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One of the main goals of meta-analysis is to test for and estimate the heterogeneity of effect 

sizes. We examined the effect of publication bias on the Q-test and assessments of 

heterogeneity as a function of true heterogeneity, publication bias, true effect size, number 

of studies, and variation of sample sizes. The present study has two main contributions, and 

is relevant to all researchers conducting meta-analysis. First, we show when and how 

publication bias affects the assessment of heterogeneity. The expected values of 

heterogeneity measures H2 and I2 were analytically derived, and the power and the type I 

error rate of the Q-test were examined in a Monte-Carlo simulation study. Our results show 

that the effect of publication bias on the Q-test and assessment of heterogeneity is large, 

complex, and non-linear. Publication bias can both dramatically decrease and increase 

heterogeneity in true effect size, particularly if the number of studies is large and population 

effect size is small. We therefore conclude that the Q-test of homogeneity and heterogeneity 

measures H2 and I2 are generally not valid when publication bias is present. Our second 

contribution is that we introduce a web application, Q-sense, which can be used to determine 

the impact of publication bias on the assessment of heterogeneity within a certain meta-

analysis and to assess the robustness of the meta-analytic estimate to publication bias. 

Furthermore, we apply Q-sense to two published meta-analyses, showing how publication 

bias can result in invalid estimates of effect size and heterogeneity. 
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Introduction 

Meta-analysis has become the most important tool for researchers to gain an overview of the 

existing literature within a specific field (e.g., Aguinis, Gottfredson, & Wright, 2011; Head, 

Holman, Lanfear, Kahn, & Jennions, 2015). Meta-analyses are a form of systematic review 

that statistically combine the results from similar studies to synthesize available evidence in a 

specific research area (Rhodes, Turner, & Higgins, 2015). These quantitative systematic 

reviews aim to combine data across many studies or data sets to obtain a summary estimate of 

the effects (Ioannidis, 2008). In contrast to narrative reviews, meta-analyses make use of the 

effect size of a study (Borenstein, Hedges, Higgins & Rothstein, 2009). Meta-analyses are 

increasingly popular within many research areas, including psychology. The annual number of 

meta-analytic publications in PsycINFO has considerably increased over the years. As of 2018 

2,100 meta-analyses are published every year and take up 1.3 per cent of all PsycINFO articles.  

  Meta-analyses are used both to estimate the true population effect size (i.e. the average 

true effect size) and to explain heterogeneity in this effect. Primary studies, will differ in their 

designs and may not estimate the same true effect. Hence, differences between the estimated 

effect sizes of these included studies in a meta-analysis are inevitable (Higgins, Thompson, 

Deeks, & Altman, 2002). If the variation between study results is greater than that expected by 

chance alone (sampling error), this is called statistical heterogeneity (e.g., Higgins & Green, 

2011). Statistical heterogeneity indicates that true study effects are influenced by clinical 

factors (e.g., differences in the studied population), substantive heterogeneity factors (e.g., 

differences in the studied population or the compared (e.g., differences in experimental 

treatments interventions), or methodological heterogeneity factors (e.g., different study designs 

or measurement procedures). Even when the mean of the distribution of the true effect size is 

positive, it is quite possible for heterogeneity to indicate that, in some situations, the effect size 
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is zero or even negative. This provides important qualifications of the average effect. If relevant 

characteristics are not coded as moderators, a researcher may conclude that the treatment does 

have the desired effect when it may only work for particular subgroups of participants. In order 

to gain valid results, every meta-analysis should therefore examine statistical heterogeneity 

(Hardy & Thompson, 1998; American Psychological Association, 2008). Consensus seems to 

be growing that random-effects meta-analysis, which incorporates and estimates statistical 

heterogeneity, should be preferred over fixed-effect meta-analysis that assumes homogenous 

effect sizes (Viechtbauer, 2005), since the assumption of homogeneity often does not hold 

(Schmidt, Oh, & Hayes, 2009). 

Different tests and measures are available to assess and test for (statistical) heterogeneity. 

In the random-effects model, heterogeneity is represented by parameter τ2, which is the 

variance of true effect sizes. Since τ2 is not comparable across meta-analyses, it is not suitable 

for describing the impact of heterogeneity on meta-analyses (Higgins & Thompson, 2002). 

Therefore, other heterogeneity statistics have been proposed such as the I2 statistic, the H2 index 

(Higgins & Thompson, 2002), and the Q-statistic that is most commonly used to test the null-

hypothesis of no statistical heterogeneity (Cochran, 1954) (i.e., H0: τ
2 = 0). The present paper 

examines how statistical properties of these heterogeneity statistics are affected by publication 

bias. We define publication bias as the selective publication of studies with a statistically 

significant outcome (e.g., van Assen, van Aert & Wicherts, 2015), resulting in the 

overrepresentation in the literature of studies with significant outcomes compared to studies 

with null results.  

The evidence for publication bias is overwhelming, particularly in psychology. Fanelli 

(2012) showed that about 95% of published articles in psychiatry and psychology contain 

statistically significant outcomes, and that this percentage has been increasing over the years 

(cf. Sterling 1959; Sterling et al., 1995). Neither the high percentage nor its increase can be 
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explained by the studies’ statistical power, since power is generally low in psychology (e.g., 

Ellis, 2010; Bakker, van Dijk, & Wicherts, 2012) and has not increased over the years (e.g, 

Smaldino & McElreath, 2016; Hartgerink, Wicherts & van Assen, 2017). Franco, Malhotra and 

Simonovits (2014) and Cooper, DeNeve and Charlton (1997) provided direct evidence for 

publication bias in psychology and related fields. Further evidence of publication bias in 

psychology was obtained by the Reproducibility Project Psychology, which replicated 100 key 

effects from articles published in three prominent and high-impact psychology journals (Open 

Science Collaboration, 2015). Whereas 97% of the original studies reported that the key effect 

was statistically significant, only 36% of the replicated effects were statistically significant 

(Open Science Collaboration, 2015), even though the statistical power of the replication studies 

was generally higher than that of the original studies. This indicates that published effect sizes 

are often overestimated and that significant results are indeed overrepresented in the literature. 

Publication bias affects estimates of effect size and between-study variance in meta-

analysis (e.g., Jackson, 2007; Lane & Dunlap, 1978). Since evidence of publication bias is 

overwhelming in psychology (e.g., Fanelli, 2012; Sterling, Rosenbaum, & Weinkam, 1995), 

we agree with Jackson that publication bias is “the greatest threat to the validity of a meta-

analysis” (2006a, p. 2911). It is well-known that publication bias results in overestimated effect 

sizes, and that more overestimation is associated with smaller true effect sizes, smaller study 

sample sizes, and stronger publication bias (e.g., Borenstein, et al., 2009; Nuijten, van Assen, 

Veldkamp & Wicherts, 2015; van Assen et al., 2015). Interestingly, overestimation by 

publication bias is unaffected by the number of studies in the meta-analysis (e.g., Nuijten et al., 

2015). Hence, including more studies in a meta-analysis does not remedy overestimation when 

publication bias exists, and may even provide a false sense of confidence since the precision 

of the (over)estimated effect size increases (cf. van Assen et al., 2015). 

While the literature discussed above clearly identifies the effect of publication bias on the 
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mean effect size in a meta-analysis, the effect of publication bias on estimates of the between-

study variance and tests of homogeneity are less clear-cut (Thorlund et al., 2012). Sterne and 

Egger (2005) argued that it is implausible that underdispersion (underestimated between-study 

variance) will arise other than by chance. On the other hand, Jackson (2006a; 2007) 

demonstrated that the estimate of heterogeneity depends on the amount of publication bias and 

the true effect size, and can be either smaller or larger than the true amount of heterogeneity.  

As an example of how publication bias can affect heterogeneity, consider Figure 1 showing 

the sampling distribution of effect sizes of studies, with the same sample size, and an average 

true effect size equal to 0 (δ=0). The vertical ‘CV’ line indicates the critical value of statistical 

significance. When there is full publication bias (i.e. only statistically significant studies get 

published), only the grey area on the right remains. The variance of this grey area is only 15% 

of that of the original distribution, showing that when only statistically significant studies are 

 

 

Figure 1. Sampling distribution of effect size with mean true effect size δ = 0 and the 

critical value (CV) of testing the null hypothesis of no effect. The striped areas correspond to 

the sampling distribution of published studies when only 10% of insignificant studies get 

published (bias 90%), and the grey area corresponds to the sampling distribution of 

statistically significant studies (bias 100%). 
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published, we underestimate the amount of variation. The striped area shows a different 

scenario. Here all statistically significant studies are published, as well as 10% of the non-

significant studies (90% publication bias). Here, the variance is 1.7 times larger than the 

variance of the original (full) distribution, due to the relatively large amount of outliers in the 

right (grey) area. 

