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Original Article

Bayesian Latent Class Models
for the Multiple Imputation of
Categorical Data
Davide Vidotto, Jeroen K. Vermunt, and Katrijn Van Deun

Department of Methodology and Statistics, Tilburg University, The Netherlands

Abstract: Latent class analysis has been recently proposed for the multiple imputation (MI) of missing categorical data, using either a
standard frequentist approach or a nonparametric Bayesian model called Dirichlet process mixture of multinomial distributions (DPMM). The
main advantage of using a latent class model for multiple imputation is that it is very flexible in the sense that it can capture complex
relationships in the data given that the number of latent classes is large enough. However, the two existing approaches also have certain
disadvantages. The frequentist approach is computationally demanding because it requires estimating many LC models: first models with
different number of classes should be estimated to determine the required number of classes and subsequently the selected model is
reestimated for multiple bootstrap samples to take into account parameter uncertainty during the imputation stage. Whereas the Bayesian
Dirichlet process models perform the model selection and the handling of the parameter uncertainty automatically, the disadvantage of this
method is that it tends to use a too small number of clusters during the Gibbs sampling, leading to an underfitting model yielding invalid
imputations. In this paper, we propose an alternative approach which combined the strengths of the two existing approaches; that is, we use
the Bayesian standard latent class model as an imputation model. We show how model selection can be performed prior to the imputation
step using a single run of the Gibbs sampler and, moreover, show how underfitting is prevented by using large values for the hyperparameters
of the mixture weights. The results of two simulation studies and one real-data study indicate that with a proper setting of the prior
distributions, the Bayesian latent class model yields valid imputations and outperforms competing methods.

Keywords: Bayesian mixture models, latent class models, missing data, multiple imputation

Multiple imputation (MI; Rubin, 1987) is a powerful tech-
nique to deal with the problem of missing data in a dataset.
Unlike other missing data procedures, it allows for separat-
ing the missing data handling step and the substantive anal-
ysis step under the assumption that data are missing at
random (MAR). In MI, to account for the uncertainty about
the imputations, the original incomplete dataset is replaced
by multiple (m > 1) complete datasets, in each of which the
missing values are replaced by different sets of random
values generated from an imputation model. In the substan-
tive analysis, each of the m datasets is analyzed separately
and m results are pooled through Rubin’s (1987) rules. This
yields point estimates of the parameters of interest, such as
regression coefficients, along with their standard errors,
which also reflect the uncertainty due to the presence of
missing data (Allison, 2009; Little & Rubin, 2002; Schafer
& Graham, 2002). In order for MI to work well, the impu-
tation model should preserve the important relationships
between the variables of interest, which can be simple
bivariate associations but also higher-order interactions.

While methods for continuous missing data have been
extensively researched in the past, methods to handle non-
response in categorical variables have not been fully estab-
lished yet. During the past years, the literature has
considered log-linear models (Schafer, 1997) and MI by
chained equations (MICE; Van Buuren & Groothuis-
Oudshoorn, 2000). The former has the advantage of being
able to describe complex associations in the data (through
the saturated model), but it can only handle a limited
number of variables. MICE can also be used when the
number of categorical variables with missing values is large,
but since this requires estimating a large number of binary
and/or multinomial logistic models, model selection and
specification can become a cumbersome task, especially if
complex relationships requiring higher-order interactions
should be preserved by the imputation model (Si & Reiter,
2013; Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008).

Vermunt et al. (2008) proposed using a frequentist latent
class (FLC), or finite mixture, model for the MI of categor-
ical data. LC models overcome the difficulties encountered
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with log-linear models and chained equations. Firstly, the
model specification only requires specifying the number
of latent classes (or mixture components) K. When K is
set large enough, LC models can estimate the joint distribu-
tion of the data and automatically capture important asso-
ciations among the variables at hand (Vermunt et al.,
2008). Secondly, the particular form of the model and
the local independence assumption offer easy computation
even with a large number of variables. Furthermore,
Vermunt et al. (2008) showed by means of a simulation
study that MI via FLC modeling yields correct parameter
estimates of the substantive model. With the FLC model,
the uncertainty about the imputation model parameters is
accounted for by bootstrapping. Using a similar model but
with a Bayesian nonparametric approach, Si and Reiter
(2013) introduced imputation of categorical data with the
Dirichlet Process Mixture of Multinomial Distributions
(DPMM). While the DPMM assumes a (theoretically) infi-
nite number of mixture components, in practice an arbitrar-
ily large number of clusters is selected during the Gibbs
sampling iterations (Gelfand & Smith, 1990) to perform
the actual imputations.

Albeit appealing, both the FLC and the DPMM models
have certain disadvantages. The former requires multiple,
sequential runs of the expectation-maximization (EM) algo-
rithm, first for determining the number of classes using a
model selection criterion like the Akaike information criteria
(AIC), and subsequently for obtaining the m imputations,
which involves reestimating the selected FLC imputation
model using m bootstrap samples. Hence, imputing with
the frequentist model can be time-consuming, especially
for large datasets when various models with large numbers
of classes have to be compared and/or when a large number
of imputations has to be performed. The DPMM overcomes
these problems by performing the selection of the number of
classes and the actual imputations as part of a single run of
the Gibbs sampling procedure. However, this method is
prone to data underfitting; that is, relevant associations in
the data may not be picked up because not all the necessary
LCs get filled during theGibbs sampling. This can be delete-
rious for the resulting imputations: Vermunt et al. (2008)
observed that underfitting in MI is undesirable, because it
causes the imputation model to disregard important rela-
tionships in the data, leading to biased and inaccurate final
inferences. On the other hand, overfitting is of small con-
cern, since picking up particular features which are sample
specific does not introduce bias in the final imputations.

In the current paper, we propose performing MI using a
Bayesian LC (BLC) model, which overcomes the disadvan-
tages of the FLC and the DPMM approaches. One of the
new features of our approach is that the number of classes
needed for the imputation model is determined using a

0single, preliminary run of the Gibbs sampler in which a
model is used with a large number of classes and with prior
distributions that favor the emptying of extra components.
The m imputations can subsequently be obtained in a
second run, in which the number of LCs is fixed at the
value determined in the first stage. A second special feature
of our approach is that the prior distribution of the mixture
weights are set in such a way that the units are allocated
across all the LCs during the Gibbs sampler, helping the
BLC model to prevent underfitting, and leading to more
accurate imputations than the DPMM.

