
  

 

 

Tilburg University

The matrix-F prior for estimating and testing covariance matrices

Mulder, Joris; Pericchi, Luis R.

Published in:
Bayesian Analysis

DOI:
10.1214/17-BA1092

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Mulder, J., & Pericchi, L. R. (2018). The matrix-F prior for estimating and testing covariance matrices. Bayesian
Analysis, 13(4), 1193-1214. https://doi.org/10.1214/17-BA1092

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Jan. 2022

https://doi.org/10.1214/17-BA1092
https://research.tilburguniversity.edu/en/publications/f62d2f2e-b2c8-42ee-a88a-4160296e72dd
https://doi.org/10.1214/17-BA1092


Bayesian Analysis (2018) 13, Number 4, pp. 1193–1214

The Matrix-F Prior for Estimating and Testing
Covariance Matrices

Joris Mulder∗ and Luis Raúl Pericchi†

Abstract. The matrix-F distribution is presented as prior for covariance matri-
ces as an alternative to the conjugate inverted Wishart distribution. A special
case of the univariate F distribution for a variance parameter is equivalent to a
half-t distribution for a standard deviation, which is becoming increasingly pop-
ular in the Bayesian literature. The matrix-F distribution can be conveniently
modeled as a Wishart mixture of Wishart or inverse Wishart distributions, which
allows straightforward implementation in a Gibbs sampler. By mixing the covari-
ance matrix of a multivariate normal distribution with a matrix-F distribution, a
multivariate horseshoe type prior is obtained which is useful for modeling sparse
signals. Furthermore, it is shown that the intrinsic prior for testing covariance
matrices in non-hierarchical models has a matrix-F distribution. This intrinsic
prior is also useful for testing inequality constrained hypotheses on variances. Fi-
nally through simulation it is shown that the matrix-variate F distribution has
good frequentist properties as prior for the random effects covariance matrix in
generalized linear mixed models.

Keywords: matrix-variate F distribution, intrinsic prior, testing inequality
constraints, horsehoe prior, hierarchical models.

1 Introduction

In the last decade there has been an increasing development of alternatives for the
inverse gamma prior for modeling variance components. An important motivation of
this development is the poor performance of vague inverse gamma priors for modeling
random effects variances in hierarchical models (Gelman, 2006; Browne and Draper,
2006). As shown by Gelman (2006) a vague inverse gamma prior on the random effects
variance can unduly be extremely informative in the case of small samples. Recently
the half-t prior is becoming a popular alternative for a standard deviation (Gelman,
2006; Polson and Scott, 2012). This prior is a special case of a univariate F distribution
on the variance (as will be shown in this paper). As was shown by Pérez et al. (2017),
the F distribution (referred to as the ‘scaled beta2’ distribution in their paper) can be
seen as a robustification of a gamma distribution for a precision parameter by mixing
the scale parameter with a gamma distribution. This idea dates back to De Finetti
(1961) who considered a scale mixture of normals to obtain the more robust t prior
with less prior shrinkage to extreme observations. Pérez et al. further showed various
attractive properties of this distribution in robust Bayesian analyses. Applications of
the F distribution can be found in variable selection problems (e.g. Liang et al., 2008;
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Maruyama and George, 2011), multiple testing problems (Scott and Berger, 2006),
random effects testing (Westfall and Gönen, 1996; Wang and Sun, 2013), modeling
nonnormal data (Bradlow et al., 2002), and as an intrinsic prior in objective Bayesian
hypothesis when testing the scale of an exponential distribution (Pericchi, 2005). These
references illustrate the broad applicability of the F distribution.

In this paper a matrix-variate generalization of the F distribution is presented which
is obtained by robustifying the inverse Wishart distribution (the current default prior
distribution for covariance matrices). This is achieved by mixing the scale matrix of
an inverse Wishart distribution with a Wishart distribution. The resulting distribution
will be referred to as the matrix-variate F distribution, or the matrix-F distribution
for short. The work of Dawid (1981) is very relevant for the current paper. Dawid
proposed a convenient parameterization of a matrix-F distribution with a unity scale
matrix which allows an extension to infinite dimensions. In this paper, we adopt this
parameterization, and derive the matrix-F distribution with a free scale matrix by
following different routes. Furthermore we highlight various probabilistic and robust
properties of the matrix-F distribution and show its potential for tackling challenging
statistical modeling problems.

As will be shown, the matrix-F distribution abides the concept of “reciprocity”.
This implies that when a covariance matrix has a matrix-F distribution, its inverse,
the precision matrix, also belongs to this family of distributions. It is flexible to model
different behaviors at the origin and in the tails. Furthermore, it can straightforwardly be
implemented in a Gibbs sampler as a Wishart mixture of inverse Wishart distributions
or a Wishart mixture of Wishart distributions.

Another useful property is that the matrix-F distribution can be used to construct
horseshoe type priors which are useful for estimating location parameters in the case
of sparse signals (Carvalho et al., 2009; Polson and Scott, 2011). This can be achieved
by mixing the covariance matrix of a multivariate normal distribution with a matrix-F
distribution. The resulting marginal distribution has the desired pole at zero, a key
property of the horseshoe.

The matrix-F distribution is also quite tractable and it arises naturally as an objec-
tive prior for hypothesis testing via intrinsic prior methodology (Berger and Pericchi,
1996; Moreno et al., 1998; Berger and Pericchi, 2004). Additionally the matrix-F prior
is suitable for testing nonnested hypotheses with inequality constraints on the variances.
Finally the usefulness of the matrix F prior is shown for covariance matrices of random
effects in hierarchical models, a challenging part of a Bayesian analysis (Browne and
Draper, 2006). Empirical Bayes choices (Kass and Natarajan, 2006) are also considered
resulting in excellent frequency properties.

It is important to note that other matrix-variate distributions have been proposed
for covariance matrices, including Barnard et al. (2000), Mathai (2005), O’Malley and
Zaslavsky (2008), Huang and Wand (2013), Gelman et al. (2014) (Chapter 15.4), and
Chung et al. (2015). In particular we shall compare the marginally noninformative prior
of Huang and Wand with the matrix-F prior by looking at the marginal priors for
the standard deviations and correlations and by investigating the performance of these
priors for the random effect covariance matrices in generalized linear mixed models.



