixture models has been actively studied: Teicher (1963) and Teicher (1967) provided
conditions under which mixtures of binomial distributions are identifiable. Follmann
and Lambert (1991) extended this work to mixtures of logistic regression models with
random intercepts. Butler et al. (1997) considered a latent linear model for binary data
with any class of mixing distribution and provided sufficient conditions for identifiability
of the fixed effects and mixing distribution. The main result of this work for our current
discussion is easily summarized: not all mixture models are identifiable. This implies
that the parameters can not be uniquely estimated for all mixture models . Of course,
it is not very hard to see why this is the case: suppose we consider a simple mixture of
two Bernoulli random variables: p(y = 1) = αpy1(1 − p1)(1−y) + (1 − α)py2(1 − p2)(1−y)
where 0 < α < 1 is specifies the mixture probability and p1 and p2 quantify the prob-
ably of success y = 1 for each of the two Bernoulli processes. Clearly, the parameters
α, p1, and p2 are unidentifiable: informally, we could say that multiple combinations of
parameters would each maximize the likelihood of a given dataset. To illustrate, con-
sider the following five observations: 1, 0, 0, 0, 1, 1. Any choice of parameters for which
αp1 + (1−α)p2 = .5 holds maximizes the likelihood and thus there is an infinite number
of parameter sets that yield the same distribution.

The example above immediately illustrates that the mixture of logistic regressions is
not always identifiable: if we consider a finite mixture of two logistic regression models

11
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with Bernoulli observations where each model contains only one intercept, the situation is
exactly the same as in our example. However, a number of mixtures of logistic regression
models have been are identifialbe, and sufficient conditions for identification have been
studied (Follmann and Lambert, 1991). Identifiability can be obtained in two ways for
the finite mixture of logistic regression model. The first is by considering Binomial data
generation instead of Bernoulli: if we manage to meaningfully group our observations,
this can ensure identification. If we happened to know that the five observations originate
from two Binomial processes such that 1a, 0a, 0a, 0b, 1b, 1b where the subscript identifies
distinct groups, than we could obtain the maximum likelihood estimate of p1 = 1/3,
p2 = 2/3, and α = .5. More generally, having m observations for each Binomial process
is sufficient to identify k ≤ 1

2(m+ 1) mixture components. The presence of such batched
or grouped data also ensured identifiability in our coin tossing example used to illustrate
the general EM algorithm.

Unfortunately, this approach is of little use in the streaming data scenario we have
been focussing on; it would entail storing the groupings in a way which would complicate
the fitting algorithm. Luckily, however, having repeated observations is not the only
sufficient condition for a mixture model to be identifiable (and note that it is not a
necessary condition). A mixture of logistic regression models can also be identified,
informally, when the pattern within each individual logistic regression is clear enough.
If enough unique values are available for the independent variables, then this can be used
as a sufficient criteria for identifiability. (Follmann and Lambert, 1991) showed that for a
single independent variable having q unique values, a mixture with k ≤

√
q + 2−1 can be

identified, at least if each of the logistic regressions is itself also identified (in the same way
as a standard non-mixture logistic regression cannot be fit without additional constraints
if the number of parameters is larger than the number of observations). Hence, when
treating the observations as Bernoulli, sufficient criteria for identifying mixtures logistic
regression models can also be obtained in the data stream. However, we should note that
the number of components that can be identified as more unique values of an independent
variable are observed grows slowly: for 100 unique values, Follmann and Lambert (1991)
Theorem only guarantees sufficiency for identifying 9 mixture components. Since we
are considering large, continuous, data streams here, we consider the situation of more
than 100 unique values of an independent variable quite likely, but we must still caution
for over-enthusiasm when choosing a high number of mixture components. A formal
discussion of identifiability for mixture models in general can be found in Titterington
et al. (1985) or Frühwirth-Schnatter (2006), while (Follmann and Lambert, 1991) discuss
specifically the mixture of logistic models.

3.5 Convergence

Even when a model is identified, one could wonder whether the procedure used to es-
timate the model parameters (whether iterative or sequential) converges: e.g., whether
the parameter values can theoretically be guaranteed to end up in a position where the
likelihood function is maximized (or at least the procedure finds a local maximum). The
suggested procedure for oFMLR is challenging in this case since it combines stochas-
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tic gradient descent, with an online version of the EM algorithm, both of which might
or might not converge. However, convergence of both the EM algorithm (and online
versions there-of) and SGD have been widely studied.