The outline of the remainder of this paper is as follows.
In the Bayesian Latent Class Imputation section, the BLC
model for the MI of categorical data is introduced, along
with its estimation and set-up. The Simulation Studies
section describes two simulation studies which compare
the BLC model with different prior specifications, as well
as with the DPMM, FLC, and MICE approaches. The
Real-Data Study section reports the results of a real-data
experiment. The Discussion section concludes with final
remarks by the authors.

Bayesian Latent Class Imputation

Bayesian imputations are derived from the posterior predic-
tive distribution of the missing data given the observed
data, that is, PrðYmisjYobsÞ ¼

R
PrðYmisjπÞPrðπjYobsÞdπ, in

which π is the model parameter vector. Thus, imputations
are performed by first drawing m values from the posterior
distribution of the model parameter Pr(π|Yobs), and then by
sampling from the predictive distribution PrðYmisjπ�ðlÞÞ,
l = 1, . . ., m. The posterior Pr(π|Yobs) is estimated via Gibbs
sampling and derived from two quantities: a probabilistic
model for the data (the likelihood) and a prior distribution
for π.

The Data Model

Let yi be a vector of length J, denoting the observed
response pattern for unit i (i = 1, . . ., n) on J categorical
variables, so that yij = s is unit i’s value on the jth variable
(j = 1, . . ., J; s = 1, . . ., sj). Furthermore, let xi = k be a real-
ization of the latent categorical variable X for person i,
taking on one of the possible values k 2 {1, . . ., K}. The
latent class (LC) model (Goodman, 1974; Lazarsfeld,
1950) describes the joint distribution of the observed vari-
ables (Y1, . . ., YJ) through the well known form

Pr yi
� � ¼XK

k¼1

Pr xi ¼ kð Þ
YJ
j¼1

Pr yij ¼ sjxi ¼ k
� �

;

�2018 Hogrefe Publishing Methodology (2018), 14(2), 56–68

D. Vidotto et al., Bayesian Latent Class Models for the MI of Categorical Data 57

Th
is

 d
oc

um
en

t i
s c

op
yr

ig
ht

ed
 b

y 
th

e A
m

er
ic

an
 P

sy
ch

ol
og

ic
al

 A
ss

oc
ia

tio
n 

or
 o

ne
 o

f i
ts

 a
lli

ed
 p

ub
lis

he
rs

.
Th

is
 a

rti
cl

e 
is

 in
te

nd
ed

 so
le

ly
 fo

r t
he

 p
er

so
na

l u
se

 o
f t

he
 in

di
vi

du
al

 u
se

r a
nd

 is
 n

ot
 to

 b
e 

di
ss

em
in

at
ed

 b
ro

ad
ly

.



in which the Pr(xi = k) are the latent class weights and the
Pr(yij = s|xi = k) are the conditional response probabilities.
By assuming a Multinomial distribution for both X and
Yj|X, with parameters denoted by Pr(xi = k) = πk and
Pr(yij = s|xi = k) = πkjs, respectively, the model can be
rewritten in terms of the Multinomial parameters as

Prðyi;πÞ ¼
XK
k¼1

πk

YJ
j¼1

Ysj
s¼1

ðπkjsÞIijs ; ð1Þ

where Iijs is an indicator variable equal to 1 when yij = s
and zero otherwise. Below, we will use the symbols πx
and πkj to refer to the two sets of model parameters, that
is, πx = (π1, . . ., πK) and πkj ¼ ðπkj1; . . . ; πkjsj Þ, while
π = (πx, π11, . . ., πKJ).

With a sufficiently large number of classes, the LC model
can capture the first- and higher-order moments of the joint
distribution of the J categorical variables (McLachlan &
Peel, 2000). The resulting density is a weighted average
(i.e., a mixture) of class-specific Multinomial densities,
where the probabilities πk act as weights. Furthermore, the
local independence assumption makes the conditional den-
sity Pr(Yj|X = k) independent of the other response variables
given the kth latent class. As a result, the estimation of a LC
model involves processing J two-way K-by-sj tables, instead
of the full multi-way table involving all J variables (as done
by, e.g., the log-linear model). For this reason, especially
when the number of variables is large, the LCmodel is com-
putationally appealing for MI. Details aboutMI through FLC
models can be found in Vermunt et al. (2008).

The Prior Distributions

Model (1) can be turned into a Bayesian LC (BLC) model by
placing prior distributions upon the latent class proportions
πx and the conditional response probabilities πkj. A common
choice conjugate to the Multinomial distribution is the
Dirichlet prior. Therefore, we will assume that

πx � Dir αxð Þ
and

πkj � DirðαkjÞ

" k, j. Here the vectors αx (from here on referred to as the
latent hyperparameter) and αkj (from here on referred to as
conditional hyperparameter) are defined as

αx ¼ ðα1; . . . ;αk; . . . ;αKÞ
and

αkj ¼ αkj1; . . . ;αkjs; . . . ;αkjsj

� �
;

with αk > 0 and αkjs > 0 " k, j, s.

The most common setting is to use a single value for the
hyperparameters α, yielding symmetric Dirichlet distribu-
tions with constant α values; that is, αx = (c1, . . ., c1) and
αkj = (c2, . . ., c2). Below, we will use the fact that the
magnitude of c1 parameters affects the shape of the
posterior class distribution: the larger c1 the more the
observations will tend to be evenly distributed across all
latent classes, while with c1 close to zero only some of
the classes will have a nonnegligible posterior probability
mass.

BLC Model Estimation and Imputation

Model estimation is performed via a Gibbs sampling
algorithm. In our implementation, we separate the Gibbs
sampling of the LC model parameters from the imputation
of the missing values. That is, we first run the Gibbs sam-
pler for a certain number of iterations and store m sets of
parameters from iterations which are spaced enough to
prevent autocorrelations among the draws. Subsequently,
m imputed datasets are created using thesem sets of stored
parameters. An alternative would be to impute the missing
values as a part of the Gibbs sampling iterations, and base
the posterior class membership probabilities used in the Gibbs
sampler on both the observed and the imputed values
rather than on the observed part of the data only. Our
implementation is computationally more efficient, because
there is no need to update the missing data at each itera-
tion, nor to take imputed values into account when the
posterior membership probabilities of Step 1 are calculated
(e.g., Si & Reiter, 2013).