J. Mulder and L. R. Pericchi 1195

The paper is organized as follows. In Section 2, we introduce the matrix-variate F
distribution and discuss specific properties, such as the role of the hyperparameters and
its implementation in a Gibbs sampler. Subsequently in Section 3 we show how to con-
struct horseshoe type distributions using the matrix-F distribution. Section 4 presents
Bayesian tests of a precise hypothesis, where the matrix-F prior serves as an intrinsic
prior, and an inequality constrained hypothesis test on a covariance matrix. Section 5
compares various matrix-F priors for the random effects covariance matrix with other
proposals from the literature. We end the paper with some concluding remarks.

2 The matrix-variate F distribution

To obtain the matrix-variate F distribution, we start with the univariate case. The uni-
variate F with additional scale parameter can be obtained by mixing the scale parameter
of an inverse gamma distribution with a gamma distribution, i.e.,

F (σ2; ν, δ, b) =

∫
IG(σ2; δ

2 , ψ
2)×G(ψ2; ν

2 , b
−1)dψ2

=

∫
(ψ2)

δ
2

Γ( δ
2 )

(σ2)−
δ
2−1 exp

{
−ψ2

σ2

}

× b−
ν
2

Γ( ν
2 )
(ψ2)

ν
2−1 exp

{
−ψ2

b

}
dψ2

=
Γ

(
δ+ν
2

)

Γ(ν2 )Γ
(

δ
2

)
b
ν
2

(
σ2

) ν
2−1 (

1 + σ2/b
)− ν+δ

2 , (1)

where the degrees of freedom ν controls the behavior near the origin, the degrees of
freedom δ controls the tail behavior, and b is a scale parameter. In (1), IG(σ2;α, β)
denotes an inverse gamma distribution for σ2 with shape parameter α and scale pa-
rameter β and G(ψ2;α, β) denotes a gamma distribution for ψ2 with shape parameter
α and rate parameter β. A similar construction was presented by Pérez et al. (2017)
who showed that the F distribution (equivalent to their ‘scaled beta2’ distribution) can
be constructed as a gamma mixture of gamma distributions. Setting b = 1, we obtain
the standard F distribution. Interestingly a F distribution on a variance results in the
following distribution on the standard deviation,

p(σ; ν, δ, b) =
2Γ

(
δ+ν
2

)

Γ(ν2 )Γ
(

δ
2

)
b
ν
2

σν−1
(
1 + σ2/b

)− ν+δ
2 . (2)

When setting ν = 1, we obtain a half-t distribution for σ with scale
√
b and degrees of

freedom δ. The half-t prior is becoming increasingly popular for modeling scale param-
eters (Gelman, 2006; Polson and Scott, 2012). Other choices for ν are also of interest
(Pérez et al., 2017).

Following a similar line of argument, a k×k covariance matrix Σ can be obtained by
mixing the scale matrix of an inverse Wishart distribution with a Wishart distribution,
i.e.,
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F (Σ; ν, δ,B) =

∫
IW (Σ; δ + k − 1,Ψ)×W (Ψ; ν,B)dΨ.

=

∫
2−
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2 exp
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(
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(
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2

)
|B| ν2

|Σ| ν−k−1
2 |Ik +ΣB−1|− ν+δ+k−1

2 (3)

for degrees of freedom ν > k − 1 and δ > 0, and a positive definite scale matrix B.
By setting B = Ik, we obtain the same distribution as proposed by Dawid (1981),
which was termed the standard matrix-variate F distribution. Similarly, we shall refer
to scaled version in (3) as the matrix-variate F distribution, or matrix-F for short. Note
that for the univariate case with k = 1, the matrix-F distribution in (3) corresponds to
the univariate F distribution in (1).

The first degrees of freedom ν controls the behavior near the origin where the diago-
nal elements of Σ are close to zero. To see this, note that the kernel of the matrix-variate
F distribution is

F (Σ; ν, δ,B) ∝ |Σ| ν−k−1
2 |Ik +ΣB−1|− ν+δ+k−1

2

∼ |Σ| ν−k−1
2 ,

if Σ approximates a k × k matrix of zeros, in the sense that the elements of ΣB−1

go zero, for fixed δ > 0, and ν > k − 1. The second degrees of freedom δ controls the
behavior in the tails. To see this, note that

F (Σ; ν, δ,B) ∝ |Σ| ν−k−1
2 |Ik +ΣB−1|− ν+δ+k−1

2

∼ |Σ| ν−k−1
2 |ΣB−1|− ν+δ+k−1

2

∝ |Σ|− δ+2k
2

if the diagonal elements of Σ go to ∞, in the sense that the elements of ΣB−1 go ∞,
for fixed δ > 0, and ν > k − 1. Notice that the matrix-F distribution has thicker tails
than the inverse Wishart distribution. This illustrates that the matrix-F distribution
is more robust as a prior for covariance matrices. To see that B serves as scale matrix
note that if Σ ∼ F (Σ; ν, δ, Ik), and if B is a positive definite matrix, it holds that
BΣ ∼ F (Σ; ν, δ,B).

Remark 1. The matrix-F distribution satisfies the reciprocity property which implies
that the inverse of a matrix-F distributed covariance matrix also has a matrix-variate
F distribution. To be precise, if Σ ∼ F (ν, δ,B), then Σ−1 ∼ F (δ+k−1, ν−k+1,B−1).
A proof is given in Appendix A (Mulder and Pericchi, 2018).
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Remark 2. The matrix-F distribution is consistent under marginalization. This is a
consequence of the parameterization of the inverse Wishart distribution, which is similar
as in Dawid (1981). To see that this property holds we partition the covariance matrix
as Σ = [Σ11 Σ12;Σ21 Σ22], where Σij are ki × kj, for i, j = 1, 2, with k1 + k2 = k and
1 ≤ k1, k2 ≤ k− 1, and Σ21 = Σ′

12, and we let Σ ∼ F (ν, δ,B). Due to (3), it holds that
Σ11 ∼ IW (δ+ k1− 1,Ψ11) and Ψ11 ∼ W (ν,B11). After integrating out Ψ11, we obtain
Σ11 ∼ F (ν, δ,B11).

Remark 3. The mean matrix of a matrix-variate F distribution equals ν
δ−2B, for δ > 2.

A derivation is given in Appendix B (Mulder and Pericchi, 2018). An expression for
the (co)variances of the elements of a matrix-variate F covariance matrix can also be
found there.