Because publication bias can lead to either overestimation or underestimation of the 

between-study variance, Jackson (2006a; 2007) concluded that it is impossible to make 

generalizations about the implications of publication bias for estimating the between study 

variance. In his analyses, however, Jackson (2006a; 2007) assumed that studies estimating an 

effect size larger than a cut-off point are published. Empirical evidence, however, suggests that 

publication bias based on studies’ statistical significance is more realistic, since statistically 

significant results are over-represented in the literature. Moreover, whereas Jackson only 

considered meta-analyses with studies with identical sample sizes in his analyses, it is 

important to study the effects under varying study sample sizes. Similarly, McShane, 

Böckenholt, and Hansen (2016) recently used simulations to examine the effects of publication 

bias on heterogeneity assessments for a very limited number of conditions, using two levels of 

publication bias, five levels of the effect size, five levels of the included number of studies (K) 

and one level of heterogeneity (τ). These conditions do not, and cannot, capture the complexity 

of the effects of publication bias on heterogeneity assessment; as they examined the effects of 

three continuous factors (publication bias, effect size and number of studies) with just 2×5×5 

= 50 conditions, and ignored three other important factors (true heterogeneity, study sample 

sizes, and heterogeneity of study sample sizes), the complex and non-linear effects on 

heterogeneity assessment as well as the precise conditions under which heterogeneity estimates 

are (un)biased remain unclear. Therefore, their conclusion “The standard meta-analytic 

approach tends to underestimate heterogeneity on average when there is selection; however, 
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this result is not uniform, and indeed it sometimes demonstrates an upward bias.”(p. 742) is 

too general and imprecise. 

The present study has two main contributions and is relevant to all researchers conducting 

meta-analyses. First, we show when and how publication bias affects the assessment of 

heterogeneity. More specifically, we analyze the expected value of the statistics Q, H2, and I2, 

as a function of heterogeneity in true effect size, publication bias, average true effect size, study 

sample size and variation of sample size. Compared to previous literature (Jackson 2006a, 

2007; McShane et al., 2016), our study provides results for more realistic (based on significance 

rather than effect size), more complex (varying sample sizes within a meta-analysis), and more 

diverse conditions, on more outcome variables (not only bias of the estimate of the between-

study variance, but type I error and statistical power as well). Our results on meta-analyses 

based on studies with the same sample size are complete, that is, they incorporate any true 

effect size, heterogeneity, publication bias, and generalize to any sample size and number of 

studies. We also examine the effects of publication bias in conditions with different sample 

size variability, both in analytic and Monte Carlo simulation studies. As opposed to previous 

studies, we also investigate the effect of publication bias on the type I error rate and statistical 

power of the Q-test in many conditions. 

In our analyses, we assume that within-study variances are known, which is a common 

assumption in meta-analysis (e.g., Raudenbush, 2009). In our main analyses we also assume 

that average true effect size is known, which allows us to analytically derive our results on 

heterogeneity, thereby bypassing the problem of estimating heterogeneity as is needed in 

simulations. The problem of estimation is that more than a dozen of estimators of heterogeneity 

exist, while none of them performs well in all conditions, and there is limited information which 

estimator performs best in which condition (Veroniki et al., 2015; Langan, Higgins, & 

Simmonds, 2016). Bypassing the estimation problem therefore enables us to explore the “pure” 
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effect of publication bias on the assessment of heterogeneity in a published set of studies. The 

trade-off of this analytic approach is that it requires stricter assumptions that may affect the 

results. Therefore, we also carried out four simulation studies with less strict assumptions that 

do estimate the true effect size, instead of assuming it to be known. As the analytic results are 

more precise (i.e., there is no sampling error in analytic results) and the four simulation studies 

provide results similar to our main analyses, we only briefly describe the results of our four 

simulation studies in our paper (details can be found in Supplementary Materials A). 

Our second main contribution is to introduce a web application, Q-sense, which can be 

used by meta-analysts to determine the sensitivity of the Q-test and assessment of heterogeneity 

to publication bias. Q-sense will increase researchers’ understanding of their meta-analytic 

results, since the effect of publication bias is complex and non-linear. Q-sense allows 

researchers to determine the degree to which their meta-analytic estimate of heterogeneity may 

be affected by publication bias, thereby examining the robustness of their meta-analytic 

estimates to publication bias. We illustrate the value of Q-sense in checking robustness and 

sensitivity to publication bias by applying it to two published meta-analyses.  

In the next section, we describe the random-effects meta-analysis model, define the Q, H2, 

and I2 statistics, show how they are related, and derive their distributions when all studies in 

the meta-analysis have the same sample size. We then discuss the assumptions of our analyses 

and the conditions that we examine, followed by four sections presenting the effects of 

publication bias on heterogeneity. The first section presents analytic results on the effect of 

publication bias on the expected value of statistics Q, H2, and I2. The second section focusses 

on extreme homogeneity, when there is less variation in study results than would be expected 

by chance. We discuss the circumstance where publication bias can create extreme 

homogeneity and the minimal amount of true heterogeneity needed to be able to detect 

heterogeneity in those conditions. The third section presents the effect of publication bias on 
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the statistical properties (Type I error rate and power) of the Q-test. The fourth section shows 

the impact of publication bias in additional conditions using sample sizes from the field of 

psychology. After these four results sections, we describe the web-application Q-sense that 

allows researchers to determine the sensitivity of the meta-analytic estimate of heterogeneity 

to publication bias, and apply Q-sense to two published meta-analyses from psychology. 

 

Assessing heterogeneity in a random-effects meta-analysis 

The random-effects model assumes that the observed effect size of a study (Yi) is the result of 

the average true effect size (μ), the deviation of the study’s true effect size from the grand mean 

(ζi) and the study's sampling error (εi): 

 𝑌𝑖 = 𝜇 + 𝜁𝑖 + 𝜀𝑖      (1) 

Both ζi and εi are assumed to be normally distributed variables with variances τ2 and 2

i , 

respectively. 2

i  is a function of population variance 
2

y  and study sample size, for instance 

iy N2 in case of estimating one group mean. 2

i is estimated in practice and then assumed to 

be known in meta-analysis. Below we also use 2 for 2

i if all studies are based on the same 

sample size, thereby assuming that they have a common within-study variance.  

The variance of true effect sizes τ2 is independent of the number of studies in the meta-

analysis (K) and the studies’ precision (which is the inverse of 2

i ). However, τ2 is not suitable 

for describing the impact of heterogeneity on the meta-analysis, its conclusions and its 

interpretation (Higgins & Thompson, 2002). Table 1 shows the statistical properties of τ2 and 

the other heterogeneity measures. 

 

Table 1.  

Properties of statistics of heterogeneity 
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Measure Range Increasing in K Decreasing 

in 2 

Can assess extreme 

homogeneity 

τ, τ2 0-∞ No No No 

Q 0-∞ Yes Yes* Yes 

I2 0-1 No Yes No 

H,H2 0-∞ No Yes Yes 

Note. Adapted from Undue reliance of I2 in assessing heterogeneity may mislead, by G. 

Rücker, G. Schwarzer, J.R. Carpenter, and M. Schumacher, 2008, BMC Medical Research 

Methodology, 8, 79. 

* “Yes” if the null hypothesis of homogeneity is rejected; if the null hypothesis of 

homogeneity is not rejected, the estimate does not increase with precision.  

 

The I2 statistic (Higgins & Thompson, 2002; Higgins, Thompson, Deeks, & Altman, 2003) 

is often used to interpret the extent of heterogeneity and is defined as 

𝐼2 =
𝜏2

𝜏2+𝜎2.      (2) 

The I2 statistic is one of the most popular heterogeneity statistics because of its ease of 

interpretation; it represents the proportion of the estimated variance that is due to differences 

in true effect sizes. Its value is scale invariant (allowing comparison across meta-analyses) and 

does not depend on the number of studies in a meta-analysis. However, its value increases as 

the studies’ sample size increases (see Table 1). I2 ranges from 0 (homogeneity; τ2 = 0) to 1 

(heterogeneity and infinite precision; τ2 > 0 and 2 = 0).  

 A useful but less popular heterogeneity statistic is H2 (Higgins & Thompson, 2002): 

 𝐻2 =
var(𝑌𝑖)

𝜎2
=

𝜏2+𝜎2

𝜎2
=

1

1−𝐼2
     (3) 

Like I2, H2 is independent of the number of studies but dependent on studies’ precision. 

However, H2 has an advantage over I2 and τ2 in that it can detect extreme homogeneity ( H2 
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<1). Following Ioannidis, Trikalinos, and Zintzaras (2006), evidence of extreme homogeneity 

is obtained when there is significantly less variance of study effect sizes than would be expected 

under conditions of homogeneity (i.e., when τ2=0). At the analytic or population level we have 

evidence of extreme homogeneity when the expected value of H2 is smaller than 1.Hence H2 

ranges from 0 to infinity, with values lower than 1 signalling extreme homogeneity, 1 

corresponding to homogeneity, and values larger than 1 corresponding to heterogeneity (see 

Table 1).  