Here, we assume that both the number of classes K and
the hyperparameter values have been previously chosen.
The next section discusses how to perform these choices.
The parameters of both the latent variable X and the con-
ditional distributions of the jth item given the kth latent
class, Yj|X = k, can be initialized through random draws
from uniform Dirichlet distributions: π0

x � Dirð1; . . . ; 1Þ
and π0

kj � Dirð1; . . . ; 1Þ " k, j, in order to increase the likeli-
hood of initializing the sampler from the interior of
the parameter space. The total number of iterations (T)
depends on the number of burn-in iterations (b), the
number draws used for the imputations (m), and the
spacing between these m draws (d); that is, T = b + d � m.
The value of b should be large enough to ensure conver-
gence of the chain to its equilibrium distribution Pr(π|Yobs).
Since a BLC imputation model may consist of a large
number of parameters and since the quantity of interest
in MI is the likelihood Pr(Yobs|π), convergence is assessed
by inspecting the trace plot of the log-likelihood func-
tion calculated at each iteration, as suggested by Schafer
(1997).
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The Gibbs sampler proceeds as follows, for t = 1, . . ., T:

Algorithm 1:

1. Sample xðtÞi 2 f1; . . . ;Kg 8 i ¼ 1; . . . ; n from the Multi-
nomial distribution with the posterior membership prob-
abilities as parameters, defined as

PrðxðtÞi ¼ kjYobs;π
ðt�1ÞÞ ¼

πðt�1Þ
k

QJ
j¼1

Qsj
s¼1

πðt�1Þ
kjs

� �I�ijs� �
PK
h¼1

πðt�1Þ
h

QJ
j¼1

Qsj
s¼1

πðt�1Þ
kjs

� �I�ijs� � ;

in which I�ijs equals 1 when yij = s and yij 2 Yobs, and zero
otherwise;

2. Sample

π tð Þ
x Yobs; x tð Þ;αx

� � �
Dir α1 þ

Xn
i¼1

I x tð Þ
i ¼ 1

� �
; � � � ;αK þ

Xn
i¼1

I x tð Þ
i ¼ K

� � !

where IðxðtÞi ¼ kÞ is equal to 1 if xðtÞi ¼ k and zero
elsewhere;

3. Draw

π tð Þ
kj Yobs; x tð Þ;αkj

� �
�

Dir

 
αkj1 þ

X
i�x tð Þ

i
¼k

I�ij1; � � � ;αkjsj þ
X

i�x tð Þ
i
¼k

I�ijsj

!
; 8 k; j:

After ruling out the first b iterations for the burn-in, the
BLC model is estimated with the remaining d � m iterations,
which are draws from the conditional distribution
Pr(π|Yobs). For the imputations, at each dth iteration we
store the sampled parameters and class memberships,
yielding π�(1), . . ., π�ðmÞ from Pr(π|Yobs) and xð1Þi ; . . . ; xðmÞ

i .
The imputed values are subsequently drawn from the pos-
terior predictive distribution of the missing data, denoted
by PrðY�ðlÞ

mis jYobs;π�ðlÞÞ, l = 1, . . ., m. These simulated values
will be then entered in the blank part of the original incom-
plete dataset, replicated m times. Formally:

4. Imputation step: with each of m parameter sets
selected for the imputations, l = 1, . . ., m, given the
sampled value xðlÞi ¼ k of each unit, and for each
{i, j} 2 Ymis, sample from

YijjYobs;π
lð Þ; x lð Þ

i ¼ k
� �

� Multinom π� lð Þ
kj

� �
and store the imputed values.

In the experiments described in sections Simulation
Studies and Real-Data Study, Algorithm (1) is run with a
routine we implemented in R, which is available upon
request from the first author.

Setting Up the Model

Model Selection: Number of Classes
For Bayesian finite mixture models, Gelman, Carlin, Stern,
and Rubin (2013; chapter 22) proposed performing model
selection by resorting to a computational expedient. In par-
ticular, they noticed that by starting with arbitrarily large K
and latent hyperparameters supporting the occurrence of
empty components while the Gibbs sampler is running, it
is possible to obtain a posterior distribution for the number
of clusters by counting the number of classes filled at each
iteration of Algorithm 1 (without Step 4). A possible value
for the latent hyperparameter that encourages the realiza-
tion of empty components is given by αk = 1/K " k, which
as indicated by, Gelman et al. (2013) is insensitive to the
choice of the starting K. Hence, their approach consists of
two main steps: (1) preliminarily run the Gibbs sampler
(Steps 1–3 of Algorithm 1) and obtain the posterior distribu-
tion of K|Yobs; (2) set K equal to the posterior mode of this
distribution, and re-run the Gibbs sampler with this value
of K to perform inference. Whereas setting the number of
classes equal to the posterior mode is a logical choice in a
substantive LC analysis (i.e., for model interpretation), in
MI a number of components larger than the one used for
substantive analysis are usually required (Vermunt et al.,
2008). Therefore, we suggest using the posterior maximum
of the distribution of K|Yobs, that is, the largest K� such that
Pr(K = K�|Yobs) > 0. Afterwards, it is possible to perform the
imputations (Algorithm 1 including Step 4) with a second
run of the Gibbs sampler, with K selected at the previous
stage and a latent hyperparameter that supports the alloca-
tion of the units across all the mixture components (see
below). In the experiments of Simulation Studies and Real-
Data Study sections, this model selectionmethod was tested
for the BLCmodel, as well as for the FLC imputation model
to assess whether this is a good and fast alternative for the
model selection step of the FLC model.

Hyperparameter Selection
Latent Hyperparameter
Hoijtink and Notenboom (2004) noticed that when stan-
dard priors (e.g., the uniform prior) for the latent weights
are used, the probability of obtaining empty classes
increases with K. In these situations, sampling from the true
posterior becomes difficult for the Gibbs sampler, since the
(conditional distribution) parameters of the empty compo-
nents are fully determined by their prior distributions,
making the Gibbs sampler unstable.
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As mentioned in the previous section, the assumed prior
distribution for the mixture weights strongly affects the
shape of the posterior when the Gibbs sampler is run with
a large number of classes. In particular, αx can be set in such
a way that all the specified LCs are filled during the Gibbs
sampler iterations. Rousseau andMergensen (2011) showed
that, when an overfitting mixture model is estimated with
max(α1, . . ., αK) < p/2, where p is the number of free param-
eters to be estimated within each mixture component,1 the
latent proportions of the extra classes will approach zero,
while with min(α1, . . ., αK) > p/2, the possibly redundant
classes will be given a nonnegligible weight. The larger the
value of αk is, the larger the number of filled LCs will be.
Obtaining full allocation of the components is desirable,
because in this way the Gibbs sampler avoids to sample
from the prior distribution of the empty components param-
eters, making the composition of the clusters fully deter-
mined by the data. The Markov Chain Monte Carlo
(MCMC) output can be used to assess whether all the LCs
have been filled during the Gibbs sampling: if this is not
the case, then we suggest making αk " k more informative
by increasing its value (while maintaining a symmetric
Dirichlet distribution) until full allocation is achieved.