Remark 4. The matrix-variate F distribution can also be obtained as a Wishart mixture
of Wisharts,

F (Σ; ν, δ,B) =

∫
W (Σ; ν,Ψ−1)×W (Ψ; δ + k − 1,B)dΨ, (4)

as well as an inverse Wishart mixture of Wisharts (as pointed out by an anonymous
reviewer),

F (Σ; ν, δ,B) =

∫
W (Σ; ν,Ψ)× IW (Ψ; δ + k − 1,B)dΨ. (5)

The derivations are similar to (3). These parameter expansions are useful when modeling
a precision matrix with a matrix-F prior.

Remark 5. The standard matrix-F distribution was originally derived by Olkin and

Rubin (1964) via Σ = Φ
− 1

2
2 Φ1Φ

− 1
2

2 , where Φ1 ∼ W (ν, I) and Φ2 ∼ W (Φ2; δ + k −
1, I) (with a slightly different parameterization). This distribution was referred to as the
multivariate beta II distribution by Tan (1969).

2.1 A minimally informative default prior

For an inverse Wishart prior with degrees of freedom δ + k − 1 and scale matrix Ψ,
conventional wisdom dictates that a reasonable default prior is obtained by setting
a small value for δ, such as the smallest allowed integer 1, and to set Ψ equal to a
“minimally informative” prior guess divided by δ + k − 1 (e.g., Kass and Natarajan,
2006). This can be used to specify the hyperparameters of a matrix-variate F prior in
a minimally informative setting. In the matrix-variate F distribution in (3), a Wishart
distribution with degrees of freedom of ν and scale matrix B is used for the scale matrix
Ψ of the inverse Wishart distribution. Since the mean of this Wishart distribution
equals νB, it seems reasonable to let ν

δ+k−1B be equal to our prior guess. Consequently,
a minimally informative matrix-variate F prior can be obtained by setting the prior
degrees of freedom equal to ν = k, δ = 1 and B equal to the prior guess.

When prior information is weak, an empirical Bayes choice could be specified for B
instead. Kass and Natarajan (2006) proposed an inverse Wishart prior for the random
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effects covariance matrix with minimal information and an empirical Bayes scale matrix,
which was denoted by R∗. Due to the known problems of the inverse gamma prior for
random effects variances however (e.g., Gelman, 2006), an inverse Wishart prior also
does not seem recommendable in general. The matrix-variate F distribution with ν = k,
δ = 1, and B = R∗ seems a promising alternative empirical Bayes solution for the
random effects covariance matrix in hierarchical models. The performance of this prior
will investigated in Section 5.

2.2 Proper neighboring priors

Traditionally objective Bayesian analyses are performed using noninformative improper
priors (Berger, 2006). A “good” improper prior is typically characterized by good fre-
quency properties of the resulting posterior, such as accurate coverage rates of credibility
intervals. A known problem of improper prior is however that they may result in im-
proper posteriors. A well-known example is when using the improper prior σ−2 for the
random effects variance σ2 in a Bayesian hierarchical model (e.g., Gelman, 2006). It has

been argued that the improper prior (σ2)−
1
2 is a better choice for the random effects

variance (Berger, 2006; Berger and Strawderman, 1996).

To perform an approximate objective Bayesian analysis with a proper prior, one can
approximate an objective prior with a proper neighboring prior (see also Gelman, 2006,
for a related discussion). We shall use this term when the posterior based on the proper
neighbor can approximate the posterior based on the improper prior to any precision.
For example the objective prior (σ2)−

1
2 can be approximated by a univariate F prior in

(1) because F (σ2; ν = 1, δ, b) ∼ (σ2)−
1
2 as b → ∞, for any fixed δ.

Similarly, the matrix-F prior can serve as a proper neighbor for improper priors

for covariance matrices. For example note that F (Σ; ν, δ,B) ∼ |Σ| ν−k−1
2 , when letting

B = bIk and b → ∞, for fixed δ. Thus by setting ν = k, which is the smallest allowed
integer, the matrix-F prior would be a proper neighbor of |Σ|− 1

2 . The coverage rates and
classical risk outcomes will be investigated for this choice in generalized linear mixed
models in Section 5.

2.3 Implementation in a Gibbs sampler

The matrix-variate F prior can be implemented in a Gibbs sampler using a parameter
expansion to ensure efficient Bayesian computation. The parameter expansion follows
from the fact that the matrix-F distribution can be written as a Wishart mixture of the
scale matrix in an inverse Wishart prior, as noted in (3). Thus, instead of working with
Σ ∼ F (ν, δ,B) directly, one can model Σ ∼ IW (δ+k−1,Ψ) with Ψ ∼ W (ν,B), which
follows directly from (3). In this parameter expansion, the conditional prior for Σ|Ψ has
an inverse Wishart distribution with δ + k − 1 degrees of freedom and scale matrix Ψ.
This is a conjugate prior for a covariance matrix of multivariate normal observations.
Furthermore, the conditional prior for Ψ|Σ has a Wishart distribution with ν+δ+k−1
degrees of freedom and scale matrix (Σ−1+B−1)−1. Because no information is directly
available for Ψ, the conditional posterior for Ψ|Σ also has a Wishart distribution with
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ν + δ + k − 1 degrees of freedom and scale matrix (Σ−1 +B−1)−1. Alternatively when
modeling a precision matrix, the matrix-F distribution can be implemented in a Gibbs
sampler as a Wishart (or inverse Wishart) mixture of Wishart’s via (4) or (5).