The well-known Q-statistic is most commonly used to test the null-hypothesis of no 

statistical heterogeneity (i.e., H0: τ2 = 0). The DerSimonian and Laird estimator for the 

between-study variance in true effect size is based upon this Q-statistic (DerSimonian & Laird, 

1986). It is defined as the squared sum of standardized effect sizes: 

𝑄 = ∑ (
𝑌𝑖−𝜇

𝜎𝑖
)

2
𝐾
𝑖=1      (4) 

Under the assumptions of the fixed-effects model, the null-hypothesis of homogeneity (τ2 = 0), 

and assuming a known true effect size, the Q-statistic follows a central χ2 distribution with 

degrees of freedom equal to K and Q has an expected value equal to K and variance 2K. In 

practice, the true effect size is unknown, and the distribution has K-1 degrees of freedom. The 

value of Q increases with K, and when the null-hypothesis is false, Q also increases with 

increases in studies’ precision. Q ranges from 0 to infinity, with expected values of Q between 

0 and the degrees of freedom corresponding to extreme homogeneity, expected values of Q 

equal to the degrees of freedom corresponding to homogeneity, and expected values of Q larger 

than the degrees of freedom corresponding to heterogeneity (Table 1). The hypothesis of 

homogeneity is commonly rejected when the observed value of Q exceeds the 90th or 95th 

percentile of the central χ2 distribution (Higgins, et al., 2002, 2003). We note that the Q-test 

has low power when there are few studies in a meta-analysis, and that one should not rely on 

its result for diagnosing heterogeneity in such situations (e.g., Higgins et al., 2003). 
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The expected values of statistics Q, H2, and I2 are related under statistical heterogeneity 

and equal study sample sizes. For simplicity, assume all studies assess one population mean μ 

and have the same population variance𝑦
2 . Then, it can be shown that (Jackson, 2006b): 

𝑄 = ∑ (
𝑌𝑖−𝜇

𝜎𝑖
)

2
𝐾
𝑖=1 ∼ (1 +

𝑁𝜏2

𝑦
2 ) 𝜒2(𝐾) =

1

1−𝐼2 𝜒2(𝐾) = 𝐻2𝜒2(𝐾)   (5) 

In words, Q follows a central χ2 distribution with K degrees of freedom multiplied by a constant 

(
1

1−𝐼2
 or H2). This constant equals 1 plus precision × true heterogeneity, which reflects that 

under heterogeneity Q increases with studies’ precision and true heterogeneity (Table 1). This 

equation also reveals that the distribution of Q shrinks under extreme homogeneity (H2 < 1) 

and inflates under heterogeneity (H2 > 1). Using (5), I2 can be redefined as  

𝐼2 =
𝐸(𝑄)−K

𝐸(𝑄)
      (6) 

whenever E(Q) > K (otherwise I2 = 0), because 

𝐼2 =
𝐸(𝑄)−K

𝐸(Q)
=

𝐾(1+𝜏2 𝜎2⁄ )−𝐾

𝐾(1+𝜏2 𝜎2⁄ )
=

𝜏2

𝜎2+𝜏2 , 

and H2 can be redefined as  

𝐻2 =
E(𝑄)

𝐾
      (7) 

because  

𝐻2 =
𝐸(𝑄)

𝐾
=

𝐾(1+𝜏2 𝜎2⁄ )

𝐾
=

𝜏2+𝜎2

𝜎2
. 

In our analyses below, we use equations (6) and (7) to derive our results for I2 and H2, under 

different conditions of true heterogeneity, publication bias, average true effect size, number of 

studies, study sample size, and variation of sample sizes. 

 

Analyses 

Overall design 

In our analyses, we assume that all primary studies result from a normal distribution with mean 
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= μ and known standard deviation σy = 1. Our results are derived for effect size measure 

Cohen’s d, denoted by δ because we analyze populations. We assume all studies i = 1,…, K 

examine one population mean with sample size Ni, but our results also hold exactly for a 

balanced independent two-samples design, comparing two population means, where each 

group has 2Ni observations (i.e., a total sample size of 4Ni). All code used for generating data 

and analysis can be found in our Supplementary materials on OSF (https://osf.io/qzt5z/) 

Statistical significance of a study is determined using a one-sided test with α = .05. We 

model publication bias with one parameter pub between 0 and 1 representing the relative 

reduction in the probability of statistically nonsignificant studies getting published compared 

to statistically significant studies. For example, pub = .2 indicates that the probability of getting 

published is five times higher for significant than for nonsignificant studies. Recently 

developed meta-analytic methods that attempt to adjust for publication bias employ the same 

model (e.g., Simonsohn, et al., 2014a; 2014b; van Assen, et al., 2015). Our model is also 

comparable with selection models determining the weight of a study as a function of the p-

value, such as the combined probability model (Iyengar and Greenhouse, 1988; Hedges, 1992; 

Hedges, & Vevea, 2005).  

 

Independent factors 

In order to study the effect of publication bias on heterogeneity, we systematically varied the 

following factors: sample size variation, number of studies, true heterogeneity, true effect size 

and the amount of publication bias. Differences in sample sizes in our main analyses were 

manipulated into three different levels; equal sample size (1:1), a small difference in sample 

sizes (1:3), and a larger difference in sample sizes (1:10). We assumed 20% and 80% of large 

and small published studies, respectively, since more small studies are published within the 

psychology literature. The expected value of Q then equals 
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∑ 𝑁𝑖𝐸𝐾
𝑖=1 (𝑌𝑖 − 𝜇)2 =

𝐾

5
(1 + 𝑁𝐿𝜏2) +

4𝐾

5
(1 + 𝑁𝑆𝜏2) = 𝐾 + 𝐾 (

1

5
𝑁𝐿 +

4

5
𝑁𝑆) 𝜏2, 

with subscripts S and L referring to small and large sample sizes, respectively. To obtain the 

same expected value of Q (and H2 and I2) for varying sample sizes as for equal sample sizes, 

the total sample sizes across all studies in the meta-analysis should be equal. We chose a total 

sample size that was divisible by 5 (for the 1:1 ratio: 4 × 1 + 1 × 1), 7 (for the 1:3 ratio: 4 × 1 

+ 1 × 3 = 7), and 14 (for the 1:10 ratio: 4 × 1 + 1 × 10 = 14), and would result in realistic sample 

sizes for each study. We selected a total sample equal to 210, which corresponds to sample 

sizes of 42 (5 × 42 = 210) in case of equal (1:1) sample sizes, 30 and 90 for slightly varying 

(1:3) sample sizes (4 × 30 + 1 × 90 = 210), and 15 and 150 (4 × 15 + 1 × 150 = 210). As was 

noted before, our results are equivalent to a balanced independent two-sample design. When 

comparing two groups, our results reflect and group sample sizes twice as large (i.e., 84 per 

group, 60 or 180 per group, and 30 or 300 per group), and thus total sample sizes that are four 

times as large (840). These sample sizes are somewhat larger than commonly used in the 

psychological literature (Hartgerink, Wicherts, van Assen, 2017), but are the smallest sample 

size values that satisfy all our sample size constraints (keeping total sample sizes fixed, given 

certain ratios of small and large studies). Using slightly larger sample sizes will not affect the 

patterns of relationships we study, but only compresses or squeezes the y-axis of the figures 

below. More precisely, increasing all sample sizes with factor C will squeeze the y-axis of 

figures 3 till 6 with a factor 1 √𝐶⁄ . 

While arbitrary and unrealistic, our choice of two different sample sizes in our main 

analyses enabled us to analytically derive the results of publication bias on heterogeneity. 

Because the results of the effect of sample size variability may depend on its specific 

implementation, we carried out four additional Monte Carlo simulation studies with other and 

more realistic implementations of sample size variability. One study was almost identical to 

the design of our main analyses, with the same total sample size and same sample size 
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variability, but now with five different sample sizes (6, 30, 42, 54, 78) rather than two (30, 90). 

Comparing the results of this study with a simulation study corresponding to our main analyses 

allowed us to directly examine if the distribution of sample size affects the results, given the 

same mean and variance of this distribution. As the distribution of sample sizes in this 

additional study may still be considered unrealistic, two other simulation studies used sample 

size distributions of psychological research. One of them randomly selected sample sizes from 

studies in the field of social and personality psychology (Fraley & Vazire, 2014), whereas the 

other study randomly selected sample sizes from studies in one large meta-analysis on the 

association between brain volume and intelligence (Pietschnig, Penke, Wicherts, Zeiler, & 

Voracek, 2015). As the trends in the Monte Carlo simulation studies and conclusions based on 

these studies are similar to those of our main analyses, we only briefly summarize their results 

later on. All details of the simulation studies are described in Supplementary Materials A.  

  Two other factors that varied in our analyses are true heterogeneity and the number of 

studies in the meta-analysis. True heterogeneity, assessed with I2, was varied from 0 

(homogeneity), to small (.25), medium (.5), and large (.75), with values based on the rules of 

thumb by Higgins and Thompson (2002). Using these I2 values, we calculated the number of 

studies (K) for which the power of the Q-test equals .80 in case of equal sample sizes. We 

obtained values of K yielding a power of .8 by solving 

𝑃(𝑄 ≥ 𝜒𝑐𝑣
2 (𝐾)) = 𝑃 (

𝜒2(𝐾)

1 − 𝐼2
≥ 𝜒𝑐𝑣

2 (𝐾)) = 𝑃(𝜒2(𝐾) ≥ (1 − 𝐼2)𝜒𝑐𝑣
2 (𝐾)) = .8 

for K, assuming I2 = .25, .50 and .75, α = .05, and that K is a multitude of five published studies. 