For SGD the study of convergence, when assuming a stationary (e.g., non-time chang-
ing) process revolves around finding a learn rate γ that is both large enough for the
parameter estimates to change sufficiently in the face of new evidence, while also small
enough for the parameters to stabilize. This intuition can be formalized using the fol-
lowing criteria:

∑
γt =∞ and

∑
γ2t <∞. These objectives can be attained by using a

gradually decreasing learn rate. Learn rates such as γt = γ0t
−α, α ∈ (1/2, 1] have fre-

quently been used (Kubrusly and Gravier, 1973; Cappé and Moulines, 2009). However,
such a decreasing learn rate is not the only feasible choice; constant (but small) learn
rates effectively give more weight to recent observations than older ones, and thus fixed
learn rates can be considered a sort of smooth moving window. Especially when the
data generating process is expected to change over time, such a fixed learn rate might be
preferred over learn rates that are guaranteed to converge but assume stationarity. This
means that a small fixed learn rate combines online estimation with a smooth moving
window approach.

For oFMLR, if the individual SGDs converge, we must ask whether the latent vari-
able scheme used in the EM algorithm converges. This has also been studied for a large
number of cases, specifically by Cappé and Moulines (2009) who considered the con-
vergence of computationally feasible EM approximations similar to the online version
suggested here.We omit the technical details but caution the reader to assess convergence
by at least studying the traces of the fitted model parameters; an approach for oFMLR
will be illustrated below.

In practice, offline model convergence is often determined by looking at the changes
of model parameters over different iterations. The notion of multiple iterations is absent
in the online or streaming context, which means that traditional convergence statistics
can not be used. However, we propose a similar approach, looking at the following
statistic (included by default in our [R] package) when assessing convergence of oFMLR
in a data stream:

δ̄‖θ‖ :=
|‖θ̂‖t − ‖θ̂‖t−1| − δ̄‖θ‖

min(t,m)
. (12)

Here we use ‖θ̂‖t to denote the l2 norm (or Euclidian distance / length, ‖a‖ =
√
a21 + a22 + . . .)

of the parameter vector θ̂ at a specific data point t, and δ̄‖θ‖ to denote the moving av-
erage of the difference of this length compared to the length of the parameter vector at
the previous datapoint t − 1. The term min(t,m) in the denominator ensures that we
are looking not just at the average change in l2 norm during the full data stream, but
rather at a moving window; once the number of observations t exceeds the window length
m, older datapoints are smoothly discarded. This is similar to the effect of choosing a
small, but fixed, learn rate, as in the SGD example discussed earlier. We will examine
the performance of this convergence metric below.
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3.6 Interpretation of the Model Parameters and Choosing K

One of the advantages of oFMLR is that it provides a meaningful interpretation of the
parameters within each cluster, which is useful for policy making. Hence, contrary to
more black box approaches to clustering (Cf. Chipman et al., 2007, 2010), the current
approach allows researchers to not only segment customers, but also to interpret these
segments. The first meaningful interpretation can be derived from the estimates of
vector α. Each element k = 1, . . . , k = K of α represents the estimated proportion of
customers belonging to this specific segment. Inspecting the elements of α can give one
direct information regarding customer segments and their size. In addition, estimating
these segments in a data stream provides researchers with the opportunity to inspect
the dynamics in customer segments: if the values of the elements of α change over time,
then the behavior of different segments is apparently not stable.

Researchers can also directly interpret the estimated regression coefficients βk within
each cluster. These estimates are standard logistic regression estimates, and can thus
be interpreted as such. Within a specific cluster, the vector of estimated coefficients,
β0k, β1k, . . . , βpk, where p is the number of predictors in the model, is available during
in the data stream. These coefficients can be interpreted in terms of familiar log-odds,
and one can directly inspect which variables play the largest role in the behavior within
a segment.

In this discussion, we have not considered the choice of K: it was treated as given.
However, in reality, the number of clusters K is unknown before the start of the analysis.
The choice of K might be strictly guided by theory, which allows the analyst to choose K
in advance. However, in conventional, offline, analyses K is often determined ad hoc by
fitting models with different choices of K and inspecting their model fit and estimated
parameters. The latter is quite easily incorporated when using oFMLR: one can simply
estimate, in parallel, models with different choices of K (see simulation results below).

Formally choosing the “best” number of components K is more challenging: although
we can easily fit multiple models with different choices of K in parallel, formal tests to
determine the value of K in the face of streaming data are still actively being developed
(Zhou et al., 2005). The traditional, offline, methods for selecting the number of compo-
nents mostly rely on comparing either the likelihood or the AIC or BIC values of the
competing models (Titterington et al., 1985; Frühwirth-Schnatter, 2006). The likelihood
L(θ̂|D) (or log-likelihood l(θ̂|D) of the mixture of logistic regression is easily computed
for a static dataset (see also Eq. 6) and a set of parameter estimates. Subsequently
computing the AIC or BIC to enable model comparisons is straightforward:

AIC = 2k − 2 ln(L̂) (13)

BIC = −2 ln(L̂)k ln(n) (14)

where n is the total number of observations, k is the number of parameters in the model,
and for conciseness l̂ is chosen to denote the maximized value of the likelihood function.