2.4 Marginal distributions of standard deviations and correlations:
A comparison with Huang and Wand (2013)

The matrix-F distribution is related to the distribution proposed by Huang and Wand
(2013). Their proposal was to start with an inverse Wishart distribution with a diago-
nal scale matrix, and mix the diagonal elements of the scale matrix with independent
gamma distributions. The main selling point of the prior of Huang and Wand is that
the corresponding marginal priors for the standard deviations have half-t distributions
(e.g., half-Cauchy), as recommended by Gelman (2006), and the marginal priors for the
correlations have beta distributions in the interval (−1, 1) with equal shape parameters
(e.g., uniform), as recommended by Barnard et al. (2000). This prior therefore gives
some flexibility to tune the marginal distributions of the standard deviations and cor-
relations. It is important to note however that the marginal priors of the correlations
are always centered at zero, in the sense that P (ρij < 0) = P (ρij > 0) = 1

2 , for all
i �= j ∈ {1, . . . , k} (due to the diagonal scale matrix in the inverse Wishart distribu-
tion). This property may not be flexible enough for practical situations. For example
in multitrait-multimethod applications the interest is in the correlations between mul-
tiple traits (e.g., abilities) measured using different methods (e.g., raters) (Campbell
and Fiske, 1959). The correlations of particular interest, i.e., the correlations between
the measurements of the same trait using different methods and the correlations be-
tween different traits using the same methods, are generally expected to be positive
(e.g., Lievens and Conway, 2001; Muis et al., 2007; Mulder, 2016). Further note that
the expected magnitude of a correlation generally varies across different areas of re-
search (e.g., medical, social science, or education) (Cohen, 1988). Therefore a prior that
is concentrated around zero may be too restrictive for general usage.

When considering a k×k covariance matrix with a matrix-F (ν, δ,B) distribution, the
marginal distribution of the j-th variance, σ2

jj , is univariate F (ν, δ, bjj), with ν > k− 1,
δ > 0, bjj > 0. This is a consequence of the marginalization property (Remark 2). Thus
even though the univariate F distribution on a variance component is equivalent to a
half-t on a standard deviation, the marginal distribution of the standard deviation σj

in a covariance matrix with a matrix-F distribution is not half-t as ν cannot be set
to 1 for k ≥ 2 (which is necessary for the prior to be proper). Another fundamental
difference is that the marginal priors for the correlations of a covariance matrix having
a matrix-F distribution are not centered at zero. The reason is that the matrix-F
distribution is constructed from an unrestricted scale matrix, unlike the prior of Huang
and Wand (2013) which is constructed from a diagonal scale matrix. In that sense the
matrix-F distribution can be viewed as more flexible for modeling the correlations in a
covariance matrix. In the following sections the flexibility of the matrix-F distribution
is highlighted in different modeling situations. The matrix-F distribution can therefore
be viewed as a natural generalization of the univariate F distribution. In Section 5.2
we come back to the prior of Huang and Wand by comparing its frequency properties
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with the matrix-F prior when modeling the covariance matrix of the random effects in
a mixed logistic regression model.

3 A multivariate horseshoe prior

There is an increasing interest in the development of horseshoe priors which are known to
perform well in sparse situations (Carvalho et al., 2009; Polson and Scott, 2011; Pérez
et al., 2017). A key feature of the horseshoe prior is that it has a pole at the origin
resulting in heavy shrinkage of small noisy signals. A second key feature of a horseshoe
prior is that it has heavy tails to ensure that large observed effects remain large in
the posterior. Here we show that the matrix-F distribution is useful for constructing
multivariate horseshoe type priors for location parameters.

Consider a multivariate normal prior for θ with mean μ and covariance matrix Σ,
with a matrix-F distribution on Σ. Then the marginal prior for θ with ν = k and δ = 1
is a horseshoe prior. To see this, note that

π(θ) =

∫
N(θ;μ,Σ)× F (Σ; ν, δ,B)dΣ

= C

∫
|Σ|− 1

2 exp
{
−1

2 (θ − μ)′Σ−1(θ − μ)
}
|Σ| ν−k−1

2 |Ik +ΣB−1|− ν+δ+k−1
2 dΣ

= C

∫
exp

{
−1

2 (θ − μ)′Σ−1(θ − μ)
}
|Σ| ν−k−2

2 |Ik +ΣB−1|− ν+δ+k−1
2 dΣ,

where the constant C is the product of the normalizing constants of the multivariate
normal density and matrix-F density. To see that this distribution has a pole at μ, note
that the marginal density at θ = μ is given by

π(θ = μ) = C

∫
|Σ| ν−k−2

2 |Ik +ΣB−1|− ν+δ+k−1
2 dΣ

= C̃

∫
F (Σ; ν − 1, δ + 1,B)dΣ, (6)

where C̃ is equal to C divided by the normalizing constant of F (ν − 1, δ + 1,B). The
matrix F distribution in (6) is improper when setting ν = k because the first degrees
of freedom would then be equal to k − 1. This implies that the density at θ = μ in (6)
is ∞ for ν = k, resulting in a marginal prior for θ with a pole at μ.

To get some insights about the thickness of the tails, note that the marginal distri-
bution can be written as follows

π(θ) =

∫
N(θ;μ,Σ)× F (Σ; k, δ,B)dΣ

=

∫∫
N(θ;μ,Σ)× IW (Σ; δ + k − 1,Ψ)×W (Ψ; k,B)dΨdΣ

=

∫
t(θ;μ, δ−1Ψ, δ)×W (Ψ; k,B)dΨ,



J. Mulder and L. R. Pericchi 1201

Figure 1: Surface plot of a bivariate horseshoe prior obtained by mixing the normal
covariance matrix of N(θ;0,Σ) distribution with a F (Σ; 2, 1, I2) distribution. The
marginal distribution of θ has a pole at 0.

where t(θ;μ,Ψ, ν) denotes the multivariate Student t distribution with location pa-
rameter μ, scale matrix Ψ, and degrees of freedom ν. By setting δ = 1, we obtain a
multivariate Cauchy prior where the scale matrix is mixed with a Wishart distribution.
This implies that the marginal distribution of θ has heavier tails than a multivariate
Cauchy distribution.

Due to the pole at μ and the heavy tails, the multivariate normal distribution with
a matrix-F distribution with ν = k and δ = 1 on the normal covariance matrix can
be seen as a horseshoe type distribution. In Figure 2 a surface plot is presented for the
bivariate case with B = I2.

4 Testing covariance matrices

4.1 Precise hypothesis testing of a covariance matrix

There has been a considerable interest in the development of intrinsic priors when eval-
uating statistical models using default Bayes factors. Default Bayes factors are charac-
terized by the fact that the marginal likelihoods are computed in an automatic fashion
by splitting the data in a minimal subset referred to as a minimal training sample
that is used to construct a (implicit) proper default prior and a remaining set that is
used for computing the marginal likelihoods. When a default Bayes factor is approxi-
mately equivalent to a Bayes factor based on a certain pair of priors, these priors are
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referred to as the intrinsic priors. For this reason the intrinsic prior methodology is of
considerable interest because it provides a formal means to construct (proper, or at
least well-calibrated or predictively matching; Pericchi, 2005) priors when comparing
statistical models using the Bayes factor (which is known to be sensitive to the prior).
Interesting references on this topic are Berger and Pericchi (1996), Moreno et al. (1998),
Pérez and Berger (2002), Berger and Pericchi (2004), and the references therein.