These criteria yielded K = 145 and I2 = .2504, K = 25 and I2 = .4970, K = 5 and I2 = .7884 (see 

Supplementary Material B). Note that the number of studies is relevant for our analyses of the 

power of the Q-test and the expected value of Q, but not for analyses of the expected value of 

I2 and H2 (see Table 1). 
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The true effect size δ varied from 0 to 1, representing a range between null and very large 

effects. For δ = 1, almost all individual studies are statistically significant and get published, 

and publication bias has no effect. More specifically, the probability of a significant effect 

equals .9871, .99994 and .9999993, for sample sizes 15, 30 and 42 respectively. 

In our analyses, we varied both δ and pub (i.e. the probability of publication of non-

significant studies relative to significant studies) in steps of .01, creating a grid of 101×101 = 

10,201 combinations. For each of the 4 (heterogeneity of true effect size) × 3 (variation of 

sample size) = 12 conditions, we computed the expected heterogeneity (I2 and H2) in the grids. 

For 3 (number of studies) × 3 (variation of sample size) = 9 conditions, we computed type I 

error rate and statistical power of the Q-test in grids. We now describe the dependent variables 

corresponding to our three research questions in more detail.  

 

Outcome measures 

Expected values of I2 and H2. In these analyses, the dependent variable I2 is used when E(I2) 

≥ 0, and E(H2) if E(H2) < 1 (extreme homogeneity, where I2 is not defined). These expected 

values were calculated from the expected value of Q and equations (6) and (7). Working out 

the expected value of Q assuming varying sample sizes and publication bias yields 

𝐸(𝑄) = 𝐾 [𝑃𝑆H𝑆
2 + 𝑃𝐿H𝐿

2 +
𝑃𝑆𝑁𝑆𝑃𝐿𝑁𝐿

𝑃𝑆𝑁𝑆+𝑃𝐿𝑁𝐿
(𝜇𝑆 − 𝜇𝐿)2] = 𝐾[H𝑎𝑣𝑔

2 + H𝑒𝑥𝑡𝑟𝑎
2 ]  (8) 

PS and PL refer to the proportion of small and large published studies, which are .2 and .8 

respectively. H𝑆
2 and H𝐿

2 refer to the expected value of H2 for small and large studies, 

respectively, which combine with their corresponding proportions into the weighted average 

of H2, i.e., 𝐻𝑎𝑣𝑔
2 . As can be seen in equation (8), 𝐻𝑒𝑥𝑡𝑟𝑎

2  is a function of the proportion of 

small and large published studies, their sample sizes (NS and NL) and the squared difference 

of the means of the populations of published small and large studies. In case of equal sample 

sizes, 𝐻𝑒𝑥𝑡𝑟𝑎
2 = 0 because then 𝜇𝑆 = 𝜇𝐿. The expected value of a population of published 
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studies µ is calculated as 

µ =
𝑝𝑢𝑏(1−𝜋)𝜇𝑛𝑜𝑛𝑠𝑖𝑔+𝜋𝜇𝑠𝑖𝑔

𝑝𝑢𝑏(1−𝜋)+𝜋
,     (9) 

with π denoting the statistical power of rejecting the null-hypothesis in one study, 𝜇𝑛𝑜𝑛𝑠𝑖𝑔 

denoting the expected effect size of nonsignificant studies and 𝜇𝑠𝑖𝑔 denoting the expected effect 

size of significant studies. µ is calculated by integrating the effect size distributions with mean 

δ and standard deviation √(𝜎𝑦
2 ⁄ 𝑁𝑖 + 𝜏^2 ) from minus infinity to the critical value (1.645 

×√𝜎𝑦
2 𝑁𝑖⁄ ) for nonsignificant studies and from this critical value to infinity for significant 

studies. H𝑆
2 and H𝐿

2 were calculated as  

𝐻2 = N𝑖 (
𝑝𝑢𝑏(1−𝜋)𝐸(𝑌2)

𝑛𝑜𝑛𝑠𝑖𝑔
+𝜋𝐸(𝑌2)

𝑠𝑖𝑔

𝑝𝑢𝑏(1−𝜋)+𝜋
− 𝜇2),    (10) 

which is the variance of the distribution of published standardized effect sizes, where E(Y2) 

is obtained by integrating the effect size distribution from minus infinity to the critical value, 

and from the critical value to infinity for nonsignificant and significant studies, respectively 

(see Supplementary Material C) . 

 

True heterogeneity I2 required to obtain homogeneity. Extreme homogeneity (i.e., E(Q) < 

K and E(H2) < 1) is obtained for many combinations of values of true effect size and publication 

bias. For these combinations, we use equations (8)-(10) to calculate the true heterogeneity in 

the population of all studies (published and unpublished) required to obtain homogeneity (i.e., 

E(Q) = K and E(H2) = 1). We used the iterative bisection method (Adams & Essex, 2013, pp. 

85-86) for τ2 on interval [0, 0.2]1 to obtain E(H2) = 1, with tolerance 1e-6. From this computed 

                                                   
1 The bisection method for τ2 on interval [0, 0.2] is guaranteed to find the only solution for τ2 

such that E(H2) = 1, if (i) E(H2) < 1 for τ2 = 0 and (ii) E(H2) > 1 for τ2 = .2. Condition (ii) 

always holds, because when homogeneity is most extreme (equal sample sizes, Ni = 42), τ2 

= .2 results in E(H2) = 8.538. Hence, we first checked if condition (i) holds before applying 

the bisection method (if (i) does not hold, no solution exists).  
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τ2 we derived the true heterogeneity I2 of all studies using equation (6) (see Supplementary 

Material C). 

 

Type I error rate and power of the Q-test. The statistical properties of the Q-test of 

homogeneity were obtained using Monte-Carlo simulations. Type I error rate and power were 

estimated for I2 = 0 and the three conditions with I2 > 0 (i.e., I2 = .2504 and K = 145, I2 = .4970 

and K = 25, I2 = .7884 and K = 5), respectively. Note that these three heterogeneity conditions 

were chosen such that the power of the Q-test exactly equals .8 when the sample sizes are equal 

(N = 42) and there is no publication bias, at α = .05. We also varied the sample size ratio as 

before (1:1, 3:1, 10:1). To obtain a 95% confidence interval of the type I error rate and power 

with a width of at most .01, we ran S = 40,000 iterations for each combination of δ and 

publication bias. The width of the confidence interval equals 2×1.96×√𝑝 (1 − 𝑝) 𝑆⁄ . This 

confidence interval is widest when the type I or power (p) is equal to .5, resulting in a 

confidence interval with a width of .0098. When p = alpha =.05, the width is equal to .0043, 

and for p = .8 it is equal to .00784. The type I error rate and power were estimated by computing 

the proportion of statistically significant Q-tests across the 40,000 iterations. The effect sizes 

Yi of the small and large studies were drawn randomly from the distributions of published 

studies that were also used to compute equations (8)-(10). In each iteration, Q was calculated 

using 

𝑄 = ∑ 𝑁𝑖

𝐾

𝑖=1

× (𝑌𝑖 − 𝜇)2 

with  

𝜇 =
4𝑁𝑆𝜇𝑆 + 𝑁𝐿𝜇𝐿

4𝑁𝑆 + 𝑁𝐿
 

Because mean μ is known exactly, we compared Q to the 95th percentile of the χ2-distribution 
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with K degrees of freedom. R-code used to simulate the statistical properties (type I error rate 

and power) can be found in Supplementary Material D. 

 

Results 

Expected values of I2 and H2 

Interpreting results, particularly when they are as complex as in our case, is simplified when 

mechanisms producing these results are grasped at least at an intuitive level. Hence, we start 

by explaining the non-linear effect of publication bias on heterogeneity in a simple example, 

before presenting and interpreting our twelve grids with complete results on the expected 

values of I2 and H2.  

Figure 2 depicts E(H2) of published studies as a function of publication bias for δ = 0, equal 

sample sizes, and four levels of heterogeneity (I2). Each subfigure shows a horizontal dashed 

line corresponding to true population values of H2 and I2 (i.e., of all studies). When all studies 

get published, E(H2) equals H2, which can also be seen at the complete right of each plot in 

Figure 2. Figure 2a illustrates the case where there is true homogeneity in the population of all 

studies (I2 = 0, H2 = 1). When only significant studies get published, variance of effect sizes 

and E(H2) is only 0.138, showing a large bias (difference in heterogeneity of published studies 

and heterogeneity of all studies) in heterogeneity. If the ‘% of non-significant studies 

published’ is increased, E(H2) quickly increases until it crosses H2 = 1 at pub = .03 (no bias in 

heterogeneity), achieves its maximum for pub =.07 (large bias in heterogeneity), and then 

slowly decreases until H2 = 1 at pub = 1 (again no bias in heterogeneity). An intuitive 

explanation for the fact that the variance of the distribution of published effect sizes at pub 

= .07 exceeds 1, is that the shape of the distribution is similar to a normal distribution with an 

excessive amount of outliers at the right tail, similar to the striped area in Figure 1. Curves for 

other levels of heterogeneity may also show a nonlinear effect of publication bias on 
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heterogeneity of published studies, although patterns may be different (e.g., maximum is 

achieved at different values of pub). 

 

Figure 2. Expected values of H2 (Y-axis), when δ = 0, as a function of publication bias. 

(X-axis, 0 and 1 correspond to none and all non-significant studies published, respectively), 

for four levels of heterogeneity (I2 is zero (a), small (b), medium (c) and large (d)). The 

horizontal grey lines show the true heterogeneity population values (in H2). 