Conditional Hyperparameter
In MI, the aim is to obtain imputations which resemble as
much as possible the observed data, implying that the
prior distributions should be dominated by the data
likelihood (Schafer & Graham, 2002). For the conditional
response probabilities, Si and Reiter (2013) proposed set-
ting uniform priors for all variables and mixture compo-
nents, that is, αkj = (1, . . ., 1) " k, j. However, as will be
shown in section Simulation Studies, this may still be too
informative, leading to invalid imputations. Note that using
such uniform priors for the conditional response probabili-
ties is equivalent to adding K � sj observations for each
variable (see Step 3 of Algorithm 1). To prevent having
too informative priors for this part of the model, we sug-
gest making the conditional hyperparameters less influen-
tial by decreasing their values and setting them as low as
αkjs = 0.01 or 0.05 " k, j, s.2

Simulation Studies

Here we report the results of two simulation studies. In both
studies, the performance of our method is compared to that
of FLC, DPMM, and MICE. Study 1 concerns a situation
with a large sample size and a small number of variables

while Study 2 is based on data with a smaller sample size
and a large number of variables. All analyses were
performed with R version 3.3.0.

Study 1

Study Design
Population Model
The population model was specified for five predictor
variables Y1, . . ., Y5 and one outcome variable Y6, all of
which were trichotomous (coded with 0, 1, and 2). The
relationships between the predictors were described by
the log-linear model

log Pr Y1;Y2;Y3;Y4;Y5ð Þ /

�0:5
X5
j¼1

Yj �
X4
j¼1

X5
k¼jþ1

YjYk � 0:2Y1Y3Y5

þ0:5Y2Y4Y5: ð2Þ

Subsequently, the outcome was generated from a multino-
mial logistic model, defined for Pr(Y6 = r|Y1, . . ., Y5)
(r = {1,2}), whose probabilities were specified through

logðPrðY6 ¼ 1Þ=PrðY6 ¼ 0Þ Þ ¼
�0:1þ Y1 þ β1;2Y2 þ β1;3Y3 � 0:6Y4

þ0:5Y5 þ β1;25Y2Y5 þ β1;34Y3Y4

logðPrðY6 ¼ 2Þ=PrðY6 ¼ 0Þ Þ ¼
�0:6þ 1:8Y1 þ β2;2Y2 þ β2;3Y3 þ Y4

�0:5Y5 þ β2;25Y2Y5 þ β2;34Y3Y4; ð3Þ

where, as can be seen, the reference category is Y6 = 0.
The values of the β parameters are reported in Table 1.
Based on models (2) and (3), we generated N = 500 data-
sets with n = 5,000 observations each.

Introducing Missingness
A low and a high missingness condition was created by
introducing missing values in Y2 and Y3 according to
MAR mechanisms. The total rate of missingness for both
Y2 and Y3 was around 10% and 20% for the low and high
missingness condition, respectively. Table 2 shows how the
probability of a missing value depends on Y1 and Y4 for Y2,
and on Y5 and Y6 for Y3.

1 In LC models, the number of free parameters within each components is given by p =
P

jsj�1.
2 This is equivalent to entering 0.01Ksj or 0.05Ksj imaginary observations for each variable.
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Settings of the Imputation Models
For all the imputation models, we performed m = 20
imputations. For the BLC and the FLC models, we per-
formed model selection with the Gelman et al.’s (2013)
method exposed in section Model Selection: Number of
Classes. In particular, for each simulated datasets we ran
Steps 1–3 of Algorithm 1 with 20 components for T =
3,000 iterations, of which b = 1,000 served as burn-in.
The remaining 2,000 iterations were used to determine
the distribution of the number of LCs. This led to an
average (maximum) number of classes equal to �K ¼ 15:94
in the low missingness condition and to �K ¼ 15:41 in the
high missingness condition. The FLC imputation model
was run with LatentGOLD 5.1 (Vermunt & Magidson,
2013) with the settings given in Vermunt et al. (2008).
We imputed the data with the BLC model using different

prior specifications. In particular, we manipulated αk to be
equal to 1 and to 20 (we found out that αk = 20 was suffi-
ciently large to ensure full allocation of the units across all
the LCs), and αkjs to be equal either to 1 or to 0.01. The
BLC models we used will be denoted with BLC(αk, αkjs); for
instance, BLC(1,1) indicates the BLC model with uniform
priors for both the latent proportions and the conditional
response probabilities. We ran the DPMM model with
K = 20 and hyperparameters of the Dirichlet Process prior
set as in Si and Reiter (2013); αkjs was handled as done for
the BLC model. Therefore, we will denote the two DPMM
models we implemented with DPMM(1) and DPMM(.01).
The Gibbs sampler for both the BLC and the DPMM
methods were run with self-implemented routines,3 with
T = 5,000 total and b = 1,000 burn-in iterations. Lastly,
the MICE method was run with its standard settings and
with 20 iterations for each imputation4 using themice library
(Van Buuren et al., 2014).

Outcomes
After applying the imputation models, estimating model (3)
on each imputed dataset, and applying the pooling rules for
MI, we compared relative bias, stability (i.e., the standard
deviation of the estimates across the 500 replications),
and coverage rates of the 95% confidence intervals of the
MI estimates. In particular, we considered the estimates
of the parameters reported in Table 1: these parameters
correspond to the main and interaction effects of the vari-
ables with missing values (Y2 and Y3).

Results
Tables 3 and 4 show the results for the Low and High miss-
ingness condition, respectively.

Low Missingness Condition
In the first condition, the largest bias was observed for the
two interaction terms β1,25 (MICE) and β1,34 (MICE, FLC,
BLC(1,1), BLC(20,1), DPMM(1)). The interaction term
β2,34 recovered by BLC(1,1) and DPMM(1) was also biased.
Parameter estimates produced by all the LC methods
tended to be similar in terms of stability, but the most stable
parameter estimates were provided by MICE. The coverage
rate of the 95% confidence intervals was close to the nom-
inal level for all the parameters estimated after processing
the data with any of the considered imputation methods,
except for the confidence intervals of the main effects β1,2
and β1,3 produced by MICE, which were too short.

3 We implemented the DPMM model as described in Si and Reiter (2013).
4 MICE produces m imputations by starting from m different (independently drawn) values for the missing data. Subsequently, the imputation
model parameters and the missing data are iteratively updated in parallel for a number of specified iterations. Following Van Buuren, Brand,
Groothuis-Oudshoorn, and Rubin (2006), to reach convergence the number of iterations does not need to be large, and we decided to set it equal
to 20.