When testing a null model with a fixed covariance matrix against an unrestricted
alternative, the intrinsic prior of the covariance matrix under the unrestricted model
has a matrix-variate F distribution.

Theorem 1. When testing H0 : Σ = Σ0 versus H1 : Σ �= Σ0 using iid k-variate data
with xi ∼ N(μ,Σ), for i = 1, . . . , n, the intrinsic prior under H1 is given by πI

1(μ,Σ) =

F (Σ; k, 1,Σ0) based on the noninformative improper priors πN
1 (μ,Σ) = |Σ|− k+1

2 and
πN
0 (μ) = 1, and a minimal training sample of size m = k + 1.

Proof. Appendix C of Mulder and Pericchi (2018).

Given the interpretation of the hyperparameters, the intrinsic prior for Σ under H1

contains minimal information because the prior degrees of freedom ν and δ are equal
to the smallest allowed integer. Furthermore the intrinsic prior is concentrated around
the null value as can be seen from the prior scale matrix which equals B = Σ0. Hence,
the intrinsic prior satisfies Jeffreys’ heuristic argument that when testing a null value,
the prior distribution of the parameter under the unrestricted alternative H1 should be
concentrated around the null value. The argument is that if the null is false it would
be reasonable to expect that the covariance matrix is close to the assumed covariance
matrix under the null.

For the univariate test, with k = 1, the intrinsic prior for the variance equals
F (σ2; 1, 1, σ2

0), which corresponds to a half-Cauchy prior with scale σ0 for the stan-
dard deviation. The matrix-variate test has an intrinsic prior with a F (Σ; k, 1,Σ0)
distribution which does not correspond to half-t priors for the standard deviations (see
Section 2.4). This suggests that a natural matrix-variate generalization of the univariate
F prior does not have half-t priors for the standard deviations.

It is also interesting to note that the intrinsic prior is the same in the case of a
known mean μ. The derivation is similar to Appendix C. Note that in general the
intrinsic priors differ in the case of known or unknown nuisance parameters. For example
when testing the mean μ of a univariate normal population with unknown variance σ2,
the intrinsic prior is different when the variance is known than when it is unknown
(Moreno and Pericchi, 2014). The fact that the intrinsic prior for Σ in both testing
problems results in the same matrix-F distribution illustrates the broad applicability
of this family of prior distributions, and it hints at a possible existence of a unifying
approach for modeling variance components.

The intrinsic prior can directly be used to compute the intrinsic Bayes factors when
testing a fixed null covariance matrix against the unrestricted alternative. This can be
done as follows.
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Proposition 1. The intrinsic Bayes factor in favor of H1 : Σ �= Σ0 against H0 : Σ =
Σ0 using the intrinsic priors πI

1(μ,Σ) = F (Σ; k, 1,Σ0) and πI
0(μ) = 1 equals

B10 =
Γk (k)

Γk

(
k
2

)
Γk

(
k
2

) |Σ0|
n−k−1

2 exp
{

1
2 trΣ

−1
0 S

}

×
∫

|Ik +ΣΣ−1
0 |−k|Σ|−n

2 exp
{
−1

2 trΣ
−1S

}
dΣ. (7)

Proof. Appendix C of Mulder and Pericchi (2018).

The integral in (7) can easily be computed via importance sampling, for instance,
using an inverse Wishart proposal distribution with max(k, n−k−1) degrees of freedom
and scale matrix S. Below we show that the intrinsic Bayes factor (7) is consistent.

Proposition 2. The intrinsic Bayes factor in (7) of H0 : Σ = Σ0 versus H1 : Σ �= Σ0

is consistent.

Proof: Appendix D of Mulder and Pericchi (2018).

4.2 Inequality-constrained hypothesis testing of a covariance matrix

We consider a multivariate normal model for balanced data of K repeated measure-
ment of n individuals, i.e., yi ∼ N(θ,Σ), for i = 1, . . . , n, where θ is the vector of
repeated measures means and Σ is an unstructured repeated measures covariance ma-
trix. By working with an unstructured covariance matrix we do not have to make any
assumptions about a specific multilevel structure of the data. In repeated measures
studies researchers are often interested in testing whether individuals tend to become
more heterogenous or more homogeneous over time (Böing-Messing and Mulder, 2016;
Böing-Messing et al., 2017). For example, Aunola et al. (1994) argued that the variance
of math ability of children either increase or decrease over grades. This can be translated
to the following inequality-constrained hypothesis test,

H1 : σ2
1 < . . . < σ2

k

H2 : σ2
1 > . . . > σ2

k

H3 : not H1, H2,

where σ2
k′ is the variance of the k′-th measurement (e.g., grade k′) for k′ = 1, . . . , k and

the k′-diagonal element of Σ. We shall write the parameter space under Ht as Σt, e.g.,
Σ1 = {Σ|σ2

1 < . . . < σ2
k}. Hypothesis H1 assumes that a strict destabilization occurs

over time, H2 assumes that a strict stabilization occurs, and H3 assumes that neither
a strict destabilization nor a strict stabilization occurs over time.