 

Figure 3 presents the expected values of H2 and I2 for the 4 (heterogeneity; in columns) x 

3 (sample size ratios; rows) conditions. Each plot shows the value of I2 whenever its larger than 

0 (solid iso-contour lines), and E(H2) otherwise (dotted iso-contour lines). Note that the results 

on the x-axis (i.e. when δ = 0) of the four plots in the first row of Figure 3 were already depicted 
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in Figure 2. All results are independent of the number of studies in the meta-analyses. 

Importantly, the plots in the first column of Figure 3 can be generalized to any sample sizes 

with the same ratio (1:1, 1:3 and 1:10) because the same plot is obtained for sample sizes 

multiplied by X and the y-axis replaced by δ/X. 

The upper left plot corresponds to homogenous true effect size and equal sample sizes. 

The expected value equals the true value (I2 = 0) (no bias in heterogeneity) when there is no 

publication bias (pub = 1), and at the line running from (δ = 0, pub = .03) to (δ = .25, pub = .99). 

Above the I2 = 0 line there is extreme homogeneity. This is the case for the majority of grid 

values (80%), and the least variation (E(H2) = .138) is observed when δ = 0 and pub = 0. Below 

the I2=0 line we have heterogeneity, with a maximum of E(I2) = 0.403 (δ = 0, pub = .07), which 

corresponds to small to moderate heterogeneity. To conclude, in case of a fixed population 

effect size, publication bias can result in a wide range of published effect size distributions that 

vary from being overly homogenous (an underestimation of heterogeneity) to moderate 

heterogeneity (an overestimation of heterogeneity).   

The other plots on the first row of Figure 3 show E(H2) and E(I2) when there is true 

heterogeneity for equal sample sizes. The patterns of results are the same as for I2 = 0, with 

underestimation of heterogeneity above and overestimation below the ‘true’ I2 line, 

respectively. Noteworthy is that for small heterogeneity (I2 = .25) and medium heterogeneity 

(I2 = .497) publication bias can still result in extremely homogenous distributions of published 

effect sizes (E(H2) = .208 and E(H2) = .359, see also the legend below the corresponding plots). 

Even when there truly is strong heterogeneity (I2 = .788), publication bias may result in a 

distribution of published effect sizes that has very small heterogeneity (E(I2) = .09). Maximum 

expected heterogeneity, E(I2) of published studies equals .625, .788, .815 for true small, 

medium and large heterogeneity, respectively, corresponding to overestimation of 

heterogeneity. 
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Figure 3. Contour plots of expected values of H2 and I2 for different values of true heterogeneity (columns) and different sample size ratios 

(rows), as a function publication bias (X-axis: 0 and 1 correspond to none and all non-significant studies published, respectively) and effect size 

(δ, Y-axis). The text above each column gives the values of true heterogeneity, while the text before each row gives the studies sample sizes. The 

text below each plot gives the minimum E(I2) (or E(H2) if E(I2) <0) and maximum E(I2) in the plot
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The plots in the first column of Figure 3 show the results for homogeneity and different 

variations in sample sizes (1:1, 1:3 and 1:10). Similar to the results for equal sample sizes, 

extreme homogeneity exists above the I2 = 0 line and heterogeneity exists below the I2 = 0 line. 

The most important difference is that the minimum E(H2) and maximum E(I2) increase when 

increasing in sample size variability. More generally, extreme homogeneity occurs less often, 

while larger variability in sample sizes across studies resulting in a higher probability of 

overestimating heterogeneity. However, small differences in sample sizes (1:3) do not result in 

very different results compared to equal sample sizes. The fact that the effect of publication 

bias on heterogeneity depends on variation of sample size can be explained by equation (8); 

the difference in average true effect size of published studies increases when there is greater 

variability in sample size, resulting in positive values of H𝑒𝑥𝑡𝑟𝑎
2 , thereby increasing 

heterogeneity of published studies. The largest value of expected heterogeneity of published 

studies under true homogeneity is E(I2) = .48 for sample size ratio 1:10, δ = 0, and pub = .04 

(lower left plot). The other plots in the second and third row show the conditions under which 

both true heterogeneity and varying sample sizes are present. The effect of true heterogeneity 

in case of varying sample sizes is comparable to its effect in case of equal sample sizes. 

However, bias in heterogeneity gets lower for higher true heterogeneity and large differences 

in sample sizes; bias is lowest in the lower right plots (fewest iso-lines). This trend is also 

apparent when comparing the minimum and maximum heterogeneity across conditions (see 

legends below the plots). But even in the condition with the least bias (sample ratio 1:10 and 

I2 = .788), publication bias may result in much lower heterogeneity (minimum E(I2) = .464, for 

δ = 0.00 and pub=0.00)  
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True heterogeneity required to obtain homogeneity of published studies 

For many combinations of δ and publication bias under true 

homogeneity, the value of E(H2) indicated extreme 

homogeneity (E(H2) < 1; upper left plot of Figure 3). For 

these combinations, one may wonder how much true 

heterogeneity is needed to obtain E(H2) = 1. For these or 

lower values of heterogeneity, the hypothesis of τ2 = 0 will 

be infrequently rejected for any number of studies, because 

E(Q) ≤ K < QCV, with QCV denoting the critical value of the 

Q-test. That is, these are the values of true heterogeneity 

that because of publication bias will very likely go 

undetected even when increasing the number of studies. 

Figure 4 presents the values of true heterogeneity 

required to observe homogeneity of published studies (E(Q) 

= K) for the three different sample size ratios. These results 

are generalizable to any sample sizes with the same ratios 

(i.e., the same plots are obtained for sample sizes multiplied 

by X and the y-axis replaced by δ/X). High values of 

heterogeneity are required for some values of pub and δ, 

particularly for equal sample sizes and for ratio 1:3. For 

instance, for (pub = 0, δ = 0) under equal sample size (first 

plot), a distribution of effect sizes of all studies with large 

under equal sample size (first plot), a distribution of effect 

sizes of all studies with large heterogeneity I2 = .774 will 

still result in a homogenous distribution of published effect  

 

Figure 4. Values of 

population I2 needed to 

obtain homogeneity
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sizes. Even if the meta-analysis contained hundreds of studies, large heterogeneity would go 

undetected by the Q-test. For most combinations of effect size and publication bias, the effects 

of publication bias are less severe. 

There are many pub-δ combinations, where small true heterogeneity (I2 = 25%) would 

go undetected. When sample sizes differ more strongly (1:10), extreme homogeneity decreases 

(last row Figure 3) and lower values of true heterogeneity are required to obtain homogeneity 

of published studies (last plot of Figure 4). 

 

Type I error rate and power of the Q-test 

The first row of Figure 5 presents the Type I error rate as a function of true effect size and 

publication bias. For equal sample sizes (first row), the distribution of Q is known (see equation 

(5)), and the .05-line corresponds to the E(H2) = 1-line in the upper left plot of Figure 3. At the 

top and right edge of each plot, we see Type I error rate clusters of .05 with small deviations in 

between (deviating from .045 to .055), indicating the Type I error rate approximates .05. The 

Type I error rate exceeds .05 below the .05 line, while the Type I error rate is lower than .05 

above the line. When more studies are included in a meta-analysis, differences in the type I 

error rate increase. This can be explained by the fact that E(Q) and bias in Q increase linearly 

in K, whereas the variance of Q only increases with K2 , resulting in Type I error rates that 

differ more from .05 as K increases. For instance, the maximum Type I error rate equals .217 

for (pub = .07, δ = 0) and five studies, but increases to .658 and .9999 for 25 and 145 studies, 

respectively; the minimum Type I error rate equals 0 for all three levels of K. For large values 

of K, the Type I error rate quickly converges to 0 or 1 away from the .05-line, and the result of 

the Q-test (rejection of the null-hypothesis of homogenous effect size) is determined by the 

value of pub and δ. 
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Figure 5. Contour plots of the Type I error rate of the Q-test of homogeneity when I2 = 0, for different sample sizes (columns) and ratios 

(rows), as a function publication bias (X-axis: 0 and 1 correspond to none and all non-significant studies published, respectively) and effect 

size, delta (δ, Y-axis). The text below each plot gives the minimum and maximum expected value of α in the plot. 
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When sample sizes vary, the distribution of the Q-test follows a mixture of two χ2 

distributions, so the .05-line no longer coincides with the E(H2) = 1 line. Variation in sample 

sizes causes both the minimum and maximum values of the Type I error rate to increase, 

compared to equal sample sizes. Otherwise, patterns of results on the Type I error rates are 

similar to those for equal sample sizes 

The results for statistical power of the Q-test are presented in Figure 6. For equal sample 

sizes, the distribution of Q is known when no publication bias is present. The statistical power 

of the Q-test is .80, where expected heterogeneity equals the I2-line in the corresponding plots 

of Figure 3. Again, increasing K results in larger differences from .8, because bias increases 

linearly in K, but variance of Q increases only with K2 . Note how statistical power can be 

very low, even when there truly is a large amount of heterogeneity, but only five studies. For a 

large number of studies, power quickly converges to 0 or 1 away from the .8-line. For instance, 

when K = 145, power equals 0 at pub = 0 and δ = 0 and 1 at pub = .07 and δ = 0. To conclude, 

if heterogeneity is small and the number of studies is large, such that statistical power of the 

Q-test is .8 in the absence of publication bias, the result of the Q-test is determined by the 

values of pub and δ when there is publication bias. 