Table 2. MAR mechanisms used in Study 1: The table reports the
probability of nonresponses in Y2 for each combination of Y1,Y4 and in
Y3 for each combination of Y5,Y6

Missingness
rate Y1,Y4

Pr(Y2 is
missing) Y5,Y6

Pr(Y3 is
missing)

Low 0,0 .100 0,0 .125

0,1 .025 0,1 .075

0,2 .125 0,2 .100

1,0 .150 1,0 .100

1,1 .075 1,1 .150

1,2 .050 1,2 .175

2,0 .125 2,0 .150

2,1 .200 2,1 .050

2,2 .150 2,2 .125

Large 0,0 .200 0,0 .250

0,1 .050 0,1 .150

0,2 .250 0,2 .200

1,0 .300 1,0 .200

1,1 .150 1,1 .300

1,2 .100 1,2 .350

2,0 .250 2,0 .300

2,1 .400 2,1 .100

2,2 .300 2,2 .250

Table 1. Parameter values under investigation in Study 1

Parameter β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Value �1.7 1.5 �0.25 0.1 �1.25 1.0 �0.5 0.2
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High Missingess Condition
With a larger rate of missingness more pronounced rela-
tive bias was observed across a larger number of estimates
and for more imputation methods. All methods, with the
exception of BLC(20,.01), retrieved a biased estimate of
the parameter β1,34. Furthermore, the interaction terms
β2,25 and β2,34 provided by all the Bayesian LC models
(excluding BLC(20,.01)) were also biased. The remaining
interaction term (β1,25) was correctly recovered by all meth-
ods, except for MICE and DPMM(1). As with low missing-
ness, all LC methods retrieved similarly stable estimates,
although now the BLC(1,1), BLC(20,1), and DPMM(1)
models tended to produce relatively more stable estimates
for some of the parameters. As in the previous condition,

the confidence intervals for all parameters produced by
most methods were close to their 95% nominal level. The
only exceptions were the much too low coverage for the
main effects β1,2, β1,3, and β2,3 produced by MICE and the
slightly too low coverage for the interaction terms β2,25
and β2,34 by various of the LC-based methods.

Study 2

Study Design
Population Model
In Study 2 we used J = 21 binary variables Y1, . . ., Y21 (coded
with 0 and 1), 20 predictors and 1 outcome. The first 15

Table 3. Relative bias, stability, and coverage rate observed for the estimates of eight multinomial logistic model parameters in model (3) after
applying three different imputation models

Low missingness condition

Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Relative bias

MICE �0.06 �0.09 �0.22 0.22 0.02 �0.06 �0.04 0.03

FLC 0.00 0.01 �0.02 0.22 0.01 0.01 0.02 0.06

BLC(1,1) 0.00 0.00 �0.08 �0.21 0.01 0.00 �0.11 �0.18

BLC(20,1) 0.00 0.00 �0.07 �0.20 0.01 �0.01 �0.09 �0.15

BLC(1,.01) 0.00 0.00 �0.04 �0.03 0.01 0.00 �0.05 �0.08

BLC(20,.01) 0.00 0.00 �0.02 0.05 0.00 0.00 �0.02 �0.02

DPMM(1) 0.00 0.00 �0.10 �0.52 0.02 0.00 �0.14 �0.40

DPMM(.01) 0.00 0.00 �0.04 �0.06 0.01 0.00 �0.06 �0.09

Stability

MICE 0.09 0.08 0.11 0.16 0.08 0.10 0.19 0.15

FLC 0.10 0.10 0.13 0.19 0.08 0.11 0.20 0.17

BLC(1,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16

BLC(20,1) 0.10 0.10 0.13 0.18 0.08 0.11 0.18 0.16

BLC(1,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

BLC(20,.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

DPMM(1) 0.10 0.10 0.13 0.17 0.08 0.11 0.17 0.16

DPMM(.01) 0.10 0.10 0.13 0.19 0.08 0.11 0.19 0.17

Coverage rate

MICE 0.82 0.72 0.96 0.98 0.94 0.92 0.97 0.98

FLC 0.93 0.95 0.95 0.96 0.95 0.95 0.97 0.95

BLC(1,1) 0.94 0.96 0.95 0.97 0.95 0.95 0.95 0.96

BLC(20,1) 0.93 0.96 0.94 0.97 0.96 0.95 0.96 0.95

BLC(1,.01) 0.94 0.95 0.95 0.95 0.96 0.95 0.96 0.95

BLC(20,.01) 0.94 0.96 0.94 0.97 0.94 0.95 0.97 0.95

DPMM(1) 0.94 0.95 0.95 0.96 0.95 0.95 0.95 0.94

DPMM(.01) 0.93 0.95 0.95 0.96 0.95 0.95 0.96 0.95

Notes. MICE = MICE imputation technique; FLC = frequentist LC imputation model; BLC(1,1) = Bayesian LC imputation model with αk = 1, αkjs = 1; BLC(20,1)
= Bayesian LC imputation model with αk = 20, αkjs = 1; BLC(1,.01) = Bayesian LC imputation model with αk = 1, αkjs = .01; BLC(20,.01) = Bayesian LC
imputation model with αk = 20, αkjs = .01; DPMM(1) = DPMM imputation model with αkjs = 1; DPMM(.01) = DPMM imputation model with αkjs = .01. Largest
values in relative bias and too low coverage rates are marked in boldface.
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predictors were generated from the following log-linear
model:

log Pr Y1; . . . ;Y15ð Þ /

�0:15
X15

j¼1
Yj þ 0:5

X4

j¼1

X5

k¼jþ1
YjYk

�0:1
X10

j¼6

X11

k¼jþ1
YjYk þ 0:15

X14

j¼12

X15

k¼jþ1
YjYk

þ0:3Y1Y2Y7 þ 0:6Y3Y4Y8 � 0:4Y6Y9Y10; ð4Þ
while the remaining five predictors were assumed to be
independent of the rest, with marginal probabilities
Pr(Yj = 1), j = 16, . . ., 20, as reported in Table 5.