To our knowledge no criterion has yet been proposed for testing multiple nonnested
hypotheses with inequality constraints on the variances in a multivariate normal model.
One might consider looking at the posterior probabilities that the inequality constraints
hold under a larger unconstrained model. A potential issue of this approach would be
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that we would ignore the differences in model complexity of the three hypotheses result-
ing in a bias towards the larger hypothesis H3 (Mulder, 2014). Therefore we consider
a Bayes factor approach. When testing nonnested hypotheses using the Bayes factor,
it is natural to specify an unconstrained prior, denoted by πu(θ,Σ), under a larger
unconstrained hypothesis, Hu : σ2 ∈ Σu = Σ1 ∪ Σ2 ∪ Σ3 = (IR+)k, in which H1, H2,
and H3 are nested (e.g., Berger and Mortera, 1999). Subsequently truncations of the
unconstrained prior are specified under the constrained hypotheses Ht, for t = 1, 2,
and 3, i.e., πt(θ,Σ) = πu(θ,Σ)1Σt(Σ)/Pr(Σ ∈ Σt|Hu). It has been shown that for this
prior choice the Bayes factor of a hypothesis Ht with inequality constraints on means
against an unconstrained hypothesis Hu can be written as the ratio of the posterior
and prior probability that the constraints of Ht hold under Hu (Klugkist et al., 2005).
This is also the case for the Bayes factor of hypotheses with inequality constraints on
variance components, i.e.,

Btu =

∫∫
Σt

f(Y|θ,Σ)πt(θ,Σ)dθdΣ∫∫
Σu

f(Y|θ,Σ)πu(θ,Σ)dθdΣ

=
Pr(Σ ∈ Σt|Y, Hu)

Pr(Σ ∈ Σt|Hu)
. (8)

The derivation can be found in Appendix A (Mulder and Pericchi, 2018). Because
the matrix-variate F distribution with ν = k and δ = 1 served as an intrinsic prior
when testing a precise null with a flat prior for the common nuisance parameters θ,
we shall also use this distribution as unconstrained prior. For the scale matrix B of
the matrix-variate F distribution we consider a diagonal matrix with equal diagonal
elements, so that the marginal distribution of each variance is equal. Furthermore the
prior probability of each of the k! possible orderings of K variances is equal to (k!)−1

under Hu, a desirable property when testing inequality-constrained hypotheses (Mulder
et al., 2010). Consequently, Pr(Σ ∈ Σ1|Hu) = Pr(Σ ∈ Σ2|Hu) = (k!)−1, and Pr(Σ ∈
Σ3|Hu) = 1− 2(k!)−1. The posterior probabilities can be obtained as the proportion of
unconstrained draws that satisfy the constraints of Ht. Unconstrained posterior draws
can be obtained using a Gibbs sampler by writing the matrix-F prior as a Wishart
mixture of inverse Wisharts as in (3). As an alternative we also consider a (default)
inverse Wishart distribution with k degrees of freedom with the same scale matrix.

To illustrate the difference between the two prior approaches we consider k = 3
repeated measures, and sums of squares of S = diag(1, s, s2) for a data set of n = 20
observations. Note that when s > 1 the estimates of the variances (ML or Bayesian)
satisfy the inequality constraints of the destabilization hypothesis H1. Figure 2 (left
panel) displays the logarithm of the Bayes factor of H1 versus H2 (solid lines) and the
logarithm of the Bayes factor of H1 versus H3 (dashed lines) based on an unconstrained
prior with a matrix-variate F (Σ; k, 1, Ik) distribution (black lines) and the Bayes factor
based on an unconstrained prior with a IW (Σ; k, Ik) distribution (red lines), as a func-
tion of the scale matrix S = diag(1, s, s2), while letting s go from exp(0) to exp(2). As
can be seen the Bayes factor based on the matrix-variate F distribution results in more
evidence for the inequality constrained hypothesis that is supported by the data, H1,
against the other two hypotheses H2 and H3, in comparison to the Bayes factors based
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Figure 2: Left panel. Logarithm of the Bayes factor of H1 : σ2
1 < σ2

2 < σ2
2 versus

H2 : σ2
1 > σ2

2 > σ2
3 (solid lines) and of H1 versus the complement hypothesis H3

(dashed lines) using an encompassing prior with a F (3, 1, I3) distribution (black lines)
and a IW (3, I3) distribution (red lines), as function of the scale matrix S = diag(1, s, s2),
while letting s2 go from exp(0) to exp(5). Right panel. The posterior probability that
the constraints of H1 hold under the unconstrained model using the F (3, 1, I3)-prior
(black solid line), the IW (3, I3)-prior (red solid line), and the improper Jeffreys prior

|Σ|− k+1
2 (blue dotted line).

on the inverse Wishart prior. As Figure 2 (right panel) shows that this is a consequence
of the posterior probability P (σ2

1 < σ2
2 < σ2

3 |Y, Hu) in the numerator in (8), which
is larger when using the matrix-F prior (black solid line) in comparison to the inverse
Wishart prior (red solid line). This can be explained by the thicker tails of the matrix-F
distribution resulting in less prior shrinkage, an important property of robust priors.
As a comparison, the posterior probability based on the matrix-F prior is only slightly

smaller than the posterior probability based on the improper Jeffreys’ prior |Σ|− k+1
2

(blue dotted line) with no prior shrinkage.

5 The matrix-F prior for estimating hierarchical models

Prior specification of the covariance matrix of the random effects in a hierarchical
Bayesian model is an important but challenging aspect of a Bayesian analysis. In this
section we investigate the matrix-F prior for the covariance matrix of the random effects
in generalized linear mixed models. To evaluate its performance relative to other pro-
posed priors, we reran various simulations from the literature using the matrix-F prior
for the covariance matrix (Natarajan and Kass, 1999; Gelman, 2006; Kass and Natara-
jan, 2006; Polson and Scott, 2012). We considered minimally informative matrix-variate
F priors with ν = k and δ = 1. Different choices were considered for the scale matrix B.
First, we considered an empirical Bayes scale matrix for B, denoted by R∗, as suggested
by Kass and Natarajan (2006) (Section 2.1). Second, we considered a proper neighbor-

ing prior of the improper prior |Σ|− 1
2 , by setting B = 103Ik (Section 2.2). We also

considered the improper prior |Σ|− 1
2 as it is a generalization of a univariate improper
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prior (σ2)−
1
2 that is recommended in the literature for a variance σ2 (e.g., Berger and

Strawderman, 1996; Berger, 2006). Finally we also included the prior of Huang and
Wand (2013) which has uniform marginal priors on (−1, 1) for the correlations in the
covariance matrix and half-t(2, 105) marginal priors for the standard deviations.

5.1 Mixed Poisson regression

Kass and Natarajan (2006) proposed an empirical Bayes prior with an inverse Wishart
distribution with minimal degrees of freedom k and an empirical “prior guess”, denoted
by R∗. Unlike the ML estimate of the covariance matrix of the random effects, the
positive definite scale matrix R∗ is always positive definite. The performance of the
prior was investigated in a mixed Poisson regression model, where yi|bi ∼ Poisson(μb

i ),
with univariate random intercepts bi ∼ N(0, σ2), and μb

i = exp{β0 + β1 log(xi + 10) +
β2xi + bi}, for i = 1, . . . , 18, with six dosage levels each on three different plates (i.e.,
x = (0 · 1′

3, 10 · 1′
3, 33 · 1′

3, 100 · 1′
3, 333 · 1′

3, 1000 · 1′
3)), where σ2 is the random effects

variance. Following Kass and Natarajan, the unknown model parameters were set to
β0 = 2.203, β1 = .311, β2 = −.001, and σ2 = .040.