We mentioned above that Q follows a mixture of two χ2 distributions when sample sizes 

vary. This also has consequences for the power of the test: the E(H2) = 1-line in Figure 3 does 

not coincide with power = .8-line in the plots in the second and third row of Figure 6. The first 

column of Figure 6 shows that increasing variation in sample sizes results in three major 

changes. First, statistical power decreases to approximately .70 when there is no publication 

bias and sample sizes differ substantially (1:10). Second, when the variation in sample sizes 

increases, differences in statistical power across different values for pub and δ decrease, and 

third, minimum statistical power increases when there is more variation in sample sizes. These 

effects of increasing sample size variation can be explained by increases in H𝑒𝑥𝑡𝑟𝑎
2  (see equation
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Figure 6. Contour plots of the power of the Q-test of homogeneity for different amounts of true heterogeneity (columns) and different sample size 

ratios (rows), as a function publication bias (X-axis: 0 and 1 correspond to none and all nonsignificant studies published, respectively) and effect 

size (δ, Y-axis). The text below each plot gives the minimum and maximum value of statistical power in the plot 
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(8)), which, increases the expected value of Q. These three trends resulting from an increasing 

variation in sample sizes (decrease of power in absence of bias, smaller differences in power 

due to publication bias and true effect size, larger minimum statistical power) persist through 

the second and third columns, i.e. for I2 = .75 and K = 5, and I2 = .5 and K = 25 and I2 = .25 and 

K = 145. 

 

Results of four simulation studies: Other implementations of sample size variability 

We briefly discuss the results on the expected values of H2 and I2 based on simulations with 25 

studies (K=25). For type I error rates and power we present results for exactly the same 

conditions as in the previous result section. All the result plots can be found on OSF 

(Supplementary material A).  

The conditions of the first simulation study are identical to the 1:3 sample size ratio 

condition in the analytic section in the previously described sections. Unsurprisingly, the 

simulations results are almost identical to the analytic results, with minor differences due to 

estimation and the different number of degrees of freedom while estimating (K-1 instead of K 

for the analytic section; see supplemental materials for more details). As the only difference 

between the first and second additional simulation study is the sample size distribution (30-30-

30-30-90 corresponding to those of the main analyses, and 6-30-42-54-78 in the second study, 

which have same mean and standard deviation of sample sizes), comparing their results allows 

for a direct and unbiased evaluation of the effect of the sample size distribution on the effects 

of publication bias. The similarities of results are striking. When there is no publication bias, 

results are identical. In the presence of publication bias, the same combinations of publication 

bias and effect size result in over- or underestimations of heterogeneity. Only minor differences 

occur in the amount of over- or underestimation of heterogeneity, and hence in statistical power 

and type I error rates. When sample sizes are different (simulation study 2), bias is slightly 
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smaller with slightly less underestimation when true heterogeneity is absent or small, and with 

type I error rates closer to .05 in these situations, and if power is lower than .80 it is slightly 

lower in simulation study 2. As differences are very minor, even for K=145, we conclude that 

our results on the effects of publication bias on heterogeneity assessment are robust to the 

sample size distribution, given the same mean and variance of this distribution. 

The sample sizes of the third and fourth additional simulation studies were taken from 

published studies from the field of social and personality psychology (Fraley & Vazire, 2014) 

and from a large meta-analysis focusing on the association between brain volume and 

intelligence (Pietschnig, et al., 2015). The samples from the third study had the largest 

variation, from 10 till 10,000. When publication bias is absent, this large variation, along with 

the lower average sample size, results in smaller values of E(I2), and lower amounts of power, 

for the same values of τ (if τ > 0) and number of studies, compared to the other simulation 

studies. Besides the differences at baseline, the results showed the same trends of sample size 

variation that we saw in the main analysis. Again, underestimations of between-study variance 

was less severe when sample sizes vary, and the minimum type I error rate and power increase. 

The same impact of sample size variation can be seen in the fourth simulation study, where 

sample sizes range from 4 to 649. The average and variance of the sample size is smaller 

compared to the third simulation study, resulting in even lower estimates of between-study 

variance and power when there is no publication bias. In all other aspects, the same trends and 

patterns are again observed, that we already saw in the main analysis.  

The results of our main analyses and the four simulation studies reveal that the assessment 

of heterogeneity and the type I error rate and statistical power of the Q-test depend on the 

sample size characteristics, such as the average sample size and the variation in sample size, 

but not as much the specific distribution of sample sizes. The same pattern and trends of the 

effect of publication bias can be observed in all studies with possible serious underestimation 
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or overestimation of heterogeneity, and the type I error rate and power of the Q-test can both 

decrease to 0 or increase to 1 as a consequence of publication bias, depending on complex 

combinations of conditions. 

 

Application to actual meta-analyses 

In this section, we show how analyzing of the effect of publication bias on the assessment of 

heterogeneity may increase our understanding of meta-analyses. First, we introduce a web-

application called Q-sense, that can be used to determine the sensitivity of the heterogeneity 

assessment and the Q-test to publication bias for a meta-analytic data set. More generally, Q-

sense enables researchers to determine which values of effect size, heterogeneity, and 

publication bias are consistent with the observed effect size and heterogeneity. As current meta-

analytic tools do not perform well under heterogeneity in the presence of publication bias (e.g., 

Carter, Schönbrodt, Gervais, & Hilgard, 2017; McShane et al., 2016; van Aert et al., 2016; van 

Assen et al., 2015). Q-sense is a timely tool to address possible effects of publication bias on 

meta-analytic results. 

 Furthermore, we will provide some guidelines for using Q-sense and we will apply Q-

sense to two different datasets of actual meta-analyses. We first examine a meta-analysis by 

Der, Batty and Deary (2006) concerning the effect of breastfeeding on intelligence in children, 

showing a situation where there is no evidence for publication bias, and little impact on the 

results of the Q-test. We follow this with an examination of a meta-analysis concerning the 

relation between weight and moral judgement by Rabelo, Keller, Pilati and Wicherts (2015), 

showing how publication bias can explain the observed extreme homogeneity.  

 

Q-sense 

Q-sense (https://augusteijn.shinyapps.io/Q-sense/) provides a sensitivity analysis of 
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heterogeneity assessment and the Q-test in a meta-analysis. More precisely, it provides the 

expected values and 95% intervals of values of Q, H2 and I2 as a function of publication bias 

for the data in the meta-analysis given specified values of true effect size and heterogeneity. 

Q-sense allows researchers to determine which presumed population values of effect size, 

heterogeneity, and publication bias are consistent with the observed effect size and observed 

heterogeneity. It also enables one to examine how the test of homogeneity is affected by 

publication bias. Heterogeneity assessment and the Q-test in a meta-analysis can be said to be 

robust if the value and CI of Q are relatively unaffected by publication bias for the estimated 

values of effect size and heterogeneity and the expected values of Q and I2 in the sensitivity 

analysis are close to those observed in the meta-analysis. 

Q-sense requires the sample size of the primary studies that are included in the meta-

analysis, either as total sample sizes or as two subgroup sample sizes. Furthermore, it requires 

presumed values of the true effect size (δ), heterogeneity (τ2), and the observed Q-value in the 

meta-analysis. Sensible presumed values are those observed in the meta-analysis, those 

corresponding to the null-hypothesis of a zero true effect size or homogeneity of effect sizes, 

those obtained with meta-analytic methods correcting for publication bias, or those from 

previous (meta-analytic or large single) studies relevant to the meta-analysis at hand. Using 

this input, Q-sense will provide the user with a plot of the average Q value and 95% CI for 

different levels of publication bias. 

Q-sense varies the amount of publication bias from 0% to 100% in 32 levels (0 to 50% 

bias in steps of 10%, 55-80% bias in steps of 5%, and 81-100% bias in steps of 1%, since 

effects of publication bias are strongest in this last interval). For each level of publication bias, 

50,000 ÷ K iterations are used. In each iteration, the meta-analytic studies’ effect sizes are 

generated using the effect size and level of heterogeneity provided by the researcher, and Q 

and I2 are estimated (see Supplementary Material E and “Shiny code Q-sense”, both on OSF). 
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The average Q value, the 2.5th quantile and the 97.5th quantile of these iterations are used to 

determine the 95% confidence intervals for Q and I2. These are shown in a figure as a function 

of publication bias in combination with both the observed value and critical value of Q. 

Furthermore, the results of the 32 publication bias levels (average Q-value, 95% confidence 

interval, average I2 value, 95% confidence interval and whether the Q-value observed by the 

user fall within the 95% confidence interval) can be downloaded as .csv file. 

 

Recommendations using Q-sense 

We recommend applying Q-sense after assessing and testing the effect size and heterogeneity 

of effects in a meta-analysis. As a first step, we advise entering the estimated values of effect 

size and heterogeneity (without a correction for publication bias) for the required population 

values. If Q-sense shows that (i) both the average and CI of the Q-statistic are relatively 

unaffected by publications bias (little variation when publication bias is introduced), and (ii) 

the observed Q-statistic is in its CI for most or all values of publication bias, then one can 

conclude that the results of the meta-analysis (including the estimates of true effect size and 

heterogeneity) are robust to publication bias. We recommend reporting Q-sense’s results 

concerning (i) and (ii) in their paper. If (i) and (ii) are both met, the meta-analytic results are 

robust to publication bias and can be interpreted with more confidence. However, if (i) and (ii) 

are not both met the meta-analytic results are not robust to publication bias and should be 

interpreted with caution, and we suggest to proceed with additional analyses with Q-sense. 