The corresponding quantities are however not easily defined in a continuous data
stream. Computing the full likelihood L̂ is not feasible if the data set is large, since
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this requires re-evaluating the log-likelihood of the full data set for the current state of
the parameters θ̂t. Going back through all the data in retrospectively would defeat the
purpose of fitting the model in the stream. For oFLMR we therefore chose a slightly
different approach, one that is—to the best of our knowledge—novel. We compute the
streaming average log-likelihood of each datapoint given the state of the parameters at
that moment for a smooth window of pre-specified size m:

l̄ :=
l̂t − l̄

min(t,m)
, (15)

where l̂t denote the log-likelihood of the datapoint arriving at time t. Thus, l̄ quantifies
the average log-likelihood of each of the streaming datapoints. However, this notation
hides the fact that the value of θ̂t used to compute l̂t changes at each timepoint and thus
provides a stochastic approximation. The streaming average log-likelihood l̄ provides a
quantification of the fit of the model for the latest m points in the data stream; we
discuss the behavior of this metric below. From this metric, we can derive streaming
approximations to the AIC and BIC, respectively:

sAIC = 2k − 2l̄ min(t,m) (16)

sBIC = −2l̄ min(t,m) p ln(m) (17)

which can be used to compare models with different numbers of parameters fitted in
parallel during the data stream.

3.7 Alternative (Bayesian) Approaches

In our presentation of oFLMR we have focussed on a frequentist approach. However,
ever since the introduction of finite mixture modeling, authors have considered Bayesian
approaches for estimating parameters (see Titterington et al., 1985, for an introduction).
As is often the case, the Bayesian approach for parameter estimation is simple:

p(θ|D) =
P (θ|D)p(θ)

p(D)
(18)

∝ L(θ|D)p(θ) (19)

which indicates that we can obtain the joint posterior distribution of θ by simply spec-
ifying a prior distribution p(θ), after which, if we are interested, we can obtain point
estimates of θ̂ by summarizing the posterior p(θ|D) in some way, often taking its expec-
tation or its maximum value (Gelman, 2008). This simple formula seems to indicate that
we only need to specify a prior distribution to compute p(θ|D) since we have already
worked out the likelihood. Furthermore, one should note that the Bayesian framework
potentially also offers tremendous opportunities for dealing with data streams (Opper
and Winther, 1998) since the following holds,

p(θ|Dt+1) ∝ L(θt+1|Dt+1)p(θ|Dt), (20)
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indicating that we can use the posterior at time t as the prior for time t + 1 and thus
naturally update our beliefs as the data come streaming in. Using Eq 20 Bayesian
parameter estimation is naturally carried out online!

Nevertheless, it is not as straightforward as it would appear. It has long been known
that simple analytic treatment of even 19 is not possible when L(θ|D) derives from a
mixture model (see Titterington et al., 1985, and references therein). It follows that
implementing a Bayesian estimation procedure for finite mixture models is not straight-
forward when analyzing static data, let alone in the streaming data case we are consid-
ering.

In recent years, Bayesian approaches that have been successful have relied on sam-
pling methods and / or other types of approximations. MCMC sampling is popular
(see, e.g., Ryu et al., 2011), and effective Markov Chain Monte Carlo (MCMC) samplers
for finite mixture models have been presented (Dippold and Hruschka, 2013). For the
standard (offline) fitting of a Bayesian mixture model, software packages such as JAGS
or Stan can be used relatively easily (Kruschke, 2014). Approximations using variational
methods have recently gained popularity, and offline versions can of this algorithm can
easily be found (Attias, 1999).

However, only recently have authors started to consider online (or streaming) ver-
sions of these estimation methods: recent work on sequential MCMC (Kantas et al.,
2009; Scott et al., 2016) and stochastic variational Bayes (VB) methods (Hoffman et al.,
2013; Tank et al., 2015) suggests computationally attractive approximations for fitting
complex Bayesian models in data streams. To the best of our knowledge, there are
however no ready to use implementations of either sequential MCMC or stochastic VB
approaches for the finite mixture of logistic regression models presented here; developing
such implementations would be a great benefit.