We reran their simulation using a minimally informative F (1, 1, B∗)-prior with em-

pirical Bayes scale R∗, the improper prior (σ2)−
1
2 , the proper neighboring F (1, 1, 103)

of (σ2)−
1
2 , and the univariate version of the prior of Huang and Wand, i.e., F (1, 2, 1010)

for the variance, which can also be viewed as a proper neighboring prior of (σ2)−
1
2 . The

estimated risk of the fixed effects, i.e., E[(β̂−β)′(β̂−β)], the risk based on the entropy
loss function for the variance, i.e., L(σ2, σ̂2) = σ̂2/σ2− log(σ̂2/σ2)−1, and noncoverage
rates are presented in Table 1. The results of the prior of Hwang and Wand were omitted
as the results were virtually the same as the proper neighboring prior F (1, 1, 103).

The results for IW (1, R∗) and πus (the uniform shrinkage prior of Natarajan and
Kass (1999)) were taken from Kass and Natarajan (2006), where harmonic posterior
means were used for σ2 for the computation of the entropy loss function L(σ2, σ̂2) =
σ̂2/σ2 − log(σ̂2/σ2) − 1. In our simulations the arithmetic posterior means were used
to compute the risk. The results show that the coverage rates for the improper prior
σ−1 and both F priors are accurate which is not the case for the other priors. The
uniform shrinkage prior also shows competitive results for the coverage. Regarding the
classical risk, the F priors performed slightly worse than the inverse Wishart prior with
empirical Bayes scale.

5.2 Mixed logistic regression model

Natarajan and Kass (1999) presented a simulation of a mixed logistic regression model
with a random intercept and random slope, inspired by the work of Zeger and Karim
(1991). Conditionally independent Bernoulli responses yij were generated for n = 30
clusters with mean logit(μb

ij) = β0 + β1tj + β3xi + β4xitj + bi0 + bi1tj , where xi = 1
for half of the samples and 0 elsewhere, and tj = j − 4, for j = 1, . . . , 7. Furthermore,
the fixed effects were set to β = (−.625, .25,−.25, .125)′, and the random effects were
generated according to bi ∼ N(0,Σ), with Σ = [σ2

1 σ12;σ12 σ2
2 ] = [.50 0; 0 .25].
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IW (1, R∗) πus F (1, 1, R∗) F (1, 1, 103) (σ2)−
1
2

Risk
β .01± .00 .01± .00 .11± .00 .10± .00 .11± .00
σ2 .12± .00 .62± .02 .23± .01 .28± .01 .27± .01

Noncoverage
β0 .056± .007 .070± .008 .064± .007 .047± .007 .048± .008
β1 .059± .007 .067± .008 .065± .007 .048± .007 .049± .007
β2 .060± .007 .075± .008 .053± .007 .058± .007 .051± .007
σ2 .007± .003 .037± .006 .048± .007 .050± .007 .045± .007

Table 1: Risk and noncoverage rates for the (fixed) regression parameters β and the
random intercept variance σ2 using different priors.

Again we considered the minimally informative matrix-F prior with empirical Bayes
scale matrix B = R∗, the improper prior |Σ|− 1

2 , a proper neighboring matrix-F prior
with large scale matrixB = 103I2, and the prior of Huang and Wand (2013). The models
were estimated using the Gibbs sampler of Kinney and Dunson (2007) by approximating
the logistic distribution with a mixture of normals. Importance weights were applied to
correct for the very small approximation errors.

The simulation of Natarajan and Kass (1999) showed that the approximate uni-
form shrinkage prior, denoted by πus, performed best in this setting. For this reason,
the performance of the other priors is compared with this prior. Tables 2, 3, and 4
presents the classical risk (E[(β̂ − β)′(β̂ − β)], E[tr((Σ̂Σ−1 − I2)

2)],
∑

i E[b̂i0 − bi0],

and
∑

i E[b̂i1− bi1], using posterior means as Bayesian estimates), and the noncoverage
rates and average width of the 95% credibility intervals.

Tables 2, 3, and 4 show that the uniform shrinkage prior and the minimally infor-
mative empirical Bayes matrix-variate F prior performed best. When estimating the
random effects covariance matrix Σ, the uniform shrinkage prior resulted in a lower risk
than the empirical Bayes-F prior. The coverage rates for the covariance σ12 on the other
hand seems more accurate when using the empirical Bayes matrix-F prior. Regarding
the estimation of the fixed and random effects, the performance of the matrix-variate
F prior with empirical Bayes scale matrix and the uniform shrinkage prior were sim-
ilar, with slightly wider intervals for the uniform shrinkage prior. The results of the
prior of Huang and Wand (2013), the improper prior and proper neighboring prior were
considerably worse than the other two priors.

5.3 Standard random intercept model

Polson and Scott (2012) investigated the classical risk of hypergeometric inverted-beta
priors with different combinations of the hyperparameters for the standard deviation of a
random intercept. These authors recommended a special case of the inverted-beta prior
corresponding to the half-Cauchy prior for the random intercept standard deviation.
This half-Cauchy prior corresponds to a univariate (p = 1) F distribution on the random
intercept variance with hyperparameters ν = δ = 1 and b = 1.
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Noncoverage Interval width
Prior Risk σ2

1 σ12 σ2
2 σ2

1 σ12 σ2
2

|Σ|− 1
2 3.90± .11 .166 .047 .202 4.05 2.00 1.74

F (Σ; 2, 2, 103 × I2) 3.84± .11 .134 .048 .198 3.97 1.99 1.74
F (Σ; 2, 2,R∗) 3.32± .18 .034 .045 .043 2.11 1.07 .90
πus 3.10± .19 .035 .029 .041 2.12 1.05 .88
HW-prior 7.64± .50 .070 .009 .110 2.89 1.08 1.28

Table 2: Risk function (± standard errors), noncoverage probabilities, and average in-
terval width for Σ.