If the meta-analytic results turn out to be not robust to publication bias, , we recommend 

further analyses with Q-sense to find values of true effect size, heterogeneity and publication 

bias that provide a CI of the Q-statistic that is consistent with the observed Q-statistic. As first 

follow-up analyses we recommend running Q-sense with a zero true effect size for two reasons. 

First, the effects of publication bias on estimation are particularly dramatic for zero true effect 
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size. Second, the hypothesis of zero true effect size is especially practically relevant for 

researchers. In these follow-up analyses different values of true heterogeneity can be entered 

in attempts to obtain consistent results. If, for true zero effect size, combinations of values of 

publication bias and true heterogeneity yield both an expected effect size and a Q-statistic close 

to those observed, then the observed meta-analytic results can also be explained by a zero true 

effect size and publication bias. In that case the researcher must seriously consider the 

possibility that true effect size is indeed zero. If no combination of values of publication bias 

and heterogeneity can be found that yield results consistent with those observed in the meta-

analysis, the researcher can be more confident that true effect size exceeds zero. Particularly if 

no results of these first follow-up analyses are consistent with those observed one may proceed 

with further follow-up analyses. 

Finally, if the meta-analytic results are not robust to publication bias, one may conduct 

second follow-up analyses applying meta-analytic techniques that estimate true effect size and 

heterogeneity after adjusting for possible publication bias. The estimates obtained from these 

methods can also be used as input for Q-sense and checked for consistency with the observed 

meta-analytic findings. Following the Meta-Analysis Reporting Standards (MARS; American 

Psychological Association, 2008), we recommend adding a separate subsection on the 

heterogeneity-sensitivity analyses of the meta-analysis at the end of the results section. Many 

meta-analytic methods have been proposed that attempt to estimate true effect size and 

heterogeneity while correcting for publication bias. Current methods are still being improved, 

and new methods continue to be developed. The state of the art knowledge on the performance 

of current methods is that many of them perform relatively well under homogeneity and 

extreme publication bias, but fail to perform well under heterogeneity in combination with 

(almost) only statistically significant studies in the meta-analysis (e.g., see for an overview and 

discussions of (dis)advantages; Carter et al., 2017; McShane et al., 2016; van Aert et al., 2016; 
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van Assen et al., 2015). A discussion of all these methods and their performance in different 

conditions is out of the scope of this paper. 

 

Q-sense applied to Der, Batty, and Deary (2006) 

This meta-analysis, examining the effect of breastfeeding on intelligence in children, featured 

nine effect sizes; five of them were statistically significant, whereas four of them were not 

(when tested either one- or two-sided). The average sample size of these studies was N = 909.22 

(sd = 1,732.25, Ns ranging from 108 to 5475). The characteristics of the meta-analysis can be 

found in Supplementary material F. A random-effects meta-analysis with the restricted 

maximum-likelihood estimator resulted in d = 0.138 [95% CI: 0.059:0.217], p = 0.0006, and 

Q(8) = 21.05, p = .007 (I2 = 65.76% [95% CI: 14.73%: 96.12%], τ2 = 0.0071). Following the 

recommendations, we first applied Q-sense using these estimated values of effect size (d = 

0.138) and heterogeneity (τ2 = 0.0071).  

 

Figure 7. Output of sensitivity analysis of Q-sense: Q’s average value and CI as a 

function of publication bias, for the random-effects estimated values of effect size (d = 

0.1383) and heterogeneity (τ2 = 0.0071) in Der et al. (2006). 
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Figure 7 shows the average value of Q and its CI as a function of publication bias. This figure 

shows that (i) Q’s average and CI are hardly affected by publication bias, and (ii) the observed 

value of Q in the meta-analysis is always in Q’s CI based on the observed values of effect size 

and heterogeneity. On the basis of the analysis with Q-sense we therefore conclude that Der et 

al.’s (2006) meta-analytic results are robust to publication bias, thereby increasing our 

confidence in their meta-analytic findings that there is a small true effect size, a moderate to 

large heterogeneity, and little or no publication bias.2.  

 

Q-sense applied to Rabelo et al. (2015) 

This meta-analysis contains 25 effect sizes on the effect of experiencing weight on 

interpersonal judgement, with 23 being statistically significant if tested two-sided, and all of 

them being statistically significant if tested one-sided. The average sample size is 61.12 (sd = 

20.22, N ranging from 30 to 100, https://osf.io/cgmdi/ and Supplementary materials G). The 

authors used a fixed-effect meta-analysis on these data that resulted in d = .57, 95% CI [0.47, 

0.67], and Q(24) = 4.70 (p = .999993), which they indicate as excessive homogeneity and a 

sign of publication bias. This observed Q-value corresponds to H2 = 0.196, which indeed 

corresponds to extreme homogeneity since H2 < 1 corresponds to I2 < 0. 

Following our recommendations we first apply Q-sense to the results of the fixed-effect 

meta-analysis (d = .57, τ2 = 0). Q-sense reveals (see Figure 8) that (i) both the average and CI 

of the Q-statistic are affected by publications bias (the average value of Q and the upper and  

                                                   
2 We note that the conditions of this meta-analysis are similar to those in the two most right 

plots in the last row of Figure 3 (large variation in sample size, medium to large amount of 

heterogeneity). If we draw a horizontal line at the effect size δ = 0.138, we are close to the line 

where heterogeneity is correctly estimated regardless of the level of publication bias. 
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lower bound of the CI are almost halved when there is full publication bias compared to no 

publication bias), and (ii) the observed Q(24) = 4.7 never falls in the 95% CI of the Q-test, 

regardless of the level of publication bias. Hence we conclude that the results of the meta-

analysis are not robust to publication bias, and continue with our first follow-up analyses with 

Q-sense.  

Figure 8. Output of sensitivity analysis of Q-sense: Q’s average value and CI as a 

function of publication bias, for the fixed-effects estimated values of effect size (d = 0.57) 

and heterogeneity (τ2 = 0) in Rabelo et al. (2015). 

Figure 9. Output of sensitivity analysis of Q-sense: Q’s average value and CI as a 

function of publication bias, for the corrected estimated values of effect size (d = 0) and 

heterogeneity (τ2 = 0) in Rabelo et al. (2015). 
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Again following our recommendations, we then examined if the meta-analytic findings are 

consistent with a true effect size equal to zero. We kept heterogeneity at τ2 = 0, as estimated in 

the meta-analysis. Figure 9 shows that also in this situation Q´s average value and CI are 

strongly affected by publication bias: When there is no bias (published = 100%), the average 

observed Q value is 24.01 (p = .461) [95% CI: 12.65:38.69]. As publication bias increases, the 

expected value of Q also increases, with a maximum of Q = 47.63 (p = .003) [95% CI: 

29.92:69.79] when published = 3%. In case of full publication bias the average drops to Q = 

6.29 (p = .99989) [95% CI: 3.42:11.16], which is consistent with the observed extreme 

homogeneity. Figure 10 shows the empirical sampling distribution of Q when both the effect 

size, amount of heterogeneity, and the percentage of non-significant studies published is equal 

to 0. This figure confirms that both extreme homogeneity and the observed value of Q in the 

meta-analysis are consistent with this scenario. Hence, we conclude on the basis of Q-sense 

that the observed meta-analytic findings are consistent with a zero true effect size (instead of a 

medium to large effect size), no heterogeneity, and extreme publication bias.  

Figure 10: Empirical sampling distribution of Q for δ = τ2 = % non-significant studies 

published = 0, for the meta-analysis of Rabelo, Keller, Pilati and Wicherts (2015). The 

dashed line shows the observed values by Rabelo et al., (2015). The solid vertical line at Q = 

K–1 shows the expected value when there is no heterogeneity. 
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We note that Rabelo et al., (2015) also applied p-uniform, a meta-analytic method 

correcting for publication bias that has been shown to work well under homogeneity in 

combination with many statistically significant studies (van Assen et al., 2015; van Aert, 

Wicherts, & van Assen, 2016). The publication bias test of p-uniform indeed indicated the 

presence of publication bias (L = 5.1, p < .001), and yielded a corrected estimate of the effect 

size of d = - 0.179 [-0.676 : 0.159], p = .831, which is in line with the findings of Q-sense that 

the true effect size may equal zero. 