4 Evaluations of oFMLR

This section examines how oFMLR performs, using a simulation study and an empirical
example. In each case we describe the data that are used, the resulting estimates, and
we reflect on convergence and model selection. All the models presented here have been
fit using the [R] oFMLR package that accompanies this article. The package allows
easy fitting of mixtures of logistic regression models in data streams and allows one to
compare multiple models in parallel that are fit to the same data stream.6

Before presenting the simulation study and our empirical example, we first describe
the oFMLR package in a bit more detail and present some code examples to enable
readers to directly use the package themselves. The following [R] code downloads and
installs the package:

> library(devtools)

> install_github (" MKaptein/ofmlr ")

6is presumably not the programming language of choice for dealing with large data streams in practice.
However, several tools that do handle large data streams, such as Apache Spark (for example see Salloum
et al., 2016), directly interface with [R].
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> library(ofmlr)

Here, the first line is used to load the devtools package which allows—among many other
utilities—[R] packages to be easily installed from github. The second line downloads
and installs the oFMLR package (this line only needs to be run once) and the final line
is used to load the package. After running these three lines of code, the package is ready
for use and, as is standard in [R], one can start by browsing the documentation using
?ofmlr.

Next, we present an example for fitting a simple model. The following code allows
one to generate a mixture dataset and subsequently fit the oFMLR model to a simulated
data-stream (note that the lines following the # sign are comments):

set.seed (123456)

# Use utility functions in package to generate data

n <- 10^5

data <- generate_mixture(n, 2, 2, beta=matrix(c(3,-2.5,-2, 5), nrow =2),

ak=c(.3 ,.7))

# Create a new oFMLR object

M <- online_log_mixture (2,2, trace =1000 , ll.window =1000)

# "Stream" the data using a for loop

for(i in 1:n){

M <- add_observation(M, data$data[i,1], data$data[i, -1], lambda

=0)

}

The first line of the code sets the seed for reproducibility of the results. Next, we use
the the generate mixture utility function included in the package to create a dataset
consisting of N = 105 observations with the number of mixture components k = 2, the
number of parameters per logistic regression model p = 2, and with model parameters
α = (.3, .7), β1 = (3,−2.5) and β2 = (−2, 5). The next line is used to instantiate a
new oFMLR object with similar properties (e.g., k = 2 and p = 2) and random starting
values for α and β where the latter are drawn uniformly between −1 and 1; for the
current choice of seed these starting values are α̂ = (.31, .69), β̂1 = (−.65, .81) and
β̂2 = (−.09, .74). The trace=1000 argument in the call to instantiate the new oFMLR
object ensures that a snapshot of the parameters (θ̂t) is stored every 1000 datapoints
as well as the values of δ̄‖θ‖, l̄, sAIC, and sBIC respectively. Finally, the lambda=0

argument sets the learn rate to the default decreasing learn rate λ = n−
1
2 .

After instantiating the model the for loop simulates a sequential run through the
dataset. At each row of the dataset that is visited, the parameter values of the oFMLR
model are updated. After this process has finished, a call to summary(M) produces the
following output:

Online fit of logistic mixture model (oFMLR)

Number of mixture components: 2

Number of predictors (including intercept): 2

Estimated cluster membership probabilities:
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[1] 0.719 0.281

Estimated coefficients:

[,1] [,2]

[1,] -1.16 3.4

[2,] 1.49 -1.3

Total number of observations in data stream: 1e+05

The current (streaming average) log likelihood is -0.593 ( -0.076), sAIC=

1197.197 , sBIC= 1226.644 .

NOTE: The l2 norm of the parameters has changed by < 0.001 in the last

update.

This shows that the parameter estimates are reasonable—although the values for β̂ still
seem influenced by the starting values. The values of α̂ however are very close to the
true values. We investigate the precision of the parameter estimates more thoroughly
in the simulation study presented below. The “NOTE” at the end highlights that the
parameter values have not changed much over the last data points. It is difficult to
interpret the log-likelihood and the sIAC and sBIC in isolation; below we illustrate
how these can be used for model comparisons. Finally, the value between brackets
after the l̄ denotes the maximum average log-likelihood of the datapoints when using
fixed cluster assignments based on the posterior probabilities zit; this can be used for
additional diagnostic purposes. Since we have traced the progress of the model fitting
in the data stream, a call to plot(M1, params=TRUE) produces Figure 1, which gives
an overview of the learn rate and convergence diagnostics.

In addition to fitting an individual model, the oFMLR package also allows compar-
isons of multiple models fit to the same datastream. The following [R] code instantiates
multiple models and adds them to a model comparison object (which we will call a
multi online log mixture) which is subsequently updated using a data stream:

compare_models <- multi_online_log_mixture(online_log_mixture (2,1))

compare_models <- add_model(compare_models , online_log_mixture (2,2))

compare_models <- add_model(compare_models , online_log_mixture (2,3))

for(i in 1:n){

compare_models <- add_observation(compare_models , data$data[i,1],

data$data[i, -1], 0)

}

After running the above code, a call to summary(compare models) produces Table 1.
Here the use of the sIAC and sBIC is clear: the model with two components, which fits
the true data generating model, is preferred.7 Having introduced the oFMLR package,
we will investigate the parameter convergence and its practical applications in the next
section.