Given Y1, . . ., Y20 the outcome Y21 was generated from
the following binary logistic model:

logit Y21ð Þ ¼ �0:9þ β1Y1 þ 1:8Y2 � 0:95Y3 � 0:9Y4

þ0:8Y5 þ β6Y6 � 0:5Y7 þ 0:6Y8 þ Y9 þ 0:55Y10

�0:6Y11 þ 0:75Y12 � 1:2Y13 þ 0Y14 þ 0Y15

þ β16Y16 þ 0:85Y17 þ 0:55Y18 þ 0Y19 þ β20Y20

þ β1:5Y1Y5 þ β1:17Y1Y17 þ β1:5:17Y1Y5Y17: ð5Þ

Besides the two- and three-way interaction terms, in model
(5) we also specified some null effects (coefficients equal to
zero) in order to assess how the imputation models deal
with irrelevant variables. The values of the β parameters
are shown in Table 6. From models (4) and (5) (and the
items described in Table 5), we generated N = 200 datasets
with n = 2,000 observations.

Table 4. Relative bias, stability, and coverage rate observed for the estimates of eight multinomial logistic model parameters in model (3) after
applying three different imputation models

High missingness condition

Parameter

Method β1,2 β1,3 β1,25 β1,34 β2,2 β2,3 β2,25 β2,34

Relative bias

MICE �0.12 �0.18 �0.38 0.34 0.04 �0.13 �0.13 0.02

FLC 0.00 0.01 �0.02 0.35 0.02 0.02 �0.02 0.09

BLC(1,1) 0.01 �0.01 �0.14 �0.56 0.03 �0.01 �0.28 �0.41

BLC(20,1) 0.00 �0.01 �0.13 �0.55 0.03 �0.02 �0.25 �0.37

BLC(1,.01) 0.00 0.00 �0.05 �0.23 0.02 0.00 �0.16 �0.23

BLC(20,.01) 0.00 0.00 �0.02 �0.04 0.01 0.00 �0.10 �0.09

DPMM(1) 0.01 �0.01 �0.17 �0.99 0.05 �0.01 �0.33 �0.75

DPMM(.01) 0.00 0.00 �0.05 �0.32 0.02 0.00 �0.17 �0.28

Stability

MICE 0.08 0.08 0.09 0.16 0.09 0.10 0.18 0.14

FLC 0.11 0.11 0.13 0.21 0.09 0.12 0.20 0.20

BLC(1,1) 0.11 0.10 0.13 0.19 0.09 0.11 0.16 0.16

BLC(20,1) 0.11 0.10 0.13 0.19 0.08 0.11 0.17 0.17

BLC(1,.01) 0.11 0.11 0.13 0.21 0.09 0.12 0.18 0.19

BLC(20,.01) 0.11 0.11 0.14 0.21 0.09 0.12 0.19 0.19

DPMM(1) 0.10 0.10 0.13 0.19 0.08 0.11 0.16 0.17

DPMM(.01) 0.11 0.11 0.13 0.20 0.09 0.12 0.19 0.18

Coverage rate

MICE 0.48 0.17 0.96 0.98 0.93 0.80 0.96 0.99

FLC 0.94 0.94 0.96 0.95 0.95 0.91 0.96 0.94

BLC(1,1) 0.95 0.95 0.95 0.96 0.94 0.95 0.92 0.95

BLC(20,1) 0.95 0.96 0.96 0.96 0.96 0.96 0.92 0.95

BLC(1,.01) 0.95 0.95 0.96 0.95 0.95 0.94 0.94 0.93

BLC(20,.01) 0.93 0.95 0.96 0.95 0.94 0.94 0.95 0.95

DPMM(1) 0.95 0.95 0.96 0.92 0.93 0.96 0.89 0.87

DPMM(.01) 0.94 0.95 0.96 0.95 0.95 0.95 0.93 0.94

Notes. MICE = MICE imputation technique; FLC = frequentist LC imputation model; BLC(1,1) = Bayesian LC imputation model with αk = 1, αkjs = 1; BLC(20,1)
= Bayesian LC imputation model with αk = 20, αkjs = 1; BLC(1,.01) = Bayesian LC imputation model with αk = 1, αkjs ¼ :01; BLC(20,.01) = Bayesian LC
imputation model with αk = 20, αkjs = .01; DPMM(1) = DPMM imputation model with αkjs = 1; DPMM(.01) = DPMM imputation model with αkjs = .01. Largest
values in relative bias and too low coverage rates are marked in boldface.
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Introducing Missingness
Missingness was entered in Y1 (involved in all the interac-
tion terms), Y6, Y16, and Y20 (an irrelevant predictor). The
marginal rate of missingness (generated with the MAR
mechanism reported in Table 7) was equal to 25% for each
variable with missing values.

Settings of the Imputation Models
The specifications used for the imputation models were
similar to Study 1. For FLC and BLC, our model selection
procedure gave an average (maximum) number of classes
of �K ¼ 16:31, while we increased the number of classes
for the DPMM, specifying for the latter 20 more classes
than the FLC and BLC models.5 Based on the results of
Study 1, we decided not to vary αkjs anymore, but instead
fixed it to 0.01 for both BLC and DPMM. The latent hyper-
parameter of the BLC model αk was set to be equal to either
1 or 80, where the latter was chosen to be sufficiently large
to ensure full allocation of the latent classes. This is indi-
cated with BLC(1) and BLC(80).

Outcomes
To assess the performance of the imputation models, we
looked at relative bias, stability, and coverage rates for
the coefficients of the variables with missing values
(see Table 8). For the null effect β20, we considered the
absolute bias.

Results
The results reported in Table 8 show that the null effect
β20, the three-way interaction term β1.5.17, and the main
effects β6 and β16 were well retrieved by all methods. The
two-way interaction terms resulting from MICE, BLC(1),
and DPMM were remarkably biased, while FLC and BLC

Table 7. MAR mechanisms used in Study 2

Item with missingness Condition Pr(Item is missing)

Y1 Y3 = 0, Y4 = 0 .15

Y3 = 0, Y4 = 1 .05

Y3 = 1, Y4 = 0 .25

Y3 = 1, Y4 = 1 .30

Y6 Y5 = 0, Y21 = 0 .30

Y5 = 0, Y21 = 1 .20

Y5 = 1, Y21 = 0 .10

Y5 = 1, Y21 = 1 .35

Y16 Y9 = 0, Y10 = 0 .30

Y9 = 0, Y10 = 1 .25

Y9 = 1, Y10 = 0 .10

Y9 = 1, Y10 = 1 .40

Y20 Y14 = 0, Y15 = 0 .35

Y14 = 0, Y15 = 1 .10

Y14 = 1, Y15 = 0 .10

Y14 = 1, Y15 = 1 .45

Table 5. Probability of observing 1 for the independently generated
items of Study 2

Pr(Y16 = 1) = 0.7

Pr(Y17 = 1) = 0.6

Pr(Y18 = 1) = 0.55

Pr(Y19 = 1) = 0.6

Pr(Y20 = 1) = 0.7

5 With the DPMM model superfluous classes are given weights equal to zero during the Gibbs sampling. Hence, with such an imputation model
any selected number of classes leads to similar inferences provided that this number is large enough.