Risk Noncoverage Interval width
Prior b0 b1 b0 b1 b0 b1
|Σ|− 1

2 14.99± .25 6.08± .13 .034 .035 3.20 1.99
F (Σ; 2, 2, 103 × I2) 14.88± .28 6.07± .12 .033 .035 3.18 1.99
F (Σ; 2, 2,R∗) 11.65± .13 4.67± .05 .058 .057 2.54 1.60
πus 11.51± .12 4.51± .05 .045 .048 2.67 1.63
HW-prior 12.46± .17 5.20± .08 .049 .046 2.80 1.77

Table 3: Risk function (± standard errors), noncoverage probabilities, and average in-
terval width for predictors of the random intercept (b0) and slope (b1).

Noncoverage Interval width
Prior Risk β0 β1 β2 β3 β0 β1 β2 β3

|Σ|− 1
2 .58± .02 .025 .034 .027 .036 1.65 1.03 2.33 1.46

F (Σ; 2, 2, 103 × I2) .64± .02 .046 .050 .043 .034 1.64 1.04 2.31 1.46
F (Σ; 2, 2,R∗) .44± .01 .052 .048 .055 .045 1.33 .81 1.89 1.15
πus .46± .02 .033 .058 .044 .045 1.44 .83 2.12 1.19
HW-prior .51± .02 .061 .046 .055 .044 1.45 .91 2.05 1.28

Table 4: Risk function (± standard errors), noncoverage probabilities, and average in-
terval width for β.

We look at a similar example as Polson and Scott (2012). Let yi = bi + εi, with
random intercept bi ∼ N(0, σ2) and εi ∼ N(0, 1), for i = 1, . . . , 7. The priors were

evaluated by computing the classical risk given by the mean squared error ||b − b̂||2.
Posterior means were used as Bayesian estimates for the random effects b. Besides
the univariate F prior with ν = δ = 1 and b = 1, as recommended by Polson and
Scott (2012), we also considered the improper prior of Berger and Strawderman (1996),
i.e., (σ2)−1; a proper neighboring prior of σ−1 having a F distribution with ν = 1,
δ = .2, and b = 103, the univariate version of the prior of Huang and Wand (2013),
i.e., F (1, 2, 1010) for the variance, another proper neighbor of (σ2)−1, and an empirical
Bayes F prior with ν = δ = 1 and scale R∗. We also included the nonhierarchical
ML estimate solution, and the James–Stein solution, similar as in Polson and Scott
(2012).
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Figure 3: The risk E(||β̂−β||2) as function of the true random effects variance σ2. Note
that the F (1, 1, 1)-prior corresponds to a standard half-Cauchy prior on the random
effects standard deviation.

The classical risk for each estimate is plotted in Figure 3 as a function of the true
variance σ2. As can be seen in the figure, for very small values of σ2, the F (1, 1, 1) prior
(i.e., a standard half-Cauchy prior for the standard deviation) results in the smallest
risk. For medium to large values of σ2, the F (1, 1, 1) prior performs considerably worse
than the improper prior σ−1 and its proper neighbors F (1, .2, 103) and F (1, 2, 1010)
(which were virtually identical to σ−1 and therefore omitted in the figure), as well
as the James–Stein estimate. The empirical Bayes F (1, 1, R∗) prior performs slightly
better than the F (1, 1, 1) prior with only slightly higher risk for small values of σ2 and
lower risks for medium to larger values. Overall the improper prior σ−1 and its proper
neighboring prior F (1, .2, 103) seem to have the lowest risk overall. For small values of
σ2 these priors clearly outperform the James–Stein estimate and only do a bit worse
than the F (1, 1, 1) prior, for medium values of σ2 these priors result in the lowest risk,
and for larges values the risk based on these priors is only slightly higher than the
James–Stein estimate.

6 Summary

In this paper we investigated the potential of the matrix-variate F prior for modeling a
covariance matrix in different contexts. Based on our analyses we highlight the following
attractive properties.

• The matrix-F prior can straightforwardly be implemented in a Gibbs sampler as
a Wishart mixture of inverse Wishart distributions (for modeling a covariance
matrix) or as a Wishart or inverse Wishart mixture of Wishart distributions (for
modeling a precision matrix).
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• If a prior guess for the covariance matrix can be elicited from existing knowledge,
this prior guess can be used to specify the scale matrix in the matrix-F prior while
the prior degrees of freedom can be tuned depending on the amount of confidence
about the prior guess (e.g., ν = k and δ = 1 in the case of a minimally informative
prior guess).

• The matrix-F prior can be used for constructing multivariate horseshoe type priors
useful for estimating sparse signals.

• The matrix-F prior serves as an intrinsic prior when testing a covariance matrix of
multivariate normal data. This intrinsic prior contains minimal information (i.e.,
ν = k and δ = 1) with a scale matrix equal to the null value of the covariance
matrix. Interestingly, the intrinsic prior is identical in the case of a known popula-
tion mean as well as an unknown population mean. The resulting intrinsic Bayes
factor is consistent for a precise hypothesis test of a covariance matrix.

• The matrix-F prior is useful as encompassing prior when testing inequality con-
strained hypotheses on variances. Overall the F prior results in more evidence for
an inequality constrained hypothesis that is supported by the data in comparison
to its inverse Wishart counterpart.

• The matrix-F prior is promising for modeling the random effects covariance matrix
in generalized linear mixed models. A minimally informative matrix-variate F
prior with an empirical Bayes scale matrix results in accurate coverage rates and
reasonably low risk.

Supplementary Material

Supplementary material for “The matrix-F prior for estimating and testing covari-
ance matrices” (DOI: 10.1214/17-BA1092SUPP; .pdf). The Supplementary Material for
“The matrix-F prior for estimating and testing covariance matrices” contains a proof
that the matrix-F distribution has the reciprocity property (Section 1); a derivation
of the means and (co)variances of the elements of a random matrix having a matrix-F
distribution (Section 2); the derivation of the intrinsic prior for a precise hypothesis test
of a covariance matrix and the resulting intrinsic Bayes factor (Section 3); a proof that
the intrinsic Bayes factor is consistent (Section 4); and a derivation of the Bayes fac-
tor of an inequality-constrained covariance matrix against an unconstrained covariance
matrix (Section 5).
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