4.1 Simulation Study: Parameter estimates

This section examines the convergence of the oFMLR over a large series of models and
for different sizes of data stream. We simulate the previously mentioned scenario in

7In practice we recommend running multiple models in parallel, each with different starting values,
to asses model fit.
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Figure 1: Trace of values of l̄, δ̄‖θ‖, α̂, and β̂.
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M k p ll maxll sAIC sBIC dNorm n

1 M1 1.0 2 -0.618 -0.618 12359 12381 0.0034 100000
2 M2 2.0 2 -0.592 -0.182 11853 11896 0.0001 100000
3 M3 3.0 2 -0.592 -0.126 11863 11928 0.0001 100000

Table 1: Table of model comparisons created by calling summary() on a
multi online log mixture object.

which the observed clicks on an advertisement that originate from two homogeneous
clusters of customers: one sensitive, the other seeking exclusivity. Once again we set
α = (.3, .7), β1 = (3,−2.5) and β2 = (−2, 5) as the true model parameters and simulate
n = 105 observations from this model. We than draw the values of the dependent
variable (the xt’s) randomly between −5 and 5 and subsequently simulate an observation
from the model. Thus, to simulate an observation we first draw a cluster membership
(zt ∼ Bern(.2), and then fill in a value for xt ∼ Unif(−5, 5) in the respective data
generating model. We repeat this process for m = 100 simulations.

Next, we fit both an offline version of a K ∈ {1, 2, 3} cluster model using standard
EM (as implemented in the mixtools package in [R] (Benaglia et al., 2009)) and an
online version using the oFMLR package. For both the online as well as the offline
version, we need to specify starting values for both α and βk. We choose 1/K as the
value for each element of α, and a random draw d ∼ Unif(−1, 1) for each of the elements
of β. Furthermore, for the offline version, we choose a fixed number of 100 iterations to
allow the EM algorithm to converge.8 Finally, for the online version, we choose a fixed
learn rate: γ = .1.

gives an overview of the obtained parameter estimates for different lengths of the
data stream. The mean and the standard error (SE) as computed over the m = 100
simulations are presented.9 A number of things are quite striking: first, both of the
methods largely fail on the smaller data streams (or at least have very high standard
errors on the parameters). Both methods seem to work relatively well for medium size
streams, and the resulting estimates are close to the true data generating model. Both
methods perform well for large streams; the signs of all the coefficients are already
properly estimated at n = 104. The current simulations further show that for K = 3,
and hence a number of clusters that is too high compared to the data generating model,
we find two clusters that have similar estimates for β̂k when using oFMLR. As mentioned
earlier, this can be used to select the number of clusters when analyzing a data stream.
This does not seem to work for the offline method, which is unable to converge—using the
standard convergence criteria in the mixtools package—when the number of clusters is
too high. Finally, for an online simulation with n = 106 the estimated coefficients using

8A larger number of iterations might improve the parameter estimates in some runs. A smaller
number obviously decreases running time. However, we feel that a fixed—albeit relatively large—number
of iterations provides a more valid comparison.

9Note that the order in which the clusters are identified is not the same in every simulation run. For
interpretation purposes, we order both the elements of α and the components of β.
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oFMLR are α = (.32, .68), β1 = (2.8,−2.3) and β2 = (−1.9, 5.3) (all SEs < .01) (This
was not presented in the table since the offline version takes too much time). These
values are very close to the true data generating values. At small sample sizes it is clear
that the starting values for the SGD still play a large role in the parameter estimation;
however, for large data streams (n > 105) our oFMLR seems both fast and accurate.

4.2 Empirical Evaluation: Practical utility

To demonstrate the utility of our proposed method for marketing applications we use
the oFMLR [R] package to do a post-hoc analysis of an existing large dataset of online
consumer browsing behavior. The dataset consists of n = 105502 observations of the
web-browsing behavior of prospective customers of a large insurance company (the data
was collected between March 1 and June 30, 2016). The dataset supplied by the firm,
which wishes to remain unidentified, contains records of unique customers, identifying
the number of pages they visited in their first visit to the the insurance companys
website, the total time spent browsing in this session, and whether or not the customer
ended up purchasing a product. These behavioral measures were later augmented by
the company with an orientation score. Based on the content of the pages that are
visited, the insurance company enriches their database by dividing customers into two
categories: those who are merely looking for information regarding the company and
different insurance types, and those who seem to be interested in purchasing one of
their products, determined by the fact that they visit one or more of the actual product
information pages. Table 3 presents some descriptives to further illustrate the current
dataset.

Interestingly, a separate analysis, using a simple logistic regression model with “time”
and “pages” as predictors, shows that the effect of the time that consumers spend on
the page is positive for those that are merely “looking”, while it is negative—albeit not
significantly—for those customers that seem to be interested in purchasing. Table 4
presents the results of these two independent analyses. The results are fairly intuitive:
when visitors that wish to purchase a product spend more time, they are most likely ex-
periencing barriers in the check-out process, while for visitors who are merely “lookers”,
a longer session probably relates to an increased interest.