Table 8. Relative bias, stability, and coverage rate observed for the
estimates of seven logistic model parameters in model (5) after
applying three different imputation models

Parameter

Method β1 β6 β16 β20 β1.5 β1.17 β1.5.17

Relative bias

MICE 0.20 �0.01 0.00 0.01 �0.22 �0.16 �0.06

FLC �0.05 �0.09 �0.10 0.00 �0.11 �0.14 �0.05

BLC(1) 0.01 �0.12 �0.13 0.00 �0.21 �0.16 �0.06

BLC(80) �0.04 �0.08 �0.08 0.00 �0.09 �0.12 �0.05

DPMM 0.02 �0.12 �0.13 0.00 �0.22 �0.16 �0.06

Stability

MICE 0.41 0.14 0.15 0.14 0.38 0.40 0.35

FLC 0.44 0.13 0.13 0.13 0.42 0.42 0.35

BLC(1) 0.40 0.14 0.13 0.13 0.40 0.39 0.35

BLC(80) 0.44 0.14 0.14 0.14 0.43 0.42 0.36

DPMM 0.40 0.14 0.13 0.13 0.39 0.40 0.35

Coverage rate

MICE 0.98 0.93 0.92 0.96 0.96 0.96 0.94

FLC 0.94 0.88 0.95 0.96 0.96 0.96 0.96

BLC(1) 0.97 0.84 0.94 0.98 0.96 0.97 0.95

BLC(80) 0.94 0.91 0.94 0.96 0.96 0.96 0.94

DPMM 0.96 0.87 0.94 0.98 0.96 0.97 0.94

Notes. For the null effect β20 absolute bias is reported. MICE = MICE
imputation technique; FLC = frequentist LC imputation model; BLC(1) =
Bayesian LC imputation model with αk = 1; BLC(80) = Bayesian LC
imputation model with αk = 80; DPMM = DPMM imputation model.
Largest values in relative bias and too low coverage rates are marked in
boldface.

Table 6. Parameter values under investigation in Study 2

Parameter β1 β6 β16 β20 β1.5 β1.17 β1.5.17

Value 0.8 1.1 �0.45 0.0 1.3 �0.85 0.45
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(80) provided good estimates for these parameters. The β1
coefficient was also correctly recovered by all methods,
except for MICE. FLC and BLC(80) produced the least
stable estimates, probably due to the fact that a larger
number of LCs was exploited by these two methods.
DPMM and BLC(1) returned similarly stable estimates:
their standard deviations were overall smaller than those
of the other two LC imputation methods. MICE provided
the least varying estimates across all the imputation
methods. All methods yielded confidence intervals with
acceptable coverage (close to the 95% nominal level).
The only exceptions were the interval for β6, which resulted
in too low coverage after imputing with FLC, BLC(1), or
DPMM.

Real-Data Study

The General Social Survey (GSS; National Opinion Research
Center, 1972) is a survey conducted by the National Opinion
Research Center and administered every 2 years to a ran-
dom sample of households resident in the United States.
Here we use data from this study to evaluate the imputation
models in a situation where the associations between vari-
ables are as encountered in real data. Our experiment was
carried out with the GSS cross-sectional wave of 2014. Anal-
yses were again performed with R 3.3.0.

Study Design

The Data
From the original dataset (which consisted of n = 2,538
units and J = 895) we removed all records with missing data
and “Don’t know” and “Not applicable” answers. The
resulting dataset had a sample size equal to n = 477. Subse-
quently, we selected a subset of J = 15 variables, of which
the first 12 were the possible outcome and the predictors
of a potential analysis model, and the remaining 3 were
used to generate the missingness (and therefore included
in the imputation models). The variables names and the
description of their categories are listed in Table 9.6

The Substantive Model
The analysis was performed with an ordered logistic model
estimated on the complete dataset (with n = 477), in which
the variable Happiness (Y0 in Table 9) was the outcome
and the Y1, . . ., Y11 of Table 9 were the predictors. More
specifically, the model we estimated was

log
Pr Y0 � sð Þ
Pr Y0 > sð Þ
� �

/

X11
j¼1

βjYj þ β57Y5Y7 þ β48Y4Y8: ð6Þ

Table 9. Variables used in the real-data application

Item label Item description Values (range)

Items for the analysis model

Y0 Respondent’s happiness 1 = Not happy to 3 = Very happy

Y1 Respondent’s opinion about his/her life 1 = Dull to 3 = Exciting

Y2 Respondent’s job satisfaction 1 = Very dissatisfied to 4 = Very satisfied

Y3 Respondent’s health status 1 = Poor to 5 = Excellent

Y4 Respondent’s marital status 0 = Not married to 1 = Married

Y5 Respondent’s employment status 1 = Self employed to 2 = Work for someone else

Y6 Respondent’s political view 1 = Liberal to 3 = Conservative

Y7 Respondent’s gender 0 = Female to 1 = Male

Y8 Respondent’s working status 1 = Full time to 4 = Not working

Y9 Respondent’s employer 1 Government – 2 Private

Y10 Respondent’s family income 1 <5,000 to 4 >25,000

Y11 Respondent’s time spent with friends 1 = Almost every day to 7 = Never

Items used to generate missingness

Y12 Respondent’s education 0 <Highschool to 4 = Graduate

Y13 Respondent’s working contract 1 = Full time to 2 = Part-time

Y14 Respondent’s occupation prestige (score) 1 = 10/19 to 8 = 80/89

Notes. Top: items of the analysis model (6). Bottom: items used to generate missingness.

6 For some variables the categories were reversed, while for others some categories were combined.
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The first column of Table 10 reports the estimates and
the standard errors of the β’s parameters obtained with
the complete data, where significant predictors at 5% are
highlighted.

Introducing Missingness
We artificially created missing values for the variables Y2,
Y5, Y6, and Y8. MAR missingness was generated with
the four different logistic models described in Table 11.
The parameters of these logistic models were set such that
the rate of missingness was between 25% and 33% per
variable.

Imputation Model Settings
For each MI method m = 50 imputations were performed.
For the model selection, we ran the BLC model with
50 components and b = 5,000 iterations for the burn-in,
and 5,000 to estimate the distribution of K. The resulting
posterior maximum for the number of classes was equal
to 16. Therefore, we performed the imputations with the
FLC and BLC models with K = 16. The latent hyperparam-
eter for the BLC model was set equal to αk = 40, which was
large enough to ensure full allocation of the LCs, while the
conditional hyperparameter for the BLC and the DPMM
models was set equal to αkjs = 0.05. The DPMM model
was implemented with K = 20. The Gibbs sampler for both
BLC and DPMM was run with T = 55,000 and b = 5,000.
For MICE, 20 iterations were used for each imputation.