 

Conclusion and discussion 

Meta-analyses aim to estimate effect sizes, heterogeneity of effect sizes, and to explain 

possible heterogeneity using moderators. It is well established that tests and estimates of 

heterogeneity are influenced by publication bias (Ioannidis, 2008; Jackson, 2006a, 2006b; 

McShane et al, 2016). However, it remained largely unclear how they are influenced, how 

severe this influence is, and which factors moderate this influence. The first contribution of 

this paper was to examine the effect of publication bias on the Q-test and assessments of 

heterogeneity in a multitude of conditions which, as opposed to previous research on this topic, 

providing several novel findings on the effect of publication bias. Corroborating the findings 

of Jackson (2006a, 2007) we found that the effect of publication bias on the assessment of 

heterogeneity and the performance of the Q-test intricately depends on the true effect size, the 

amount of true heterogeneity, the number of studies, and variation in sample size. The effect 

of publication bias is non-linear and complex; publication bias can either decrease or increase 

the expected amount of heterogeneity, depending on the value of the true effect size and 

severity of publication bias. It is not surprising that the effects of publication bias are larger 

when the true effect size is smaller. When the true effect size is large, more studies are 

statistically significant and will be published, and publication bias has less impact because it 



43 

THE EFFECT OF PUBLICATION BIAS ON THE ASSESSMENT OF HETEROGENEITY 

 

only applies to non-significant studies. When true heterogeneity is large, heterogeneity is 

typically (albeit certainly not always) underestimated. For equal sample sizes, extreme 

homogeneity can occur, especially when the true effect size is small and publication bias is 

large. When sample sizes vary, extreme homogeneity is expected less frequently, since the 

minimal expected values of heterogeneity are larger.  

Publication bias also causes the Type I error rate and statistical power of the Q-test to 

decrease or increase, again depending on the value of the true effect size and publication bias. 

The power can even drop to zero, so that the presence of true heterogeneity is impossible to 

detect. At the same time, the Type I error rate can be as high as 1, meaning that a meta-analysis 

is guaranteed to find statistically significant heterogeneity, even though the studies are truly 

homogenous. The power and the Type I error rate of the Q-test not only depend on the number 

of studies and the size of these studies, but also on differences in the studies’ sample size, 

demonstrating the complex effect of publication bias on the assessment of heterogeneity. While 

it is commonly-stated that the Q-test only has sufficient statistical power when the number of 

studies is large (Hardy & Thompson, 1998; Thompson & Pocock, 1991), our work 

demonstrates that publication bias, particularly in combination with a small true effect size, 

may have a large effect on its power (and Type I error rate) as well. To conclude, publication 

bias has a large effect on assessments of heterogeneity, particularly when publication bias is 

severe and the true effect size is not large. Consequently, the Q-test and assessments of 

heterogeneity will be biased in these conditions. Furthermore, extreme homogeneity is 

particularly likely when the amount of true heterogeneity is low, the true effect size is small, 

and the number of studies is large.  

Our second contribution was to develop the web-application Q-sense to provide insight in 

the sensitivity of the results of the Q-test to publication bias. The results of a meta-analysis are 

robust if the observed value and CI of Q are relatively unaffected by publication bias for the 
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estimated values of effect size and heterogeneity and the value of Q in the sensitivity analysis 

is close to those calculated in the meta-analysis. We advise meta-analysts to report the results 

of Q-sense in their manuscripts and to investigate whether other combinations of true 

heterogeneity, effect size, and publication bias could also have resulted in the observed 

heterogeneity. We applied Q-sense to two published meta-analyses, illustrating how this web-

based routine can improve our understanding of meta-analytic results in the presence of 

publication bias.  

Our results also provide new insight into previous research on meta-analyses. For example, 

Ioannidis et al. (2006), observed that the likelihood of extreme homogeneity appearing in a 

meta-analysis was unrelated to the number of studies it included. This is surprising, since meta-

analyses that include more studies are more likely to have a higher p-value on the Q-test, 

provided there is no or small true homogeneity. Ioannidis et al. only infrequently observed 

extreme homogeneity, suggesting that fields where publication bias is high and true effect sizes 

are small, we are either dealing with large variations in sample size, or, considerable amounts 

of true heterogeneity. In their article, Ioannidis, et al. suggest multiple explanations for extreme 

homogeneity, such as random chance, the metric of the treatment effect, correlated data, 

stratified or blocked randomization, and fraud. We would like to add publication bias as an 

additional source of extreme homogeneity that should be considered. The meta-analysis of 

Rabelo et al. (2015) is an example where a likely explanation of the observed extreme 

homogeneity is publication bias in combination with a zero true effect size and relatively 

similar study sample sizes. 

In the design of our analyses, we made some assumptions that may limit the 

generalizability of some of our results. First, we assumed the effects sizes to be normally 

distributed. We do not feel this is a substantial limitation, because research has shown that 

when the distribution of effect sizes are non-normal, the Type I error rates and power of the Q-
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test are still approximately correct when Hedges' g is used as effect size measure (Huedo-

Medina, Sánchez-Meca, Marín-Martínez, & Botella, 2006). Secondly, we interpreted bias in 

the publication process as a strict division between significant studies (p<.05) and 

nonsignificant studies (p>.05). However, other scenarios of publication bias are certainly 

possible. For instance, it is possible that the probability of publication increases monotonically 

with a study's p-value; the smaller the p-value, the higher the likelihood to get published. 

Furthermore, studies with large samples may be more likely to be published, even if their 

results are nonsignificant, than small studies with nonsignificant results. Other models of 

publication bias might offer other results; however, we anticipate that these results too will 

show that publication bias may strongly affect the assessment of heterogeneity in complex, 

non-linear ways (e.g. Jackson, 2006a, 2007). Moreover, our main analyses focused on an 80%-

20% mixture of small-large studies using certain sample size ratios when investigating the 

effects of sample size variability. As the implementation of sample size variability may affect 

overall trends and conclusions, we carried out and discussed the results of four additional 

simulation studies with other implementations of sample size variation, including one used for 

comparison, one with a different fixed distribution of sample sizes and two based on sample 

sizes from the published literature. As trends and conclusions of these four additional 

simulation studies were similar to those of our main analysis, we conclude that our main results 

on the effect of sample size variation are generalizable.  

Future research could investigate the influences of our choices on the effects of publication 

bias on the assessment of heterogeneity. First, while we conducted our analyses using Cohen’s 

d, researchers could also examine effects of publication bias using other effect size measures 

with their own idiosyncrasies. Second, more research on alternative approaches to estimate 

heterogeneity that corrects for publication bias is clearly needed. Three promising meta-

analytic approaches are selection models, Bayesian methods, and methods based on p-values. 
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Selection models explicitly model publication bias, i.e. the probability of findings to get into 

the literature, and allow for the estimation of both true effect size and heterogeneity (Hedges 

& Vevea, 2005). Unfortunately, these models are complex, require strong assumptions on the 

publication bias mechanism, and may require a large number of studies to converge, making 

them less useful for most meta-analyses (Borenstein et al., 2009; Field & Gillet, 2010). Some 

Bayesian methods are based on selection models, but incorporate priors for true effect size and 

true heterogeneity (Kicinski, 2013). Bayesian methods have been developed only recently, and 

their properties for estimation of heterogeneity are therefore still largely unknown (e.g. Gronau, 

Duizer, Bakker, & Wagenmakers, 2015; Guan., & Vandekerckhove, 2016). Finally, p-uniform 

(van Assen et al., 2015; van Aert et al., 2016) and p-curve (Simonsohn et al., 2014b) are meta-

analytic methods that accurately estimate overall effect size in the presence of publication bias, 

for any number of significant studies, but only when true effect size is homogenous (van Aert 

et al., 2016). The advantages of the methods based on p-values over selection models and 

Bayesian methods are the weaker assumptions on publication bias and its ability to accurately 

estimate effect size even when the number of studies is small. However, to become useful for 

most applications, these methods should be modified in future research such that they can deal 

with, test for, and assess heterogeneity. 

It is known that tests of publication bias provide invalid results in case of true heterogeneity 

(Ioannidis & Trikalinos, 2007; Peters et al., 2010). It is also important to examine the effect of 

another aspect of the publication process, p-hacking, on the assessment of heterogeneity. P-

hacking is the result of the researchers' behaviour directed at obtaining statistically significant 

results (Simmons, Nelson, & Simonsohn, 2011). Examples of p-hacking are testing many 

variables or adding observations up to the point where results are significant, dropping 

conditions or post-hoc outlier removal (see Wicherts et al., 2016 for an extensive overview). 

P-hacking increases the probability on a Type I error of a study. Research has shown that some 
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methods of p-hacking influence the assessment of the effect size in meta-analyses (van Aert et 

al., 2016; Simonsohn, et al., 2014b), but it is unclear how p-hacking influences the assessment 

of heterogeneity. So where publication bias results in an unrepresentative sample of studies in 

the meta-analysis, some methods of p-hacking may also lead to a distorted sample with inflated 

effect sizes in the primary studies. Investigating p-hacking and enhancing meta-analytic 

methods in such a way that they can assess their effects on the estimation of true effect sizes, 

heterogeneity, and moderator effects is an important step to improve the quality of meta-

analytic research. 

This article provides more insight in the complex and non-linear impact of publication bias 

on the assessment of heterogeneity in meta-analysis. Publication bias can not only result in 

incorrect conclusions regarding true effect size, but heterogeneity as well. Furthermore, we 

have developed a web-application, Q-sense, that allows researchers to investigate the impact 

of publication bias on their estimates of heterogeneity and the robustness of their meta-analytic 

estimates to publication bias. As publication bias may strongly affect the assessment of 

heterogeneity, we acknowledge the importance of developing meta-analytic methods that 

correct for publication bias, not only when estimating the effect size, but also when estimating 

heterogeneity.  
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