To evaluate the use oFMLR, we fit multiple logistic mixture models to the data
while simulating a data-stream; hence, we effectively “replay” all the observations in
chronological order and fit a number of competing models with different starting values
and different number of components to the generated stream. Furthermore, we assume
that the orientation score is unknown at the time the data arrives; these scores are
determined ad hoc by the insurance company after a lengthy analysis of the urls which
the consumers visited. The code below details how the ofmlr package was used to
simulate the data stream and fit multiple models:

# open the dataset

data <- read.csv(" session_data.csv")

# use the ofmlr package and add multiple models
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103 104 105

Offline β1 0.04 (0.01) 0.03 (0) 0.04 (0)
0.27 (0) 0.27 (0) 0.27 (0)

α 0.44 (0) 0.46 (0) 0.46 (0)
0.56 (0) 0.54 (0) 0.54 (0)

β1 -0.59 (0.22) 0.08 (0.06) 0.21 (0)
3.25 (0.74) 0.3 (0.19) -0.16 (0)

β2 -16.17 (6.33) -1.44 (0.06) -1.5 (0.03)
52.16 (20.41) 6.07 (0.2) 6.41 (0.07)

α 0.23 (0) 0.22 (0) 0.23 (0)
0.28 (0) 0.28 (0) 0.26 (0)

0.49 (0.01) 0.5 (0) 0.52 (0)
β1 0.27 (0.07) 0.31 (0.04) 0.07 (0.03)

0.44 (0.11) 0.37 (0.07) 0.03 (0.03)
β2 0.27 (0.07) 0.29 (0.02) 0.34 (0.04)

0.2 (0.39) -0.34 (0.01) -0.28 (0.04)
β3 -16.8 (6.07) -2.19 (0.08) -1.69 (0.06)

52.02 (16.34) 7.97 (0.17) 7.14 (0.13)

Online β1 0.05 (0.03) 0.01 (0.02) 0.02 (0.03)
0.31 (0.02) 0.33 (0.02) 0.32 (0.03)

α 0.44 (0) 0.4 (0) 0.35 (0)
0.56 (0) 0.6 (0) 0.65 (0)

β1 0.12 (0.02) 0.42 (0.02) 0.99 (0.04)
-0.27 (0.02) -0.55 (0.02) -0.97 (0.03)

β2 0.02 (0.02) -0.76 (0.02) -1.71 (0.03)
1.7 (0.02) 3.77 (0.02) 5.6 (0.02)

α 0.31 (0) 0.3 (0) 0.3 (0)
0.33 (0) 0.33 (0) 0.33 (0)
0.36 (0) 0.37 (0) 0.37 (0)

β1 0.07 (0.02) 0.63 (0.03) 2.28 (0.11)
-0.44 (0.04) -0.83 (0.09) -1.8 (0.17)

β2 0.03 (0.01) -0.37 (0.04) -1.46 (0.11)
0.98 (0.04) 2.53 (0.11) 4.28 (0.18)

β3 0.01 (0.01) -0.63 (0.02) -2.01 (0.02)
1.29 (0.03) 3.11 (0.02) 5.15 (0.02)

Table 2: Results of simulation Study 1. Data generated using a true model with param-
eters α = (.3, .7), β1 = (3,−2.5) and β2 = (−2, 5).

22



Variable Description Min Max Mean Median

Purchase Did the customer buy? 0 1 0.037 0
Time Total session time <1 1190 283 180
Pages Number of pages visited in session 1 19 4.4 4
Orient “Looker” or “purchaser” 0 1 .53 1

Table 3: Descriptives for the consumer browsing behavior dataset. Note the fairly low
purchase (or convergence) rates as common in many online marketing applications. The
total number of observations was n = 105502 and the data was collected between March
and June 2016.

Estimate Std. Error z value Pr(>|z|)
Lookers (Intercept) -3.2445 0.0261 -124.42 0.0000

Time 0.6572 0.0183 35.83 0.0000
Pages 0.4527 0.0161 28.20 0.0000

Purchasers (Intercept) -5.6142 0.0726 -77.30 0.0000
Time -0.0425 0.0898 -0.47 0.6356
Pages 0.0135 0.0943 0.14 0.8858

Table 4: Comparison of simple logistic regressions to examine the effect of timing and
the number of visiting pages on those that are (ad-hoc) qualified as either “Lookers” or
“Purchasers” based on the content of the visited webpages.