Outcomes
After imputing the data, model (6) was estimated for each
completed dataset. We focused on the point estimates and
the standard errors obtained after applying the MI pooling
rules. We also assessed which estimates were significant at
5% after calculating their MI p-values7.

Results

The results reported in Table 10 show that MICE
performed badly: its point estimates for both main and
interaction effects were rather far from those obtained with
the Complete Data. Furthermore, MICE produced very
large standard errors, causing most of the estimates to be
no longer significant (except for β1 and β3). In contrast,
the LC imputation models (FLC, BLC, and DPMM) yielded
parameter estimates close to those of the Complete Data,
and the extra uncertainty due to the presence of missing
data (reflected in the standard errors) was much smaller

Table 10. Results of the real-data application

Imputation method

Complete data MICE FLC BLC DPMM

Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

β1 1.12* 0.21 1.06* 0.46 1.12* 0.22 1.14* 0.21 1.19* 0.21

β2 0.82* 0.15 0.56 0.35 0.95* 0.17 0.87* 0.18 0.68* 0.17

β3 0.80* 0.16 1.27* 0.37 0.79* 0.16 0.77* 0.16 0.79* 0.16

β4 �0.24 0.42 �0.05 0.92 �0.51 0.48 �0.35 0.51 �0.27 0.50

β5 0.62 0.46 0.72 2.21 0.69 0.62 0.56 0.61 0.62 0.63

β6 0.25 0.13 0.40 0.29 0.36* 0.16 0.28 0.16 0.25 0.16

β7 3.02* 1.24 5.50 5.03 3.72* 1.58 3.18* 1.59 3.20* 1.59

β8 �0.47* 0.19 �0.05 0.41 �0.52* 0.21 �0.46* 0.22 �0.40 0.22

β9 �0.22 0.27 �0.50 0.65 �0.15 0.28 �0.21 0.27 �0.22 0.27

β10 0.13 0.21 0.05 0.48 0.14 0.23 0.14 0.22 0.14 0.22

β11 �0.17* 0.07 �0.09 0.17 �0.20* 0.08 �0.18* 0.08 �0.17* 0.07

β57 �1.70* 0.65 �3.11 2.55 �2.08* 0.82 �1.81* 0.83 �1.81* 0.83

β48 0.69* 0.28 0.29 0.62 0.84* 0.32 0.74* 0.35 0.72* 0.35

Notes.The table shows the point estimates and the standard errors for the ordered logistic regression model (6) estimated on the complete data (n = 477)
and on the incomplete datasets, imputed with the MICE, FLC, BLC, and DPMM methods. “*” indicates the 5% significant parameter estimates.

Table 11. MAR mechanisms used to generate missing data in the
real-data application

Item with missingness Missingness generating model

Y2 1 � 1.5 Y12

Y5 �2.2 + 1.2 Y13

Y6 1.3 � 1.25 Y9

Y8 2.1 � 0.8 Y14

7 The degrees of freedom were calculated as in Van Buuren (2012).
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than with the MICE. Because of this, most of the parame-
ters that were significant with the Complete Data were also
significant (at the 5% level) after imputing the data using
the LC-based imputation techniques. The only exceptions
were β6, which became significant with FLC, and β8, which
was no longer significant with DPMM. The significant
parameters according to the BLC imputation were the same
as those by the Complete Data.

Discussion

In this paper, we proposed using a BLC model for the MI of
categorical data. As any LC model, this model is automati-
cally able to capture the dependencies present in the data –
including complex interactions – with the simple specifica-
tion of the needed number of classes. We also highlighted
the advantages of performing the imputations with the
BLC model, rather than with the FLC or the DPMM
method. Compared to the FLC model, the BLC model
offers a very fast and intuitive model selection step, which
makes use of the posterior distribution of the number of
LCs required by the data and which can be obtained with
an extra (preliminary) run of the Gibbs sampler. Another
computational advantage is that parameter uncertainty is
automatically accounted for, whereas the FLC requires
using a nonparametric bootstrap procedure. Compared to
the DPMM approach, the BLC model offers important
additional flexibility through the specification of the hyper-
parameter for the latent class proportions. By setting its
value large enough, one guarantees the allocation of units
across all LCs, which is a way to avoid the risk of underfit-
ting associated with the DPMM model.

Two simulation studies and a real-data experiment were
carried out in which the BLC model was contrasted with
the FLC, DPMM, and MICE methods. In the first study,
we used a large sample size (n = 5,000) and a small num-
ber of variables (J = 6), and we manipulated the total rate of
missingness in the variables with nonresponses. In the
second study, a smaller sample size (n = 2,000) and a
larger J (= 21) were considered. In both studies, the latent
hyperparameter of the BLC model was also manipulated,
in order to emphasize the influence of this value on the final
imputations. In the real-data study, the sample size was
n = 477 and the number of variables (used for the imputa-
tions) was equal to J = 15. In all studies, the BLC imputation
model (with large values for the latent hyperparameter and
small values for the conditional hyperparameter) provided
the best results in terms of bias, stability, and coverage rates
for the main and interaction effects of the substantive
model. In the real-data study, the BLC model also detected
the same set of significant parameters as with the Complete
Data analysis. The FLC method (implemented with the

same number of classes of the BLC model) also yielded
good results, although worse than the BLC method (e.g.,
the bias of one of the interaction terms in Study 1 was
remarkable). This was probably due to the fact the FLC
model, unlike the BLC model with a large value of the
latent hyperparameter, gave too small weights to LCs that
were important for the imputations. The DPMM model
and the BLC model with uniform prior for the latent pro-
portions both failed to correctly retrieve the estimates of
some interaction terms. Lastly, the MICE method was not
flexible enough to be able to capture all important features
of the data in most situations.

Based on our results, our recommendation for researchers
that need to deal with (MAR) missing categorical data is to
use our BLC MI approach combined with the model selec-
tion and prior specifications described in this paper. A limita-
tion of this new MI approach is that it can be used only with
cross-sectional categorical data.However, in future research,
wewill extend it to deal with combinations of categorical and
continuous variables, as well as with data from multilevel
and longitudinal designs in which more complex dependen-
cies may arise. Another challenge for future research is to
develop a version of theBLC imputationmodel for situations
in which the missing data are missing not at random.
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