library(ofmlr)

models <- multi_online_log_mixture(online_log_mixture (3,1))

models <- add_model(models , online_log_mixture (3,1))

models <- add_model(models , online_log_mixture (3,2))

models <- add_model(models , online_log_mixture (3,2))

models <- add_model(models , online_log_mixture (3,3))

models <- add_model(models , online_log_mixture (3,3))

# Simulate the data stream

for(i in 1:nrow(data)){

models <- add_observation(models , data[i,1], c(1,data[i, 2:3]) )

}

This code fits six distinct models in the simulated stream: we fit models with different
(random) starting values that contain 3 predictors (the intercept, the effect of “time”,
and the effect of “page”), and either 1, 2, or 3 mixture components; given the large
number of unique values for the predictors, we should have sufficient data to identify
models of this size. The for loop effectively “replays” the incoming data in chronological
order. We fit the model after standardizing (computing z-scores) for the variables “time”
and “pages” to prevent numerical instability.

The output of the call to summary(models) is presented in Table 5. It is clear that the
moving-average log-likelihoods of the two models with the same number of components
but different starting values do not differ from each other much and that the average
change in the norm of the parameter vector is small, indicating reasonable convergence
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for each of the six models. When comparing the models based on the sAIC and sBIC,
we see that the single component model is preferred; perhaps the mixture component is
either a) too small to identify, or b) the estimated negative coefficient of time for the
“lookers” is not sufficient to affect the estimates for the two component model (in fact,
this estimated coefficient was not significantly different from 0 in the separate analysis).
However, when looking at the maximum log-likelihoodwhich presents the mean log-
likelihood for each datapoint when each datapoint is attributed to its highest posterior
component—one would be inclined to prefer models 3 or 4. Both of these two-component
models have a high value on this metric. This provides some evidence (albeit weak) in
favor of the two-component model. Inspecting the model parameters of model 3 shows
a large cluster (76%) of customers for whom the effect of time is positive, and a smaller
one (23%) for whom the effect is instead negative; at least qualitatively, this replicates
the findings for the separate analysis, which included the omitted variable “orientation”.
Hence, though the signal in the current dataset is weak, fitting multiple logistic mixture
models in parallel can shed light on possible differences between clusters of consumers.
Again, it is intuitive to identify clusters of visitors based on the time spent during their
visit to the website: time on the page can be a proxy for general interest and thus have
a positive effect, but it could also highlight usability issues with the website, in which
case it will likely have a negative effect for consumers trying to make an actual purchase.

M k p ll maxll AIC BIC Norm n

2 M1 1 3 -0.1003 -0.1003 208.60 228.23 0.0031 105502
3 M2 1 3 -0.1003 -0.1003 208.60 228.23 0.0031 105502
4 M3 2 3 -0.1079 -0.0416 231.87 271.13 0.0015 105502
6 M4 2 3 -0.1060 -0.0539 227.96 267.22 0.0018 105502
7 M5 3 3 -0.1071 -0.0588 238.25 297.14 0.0011 105502
9 M6 3 3 -0.1045 -0.0967 233.04 291.93 0.0020 105502

Table 5: Comparison of oFMLR models with 1-3 mixture components fit to the consumer
browsing behavior data in simulated a data stream.

5 Discussion

This article introduced a method—-and associated [R] package—for the analysis of cus-
tomer responses arriving in a continuous data stream (in this case, clicking behavior)
The method is an online or row-by-row implementation of the EM algorithm to fit a
finite mixture of logistic regression models. These models have been widely investigated,
and we implement a specific version of the more general online EM algorithm discussed
by Cappé and Moulines (2009). Our specific implementation of the finite mixture of
logistic regression models, and the software provided, make the current work especially
suited for analyzing consumer behavior arriving in large and continuous data streams.
We have detailed the challenges facing us when analyzing customer data that arrive in
high velocity data streams and we have explained how the use of online estimation meth-
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ods can help marketing scholars deal with the large streams of data that originate from
online click streams. We have also discussed the concepts behind both SGD and the EM
algorithm. SGD is an optimization method with many applications for fitting models in
data streams: its importance for future work in analyzing online advertising data can
hardly be overstated. The EM algorithm is a general algorithm for the dealing with
missing data problems. In many cases, the EM algorithm can be transformed into an
online version, thus providing a wealth of methods for analyzing data streams. Finally,
we have discussed both identification and convergence issues, as well as linking our work
to Bayesian approaches that have a similar direction. We hope the current paper will
be instructive for readers unfamiliar with the analysis of large continuous data streams,
as well as introducing our oFMLR model.

We envision using oFMLR (or other related statistical models that can be fit online)
in order to continuously monitor the effects of online marketing campaigns. We can en-
code both features of the marketing messages (the product being displayed, the shape,
the persuasive appeals being used, etc), as well as features of the customers. The data
stream that results from the click-behavior of customers on the messages or surround-
ing products can be analyzed continuously using multiple versions of oFMLR running
in parallel (with different choices of K and different starting values). The estimated
mixture probabilities will provide direct and real-time feedback to policy makers about
homogeneous clusters within the target audience, and the estimated coefficients within
each cluster can be used to interpret these findings qualitatively: as our empirical exam-
ple illustrated, the analysis can highlight both positive and negative effects of a single
predictor. Interpreting such differences between clusters can inspire different courses of
action: for example, in our empirical example one imagines a redesign of the website
could improve its usability and make purchasing simpler.

Both the logistic regression model and its finite mixture extension (and variants of
it) have been used for numerous applications in marketing research (e.g., Zhang and
Krishnamurthi, 2004; Van den Bulte and Joshi, 2007; Schmittlein and Peterson, 1994;
West et al., 1997). These models have been applied for a wide range of purposes: to
understand and cluster customers online behavior, to understand new product diffusion,
and to model consumer choice. As such, the models are flexible and have a tremendous
potential for applications in marketing; even recent developments in machine learning
still heavily rely on the logistic regression model (see, e.g., He et al., 2014). Techno-
logical advances have created new measurement opportunities in all areas of marketing,
and marketing researchers are increasingly confronted with high volume or high velocity
streams. We hope the current work will contribute to the use of logistic regression mod-
els to understand such continuously collected data. We believe that analysis practice will
change in the coming years: when confronted with continuous data streams, a contin-
uous analysis—such as demonstrated in our empirical example—can inspire continuous
new marketing policies. Using fixed learn rates—and thus effectively “forgetting” older
data—we can approach the estimates based on multiple parallel statistical models, pro-
viding a continuous source of information for policy decisions rather than testing specific
hypotheses at specific points in time. The data collection is never finished, nor are our
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attempts to optimize our marketing policies.
Admittedly, this paper has only discussed the Bayesian paradigm very briefly. This

is by no means intended to discourage a Bayesian treatment of modeling continuous
data streams; for example, the relatively recent Probit regression approach presented
by Graepel et al. (2010) provides an extremely usable, scalable, and fully online ap-
proach to modeling binary outcomes using a single component. We would welcome the
development of similar online approaches for mixture models. Large steps are also being
made in statistics and computer scienceas witnessed by the recent work on stochastic
variational inference and sequential MCMC (e.g., Tank et al., 2015; Scott et al., 2016).
In the years to come, these approaches surpass the frequentist treatment presented here
because of the inherent benefits of the Bayesian approach when quantifying uncertainty
in the estimated parameters. However, we have focussed on what we believe is still the
most common approach in marketing practice; we hope the current work contributes
to further developments in both Frequentist and Bayesian methods to deal with high
velocity continuous data streams.

This paper has solely focussed on learning from a data stream case-by-case. However,
in practice, models that are fit online might benefit from a hybrid approach in which
either batches of datapoints are used to compute updates of the parameters or in which
an offline analysis of a static dataset is used to determine the starting values for a
model that is subsequently updated in a data stream. Both of these approaches warrant
further investigation. Such hybrid approaches have been specifically explored for the
EM-algorithm (see Neal and Hinton (1998) and Liang and Klein (2009) for examples).
Finally, this paper introduced several diagnostic tools geared specifically towards the
analysis of a data steamfor example, the online moving average of the log-likelihood as
presented in Eq. 15; these proposals need to be studied in more detail.

In this paper, we demonstrated the performance of oFMLR in a simulation study,
as well as applying it to an empirical dataset. We also provided an easy to use [R]
package to fit the oFMLR model. While the results of our simulations are promising,
and the reduction of computation time that is obtained by using online estimation is
very appealing, we do have to stress that finite mixtures of logistic regression models do
not always converge properly: this is true both for the online and the offline versions.
Furthermore, especially in the online case, the analysis is influenced by the starting
values, and, without substantial domain knowledge, it is hard to establish identifiability
criteria at the start of the data stream. Hence, the analyst should—as always—be careful
interpreting the results, and should seek additional methods to validate the clustering
that is found when analyzing a data stream using oFMLR. In practice, we recommend
fitting multiple models (for different choices of K) online, and using an online bootstrap
method, such as suggested by (Owen and Eckles, 2012), to quantify the uncertainty in
the estimated model parameters. Combined with a long data stream, T > 105, this
will ensure that our proposed method can be used efficiently and responsibly to identify
clusters of customers based on click-stream data.

We believe that oFMLR provides an addition to the toolbox of statistical methods
that is available to marketing scholars and practitioners when analyzing data streams.We
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also hope to have provided additional understanding regarding a) the basic conceptual
methods of dealing with high volume and high velocity data streams, and b) the method-
ological building blocks (SGD and EM) that were used to develop oFMLR.
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